
A Reference number
ISO 23950:1 998(E)

INTERNATIONAL
STANDARD

ISO
23950

First edition
1 998-07-1 5

Information and documentation —
Information retrieval (Z39.50) — Application
service definition and protocol specification

Information et documentation — Recherche d’ information (Z39.50) —
Définition du service de l ’application et spécification du protocole

ISO 23950:1 998(E)

© ISO 1 998

All rights reserved. Unless otherwise specified, no part of this publ ication may be reproduced
or uti l ized in any form or by any means, electronic or mechanical, including photocopying and
microfi lm, without permission in writing from the publisher.

International Organization for Standardization
Case postale 56 • CH-1 21 1 Genève 20 • Switzerland
Internet iso@iso.ch

Printed in Switzerland

i i

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies) . The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
l iaison with ISO, also take part in the work. ISO col laborates closely with the International Electrotechnical
Commission (IEC) on al l matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 23950 was prepared by ANSI/NISO (as ANSI/NISO Z39.50-1 995) and was adopted,
under a special “fast-track procedure”, by Technical Committee ISO/TC 46, Information and documentation , in
parallel with i ts approval by the ISO member bodies.

Annexes 1 to 1 2 form an integral part of this International Standard. Annexes 1 3 to 1 6 are for information only.

© ISO ISO 23950:1 998(E)

i i i

Contents Page

1 . Introduction 1

1 .1 Scope and Field of Application 1

1 .2 Version 1

1 .3 Referenced Standards 1

2. Definitions 2

3. Information Retrieval Service 7

3.1 Model and Characteristics of the Information Retrieval Service 7

3.1 .1 Z39.50 Services 7

3.1 .2 Z39.50 Operations 7

3.1 .3 Model of a Database 7

3.1 .4 Searching a Database 8

3.1 .5 Retrieving Records from a Database 8

3.1 .6 Model of a Result Set 8

3.1 .7 Model of Extended Services 8

3.1 .8 Explain 9

3.2 Facilities of the Information Retrieval Service 9

3.2.1 Initialization Facility 9

3.2.1 .1 Init Service 9

3.2.2 Search Facility 12

3.2.2.1 Search Service .. . 12

3.2.3 Retrieval Facility 16

3.2.3.1 Present Service 16

3.2.3.2 Segment Service .. . 18

3.2.4 Result-set-delete Facility 18

3.2.4.1 Delete Service 18

3.2.5 Access Control Facility 20

3.2.5.1 Access-control Service 20

3.2.6 Accounting/Resource Control Facility 21

3.2.6.1 Resource-control Service . 21

3.2.6.2 Trigger-resource-control Service .. . 23

3.2.6.3 Resource-report Service .. . 23

3.2.7 Sort Facility 24

3.2.7.1 Sort Service... .. . 24

3.2.8 Browse Facility 25

3.2.8.1 Scan Service .. . 25

3.2.9 Extended Services Facility 27

3.2.9.1 Extended Services Service ... 27

3.2.9.2 The Extended Services Database . 29

3.2.9.3 Owners and Permissions . 30

3.2.9.4 Aborted Operations .. . 30

3.2.10 Explain Facility 30

3.2.10.1 Searching the Explain Database .. . 31

3.2.10.2 Retrieval of Explain Records .. . 32

3.2.10.3 Detailed Descriptions of the Information Categories . 33

3.2.11 Termination Facility 39

3.2.11 .1 Close Service .. . 39

ISO 23950:1 998(E) © ISO

iv

3.3 Message/Record Size and Segmentation .. 40

3.3.1 Procedures When No Segmentation Is in Effect . 40

3.3.2 Level 1 Segmentation .. . 41

3.3.3 Level 2 Segmentation .. . 42

3.3.3.1 Fragments . 42

3.3.3.2 Segment Size, Record Size, and Segment Count . 42

3.3.3.3 Segmentation Procedures . 42

3.4 Operations and Reference-id .. . 44

3.5 Concurrent Operations .. . 44

3.6 Composition Specification 45

3.6.1 Comp-spec Specified .. . 45

3.6.2 Comp-spec Omitted .. . 45

3.6.3 Record Syntax.... .. . 46

3.7 Type-1 and Type-101 Queries .. . 46

3.7.1 Representation and Evaluation of the Type-1 and Type-101 Queries . 47

3.7.2 Proximity .. . 47

3.7.2.1 The Proximity Test .. . 47

3.7.2.2 Extended Result Set Model for Proximity .. . 48

3.7.3 Restriction and the Extended Result Set Model 48

4. Protocol Specification 48

4.1 Abstract Syntax and ASN.1 Specification of Z39.50 APDUs 48

4.2 Protocol Procedures .. . 61

4.2.1 Presentation and Association Control Services 61

4.2.1 .1 Service Provided by the Presentation Layer .. . 61

4.2.1 .2 Association Control Services 61

4.2.2 Protocol Model .. . 61

4.2.3 State Tables 62

4.2.4 Protocol Errors .. . 68

4.3 Rules for Extensibility 68

4.4 Conformance.... .. . 68

4.4.1 General Conformance Requirements .. . 68

4.4.2 Specific Conformance Requirements .. . 68

4.4.2.1 Z39.50 Features .. . 68

4.4.2.2 Detailed Requirements 70

Annexes

1 OID: Z39.50 Object Identifiers .. 74

2 CTX: Application Context basic-Z39.50-ac .. 76

3 ATR: Attribute Sets .. 77

4 ERR: Error Diagnostics . 82

5 REC: Record Syntaxes . 88

6 RSC:Resource Report Formats .. 106

7 ACC: Access Control Formats .. 108

8 EXT: Extended Services Defined by This Standard .. 1 11

9 USR: User Information Formats . 124

10 ESP: Element Specification Formats .. 126

11 VAR: Variant Sets .. 128

12 TAG: TagSet Definitions and Schemas .. 131

13 ERS: Extended Result Set Model .. 135

14 RET: Z39.50 Retrieval . 137

15 PRO: Z39.50 Profiles . 153

16 Designation of Maintenance Agency . 154

© ISO ISO 23950:1 998(E)

v

List of Figures and Tables

Table 1 Parameters of the Init Service .. 10

Table 2 Parameters of the Search Service .. 13

Table 3 Parameters of the Present Service .. 16

Table 4 Parameters of the Segment Service .. 18

Table 5 Parameters of the Delete Service .. 19

Table 6 Delete Statuses .. 19

Table 7 Parameters of the Access-control Service .. 21

Table 8 Parameters of the Resource-control Service .. 22

Table 9 Parameters of the Trigger-resource-control Service . 23

Table 10 Parameters of the Resource-report Service .. 24

Table 11 Parameters of the Sort Service .. 25

Table 12 Parameters of the Scan Service .. 26

Table 13 Parameters of the Extended Services Service .. 28

Table 14 Explain Categories and Keys . 33

Table 15 Parameters of the Close Service .. 39

Table 16 Abbreviations of Events and Actions in State Tables .. 64

Table 17 Part 1 : State Table for Origin Z39.50 Association: Initialization Phase . 65

Part 2: State Table for Origin Z39.50 Association: Processing Phase .. . 66

Part 3: State Table for Origin Z39.50 Association: Termination Phase .. 66

Table 18 State Table for Origin Present Operation .. 66

Table 19 State Table for Origin Operation Other Than Present .. 66

Table 20 Part 1 : State Table for Target Z39.50 Association: Initialization Phase .. 67

Part 2: State Table for Target Z39.50 Association: Processing Phase .. . 67

Part 3: State Table for Target Z39.50 Association: Termination Phase .. 67

Table 21 State Table for Target Present Operation .. 67

Table 22 State Table for Target Operation Other Than Present .. 68

Table 23 Z39.50 Features, Protocol Version, and Conformance . 68

Table A3-1 Bib-1 Use Attributes .. 77

Table A3-2 Bib-1 Relation Attributes .. 78

Table A3-3 Bib-1 Position Attributes .. 78

Table A3-4 Bib-1 Structure Attributes .. 78

Table A3-5 Bib-1 Truncation Attributes .. 79

Table A3-6 Bib-1 Completeness Attributes .. 79

Table A3-7 Exp-1 Use Attributes .. 79

Table A3-8 Search Terms Associated with Use Attribute ExplainCategory .. 80

Table A3-9 Search Terms Associated with Use Attribute ProcessingContext .. 80

Table A3-10 Ext-1 Use Attributes .. 81

Table A3-11 Ext-1 Permission Attributes .. 81

Table A4-1 Diagnostic Conditions .. 82

Table A8-1 Parameters Common to All Extended Services .. 111

Table A8-2 Specific Parameters for Persistent Result Set .. 112

Table A8-3 Specific Parameters for Persistent Query .. 112

Table A8-4 Specific Parameters for Periodic Query Schedule .. 113

Table A8-5 Task-Specific Parameters for Item Order .. 114

Table A8-6 Task-Specific Parameters for DatabaseUpdate .. 115

Table A8-7 Task-Specific Parameters for Export Specification . 116

ISO 23950:1 998(E) © ISO

vi

Table A8-8 Task-Specific Parameters for Export Invocation . 1 16

Table A14-1 Simple example of an Abstract Record Structure .. 139

Table A14-2 Abstract Record Structure with Hierarchy .. 141

Figure A14-1 Sample Record Illustrating Hierarchical Structure and Wildcards 143

© ISO ISO 23950:1 998(E)

vi i

Foreword

(Informative)

ISO 23950 is identical in text to ANSI/NISO Z39.50-1995 (except for certain style discrepancies between ISO and ANSI

standards, for example, ISO standards have "Annexes" where ANSI standards have "Appendices"), with identical name:

Information Retrieval (Z39.50) Application Service Definition and Protocol Specification. Note that "Z39.50" is explicitly

incorporated into the name of both standards, in order to avoid any possible confusion that these are different standards, and

because "Z39.50" is commonly used to refer to the service and protocol defined by this standard. Note that related standards ISO

10162 and ISO 10163 are superseded by the approval of this standard, ISO 23950. Throughout the remainder of this foreword,

references to "Z39.50-1995" pertain to ANSI/NISO Z39.50-1995, which is identical to ISO 23950. References to Z39.50-1988,

Z39.50-1992, and Z39.50-1994, refer to earlier versions, not identical to ISO 23950.

ANSI/NISO Z39.50-1995, Information Retrieval (Z39.50) Application Service Definition and Protocol Specification, was a

revision of ANSI/NISO Z39.50-1992. Because draft versions of Z39.50-1995 were referred to as Z39.50-1994, implementors

should take note that any draft referred to as Z39.50-1994 is not the latest version of this standard. Z39.50-1995 is the final,

approved version of the standard which was preceded by various drafts referred to as Z39.50-1994.

This protocol was originally proposed in 1984 for use with bibliographic information. Interest in Z39.50 broadened and in 1990

the Z39.50 Implementors Group (ZIG) was established. Members of the ZIG include manufacturers, vendors, consultants,

information providers, and universities who wish to access or provide access to various types of information, including

bibliographic, text, image, financial, public utility, chemical, and news. ZIG membership is open to all interested parties.

In 1989 the Z39.50 Maintenance Agency was formed and administered at the Library of Congress. It was assigned to revise

Z39.50-1988 to achieve bit-compatibility with the International Standard, ISO 10162/10163, Search and Retrieve, SR. At that

time, various enhancements to support a wide range of information retrieval activities had been proposed for the 1992 version.

However, many of these features were not fully developed, and their incorporation into the 1992 standard would have caused

significant delay. Consequently the maintenance agency deferred the proposed new features with a commitment to implementors

that development of the required features would proceed, and that the next version would be a compatible superset of the 1992

standard. Z39.50-1992 replaced and superseded Z39.50-1988, and became a compatible superset of SR.

In 1992 the maintenance agency conducted a formal survey of Z39.50 implementors to determine the relative importance of

proposed new features. The survey’ s purposes were (a) to begin to narrow the list to a manageable set, (b) to determine whether

the proposed features were adequately specified and understood, and (c) to gauge their perceived cost and complexity. The survey

results revealed certain features to be indispensable, and that certain others features could be eliminated from further consideration.

For a third set of features, the survey was inconclusive and the disposition of those features eventually was determined by

consensus.

Development of Z39.50-1995 began in late 1991 . For each meeting of the ZIG, from December 1991 through April 1994, the

maintenance agency developed a revised draft. Implementors carefully scrutinized each draft and discussed them at length both

over the ZIG Internet mail list, and at the ZIG meeting. Comments and discussion for each draft and the agreements reached at

each ZIG meeting were incorporated into a subsequent draft. In April 1994, the ZIG recommended that the draft be put into final

form.

The 1992 version came to be known as “version 2,” and the 1995 version, “version 3.” However, although these version

designations do have specific protocol significance, they do not refer to versions of the standard. Z39.50-1992 specifies protocol

version 2; Z39.50-1995 specifies protocol versions 2 and 3.

Although Z39.50-1992 replaced and superseded Z39.50-1988 (which is obsolete) the relationship between Z39.50-1992 and

Z39.50-1995 is quite different: Z39.50-1995 is a compatible superset of the 1992 version. An implementor may obtain complete

details of version 2 from the Z39.50-1995 document, and build an implementation compatible with Z39.50-1992.

ISO 23950:1 998(E) © ISO

vii i

Basics of the Protocol
The protocol specifies formats and procedures governing the exchange of messages between a client and server, thus enabling the

client to (a) request that the server search a database and identify records that meet specified criteria, and (b) retrieve some or all of

the identified records.

 The client may initiate requests on behalf of a user; the protocol addresses communication between the client and server (which

may reside on different computers); it does not address interaction between the client and user.

Z39.50-1992 provides the following basic capabilities, all of which are supported in this standard as well. The client may send a

search, indicating one or more databases, and including a query as well as parameters which determine whether records identified

by the search should be returned as part of the response. The server responds with a count of records identified and possibly some

or all of the records. The client may then retrieve selected records. The client assumes that records selected by the search form a

“result set” (an ordered set, order determined by the server), and records may be referenced by position within the set. Option al

capabilities include:

n The client may specify an element set indicating data elements to retrieve in cases where the client does not wish to receive

complete database records. For example, the client might specify “If 5 or fewer records are identified, transmit ‘full’ records;

if more than 5 records are found, transmit ‘brief’ records.”

• The client may indicate a preferred syntax for response records, for example, USMARC.

• The client may name a result set for subsequent reference.

• The client may delete a named result set.

• The server may impose access control restrictions on the client by demanding authentication before processing a request.

• The server may provide resource control by sending an unsolicited or solicited status report; the server may suspend

processing and allow the client to indicate whether to continue.

Query Formulation
This standard fully specifies and mandates support of the type-1 query, expressed by individual search terms, each with a set of

attributes, specifying, for example, type of term (subject, name, etc.), whether it is truncated, and its structure. The server is

responsible for mapping attributes to the logical design of the database. Terms may be combined in a type-1 query, linked by

Boolean operators. Terms and operators are expressed in Reverse Polish Notation.

Attribute Sets
The attributes associated with a search term belong to a particular attribute set, whose definition is registered, that is, assigned a

unique and globally recognized attribute-set-id, an Object Identifier, which is included within the query.

Annex 3, ATR, defines and registers the attribute-set bib-1 , which specifies various attributes useful for bibliographic queries.

The bib-1 attribute set was developed by the bibliographic community; it is intended that attribute sets will be developed and

registered as needed by other communities. Additional attribute sets may be registered outside of the standard.

Response Records
The protocol distinguishes two types of records that may occur in response messages from the server: database and diagnostic

records.

Annex 5, REC, registers object identifiers for various MARC formats, including USMARC, UKMARC, Norway MARC and

CANMARC; these object identifiers accompany database records returned by the server. The appendix defines several other types

of record formats, and provides for registration of additional record formats.

Diagnostic records are similarly accompanied by an object identifier which identifies their format. Annex 4, ERR, defines and

registers two diagnostic record formats (one of which was defined in Z39.50-1992) that include various diagnostic codes useful for

bibliographic applications. Additional diagnostic record formats may be registered.

New Features
Provided below is a summary of the enhancements in Z39.50-1995 (versus the 1992 version). The designations “version 2” and

“version 3” refer to protocol version; “Z39.50-1992” and “Z39.50-1995” refer to the respective standards. Thus where a particular

feature is described as “new in Z39.50-1995,” that generally means it applies in either protocol version. An example is Scan: an

implementor may add the Scan service to an existing implementation of Z39.50-1992 without incorporating any other new

features.

 The enhancements described below fall into four categories: search, retrieval, new services and facilities, and miscellaneous

enhancements.

© ISO ISO 23950:1 998(E)

ix

Search
Attributes. A number of enhancements pertain to attributes and attribute sets. In version 3, attributes may be combined from

different attribute sets within a single query (even for a single search term). This presents two advantages: First, it is useful when

searching multiple databases (although version 2 supports multiple-database searches, all attributes within a query must belong to

a single attribute set, which inhibits the ability to search multiple databases, unless those databases are similar). Second, new

attribute sets may now be defined with less replication.

Version 3 provides two further enhancements allowing flexibility in the definition of attribute sets. First, new data types for

attribute values are defined (in version 2 only numeric values are allowed). Second, an attribute set definition may now list

alternative sets of evaluation rules (for example, whether the server is allowed to substitute an attribute that it thinks is more

appropriate), and the query may select one of the alternatives. The enhanced bib-1 attribute set definition exploits this new feature.

The bib-1 definition in Z39.50-1995 also included many new attributes (as well as all of the attributes in Z39.50-1992).

Extended Result Set Model. The basic model of a result set is developed in Z39.50-1992; the 1995 version describes an

“extended result set model,” which supports extended proximity searching.

The extended model also supports a new version 3 search function, restriction, which is (in effect) an operation on a result set.

It permits selection of records from a result set, based on specified attributes.

Search Term. The search term for a query may take on a variety of data types in version 3. (In version 2 a search term is binary

and thus essentially has no data type, so the type is often described by a structure attribute.) This enhancement will simplify

queries (as well as attribute set definitions) by reducing the need for structure attributes.

Intermediate Results. In Z39.50-1995 the server may provide information per query component (i.e., per sub-query, per

database), as part of the Search response (version 3 only), or as part of resource-control when the server reports on the progress of

the search. The server may also create and provide access to a result set for individual query components.

Retrieval
Segmentation. In version 2, a retrieval response is limited to a single message; the server attempts to fit the requested records into

the message, and if it cannot, it simply fits as many as it can. The client might want to retrieve, for example, ten thousand records,

knowing it cannot retrieve them in a single message. Typically the client will request all ten thousand records, wait for the

response, determine how many records are retrieved, and then send another request for the remaining records. This works well in

many environments but is unacceptably slow for high-speed networks. The server must await a request before sending each set of

records, which introduces a delay; the delay may be negligible for conventional networks, but is intolerable for high-speed

networks. In version 3 a server may respond to a retrieval request with multiple consecutive response messages without

intervening requests.

A more serious segmentation problem occurs when a single record is too large to fit in a single message. Version 3 thus

introduces a second level of segmentation: an individual record may span response messages. A client or server may choose to

support either level of segmentation, or no segmentation (in which case version 2 rules apply).

Retrieval Tools. The ZIG worked intensively over two years to develop an extensive model and suite of tools for a wide range of

retrieval functions to support various retrieval applications, in particular, document retrieval. The model is detailed in Annex 14,

RET. Several new object classes were designated in Z39.50-1995 (schemas, tagSets, variants) and specific objects from these and

other classes are defined. Annex RET provides detailed semantics for these objects and describes how they are used together to

provide a variety of document retrieval capabilities. Following are a few examples:

• A single database record might include a number of documents. The client may discover and retrieve a specific document,

rather than the entire database record.

• The client may retrieve a specific portion of a document, logical or physical, for example, specific pages, a specific chapter,

a specific caption, all captions, or all images. The client might retrieve just headings, for example, all chapter or section

headings.

• A document might be available in a wide variety of formats (e.g., PostScript, SGML), languages, presentation parameter

(e.g., line length, lines per page, columns), and other variants. The client may discover what variants are supported for a

document, as well as information associated with a particular variant form: for example the cost to retrieve the document

according to a specific variant, or its size. Finally, the client may then retrieve the document (or specific portion) according

to the desired variant.

• Associated with a document, for a given search, may be hits: pointers to terms (within the document) relevant to the search.

The client might retrieve hits along with a document to quickly locate the satisfying portions. Or the client might retrieve

only the hits (ranked in order of importance), and subsequently retrieve only the indicated satisfying portions.

ISO 23950:1 998(E) © ISO

x

New Services and Facilities
Scan and Sort. Scan and Sort were new services in Z39.50-1995. These are used respectively to scan terms in a list or index, and

to sort a result set.

Scan is currently the only service in the Z39.50 Browse facility, but it is intended that various other browse capabilities will be

added in future versions.

Extended Services. Extended Services was a new facility in Z39.50-1995. It includes a new Z39.50 service, the Extended Services

service, used to initiate a specific extended service task, which is executed outside of the Z39.50 session and whose progress may

be monitored using Z39.50 services. Specific extended services include: save a result set, set a periodic query schedule, export a

document, order a document, and update a database.

Explain. The new Explain facility allows a client to retrieve details of the server implementation: general features (description,

contact information, hours of operation, restrictions, usage cost, etc.) databases available for searching, indexes, attribute sets,

attribute details, schemas, record syntaxes, sort capabilities, and extended services. The server maintains Explain information in a

special database that may be accessed by the client using the Z39.50 search and retrieval facilities. The format of the Explain

information is detailed in the standard.

Some Explain information is transparent to the client, intended for direct display to the client-user, and is so designated (e.g.,

“general features”). Some Explain information is intended to be shared by client and user. For example, the client may retrieve a

list of searchable databases; for each database in the list the client might display an informal name, an icon, and a brief description.

Meanwhile the client would retain the actual database name to be used in a protocol message, which probably would not be

displayed. Some Explain information may be completely transparent to the user. For example, the client may retrieve information

about attributes supported for a database and use that information when formulating a query (when converting a user-supplied

query to a Z39.50 type-1 query).

Miscellaneous Enhancements
Termination and Re-initialization. Version 3 includes a more flexible approach to termination of a Z39.50 session, to allow, in

effect, re-initialization without taking down the network connection.

Concurrent Operations. Multiple concurrent operations are allowed in version 3. In version 2, operations are strictly serial.

Diagnostics. Most Z39.50 services include diagnostic capability. In version 2 a diagnostic must conform to a specific format

defined within the standard. In version 3, diagnostic formats may be externally defined and registered. One such (new) format is

defined, along with a comprehensive set of diagnostics.

Access Control Formats. Z39.50-1992 provides access control, but does not define any access control formats. Z39.50-1995

defined formats for encryption and authentication, and a format allowing the server to prompt the client for arbitrary information.

Character Set Support. A new data type, “International String,” has been introduced for character strings. Its definition allows

greater flexibility for a client and server to agree to the use of a particular language and one or more character sets during a

session.

Units. New data types are introduced for support of units. These definitions allow standard representations to be used to represent

unit type and unit. For example, unit type might be “mass,” and unit, “kilogram.”

Extensibility and Negotiation. Version 3 provides a powerful extensibility feature. Each protocol message includes a field

designated for information whose format is to be defined externally. These externally defined formats will be registered and

maintained by the Z39.50 Maintenance Agency as provisional extensions to the standard and for experimental use and possible

consolidation into a subsequent version.

In Z39.50-1995 the concept of a “negotiation record” was introduced. The client may include a negotiation record within the

initialization message to propose that some condition be in effect for the session (for example, the use of a particular language and

one or more character sets). The server may respond, indicating whether the proposal is accepted, or indicate a counter-proposal.

The negotiation record is an application of the new extensibility feature. Negotiation records will be defined externally and

maintained by the Z39.50 Maintenance Agency.

INTERNATIONAL STANDARD © ISO ISO 23950:1 998(E)

1

Information and documentation — Information retrieval (Z39.50) —
Application service definition and protocol specification

1. Introduction

This standard is one of a set of standards produced to facilitate the interconnection of computer systems. It is positioned with

respect to other related standards by the Open Systems Interconnection (OSI) basic reference model (ISO 7498). This standard

defines a protocol within the application layer of the reference model, and is concerned in particular with the search and retr ieval

of information in databases.

1.1 Scope and Field of Application
This standard defines the Information Retrieval Application Service (section 3) and specifies the Information Retrieval

Application Protocol (section 4). The service definition describes services that support capabilities within an application; the

services are in turn supported by the Z39.50 protocol. The description neither specifies nor constrains the implementation within a

computer system. The protocol specification includes the definition of the protocol control information, the rules for exchanging

this information, and the conformance requirements to be met by implementation of this protocol.

Intended for systems supporting information retrieval services, and for organizations such as information services, universities,

libraries, and union catalogue centers, this standard addresses connection-oriented, program-to-program communication. It does

not address interchange of information with terminals or via other physical media.

1.2 Version
There have been three publications of Z39.50: Z39.50-1988, Z39.50-1992, and Z39.50-1995; and there has been one publication

of the Search and Retrieve Protocol, ISO 10163-1 :1993. The three publications: Z39.50-1992, ISO 10163-1 :1993, and Z39.50-

1995 (but not Z39.50-1988) each incorporate the concept of a protocol version, and three protocol versions are defined: version 1 ,

version 2, and version 3. ISO 10163-1 :1993 is based on protocol version 1 ; Z39.50-1992 is based on protocol version 2; Z39.50-

1995 is based on protocol version 2 as well as protocol version 3. (There is no protocol version associated with Z39.50-1988.)

