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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 24157 was prepared by Technical Committee ISO/TC 172, Optics and photonics, Subcommittee SC 7, 
Ophthalmic optics and instruments. 
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Ophthalmic optics and instruments — Reporting aberrations of 
the human eye 

1 Scope 

This International Standard specifies standardized methods for reporting aberrations of the human eye. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 8429, Optics and optical instruments — Ophthalmology — Graduated dial scale 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. Symbols used are summarized 
in Table 1. 

3.1 
line of sight 
line from the point of interest in object space to the centre of the entrance pupil of the eye and continuing from 
the centre of the exit pupil to the retinal point of fixation (generally the foveola) 

3.2 
Zernike polynomial function 
one of a complete set of functions defined and orthogonal over the unit circle, the product of three terms, a 
normalization term, a radial term and a meridional term, parameterized by a dimensionless radial parameter, ρ, 
and a dimensionless meridional parameter, θ, designated by a non-negative radial integer index, n, and a 
signed meridional index, m, and given by the equation 

( ) ( )mm m
n n nZ N R M mρ θ=  (1) 

where 

m
nN  is the normalization term; 

m
nR  is the radial term; 

M(mθ) is the meridional term; 

the parameter ρ  is a real number continuous over its range of 0 to 1,0; 

the parameter θ  is a real number continuous over its range of 0 to 2π. 

NOTE For a given value of radial index n, the meridional index m may only take the values −n, −n+2, …, n−2 and n. 
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3.2.1 
radial term 
Zernike polynomial function term with indices n and m given by the equation 

( ) ( ) ( )
( ) ( )

( )0,5
2

0

1 !

! 0,5  !  0,5  !

n m s
m n s

n
s

n s
R

s n m s n m s
ρ ρ

−
−

=

− −
=

⎡ ⎤ ⎡ ⎤+ − − −⎣ ⎦ ⎣ ⎦
∑  (2) 

where s is an integer summation index incremented by one unit 

3.2.2 
radial parameter 
ρ 
dimensionless number taking values between 0 and 1, its value at any radial distance, r, from the aperture 
centre being given by the expression 

r
a

ρ =  (3) 

where a is the value of the aperture radius 

3.2.3 
meridional term 
Zernike polynomial function term with index m given by the equations 

( ) ( )cosM m mθ θ=    if m W 0 (4) 

( ) ( )sinM m mθ θ=    if m < 0 (5) 

NOTE The meridional term is also known as the azimuthal term. 

3.2.4 
meridional parameter 
θ 
angular value taking values between 0 and 2π (0° and 360°), expressed in the coordinate system defined in 
Clause 4 

NOTE This is also called the azimuthal angle. 

3.2.5 
normalization term 
Zernike polynomial function term with indices n and m, equal to 1,0 for “un-normalized” functions (3.2.7) and 
for “normalized” functions (3.2.6) by the equation 

( )( )0,2 1m
n mN nδ= − +  (6) 

where δ0,m = 1 if m = 0, δ0,m = 0 if m ≠ 0. 

3.2.6 
normalized Zernike polynomial function 
Zernike polynomial function whose normalization term takes the form given in 3.2.5 for “normalized” functions 
defined as orthogonal in the sense that it satisfies the following equation 

1 2

, ,
0 0

m m
n n n n m md Z Z d

π

ρ ρ θ πδ δ′
′ ′ ′=∫ ∫  (7) 
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where 

δn,n′ = 1 if n = n′, δn,n′ = 0 if n ≠ n′; 

δm,m′ = 1 if m = m′, δm,m′ = 0 if m ≠ m′. 

3.2.7 
un-normalized Zernike polynomial function 
Zernike polynomial function whose normalization term is equal to 1,0 and defined as orthogonal in the sense 
that it satisfies the equation 

( )( )
1 2

0, , ,
0 0

2 1 m m
m n n n n m mn d Z Z d

π

δ ρ ρ θ πδ δ′
′ ′ ′− + =∫ ∫  (8) 

where 

δn,n′ = 1 if n = n′, δn,n′ = 0 if n ≠ n′; 

δm,m′ = 1 if m = m′, δm,m′ = 0 if m ≠ m′; 

δ0,m = 1 if m = 0, δ0,m = 0 if m ≠ 0. 

3.2.8 
order 
value of the radial index n of a Zernike polynomial function 

3.3 
Zernike coefficient 
member of a set of real numbers, m

nc , which is multiplied by its associated Zernike function to yield a term that 
is subsequently used in a sum of terms to give a value equal to the best estimate of the surface, S(ρ,θ), that 
has been fitted with Zernike terms, such a sum being represented by 

( )
all  and 

, m m
n n

n m
S c Zρ θ = ∑  (9) 

NOTE 1 Each set of Zernike coefficients has associated with it the aperture diameter that was used to generate the set 
from surface elevation data. The set is incomplete without this aperture information. 

NOTE 2 Annex A gives information on a method to find Zernike coefficients from wavefront slope (gradient) data. 

3.3.1 
normalized Zernike coefficient 
Zernike coefficient generated using normalized Zernike functions and so designed to be used with them to 
reconstruct a surface 

NOTE Normalized Zernike coefficients have dimensional units of length. 

3.3.2 
un-normalized Zernike coefficient 
Zernike coefficient generated using un-normalized Zernike functions and so designed to be used with them to 
reconstruct a surface 

NOTE Un-normalized Zernike coefficients have dimensional units of length. 
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3.4 
wavefront error (of an eye) 
W(x,y) or W(r,θ) 
optical path-length (i.e. physical distance times refractive index) between a plane wavefront in the eye’s 
entrance pupil and the wavefront of light exiting the eye from a point source on the retina, and specified as a 
function (wavefront error function) of the (x,y) (or r,θ) coordinates of the entrance pupil 

NOTE 1 Wavefront error is measured in an axial direction (i.e. parallel to the z-axis defined in Clause 4) from the pupil 
plane towards the wavefront. 

NOTE 2 By convention, the wavefront error is set to zero at the pupil centre by subtracting the central value from 
values at all other pupil locations. 

NOTE 3 Wavefront error has physical units of metres (typically reported in micrometres) and pertains to a specified 
wavelength. 

3.5 
optical path-length difference 
OPD 
negative of the wavefront error (3.4) at each point in a wavefront representing the correction of the optical 
path-length needed to correct the wavefront error 

3.6 
root mean square wavefront error 
RMS wavefront error 
〈of an eye〉 quantity computed as the square root of the variance of the wavefront error (3.4) function and 
defined as 

2

pupil
WFE

( , )W x y dxdy

RMS
A

⎡ ⎤⎣ ⎦

=
∫∫

 (10) 

where A is the area of the pupil 

or, if the wavefront error function is expressed in terms of normalized Zernike coefficients, a quantity equal to 
the square root of the sum of the squares of the coefficients with radial indices 2 or greater 

( )2
WFE

1,all 
 m

n
n m

RMS c
>

= ∑  (11) 

NOTE 1 Piston and average tilt should be excluded from this calculation because they correspond to lateral 
displacements of the image rather than image degradation per se. 

NOTE 2 The RMS error can also be found using the discrete set of wavefront error values that were used to generate 
the Zernike coefficients and standard statistical methods. When this is done it might be found that this RMS value does not 
exactly match the value found using the formula given above. This is more likely to happen in cases where the locations in 
the pupil used to sample the wavefront error form a non-uniformly spaced grid. Then the data set does not lead to the 
formation of discrete, orthogonal Zernike functions. 

3.7 
higher-order aberrations 
those aberrations experienced by the eye in addition to sphero-cylindrical refractive errors and prismatic error 
and thus, if the wavefront error is expressed in terms of Zernike polynomial function coefficients, those of 
order 3 and higher 
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3.8 
wavefront gradient 
∂W(x,y) 
vector giving the values of the gradient of the wavefront, ∂W(x,y)/∂x and ∂W(x,y)/∂y, at locations x and y and, 
when expressed in terms of Zernike polynomial coefficients, given by: 

( )
all  and 

, ( , )m
m n
n

n m

W x y Z x y
c

x x
∂ ∂

=
∂ ∂∑    and   

( )
all  and 

, ( , )m
m n
n

n m

W x y Z x y
c

y y
∂ ∂

=
∂ ∂∑  (12) 

NOTE Measured gradient values are referred to by βx(x,y) and βy(x,y) at locations x,y. 