This International Standard, ISO 23950, is based on version 2 and version 3. It assumes that version 1 and version 2 are

identical, thus implementations that support version 2 automatically support version 1 (otherwise, version 1 is not explicitly

mentioned elsewhere in this standard). Procedures within this standard that apply specifically to version 2 or version 3 are no ted as

such.

1.3 Referenced Standards
The following normative documents contain provisions which, through reference in this text, constitute provisions of this

International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply .

However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the

most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative

document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ANSI/NISO Z39.53-1994, Codes for the Representation of Languages for Information Interchange.

ANSI/NISO Z39.58-1992, Common Command Language for Online Interactive Information Retrieval.

ISO 2709:1996 — Information and documentation - Format for information interchange.

ISO 4217:1990 — Codes for the representation of currencies and funds.

ISO 7498:1984 — Information processing systems - Open systems interconnection - Basic reference model.

ISO 8649:1987 — Information processing systems - Open systems interconnection - Service definition for the association control

service element.

ISO 23950:1 998(E) © ISO

2

ISO 8650:1987 — Information processing systems - Open systems interconnection - Protocol specification for the association

control service element.

ISO 8777:1993 — Information and documentation - Commands for interactive text searching.

ISO 8822:1988 — Information processing systems - Open systems interconnection - Connection oriented presentation service

definition.

ISO 8824:1990 — Information processing systems - Open systems interconnection - Specification of Abstract Syntax Notation

One (ASN.1).

ISO 8825:1990 — Information processing systems - Open systems interconnection - Specification of basic encoding rules for

Abstract Syntax Notation One (ASN.1).

ISO 10160:1997 — Information and documentation - Open systems interconnection - Interlibrary loan application service

definition.

ISO 10161-1 :1997 — Information and documentation - Open system interconnection - Interlibrary loan application protocol

specification - Part 1 : Protocol specification.

ISO 10163-1 :1993 — Information and documentation - Open systems interconnection - Search and retrieve application protocol

specification - Part 1 : Protocol specification.

Note: Although this ISO standard supercedes ISO 10163-1 , there are provisions within this standard intended to maintain

compatibility with ISO 10163-1 , because of existing implementations of that standard.

ISO — International register of coded character sets.

2. Definitions
For the purposes of this International Standard the following definitions apply.

A-association—See Application association.

Abstract database record—An abstract representation of the information in a database record. An abstract database record may

be formed by the application of an abstract record structure (defined by a schema) to the database record. An element specification

may be applied to an abstract database record forming another instance of the abstract database record.

Abstract record structure—The primary component of a database schema. An abstract record structure applied to a database

record results in an abstract database record.

Abstract syntax—A description of a particular data type using an abstract syntax notation. It can be referenced by an OID (object

identifier).

Abstract syntax notation—A language that allows the denotation of data types in a representation-independent manner. ASN.1 is

an example.

Access point—A unique or non-unique key that can be specified either singly or in combination with other access points in a

search for records. An access point may be equivalent to an element (defined by an abstract syntax), derived from a set of one or

more elements, or unrelated to any element.

Access point clause—An operand of a type-1 query (informal).

Aggregate present response—Segment requests (if any) together with the Present response, for a Present operation.

APDU—See Application Protocol Data Unit.

Application association—A communication session between a database user and a database provider. It may consist of one or

more consecutive Z-associations.

Application Protocol—The rules governing the format and exchange of information between an origin and target.

Application Protocol Control Information —Information conveyed by an application protocol data unit.

Application Protocol Data Unit—A unit of information, transferred between origin and target, whose format is specified by the

Z39.50 protocol, consisting of application-protocol-information and possibly application-user-data.

© ISO ISO 23950:1 998(E)

3

AppliedVariant—One of three usages for a variant specification. The applied variant is the variant specification that the target

applies to an element included in a retrieval record. See also variantRequest and supportedVariant.

ARS—See Abstract record structure.

ASN.1—Abstract Syntax Notation One, as specified in ISO 8824 and ISO 8825.

Attribute—A characteristic of a search term, or one of several characteristic components which together form a characteristic of a

search term.

Attribute element—An attribute represented by a pair of components: an attribute type and a value of that type.

Attribute list—A set of attribute elements and the attribute set id to which it belongs. An attribute list is combined with a search

term to form an operand of a type-1 query. Usually, one of the attribute elements from the set corresponds to a normalized access

point, against which the term (as qualified by the other attribute elements) is matched.

Attribute set—A set of attribute types, and for each, a list of attribute values. Each type is represented by an integer, unique

within that set (as identified by its attribute set id), and each value for a given type is unique within that type.

Attribute set id—An OID that identifies an attribute set, to which an attribute element (within an attribute list) belongs.

Attribute type—A component of an attribute element. An attribute set defines one or more attribute types and assigns an integer

to each type (it also defines values specific to each type). For example, bib-1 assigns the integer 1 for the attribute type “Use.”

Attribute value—A component of an attribute element. An attribute set defines one or more values for each attribute type that it

defines. For example, bib-1 defines the Use attribute “personal name.”

Client—The application that includes the origin; the database user.

Client system—The system on which the client resides.

Composition specification—A specification that may be included in a Present request to indicate the desired composition

(elements and record syntax) of the retrieval records. It includes a schema identifier, element specification, and record syntax

identifier.

Conditionally confirmed service—A service that may be invoked as confirmed or non-confirmed. It is defined in terms of a

request (from the origin or target) followed possibly by a response (from the peer). For example, Resource-control is a

conditionally confirmed service, initiated by the target. See also Non-confirmed service and Confirmed service.

Confirmed service—A service that is defined in terms of a request (from the origin or target) followed by a response (from the

peer). For example, Search is a confirmed service, initiated by the origin; Access-control is a confirmed service initiated by the

target. See also Non-confirmed service and Conditionally-confirmed service.

Database—A collection of information units containing related information. Each unit is a database record.

Database record—A local data structure representing an information unit in a database.

Database schema—A common understanding shared by the origin and target of the information contained in the records of the

database, which allows the subsequent selection of portions of that information via an element specification. A schema defines an

abstract record structure, which, when applied to a database record, results in an abstract database record.

Data element—See Element.

Element—A unit of information defined by a schema.

ElementRequest—A request, included with an element specification, for the retrieval of a specific element. The element request

may include a variantRequest, indicating the desired variant form of the element.

ISO 23950:1 998(E) © ISO

4

Element set name—An element specification in the form of a primitive name.

Element specification—An instance of an element specification format, or an element set name. An element specification

transforms an abstract database record into another instance of the abstract database record (this may be a null transformation).

The element specification selects elements from the abstract database record, and possibly also specifies variant forms for those

elements.

Element specification format—A structure used to express an element specification.

Element specification identifier—The object identifier of an element specification format, or an element set name.

Exceptional record size—The maximum size of the record that may be included in a Present response, in the special case when a

single, exceptionally large record (i.e., larger than preferred-message-size) is requested.

Facility—A logical group of Z39.50 services; in some cases, a single service. For example, the Retrieval facility consists of the

Present service and the Segment service; the Search facility consists of the Search service. Alternatively, a facility might not

consist of services, but instead might use services of other facilities. For example, the Explain facility does not define any services,

but uses the Search and Present services.

Final fragment—A fragment that ends at the end of a record. See Fragment.

Fragment—A proper substring of a record. (This definition is meaningful only in the context of level-2 segmentation, described

in section 3.3.3; within that section, a record is considered to be a string of bytes.)

GRS—Generic Record Syntax.

Initiating request—A request that initiates an operation.

Intermediate fragment—A fragment that neither starts at the beginning nor ends at the end of a record. See Fragment.

IR—Information Retrieval.

Item—(1) A result set item. (2) A bibliographic item; see ISO 10160.

Maximum segment size—The largest allowable segment of an aggregate Present response (when segmentation is in effect).

Name—A linguistic construct, expressed in some language, that corresponds to an object. A name denotes (i.e., identifies) the

object to which it is bound.

Non-confirmed service—A service that is defined in terms of a request from the origin or target, with no corresponding response.

For example, Segment is a non-confirmed service initiated by the target. See also Confirmed service.

Object identifier—An unambiguous, globally-recognized, registered identifier for a data object, assigned by a registration

authority.

OID—See Object identifier.

Operation—An initiating request and the corresponding terminating response, along with intervening related messages. For

example, a Search operation always includes a Search request and Search response, and may also include access control and

resource control messages. Multiple concurrent operations may occur within a Z-association.

Operation type—The name of an initiating request. For example a Search request initiates an operation whose type is “search.”

Origin—The entity that initiates a Z-association and initiates operations during the Z-association.

Origin service-user—That portion of a client that makes requests upon the origin. See Service-user.

OSI—Open Systems Interconnection.

© ISO ISO 23950:1 998(E)

5

P-context—See Presentation context.

Preferred message size—The maximum size of a Search response or Present response when no segmentation is in effect. It is

expressed in terms of the sum of the sizes (in bytes) of the response records, not including protocol control information.

Presentation context—The pairing of an abstract syntax with a transfer syntax, negotiated by the presentation layer, in order for

that abstract syntax to be used during the application association.

Primitive—See Service primitive.

Primitive name—A name whose internal structure is not required to be understood or have significance to users of the name.

Note: primitive name is not related to primitive.

Record syntax—An abstract syntax requested by the origin or used by the target to represent retrieval records. For a complete

definition, see section 3.6.3.

Response record—A retrieval record or surrogate diagnostic record representing a database record in a Search response or

(aggregate) Present response.

Result set—A local data structure used as a selection mechanism for the transfer of records, identified by a query. Its logical

structure is a named, ordered list of result set items, and, possibly, unspecified information that may be used as a surrogate for the

search that created the result set.

Result set item—A database name, a pointer to a record within the database, and possibly additional, unspecified information

associated with the record.

Result set record—An idiomatic expression referring to the database record represented by a result set item. See Result set.

Retrieval record—The exportable structure defined by the application of a record syntax to an abstract database record.

RPN query—A search query represented in Reverse Polish Notation (RPN) format.

Schema—See Database schema.

Segment—A message that is sent (or is in preparation for transmission) by the target as part of an aggregate Present response, i.e.,

a Segment request or Present response.

Server—The application that includes the target; the database provider.

Server system—The system on which the server resides.

Service—(1) A Z39.50 service, as in the “search” service; (2) an extended service, as in the “persistent result set extended

service”; (3) the service-provider.

Service primitive—An abstract, implementation-independent representation of an interaction between the service-user and the

service-provider. The four types of service primitives are: Request, Indication, Response, and Confirmation.

Service-provider—An abstraction of the totality of those entities (the origin and target) that provide a service to peer service-

users. The concept of service-provider is employed to facilitate the specification of protocol procedures. It is used only in section

4.2.2 to describe the protocol model.

Note: the service-provider is not related to the database provider or to the provider of telecommunication services.

Service-user—An origin service-user or a target service-user. That portion of a client or server that makes requests upon the

origin or target respectively. The concept of service-user is employed to facilitate the specification of protocol procedures. It is

used only in 4.2.2 to describe the protocol model.

Note: The service-user is not related to the database user.

ISO 23950:1 998(E) © ISO

6

Simple Present response—An aggregate Present response consisting of a single segment, i.e., consisting of a Present response

only, and no Segment requests.

Starting fragment—A fragment that starts at the beginning of a record. See Fragment.

SupportedVariant—One of three usages for a variant specification. A supportedVariant is a variant specification that the target

lists as supported for a particular element. See also appliedVariant and variantRequest.

Surrogate diagnostic record—A diagnostic record supplied in place of a retrieval record, representing a database record.

Tag—The identifier of an element (or of a node of the tagPath representing an element). It consists of a tagType and a tagValue.

TagPath—A sequence of nodes from the root of a tree to the node that the tagPath represents (when the elements of a record are

represented hierarchically, as a tree). Each node of a tagPath is represented by a tag. The end-node might be a leaf-node, in which

case the tagPath represents an element; otherwise the tagPath represents the subtree whose root is that node.

TagSet—The tagValues (and recommended data types) for a set of elements.

TagSetId—an object identifier serving as a persistent identifier for a tagSet.

TagType—A short-hand (integer) identifier for a tagSet. A schema definition may assign a tagType to a TagSetId, to identify a

particular tagSet (within the context of the schema definition).

TagValue—The identifier of an element (or of a node of the tagPath representing an element). It may be either integer or string,

and it is qualified by a tagType.

Target—The entity that accepts a Z-association.

Target service-user—That portion of a server that makes requests upon the target. See Service-user.

Terminating response—A response that ends an operation.

Transfer syntax—A syntax that when paired with an abstract syntax forms a record syntax.

Triple—A 3-tuple (i.e., an n-tuple, where n = 3).

Type-1 query—See RPN Query.

Variant—One of possibly several forms in which an element is available for retrieval. The origin may request, or the target

present, an element according to a specific variant. The target may indicate what variants are available for an element.

Variant list—A list provided by the target of the supportedVariants for a particular element.

VariantRequest—One of three usages for a variant specification. A variantRequest is a variant specification occurring within an

element request. See also appliedVariant and supportedVariant.

Variant set—A definition of a set of classes; for each class, a set of types; and for each type, a set of values. A variant

specification consists of a set of variantSpecifiers from a particular variant set.

Variant set identifier—An OID identifying a variant set.

Variant Specification—A variantRequest, appliedVariant, or supportedVariant. A variant specification is a sequence of triples,

each of which is a variantSpecifier.

Variant Specifier—A component of a variant specification. It consists of a class, a type defined for that class, and a value defined

for that type.

Z-association—See Z39.50-association.

© ISO ISO 23950:1 998(E)

7

Z39.50-association—A session, explicitly established by the origin and either explicitly terminated by the origin or target, or

implicitly terminated by termination of the A-association. Communication between origin and target is via a Z39.50-association

within an application association. There may be multiple, consecutive Z-associations within an A-association.

3. Information Retrieval Service
The Information Retrieval service definition describes an activity between two applications: an initiating application, the client,

and a responding application, the server. The server is associated with one or more databases.

Communication between the client and server is carried out by the Z39.50 protocol, which is specified in section 4. The

specification is logically divided into procedures pertaining to the client and procedures pertaining to the server. The portions of

the client and server that carry out the Z39.50 protocol procedures are referred to respectively as the Z39.50 origin and the Z39.50

target.

3.1 Model and Characteristics of the Information Retrieval Service
Communication between origin and target is via a Z39.50-Association (Z-association) within an application association (A-

association; see 4.2.1 .2). A Z-association is explicitly established by the origin and may be explicitly terminated by either origin or

target, or implicitly terminated by termination of the A-association. There may be multiple consecutive Z-associations within an

A-association. There may be multiple consecutive as well as concurrent operations (see 3.5) within a Z-association.

The roles of origin and target may not be reversed within a Z-association. A Z-association cannot be restarted, thus once a Z-

association is terminated no status information is retained except information that is explicitly saved.

The service definition describes services and operations; models for these are described in 3.1 .1 and 3.1 .2. Services are grouped

by facilities; the Z39.50 facilities and services are defined in 3.2.

3.1.1 Z39.50 Services
Z39.50 services are carried out by the exchange of messages between the origin and target. A message is a request or a response.

Services are defined to be confirmed, non-confirmed, or conditionally-confirmed.

A confirmed service is defined in terms of a request (from the origin or target) followed by a response (from the peer). For

example, Search is a confirmed service initiated by the origin; the Search service is defined in terms of a Search request from the

origin followed by a Search response from the target. Access-control is an example of a confirmed service initiated by the target.

A non-confirmed service is defined in terms of a request from the origin or target, with no corresponding response. For

example, TriggerResourceControl is a non-confirmed service initiated by the origin; Segment is a non-confirmed service initiated

by the target.

A conditionally-confirmed service is a service that may be invoked as either a confirmed or non-confirmed service. It is defined

in terms of a request (from the origin or target) followed possibly by a response (from the peer). For example, Resource-control is

a conditionally-confirmed service initiated by the target.

3.1.2 Z39.50 Operations
This standard describes eight operation types: Init, Search, Present, Delete, Scan, Sort, Resource-report, and Extended-services.

A request from the origin of a particular operation type initiates an operation of that type (for example a Search request initiates

a Search operation) which is terminated by the respective response from the target. Only the origin may initiate an operation, and

not all origin requests do so (see 3.4).

A request that initiates an operation is called an initiating request and a response that ends an operation is called a terminating

response. From the origin perspective, an operation begins when it issues the initiating request, and ends when it receives the

terminating response. From the target perspective, the operation begins when it receives the initiating request and ends when it

sends the terminating response. An operation consists of the initiating request and the terminating response, along with any

intervening related messages (see 3.4).

3.1.3 Model of a Database
The objective of this standard is to facilitate the open interconnection of clients and servers for applications where clients search

and retrieve information from server databases. The ways in which databases are implemented differ considerably; different

systems have different styles for describing the storage of data and the means by which it can be accessed. A common abstract

model is therefore used in describing databases, to which an individual system can map its implementation. This enables different

systems to communicate in standard and mutually understandable terms for the purpose of searching and retrieving information

from a database. The search and retrieval models are described in 3.1 .4 and 3.1 .5.

The term database, as used in this standard, refers to a collection of records. Each record is a collection of related information,

treated as a unit. The term database record refers to a local data structure representing the information in a particular record.

Associated with a database are one or more sets of access points that can be specified in a search for database records (see 3.1 .4),

and one or more sets of elements that may be retrieved from a database record (see 3.1 .5). An access point is a unique or non-

ISO 23950:1 998(E) © ISO

8

unique key that can be specified either singly or in combination with other access points in a search for records. An access point

may, but need not, be related to an element; it can be equivalent to an element, derived from a set of one or more elements, or

unrelated to any element.

3.1.4 Searching a Database
A query is applied to a database, specifying values to be matched against the access points of the database. The subset of records

formed by applying a query is called the result set (see 3.1 .6). A result set may itself be referenced in a subsequent query and

manipulated to form a new result set.

A search request specifies one or more databases and includes a query. The type-1 query defined in this standard (see 3.7)

consists of either a single access point clause, or several access point clauses linked by logical operators. For example, In the

database named “Books” find all records for which the access point ‘title word’ contains the value “evangeline” AND the access

point ‘author’ contains the value “longfellow.”

Each access point clause consists of a search term and attributes. The attributes qualify the term; usually, one of the attributes

corresponds to a normalized access point against which the term (as qualified by the other attributes) is matched. Each attribute is

a pair representing an attribute type and a value of that type (for example, type might be “access point” and value “author”; or type

might be “truncation” and value “left”).

Each attribute is qualified by an attribute set id which identifies the attribute set to which the attribute belongs. An attribute set

specifies a set of attribute types, and for each, a list of attribute values.

3.1.5 Retrieving Records from a Database
Following the processing of a search, the result set is made available by the target, to the origin, for subsequent retrieval requests.

When requesting the retrieval of a record from a result set, the origin may supply a database schema identifier, element

specification, and record syntax identifier.

For the purpose of retrieving records from a result set, associated with each database are one or more schemas. A schema

represents a common understanding shared by the origin and target of the information contained in the records of the database, to

allow the subsequent selection of portions of that information via an element specification.

A schema defines an abstract record structure which, when applied to a database record results in an abstract database record,

which is an abstract representation of the information in the record. An element specification applied to an abstract database record

results in another instance of the abstract database record (the latter may be a null transformation). The element specification

selects elements from the abstract database record, and may also specify variant forms for those elements.

The target applies a record syntax to an abstract database record, resulting in an exportable structure referred to as a retrieval

record.

3.1.6 Model of a Result Set
In general, it is assumed that query processing does not necessarily require physical access to records; a result set is thus assumed

to be the identification of (e.g., pointers to) records, as opposed to the actual set of records, selected by a query. (It is not assumed

that the database records are locked. Methods of concurrency control, which would prevent modification or deletion of result set

records, are not addressed by this standard.) A result set may be used as a selection mechanism for the transfer of records between

systems; the result set itself is considered to be a purely local data structure and is not transferred (that is, records are transferred,

but not the local pointers to the records).

 For the purpose of retrieving records, the logical structure of a result set is that of a named, ordered list of items. Each i tem is a

triple consisting of: (a) an ordinal number corresponding to the position of the triple in the list, (b) a database name, and (c) a

unique identifier (of local significance only) of a record within the database named in (b).

A result set item is referenced by its position within the result set, that is, by (a).

For the purpose of searching, when a result set is used as an operand in a query, the logical structure is one of the following:

•Basic model: A set of pairs, each consisting of (b) and (c) of the above model for retrieval.

•Extended model: A set of triples, each consisting of (b) and (c) of the retrieval model; and including unspecified information

associated with each record which may be used as a surrogate for the search that created the result set.

Note: Query specifications may indicate that the basic model applies, or under what condition the extended model applies, and the

nature of the unspecified information. For the type-1 query, when version 2 is in effect, the basic model applies.

3.1.7 Model of Extended Services
The family of Z39.50 services includes the Extended Service (ES) service. “Extended services” refers to a class of services

recognized by this standard, but which are not Z39.50 services (as described in 3.1 .1). The ES service is a Z39.50 service, and an

ES operation results in the initiation of an extended services task. The task is not considered part of the Z39.50 ES operation.

An ES operation is initiated by the origin, via an ES request. The ES response, which completes the operation, does not

(necessarily) signal completion of the task; it may indicate for example that the task has started or is queued (or it might indicate

© ISO ISO 23950:1 998(E)

9

that the task has been completed; in fact the ES request may specify that the task should be completed prior to the ES response).

An ES task may have a lifetime beyond the Z-association.

Examples of extended services are: saving a result set or query, and exporting or ordering a document.

Each ES task is represented by a database record, called a task package, maintained by the target in a special database, the

“extended services database.” The origin uses the ES request to cause creation of a task package on the ES database. The database

may be searched, and records retrieved, by the Z39.50 Search and Retrieval facilities. The origin may search for packages of a

particular type, or created by a particular user, or of a particular status (i.e., pending, active, or complete), or according to various

other criteria. In particular, the origin may search the database after submitting an ES request (during the same or a subsequent Z-

association) for a resulting task package to determine status information pertaining to the task, for example, to determine whether

the task has started.

3.1.8 Explain
The origin may obtain details of the target implementation, including databases, attribute sets, diagnostic sets, record syntaxes, and

element specifications supported. The origin obtains these details through the Z39.50 Explain facility. The target maintains this

information in a database that the origin may access via the Z39.50 Search and Present facilities.

This “explain” database appears to the origin as any other database supported by the target, but it has a well-known name and a

predefined record syntax. Also, certain search terms, corresponding to information categories, are predefined in order to allow a

semantic level of interoperability. Each information category has its own record layout, and all are included in the Explain syntax.

3.2 Facilities of the Information Retrieval Service
Sections 3.2.1 through 3.2.11 describe the eleven facilities of the Information Retrieval service. Most consist of logical groups of

services; in several cases, a facility consists of a single service. Additional services may be added to any facility in future versions

of this standard. Following is a summary description of the eleven facilities.

Initialization Facility—Init Service: A confirmed service initiated by the origin to initiate an Init operation.

Search Facility—Search Service: A confirmed service initiated by the origin to initiate a Search operation.

Retrieval Facility—The Retrieval facility consists of two services:

1 . Present Service: A confirmed service initiated by the origin to initiate a Present operation.

2. Segment Service: A non-confirmed service initiated by the target, during a Present operation.

Note: a Present operation thus consists of a Present request followed by zero or more Segment requests followed by a

Present response.

Result-set-delete Facility—Delete Service: A confirmed service initiated by the origin to initiate a Delete operation.

Browse Facility—Scan Service: A confirmed service initiated by the origin to initiate a Scan operation.

Sort Facility—Sort Service: A confirmed service initiated by the origin to initiate a Sort operation.

Access Control Facility—Access-control service: a confirmed service initiated by the target. It does not initiate an operation, and

it might or might not be part of an active operation.

Accounting/Resource Control Facility—The Accounting/ Resource Control facility consists of three services:

1 . Resource-control Service: A conditionally-confirmed service initiated by the target. It does not initiate an operation, and it

might or might not be part of an active operation.

2. Trigger-resource-control Service: A non-confirmed service initiated by the origin during an operation.

3. Resource-report Service: A confirmed service initiated by the origin to initiate a Resource-report operation.

Explain Facility—The Explain facility does not include any services, but uses the services of the Search and Retrieval facilities.

Extended Services Facility—Extended-services Service: A confirmed service initiated by the origin to initiate an Extended-

services operation.

Termination Facility—Close Service: A confirmed service initiated by the origin or target. It does not initiate nor is it part of any

operation. It allows an origin or target to abruptly terminate all active operations and to initiate termination of the Z-Association.

(Following termination of the Z-Association the origin may subsequently attempt to initialize another Z-Association using the Init

service.)

3.2.1 Initialization Facility
The Initialization facility consists of the single service, Init.

3.2.1.1 Init Service
The Init service allows the origin to establish a Z-association. In the Init request, the origin proposes values for initialization

parameters. In the Init response, the target responds with values for the initialization parameters; those values, which may differ

from the origin-proposed values, are in effect for the Z-association. See Table 1 .

If the target responds affirmatively (Result = ‘accept’), the Z-association is established. If the origin then does not wish to

accept the values in the target response, it may terminate the Z-association, via the Close service (and may subsequently attempt to

initialize again). If the target responds negatively, the origin may attempt to initialize again.

ISO 23950:1 998(E) © ISO

1 0

Table 1: Parameters of the Init Service

Origin Target

Parameter Request Response

Version x x

Id/authentication x (opt)

Options x x

Preferred-message-size x x

Exceptional-record-size x x

Result x

Implementation-id x (opt) x (opt)

Implementation-name x (opt) x (opt)

Implementation-version x (opt) x (opt)

User-information-field x (opt) x (opt)

Other-information x (opt) x (opt)

Reference-id x (opt) x (if appl)

3.2.1.1.1 Version. Both the origin and target indicate all versions that they support. The highest common version is selected for

use, and is said to be ‘ in force’ , for the Z-association. If there are no versions in common, the target should indicate ‘reject’ for the

parameter Result.

Notes:

1 . Version numbers higher than the highest known version should be ignored.

2. Versions 1 and 2 are identical. Systems supporting version 2 should indicate support for version 1 as well, for

interoperability with systems that indicate support for version 1 only (e.g., ISO 10163-1 :1993 implementations).

3.2.1.1.2 Id/authentication. The origin and target agree, outside the scope of the standard, whether or not this parameter is to be

supplied by the origin, and if so, to the value. This value is used by the target to determine whether the origin is authorized to enter

into communication with the target.

3.2.1.1.3 Options. For each of the capabilities listed below, the origin proposes either ‘on’ or ‘off’ (meaning ‘ in effect’ or ‘not in

effect’ respectively) and the target responds correspondingly for each. The response determines whether the capability is in effect.

The capabilities are:

•search

•present

•delete

•resource-report

•scan

•sort

•extended-services

•trigger-resource-control

•level 1 segmentation

•level 2 segmentation

•concurrent operations

•named result sets

•resource-control

•access-control.

Note: the above list of capabilities is subject to expansion in future versions of this protocol.

The following rules, describing how these capabilities are to be negotiated, are intended to allow interoperation even when the

origin and target have not necessarily implemented the same capabilities.

The Options parameter consists of a string of Boolean flags, each corresponding to an individual capability. The origin might

set the flag to ‘in effect’ for a capability unknown to the target. In that case it is recommended that the target set the corresponding

flag to ‘not in effect’ in the response. However, if the origin sets a flag to ‘not in effect’ and the target sets the corresponding flag

to ‘in effect’ , and if the origin is not aware what capability that flag represents, it is recommended that the origin terminate the

Z-association.

© ISO ISO 23950:1 998(E)

1 1

Search, present, delete, resource-report, scan, sort, and extended-services: for each of these operation types, the origin indicates

whether it wishes to initiate operations of that type; if so, the target indicates whether it is willing to process an operation of that

type. If the origin proposes ‘not in effect’ for a particular operation type, the target must also specify ‘not in effect’ .

Notes:

1 . The target indication that it is willing to process a Resource-report operation does not imply that it will include a resource

report in the response.

2. Any of the above operation types may be negotiated for any version. In particular, Scan, Sort, and Extended-services may be

negotiated when version 2 is in force, even though they are not defined in ANSI Z39.50-1992.

Trigger-resource-control: The origin may propose to submit Trigger-resource-control requests; if so, the target indicates whether

it will accept Trigger-resource-control requests. If the origin proposes ‘not in effect’ , the target must also specify ‘not in effect’ .

Notes:

1 . If the target specifies ‘ in effect’ for Trigger-resource-control, but ‘not in effect’ for ‘resource-control’ , then the origin may

use only the Cancel function of Trigger-resource-control.

2. The target may indicate unwillingness to accept Trigger-resource-control requests even if it specifies ‘ in effect’ for

‘resource-control’ .

3. The target’ s indication of willingness to accept Trigger-resource-control requests does not imply that the target will take any

action as a result of a Trigger-resource-control request.

Level 1 and level 2 segmentation: The origin proposes one of the following:

•“no segmentation,” by specifying ‘not in effect’ for both level 1 and level 2 segmentation;

•“level 1 segmentation,” by specifying ‘in effect’ for level 1 and ‘not in effect’ for level 2 segmentation; or

•“level 2 segmentation,” by specifying ‘in effect’ for level 2 segmentation.

Notes:

1 . If the origin proposes ‘ in effect’ for level 2 segmentation then it may also propose ‘in effect’ for level 1 segmentation to

indicate that if the target is unable to support level 2 segmentation, the origin wishes level 1 segmentation to be in effect.

2. “segmentation” is said to be ‘in effect’ if either level 1 or level 2 segmentation is in effect.

3. Segmentation may be in effect only when version 3 is in force.

The target response indicates which form of segmentation it intends to perform.

•If the target specifies neither level 1 nor level 2 then ‘no segmentation’ is in effect, regardless of what the origin has proposed.

•If the target specifies level 1 (but not level 2) segmentation, it will not perform level 2 segmentation, and the origin must be

prepared to accept level 1 segmentation, regardless of what the origin has proposed.

•If the target specifies level 2 segmentation, the origin must be prepared to accept level 2 segmentation regardless of what it has

proposed (the target value for level 1 should be ‘not in effect’).

When ‘no segmentation’ is in effect, the target response to a Present request must consist of a single message (a single

“segment,” i.e., a Present response only, with no intervening Segment requests), containing an integral number of records. When

‘Level 1 segmentation’ is in effect the target may respond to a Present request with multiple segments (i.e., a Present response,

with possibly one or more intervening Segment requests); each must contain an integral number of records. When ‘Level 2

segmentation’ is in effect the target may respond to a Present request with multiple segments, and individual records may span

segments. Segmentation procedures are detailed in 3.3.

Concurrent-operations: The origin may propose to initiate concurrent operations; if so, the target indicates whether it will accept

concurrent operations. If the origin proposes ‘not in effect’ , the target must also specify ‘not in effect’ . If concurrent operations is

not in effect, then ‘serial operations’ is said to be in effect. Concurrent operations may be in effect only when version 3 is in force.

Named-result-sets: The origin may propose to use named-result sets (i.e., to specify result set names other than “default” as the

value of Result-set-name within a Search request); if so, the target specifies whether it will support named-result-sets. If the origin

proposes ‘not in effect’ , the target must also specify ‘not in effect’ .

Resource-control and access-control: The origin indicates whether it wishes the target to invoke Resource-control and/or Access-

control (i.e., send Resource-control and/or Access-control requests). The target specifies whether it plans to invoke Resource-

control and/or Access-control.

Notes:

1 . If the target specifies ‘not in effect’ for resource-control (or access-control) then it will not invoke resource-control (or

access control) even if the origin has proposed ‘in effect’ .

2. If the origin proposes ‘not in effect’ for resource-control, and the target indicates ‘in effect’ for resource-control, indic ating

that it is not willing to suppress Resource-control requests, and if indeed the origin cannot accept Resource-control requests, the

origin should terminate the Z-association.

ISO 23950:1 998(E) © ISO

1 2

3. If the origin proposes ‘not in effect’ for access-control, and if security requirements on the target system mandate that

security (other than that which might be provided by the parameter Id/authentication) be invoked at the outset of a Z-

association, then the target should reject the Z-association (by setting the parameter Result to ‘reject’ , and specifying ‘ in effect’

for ‘access-control’).

However, security may be invoked at different levels. In addition to authentication at the outset of a Z-association, security

might be invoked to control access to a particular database, record, result-set, resource-report format, or use of an operation. Thus

if the origin proposes ‘not in effect’ for access-control, and the target normally invokes security (other than at the Z-association

level), the target need not necessarily reject the Z-association.

The target might wish to invoke a security challenge during an Init operation to determine whether the origin is authorized to

use a capability it has proposed. If the origin has proposed ‘not in effect’ for access-control, the target may simply refuse the use of

that particular operation via the Options parameter.

If the origin proposes ‘not in effect’ for access-control, and the target chooses to accept the Z-association, and if the origin

subsequently initiates an action that would precipitate an Access-control request (for example, if the origin issues a Search

specifying a database for which it has not yet established credentials), the target should suppress the Access-control request and

instead respond with an error status indicating that a security challenge is required but cannot be issued.

3.2.1.1.4 Preferred-message-size and Exceptional-record-size. The Init request contains the origin’ s proposed values of

Preferred-message-size and Exceptional-record-size, specified in bytes. The Init response contains the Preferred-message-size and

Exceptional-record-size that the target is going to use; these may be different from (and override) the values proposed by the

origin. For both the request and response, Preferred-message-size must be less than or equal to Exceptional-record-size.

Exceptional-record-size is meaningful during a Present operation, and only in the special case when a single, exceptionally

large record (i.e., larger than preferred-message-size) is requested in the Present request. In this special case, preferred-message-

size may be overridden (for the present operation), so that a single record may be presented whose size may be as large as

Exceptional-record-size. The fact that a single record is requested is how the origin signals that preferred-message-size may be

overridden. Thus Exceptional-record-size must be greater than or equal to preferred-message-size. In the case where they are

equal, Exceptional-record-size has no meaning (this is the way to signify that the special case will not apply during the Z-

association).

The usage of these parameters is detailed in 3.3.

Note: The parameter Exceptional-record-size has the same meaning as the parameter Maximum-record-size defined in

Z39.50-1992. The name of the parameter has been changed for clarity.

3.2.1.1.5 Result. The target indicates whether or not it accepts the Z-association by specifying a value of ‘accept’ or ‘reject’ in the

parameter Result. (If ‘reject’ is indicated, the origin may send another Init request.)

3.2.1.1.6 Implementation-id, Implementation-name, and Implementation-version. The request or response may optionally

include any of these three parameters. They are, respectively, an identifier (unique within the client or server system), descriptive

name, and descriptive version, for the origin or target implementation. These three implementation parameters are provided solely

for the convenience of implementors, for the purpose of distinguishing implementations.

3.2.1.1.7 User-information-field. This parameter may be used by the origin or target for additional information not specified by

this standard.

3.2.1.1.8 Other-information. This parameter may be used by the origin or target for additional information not specified by the

standard. This parameter may be used only if version 3 is in force.

Note: Care should be taken by the origin when using this parameter; the origin cannot ascertain that version 3 is in force before

sending the Init request.

3.2.1.1.9 Reference-id. See 3.4.

3.2.2 Search Facility
The Search facility consists of the single service, Search.

3.2.2.1 Search Service
The Search service enables an origin to query databases at a target system, and to receive information about the results of the

query.

The search request allows the origin to request that the target apply a query to a specified set of databases at the target, to

identify records with the properties indicated by the query. The target creates a result set, which represents the set of records

identified by the query, and the target maintains the result set for subsequent retrieval requests.

© ISO ISO 23950:1 998(E)

1 3

Depending on the parameters of the search, one or more records identified by the result set may be immediately retrieved as

part of the search response. The result set is an ordered set; a record identified by an entry in the result set is referenced by the

position of the entry within the result set (beginning with 1). See Table 2.

Table 2: Parameters of the Search Service

Origin Target

Parameter Request Response

Query-type x

Query x

Database-names x

Result-set-name x

Replace-indicator x

Small-set-element-set-names x (opt.)

Medium-set-element-set-names x (opt.)

Preferred-record-syntax x (opt.)

Small-set-upper-bound x

Large-set-lower-bound x

Medium-set-present-number x

Response-records x (if appl.)

Result-count x

Number-of-records-returned x

Next-result-set-position x

Search-status x

Result-set-status x (if appl.)

Present-status x (if appl.)

Additional-search-information x (opt.) x (opt.)

Other-information x (opt.) x (opt.)

Reference-id x (opt.) x (if appl.)

3.2.2.1.1 Query-type and Query. The parameter Query-type identifies the type of query, i.e the syntax of parameter Query. Six

types are defined:

•Type-0 may be used only when the origin and target have a priori agreement outside of the standard.

•Type-1 is the Reverse Polish Notation (RPN) query specified in 3.7.

•Type-2 is the ISO8777 type query, specified in ISO 8777.

•Type-100 is the Z39.58 type query, specified in ANSI Z39.58.

•Type-101 is the extended RPN (ERPN) query, an extension to the type-1 query to allow proximity searching and restriction of

result sets by attributes. It is specified in 3.7.

Note: The type-101 query is identical to the type-1 query with the following exception: For type-1 , proximity and restriction

are valid only when version 3 is in force. For type-101 , proximity and restriction are valid both for version 3 and version 2 as

well. (The definition of the type-101 query is independent of version.)

•Type-102 is the Ranked List query, to be defined in a later version of this standard.

3.2.2.1.2 Database-names. The origin indicates the set of databases to which the Query applies.

Notes:

1 . The target designates (through the Explain facility or through some mechanism outside of the standard) what databases may

be specified on a Search request, and in what combinations they may be specified. For example, a target might specify that

databases A, B, and C may be searched individually, and that A and B may be searched in combination (but not A and C, nor B

and C).

2. Each database name specified by the target is a string of characters, and the string is case-insensitive. That is, for any

character that is a letter, the origin may use either upper- or lower-case, regardless of how the target has specified the name.

3.2.2.1.3 Result-set-name and Replace-indicator. The parameter Result-set-name specifies a name to be given to the result set

(to be created by the query) so that it may be subsequently referenced (within the same Z-association).

ISO 23950:1 998(E) © ISO

1 4

If a result set with the same name already exists at the target, the action taken depends on the value of the parameter Replace-

indicator, as follows:

•If the value of Replace-indicator is ‘on’ , then after processing the query, the existing result set whose name is specified by the

parameter Result-set-name will be deleted, and a new result set by that name created. If the search cannot be processed, the

content of the result set will be empty.

•If the value of Replace-indicator is ‘off’ , the search is not processed, an error diagnostic is returned by the target, and the

existing result set whose name is specified by the parameter Result-set-name is left unchanged.

If a result set does not exist with the name specified by the parameter Result-set-name, then a result set by that name is created

by the target, and the parameter Replace-indicator is ignored. The initial content of the result set is empty. If no records are found

by the query, the result set remains empty.

A target need not support, in general, the naming of result sets by the origin. However, a target must support at least the result

set whose name is “default.” If the origin specifies “default” as Result-set-name, then Replace-indicator must be ‘on’ .

A result set created by a Search request (that is, specified by the parameter Result-set-name) may be referenced in a subsequent

Present request or as an operand in a subsequent Search request (for example, in a type-1 query). If a result set named “defau lt” is

created, it remains available for reference from the time it is created until the end of the Z-association during which it is created, or

until either:

•another default result set is created, because the name “default” is specified as Result-set-name in a subsequent Search request,

or

•it is unilaterally erased or deleted by the target.

Any result set other than the result set named “default” remains available for reference from the time it is created until it is

deleted in one of the following ways:

•by a Delete operation

•implicitly, because a result set was specified by the same name in a Search request, and the value of the parameter Replace-

indicator was ‘on’

•unilaterally by the target (at any time)

•by termination of the Z-association.

3.2.2.1.4 Small-set-element-set-names and Medium-set-element-set-names. These parameters describe the preferred

composition of the records expected in the search response. If the query results in a small-set (see 3.2.2.1 .6), then Small-set-

element-set-names pertains. If the query results in a medium-set, then Medium-set-element-set-names pertains. These two

parameters are described in 3.6.2.

3.2.2.1.5 Preferred-record-syntax. The origin may specify a preferred record syntax for retrieval records. If the target cannot

supply a particular record according to the Preferred-record-syntax, it supplies the record according to one of the other abstract

syntaxes from the set for which Presentation contexts are currently established for this A-association.

If the target cannot supply the record according to either the requested syntax or a syntax corresponding to an established

presentation context, it returns a surrogate diagnostic for that record unless the established set of presentation contexts is empty; in

that case, this standard does not prescribe the target action.

3.2.2.1.6 Small-set-upper-bound, Large-set-lower-bound, and Medium-set-present-number. The result set is considered a

“small-set,” “medium-set,” or “large-set,” depending on the values of parameters Small-set-upper-bound and Large-set-lower-

bound of the Search request, and Result-count of the Search response (see 3.2.2.1 .8). The result set is a small-set if Result-count is

not greater than small-set-upper-bound. The result set is a large-set if Result-count is larger than or equal to Large-set-lower-

bound. Otherwise, the result set is a medium-set. If the query results in a small-set, response records corresponding to all database

records identified by the result set are to be returned to the origin (subject to possible message size constraints). If the query results

in a large-set, no response records are to be returned. If the query results in a medium-set, the maximum number of response

records to be returned is specified by Medium-set-present-number.

Notes:

1 . The result set may be a medium-set only when Result-count is greater than small-set-upper-bound and less than Large-set-

lower-bound, and this can occur only if Large-set-lower-bound is at least 2 greater than Small-set-upper-bound; i.e., the result

set cannot be a medium-set if Large-set-lower-bound exceeds Small-set-upper-bound by 1 . For example, if Large-set-lower-

bound is 1 1 and Small-set-upper-bound is 10, the intent is “if 10 or fewer database records are found, return response records

for them all, otherwise do not return any,” and medium-set-present-number would not apply.

2. Small-set-upper-bound may be zero. Large-set-lower-bound must be greater than Small-set-upper-bound.

3. If the origin does not want any response records returned regardless of the value of Result-count, Large-set-lower-bound

should be set to 1 and Small-set-upper-bound to zero.

© ISO ISO 23950:1 998(E)

1 5

3.2.2.1.7 Response-records. The target processes the search, creating a result set that identifies a set of database records. It cannot

be assumed however that search processing requires physical access to the database records. A particular database record might

not be accessible but this circumstance might not be recognized until an attempt is made to access the record for the purpose of

forming a retrieval record.

After processing the search, the target attempts to create retrieval records to be included in the Search response, corresponding

to the first N database records identified by the result set (N depends on the request parameters and Result-count, as described in

3.2.2.1 .6). For each database record for which a retrieval record cannot be included, a surrogate diagnostic record is substituted.

The term response record refers to a retrieval record or a surrogate diagnostic record. The parameter Response-records is one

of the following:

•N response records;

•a number of response records, which is less than N because of message size constraints (see 3.3);

•one or more non-surrogate diagnostic records (see note) indicating that the search cannot be processed, and why it cannot be

processed; or

•one or more non-surrogate diagnostic records (see note) indicating that records cannot be presented, and why not, e.g.,

“element set name not valid for database.”

Note: If version 2 is in force, the target returns a single non-surrogate diagnostic record. If version 3 is in force, the target

returns one or more non-surrogate diagnostic records.

The order of occurrence of response records within the parameter Response-records is according to the order in which they are

identified by the result set. Each may optionally be accompanied by the name of the database in which the record resides.

However, the database name must accompany the first response record being returned, and must accompany any record from a

database different from its immediate predecessor.

3.2.2.1.8 Result-count and Number-of-records-returned. The parameter Result-count is the number of database records

identified by the result set. If the result set is empty, result-count is zero. The parameter Number-of-records-returned is the total

number of records returned in the Search response.

3.2.2.1.9 Next-result-set-position. The parameter Next-result-set-position takes on the value M+1 , where M is the position of the

result set item which identifies the database record corresponding to the last response record among those returned; or zero if

M = Result-count.

3.2.2.1.10 Search-status. The parameter Search-status, returned in the response, assumes one of the following two values:

success - The search completed successfully.

failure - The search did not complete successfully.

A value of ‘success’ does not imply that the expected response records are being returned as part of the response (see Present-

status, 3.2.2.1 .11). Note also, a value of ‘success’ does not imply that any database records were located by the search. A value of

‘failure’ does imply that none of the expected response records is being returned. In the latter case, the target returns one or more

non-surrogate diagnostic records (see note) indicating that the search cannot be processed.

Note: If version 2 is in force, the target returns a single non-surrogate diagnostic record. If version 3 is in force, the target returns

one or more non-surrogate diagnostic records.

3.2.2.1.11 Result-set-status and Present-status. These are status descriptors necessary to distinguish potentially ambiguous

situations that can occur during search and present operations.

Result-set-status occurs if and only if the value of Search-status is ‘failure’ , and its value is one of the following:

subset - Partial, valid results available.

interim - Partial results available, not necessarily valid.

none - No result set.

Present-status occurs if and only if the value of Search-status is ‘success’ , and its value is one of the following:

success - All of the expected response records are available.

partial-1 - Not all of the expected response records can be returned because the request was terminated by access

control.

partial-2 - Not all of the expected response records can be returned because they will not fit within the preferred

message size.

partial-3 - Not all of the expected response records can be returned because the request was terminated by resource

control, at origin request.

partial-4 - Not all of the expected response records can be returned because the request was terminated by resource

control, by the target.

failure - None of the expected response records can be returned. One or more non-surrogate diagnostic records is

returned (see note in 3.2.2.1 .7).

ISO 23950:1 998(E) © ISO

1 6

3.2.2.1.12 Additional-search-information. On the response the target may use this parameter to convey information that is a by-

product of the search process, including, for example, intermediate result counts, why particular records were returned, or whether

a particular attribute was used for searching a database. On the request the origin may use this parameter to indicate the preferred

format or content of that information. User Information format SearchResponse-1 is defined in Annex 9, USR. This parameter

may be used only when version 3 is in force.

3.2.2.1.13 Other-information. This parameter may be used by either the origin or target for additional information not specified

by the standard. This parameter may be used only when version 3 is in force.

3.2.2.1.14 Reference-id. See 3.4.

3.2.3 Retrieval Facility
The Retrieval facility consists of two services: Present and Segment.

The origin sends a Present request to request response records according to position within a result set maintained by the target.

The target responds by sending a Present response, containing the requested response records. Alternatively, if segmentation is in

effect and the requested response records will not fit within the Present response message, the target may segment the response by

sending one or more Segment requests before the Present response. The procedures for segmentation are described in 3.3.

The Segment requests (if any) together with the Present response are referred to as the aggregate Present response. Each

Segment request as well as the Present response is referred to as a segment of the Present response. If an aggregate Present

response consists of a single segment (i.e., only a Present response) it is called a simple Present response.

3.2.3.1 Present Service
The Present service allows the origin to request response records corresponding to database records represented by a specified

result set. Database records are referenced by relative position within the result set. The origin specifies a range and may follow

with subsequent requests specifying different ranges. See Table 3.

Table 3: Parameters of the Present Service

Origin Target

Parameter Request Response

Number-of-records-requested x

Result-set-start-position x

Additional-ranges x (opt.)

Result-set-id x

Element-set-names x (opt.)

Preferred-record-syntax x (opt.)

Comp-spec x (opt.)

Max-segment-count x (opt.)

Max-segment-size x (opt.)

Max-record-size x (opt.)

Response-records x (if appl.)

Number-of-records-returned x

Next-result-set-position x

Present-status x

Other-information x (opt.) x (opt.)

Reference-id x (opt.) x (if appl.)

Notes:

1 . If version 3 is in force, a single request may include more than one range.

The origin may request, for example, records one through five and follow with a request for records four through six.

2. In this section, “record N” means “the response record corresponding to the database record identified by result set entry N.”

3.2.3.1.1 Number-of-records-requested and Result-set-start-position. The origin requests a range of records: N records

beginning at record M. M = Result-set-start-position, N = Number-of-records-requested and N is not greater than (Result-count -

M) + 1 .

© ISO ISO 23950:1 998(E)

1 7

3.2.3.1.2 Additional-ranges. The origin may request additional ranges of records by including this parameter, which consists of

one or more pairs (M, N) where M and N are as described in 3.2.3.1 .1 . For the first pair (M, N) M must be greater than or equal to

the sum of Result-set-start-position and Number-of-records-requested. For any consecutive pairs (M1, N1) and (M2, N2), M1 +

N1 must be less than M2. This parameter may occur only when version 3 is in force.

3.2.3.1.3 Result-set-id. The origin indicates the name of a transient result set, created during this Z-association, from which

records are to be retrieved.

3.2.3.1.4 Element-set-names. The origin may indicate the desired composition of the retrieved records. See 3.6.2.

3.2.3.1.5 Preferred-record-syntax. See 3.2.2.1 .5.

3.2.3.1.6 Comp-spec. This parameter may be included only if the parameter Element-set-names is omitted, and only if version 3 is

in force. If included, Comp-spec provides an alternative means of specifying the desired composition of retrieved records. See 3.6.

3.2.3.1.7 Max-segment-count, Max-segment-size, and Max-record-size. These three parameters may be used only when

version 3 is in force.

Max-segment-count may be included when level-1 or level-2 segmentation is in effect; it specifies the maximum number of

segments the target may include in the aggregate Present response. If its value is 1 , no segmentation is applied for the operat ion

and Max-record-size should not be included.

Max-segment-size and/or Max-record-size may be included only when level 2 segmentation is in effect. Max-segment-size is

the largest allowable segment; if included, it overrides Preferred-message-size (for this Present operation only); if not included it

assumes the value of Preferred-message-size. Max-record-size is the largest allowable retrieval record within the aggregate Present

response; if included, it must equal or exceed Max-segment-size.

These three parameters are further detailed in 3.3.3.2.

3.2.3.1.8 Response-records. This parameter consists of a sequence of response records, or possibly, if ‘level 2 segmentation’ is in

effect, a final fragment (see 3.3.3) followed by zero or more response records. Alternatively (if the operation included no Segment

requests) the parameter consists of one or more non-surrogate diagnostic records indicating that the request cannot be processed,

and why not (see note below).