Table 1 — Symbols 

Symbol Name Definition given in

( ),A mθ α  meridional term for magnitude/axis Zernike functions 5.1.9 

m
nc  Zernike coefficient 3.3 

nmc  Zernike coefficient – magnitude 5.1.9 

m meridional index for Zernike functions 3.2 

( )m
nM mθ  meridional term for Zernike functions 3.2.3 

n radial index for Zernike functions 3.2 

m
nN  normalization term for Zernike functions 3.2.5 

( )m
nR ρ  radial term for Zernike functions 3.2.1 

m
nZ  Zernike function [alternate notation: Z(n,m)] 3.2 

nmZ  Zernike function – magnitude/axis form 5.1.9 

α axis parameter for magnitude/axis form Zernike functions 5.1.9 

ρ radial parameter for Zernike functions 3.2.2 

θ meridional parameter for Zernike functions 3.2.4 

W(x,y) wavefront error 3.4 

βx,y measured gradient at a location x,y 3.8 

∂Wx,y wavefront gradient at a location x,y 3.8 

βfit gradient fit error 5.3 

4 Coordinate system 

The coordinate system used to represent wavefront surfaces shall be the standard ophthalmic coordinate 
system in accordance with ISO 8429 in which the x-axis is local horizontal with its positive sense to the right 
as the examiner looks at the eye under measurement, the y-axis is local vertical with its positive sense 
superior with respect to the eye under measurement, the z-axis is the line of sight of the eye under 
measurement with its positive sense in the direction from the eye toward the examiner. The horizontal and 
vertical origin of the coordinate system is the centre of the visible pupil of the eye. The coordinate system 
origin lies in the plane of the exit pupil of the eye (for light originating on the retina and passing out through the 
pupil). This coordinate system is illustrated in Figure 1. 
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The sign convention used for wavefront error values reported at any location on a wavefront shall be that used 
for this coordinate system. 

When Zernike coefficients are used to represent a wavefront or to report wavefront error, the sign convention 
used to describe the individual Zernike functions shall be that used for this coordinate system. 

  

a)   Coordinate system b)   Clinician's view of patient 

Key 
OD right eye 
OS left eye 

Figure 1 — Ophthalmic coordinate system (ISO 8429) 

5 Representation of wavefront data 

5.1 Representation of wavefront data with the use of Zernike polynomial function 
coefficients 

5.1.1 Symbols for Zernike polynomial functions 

Zernike polynomial functions shall be designated by the upper case letter Z followed by a superscript and a 
subscript. The superscript shall be a signed integer representing the meridional index of the function, m. The 
subscript shall be a non-negative integer representing the radial index of the function, n. Therefore a Zernike 
polynomial function shall be designated by the form m

nZ . 

If, for reasons of font availability, it is not possible to write superscript and subscripts, the Zernike polynomial 
functions may be represented as a upper case letter Z followed by parentheses in which the radial index, n, 
appears first, followed, after a comma, by the meridional index, m, thus Z(n,m). 

5.1.2 Radial index 

The radial index shall be designated by the lower case letter n. 

5.1.3 Meridional index 

The meridional index shall be designated by the lower case letter m. 

5.1.4 Radial parameter 

The radial parameter shall be designated by the Greek letter ρ. 

5.1.5 Meridional parameter 

The meridional parameter shall be designated by the Greek letter θ. 
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5.1.6 Coefficients 

When a surface is represented by Zernike coefficients, these coefficients shall be designated by the lower 
case letter c followed by a superscript and a subscript. The superscript shall be a signed integer representing 
the meridional index of the function, m. The subscript shall be a non-negative integer representing the radial 
index of the function, n. Therefore, a Zernike coefficient shall be designated by the form m

nc . 

5.1.7 Common names of Zernike polynomial functions 

Zernike polynomial functions are often referred to by their common names. These names are given in Table 2 
in so far as the functions have been given a common name. 

Table 2 — Common names of Zernike polynomial functions 

Zernike function Common name 
0
0Z  piston 
1

1Z −  vertical tilt 
1
1Z  horizontal tilt 
2

2Z −  oblique astigmatism 

0
2Z  

myopic defocus (positive coefficient value) 

hyperopic defocus (negative coefficient value) 

2
2Z  

against the rule astigmatism (positive coefficient value) 

with the rule astigmatism (negative coefficient value) 
3

3Z −  oblique trefoil 

1
3Z −  

vertical coma – superior steepening (positive coefficient value) 

vertical coma – inferior steepening (negative coefficient value) 
1
3Z  horizontal coma 
3
3Z  horizontal trefoil 
4

4Z −  oblique quatrefoil 
2

4Z −  oblique secondary astigmatism 

0
4Z  

spherical aberration 

positive coefficient value – pupil periphery more myopic than centre 

negative coefficient value – pupil periphery more hyperopic than centre 
2
4Z  with/against the rule secondary astigmatism 
4
4Z  quatrefoil 
1

5Z −  secondary vertical coma 
1
5Z  secondary horizontal coma 
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5.1.8 Comparison of data expressed as Zernike coefficients generated using different aperture sizes 

The Zernike coefficient values describing a given wavefront error depend on the aperture size used when they 
are generated from measurement data. Due to this dependence on pupil diameter, different coefficient values 
will be found to describe the wavefront error of a given eye if the pupil size changes from one measurement to 
the next. Therefore, to adequately compare the wavefront error of the same eye at different times or to 
compare the wavefront errors of two eyes using Zernike coefficients, the compared coefficients shall have 
been generated using the same pupil diameter even though measurements were taken with different pupil 
diameters. Zernike coefficients taken at one pupil diameter may be converted into values for a second, smaller 
pupil diameter using either the method given in Annex B or a similar method. 

Wavefront error comparisons using Zernike coefficients found in accordance with this International Standard 
shall be made between sets of Zernike coefficients that have be converted to a common pupil diameter. 

5.1.9 Representation of wavefront error data expressed as Zernike coefficients presented in 
magnitude/axis form 

Zernike terms of the same radial order, n, and having meridional indices, m, with the same magnitude but with 
opposite signs may be considered to represent the two components of a vector in an angular space with a 
multiplicity equal to the magnitude of m. It is therefore possible to define Zernike functions that combine the 
functions defined in 3.2 having the same radial order, n, and meridional indices with the same magnitude into 
a new set of functions defined by 

( ) ( ) ( ), , ,mm
nm n nZ N R A mρ θ α ρ θ α=  (13) 

where 

( )m
nR ρ  is defined by 3.2.1; 

m
nN  is defined by 3.2.5; 

( ) ( ), cosA m mθ α θ α⎡ ⎤= −⎣ ⎦  

and where α is an angular parameter giving the orientation of the vector in space. 

A surface, S(ρ,θ), such as a wavefront error, is expressed using these Zernike functions as 

( ) ( )
all  and 

, , ,nm nm nm
n m

S c Zρ θ ρ θ α= ∑  

where the coefficients cnm and the angular parameters αnm are related to the coefficients defined in 3.3 by the 
equations 

( ) ( )2 2m m
nm n nc c c−= +  (14) 

tan

  

m
n
m
n

nm

c
a

c
m

α

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠=  (15) 
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5.1.10 Common names of Zernike polynomial functions – magnitude/axis form 

Zernike polynomial functions are often referred to by their common names. For the magnitude/axis Zernike 
functions defined in 5.1.9, these names are given in Table 3 in so far as the functions have been given a 
common name. 