A response record will be returned in the aggregate Present response for each record requested in the request (subject to

message size, access-control, and resource-control constraints). Each response record corresponds to a result set entry, and the

result set ordinal positions represented by the response records will be ascending and consecutive, unless the request included the

parameter Additional-ranges. In this case, the positions will be ascending but may have gaps which will correspond exactly to the

gaps in the requested ranges.

Each response record may optionally be accompanied by the name of the database to which it corresponds. However, the

database name must accompany the first response record (or starting fragment) within the first segment of the aggregate Present

response, and must accompany any response record (or starting fragment of a response record) from a database different from its

immediate predecessor within the aggregate Present response.

When the origin has received the aggregate Present response, the result (if all of the segments are reassembled, and segmented

response records reassembled from their fragments) will be one of the following:

•N response records, where N = Number-of-records-requested,

•a number of response records that is less than N (reason specified by Present-status), or

•one or more diagnostic records (see note) indicating that the request cannot be processed, and why not.

Note: If version 2 is in force, the target returns a single non-surrogate diagnostic record. If version 3 is in force, the target returns

one or more non-surrogate diagnostic records.

3.2.3.1.9 Number-of-records-returned and Next-result-set-position. The parameter Number-of-records-returned is the total

number of records in the aggregate Present response. Next-result-set-position is the value M+1, where M is the position of the

result set item corresponding to the last record among those included in the response; or zero if M is the position of the last result

set item.

3.2.3.1.10 Present-status. Present-status is mandatory in a Present response and its values are the same as those listed for Present-

status in 3.2.2.1 .11 . Present-status refers to the aggregate Present response.

3.2.3.1.11 Other-information. This parameter may be used by the origin or target for additional information not specified by the

standard. This parameter may be used only if version 3 is in force.

ISO 23950:1 998(E) © ISO

1 8

3.2.3.1.12 Reference-id. See 3.4.

3.2.3.2 Segment Service
If the records requested by a Present request will not fit in a single segment, and if segmentation is in effect, the target returns

multiple segments, each of which contains a portion of the records. Each except the last segment is returned as a Segment request

(the last segment is returned as a Present response).

Notes:

1 . The segment service is modelled as a request, even though, logically, the target is not making a request. The reason is that

(for purposes of abstract service definition and resultant protocol specification) any message is a request or a response, a

response must be preceded by a request of the same type, and there may be at most one response to a given request. Because of

these modelling constraints (a) the Segment service cannot be modelled as a response (because if it were, it would necessarily

respond to a segment request, and it is a non-confirmed service); and (b) the present operation cannot be modelled as a Present

request followed by multiple Present responses.

2. This service may be used only when version 3 is in force.

3. If segmentation is not in effect, the target does not send any Segment requests and the aggregate Present response consists of

a simple Present response. If the records requested will not fit in a segment, the procedures described in 3.3.1 apply.

4. If the records requested will fit in a single segment (whether or not segmentation is in effect) the target does not send any

Segment requests and the aggregate Present response consists of a simple Present response.

Table 4: Parameters of the Segment Service

Target

Parameter Request

Segment-records x

Number-of-records-returned x

Other-information x (optional)

Reference-id x (if applicable)

3.2.3.2.1 Segment-records. If level 1 segmentation is in effect, the parameter Segment-records consists of a sequence of response

records.

If level 2 segmentation is in effect, the parameter Segment-records may include response records as well as fragments (see

3.3.3). It may be composed of a final fragment (except within the first segment of the aggregate Present response), followed by

zero or more response records, followed by a starting fragment. Neither fragment need occur; however if neither occurs there mu st

be at least one response record. (Note that fragments pertain only to retrieval records; a diagnostic record may not be segmented.)

The order of occurrence of a response record or fragment of a retrieval record is according to the order in which the record is

identified by the result set. Each response record or starting fragment may optionally be accompanied by the name of the database

to which it pertains. However, the database name must accompany the first response record (or starting fragment) within the first

segment of the aggregate Present response, and must accompany any response record (or starting fragment of a retrieval record)

from a database different from its immediate predecessor within the aggregate Present response.

3.2.3.2.2 Number-of-records-returned. This is the total number of response records and starting fragments included within the

segment.

3.2.3.2.3 Other-information. This parameter may be used by the target for additional information not specified by the standard.

3.2.3.2.4 Reference-id. See 3.4.

3.2.4 Result-set-delete Facility
The Result-set-delete facility consists of a single service, Delete.

3.2.4.1 Delete Service
The Delete service enables an origin to request that the target delete specified result sets, or all result sets, created during the Z-

association. The target responds by reporting information pertaining to the result of the operation. See Table 5.

© ISO ISO 23950:1 998(E)

1 9

Table 5: Parameters of the Delete Service

Origin Target

Parameter Request Response

Delete-function x

Result-set-list x (if appl.)

Delete-operation-status x

Delete-list-statuses x (if appl.)

Number-not-deleted x (if appl.)

Bulk-statuses x (if appl.)

Delete-msg x (opt.)

Other-information x (opt.) x (opt.)

Reference-id x (opt.) x (if appl.)

3.2.4.1.1 Delete-function. The origin specifies one of the following:

list - delete specified result sets (see 3.2.4.1 .2), or

bulk-delete - delete all result sets currently on the target created during this Z-association.

3.2.4.1.2 Result-set-list. This parameter occurs if and only if Delete-function is ‘list’ . It contains a list of result sets (created during

this Z-association) to be deleted.

3.2.4.1.3 Delete-operation-status. Delete-operation-status is the status of the delete request. It assumes one of the values ‘success’

or ‘failure-3’ through ‘failure-9’ in Table 6.

Table 6: Delete Statuses

Status Description

success Result set(s) deleted.

failure-1 Result set did not exist.

failure-2 Result set previously unilaterally deleted by target.

failure-3 System problem at target (optional text message may be included in the Delete-msg parameter).

failure-4 Access-control failure: the delete request caused the target to issue an Access-control request which the origin failed to

satisfy, or the origin could not accept an Access-control request.

failure-5 Operation terminated by resource control at origin request.

failure-6 Operation terminated by target due to resource constraints.

failure-7 Bulk delete of result sets not supported by target.

failure-8 Not all result sets deleted (on a bulk-delete request) (see 3.2.4.1 .5).

failure-9 Not all requested result sets deleted (on a list request).

failure-10 Result-set in use.

Notes:

1 . failure-7 and failure-8 can occur only if Delete-operation is Bulk-delete.

2. failure-10 may be used only when version 3 is in force.

3.2.4.1.4 Delete-list-statuses. Delete-list-statuses is present in a Delete response if Delete-function in the request was ‘ list’ . Delete-

list-statuses contains the same list of result sets as in the Result-set-list parameter of the Delete request, each paired with a status.

Possible status values are ‘success’ , ‘failure-1 ’ through ‘failure-6’ , and ‘failure-10’ . See Table 6.

3.2.4.1.5 Number-not-deleted and Bulk-statuses . These two parameters occur only if Delete-function is Bulk-delete and if

Delete-operation-status = ‘failure-8’ . The parameter Number-not-deleted indicates how many result sets were not deleted, and th e

parameter Bulk-statuses gives individual statuses for those not deleted.

Note, however, that a target is not obligated to provide statuses for each result set not deleted on a bulk delete. For example, a

target may abort a bulk delete when the first failure to delete a result set that is part of the bulk delete fails; in this case only a

single status might be included in the parameter Bulk-statuses.

If a bulk delete results in more statuses than can fit into a single Delete-response message, the target may discard those that do

not fit.

3.2.4.1.6 Delete-msg. Delete-msg, if present, contains an optional text message.

ISO 23950:1 998(E) © ISO

20

3.2.4.1.7 Other-information. This parameter may be used by either the origin or target for additional information not specified by

the standard. This parameter may be used only when version 3 is in force.

3.2.4.1.8 Reference-id. See 3.4.

3.2.5 Access Control Facility
The Access Control facility consists of a single service, Access-control.

3.2.5.1 Access-control Service
The Access-control service allows a target to challenge an origin. The challenge might pertain to a specific operation or to the Z-

association. The Access-control request/response mechanism can be used to support access control challenges or authentication,

including password challenges, public key cryptosystems, and algorithmic authentication.

An origin must be prepared to accept and respond to Access-control requests from the target if access control is in effect. A

target may issue an Access-control request which is either part of a specific (active) operation, or which pertains to the Z-

association.

•If concurrent operations is in effect:

— If the Access-control request includes a Reference-id: The supplied Reference-id must correspond to an active operation; the

Access-control request is part of that operation. The Access-control response must also include that Reference-id.

— If the Access-control request does not include a Reference-id: The Access-control request and response are not part of any

operation, they pertain to the Z-association.

•If serial operations is in effect: The target may issue an Access-control request only when there is an active operation; the Access-

control request and subsequent response are part of that operation and must include the Reference-id of the operation (which is

assumed ‘null’ if not present in the initiating request).

The following procedures pertain to access control as it applies to an operation:

1 . After sending an initiating request, the origin must be prepared to receive an Access-control request (for that operation),

respond with an Access-control response, then later receive another Access-control request, etc., before receiving a terminating

response. The target might suspend processing of the operation from the time that it sends the Access-control request until it

receives the Access-control response. The challenge does not interrupt any other operation. If the origin response is acceptable

to the target, the operation proceeds as if the challenge has never taken place. If the origin fails to respond correctly to the

challenge then the target’ s terminating response to the interrupted operation may indicate that the operation was terminated du e

to an Access-control failure.

2. If the origin fails to respond correctly to a challenge during an Init operation, the target may reject the Z-association (by

setting the Result parameter to ‘reject’ , and optionally supplying an explanatory message in the User-information-field of the

Init response). However, the target need not necessarily reject the Z-association. For example the target might wish to invoke a

security challenge during an Init operation to determine whether the origin is authorized to use a capability it has proposed. If

the origin fails to respond properly, the target may simply refuse the use of that particular operation (via the Options

parameter).

3. During a Search or Present operation, while the target is preparing records for presentation, it might send an Access-control

request pertaining to a particular record. If the origin fails to respond correctly to the challenge, the target may simply substitute

a surrogate diagnostic: “security challenge failed; record not included.”

The following procedures pertain to access control as it applies to the Z-association:

1 . If concurrent operations is in effect, following initialization the origin must be prepared at any time during the association,

whether or not operations are active, to receive an Access-control request pertaining to the Z-association, to respond with an

Access-control response, then later to receive another Access-control request, etc.

2. The target might suspend processing of some or all of the active operations from the time that it sends the Access-control

request until it receives the Access-control response. If the origin response is acceptable to the target, the suspended operations

proceed as if the challenge had never taken place.

3. If the origin fails to respond correctly to the challenge, the target might decide to terminate one or more operations but to

leave open the Z-association. In that case, the target’ s terminating response to any such operations may indicate that the

operation was terminated because of an Access-control failure. Alternatively, the target may close the Z-association.

See Table 7.

© ISO ISO 23950:1 998(E)

21

Table 7: Parameters of the Access-control Service

Target Origin

Parameter Request Response

Security-challenge x

Security-challenge-response x

Other-information x (opt.) x (opt.)

Reference-id x (if appl.) x (if appl.)

3.2.5.1.1 Security-challenge and Security-challenge-response. Definitions for format and content of the challenge and response

are subject to registration; several definitions are defined and registered in Annex 7, ACC. Alternatively, the contents of these two

parameters may be established by prior agreement between a given target/origin pair.

3.2.5.1.2 Other-information. This parameter may be used by either the origin or target for additional information not specified by

the standard. This parameter may be used only when version 3 is in force.

3.2.5.1.3 Reference-id. If serial operations is in effect, or if concurrent operations is in effect and the challenge pertains to a

particular operation, then the use of Reference-id is governed by section 3.4. If ‘concurrent operations’ is in effect and the

challenge pertains to the Z-association, then the Reference-id is to be omitted from both the request and response.

3.2.6 Accounting/Resource Control Facility
The Accounting/Resource Control facility consists of three services:

1 . the Resource-control service, invoked by the target, either as part of an active operation (of any type) or pertaining to the Z-

association;

2. the Trigger-resource-control service, invoked by the origin as part of an active operation (of any type except Init), and

3. the Resource-report service, invoked by the origin to initiate a Resource-report operation.

The Resource-control service permits the target to send a Resource-control request, which might include a resource report. The

report might notify the origin that either actual or predicted resource consumption will exceed agreed upon limits (or limits built

into the target), and request the origin’ s consent to continue an operation, via the Resource-control response. The target might, for

example, inform the origin about the current status of a result set being generated on the target during a Search operation, and

indicate information about the progress of the operation.

The Trigger-resource-control service permits the origin to request that the target initiate the Resource-control service, or cancel

the operation.

The Resource-report service permits the origin to request that the target send a Resource-report pertaining to a completed

operation or to the Z-association.

3.2.6.1 Resource-control Service
An origin must be prepared to accept and respond to Resource-control requests from the target if resource control is in effect. A

target may issue a Resource-control request which is either part of a specific (active) operation or which pertains to the Z-

association.

•If concurrent operations is in effect:

— If the Resource-control request includes a Reference-id: The supplied Reference-id must correspond to an active

operation; the Resource-control request is part of that operation. The Resource-control response (if any) must also include

that Reference-id.

— If the Resource-control request does not include a Reference-id: The Resource-control request and response are not part

of any operation, they pertain to the Z-association.

•If serial operations is in effect: The target may issue a Resource-control request only when there is an active operation; the

Resource-control request and (possible) subsequent response are part of that operation and must include the Reference-id of

the operation (which is assumed ‘null’ if not present in the initiating request).

The Resource-control request indicates whether a response is required:

•If so, the origin must issue a Resource-control response. If the Resource-control request was part of an operation the response

is part of the same operation; the target awaits the Resource-control response, and subsequently issues a terminating

response after processing of the operation is concluded.

•If not, the origin must not issue a Resource-control response. If the Resource-control request was part of an operation the target

subsequently issues the terminating response, after processing of the operation is concluded.

ISO 23950:1 998(E) © ISO

22

An origin should be prepared to receive, and (conditionally) respond to, multiple Resource-control requests as part of an

operation (while the operation is active), or pertaining to the Z-association.

If the origin responds to a Resource-control request with a Resource-control response saying to terminate an operation, it can

expect to receive a terminating response. This response might indicate that the operation was terminated at origin request.

However, the response might alternatively indicate that the operation completed, since the operation at the target may continue to

execute and subsequently complete before the Resource-control response reaches the target. See Table 8.

Table 8: Parameters of the Resource-control Service

Target Origin

Parameter Request Response

Resource-report x (opt.)

Partial-results-available x (if appl.)

Suspended-flag x (if appl.)

Response-required x

Triggered-request-flag x (opt.)

Continue-flag x

Result-set-wanted x (if appl.)

Other-information x (opt.) x (opt.)

Reference-id x (if appl.) x (if appl.)

3.2.6.1.1 Resource-report. This parameter may be used to convey information about the current and estimated resource

consumption at the server. The format of Resource-report resource-1 and resource-2 are defined in Annex 6, RSC.

3.2.6.1.2 Partial-results-available. The target indicates the status of the result set via the flag Partial-results-available, whose

value is one of the following:

subset - Partial, valid results available.

interim - Partial results available, not necessarily valid.

none - No results available.

This parameter is meaningful only as part of a search operation. If its value is ‘subset’ or ‘interim’ , then the target will accept

subsequent Present requests against the result set if the origin indicates (via the Continue-flag) that the operation is to be

terminated and if the value of the parameter Result-set-wanted is ‘on’ .

If the value of Partial-results-available is ‘none’ then the target need not accept subsequent Present requests in the event that the

origin indicates (via the Continue-flag) that the operation is to be terminated.

Note that if the Suspended-flag is off, the partial results available situation may change because processing of the Search

operation may continue. In all cases, the values of Search-status and Result-set-status in the Search response should be treate d as

the authoritative information.

3.2.6.1.3 Suspended-flag. This parameter is valid only when the request pertains to an operation. The target indicates whether or

not processing of the operation has been suspended pending the Resource-control response. This flag occurs if and only if the

value of Response-required is ‘yes’ .

3.2.6.1.4 Response-required. The target indicates whether or not a response (from the origin) to this request is required.

3.2.6.1.5 Triggered-request-flag. This parameter is valid only when the request pertains to an operation. The target may

optionally indicate whether or not this request resulted from a Trigger-resource-control request from the origin.

3.2.6.1.6 Continue-flag. This parameter is valid only when the request pertains to an operation. The origin indicates to the target

whether or not to continue processing the operation.

3.2.6.1.7 Result-set-wanted. This flag is valid only

•during a Search operation,

•when the value of Partial-results-available is ‘subset’ or ‘ interim’ , and

•when the value of the parameter Continue-flag is ‘do not continue’ .

 If the value of this flag is ‘yes’ , the target will maintain the (possibly partial) result set for subsequent Present operations. If the

value of the flag is ‘no’ , the target may delete the result set. A result set status of ‘none’ on the subsequent Search response

indicates that the target has discarded the result set. In all cases, the values of Search-status and Result-set-status in the Search

response describe the actual decisions made by the target and the way in which the search terminated.

© ISO ISO 23950:1 998(E)

23

3.2.6.1.8 Other-information. This parameter may be used by either the origin or target for additional information, not specified

by the standard. This parameter may be used only when version 3 is in force.

3.2.6.1.9 Reference-id See 3.4.

3.2.6.2 Trigger-resource-control Service
An origin may issue Trigger-resource-control requests during an operation (except during an Init operation), as part of that

operation. It serves as a signal to the target that the origin wishes the target to:

•simply send a Resource-report, i.e., issue a Resource-control request with Response-required ‘off’ ;

•invoke full resource control, i.e., issue a Resource-control request with Response-required ‘on’ ; or

•cancel the operation.

The target is not obliged to take any specific action upon receipt of a Trigger-resource-control request. For the purpose of

procedure description, there is no response to the request; if the target wishes to issue a Resource-control request it does so

unilaterally. (If the origin issues a Trigger-resource-control request and subsequently receives a Resource-control request as part of

the same operation, the origin cannot necessarily determine whether the latter resulted from the Trigger-resource-control request.

However, the target may include Triggered-request-flag in the Resource-control-request to so indicate.)

If the origin issues a Trigger-resource-control request saying to cancel the operation, and if the target honors the request, the

origin can expect to receive a terminating response indicating that the operation was terminated at origin request.

Although an origin may issue a Trigger-resource-control request as part of an active operation, the target might receive the

request after the operation terminates. In that case, the target will ignore the Trigger-resource-control request. Furthermore, the

target might receive a Trigger-resource-control request after issuing a Resource-control request for the same operation while

awaiting a Resource-control response. In that case, again, the target should ignore the Trigger-resource-control request. (Note that

in general, the target may ignore any Trigger-resource-control request.) See Table 9.

Table 9: Parameters of the Trigger-resource-control Service

Parameter Origin Request

Requested-action x

Preferred-resource-report-format x (if appl.)

Result-set-wanted x (if appl.)

Other-information x (optional)

Reference-id x (if appl.)

3.2.6.2.1 Requested-action. The origin indicates one of the following:

resource-report - issue a Resource-control request and set Response-required to ‘off’ .

resource-control - issue a Resource-control request and set Response-required to ‘on’ .

cancel - terminate the operation.

3.2.6.2.2 Preferred-Resource-report-format. The origin may indicate a resource report format that it prefers.

3.2.6.2.3 Result-set-wanted. This flag is meaningful only for a Search operation, and when the requested action is ‘cancel’ . If the

value of the flag is ‘yes’ , the origin requests that the target maintain the (possibly partial) result set for subsequent Present

operations. See 3.2.6.1 .7.

3.2.6.2.4 Other-information. This parameter may be used by the origin for additional information, not specified by the standard.

This parameter may be used only when version 3 is in force.

3.2.6.2.5 Reference-id. See 3.4.

3.2.6.3 Resource-report Service
The Resource-report service allows an origin to request a Resource-report, pertaining to a specified, completed operation, or to the

entire Z-association.

Note: The Resource-report service differs from the Trigger-resource-control service in this respect: Trigger-resource-control is a

non-confirmed service; there is a request, but no response. The request is part of, but does not initiate, an operation; it requests a

report pertaining to that active operation. Resource-report, in contrast, is a confirmed service; there is a request and a response (the

target is obliged to respond, although the target is not obliged to include a resource report in the response). The request and

response initiate and terminate an operation respectively; the request identifies a particular completed operation and solicits a

report pertaining to that operation (or it may solicit a report pertaining to the entire Z-association). See Table 10.

ISO 23950:1 998(E) © ISO

24

Table 10: Parameters of the Resource-report Service

Origin Target

Parameter Request Response

Preferred-resource-report-format x (opt.)

Op-id x (opt.)

Resource-report-status x

Resource-report x (opt.)

Other-information x (opt.) x (opt.)

Reference-id x (opt.) x (if appl.)

3.2.6.3.1 Preferred-resource-report-format. The origin may indicate a resource report format that it prefers.

3.2.6.3.2 Op-id. This parameter may be supplied by the origin to identify a completed operation for which the origin requests a

resource report. This parameter may be used only when version 3 is in force.

•If Op-id is present, it consists of a Reference-id, and refers to the most recently completed operation that used that

Reference-id.

Notes:

1 . When an operation terminates, if the origin anticipates that it will subsequently issue a Resource-report request pertaining

to that operation, it is the origin’ s responsibility to ensure that the Reference-id is not reused before doing so.

2. The origin may (but need not) use the same reference-id for the Resource-report operation as that specified in Op-id, and

if so, Op-id will nevertheless pertain to a completed operation only. However, it is recommended that the origin not specify

a value of Op-id equal to any reference-id being used by any active operation other than this Resource-report operation. If

the origin does so, the target may (but need not) consider the request in error (see failure-6 of Resource-report-status).

3. If the origin wants resource information about an active operation, it should not use the Resource-report service, but

instead use the Trigger-resource-control service as part of that operation. If the operation terminates before the target

receives the Trigger-resource-control request, the origin will receive a terminating response and may then subsequently issue

a Resource-report request pertaining to that (completed) operation.

•If Op-id is not present, the origin requests a resource report pertaining to the Z-association.

3.2.6.3.3 Resource-report-status. The target supplies one of following status values:

success - A resource report is included (and in the preferred format, if the parameter Preferred-resource-

report-format was included in the request).

partial - A resource report is included, but not in the preferred format (applies only if the parameter

Preferred-resource-report-format was included in the request).

failure-1 - Target unable to supply resource report.

failure-2 - Operation terminated by target due to resource constraints.

failure-3 - Access-control failure.

failure-4 - Unspecified failure.

failure-5 - There is no known operation with specified id.

failure-6 - There is an active operation with specified id.

Note: Failure-5 and failure-6 apply only when version 3 is in force.

3.2.6.3.4 Resource-report. See 3.2.6.1 .1 .

3.2.6.3.5 Other-information. This parameter may be used by either the origin or target for additional information not specified by

the standard. This parameter may be used only when version 3 is in force.

3.2.6.3.6 Reference-id. See 3.4.

3.2.7 Sort Facility
The Sort facility consists of a single service, Sort.

3.2.7.1 Sort Service
The Sort service allows an origin to request that the target sort a result set (or merge multiple result sets and then sort). The origin

specifies a sequence of sort elements. The result set is to be ordered according to the specified sequence, and subsequent positional

requests against the result set will be construed by the target to apply to the result set as so ordered. See Table 11 .

© ISO ISO 23950:1 998(E)

25

Table 11: Parameters of the Sort Service

Origin Target

Parameter Request Response

Input-result-sets x

Sorted-result-set x

Sort-sequence x

Sort-status x

Result-set-status x (if appl.)

Diagnostics x (if appl.)

Other-information x (opt.) x (opt.)

Reference-id x (opt.) x (if appl.)

3.2.7.1.1 Input-result-sets. This parameter is the name of a result set to be sorted, or the names of result sets to be merged and the

result sorted.

3.2.7.1.2 Sorted-result-set. This parameter is the name of the sorted result set. It may be the name of an existing result set

(including one of the names included in Input-result-set); if so, then if the sort is processed, the existing result set is deleted, and a

new result set by that name is created; its content is the sorted results. If Sorted-result-set is not the name of an existing result set

and if the sort is processed, a result set by the specified name is created by the target, whose content is the sorted results; the

content of the Input-result-sets is left unchanged. In any case, if the sort is not processed, the final content of Sorted-result-set is

indicated by the parameter Result-set-status.

3.2.7.1.3 Sort-sequence. The parameter Sort-sequence comprises the elements that are to be used for sorting, together with the

direction of the sort (ascending or descending), case sensitivity (if applicable), and target action if an element is missing from a

record in the result set to be sorted. Each of the sort elements is a set of attributes, a sort-field-designator, or an element

specification, that the target has designated (see note below) for use as a sort key.

Note: The target designates this information either via the Explain facility, or through some mechanism outside of the standard.

3.2.7.1.4 Sort-status. The parameter Sort-status, returned by the target, assumes one of the following values:

success - The sort was performed successfully.

partial-1 - The sort was performed but the target encountered records with missing values in one or more sort

elements.

failure - The sort was not performed. The target supplies one or more diagnostics in the parameter

Diagnostics.

3.2.7.1.5 Result-set-status. The target supplies this parameter if and only if the value of Sort-status is ‘failure’ . It refers to the

contents of Sorted-result-set, and its value is one of the following:

empty - The result set is empty.

interim - Partial results available, not necessarily valid.

unchanged - The content of the result set is unchanged (applies only if Sorted-result-set is one of the input result

sets).

none - Result set not created (applies only if Sorted-result-set is not one of the input result sets).

3.2.7.1.6 Diagnostics. The target includes this parameter if the value of Sort-status is ‘failure’ . It includes one or more diagnostic

records.

3.2.7.1.7 Other-information. This parameter may be used by the origin or target for additional information not specified by the

standard.

3.2.7.1.8 Reference-id. See 3.4.

3.2.8 Browse Facility
The Browse facility consists of a single service, Scan.

3.2.8.1 Scan Service
The Scan service is used to scan an ordered term-list (subject terms, names, titles, etc.). The ordering of the term-list is target

defined. The origin specifies a term-list to scan and a starting term (implicitly, by specifying an attribute/term combination and a

database-id), the size of the scanning steps, and the desired number of entries and position of the starting term in the response. See

Table 12.

ISO 23950:1 998(E) © ISO

26

Table 12: Parameters of the Scan Service

Origin Target

Parameter Request Response

Database-names x

Term-list-and-start-point x

Step-size x (opt) x (if appl)

Number-of-entries x x

Position-in-response x (opt) x (opt)

Scan-status x

Entries x (opt)

Other-information x (opt) x (opt)

Reference-id x (opt) x (if appl.)

3.2.8.1.1 Database-names. The parameter Database-names identifies a set of databases to which the term-list (specified by Term-

list-and-start-point) pertains.

3.2.8.1.2 Term-list-and-start-point. The origin supplies an attribute list and term. The attribute list contains attributes indicating

which term-list to scan. The term, as qualified by those attributes, indicates where scanning begins; this will be a presumed entry in

the term-list. If there is no matching entry, the first entry with higher value is to be the starting point.

As an example, to scan a list of personal names: the attribute list might consist of a single attribute whose type is ‘use’ and

whose value is ‘personal name’ ; the term would specify a personal name; the database-id would identify one or more databases to

which the list of personal names pertains.

3.2.8.1.3 Step-size. The origin may specify the desired number of entries in the term-list between two adjacent entries in the

response. A value of zero means “do not skip any entries.” If the target cannot support the requested step size, it sets Scan-status to

‘failure’ and includes a non-surrogate diagnostic such as “only step size of zero supported” or “requested step size not supported.”

If the origin omits this parameter, the step size is selected by the target, and the target includes the selected step size in the

response.

3.2.8.1.4 Number-of-entries. The origin indicates the proposed number of entries to be returned. The target indicates the actual

number of entries returned. If the actual number is less than the proposed number, the reason is indicated in Scan-status.

3.2.8.1.5 Position-in-response. The origin may optionally indicate the preferred position, within the returned entries, of the

specified starting point value. A value of 1 refers to the first of the returned entries. A value of 0 means that the returned entries

should begin with the term immediately following the starting point term. A value of Number-of-entries + 1 means that the origin

requests terms immediately preceding the starting point term.

The target may indicate the actual position of the chosen starting point within the returned entries.

Example: If the values of the request parameters Number-of-entries and Position-in-response are 10 and 3 respectively, then

the origin requests two terms immediately preceding the starting point value, followed by the starting point value, followed by

the immediately-following seven terms.

Note: If response parameter Position-in-response is less than the value proposed in the request, the origin may conclude that there

were fewer terms than expected in the low end of the term-list. However, if Position-in-response is the same value in the response

as proposed in the request, but Number-of-entries in the response is less than the value proposed in the request, the origin may not

conclude that there were fewer terms than expected at the high end of the term-list, unless Scan-status is Partial-5. The reason that

fewer terms than expected are returned is indicated in the Scan-status.

3.2.8.1.6 Scan-status. The target indicates the result of the operation. The defined values are:

success - The response contains the number of entries (term-list-entries or surrogate diagnostics) requested.

partial-1 - Not all of the expected entries can be returned because the operation was terminated by access-

control.

partial-2 - Not all of the expected entries will fit in the response message.

partial-3 - Not all of the expected entries can be returned because the operation was terminated by resource-

control, at origin request.

partial-4 - Not all of the expected entries can be returned because the operation was terminated by resource-

control, by target.

partial-5 - Not all of the expected entries can be returned because the term-list contains fewer entries (from

either the low end, high end, or both ends of the term-list) than the number of terms requested.

failure - None of the expected entries can be returned. One or more non-surrogate diagnostics is returned.

© ISO ISO 23950:1 998(E)

27

3.2.8.1.7 Entries. The parameter Entries returned by the target consists of one of the following:

•N entries, where each entry is a term-list-entry or surrogate diagnostic, where N = Number-of-entries in the request.

•A number of entries which is less than N, and may be zero (reason specified by Scan-status).

It may also include:

•One or more non-surrogate diagnostic records (possibly indicating that the operation cannot be processed, and why it cannot).

Each term-list-entry includes a term (occurring in one of the databases specified in the parameter Database-names), and

optionally the following:

•A display term (when the actual term is not considered by the target to be suitable for display).

•A list of suggested attributes for use in subsequent Scan requests (useful for scanning multiple indices, e.g., author and title, at

the same time).

•A suggested alternative term.

•Occurrence-information: this might include a count of records in which the term occurs. It may also list counts for specific

attributes, possibly further broken down by database. Alternatively, a term-list-entry might list databases in which the term

occurs, and for associated attributes, but no counts.

•Other information: additional information concerning the entry.

3.2.8.1.8 Other-information. This parameter may be used by the origin or target for additional information, not specified by the

standard.

3.2.8.1.9 Reference-id. See 3.4.

3.2.9 Extended Services Facility
The Extended Services facility consists of a single service, Extended-services.

3.2.9.1 Extended Services Service
The Extended-Services (ES) service allows an origin to create, modify, or delete a task package at the target. The target maintains

task packages in a special database, described in section 3.2.9.2. A task package pertains to an ES task.

An extended service is a task type, related to information retrieval, but not defined as a Z39.50 service. Execution of a task by

the target is outside the scope of ISO 23950. The extended services defined by this standard are listed in section 3.2.9.1 .2.

Definitions of those services are included in Annex 8, EXT.

The origin sends an ES Request to the target requesting execution of a task. The request includes parameters which the target

uses to construct the task package. The target checks the request for validity, for consistency with the user’ s access privileges, and

possibly for other target-dependent limitations. The target sends an ES response indicating that the request was accepted or

supplying an indication of the reason the request was rejected.

The ES service is a confirmed service, initiated by the origin. The ES operation consists of a request from the origin and a

response from the target, possibly with intervening Access-control or Resource-control messages. However, although the request

may result in the initiation of a task, the task is not considered part of the Z39.50 ES operation. The target response, which

completes the ES operation, does not necessarily signal completion of the task. A task may have a lifetime that exceeds a single

Z-association.

Execution of the ES Operation results in the creation of a task package, represented by a database record in the ES database.

For example, when a target creates a task package of type PersistentResultSet, a (persistent) result set is created, represented by

the created task package, in the form of a record in the extended services database. When that package is subsequently retrieved by

an origin, in either the same or a different Z-association, a copy of that persistent result set is made available to that Z-association,

as a Z39.50 result set (i.e., as a transient result set; a result set name for use during the Z-association is included within the task

package). When an origin deletes the task package, the persistent result set is deleted.

A task package contains parameters, some of which are common to all task packages regardless of package type, and others

which are specific to the particular extended service. Among the common parameters (indicated in Table 13, listed under “task

package parameter” in the right column), some are supplied by the origin as parameters in the ES request, and are used by the

target to form the task package; some of those supplied by the origin may be overridden by the target. Others are supplied by t he

target. The specific parameters are derived from the parameter Task-specific-parameters of the ES request (see Annex 8, EXT).

Note: The response parameter Task-package below refers to the actual task package, and if it occurs (see 3.2.9.1 .13), it includes

some or all (depending on the parameter Elements) of the parameters listed under “task package parameter.”

3.2.9.1.1 Function. The origin specifies Create, Delete, or Modify. If the function is Create, the target is to create a task package,

and assign to it the name specified by the parameter Package-name, if supplied.

ISO 23950:1 998(E) © ISO

28

Table 13: Parameters of the Extended Services Service

Parameter Origin request Target response Task package parameter

Function x

Package-type x

Package-name x (opt) x (opt)

User-id x (opt) x (opt)

Retention-time x (opt) x (opt)

Permissions x (opt) x (opt)

Description x (opt) x (opt)

Target-reference x (opt)

Creation-date-time x (opt)

Task-status x

Package-diagnostics x (opt)

Task-specific-parameters x (see note)

Wait-action x

Elements x (if appl)

Operation-status x

Operation-diagnostics x (if appl)

Task-package x (if appl)

Other-information x (opt) x (opt)

Reference-id x (opt) x (if appl)

Note: Task-specific-parameters are defined for each extended service. For each task-specific parameter, the definition states whether or not the

parameter occurs in the task package.

If the function is Delete or Modify, the target is to delete or modify the task package specified by the parameter Package-name.

A target that supports deletion or modification may nonetheless deny the request, for example, because the task is already in

progress or the package is in use.

If the function is Delete, the origin requests that if the specified task has not been acted on, it should not be started; if t he task is

active, the target should either terminate the task or refuse the request.

If the function is Modify, the origin requests that parameter values in the request (as well as those within parameter Task-

specific-parameters) replace the corresponding values in the task package. If an optional parameter is omitted, the target does not

modify that parameter within the task package (thus to return a parameter to its default value, an origin must explicitly provide the

default value).

3.2.9.1.2 Package-type. The Package-type identifies the extended service requested. The extended services defined by this

standard (see Annex 8, EXT) are:

•Save a result set for later use

•Save a Query for later use

•Define a periodic search schedule

•Order an item

•Update a database

•Create an export specification

•Invoke a previously created export specification.

3.2.9.1.3 Package-name. The origin may optionally supply a name for the task package to be created. If so, the triple (Package-

type, User-id, Package-name) must be unique (i.e., there must be no other task package of that type, for that user with the same

name, otherwise the request is in error), and that triple identifies the task package for subsequent reference. Package-name should

be included if the origin intends to reference the task package.

3.2.9.1.4 User-id. The User-id identifies the user to be associated with the task package. If not supplied, this parameter may

default to the Id of the current user. A target may or may not allow an origin to supply a user id different from its own.

3.2.9.1.5 Retention-time. The origin may optionally specify a retention period (e.g., 2 hours, 3 days, 1 week), which may be

overridden by the target. When the retention time has passed, the target may delete the retained task package. A retention time of

zero means the task package is not to be retained after the task is completed.

© ISO ISO 23950:1 998(E)

29

3.2.9.1.6 Permissions. The origin may indicate who may access the task package. If the origin does not supply this parameter,

only the creating user may do so. See 3.2.9.3.

3.2.9.1.7 Description. The origin may include a description. It might describe, for example, the result set, for a Persistent Result

Set task; or the query, for a Persistent Query task.

3.2.9.1.8 Target-reference. The target may supply a unique identifier for the task package.

3.2.9.1.9 Creation-date-time. The target supplies the date and time that the task package was created.

3.2.9.1.10 Task-status. The target indicates the status of the task. Values are ‘pending’ , ‘active’ , ‘complete’ , and ‘aborted’ .

3.2.9.1.11 Package-diagnostics. The target may include one or more diagnostics in the task package.

3.2.9.1.12 Task-specific-parameters. These are additional parameters, defined by the specific extended service.

3.2.9.1.13 Wait-action. The origin indicates whether the target should (or may) include the task package in the ES response. This

immediate response mechanism may avoid the need for follow-up Search and Present operations, or in general, for making the

task package available through the extended services database (see section 3.2.9.2).

This parameter has four possible values:

•wait: the target must perform the task before issuing the ES response (unless the operation aborts; see section 3.2.9.4). If the

target is not willing to perform the task before issuing the response it must refuse the request by responding with a status of

‘failure’ and an appropriate diagnostic. If the target accepts the request, it includes the parameter Task-package in the

response.

•wait-if-possible: the origin requests that, if possible, the target perform the task before issuing the ES response and include the

task package in the response. If not possible, the target should proceed as though the value were ‘do not wait’ .

•do-not-wait: The origin does not request that the target attempt to perform the task before issuing the ES response. However, if

the target does perform the task before issuing the response, then the response may include the task package.

•do-not-send-task-package: The target may perform the task when it chooses, but is not to include the task package in the

response under any circumstance.

3.2.9.1.14 Elements. The origin may optionally include this parameter if Wait-action is other than ‘do-not-send-task-package’ . It

is an element set name for the task package in the event that it is returned in the response parameter Task-package.

3.2.9.1.15 Operation-status. This is the status of the ES operation. It is one of the following:

done - The request was accepted, the task is complete and results are included in Task-package.

accepted - The request was accepted and the task is queued for processing, or is in process.

failure - The request was refused. One or more diagnostics are supplied (in parameter Operation-

diagnostics).

3.2.9.1.16 Operation-diagnostics. The target may supply additional diagnostic information if Operation-status is ‘failure’ .

3.2.9.1.17 Task-package. If Operation-status is ‘done’ , the target includes the task package. The portion of the actual task package

included depends on the parameter Elements.

3.2.9.1.18 Other-information. This parameter may be used by the origin or target for additional information, not specified by the

standard.

3.2.9.1.19 Reference-id. See section 3.4.

3.2.9.2 The Extended Services Database
Targets that support the Extended Services facility provide access to a database with the name IR-Extend-1 (referred to as the

“extended services database” or “ES database”). Records in the extended services database are task packages constructed from th e

Request-parameter-package parameter in ES requests (the target may begin execution of the task at any time after it accepts the

request, which may be before the task package has been stored in the database). The target may (but need not) retain a task

package until the requested task has completed; it may retain the task package until the origin requests that it be deleted. A target

may unilaterally delete a task package from the ES database at any time.

ISO 23950:1 998(E) © ISO

30

Note: This means, as a practical matter, the target need not actually create a task package for a given task, particularly when the

task is executed immediately. However, it is recommended that a task package exist when the status of the task is pending, active,

or aborted.

When the target receives an ES request it may immediately create a task package, with status ‘pending’ , before completely

validating the request. The origin may thus search the database anytime after submitting a request (during the same or a

subsequent Z-association), for a resulting task package. In particular, if an ES operation is aborted (see 3.2.9.4) the origin may be

able to determine that the request for that operation was received.

An ES database may be listed in the target Explain database, with a list of extended services the target supports, allowable

export destinations, options that an origin may supply for an export task, etc.

An extended services database will appear to the origin as any other database supported by the target (records may be searched

and retrieved by the Z39.50 Search and Retrieval facilities; search processing is defined locally by the target; the target may

impose access control or exclude records to which the origin is not authorized access). However, certain search terms are

predefined in order to allow a semantic level of interoperability. The attribute set used to search the database is defined and

registered in Annex 3, ATR. The task package structures are defined and registered in Annex 8, EXT.

The ES database may provide the following special element sets (in addition to “F”):

•Identification: includes the creating user’ s identification, the origin-supplied name of the task package, and possible

permissions for other users to access the request. Other identifying information such as time of creation may be included.

•UniqueName: the creating user’ s identification and the name of the task package.

•Permissions: the contents of the UniqueName element set, and in addition, the granted permissions for the task package. A

target might present the full permissions list only to the task package creator, presenting to other users only the permissions

applicable to them.

•Status: a short summary of the current status of the request, perhaps including cost and other resource usage.

•Brief: Identification element set plus the most important elements of the Status element set.

3.2.9.3 Owners and Permissions
The creating user of a task package may apply any extended service function to the package, as well as retrieve the full package

(via the Retrieval facility) and invoke the package via other extended services. (Invocation occurs, for example, when a Periodic

Query task references a saved Query.)

Using the Modify function of the ES request, an origin can change the access permissions of a task package by supplying a new

permissions list, which is a sequence of user ids and for each, a sequence of allowed operations, from the following set:

•Delete

•Modify-Contents

•Modify-Permissions

•Present

•Invoke.

As an example of the use of the ‘invoke’ permission, a target might create a task package, on behalf of a client user, of type

PersistentQuery; a persistent query is created, represented by the created task package. The target may subsequently be requested

to create a PeriodicQuerySchedule task package, on behalf of a different user, which refers to (i.e., “invokes”) that persistent query

task package. The target would do so only if that user has ‘invoke’ privilege for that persistent query. As another example, a target

may create an ExportSpecification (package) on behalf of one user, and a different user may subsequently ‘ invoke’ that

ExportSpecification by creating an InvokeExportSpecification package, if that user has ‘invoke’ privilege for the

ExportSpecification.

Targets may provide group names for use in permission lists, but a group name would be syntactically the same as a user Id.

(The target might report the composition of groups, but the mechanism for doing so is not described by this standard.)

3.2.9.4 Aborted Operations
An origin may receive a response to an ES request only during the Z-association in which it issues the request (as for any other

Z39.50 operation). If an ES operation is aborted (explicitly, or because the Z-association is closed or the A-association

terminated), the origin will not receive a terminating response. This has no effect on the disposition or processing of the task,

regardless of the value of Wait-action that was specified on the request. If an ES operation aborts, Wait-action automatically

assumes the value ‘do-not-send-task-package’ .

If an ES operation is aborted, the origin may search the ES database (possibly in a subsequent Z-association) for information

that would otherwise have been returned in the response.

3.2.10 Explain Facility
The Explain facility allows an origin to obtain details of the implementation of a target, including databases available for

searching, attribute sets and diagnostic sets used by the target, and schema, record syntax and element specification definitions

supported for retrieval. Targets that support the Explain facility:

© ISO ISO 23950:1 998(E)

31

•provide access (via the Z39.50 Search and Present services) to a database with the name IR-Explain-1 (referred to as the

“Explain database”);

•support the explain attribute set, exp-1 , defined in Annex 3, ATR (which defines a set of Use attributes and imports bib-1 non-

Use attributes); and

•support the Explain syntax, which is defined and registered in Annex 5, REC.

A record (or result set item representing a record) within the Explain database, is referred to as an “Explain record.”

3.2.10.1 Searching the Explain Database
The Explain database appears to the origin as any other database supported by the target. However, certain search terms,

corresponding to information categories, are predefined in order to allow a semantic level of interoperability. Terms are searched

case-insensitive.

The exp-1 attribute set is used to search the Explain database. Combinations of Use attributes and terms allow searching upon

information category; well-defined combinations of Use attributes may be used to allow additional specification by the origin to

limit the records to those of immediate interest. Combinations of exp-1 Use attributes to perform a common set of searches are

listed in 3.2.10.1 .1 and 3.2.10.1 .4. Since the Explain database may be searched as any other database using attributes from one or

more attribute sets, this list is not exhaustive. However, it is recommended that a target supporting the Explain facility support this

list of common searches. As described in 3.2.10.1 .2 and 3.2.10.1 .3, the HumanStringLanguage, DateAdded, DateChanged, and

DateExpires attributes can be used in combination with any of the combinations listed in 3.2.10.1 .1 and 3.2.10.1 .4.

The exp-1 attribute set consists of a set of Use attributes and imports the non-Use bib-1 attributes. It is recommended that a

target supporting the Explain facility support the bib-1 relation attribute ‘equal’ (see note), position attribute ‘any position in field’ ,

and structure attribute ‘key’ .

Note: If the target intends to support searching based on date ranges (e.g., to limit a search to records created before or after a

particular date or between two dates), the target should also support one or more of the following relation attributes: ‘ less than’ ,

‘less than or equal’ , ‘greater than’ , and ‘greater or equal’ .

Origins should not in general expect that the explain database is searchable using the bib-1 truncation attribute, completeness

attribute, or any of the alternative values of the relation, position, and structure attributes defined in bib-1 . However, targets are

free to provide access to the Explain database using those and other alternative attributes and attribute values.

3.2.10.1.1 Searching for Predefined Information Categories. Records corresponding to a particular explain information

category are searched by an operand where the term is the name of that category; for example, all records corresponding to

TargetInfo are searched using the term “TargetInfo.” For each category one or more key elements are defined, and may be

provided as search terms (using the appropriate attribute). A search with an operand where the Use attribute = ‘ExplainCategory’

and the term is a category, and with additional operands corresponding to each key for that category where the value of the Use

attribute is the key, should result in (at most) a single record.

The primary mechanism for search and retrieval of information from the Explain database is for the origin to select the records

in a category using the Use attribute ‘ExplainCategory’ and to extract desired information from those records to formulate a

subsequent search. For example the origin may search records with ExplainCategory = ‘DatabaseInfo’ , and retrieve summary

information (see 3.2.10.2.2) from those records. Each summary record will include a database name, which serves as a key for a

possible subsequent search.

 A list and brief description of the Explain information categories (and thus search terms) as well as the keys for each category

are given in Table 14. In 3.2.10.3 each category is described in detail.

An origin should adhere to the following rules when searching an Explain database by the predefined information categories:

•To search for information about the target, use ExplainCategory=’TargetInfo’ .

•To search for information about a specific database, use ExplainCategory=’DatabaseInfo’ in combination with the

DatabaseName attribute to specify the key of the desired databaseInfo record.

•To search for information about a specific schema, use ExplainCategory=’SchemaInfo’ in combination with the SchemaOID

attribute to specify the desired schema.

•To search for information about a specific tag set, use ExplainCategory=’TagSetInfo’ in combination with the TagSetOID

attribute to specify the desired tag set.

•To search for information about a specific record syntax, use ExplainCategory= ’RecordSyntaxInfo’ in combination with the

RecordSyntaxOID attribute to specify the desired record syntax.

•To search for information about a specific attribute set, use ExplainCategory=’AttributeSetInfo’ in combination with the

AttributeSetOID attribute to specify the desired attribute set.

•To search for information about term lists for a database, use ExplainCategory=’TermList-Info’ in combination with the

DatabaseName attribute to specify the desired database.

•To search for information about a specific extended service, use ExplainCategory = ‘ExtendedServicesInfo’ in combination

with the oid for that extended service.

ISO 23950:1 998(E) © ISO

32

•To search for the attributes and combination of attributes which may be used in searching a database, use

ExplainCategory=’AttributeDetails’ in combination with the DatabaseName attribute to specify the database for which

attribute information is desired.

•To search for information about a specific term list, use ExplainCategory = ‘TermListDetails’ in combination with the name

for the term list.

•To search for the element set names defined for a record syntax for a particular database, use

ExplainCategory=’ElementSetDetails’ in combination with the RecordSyntaxOID attribute to specify the desired record

syntax and the DatabaseName attribute to specify the desired database.

•To search for the definition of a specific element set name, use ExplainCategory = ‘ElementSetDetails’ in combination with

the ElementSetName attribute to specify the desired element set name. There may be multiple records located since the

explain database contains one record for each element set name for each record syntax for each database.

•To search for a particular element set name defined for a record syntax, for a particular database, use ExplainCategory =

‘ElementSetDetails’ in combination with the ElementSetName attribute to specify the desired element set name, the

RecordSyntaxOID attribute to specify the desired record syntax and the DatabaseName attribute to specify the desired

database.

•To search for the description of the elements of a retrieval record, for a particular record syntax, in a specific schema, for a

particular database, use ExplainCategory=’RetrievalRecordDetails’ in combination with the RecordSyntaxOID attribute to

specify the desired record syntax, the SchemaOID attribute to specify the desired schema, and the DatabaseName attribute to

specify the desired database.

3.2.10.1.2 Searching for Information in a Particular Language. Elements intended to be presented to the user by the origin are

said to consist of “human-readable text.” Each record includes a language element indicating the language of the human-readable

text within the record. The explain database might contain several records with identical information in different languages. To

search for records in a certain language, the HumanStringLanguage attribute may be used (in conjunction with the three-character

language code as the term; see Z39.53-1994).

For example, to search for a list of databases that have descriptive records in English, the query might be of the form:

(Category = ‘DatabaseInfo’) AND (HumanStringLanguage = ‘eng’).

The HumanStringLanguage attribute is intended primarily for use in Version 2. When version 3 is in force, the use of variants

is recommended.

3.2.10.1.3 Searching for Information by Control Dates. To search for new records in an Explain database, use the DateAdded

attribute; for updated records use the DateChanged attribute, for records based on their date of expiration use the DateExpires

attribute. Any of these three may be used in combination with the searches described above.

3.2.10.1.4 Searching for Information Using Content Values. Some of the Explain records are searchable using attributes which

take values from elements within the pertinent Explain records. These Use attributes can be used to select subsets of records of

specific information category. For instance, the Availability Use attribute can be used to select those database information records

for databases which are currently available. The use of these attributes by an origin should conform to the following rules:

•To locate databases currently available, use the ExplainCategory attribute with term ‘DatabaseInfo’ , in combination with the

Availability attribute with term ‘yes’ .

•To locate the databases provided by a specific supplier, use the ExplainCategory attribute with term ‘DatabaseInfo’ , in

combination with the Supplier attribute with the supplier’ s name as term.

•To locate databases provided by a specific producer, use the ExplainCategory attribute with term ‘DatabaseInfo’ in

combination with the Producer attribute with the producer’ s name as term.

•To locate databases that are not proprietary, use the ExplainCategory attribute with term ‘DatabaseInfo’ , in combination with

the Proprietary attribute with term ‘no’ .

•To locate databases that have no user fee, use the ExplainCategory attribute with term ‘DatabaseInfo’ , in combination with the

UserFee attribute with term ‘no’ .