Table 3 — Common names of Zernike polynomial functions – magnitude/axis form 

Zernike function Common name 

00Z  piston 

11Z  tilt 

20Z  
myopic defocus (positive coefficient value) 

hyperopic defocus (negative coefficient value) 

22Z  

astigmatism 

against the rule, axis = 180° 

with the rule, axis = 90° 

31Z  coma 

33Z  trefoil 

40Z  

spherical aberration 

positive coefficient value – pupil periphery more myopic than 
centre 

negative coefficient value – pupil periphery more hyperopic 
than centre 

42Z  secondary astigmatism  

44Z  quatrefoil 

51Z  secondary coma 

5.2 Representation of wavefront data in the form of wavefront gradient fields or wavefront 
error function values 

5.2.1 Gradient values 

The measurements made of the aberrations of the eye by aberrometers are in general measurements of the 
gradient of the wavefront error function. Measurements of this type may also be thought of as measurements 
of the deflection of rays from an un-aberrated direction by the optical system of the eye. In the case of rays 
originating at the retina and measured as they pass the exit pupil, the deflection is measured from the ray to a 
ray at the same pupil location but parallel to the line of sight. In the case of rays entering the eye through its 
entrance pupil, the deflection is measured from the ray to a ray that enters the eye parallel to the line of sight 
and is refracted so that it intersects the retina at the point the line of sight intersects the retina. The gradient 
information consists of the two-dimensional location of the measured ray in the plane of the exit pupil of the 
eye and the two components of its deflection. 

So that this information may be conveyed in a standardized fashion, the data for each measured ray or 
location in the wavefront will consist of four numbers. The first two are the horizontal (x) and vertical (y) 
coordinates of the location given as Cartesian coordinates in the coordinate system specified in Clause 4 and 
expressed in millimetres. The second two numbers are the horizontal and vertical component values of the 
gradient or, to state this another way, the second two numbers are the horizontal and vertical deflections of 
the ray given as tangent values. 

A fifth, optional, number may be included giving the quality or certainty associated with the information given 
at each data location. 
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5.2.2 Wavefront error values 

If the aberrations of the eye consist of the values of the wavefront error function itself, then the information 
needed to express this at a given location in the wavefront consists of the location and the value of the 
wavefront error functions at that location. 

So that this information may be conveyed in a standardized fashion, the data for each measured ray or 
location in the wavefront will consist of three numbers. The first two are the horizontal (x) and vertical (y) 
coordinates of the location given as Cartesian coordinates in the coordinate system specified in Clause 4 and 
expressed in millimetres. The third number is the value of the wavefront error (3.4) expressed in micrometres. 

A fourth, optional, number may be included giving the quality or certainty associated with the information given 
at each data location. 

5.3 Gradient fit error 

When the occasion arises that a wavefront error function has been reconstructed from measured wavefront 
gradient data and the values for the reconstructed wavefront are conveyed either in the form of gradient fields 
in accordance with 5.1 or the wavefront error function itself in accordance with 5.2, this information shall be 
accompanied by two additional values for each data location that give information on the quality of the fit of 
the data to the reconstruction. The first such value is the difference between the measured x gradient value 
and the reconstructed x gradient value. The second value is the difference between the measured y gradient 
value and reconstructed y gradient value. These two values are defined as the gradient fit error and constitute 
the two components of an error gradient field. These two values are not to be taken as the same as the 
optional quality values allowed for in 5.1 and 5.2 as those values refer to the quality of the measured data 
themselves whereas the gradient fit values refer to the quality of the fit of the data to the reconstructed 
wavefront. 

The gradient fit parameter βfit is a metric measure that can be used to identify the overall quality of the fit. It is 
generally the merit function that is minimized in least-squares fitting. It is defined by: 

22

, ,
fit

( , ) ( , )( , ) ( , )x y
x y x y

W x y W x yx y x y
x y

N N

β β

β

⎡ ⎤∂ ∂⎡ ⎤− −⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
= +

∑ ∑
 (16) 

The various parameters are defined in 3.8. 

6 Presentation of data representing the aberrations of the human eye 

6.1 General 

The preferred method of communicating aberration data for the human eye to others so that they may analyse 
them as they see them is in the form of a set of gradient components for each measured location as specified 
in 5.2.1. These values fully characterize the measured wavefront error of the eye and may be used to 
reconstruct that wavefront error surface using any method desired. 

However, wavefront data in the form of gradient components do not convey the wavefront information in a 
fashion that is easily understood nor in a form that lends itself for convenient use in papers, displays and other 
common forms of communication. Thus the preferred methods for presenting aberration data of the human 
eye are: 

a) as a list of normalized Zernike coefficients; 

b) as a bar chart showing the values of the normalized Zernike coefficients; 

c) in the form of a topographical map of the wavefront surface. 
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6.2 Aberration data presented in the form of normalized Zernike coefficients 

6.2.1 Aperture information 

When data representing the aberrations of the human eye are presented in the form of normalized Zernike 
coefficients, the aperture diameter used in generating the coefficient shall form a part of the data set and shall 
be the first member of the set. 

6.2.2 Units 

Coefficients shall be given in units of micrometres. Aperture size shall be given in millimetres. 

6.2.3 Ordering of terms 

When data representing the aberrations of the human eye are presented in the form of Zernike coefficients, 
the coefficients shall be listed in the following order. 

The first value of the coefficient set shall be the value of the aperture diameter used to generate the set, 
followed by the Zernike coefficients grouped by common radial index, n, with these groups listed in increasing 
magnitude of the radial index. Within a group of common radial indices, the coefficients shall be listed in 
increasing value of the meridional index, m, starting with the most negative m value and proceeding in 
increasing order to the most positive m value. The following single index j gives the above ordering for the 
Zernike coefficients. The first Zernike coefficient of the set has the ordering index value zero. 

( 2)
2

n n mj + +
=  (17) 

6.2.4 Form of presentation 

6.2.4.1 Tabular form 

When the normalized Zernike coefficients are presented as a table the first column shall contain the Zernike 
function symbols ordered in accordance with 6.2.3. The second column shall contain the numerical values of 
the coefficients, aligned with their respective function symbols. If it is desired to present names for the Zernike 
functions, these names may be placed in a third column. The first row of the table shall contain the words 
“aperture diameter” in the first column and the aperture diameter value in the second column. 

6.2.4.2 Bar chart form 

When the normalized Zernike coefficients are presented as a bar chart the values assigned to the bars shall 
be values of the normalized Zernike coefficients ordered in accordance with 6.2.3. The bars shall be labelled 
using Zernike double index symbols in accordance with 5.1.1. The values of the bars shall be given in 
micrometres. The value of the aperture diameter used to create the coefficient values shall appear within the 
graph. 

6.3 Aberration data presented in the form of normalized Zernike coefficients given in 
magnitude/axis form 

6.3.1 Aperture information 

When data representing the aberrations of the human eye are presented in the form of normalized Zernike 
coefficients, the aperture diameter used in generating the coefficient shall form a part of the data set and shall 
be the first member of the set. 
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6.3.2 Units 

Coefficients shall be given in units of micrometres. Aperture size shall be given in millimetres. Axes shall be 
given in degrees. 

6.3.3 Ordering of terms 

When data representing the aberrations of the human eye are presented in the form of Zernike coefficients, 
given in magnitude/axis form in accordance with 5.1.9, the coefficients, cnm and axis values, αnm, shall be 
listed in the following order. 

The first value of the coefficient set shall be the value of the aperture diameter used to generate the set 
followed by the coefficient magnitudes and axes grouped by common radial index, n, with these groups listed 
in increasing magnitude of the radial index. Within a group of common radial indices, the coefficients shall be 
listed in increasing value of the meridional index, m. 

6.3.4 Tabular form of presentation 

When the normalized Zernike coefficients are presented as a table the first column shall contain the Zernike 
function symbols ordered in accordance with 6.3.3. The second column shall contain the numerical values of 
the coefficients, aligned with their respective function symbols. The third column shall contain the numerical 
values of the axes, aligned with their respective function symbols. If it is desired to present names for the 
Zernike functions, these names may be placed in a fourth column. The first row of the table shall contain the 
words “aperture diameter” in the first column and the aperture diameter value in the second column. 

6.4 Aberration data presented in the form of topographical maps 

6.4.1 General 

In order to facilitate the interpretation and comparison of wavefront measurements from different systems, 
criteria for a standard graphical display of ocular wavefront aberrations are established. The elements of the 
display are: colour set, aberration scale, colour contour map, numeric data, spatial scale and title. If 
compliance with this International Standard is claimed, this standardized display of ocular wavefront 
aberrations shall be made available to the user and shall contain the text “ISO 24157”. 

6.4.2 Display contents 

6.4.2.1 Standardized display 

This shall contain the following elements: 

⎯ title; 

⎯ colour legend graphic; 

⎯ step size text; 

⎯ colour contour map of higher-order aberrations (wavelength 0,555 µm, if possible); 

⎯ numeric data; 

⎯ spatial extent indicator; 

⎯ axis indication; 

⎯ reference to ISO 24157. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 24157:2008(E) 

© ISO 2008 – All rights reserved 13

6.4.2.2 Display title 

The display shall be titled “Higher order aberrations”. 