3.2.10.2 Retrieval of Explain Records
A Present request for Explain records should specify the Explain syntax as the Preferred-record-syntax. Each explain information

category has its own record layout, and all are described in the Explain syntax definition (see Annex 5, REC.1).

Explain records include key elements that serve to uniquely identify each record. Each Explain category is defined in terms of

key elements, non-key “brief” elements (see 3.2.10.2.2), “non-brief” elements, and possibly other categories. Key elements are

always part of the brief elements.

© ISO ISO 23950:1 998(E)

33

3.2.10.2.1 Retrieval and Human-Readable Text. The Explain database might provide alternative variations of human-readable

information (however, for language variations, see note below). For example, a text element might be retrievable in ASCII,

SGML, or PostScript. To request a particular format, use the variant facilities of Version 3.

Note: For language variation, see 3.2.10.1 .2. The Explain database logically includes different records for different languages, and

therefore selection based on language occurs during the search.

Table 14: Explain Categories and Keys

Category An Explain record in this category describes: Key(s)

TargetInfo The target, including search constraints imposed by the target. target name

DatabaseInfo A database. Information about supported query types, attribute sets, record syntaxes, schemas, diagnostic

sets, resource control formats and access control formats. A group of databases offering a common set of

characteristics may be described as a single, logical, database. In this case, a list of databases subsumed

within this logical database is provided.

database name

SchemaInfo A Schema. schema oid

TagSetInfo A tag Set. tagSet oid

RecordSyntaxInfo A record syntax. record syntax oid

AttributeSetInfo An attribute set, including the attributes supported within the set. attribute set oid

TermListInfo Term lists supported for a database. database name

ExtendedServices

Info

An extended service. extended service oid

AttributeDetails Attributes that can be used to search a database including the other attributes with which it may be

combined.

database name

TermListDetails A term list. term list name

ElementSetDetails An element set (for a particular record syntax, for a particular database). database name,

element set name,

record syntax oid

RetrievalRecord

Details

The elements of a retrieval record (for a particular record syntax, defined by a particular schema). databaseName,

SortDetails Sort specification for a database. database name

Processing Processing instructions for a database, for a particular processing context, name of instructions, and object

identifier for the abstract syntax of the externally defined Instructions.

database name,
name,

oid

VariantSetInfo A variant set definition; classes, types, and values, for a specific variant set definition supported by the

target. Support by the target of a particular variant set definition does not imply that the definition is

supported for any specific database or element.

variantSet oid

UnitInfo Unit definitions supported by the target. unit system name

CategoryList Explain categories that the target supports. (no key)

3.2.10.2.2 Retrieving Summary and Descriptive Information. The Explain facility provides for the retrieval of summary, or

“brief” information. For example the origin may request summary information about all of the databases supported by a target

without retrieving the full databaseInfo records. Within each category’ s definition, elements are designated as “brief” or “non-

brief.” Elements designated “brief” are obtained when using the element set name ‘B’ . Elements designated “non-brief” are

obtained (along with brief-elements) when using the element set name ‘F’ .

The Explain facility also provides for the retrieval of descriptive information, for certain categories, via the element set name

‘description’ (for details, refer to the ASN.1 definition for the Explain syntax). For example, a Database-info record includes an

element that contains a description (in human-readable text) of the database; to retrieve only the brief elements and the description

element, the element set name ‘description’ may be used.

Individual categories defined in the Explain syntax may designate other element set names for specific subsets of information

within that category.

3.2.10.3 Detailed Descriptions of the Information Categories
This section includes complete descriptions of each information category. In addition to the information enumerated, each record:

•contains information about the record itself, e.g., date of creation and expiration date of the record; and

ISO 23950:1 998(E) © ISO

34

•includes an element indicating the language of the “human-readable text” elements of the record.

These are logical descriptions that do not reflect that there might be language variants of a record or syntax variants of an

element.

Many of the Explain elements are optional, but are not so indicated in the description below. For specific information, refer to

the ASN.1 definition.

3.2.10.3.1 Target-Info. Information about the target. There is one such Explain record in the Explain database.

Brief elements:

•A name for the target (only one), in human-readable text

•Recent news of interest to people using this target, in human-readable text

•An icon used to represent this target (in machine-presentable form)

•Whether named results sets are supported

•Whether multiple databases can be searched in one search request

•The maximum number of concurrent result sets supported

•The maximum size (in records) of a result set

•The maximum number of terms allowed in one search request

•A timeout interval after which the target will trigger an event if no activity has occurred

•A “welcome” message from the target to be displayed by the origin.

Non-brief elements:

•Contact information for the organization supporting this target

•A description of the target, in human-readable text

•A set of nicknames or alternate names by which the target is known

•Restrictions pertaining to this target, in human-readable text

•A payment address (e.g., business office) for the organization supporting this target

•Hours of operation

•A list of supported database combinations

•Internet address and Port number

•OSI addresses

•Languages supported for message strings

•The following elements, where each object listed is supported for one or more databases (to determine which are supported for

a particular database, retrieve the record for that database):

—Which query-types are supported, and details for each supported type

—Diagnostic sets supported

—Attribute sets supported

—Schemas supported

—Record syntaxes supported

—Resource challenges supported

—Access challenges supported

—Cost information

—Variant sets supported

—element set names supported

—Unit systems supported.

3.2.10.3.2 Database-Info. Detailed description of a database and database-related restrictions and parameters. There is one such

Explain record for each database supported.

Brief elements:

•Full database name (only one)

•Whether this is an Explain database (possibly for a different server)

•A list of short (or alternate) names for the database

•An icon used to represent this database (in machine-presentable form)

•Whether there is a charge to access this database

•Whether this database is currently available for access

•A human-readable name or title for the database (as opposed to the database name, which is typically a short string not meant

to be human-readable, and not variable by language.)

Non-brief elements:

•A list of keywords for the database

•A description of the database in human-readable text

© ISO ISO 23950:1 998(E)

35

•Associated databases: those that the target allows (and possibly encourages) to be searched in combination with this database

•Sub-databases that make up this conceptual single database

•Any disclaimers concerning this database in human-readable text

•News about this database in human-readable text

•A record count for the database (and whether the count is accurate or an estimate)

•A description of the default order in which records are presented in human-readable text.

•An estimate of the average record size (in bytes)

•A maximum record size (in bytes)

•Hours of operation that this database is available

•Best time to access this database, in human-readable text

•Time of last update of this database

•Update cycle/interval for this database

•Coverage dates of this database in human-readable text

•Whether this database contains proprietary information

•A description of copyright issues relating to this database in human-readable text

•A notice concerning copyright which the target expects the origin to display to the user if possible, in human-readable text

•Description and contact information for the database producer and database supplier, and how to submit material for inclusion

in this database, in human-readable text

•Which query-types are supported for this database, and details for each supported type

•Diagnostic sets supported for this database

•Attribute sets supported for this database

•Schemas defined for this database

•Record syntaxes supported by this database

•Resource reports supported for this database

•Text describing access control for this database in human-readable text

•Costing information related to this database, in both machine-readable format, and in human-readable text, for connect,

present, and search

•Variant sets supported for this database

•Element set names supported for this database, with names and descriptions given in human-readable text

•Unit systems supported for this database.

3.2.10.3.3 Schema-Info. Descriptive information about a database schema. There is one Explain record for each schema

supported by the target.

Note: this is not specific to a database.

Brief elements:

•The object identifier of the schema definition

•The name of this schema.

Non-brief elements:

•A description of this schema in human-readable text

•TagSets used by this schema, and for each, a designated tagType

•The abstract record structure defined by this schema.

3.2.10.3.4 Tag-Set-Info. Descriptive information about a given tagSet. There is one such Explain record for each supported

tagSet.

Brief elements:

•The object identifier for the tagSet

•The name of this tagSet.

Non-brief elements:

•A description of this tagSet, in human-readable text

•For each element defined in the tagSet:

—The name of the element

—Nicknames for the element

—The tag assigned to the element

—A description of the element

—Its datatype.

ISO 23950:1 998(E) © ISO

36

3.2.10.3.5 Record-Syntax-Info. Descriptive information about a record syntax. There is one Explain record for each abstract

record syntax supported by the target. Note: this is not specific to a database.

Brief elements:

•The object identifier of the abstract record syntax

•A name by which this syntax is known.

Non-brief elements:

•Transfer syntaxes supported for this abstract syntax (object identifiers)

•A description of this abstract record syntax in human-readable text

•An ASN.1 module describing the syntax

•The record structure defined by this syntax.

3.2.10.3.6 Attribute-Set-Info. Descriptive information about an attribute set. There is one record for each supported attribute set.

Brief elements:

•The attribute set Id (object identifier) for this attribute set

•Its name.

Non-brief elements:

• For each attribute type, its name, description, and integer value of the type, and a list of attributes. For each attribute:

— Its name

—Description

— Its value

—Names of equivalent attributes. Equivalences are derived from the attribute set definition (not from the targets behavior)

•Description of the attribute set.

3.2.10.3.7 TermList-Info. Descriptive information about term-lists. There is one Explain record for each database.

Brief elements:

•Full database name (one only)

•Summary information about each term-list associated with this database (for each term-list described, there is a TermList-

details record):

— Name of the term-list. Must be unique for the database. This is the name to be used to search for the TermList-details

record for this term list

— Its title. For users to see; need not be unique

—An indication of how expensive it is to search, using the associated attributes. The target indicates one of the following:

– The attribute (combination) associated with this list will do fast searches

Note: To obtain the attribute combination, retrieve the associated TermList-details record.

– The attribute (combination) will work as expected, so there is probably an index for the attribute (combination) or

some similar mechanism

– Can use the attribute (combination), but it might not provide satisfactory results. Probably there is no index, or post-

processing of records is required

– cannot search with this attribute (combination) alone

—Whether the term-list may be scanned

—A list of names of alternative, broader term-lists

— A list of names of alternative, narrower term-lists.

(No non-brief elements.)

3.2.10.3.8 Extended-Services-Info. Descriptive information about an extended service. There is one Explain record for each

extended service supported.

Brief elements:

•The object identifier of the extended service

•A name by which this extended service is known

•Boolean flags, indicating:

—Whether it is a private extended service

—Whether restrictions apply

—Whether a fee applies

—Whether the service is available

—Whether retention is supported

•What level of wait-action is supported.

© ISO ISO 23950:1 998(E)

37

Non-brief elements:

•A description in human-readable text

•Explain elements specific to this extended service (defined within the specific extended service definition)

•An ASN.1 module for the Explain definition.

3.2.10.3.9 Attribute-Details. Information for each attribute. There is one Explain record for each supported database.

Brief elements:

•Name of the database to which this attribute information applies.

Non-brief elements:

•For each attribute set supported for the database, the object identifier of the attribute set, and for each attribute within the set

— The attribute type

—A default value which applies if the attribute is omitted, and a description of default behavior in human readable form

— For each value of the attribute:

– The attribute value

– A description of that value in human-readable text

– Sub-attributes (for Use attributes): a list of alternative values that allow access to the same aspect of the record, but in

greater detail

– Super-attributes (for Use attributes): a list of alternative values that allow access to the same aspect of the record at a

coarser level

– Whether the value is only “partially supported”: i.e., the value is accepted but may not provide expected results

•A list of all attributes combinations supported for the database.

3.2.10.3.10 Term-list-Details. Descriptive information for a term-list. There is one record for each term-list listed by TermList-

info records.

Brief elements:

•Name of the term-list.

Non-brief elements:

•A description

•Attribute combination corresponding to this list. If list may be scanned, this is the attribute combination to be used by scan

•Maximum step-size supported

•Collating sequence (e.g., ASCII, EBCDIC) in human-readable text

•Order (ascending or descending)

•Estimated number of terms

•A list of sample terms (not guaranteed to be valid; optimally would represent a uniformly distributed sampling of the list).

3.2.10.3.11 Element-Set-Details. Descriptive information about an element set. There is one Explain record for each element set

for each record syntax for each database.

Brief elements:

•The database to which this record pertains

•The element set name for the element set described by this record

•The record syntax to which this record pertains

•The schema for which this element set is defined.

Non-brief elements:

•A description, in human-readable text, of the element set

•For each element in the element set, the information provided for each element by the Retrieval-Record-Details category.

3.2.10.3.12 Retrieval-Record-Details. Descriptive information about the elements of a retrieval record. Note that the elements are

relative to a database schema. There is one such Explain record for each database for each schema for each record syntax.

Brief elements:

•The database, schema, and record syntax to which this Explain record pertains.

Non-brief elements (for each element described by the syntax):

•The name of the element

•The tag of the element, if any

•A list of schema elements that comprise this element within the record syntax

•The maximum size of the element

•The minimum size of the element

ISO 23950:1 998(E) © ISO

38

•The average size of the element

•The size of the element, if fixed length

•Whether or not the element is repeatable

•Whether or not the element is required

•A description of the element in human-readable text

•A description of its contents in human-readable text

•Charging/billing issues related to this element in human-readable text

•Restrictions (e.g., copyright, proprietary) pertaining to use and access to this element in human-readable text

•Alternate names for this element

•Generic names for this element text (e.g., a “geographicSubject” element might also be under the generic name “subject”)

•Attribute combinations corresponding to this element.

3.2.10.3.13 Sort-Details. Description of the sorting capabilities supported by the target. There is one record for each database.

Brief elements:

•Database to which this sort description pertains.

Non-brief elements:

•For each sort key:

— A description

— If the key is a record element, a specification of the element

— If the key is an attribute combination, a specification of that combination

— The type of key: character, numeric, structure

—Whether the key is case-sensitive.

3.2.10.3.14 Processing-Info. Instructions, representing how the target believes the data should be processed by the origin for

presentation to the user. Instructions are defined externally. For a given database and processing context (access, search, retrieval,

record-presentation, and record-handling) for which the target offers processing information, there may be more than one set of

instructions; these are distinguished by name. Each set of instructions may be available in more than one abstract syntax; these are

distinguished by object identifier. Thus an Explain record of this type is distinguished by database, processing context, name, and

object identifier.

Brief elements:

•Full name of the database to which this record pertains

•The context for which this processing information is pertinent

•A name for this processing information

•An object identifier, for the abstract syntax of the externally defined instructions.

Non-brief elements:

•A description of the instructions, in human-readable form

•The machine-processable instructions, externally defined (whose abstract syntax is identified by the object identifier

referenced above).

3.2.10.3.15 Variant-set-info. Descriptive information about a variant set definition supported by the target; classes, types, and

values supported for a particular variant set. Support of a particular variant set definition does not imply that the definition is

supported for any specific database or element.

Brief elements:

•The object identifier of the variant set definition

•Its name.

Non-brief elements:

•A list of supported classes, including name and description; and for each, a list of supported types, including name and

description; and for each, a list of supported values.

3.2.10.3.16 Unit-info. Descriptive information about a unit system definition supported by the target.

Brief elements:

•The name of the unit system.

Non-brief elements:

•A description

•A list of unit types, including name and description, and for each, a list of units, including name and description.

© ISO ISO 23950:1 998(E)

39

3.2.10.3.17 Category-list. A list of the Explain categories supported by the target. There is one such record for the Explain

database. It consists of the information below, for each supported category.

Brief elements:

•The search term used in conjunction with Use attribute of ExplainCategory to search for records of this category.

Note: the following need occur only if the target is supporting a category not defined in this standard:

•The original search term (This is for information categories where the target is supporting a revision of the original definition

of a category.)

•A description

•An ASN.1 definition of the record for this category.

3.2.11 Termination Facility
The Termination Facility consists of the single service, Close.

3.2.11.1 Close Service
The Close service allows either an origin or target to abruptly terminate all active operations and to initiate termination of the Z-

association. See Table 15.

The Close service may be used only when version 3 is in force. If so, following initialization, at any time until a Close request

is either issued or received, either the origin or target:

•may issue a Close request, consider all active operations to be abruptly terminated, await a Close response (discarding any

intervening messages), and consider the Z-association closed; and

•should be prepared to receive a Close request, consider all active operations to be abruptly terminated, issue a Close response,

and consider the Z-association closed.

Table 15: Parameters of the Close Service

Parameter Request Response Note

Close-reason x x

Diagnostic-information x (opt) x (opt)

Resource-report-format x (opt) Origin only

Resource-report x (opt) x (opt) Target only

Other-information x (opt) x (opt)

Reference-id x (if appl) x (if appl)

3.2.11.1.1 Close-reason. This parameter indicates the reason the origin or target is closing the Z-association. Its values are:

•finished

•shutdown

•system problem

•cost limits

•resources

•security violation

•protocol error

•lack of activity

•unspecified

•response to Close request.

Note: Both the Close request and Close response map to the same protocol message (Close APDU). If both systems issue a Close

request at the same time, each will receive the peer message as a Close response (even though the message was not sent as such).

This potential ambiguity will not affect the correct operation of the protocol. However, for the case where the message is indeed

sent as a Close response, the last of the above listed statuses, “response to Close request,” is provided and may optionally be used.

3.2.11.1.2 Diagnostic-information. The target may include an optional text message, providing additional diagnostic information.

3.2.11.1.3 Resource-report-format and Resource-report. When the origin issues a Close request: the origin may include the

parameter resource-report-format to request that the target include a resource report (see 3.2.6.1 .1) in the response. The target’ s

decision to include a resource report in the response (and the format) is unilateral: it may include or omit a report regardless of

whether the origin included the parameter resource-report-format.

When the target issues a Close request: the target may unilaterally include a resource report.

ISO 23950:1 998(E) © ISO

40

3.2.11.1.4 Other-information. This parameter may be used by the origin or target for additional information, not specified by the

standard.

3.2.11.1.5 Reference-id. The parameter Reference-id may be included or omitted on a Close request or response from the origin.

The target should omit Reference-id on a Close request. On a Close response, if the target is responding to a Close request that

included Reference-id, the target may either include Reference-id using the identical value, or it may omit the parameter. If the

target is responding to a Close request that did not include a Reference-id, the target should omit the parameter.

3.3 Message/Record Size and Segmentation
A “segment” is a message that is sent (or is in preparation for transmission) by the target as part of an aggregate Present response,

i.e., a Segment request or Present response.

Throughout 3.3, “record” is used as follows:

•Unless otherwise qualified, it means “response record,” i.e., retrieval record or surrogate diagnostic.

•Except within 3.3.3, it means “surrogate diagnostic record” if the record size exceeds preferred-message-size.

•“Record N” means “the response record corresponding to the database record identified by result set entry N.”

•A record is considered to be a string of bytes (for the purpose of describing segmentation procedures).

•“Record size” refers to the size of a record in bytes.

Except within 3.3.3, a set of records is said to “fit in a segment” if the sum of their sizes, not including protocol control

information, does not exceed Preferred-message-size. For the Present operation, the target might be unable to fit the requested

records in a single segment, because of record or message size limitations. In that case, the target may perform segmentation of the

Present response (if segmentation is in effect) by sending multiple segments (Segment requests followed by Present response).

Two levels of segmentation, level 1 and level 2, are subject to negotiation. If neither level is in effect, the target response to a

Present request consists of a simple Present response (a single segment) which contains an integral number of records. If level 1

segmentation is in effect, the target response to a Present request may consist of multiple segments (Segment requests followed by

a Present response), and each segment must contain an integral number of records, i.e., records may not span segments. If level 2

segmentation is in effect, the target response to a Present request may consist of multiple segments, and records may span

segments.

3.3.1 Procedures When No Segmentation Is in Effect
The procedures in this section (3.3.1) apply when no segmentation is in effect. (They apply not only to a Present operation when

no segmentation is in effect, but they also apply in general to a Search operation, whether or not segmentation is in effect; a Search

response is not subject to segmentation.)

The target responds to a Present request with a simple Present response (or to a Search request with a Search response), which

contains an integral number of records. If the target is not able to return all of the records requested because of message size

limitations, the target should fit as many records as possible.

Procedure

Assume that the target is attempting to return records M through N. If records M through N fit in the response, then the target

returns those records. Otherwise, the target returns records M through P, where P is chosen so that records M through P fit in the

response, but records M through P+1 do not.

Illustration

Assume that the target is attempting to return records 1 through 10; records 1 through 6 fit in the response, but retrieval records 1

through 7 will not fit.

The size of retrieval record 7 itself:

(a) does not exceed Preferred-message-size, or

(b)exceeds Preferred-message-size, but does not exceed Exceptional-record-size, or

(c) exceeds Exceptional-record-size.

 In case (a), the target returns records 1 through 6. In case (b), except as noted below (see “Exception”), the target substitutes a

diagnostic record for retrieval record 7, indicating that the record exceeds Preferred-message-size. In case (c) the target substitutes

a diagnostic record for retrieval record 7, indicating that the record exceeds Exceptional-record-size. (If Exceptional-record-size

equals Preferred-message-size then there is no distinction between the meaning of the two diagnostics.)

In case (b) or (c):

•If the diagnostic record will not fit along with records 1 through 6, the target returns records 1 through 6. (Preferred-message-

size must always be large enough to contain any diagnostic record; thus a subsequent present request beginning with record

7 will retrieve the diagnostic.)

•Otherwise, the target inserts the diagnostic record and proceeds to attempt to fit records 8 through 10.

© ISO ISO 23950:1 998(E)

41

Exception

If a Present request specifies a single record (i.e., Number-of-records-requested equals 1) then if the size of that retrieval record

exceeds Preferred-message-size, but does not exceed Exceptional-record-size, the target will return that single retrieval record.

Note that this exception applies only to a Present operation and not to a Search operation.

Thus in case (b), the origin may subsequently retrieve retrieval record 7, by issuing a Present request in which that record is the

only record requested.

Note that the purpose of this distinction between Preferred-message-size and Exceptional-record-size is to allow the transfer of

normal length records to proceed in a routine fashion with convenient buffer sizes, while also providing for the transfer of an

occasional exceptionally large retrieval record without requiring the origin to continually allocate and hold local buffer space for

worst-case records. Note also that this intended purpose is defeated if the origin routinely requests a single record.

3.3.2 Level 1 Segmentation
When level 1 segmentation is in effect, the target may segment the aggregate Present response into multiple segments (zero or

more Segment requests followed by a Present response), each consisting of integral records (i.e., records may not span segments).

The procedures described in this section (3.3.2) apply if level 1 segmentation is in effect.

Beginning with the first record requested and continuing with adjacent higher number records, the target forms segments to

contain the requested records. Each segment is sent as a Segment request, except the last, which is sent as a Present response.

The number of segments must not exceed the value of the (optional) Present request parameter Max-segment-count, if

supplied.

If Max-segment-count is supplied, and its value is 1 , then the procedures of 3.3.1 apply. Also, the same exception as cited in

3.3.1 applies if a Present request has requested a single record.

Procedure

Assume that the origin requests result set records M through N.

Case A: M<N (i.e., more than one record requested).

1 . Set P=M.

2. If records P through N fit in a segment:

•Fit records P through N in the segment.

•Go to step 3.

Otherwise,

•Fit records P through Q, where Q (which is less than N) is such that records P through Q fit in a segment, but records P

through Q+1 do not.

•If Max-segment-count is reached, go to step 3.

•Send the segment as a Segment request.

•Set P=Q+1 .

•Repeat step 2.

3. Send the segment as a Present response.

Case B: M=N (i.e., a single record requested).

The target sends a simple Present response (a single segment). The size of the segment may exceed Preferred-message-size. The

segment contains the single requested retrieval record, or a surrogate diagnostic record if the size of the record exceeds

Exceptional-record-size.

Illustration

Assume the origin has requested records 1 through 10.

1 . If all ten records fit in a segment, the aggregate Present response consists of a Present response including the requested

records. Present-status is ‘success’ (all expected response records available).

2. Suppose records 1 through 4 fit in a segment, but records 1 through 5 do not; records 5 through 9 fit in a segment but

records 5 through 10 do not. (Assume the Present request has specified a value of 3 or greater for the parameter Max-segment-

count.) Then the aggregate Present response consists of:

•a segment request including records 1 through 4,

•a segment request including records 5 through 9, and

•a Present response including record 10.

Present-status is ‘success’ (all expected response records available).

Note that the target is expected to pack as many records into a segment as will fit; thus for example, the first segment would

not consist of records 1 through 3, because records 1 through 4 will fit.

ISO 23950:1 998(E) © ISO

42

3. Assume the conditions in (2) are true, except that the Present request has specified a value of 2 for the parameter Max-

segment-count. Then the aggregate Present response consists of:

•a Segment request including records 1 through 4, and

•a Present response including records 5 through 9.

Present-status is ‘partial-2’ (not all expected response records available, because they will not all fit within the preferred

message size).

3.3.3 Level 2 Segmentation
When level 2 segmentation is in effect, the target may segment the aggregate Present response into multiple segments (as is the

case for level 1 segmentation) and in addition, records may span segments. The procedures described in this section (3.3.3) app ly

if level 2 segmentation is in effect.

If a retrieval record will not fit in a segment (along with records already packed into the segment) it may be segmented into

multiple contiguous fragments (see 3.3.3.1) to be packed into consecutive segments according to the procedures detailed in 3.3.3.2

and 3.3.3.3.

3.3.3.1 Fragments
A fragment is a proper substring of a record (as noted above, within section 3.3.3 a record is treated as a string of bytes). A

particular instance of segmentation of a record results in a sequence of two or more fragments whose concatenation (not including

protocol control information) is identical to the record. However, there may be different instances of segmentation of a particular

record, and the origin cannot necessarily predict how a record will be segmented into fragments by the target in a particular

instance.

For the purpose of procedure description (3.3.3.3) a starting fragment is defined to be a fragment that starts at the beginning of

a record. An intermediate fragment is a fragment that neither starts at the beginning nor ends at the end of a record. A final

fragment is a fragment that ends at the end of a record. An integral record (not segmented) is not a fragment.

The sum of the sizes of the records and record fragments in a segment, not including protocol control information, must not

exceed Max-segment-size (see 3.3.3.2).

3.3.3.2 Segment Size, Record Size, and Segment Count
If level 2 segmentation is in effect, the Present request may optionally include these three parameters:

Max-segment-size — The largest allowable segment. If included, overrides Preferred-message-size (for this Present operation

only). If not included, Max-segment-size assumes the value Preferred-message-size.

Max-record-size — The largest allowable retrieval record within the aggregate Present response. If included, it must equal or

exceed Max-segment-size. (If level 2 segmentation is in effect, the parameter Exceptional-record-size that was negotiated during

initialization does not apply, whether or not Max-record-size is included, unless the value of Max-segment-count is 1 .)

Max-segment-count — The maximum number of segments the target may include in the aggregate Present response. If its value

is 1 , no segmentation is applied for the operation, the procedures of section 3.3.1 apply, and Max-record-size should not be

included.

If the latter two parameters are both included, Max-record-size must not exceed the product Max-segment-size times Max-

segment-count.

If Max-record-size but not Max-segment-count is included, the origin should be prepared to receive as many segments as

necessary to retrieve the requested records.

If Max-segment-count is included (and its value is greater than 1), but Max-record-size is not, the product Max-segment-size

times Max-segment-count is the maximum record size for the operation.

If the latter two parameters are both omitted the origin should be prepared to receive arbitrarily large records and an arbitrary

number of segments.

3.3.3.3 Segmentation Procedures
The following procedures apply for level 2 segmentation. The target fits as many integral records as possible into the first segment.

If all of the requested records will fit, the segment is sent as a simple Present response. Otherwise, in the space remaining within

that segment the target fits a starting fragment of the following record (if possible), and the segment is sent as a Segment request.

The target then fits the remainder of that record into the next segment if possible; if not possible, the target sends Segment requests

as necessary with intermediate fragments, and fits the final fragment, if any, into the beginning of the next segment and fills as

many integral records as possible within the space remaining within that segment. If the last of the requested records is placed in

the segment (or Max-segment-count is reached) the segment is sent as a Present response. Otherwise the target continues to fill

segments in this manner until the last of the requested records is placed in a segment or Max-segment-count is reached, and sends

each segment as a Segment request except the last, which it sends as a Present response. These procedures are reiterated more

formally as follows:

© ISO ISO 23950:1 998(E)

43

Procedure

Assume that the origin requests records M through N. (Note that “Record” means “surrogate diagnostic record” if the size of the

record exceeds Max-record-size, or if the target is unable to segment the record so that each fragment fits within a segment.)

1 . Set R=M (begin preparation of first segment).

2. If record R fits in the current segment:

•Fit integral records R through P, where P is the largest number (not exceeding N) so that records R through P fit.

•If P equals N, or if Max-segment-count is reached, go to step 8 below.

•R=P+1

3. Note that having reached this step, record R will not fit in the current segment. If the Present request has included Max-

segment-count and the target is unable to determine whether record R will fit in the remainder of the aggregate response:

•Insert a surrogate diagnostic record, which in effect suggests that the origin might again attempt to retrieve the record, but

without specifying a Max-segment-count.

•Go to step 7.

4. If record R will not fit in the remainder of the aggregate response, go to step 8.

5. If record R will fit in the remainder of the aggregate response, but no starting fragment will fit in the current segment:

•Note that this condition precludes the possibility that the segment is empty; see note preceding step 1 .

•Transmit a Segment request (begin preparation of the next segment).

•go to step 2.

6. Note that having reached this step, Record R will fit in the remaining segments; it will not fit within the current segment, but

a starting fragment will fit in the current segment.

•Fit the largest possible starting fragment of record R and transmit a Segment request.

•Fill as many complete segments as necessary (which may be zero) with intermediate fragments of record R and send

Segment requests.

•Begin preparation of the next segment, first inserting the final fragment of record R.

7. Set R = R+1 .

•If R is less than or equal to N, go to step 2.

8. Send a Present response.

Illustration

Assume the origin has requested records 1 through 12. All records are 500 bytes, except record 5, which is 10,000 bytes. Max-

segment-size is 3200.

1 . Suppose record 5 consists of 10 elements, each 1000 bytes. The target is able to segment record 5, but only at element

boundaries; the target will not let the elements span fragments.

Note: this means that the target may segment the record so that a fragment consists of bytes M*1000+1 through

(M+N)*1000, M= 0,1 , 9; N = 1 , 2, . . . , 10-M; e.g., bytes 1 -1000, 1 -2000, 1 -3000, 1000-2000, 1000-3000, 1000-4000, etc.

Suppose further that the target cannot segment any other records. The aggregate Present response is as follows:

segment 1 : Segment request consisting of records 1 through 4, and the first 1000 bytes of record 5 as a starting

fragment.

Note: the size of the segment is 3000 bytes which is less than the Max-segment-size of

3200, but the target cannot fit another fragment in the segment because that would cause

the segment size to exceed the 3200-byte maximum (the minimum fragment size is 1000

bytes).

segment 2: Segment request consisting of bytes 1001 through 4000 of record 5 as an intermediate fragment.

segment 3: Segment request consisting of bytes 4001 through 7000 of record 5 as an intermediate fragment.

segment 4: Segment request consisting of bytes 7001 through 10,000 of record 5 as a final fragment.

segment 5: Segment request consisting of records 6 through 11 .

segment 6: Present response consisting of record 12.

ISO 23950:1 998(E) © ISO

44

2. Suppose further that the target can segment the smaller records into 100 byte fragments (or multiples).

segments 1 through 3 are as in illustration 1 .

segment 4: Segment request consisting of bytes 7001 through 10,000 of record 5 as a final fragment, and bytes

1 through 200 of record 6 as a starting fragment.

segment 5: Segment request consisting of bytes 201 through 500 of record 6 as a final fragment, records 7

through 11 , and the first 400 bytes of record 12 as a starting fragment.

segment 6: Present response consisting of bytes 401 through 500 of record 12 as a final fragment.

3. Suppose the target can segment any of the records at arbitrary byte boundaries.

segment 1 : Segment request consisting of records 1 through 4 and the first 1200 bytes of record 5 as a starting

fragment.

segment 2: Segment request consisting of bytes 1201 through 4200 of record 5 as an intermediate fragment.

segment 3: Segment request consisting of bytes 4201 through 7400 of record 5 as an intermediate fragment.

segment 4: Segment request consisting of bytes 7401 through 10,000 of record 5 as a final fragment, record 6,

and the first 100 bytes of record 7 as a starting fragment.

segment 5: Present response consisting of bytes 101 through 500 of record 7 as a final fragment, and records 8

through 12.

3.4 Operations and Reference-id
A request from the origin of a particular operation type initiates an operation, which is terminated by the respective response from

the target. The following operation types are defined: Init, Search, Present, Delete, Resource-report, Sort, Scan, and Extended-

services. (Thus each origin request type corresponds to an operation type with the exception of the following request types:

Trigger-resource-control and Close.) An operation consists of the initiating request and the terminating response, along with any

intervening Access-control and Resource-control requests and responses, Trigger-resource-control requests, and Segment requests.

An operation is assigned a Reference-id by the origin, the origin includes the Reference-id within the initiating request, and it must

be included within each message of the operation. If ‘serial operations’ is in effect, the Reference-id parameter may be omitted in

the initiating request; in that case the reference-id is considered null for that operation, and all other messages of that operation

must also omit the Reference-id parameter.

Any message sent from origin to target or vice versa (i.e., any request or response defined by this service definition) is part of

an operation (identified by its Reference-id) with these exceptions:

•A Close request or response is not part of any operation.

Note: A Close request or response may include a reference-id, according to the procedures specified in 3.2.11 .1 .5.

•If ‘concurrent operations’ is in effect any Resource-control or Access-control request or response which does not include a

Reference-id is not part of an operation.

This standard does not assume any relationship between a given operation and any subsequent operation even if the latter

operation uses the same reference-id. This standard does not specify the contents of the Reference-id parameter, nor its meaning,

except to the extent that it is used to refer to an operation. Reference-ids are always assigned by the origin and have meaning only

within the origin system. Since no semantics are attributed to the Reference-id, it has no implied data type and can only be

described as transparent binary data. (Its ASN.1 type is therefore OCTET STRING.)

3.5 Concurrent Operations
If ‘concurrent operations’ is in effect, the Reference-id parameter is mandatory in an initiating request (however, see note), and the

origin may initiate multiple concurrent operations, each identified by a different reference-id.

Note: The Reference-id parameter is always optional in an Init request; ‘concurrent operations’ does not take effect until

negotiation is complete, and is thus not in effect during an Init operation.

Once an operation is initiated, until that operation is terminated, another operation may not be initiated with the same reference-

id. This standard does not specify the order in which concurrent operations are processed at the target; the target may process

concurrent operations in any manner it chooses.

Example:

The origin may issue a Search request using Reference-id “100,” and then issue a second Search request using Reference-id “101”

before receiving the Search response from the first Search request. There would then be two concurrent operations. Receipt by the

origin of the response corresponding to the second Search request (identified by Reference-id “101”) would terminate the second

operation, and that might occur before termination of the first operation (identified by Reference-id “100”). The origin might then

issue a Present request (against the result set created by the second operation), initiating another operation. In that case, the origin

must supply a Reference-id other than “100” (because there is an active operation with that Reference-id). The new Reference-id

could (but need not) be “101”; if it is, the target may not assume any implied relationship between this new operation and the

previous operation which used Reference-id “101 .”

© ISO ISO 23950:1 998(E)

45

No operation may be initiated while an Init operation is in progress. No operation may be initiated within a Z-association after a

Close request has been sent or received.

All result sets are, in principle, available to any operation. It is possible that two or more concurrent operations will attempt to

reference the same result set. This standard does not specify what happens in that circumstance. The origin should not initiate

concurrent Search operations with the same value of Result-set-id.

Other than the restriction cited above (that when the origin uses a Reference-id to initiate an operation, until that operation is

terminated it may not use that Reference-id to initiate another operation) there are no restrictions on the reuse or management of

Reference-ids by the origin. The origin might recycle Reference-ids randomly among users, or it may manage local threads by

assigning different Reference-ids to end-users. The target is not required to know how the origin manages Reference-ids, or in

particular, that the origin is using Reference-ids to distinguish different users. The target is not required to have any knowledge of

multiple end users at the origin, the target interacts only with the (single) origin.

3.6 Composition Specification
For each database supported the target defines one or more schemas (see 3.1 .5), and designates one as the default schema. For

each schema, the target designates one or more element specification identifiers.

An element specification identifier is the object identifier of an element specification format (a structure used to express an

element specification) or an element set name. The latter is a primitive name. An element specification is an instance of an element

specification format, or an element set name.

For the default schema, at least one of the element specification identifiers must be an element set name, and the target

designates one as the default element set name for the database.

Note: the target designates this information either via the Explain facility, or through some mechanism outside of the standard.

For each record to be returned in a Search or aggregate Present response, the target applies an abstract record structure (defined

by a schema for the database to which that record belongs) to form an abstract database record. The target applies an element

specification to the abstract database record to form another instance of the abstract database record (the latter might be a null

transformation), to which the target applies a record syntax to form a retrieval record.

If the origin includes the parameter Comp-spec (in a Present request) the procedures of 3.6.1 apply. For a Search operation, or a

Present operation when the parameter Comp-spec is omitted, the default schema is assumed for each record, and the procedures of

3.6.2 apply.

3.6.1 Comp-spec Specified
The Present request parameter Comp-spec includes a set of one or more pairs of a database name and associated composition

specification. Each composition specification may include a schema identifier (or if not, the default schema for the database is

assumed) and an element specification. For each record to be returned in the aggregate Present response:

•If the database to which the record belongs is specified (as a component of one of the pairs) then the target forms an abstract

database record by applying the corresponding composition specification (i.e., by first applying the abstract record structure,

defined by the schema, to the database record to form an abstract database record, and then applying the element

specification where the schema and element specification are from the composition specification), if it is able to do so.

•Otherwise, the target forms an abstract database record by applying the abstract record structure defined by the default schema

and default element set name for the database to which the record belongs.

The parameter Comp-spec may alternatively consist of a single composition specification with no database specified. In that

case, for each record to be returned, if the target is able to form an abstract database record according to that composition

specification, it does so. If not, an abstract database record is composed according to the default schema and default element set

name for the database to which the record belongs.

The target applies a record syntax (which may be included in the composition specification or within the parameter Preferred-

record-syntax) to the resulting abstract database record to form a retrieval record.

3.6.2 Comp-spec Omitted
When requesting the retrieval of a set of records from a result set, if the parameter Comp-spec is omitted, the procedures of this

section apply.

Notes:

1 . This is always the case on a Search request because the parameter Comp-spec is not included in the definition of the Search

request.

2. This is always the case when version 2 is in force because the parameter Comp-spec is not defined in version 2.

The Search request parameters Small-set-element-set-names and Medium-set-element-set-names, and the Present request

parameter Element-set-names, take the form of a set of one or more pairs of a database name and associated element set name. For

each record to be returned in the Search or aggregate Present response, the target first applies the abstract record structure defined

by the default schema for the database to which the record belongs, to form an abstract database record, and then applies an

element set name, as follows:

ISO 23950:1 998(E) © ISO

46

•If the database to which the record belongs is specified (as a component of one of the pairs), and if the corresponding element

set name is valid for the default schema for the database, then the target applies that element set name.

•If not, the target applies the default element set name for the database.

Each of these parameters may alternatively consist of a single element set name with no database specified. In that case, for

each record to be returned, if the element set name is valid for the default schema for the database to which the record belongs, the

target applies that element set name; if not, the target applies the default element set name for the database.

A target must always recognize the character string “F” as an element set name to mean “full”; when it is applied to an abstract

database record, it results in the same abstract database record (i.e., a null transformation).

A target must always recognize the character string “B” as an element set name to mean “brief” record. This standard does not

define the meaning of “brief.” Unless the origin knows the target’ s definition of “brief” for a given schema, it should not assume

that any particular elements are included.

The origin may specify a “preferred-record-syntax,” which the target applies (to the abstract database record formed by the

application of the element set name) to form a retrieval record. If the origin does not specify a preferred-record-syntax the target

may select one (see 3.2.2.1 .5).

3.6.3 Record Syntax
For each record to be returned in a Search or aggregate Present response, the element set name, or the schema and element

specification from the composition specification, results in an abstract database record, as described above. To that abstract

database record, the target applies a record syntax, indicated as described above. The term record syntax has the following

meaning:

•When specified by the origin (either as the value of Preferred-record-syntax or within a composition specification), it takes the

form of an OID and refers to an abstract syntax (paired, or to be paired by the target, with a transfer syntax) that the origin

requests the target use for retrieval records.

•When specified by the target, it takes the form of an OID or p-context accompanying a retrieval record in a Search or Present

response, and it refers to an abstract syntax paired with a transfer syntax.

3.7 Type-1 and Type-101 Queries
This section specifies procedures when Query-type is 1 (or 101 ; see Note 2 below). Type-1 is the “Reverse Polish Notation”

(RPN) query. It has the following structure:

RPN-Query : := Argument | Argument + Argument + Operator

Argument : := Operand | RPN-Query

operand ::= AttributeList + Term | ResultSetId | Restriction

Restriction : := ResultSetId + AttributeList

operator : := AND | OR | AND-NOT | Prox

The notation above is used as follows:

: :=means “is defined as”

| means “or”

+ means “followed by,” and + has precedence over | (i.e., + is evaluated before |).

Notes:

1 . For type-1 , the Prox operator and the Restriction operand are defined for version 3 only. When version 2 is in effect, it is a

protocol error to include either the Prox operator or Restriction operand in a type-1 query.

2. The type-101 query is defined as identical to the type-1 query, with the exception that the Prox operator and Restriction

operand are defined not only for version 3, but for version 2 as well. Thus the definition of the type-101 query is independent of

version.

A Z39.50-conforming target must support the type-1 query, but support of the type-1 query does not imply support of any of

the defined operators or operands.

The target designates what query types it supports, and which operators and operands.

Note: The target designates this information either through the Explain facility or through some mechanism outside of the

standard.

If the target claims support for the Prox operator, the target should also designate whether it supports the extended result set

model for proximity (the extended result set model for searching as described in 3.1 .6 and its specialization for proximity as

described in 3.7.2.2). If the target claims support for the Restriction operand, then it must also support the extended result set

model for restriction (the extended result set model for searching and its specialization for restriction as described in 3.7.3).

Note: Only in certain circumstances (detailed below) does support of the Prox operator require support of the extended result set

model for proximity. However, support of the Restriction operand always requires support of the extended result set model for

Restriction.

© ISO ISO 23950:1 998(E)

47

3.7.1 Representation and Evaluation of the Type-1 and Type-101 Queries
At the origin, the query is represented by a tree. Each subtree represents an operand, either a simple operand or a complex

operand. Each leaf node represents a simple operand: Result-set-id, AttributeList+ Term, or Restriction. Each non-leaf node

represents a complex operand: a subtree whose root is an operator, and which contains two subtrees, a left operand and a right

operand.

The origin traverses the tree according to a left post-order traversal, to produce a sequence of (simple) operands and operators

which is transmitted to the target.

At the target, evaluation of the sequence of operands and operators is illustrated by the use of a stack. Whenever an operand is

encountered, it is put on the stack. Whenever an operator is encountered, the last two objects that have been put on the stack are

pulled off and the operator is applied as follows:

Each operand represents a set of database records, and each is one of the following:

(a) AttributeList+term — the set of database records obtained by evaluating the specified attribute-set and term against the

collection of databases specified in the Search request.

(b) ResultSetId — the set of database records represented by the transient result set identified by ResultSetId.

(c) Restriction operand (ResultSetId+AttributeList): the set of database records represented by the result set identified by

ResultSetId, restricted by the specified attribute set (see 3.7.3).

Note: if the Restriction operand occurs the target must support the extended result set model for restriction; otherwise the

query is in error.

(d) An intermediate result set (resulting from a previous evaluation placed on the stack) — representing the records identified

by that result set.

Illustration

Let S1 and S2 be the sets represented by the left and right operand respectively. Let S be defined as follows:

•If the operator is AND, S is the intersection of S1 and S2.

•If the operator is OR, S is the union of S1 and S2.

•If the operator is AND-NOT, S is the set of elements in S1 which are not in S2.

•If the operator is Prox:

—If both operands are of form (a) S is the subset of records in the set (S1 AND S2) for which A ProxTest B is true (see

3.7.2.1) where A and B are the two operands.

—Otherwise:

—The target must support the extended result set model for proximity; or else the query is in error.

—let R1 and R2 be result sets representing the sets S1 and S2 (i.e., each is either:

– the result set specified by the corresponding operand, if it was of form (b),

or

– the hypothetical result set representing the set of records represented by that operand, otherwise.

In either case, both R1 and R2 are assumed to conform to the extended result set model for proximity.)

Each entry in R1 and R2 contain positional information, in the form of position vectors. For each record represented by both

R1 and R2, consider every ordered pair consisting of a position vector associated with the record as represented in R1

and a position vector associated with the record as represented in R2. For each pair that qualifies according to the

ProxTest:

– the record is qualified into the set S;

and

– a position vector is created for that record as represented in the resultant set, composed from that ordered pair.

An intermediate result set is created which represents the records in the set S, and is put on the stack. When evaluation of the

query is complete (i.e., all query-terms have been processed) one object will remain on the stack (otherwise the query is in error),

representing a set of database records, which is the result of the query.

3.7.2 Proximity

3.7.2.1 The Proximity Test
The proximity test, ProxTest, includes a Distance, Relation, Unit, and two Boolean flags: Ordered and Exclusion.

•Distance: Difference between the ordinal positional values of the two operands (e.g., if unit is ‘paragraph’ , distance of zero

means “same paragraph”). Distance is never negative.

•Relation: LessThan, LessThanOrEqual, Equal, GreaterThanOrEqual, GreaterThan, or NotEqual.

•Unit: Character, Word, Sentence, Paragraph, Section, Chapter, Document, Element, Subelement, ElementType, Byte, or a

privately defined unit.

ISO 23950:1 998(E) © ISO

48

• Ordered flag: if set, the test is for “right” proximity only (the left ordinal must not exceed the right ordinal and Distance is

compared with the difference between the right and left ordinals); otherwise, the test is for “right” or “left” proximity (Distance

is compared with the absolute value of the difference between the left and right ordinals).

• Exclusion flag: if set, “not” is to be applied to the operation (for example if the test with Exclusion flag ‘off’ is “‘cat’ within

5 words of ‘hat’ ,” then the same test with Exclusion flag ‘on’ is “‘cat’ not within 5 words of ‘hat’ ”).

Example

Suppose A and B respectively specify “personal name = ‘McGraw, J.’ “ and “personal name= ‘Stengel, C.’ ,” and:

• Distance is 0

• Relation is ‘equal’

• Proximity-unit is ‘paragraph’

• Ordered flag is ‘false’

• Exclusion flag is ‘false’ .

Then the result is the set of records in which both of the personal names occur within the same paragraph. Using the same

example, if the Exclusion flag is set to ‘true’ , the result is the set of records in which the two personal names never both occur

within the same paragraph.

If the Ordered flag is set to ‘true’ (and Exclusion flag to ‘false’) then the result is the set of records in which the personal name

‘McGraw, J.’ occurs within the same paragraph as, but before, the personal name ‘Stengel, C.’

If distance is instead 1 (‘ordered’ and ‘exclusion’ flag ‘false’) the result is the set of records in which the two personal names

occur in adjacent paragraphs. If, in addition, Relation-type is ‘less-than-or-equal’ the result is the set of records in which the two

names occur within the same or adjacent paragraphs.

3.7.2.2 Extended Result Set Model for Proximity
In the extended result set model for proximity, the target maintains positional information in the form of one or more position

vectors associated with each record represented by the result set, which may be used in a proximity operation as a surrogate for the

search that created the result set.

Example

Let R1 and R2 be result sets produced by type-1 query searches on the terms ‘cat’ and ‘hat’ . In the extended result set model for

proximity, the target maintains sufficient information associated with each entry in R1 and with each entry in R2 so that the

proximity operation “R1 near R2” would be a result set equivalent to the result set produced by the proximity operation “cat near

hat” (“near” is used here informally to refer to a proximity test).

The manner in which the target maintains this information is not prescribed by this standard. Annex 13, ERS (non-normative)

provides examples.

3.7.3 Restriction and the Extended Result Set Model
The Restriction operand specifies a result-set-id and a set of attributes, and it represents the set of database records identified by the

specified result set, restricted by the specified attributes.

Example

Let R be the result set produced by a search on the term ‘cat’ , representing three records:

1 where ‘cat’ occurs in the title,

2 where ‘cat’ occurs in the title and as an author, and

3 where ‘cat’ occurs in the title, as an author, and as a subject.

Then “R restricted to ‘author’” might produce the result set consisting of the entries 2 and 3 of R.

In the extended result set model for restriction, the target maintains information associated with each record represented by the

result set which may be used in the evaluation of a restriction operand as a surrogate for the search that created the result set. The

manner in which the target maintains this information is not prescribed by this standard. Annex 13, ERS (non-normative) provide s

examples.

4. Protocol Specification
The Information Retrieval application protocol specifies the formats and procedures governing the transfer of information between

a Z39.50 origin/target pair. Sections 4.1 and 4.2 respectively describe the formats and rules for exchange of Z39.50 application

protocol data units (APDUs). An APDU is a unit of information, transferred between origin and target, whose format is specified

by the Z39.50 protocol, consisting of application-protocol-information and possibly application-user-data. Sections 4.3 and 4.4

respectively describe rules for extensibility and conformance requirements.

4.1 Abstract Syntax and ASN.1 Specification of Z39.50 APDUs
This section describes the abstract syntax of the Z39.50 APDUs, using the ASN.1 notation defined in ISO 8824. The comments

included within the ASN.1 specification are part of the standard.

© ISO ISO 23950:1 998(E)

49

Z39-50-APDU-1995 -- OID for this definition, assigned in OID.3.1 , is {Z39-50 2 1 }
DEFINITIONS : :=

BEGIN -- Z39.50 Maintenance Agency Official Text for ISO 23950.