6.4.2.3 Colour contour map 

The colour map shows a colour-coded representation of the higher-order aberrations in the entrance pupil of 
the eye. If possible, these aberrations should be referenced to wavelength 0,555 µm. The centre value of the 
map shall be zero corresponding to the chief ray. 

6.4.2.4 Numeric data 

The numeric data to be displayed on the map shall include: 

⎯ low-order aberrations' RMS value, in micrometres, computed for aberrations second-order; 

⎯ higher-order aberrations' RMS value, in micrometres, computed for aberrations third-order and above; 

⎯ total aberrations' RMS value, in micrometres, computed for aberrations second-order and above; 

⎯ diameter of pupil, in millimetres. 

6.4.2.5 Spatial extent graphic 

The spatial extent graphic shows the size of the colour map. It shall consist of some graphic indicator and text 
indicating the width of the display in units of millimetres. 

6.4.2.6 Axis indicator 

The axis indicator graphic shows the angular coordinate system as defined in Clause 4. 

6.4.3 Standardized scales 

For display of the higher-order aberrations, the standardized display shall use one of four step size intervals: 

0,1 µm, 0,2 µm, 0,5 µm, and 1,0 µm 

The step size shall be prominently displayed below the colour legend. Twenty-one (21) colours shall be used 
with the centre colour set at zero. If the aberration value to be displayed exceeds the range of the colour scale, 
the highest or lowest colour (as appropriate) shall be used. 

6.4.4 Colour palette 

The twenty-one colours shall follow the general guidelines: 

⎯ where the wavefront error as defined in 3.4 takes negative values, cooler colours are used (blues); 

⎯ where the wavefront error as defined in 3.4 takes positive values, warmer colours are used (reds); 

⎯ where the wavefront error as defined in 3.4 is zero, green is used. 
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6.5 Presentation of pooled aberration data 

6.5.1 General 

For multiple eye studies of the aberrations of the eye it is desirable to present pooled results. When this is 
done, certain precautions need to be taken both in the analysis and presentation of the data if the pooled 
results are to be meaningful. In sets of data from multiple sources and from many individuals it is almost 
certain that not all the data will come from eyes having the same pupil size. Therefore steps shall be taken to 
account for changes in aberration values found when the pupil size changes. It is also quite likely that both 
right and left eyes are included in a study. When this is the case this fact needs to be acknowledged along 
with any steps that have been taken to account for known anatomical asymmetries that occur between right 
and left eyes. 

6.5.2 Analysis and presentation of pooled aberration results based on Zernike coefficient sets 

When the data used for a study is in the form of Zernike polynomial coefficients, certain precautions need to 
be taken both in the processing and analysis of the data and in its presentation. This is because the values of 
the Zernike coefficients that describe a given wavefront will change, even if they are given in accordance with 
this International Standard, if the aperture diameter used is changed. Therefore the coefficients may not be 
directly compared until all use a common pupil diameter. For this reason the first step in the analysis of pooled 
data sets is to convert all Zernike coefficient sets to sets having the same pupil size. This may be done using 
the method given in Clause B.2. 

If the data are given in the form specified in 5.2.1 or 5.2.2 but the pooled results are presented in the form of 
Zernike coefficients, the coefficients shall be generated from the data using the same pupil diameter for all 
eyes. 

6.5.3 Analysis and presentation of pooled aberration data where both right and left eye data are used 

When both right eye and left eye data are used in pooled data sets, consideration needs to be taken for the 
known asymmetries about the vertical meridian of the eye between right and left eyes. This may be done in 
one of two ways. 

If aberration data include measurements from both eyes, which have not been altered to compensate for 
known asymmetries, it is preferable to analyse the data and present the results separately for the right eyes 
and the left eyes. If it is decided to pool data from both right and left eyes in the same analysis, this fact shall 
be stated explicitly. 

If it is decided to pool data from both right and left eyes in the same analysis and when analysis and 
presentation is done based on Zernike coefficient sets, the known anatomical asymmetry may be accounted 
for by altering the sign of all Zernike coefficients that arise from Zernike polynomials with negative, even 
meridional indices, and with positive, odd meridional indices for all left eye data prior to analysis. This step has 
the effect of giving left eyes the same asymmetry, on average, as that found in right eyes. 

If the data are given in the form of either gradient arrays in accordance with 5.2.1 or elevation arrays in 
accordance with 5.2.2, the right/left asymmetry may be accounted for by changing the sign of all x location 
values for the left eyes prior to analysis of the data. This step has the effect of giving left eyes the same 
asymmetry, on average, as that found in right eyes. 

When either of the above steps has been taken to account for the asymmetries between right and left eyes, 
this fact shall be prominently stated. 
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Annex A 
(informative) 

 
Methods of generating Zernike coefficients 

In general, aberrometry measures the slope (surface gradient) of the wavefront in the eye. The Shack-
Hartmann and Spatially-Resolved Refractometry techniques measure wavefront slope directly and the 
Tscherning and retinal raytracing techniques measure the transverse ray error, which is proportional to the 
wavefront slope. The slope measurements are the local tilt of the wavefront and can be in both the horizontal 
and vertical directions. For a wavefront error given by W(x,y), aberrometers give a set of slope measurements 
{dW(xi,yi)/dx} and {dW(xi,yi)/dy}. The value of i ranges from 1 to the total number of sample points, N. The 
points (xi,yi) represent the locations of the individual samples. The most common method of reconstructing the 
wavefront error based on this slope information is fitting the data to a set of polynomials {Vj} with a least 
squares technique, where j ranges from unity to the total number of polynomials in the fitting set, J. Typically, 
the polynomial set for wavefront fitting has been either the Zernike polynomials or the Taylor polynomials. 
These sets have traditionally been chosen because they have properties that represent familiar concepts in 
ophthalmic optics. However, other polynomial sets can also be used. The least squares technique minimizes 
the absolute error between the measured wavefront gradients and the derivatives of the reconstructed 
wavefront. A typical merit function is given in 5.3 (βfit). To perform this fit, a matrix equation is set up, such that 

 =⎡ ⎤⎣ ⎦dV a dW  (A.1) 

where 
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Essentially, the ⎡ ⎤⎣ ⎦dV  matrix contains slope information for the fitting polynomial functions. The top half of the 
matrix contains the x derivatives of the fitting function and the lower half contains the y derivatives of the fitting 
functions. Each row in the ⎡ ⎤⎣ ⎦dV  matrix is for a given sample point (xi,yi). Each column in this matrix is for a 
different fitting polynomial function Vj. The a  vector is a series of weighting coefficients which describes how 
much of each fitting polynomial function contributes to the reconstructed wavefront. The dW  vector contains 
the data measured from the aberrometer. The upper half of this matrix contains the x derivative information, 
while the lower half of the matrix describes the y derivative data. Each row in the dW  vector is for a different 
sample point (xi,yi). The goal of the reconstruction is to determine the values of the coefficients in the a  vector. 
Since there are usually many more sample points, N, than there are polynomial functions, J, to fit the 
wavefront, an exact solution to Equation (A.1) cannot be obtained. Instead, a least squares solution is 
calculated. The solution is given by 

1−⎡ ⎤= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
T Ta dV dV dV dW  (A.5) 

where ⎡ ⎤⎣ ⎦
TdV  is the transpose of the matrix ⎡ ⎤⎣ ⎦dV , and 

1−⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
TdV dV  is the inverse matrix operation. 

Equation (A.5) allows for the calculation of the fitting coefficients. The final reconstructed wavefront W(x,y) is 
then given by 

1
( , ) ( , )

J

j j
j

W x y a V x y
=

= ∑  (A.6) 

Thus, once the slope information is obtained from the aberrometer, straightforward matrix calculations are all 
that is required to reconstruct the wavefront. 

A final word needs to be said about giving the coefficient set a  the correct dimensions and scaling. Both dW , 
the measured gradient values, and the elements of ⎡ ⎤⎣ ⎦dV , the gradient components of the various members 
of the polynomial function set used, evaluated at the measurement locations are dimensionless numbers 
whereas the values in a  shall have dimensions of length. This is so that when they are multiplied by the 
various polynomial values for a given location, the resulting sum is a height value with dimensions of length. If 
Zernike functions constitute the polynomial set, correct scaling will occur if the coefficient set a  found using 
Equation (A.5) is multiplied by the aperture radius used in the reconstruction thereby giving the correct 
coefficient set, a , to be used in Equation (A.6). 
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Annex B 
(informative) 

 
Conversion of Zernike coefficients to account for differing aperture sizes, 

decentration and coordinate system rotation 

B.1 General 

This annex gives information on methods for converting sets of Zernike coefficients generated using a 
coordinate system with a given origin and rotational orientation to another having a second coordinate origin 
and/or rotational orientation. It also gives information on methods for converting a set of Zernike coefficients 
representing a wavefront in an area within a first aperture diameter to a set of Zernike coefficients 
representing the same wavefront but in an area within a second diameter. When all available information on 
wavefront error is contained in sets of Zernike coefficients, these methods must be used if the aberrations are 
to be compared to one another or if statistical analysis of populations is to be done. These methods also 
provide analytical tools to study the optical/visual effects of misplaced corrections to the aberrations of the eye 
and to study the optical/visual effects of changes in pupil size in the presence of aberrations of the eye. 

If full information is available on the aberrations of the eye in the form of complete sets of measured data such 
as those specified in 5.2, it is best to account for the effects of decentration, rotation and resizing of the pupil 
by using selected portions of the complete data set and reconstructing the wavefront and its effects from the 
full data. This is because Zernike coefficient sets represent a fit of the basic data to a limited set of basic 
functions and so may be thought of as a form of data compression in which some information is inevitably lost. 
If the best fit to the original data, represented by an original coefficient set, does not fit selected portions of the 
data field well, it may well be found that selecting the portion of the data field that is of interest and refitting will 
give more reliable results than will mathematically transforming the originally created set of Zernike 
coefficients using the methods given in this annex. 

B.2 Conversion of Zernike coefficients to account for differing aperture sizes 

In general, aberrometer measurements will have different pupil sizes. When wavefronts are calculated based 
on these data, they are usually represented in terms of Zernike polynomials. Zernike polynomials are 
normalized to have a unit radius. When comparing two distinct wavefronts, the pupil size may not be the same. 
Consequently, the Zernike expansion coefficients cannot be directly compared because of differences in pupil 
normalization. To make a comparison, it is desirable to recalculate the wavefront measurement with the larger 
pupil size to fit over the pupil of the wavefront with the smaller pupil size. However, for gradient data that have 
a poor wavefront fit (as identified by a large gradient fit parameter βfit as described in 5.3), this can lead to 
significant errors. Care should be taken to consider this parameter prior to recalculating Zernike coefficients 
for a smaller diameter. If available, the original gradient data should be re-fit over the smaller pupil to avoid 
this potential problem. 

There are a variety of ways to scale Zernike coefficients to a different pupil size. The following method is given 
as it allows convenient algorithm implementation. 
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First, the ratio η is formed by dividing the new aperture size by the original aperture size. Next diagonal matrix 
[η] is formed from powers of η in the following fashion. First let the terms of a set of Zernike functions, through 
order nmax, the maximum value that the radial index n takes for the set, be ordered in the following non-
standard fashion. The terms are first grouped by meridional index, m, starting from the most negative value 
allowed by the set, m = − nmax, and progressing in the positive sense to the most positive value allowed by the 
set, m = nmax. Then, within each group of meridional index m the functions are ordered by radial index starting 
with the smallest allowed value, n = |m|, and proceeding to the highest value allowed by the entire set. With a 
group of meridional index m, the allowed values of n must have the same parity as m, odd or even. If the parity 
of m is the same as nmax, then the maximum radial index value for the group is nmax. Otherwise the maximum 
radial value is nmax−1. The Zernike functions, ordered in this fashion, are now illustrated by a functional row 
vector 

( ) ( ) ( ) ( )max max max maxmax max max
max max max max max max max

1 2 2 2 1
1 2 1, , , , , ,n n n nn n n

n n n n n n nZ Z Z Z Z Z Z Z− − − − − − −− −
− − −

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (B.1) 

Starting from the upper left diagonal element of [η], as the first element, and proceeding to the lower right 
diagonal element, insert values equal to η raised to the power of the radial order index of the corresponding 
element of 〈Z|, proceeding from left to right through 〈Z|. 

Next, form block diagonal matrix [R] whose block elements, [R(n,m)], are each associated with a single 
meridional index m and whose columns are associated with the radial index n that matches the radial index 
value of the corresponding diagonal position in [η]. The elements of each column, from top to bottom, are the 
weighting coefficients given by 3.2.1 to radial term ( )m

nR ρ . 

Next, form diagonal matrix [N] by inserting the value of Nn
m given by 3.2.4 for the value of n and m for the 

same location in matrix [R]. 

Finally, form permutation matrix [P] and re-order the original coefficient set in the following fashion. The entire 
set of ordered original Zernike coefficients is represented by a vector of coefficient values, symbolized by 

0
0
1

1

m
n

c
c

c

c

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (B.2) 

Square matrix [P] with the same number of rows and columns as the column vector |c〉 has its elements first 
filled completely with zeros. Then in each row of that matrix one element is changed to a one (1). Each row in 
[P] is associated with the same row in |c〉′, the re-ordered vector of coefficient values. In a given row, the 1 is 
placed in the column whose index value is the same as the row value of the element of |c〉 that is to be placed 
in the selected row of |c〉′. 

The matrices thus formed are combined, along with their inverses, to form the conversion matrix [C], having 
the form 

[C] = [P]T[N]−1[R]−1[η][R][N][P] (B.3) 

and the resized coefficients, |c〉′, are formed from the original ones, |c〉, using the matrix equation 

|c〉′ = [C]|c〉 (B.4) 
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B.3 Conversion of Zernike coefficients to account for decentration of the coordinate 
origin 

If the same wavefront data is analysed using Zernike decomposition, first with one coordinate origin selection 
and then with a second coordinate origin selection, the coefficients obtained will be different. Therefore care 
must be taken when comparing sets of Zernike coefficients, or using them for some purpose with a predefined 
coordinate origin, that the same coordinate system is used throughout. If the amount of coordinate system 
translation (decentration) from the preferred coordinate system is known, preferably in terms of x and y 
decentration values, the Zernike coefficients may be transformed to the preferred system using the following 
method. 

Any analytic function such as a surface expressed as a sum of weighed Zernike polynomials in accordance 
with 3.3, that has a value at location (x,y) of S(x,y) and that has partial derivatives of all orders, may be 
evaluated at location (x +dx, y+dy) using the Taylor expansion 

( ) ( ) ( )
0

1
, ,

!

                               

k k

k
S x dx y dy dx dy S x y

k x y

∞

=

− ⎛ ⎞∂ ∂
+ + = +⎜ ⎟∂ ∂⎝ ⎠

∑  (B.5) 

Any function, such as S(x,y), may also be expanded using a complete set of orthogonal functions, m
nZ  (x,y), 

with suitable weighting coefficients, m
nc , and be represented as 

( ) ( )
all  and 

, ,

                               

m m
n n

n m
S x y c Z x y= ∑  (B.6) 

By inserting (B.6) into (B.5) it is found that 

( ) ( ) ( )
0 all  and 

1
, ,

!

                               

k k
m m
n n

k n m
S x dx y dy dx dy c Z x y

k x y

∞

=

− ⎛ ⎞∂ ∂
+ + = +⎜ ⎟∂ ∂⎝ ⎠

∑ ∑  

Since m
nc  is not a function of x or y it is not effected by the action of the partial differential operators and so the 

expression may be rearranged to read 

( ) ( ) ( )
all  and 0

1
, ,

!

                               

k k
m m
n n

n m k
S x dx y dy c dx dy Z x y

k x y

∞

=

− ⎛ ⎞∂ ∂
+ + = +⎜ ⎟∂ ∂⎝ ⎠

∑ ∑  (B.7) 

Use of Equation (B.7) generally requires the calculation and evaluation of partial derivatives of all orders for all 
members of the orthogonal set. However for a special class of orthogonal functions whose first partial 
derivatives may be expressed as sums of the original set itself, the evaluation of Equation (B.7) may be 
greatly simplified as will now be shown. The Zernike polynomial functions represent one such set of this 
special class of orthogonal functions, as was first shown by Noll (see Bibliography reference [3]). 

The following equations give the relationships between the un-normalized Zernike functions and their first 
derivatives. 

( ) ( )
( )

( )( ) ( )
( )1 11 1

0 0 , 1
1 1

1 1 1 1 1

m mm mn n
m mm

n m m mn n
n m n m

Z n Z n Z
x

δ δ δ
+ −− −

−′ ′
′ ′= + = −

⎡ ⎤
∂ ⎢ ⎥′ ′= + + + − − +⎢ ⎥∂ ⎢ ⎥⎣ ⎦

∑ ∑  (B.8) 
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( ) ( )
( )

( )( ) ( )
( )1 11 1

0 0 1
1 1

1 1 1 1 1

m mm mn n
m mm

n m m mn n
n m n m

mZ n Z n Z
y m

δ δ δ
− + − −− −

′ ′
′ ′= + = −

⎡ ⎤
∂ ⎢ ⎥′ ′= + + − − − +⎢ ⎥∂ ⎢ ⎥⎣ ⎦

∑ ∑  (B.9) 

where 1   if  ;    0   if  ab aba b a bδ δ= = = ≠  and n’ is incremented by 2 in the summations. 

Note that if (|m|+1) is larger than (n−1), the first sum in (B.8) and (B.9) is non-existent because the structure of 
Zernike polynomial functions is such that n must always be greater than or equal to |m|. 

Let the first partial derivatives of an un-normalized Zernike function be given by the following sums 

( ) ( )
1

,
,

m
n m

ij n
j

Z x y
Dx Z x y

x

∞

=

∂
=

∂ ∑  (B.10) 

( ) ( )
1

,
,

m
n m

ij n
j

Z x y
Dy Z x y

y

∞

=

∂
=

∂ ∑  (B.11) 

where the Dxij and Dyij are weighting coefficients, i is the single index designation for the index pair (n,m) of 
the Zernike function whose derivative is being found and j is the single index designation for the entire Zernike 
function set in accordance with 6.2.3. 

By representing the first partial derivatives of all members of the Zernike function set by the column vectors 

0
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1
1

m
n

Z
x

Z
x

Z
x

−

∂⎛ ⎞
⎜ ⎟∂⎜ ⎟∂⎜ ⎟
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⎝ ⎠
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0
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1
1

m
n

Z
y

Z
y

Z
y

−

∂⎛ ⎞
⎜ ⎟∂⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂∂ = ⎜ ⎟
⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟
⎝ ⎠

Zy  

the members of the Zernike function set itself by the column vector 

0
0
1

1

m
n

Z
Z

Z

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Z  

and the weighting coefficients by two matrices 

11 12 1

21 22 2

1 2

j

j

j j jj

Dx Dx Dx
Dx Dx Dx

Dx Dx Dx

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦
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11 12 1

21 22 2

1 2
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j

j j jj

Dy Dy Dy
Dy Dy Dy

Dy Dy Dy

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

Dy  
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the ensemble of equations given by Equations (B.10) and (B.11) may be represented by the compact matrix 
equations 

∂ = ⎡ ⎤⎣ ⎦Zx Dx Z  (B.12) 

∂ = ⎡ ⎤⎣ ⎦Zy Dy Z  

Now consider the second partial derivatives of the special orthogonal functions. For instance, using the 
formalism of Equations (B.12), we may write for the second partial derivatives with respect to x as 

x x
∂ ∂

∂ = ⎡ ⎤⎣ ⎦∂ ∂
Zx Dx Z  

Since none of the elements of the coefficient matrix [Dx] is a function of x, this expression becomes 

x x
∂ ∂⎛ ⎞∂ = = ∂ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

Zx Dx Z Dx Zx Dx Dx Z  

Defining the notation 

;   ;   
x y y

∂ ∂ ∂
∂ ≡ ∂ ∂ ≡ ∂ ∂ ≡ ∂

∂ ∂ ∂
Zx Zxx Zx Zxy Zy Zyy  

The expressions for the three second partial derivatives of the special orthogonal functions can be written 

∂ = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
2Zxx Dx Dx Z Dx Z  

∂ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Zxy Dx Dy Z  (B.13) 

∂ = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
2Zyy Dy Dy Z Dy Z  

Note that the order of application of the transformation matrices in the mixed partial set is immaterial since 

for an analytic function F F
x y y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
. This is also true of higher order mixed partial derivatives. 

The important thing to notice in Equations (B.13) is that not only may second partial derivatives be found 
without first having to find any partial derivatives of the members of the special orthogonal set but also that no 
new coefficient matrices need be created. Having once found the elements of the first partial derivative 
matrices, matrix multiplication is the only additional step needed to calculate the second partial derivatives. 

This formalism may be repeated for the higher order partial derivatives and a general expression for the nth 
order partial derivatives of a set of special orthogonal functions may be given as 

∂ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
m n

1 m 1 nZx x y y Dx Dy Z  (B.14) 

All necessary elements are now in place to simplify Equation (B.7). 

The inner sum of Equation (B.7) normally requires a calculation of each partial derivative of the orthogonal set 
but as has just been shown, this is not necessary for a special orthogonal set. Therefore by identifying the 
partial derivative operators 

x
∂
∂

 and 
y

∂
∂

 with the matrix operators [Dx] and [Dy] respectively, Equation (B.7) 
can be written as 

( ) ( )1
( , ) ( , )

!

k
k

k
S x dx y dy dx dy x y

k

∞ −
+ + = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑c Dx Dy Z  (B.15) 
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Here it has been recognized that Equation (B.6) has the form of an inner product so that by defining a row 
vector of coefficients m

nc  as 

( )0 1
0 1

m
nc c c−=c  

Equation (B.6) becomes 

( ) ( )
all  and 

, , ) ( , )

                               

m m
n n

n m
S x y c Z x y x y= =∑ c Z  

leading to the above formalism in Equation (B.13). 

The quantity 
( ) ( )1

!

k
k

k
dx dy

k

∞⎡ ⎤−⎢ ⎥+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦
∑ Dx Dy is a matrix as it consists of products of matrices and the 

constants k, dx and dy. It is not a function of position variables x and y so it may be evaluated separately in the 
sense of making it into a single matrix. This single matrix will be called the translation matrix [T]. This allows 
Equation (B.15) to be written as 

( , ) ( , )S x dx y dy x y+ + = ⎡ ⎤⎣ ⎦c T Z  (B.16) 

where 

( ) ( )1
!

k
k

k
dx dy

k

∞ −
= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑T Dx Dy  (B.17) 

Since the special orthogonal sets are complete sets they have an infinite number of members but in practical 
use, only a limited subset is ever used. In the case of Zernike polynomials, the highest exponential power of 
any polynomial is the radial order of that polynomial. Therefore all derivatives of power higher than the order 
of a polynomial are identically zero and the value of k in the T sum need never be higher than the highest 
order found in the set chosen. 

The matrix operators [Dx] and [Dy] for Zernike polynomial functions are quite simple. They are sparse lower 
triangle matrices with zeros in all elements of their diagonals. “Sparse” means that many of the elements in 
the lower triangular portion of the matrices are zero. Rules for finding their non-zero values are given in the 
paper by Noll[3] for the case of normalized Zernike functions. Normalized Zernike functions are the products of 
a radial polynomial, a sinusoidal meridional function and a normalization constant. The normalization constant 
typically takes the form of a square root and this makes many of the non-zero elements in the matrices 
contain square roots. However if un-normalized Zernike functions (which lack the normalization constant in the 
product) are used, all non-zero elements in the matrices are simple integers and so it is easier to construct 
matrices for the un-normalized Zernike functions. Since Zernike functions are products, when one takes the 
inner product of the Zernike functions and their respective coefficients to find S(x,y), the normalization factors 
can either be included in the Zernike functions (the normalized case) or in the coefficients (the un-normalized 
case). Therefore if one is given coefficients in normalized form and one wishes to use the simple forms of [Dx] 
and [Dy] the normalized coefficients are converted to un-normalized coefficients by multiplying each by the 
correct normalization factor before use in Equation (B.13). When the Zernike functions are labelled using 
standard double index notation, m

nZ , the normalization factor is given by 

( )( )02 1m
n mN nδ= − +  

where 0mδ  is the Kronecker delta which equals zero unless m = 0. 
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Since the creation of weighting matrices is a somewhat complex algorithmic task, a computer routine to 
accomplish this task is given in Annex D. 

NOTE Also see Bibliography reference [6] for a method and computer routine to combine the Zernike coefficient 
conversions given in B.2, B.3 and B.4. 

B.4 Conversion of Zernike coefficients to account for coordinate system rotation 

If the same wavefront data is analysed using Zernike decomposition, first with one coordinate system 
selection and then with a second coordinate system rotated with respect to the first, the coefficients obtained 
will be different. Therefore care must be taken, when comparing sets of Zernike coefficients or using them for 
some purpose with a predefined coordinate origin, that the same coordinate system is used throughout. If the 
amount of coordinate system rotation from the preferred coordinate system is known, the Zernike coefficients 
may be transformed to the preferred system using the following method. 

An examination of the Zernike functions, expressed in polar coordinate form, shows that for any chosen radial 
index value, n, there are two terms for each allowed meridional index |m|. One index takes the value −m and 
the other the value +m. These two terms may be thought of as components of a vector in a multi-angle 
subspace of the total Zernike functional space (see 5.1.9). The multiplicity of that subspace is the value of |m|. 
When considering the rotation of Zernike functions, it is best not to think of the functions by themselves but as 
pairs with the same n and |m| index values forming the components of a vector. It is these Zernike subspace 
vectors that are the items of interest. 

When the Zernike functions are considered in terms of the above defined subspace vectors we see that the 
effect of a rotation of space is a rotation of these vectors. Their magnitudes do not change under the 
transformation. Only the ratio of the components of the subspace vectors change. Usually the Zernike 
functions are grouped in orders using their radial indices. However, to account for the effect of rotation it is 
better to think of them grouped into meridional subspaces by their meridional indices. Then under a rotation of 
physical space by angle φ, the subspace vectors rotate by angle βm = |m|φ. Their transformed components 
under the transformation, the transformed Zernike coefficients, are then found by the standard formula for 
rotation in a two-dimensional space. 

cos sinm m m
n m n m nc c cβ β′ −= +  (B.18) 

sin cosm m m
n m n m nc c cβ β′− −= − +  (B.19) 

In matrix form this is written 

cos sin
sin cos

m m
n m m n
m mm mn n

c c
c c

β β
β β

′

′− −

⎛ ⎞ ⎛ ⎞⎡ ⎤=⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟−⎣ ⎦⎝ ⎠ ⎝ ⎠
 (B.20) 

To treat the rotation of a set of Zernike coefficients, for example from the 0th to the nth radial order, it is most 
convenient to arrange the un-rotated coefficients as a column vector and operate on this vector with a special 
rotation matrix, [R], to yield a column vector of the rotated coefficients. The rotation matrix may be easily 
composed as follows. The rotation matrix is square with a number of rows and columns equal to the number 
of coefficients chosen. Each column of the rotation matrix is associated with an un-rotated coefficient. Each 
row of the rotation matrix is associated with a rotated coefficient. The elements of each row are all zero except 
for those elements in the two columns associated with un-rotated coefficients that are used to form the rotated 
coefficient of that row. If the coefficients are ordered as in the example above, the non-zero elements are 
those in that matrix and are arranged in that order. 
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Matrix [R] is known as a block diagonal matrix because elements are zero except for those in a block centred 
on the diagonal of the matrix. In matrix [R] the blocks are square. There is one block for each radial order n 
and the size of the block is (n+1) square. The elements in the corners of the blocks have a value of |m| equal 
to the value of n for the block. Block (n+2) is formed from block n by adding the terms in the corners of the 
larger block. The centre is unchanged and other than the corners, the new elements are all zero. Cosine 
terms are found in the upper left and lower right quadrants. Sine terms are found in the lower left and upper 
right quadrants. Sine terms in the lower left quadrant are negative. 

When the Zernike coefficients are given in the order specified in 6.2.3, the above described rotation matrix is 
represented by 

1 0 0 0 0 0 0 0 0 0
0 cos sin 0 0 0 0 0 0 0
0 sin cos 0 0 0 0 0 0 0
0 0 0 cos2 0 sin2 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 sin2 0 cos2 0 0 0 0
0 0 0 0 0 0 cos3 0 0 sin3
0 0 0 0 0 0 0 cos sin 0
0 0 0 0 0 0 0 sin cos 0
0 0 0 0 0 0 sin3 0 0 cos3

φ φ
φ φ

φ φ

φ φ
φ φ

φ φ
φ φ

φ φ

⎡
⎢ −
⎢
⎢

−⎢
⎢
⎢=⎡ ⎤⎣ ⎦ ⎢ −⎢

−⎢
⎢
⎢

⎣

R

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎦

 (B.21) 

The entire set of ordered Zernike coefficients is now represented by a vector, symbolised by 

0
0
1

1

m
n

c
c

c

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

c  (B.22) 

so that the transformed coefficients, represented by a similar vector, are given by 

′ = ⎡ ⎤⎣ ⎦c R c  (B.23) 
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Annex C 
(informative) 

 
Conversion between Zernike coefficients 

represented in different systems of notation 

C.1 General 

Although this International Standard defines a coordinate system for reporting aberrations of the eye, a 
notation for Zernike polynomials used to report these aberrations and an ordering of a set of Zernike 
polynomial coefficients when they are used to report these aberrations, in the field of optics several other 
ways to define Zernike polynomial functions exist and there is a need to connect the definitions of this 
International Standard to these other definitions. To this end, the following is provided to facilitate conversion 
from different systems to the one defined by this International Standard that will be referred to as the 
ISO 24157 system. 

There are several different sets of definitions of Zernike polynomials that have been used over a period of fifty 
years. These differ primarily in three ways: normalization, coordinate system and ordering. These include the 
definitions given in Table C.1. 

Table C.1 

System Normalization a Polar reference coordinate b Ordering c 

ISO 24157 included x-axis vertical/horizontal 

OSA ophthalmic included x-axis vertical/horizontal 

Zernike separate y-axis horizontal/vertical 

Malacara/Born and Wolf separate y-axis horizontal/vertical 

Noll/Arizona  y-axis special 

Fringe   special 

NOTE See the Bibliography for references on the Noll[3], Malacara[2] and Born and Wolf [1] systems. 

a Normalization refers to whether the normalization term (see 3.2.5) is included in the definition of the polynomial (and hence in the 
calculation of the coefficient), or is calculated separately if needed. This normalization term is adjusted so that σ2 = 1 for each 
polynomial. 
b The coordinate system refers to the reference axis for measuring the polar angle. In the Malacara/Born and Wolf systems, as well 
as in Zernike’s original papers, this is measured from the positive y-axis in the clockwise direction. This is different from the normal right-
handed coordinate system that is commonly used in mathematics. This International Standard uses the standardized ophthalmic 
coordinate system (ISO 8429) as does the OSA ophthalmic system, a right-handed coordinate system in which the angle is measured 
from the x-axis in the anticlockwise direction. 
c The ordering refers to the order in which the various terms are listed in the table of polynomials. Because the coordinate convention 
of this standard differs from the Malacara/Born and Wolf coordinate convention while maintaining the same Zernike definitions in polar 
form, the ordering of the odd terms in this International Standard is reversed from the Malacara/Born and Wolf set. Thus the vertical 
coma appears first in the table instead of the horizontal coma. The ordering may thus be distinguished by the order of the coma terms. 
This change in ordering also results in a change in sign of some of the terms. In the case of the Noll/Arizona set, the order has been 
specifically chosen so that the symmetric terms appear earlier in the series to match the order that these effects are commonly seen in 
optical systems. 
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C.2 Conversion between a Malacara/Born and Wolf coefficient set and an ISO 24157 
coefficient set 

The polynomials that are described in one set may readily be converted to another set using the following 
formulae. 

Conversion from ISO 24157 ( )m
nZ  to Malacara/Born and Wolf ( )l

nV  

( 1)nl m= −  

( )

( )( )

/ 2

1 / 2

1     for  even
scale

-1       for   odd

m

m

m m
m

m−

⎧ ⎫−⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( ) ( )( )0scale 2 1l m
n m nV n Zδ= − +  (C.1) 

where δm0 = 1 if m = 0, otherwise δm0 = 0 

Conversion from Malacara/Born and Wolf ( )l
nV  to ISO 24157 ( )m

nZ  

( 1)nm l= −  

( )

( )( )

/ 2

1 / 2

1     for  even
scale

-1      for  odd

l

l

l l
l

l−

⎧ ⎫−⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( )
( )( )0

scale

2 1

l
nm

n
l

V
Z

nδ
=

− +
 (C.2) 

where δl0 = 1 if l = 0, otherwise δl0 = 0 

NOTE Malacara also uses the notation (Unm) where m = (n−l)/2. This “m” is therefore different from the ISO 24157 “m”. 
Born and Wolf also use m = |l| so this “m” is the absolute value of the ISO 24157 “m”. 
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Annex D 
(informative) 

 
Computer algorithm to generate partial derivative weighting matrices 

for un-normalized Zernike polynomial functions 

The following is an example of a routine, written in MatLab code, to generate the partial weighting matrices 
needed to implement the method given in B.3 for the conversion of Zernike coefficients to account for 
decentration of the coordinate origin. 

 

function [Dx,Dy]=zpartials(order) 

%ZPARTIALS creates x and y partial derivative weighting 

% matrices, Dx and Dy, which allow the partial derivatives 

% of un-normalized Zernike polynomial functions to be formed, 

% through the specified radial order (order), 

% as sums of the Zernike functions themselves. 

% [Dx,Dy]=zpartials(order); 

 

terms=fix(.5*order*(order+3))+1;  % number of terms 

Dx=zeros(terms); % initialize the x partial derivative matrix 

Dy=zeros(terms); % initialize the y partial derivative matrix 

r=0;  % intialize the row index 

c=0; % intialize the column index 

 

for i=1:order+1   % i= n+1 where n is the radial index of the function 

   % whose partial derivative is to be formed 

   for j=1:i  % index associated with the azimuthal index m 

      r=r+1; 

      m=2*j-i-1; 

      if m==0 

         delta=1; 

      else 

         delta=0; 

      end 

      mm=abs(m)-1; 

      mp=abs(m)+1; 

      s=sign(m); 

      if s==0 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 24157:2008(E) 

28 © ISO 2008 – All rights reserved
 

         s=1; 

      end 

       

      if mm>0 

         for np=mm:2:i-2 

            cx=fix(.5*(np*(np+2)+s*mm))+1; 

            cy=fix(.5*(np*(np+2)-s*mm))+1; 

            Dx(r,cx)=(1+delta)*(np+1); 

            Dy(r,cy)=-s*(1+delta)*(np+1); 

         end 

      end 

      if mm==0&s>0 

         for np=mm:2:i-2 

            cx=fix(.5*np*(np+2))+1; 

            Dx(r,cx)=(1+delta)*(np+1); 

         end 

      end 

      if mm==0&s<0 

         for np=mm:2:i-2 

            cy=fix(.5*np*(np+2))+1; 

            Dy(r,cy)=-s*(1+delta)*(np+1); 

         end 

      end 

      for np=mp:2:i-2 

         cx=fix(.5*(np*(np+2)+s*mp))+1; 

         cy=fix(.5*(np*(np+2)-s*mp))+1; 

         Dx(r,cx)=(1+delta)*(np+1); 

         Dy(r,cy)=s*(1+delta)*(np+1); 

      end 

   end 

end 
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Annex E 
(informative) 

 
Table of normalized Zernike polynomial functions 

(to 6th radial order) 

Table E.1 

Symbol Polar form Cartesian form Common name 
0
0Z  1 1 piston – mean elevation 
1

1Z −  2ρsin(θ) 2y vertical tilt 
1
1Z  2ρcos(θ) 2x horizontal tilt 
2

2Z −  √6ρ2sin(2θ) 2√6xy oblique astigmatism 

0
2Z  √3(2ρ2−1) √3(2x2+2y2−1) 

myopic defocus (positive 
coefficient value) 

hyperopic defocus (negative 
coefficient value) 

2
2Z  √6ρ2cos(2θ) √6(x2−y2) 

against the rule astigmatism 
(positive coefficient value) 

with the rule astigmatism 
(negative coefficient value) 

3
3Z −  √8ρ3sin(3θ) √8(3x2y−y3) oblique trefoil  

1
3Z −  √8(3ρ3−2ρ)sin(θ) √8(3x2y+3y3−2y) 

vertical coma – superior 
steepening (positive 
coefficient value) 

vertical coma – inferior 
steepening (negative 
coefficient value) 

1
3Z  √8(3ρ3−2ρ)cos(θ) √8(3x3+3xy2−2x) horizontal coma  
3
3Z  √8ρ3cos(3θ) √8(x3−3xy2) horizontal trefoil 
4

4Z −  √10ρ4sin(4θ) √10(4x3y−4xy3) oblique quatrefoil 

2
4Z −  √10(4ρ4−3ρ2)sin(2θ) √10(8x3y+8xy3−6xy) 

oblique secondary 
astigmatism 

0
4Z  √5(6ρ4−6ρ2+1) √5(6x4+12x2y2+6y4−6x2−6y2+1) 

spherical aberration 

positive coefficient value – 
pupil periphery more myopic 
than centre 

negative coefficient value – 
pupil periphery more 
hyperopic than centre 

2
4Z  √10(4ρ4−3ρ2)cos(2θ) √10(4x4−4y4−3x2+3y2) 

with/against the rule 
secondary astigmatism 
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Table E.1 (continued) 

Symbol Polar form Cartesian form Common name 
4
4Z  √10ρ4cos(4θ) √10(x4−6x2y2+y4) horizontal quatrefoil 
5

5Z −  √12ρ5sin(5θ) √12(5x4y−10x2y3+y5)  
3

5Z −  √12(5ρ5−4ρ5)sin(3θ) √12(15x4y+10x2y3−12x2y−5y5+4y3)  
1

5Z −  √12(10ρ5−124ρ3+3ρ)sin(θ) √12(10x4y+20x2y3+10y5−12x2y−12y3+3y)  
1
5Z  √12(10ρ5−124ρ3+3ρ)cos(θ) √12(10x5+20x3y2+10xy4−12xy2−12x3+3x)  
3
5Z  √12(5ρ5−4ρ5)cos(3θ) √12(5x5−10x3y2+12xy2−15xy4−4x3)  
5
5Z  √12ρ5cos(5θ) √12(x5−10x3y2+5xy4)  
6

6Z −  √14ρ6sin(6θ) √14(6x5y−20x3y3+6xy5)  
4

6Z −  √14(6ρ6−5ρ4)sin(4θ) √14(24x5y−20x3y−24xy5+20xy3)  
2

6Z −  √14(15ρ6−20ρ4+6ρ2)sin(2θ) √14(30x5y+60x3y3+30xy5−40x3y−40xy3+12xy)  

0
6Z  √7(20ρ6−30ρ4+12ρ2−1) 

√7(20x6+60x4y2+60x2y4+20y6−30x4−60x2y2 

−30y4+12x2+12y2−1) 
 

2
6Z  √14(15ρ6−20ρ4+6ρ2)cos(2θ) 

√14(15x6+15x4y2−15x2y4−15y6−20x4+20y4+6x2

−6y2) 
 

4
6Z  √14(6ρ6−5ρ4)cos(4θ) √14(6x6−30x4y2−30x2y4+6y6−5x4+30x2y2−5y4)  
6
6Z  √14ρ6cos(6θ) √14(x6−15x4y2+15x2y4−y6)  

NOTE 1 The variable ρ may only take values between 0 and 1. The variables x and y are limited to values such that (x2 + y2) may 
only take values between 0 and 1. 

NOTE 2 The Zernike coefficients represent the wavefront error, whereas normally in ophthalmic optics the correction to that error is 
considered. Thus the axis of astigmatism, expressed in the above table in which the Zernike coefficients represent the wavefront error 
instead of the correction to that error, is rotated by 90° from the common ophthalmic convention, when the astigmatism is expressed in 
minus cylinder form. 
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