--

EXPORTS OtherInformation, Term, AttributeSetId, AttributeList, AttributeElement, ElementSetName, SortElement,

DatabaseName, CompSpec, Specification, Permissions, InternationalString, IntUnit, Unit, StringOrNumeric, Query, Records,

ResultSetId, DefaultDiagFormat, DiagRec;

--

PDU : := CHOICE{

 initRequest [20] IMPLICIT InitializeRequest,

 initResponse [21] IMPLICIT InitializeResponse,

 searchRequest [22] IMPLICIT SearchRequest,

 searchResponse [23] IMPLICIT SearchResponse,

 presentRequest [24] IMPLICIT PresentRequest,

 presentResponse [25] IMPLICIT PresentResponse,

 deleteResultSetRequest [26] IMPLICIT DeleteResultSetRequest,

 deleteResultSetResponse [27] IMPLICIT DeleteResultSetResponse,

 accessControlRequest [28] IMPLICIT AccessControlRequest,

 accessControlResponse [29] IMPLICIT AccessControlResponse,

 resourceControlRequest [30] IMPLICIT ResourceControlRequest,

 resourceControlResponse [31] IMPLICIT ResourceControlResponse,

 triggerResourceControlRequest [32] IMPLICIT TriggerResourceControlRequest,

 resourceReportRequest [33] IMPLICIT ResourceReportRequest,

 resourceReportResponse [34] IMPLICIT ResourceReportResponse,

 scanRequest [35] IMPLICIT ScanRequest,

 scanResponse [36] IMPLICIT ScanResponse,

 -- [37] through [42] reserved

 sortRequest [43] IMPLICIT SortRequest,

 sortResponse [44] IMPLICIT SortResponse,

 segmentRequest [45] IMPLICIT Segment,

 extendedServicesRequest [46] IMPLICIT ExtendedServicesRequest,

 extendedServicesResponse [47] IMPLICIT ExtendedServicesResponse,

 close [48] IMPLICIT Close}

-- Initialize APDUs

--

 InitializeRequest : := SEQUENCE{

referenceId ReferenceId OPTIONAL,

protocolVersion ProtocolVersion,

options Options,

preferredMessageSize [5] IMPLICIT INTEGER,

exceptionalRecordSize [6] IMPLICIT INTEGER,

idAuthentication [7] ANY OPTIONAL, -- see note below

implementationId [110] IMPLICIT InternationalString OPTIONAL,

implementationName [111] IMPLICIT InternationalString OPTIONAL,

 implementationVersion [112] IMPLICIT InternationalString OPTIONAL,

userInformationField [11] EXTERNAL OPTIONAL,

otherInfo OtherInformation OPTIONAL}

--Note:

-- For idAuthentication, the type ANY is retained for compatibility with earlier versions.

-- For interoperability, the following is recommended:

-- IdAuthentication [7] CHOICE{

-- open VisibleString,

-- idPass SEQUENCE {

-- groupId [0] IMPLICIT InternationalString OPTIONAL,

-- userId [1] IMPLICIT InternationalString OPTIONAL,

-- password [2] IMPLICIT InternationalString OPTIONAL } ,

ISO 23950:1 998(E) © ISO

50

-- anonymous NULL,

-- other EXTERNAL

-- May use access control formats for 'other'. See Annex 7 ACC.

--

 InitializeResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 protocolVersion ProtocolVersion,

 options Options,

 preferredMessageSize [5] IMPLICIT INTEGER,

 exceptionalRecordSize [6] IMPLICIT INTEGER,

 result [12] IMPLICIT BOOLEAN, -- reject = FALSE; Accept = TRUE

 implementationId [110] IMPLICIT InternationalString OPTIONAL,

 implementationName [111] IMPLICIT InternationalString OPTIONAL,

 implementationVersion [112] IMPLICIT InternationalString OPTIONAL,

 userInformationField [11] EXTERNAL OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

-- Begin auxiliary definitions for Init PDUs

 ProtocolVersion : := [3] IMPLICIT BIT STRING{

version-1 (0), -- This bit should always be set, but does not

-- correspond to any Z39.50 version.

version-2 (1), -- "Version 2 supported."

-- This bit should always be set.

version-3 (2) -- "Version 3 supported."

-- Values higher than 'version-3' should be ignored. Both the Initialize request and Initialize Response APDUs

-- include a value string corresponding to the supported versions. The highest common version is selected

-- for use. If there are no versions in common, "Result" in the Init Response should indicate "reject."

-- Note: Versions 1 and 2 are identical. Systems supporting version 2 should indicate support for version

-- 1 as well, for interoperability with systems that indicate support for version 1 only (e.g. ISO 10163-1 :1993

-- implementations).

 }

 Options : := [4] IMPLICIT BIT STRING{

search (0),

present (1),

delSet (2),

 resourceReport (3),

triggerResourceCtrl (4),

resourceCtrl (5),

accessCtrl (6),

scan (7),

sort (8),

-- (9) (reserved)

extendedServices (10),

level-1Segmentation (11),

level-2Segmentation (12),

concurrentOperations (13),

namedResultSets (14)}

-- end auxiliary definitions for Init PDUs

--Search APDUs

 SearchRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 smallSetUpperBound [13] IMPLICIT INTEGER,

 largeSetLowerBound [14] IMPLICIT INTEGER,

 mediumSetPresentNumber [15] IMPLICIT INTEGER,

 replaceIndicator [16] IMPLICIT BOOLEAN,

 resultSetName [17] IMPLICIT InternationalString,

 databaseNames [18] IMPLICIT SEQUENCE OF DatabaseName,

 smallSetElementSetNames [100] ElementSetNames OPTIONAL,

© ISO ISO 23950:1 998(E)

51

 mediumSetElementSetNames [101] ElementSetNames OPTIONAL,

 preferredRecordSyntax [104] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 query [21] Query,

-- Following two parameters may be used only if version 3 is in force.

 additionalSearchInfo [203] IMPLICIT OtherInformation OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

-- Query Definitions

 Query : := CHOICE{

 type-0 [0] ANY,

 type-1 [1] IMPLICIT RPNQuery,

 type-2 [2] OCTET STRING,

 type-100 [100] OCTET STRING,

 type-101 [101] IMPLICIT RPNQuery,

 type-102 [102] OCTET STRING}

--

-- Definitions for RPN query

 RPNQuery : := SEQUENCE{

 attributeSet AttributeSetId,

 rpn RPNStructure}

--

 RPNStructure : := CHOICE{

op [0] Operand,

 rpnRpnOp [1] IMPLICIT SEQUENCE{

rpn1 RPNStructure,

 rpn2 RPNStructure,

 op Operator }}

 Operand : := CHOICE{

 attrTerm AttributesPlusTerm,

 resultSet ResultSetId,

 -- If version 2 is in force:

 -- - If query type is 1 , one of the above two must be chosen;

 -- - resultAttr (below) may be used only if query type is 101 .

 resultAttr ResultSetPlusAttributes}

 AttributesPlusTerm : := [102] IMPLICIT SEQUENCE{

 attributes AttributeList,

 term Term}

 ResultSetPlusAttributes : := [214] IMPLICIT SEQUENCE{

 resultSet ResultSetId,

 attributes AttributeList}

 AttributeList : := [44] IMPLICIT SEQUENCE OF AttributeElement

--

 Term : := CHOICE{

 general [45] IMPLICIT OCTET STRING,

 -- values below may be used only if version 3 is in force

 numeric [215] IMPLICIT INTEGER,

 characterString [216] IMPLICIT InternationalString,

 oid [217] IMPLICIT OBJECT IDENTIFIER,

 dateTime [218] IMPLICIT GeneralizedTime,

 external [219] IMPLICIT EXTERNAL,

 integerAndUnit [220] IMPLICIT IntUnit,

 null [221] IMPLICIT NULL}

 Operator : := [46] CHOICE{

 and [0] IMPLICIT NULL,

 or [1] IMPLICIT NULL,

 and-not [2] IMPLICIT NULL,

ISO 23950:1 998(E) © ISO

52

 -- If version 2 is in force:

 -- - For query type 1 , one of the above three must be chosen;

 -- - prox (below) may be used only if query type is 101 .

 prox [3] IMPLICIT ProximityOperator}

 AttributeElement : := SEQUENCE{

 attributeSet [1] IMPLICIT AttributeSetId OPTIONAL,

 -- Must be omitted if version 2 is in force.

 -- If included, overrides value of attributeSet

 -- in RPNQuery above, but only for this attribute.

 attributeType [120] IMPLICIT INTEGER,

 attributeValue CHOICE{

 numeric [121] IMPLICIT INTEGER,

 -- If version 2 is in force,

 -- Must select 'numeric' for attributeValue.

 complex [224] IMPLICIT SEQUENCE{

 list [1] IMPLICIT SEQUENCE OF StringOrNumeric,

 semanticAction [2] IMPLICIT SEQUENCE OF INTEGER OPTIONAL}}}

 ProximityOperator : := SEQUENCE{

 exclusion [1] IMPLICIT BOOLEAN OPTIONAL,

 distance [2] IMPLICIT INTEGER,

 ordered [3] IMPLICIT BOOLEAN,

 relationType [4] IMPLICIT INTEGER{

 lessThan (1),

 lessThanOrEqual (2),

 equal (3),

 greaterThanOrEqual (4),

 greaterThan (5),

 notEqual (6)} ,

 proximityUnitCode [5] CHOICE{

 known [1] IMPLICIT KnownProximityUnit,

 private [2] IMPLICIT INTEGER}}

--

 KnownProximityUnit : := INTEGER{

 character (1),

 word (2),

 sentence (3),

 paragraph (4),

 section (5),

 chapter (6),

 document (7),

 element (8),

 subelement (9),

 elementType (10),

 byte (11) -- Version 3 only

}

-- End definitions for RPN Query

 SearchResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 resultCount [23] IMPLICIT INTEGER,

 numberOfRecordsReturned [24] IMPLICIT INTEGER,

 nextResultSetPosition [25] IMPLICIT INTEGER,

 searchStatus [22] IMPLICIT BOOLEAN,

 resultSetStatus [26] IMPLICIT INTEGER{

 subset (1),

 interim (2),

 none (3)} OPTIONAL,

© ISO ISO 23950:1 998(E)

53

 presentStatus PresentStatus OPTIONAL,

 records Records OPTIONAL,

 -- Following two parameters may be used only if version 3 is in force.

 additionalSearchInfo [203] IMPLICIT OtherInformation OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

--Retrieval APDUs

 PresentRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 resultSetId ResultSetId,

 resultSetStartPoint [30] IMPLICIT INTEGER,

 numberOfRecordsRequested [29] IMPLICIT INTEGER,

 additionalRanges [212] IMPLICIT SEQUENCE OF Range OPTIONAL,

-- additionalRanges may be included only if version 3 is in force.

 recordComposition CHOICE{

 simple [19] ElementSetNames,

 -- must choose 'simple' if version 2 is in force

 complex [209] IMPLICIT CompSpec} OPTIONAL,

 preferredRecordSyntax [104] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 maxSegmentCount [204] IMPLICIT INTEGER OPTIONAL, -- level 1 or 2

 maxRecordSize [206] IMPLICIT INTEGER OPTIONAL, -- level 2 only

 maxSegmentSize [207] IMPLICIT INTEGER OPTIONAL, -- level 2 only

 otherInfo OtherInformation OPTIONAL}
--
 Segment : := SEQUENCE{

 -- Segment PDU may only be used when version 3 is in force,

 -- and only when segmentation is in effect.

 referenceId ReferenceId OPTIONAL,

 numberOfRecordsReturned [24] IMPLICIT INTEGER,

 segmentRecords [0] IMPLICIT SEQUENCE OF NamePlusRecord,

 otherInfo OtherInformation OPTIONAL}
--
 PresentResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 numberOfRecordsReturned [24] IMPLICIT INTEGER,

 nextResultSetPosition [25] IMPLICIT INTEGER,

 presentStatus PresentStatus,

 records Records OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

-- begin auxiliary definitions for Search and Present APDUs

-- begin definition of records

 Records : := CHOICE{

 responseRecords [28] IMPLICIT SEQUENCE OF NamePlusRecord,

 nonSurrogateDiagnostic [130] IMPLICIT DefaultDiagFormat,

 multipleNonSurDiagnostics [205] IMPLICIT SEQUENCE OF DiagRec}
--
 NamePlusRecord : := SEQUENCE{

 name [0] IMPLICIT DatabaseName OPTIONAL,

 record [1] CHOICE{

 retrievalRecord [1] EXTERNAL,

 surrogateDiagnostic [2] DiagRec,

 -- Must select one of the above two, retrievalRecord or

 -- surrogateDiagnostic, unless 'level 2 segmentation' is in effect.

 startingFragment [3] FragmentSyntax,

 intermediateFragment [4] FragmentSyntax,

 finalFragment [5] FragmentSyntax}}

 FragmentSyntax : := CHOICE{

 externallyTagged EXTERNAL,

 notExternallyTagged OCTET STRING}

ISO 23950:1 998(E) © ISO

54

 DiagRec : := CHOICE{

 defaultFormat DefaultDiagFormat,

 -- Must choose defaultFormat if version 2 is in effect.

 externallyDefined EXTERNAL}

 DefaultDiagFormat: := SEQUENCE{

 diagnosticSetId OBJECT IDENTIFIER,

 condition INTEGER,

 addinfo CHOICE{

 v2Addinfo VisibleString, -- version 2

 v3Addinfo InternationalString -- version 3

 } }

 -- end definition of records

 Range : := SEQUENCE{

 startingPosition [1] IMPLICIT INTEGER,

 numberOfRecords [2] IMPLICIT INTEGER}

--

 ElementSetNames : := CHOICE {

 genericElementSetName [0] IMPLICIT InternationalString,

 databaseSpecific [1] IMPLICIT SEQUENCE OF SEQUENCE{

 dbName DatabaseName,

 esn ElementSetName}}

 PresentStatus : := [27] IMPLICIT INTEGER{

 success (0),

 partial-1 (1),

 partial-2 (2),

 partial-3 (3),

 partial-4 (4),

 failure (5)}

-- begin definition of composition specification

 CompSpec : := SEQUENCE{

 selectAlternativeSyntax [1] IMPLICIT BOOLEAN,

 -- See comment for recordSyntax, below.

 generic [2] IMPLICIT Specification OPTIONAL,

 dbSpecific [3] IMPLICIT SEQUENCE OF SEQUENCE{

 db [1] DatabaseName,

 spec [2] IMPLICIT Specification} OPTIONAL,

 -- At least one of generic and dbSpecific must occur, and both may occur. If both, then for

 -- any record not in the list of databases within dbSpecific, generic applies.

 recordSyntax [4] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL

 -- For each record, the target selects the first record syntax

 -- in this list that it can support. If the list is exhausted, the

 -- target may select an alternative syntax if

 -- selectAlternativeSyntax is 'true'.

 }

 Specification : := SEQUENCE{

 schema [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 elementSpec [2] CHOICE{

 elementSetName [1] IMPLICIT InternationalString,

 externalEspec [2] IMPLICIT EXTERNAL} OPTIONAL}

 -- end definition of composition specification

 -- end auxiliary definitions for search and response APDUs

-- Delete APDUs

 DeleteResultSetRequest : := SEQUENCE{

referenceId ReferenceId OPTIONAL,

© ISO ISO 23950:1 998(E)

55

 deleteFunction [32] IMPLICIT INTEGER{

 list (0),

 all (1)} ,

 resultSetList SEQUENCE OF ResultSetId OPTIONAL,

otherInfo OtherInformation OPTIONAL}

--

 DeleteResultSetResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 deleteOperationStatus [0] IMPLICIT DeleteSetStatus,

 deleteListStatuses [1] IMPLICIT ListStatuses OPTIONAL,

 numberNotDeleted [34] IMPLICIT INTEGER OPTIONAL,

 bulkStatuses [35] IMPLICIT ListStatuses OPTIONAL,

 deleteMessage [36] IMPLICIT InternationalString OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

 ListStatuses : := SEQUENCE OF SEQUENCE{

 id ResultSetId,

 status DeleteSetStatus}

 DeleteSetStatus : := [33] IMPLICIT INTEGER{

 success (0),

 resultSetDidNotExist (1),

 previouslyDeletedByTarget (2),

 systemProblemAtTarget (3),

 accessNotAllowed (4),

 resourceControlAtOrigin (5),

 resourceControlAtTarget (6),

 bulkDeleteNotSupported (7),

 notAllRsltSetsDeletedOnBulkDlte (8),

 notAllRequestedResultSetsDeleted (9),

 resultSetInUse (10)}

--

--Access- and Resource-control APDUs

--

 AccessControlRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 securityChallenge CHOICE{

 simpleForm [37] IMPLICIT OCTET STRING,

 externallyDefined [0] EXTERNAL},

 otherInfo OtherInformation OPTIONAL}

 AccessControlResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 securityChallengeResponse CHOICE{

 simpleForm [38] IMPLICIT OCTET STRING,

 externallyDefined [0] EXTERNAL} OPTIONAL,

 -- Optional only in version 3; mandatory in version 2. If

 -- omitted (in version 3) then diagnostic must occur.

 diagnostic [223] DiagRec OPTIONAL, -- Version 3 only.

 otherInfo OtherInformation OPTIONAL}

 ResourceControlRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 suspendedFlag [39] IMPLICIT BOOLEAN OPTIONAL,

 resourceReport [40] ResourceReport OPTIONAL,

 partialResultsAvailable [41] IMPLICIT INTEGER{

 subset (1),

ISO 23950:1 998(E) © ISO

56

 interim (2),

 none (3)} OPTIONAL,

 responseRequired [42] IMPLICIT BOOLEAN,

 triggeredRequestFlag [43] IMPLICIT BOOLEAN OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

 ResourceControlResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 continueFlag [44] IMPLICIT BOOLEAN,

 resultSetWanted [45] IMPLICIT BOOLEAN OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

 TriggerResourceControlRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 requestedAction [46] IMPLICIT INTEGER{

 resourceReport (1),

 resourceControl (2),

 cancel (3)} ,

 prefResourceReportFormat [47] IMPLICIT ResourceReportId OPTIONAL,

 resultSetWanted [48] IMPLICIT BOOLEAN OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

 ResourceReportRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 opId [210] IMPLICIT ReferenceId OPTIONAL,

 prefResourceReportFormat [49] IMPLICIT ResourceReportId OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

--

 ResourceReportResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 resourceReportStatus [50] IMPLICIT INTEGER{

 success (0),

 partial (1),

 failure-1 (2),

 failure-2 (3),

 failure-3 (4),

 failure-4 (5),

 failure-5 (6),

 failure-6 (7)} ,

 resourceReport [51] ResourceReport OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

--

 ResourceReport : := EXTERNAL

 ResourceReportId : := OBJECT IDENTIFIER

--Scan APDUs

 ScanRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 databaseNames [3] IMPLICIT SEQUENCE OF DatabaseName,

 attributeSet AttributeSetId OPTIONAL,

 termListAndStartPoint AttributesPlusTerm,

 stepSize [5] IMPLICIT INTEGER OPTIONAL,

 numberOfTermsRequested [6] IMPLICIT INTEGER,

 preferredPositionInResponse [7] IMPLICIT INTEGER OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

 ScanResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

© ISO ISO 23950:1 998(E)

57

 stepSize [3] IMPLICIT INTEGER OPTIONAL,

 scanStatus [4] IMPLICIT INTEGER {

 success (0),

 partial-1 (1),

 partial-2 (2),

 partial-3 (3),

 partial-4 (4),

 partial-5 (5),

 failure (6) } ,

 numberOfEntriesReturned [5] IMPLICIT INTEGER,

 positionOfTerm [6] IMPLICIT INTEGER OPTIONAL,

 entries [7] IMPLICIT ListEntries OPTIONAL,

 attributeSet [8] IMPLICIT AttributeSetId OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

-- begin auxiliary definitions for Scan

 ListEntries : := SEQUENCE{

 entries [1] IMPLICIT SEQUENCE OF Entry OPTIONAL,

 nonsurrogateDiagnostics [2] IMPLICIT SEQUENCE OF DiagRec OPTIONAL

-- At least one of entries and nonsurrogateDiagnostics must occur

 }

 Entry : := CHOICE {

 termInfo [1] IMPLICIT TermInfo,

 surrogateDiagnostic [2] DiagRec}

--

 TermInfo : := SEQUENCE {

 term Term,

 displayTerm [0] IMPLICIT InternationalString OPTIONAL,

 -- Presence of displayTerm means that term is not considered by

 -- the target to be suitable for display, and displayTerm should

 -- instead be displayed. 'term' is the actual term in the term list;

 -- 'displayTerm' is for display purposes only, and is not an actual

 -- term in the term list.

 suggestedAttributes AttributeList OPTIONAL,

 alternativeTerm [4] IMPLICIT SEQUENCE OF AttributesPlusTerm OPTIONAL,

 globalOccurrences [2] IMPLICIT INTEGER OPTIONAL,

 byAttributes [3] IMPLICIT OccurrenceByAttributes OPTIONAL,

 otherTermInfo OtherInformation OPTIONAL}

 OccurrenceByAttributes : := SEQUENCE OF SEQUENCE{

 attributes [1] AttributeList,

 occurrences CHOICE{

 global [2] INTEGER,

 byDatabase [3] IMPLICIT SEQUENCE OF SEQUENCE{

 db DatabaseName,

 num [1] IMPLICIT INTEGER OPTIONAL,

 otherDbInfo OtherInformation OPTIONAL}}

 otherOccurInfo OtherInformation OPTIONAL}

-- end auxiliary definitions for Scan

-- Sort APDUs

 SortRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 inputResultSetNames [3] IMPLICIT SEQUENCE OF InternationalString,

 sortedResultSetName [4] IMPLICIT InternationalString,

 sortSequence [5] IMPLICIT SEQUENCE OF SortKeySpec,

 -- order of occurrence is from major to minor

 otherInfo OtherInformation OPTIONAL}

ISO 23950:1 998(E) © ISO

58

SortResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 sortStatus [3] IMPLICIT INTEGER{

 success (0),

 partial-1 (1),

 failure (2)} ,

 resultSetStatus [4] IMPLICIT INTEGER{

 empty (1),

 interim (2),

 unchanged (3),

 none (4)} OPTIONAL,

 diagnostics [5] IMPLICIT SEQUENCE OF DiagRec OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

-- begin auxiliary definitions for Sort

 SortKeySpec : := SEQUENCE{

 sortElement SortElement,

 sortRelation [1] IMPLICIT INTEGER{

 ascending (0),

 descending (1),

 ascendingByFrequency (3),

 descendingByfrequency (4)} ,

 caseSensitivity [2] IMPLICIT INTEGER{

 caseSensitive (0),

 caseInsensitive (1)} ,

 missingValueAction [3] CHOICE{

 abort [1] IMPLICIT NULL,

 null [2] IMPLICIT NULL,

--supply a null value for missing value

 missingValueData [3] IMPLICIT OCTET STRING} OPTIONAL}

 SortElement : := CHOICE{

 generic [1] SortKey,

 datbaseSpecific [2] IMPLICIT SEQUENCE OF SEQUENCE{

 databaseName DatabaseName,

 dbSort SortKey}}

 SortKey : := CHOICE{

 sortfield [0] IMPLICIT InternationalString,

 -- An element, element-group-tag, or alias supported by the target

 -- and denoting a set of elements associated with each record.

 elementSpec [1] IMPLICIT Specification,

 sortAttributes [2] IMPLICIT SEQUENCE{

 id AttributeSetId,

 list AttributeList}}

-- end auxiliary definitions for sort

-- Extended Service APDUs

 ExtendedServicesRequest : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 function [3] IMPLICIT INTEGER {

 create (1),

 delete (2),

 modify (3)} ,

 packageType [4] IMPLICIT OBJECT IDENTIFIER,

 packageName [5] IMPLICIT InternationalString OPTIONAL,

 -- PackageName mandatory for 'modify' or 'delete'; optional for

 -- 'create'. Following four parameters mandatory for 'create'; should

 -- be included on 'modify' if being modified; not needed on 'delete'.

© ISO ISO 23950:1 998(E)

59

 userId [6] IMPLICIT InternationalString OPTIONAL,

 retentionTime [7] IMPLICIT IntUnit OPTIONAL,

 permissions [8] IMPLICIT Permissions OPTIONAL,

 description [9] IMPLICIT InternationalString OPTIONAL,

-- (ExtendedServiceRequest APDU continued)

 taskSpecificParameters [10] IMPLICIT EXTERNAL OPTIONAL,

 -- Mandatory for 'create'; included on 'modify' if specific

 -- parameters being modified; not necessary on 'delete'. For the

 -- 'EXTERNAL,' use OID of specific ES definition and select

 -- CHOICE [1] : 'esRequest'.

 waitAction [11] IMPLICIT INTEGER{

 wait (1),

 waitIfPossible (2),

 dontWait (3),

 dontReturnPackage (4)} ,

 elements ElementSetName OPTIONAL,

 otherInfo OtherInformation OPTIONAL}

--

ExtendedServicesResponse : := SEQUENCE{

 referenceId ReferenceId OPTIONAL,

 operationStatus [3] IMPLICIT INTEGER{

 done (1),

 accepted (2),

 failure (3)} ,

 diagnostics [4] IMPLICIT SEQUENCE OF DiagRec OPTIONAL,

 taskPackage [5] IMPLICIT EXTERNAL OPTIONAL,

 -- Use OID: {Z39-50-recordSyntax (106)} and corresponding

 -- syntax. For the EXTERNAL, 'taskSpecific,' within that

 -- definition, use OID of the specific es, and choose [2] ,

 -- 'taskPackage'.

 otherInfo OtherInformation OPTIONAL}

Permissions : := SEQUENCE OF SEQUENCE{

 userId [1] IMPLICIT InternationalString,

 allowableFunctions [2] IMPLICIT SEQUENCE OF INTEGER{

 delete (1),

 modifyContents (2),

 modifyPermissions (3),

 present (4),

 invoke (5)}}

Close : := SEQUENCE{

 referenceId ReferenceId OPTIONAL, -- See 3.2.11 .1 .5.

 closeReason CloseReason,

 diagnosticInformation [3] IMPLICIT InternationalString OPTIONAL,

 resourceReportFormat [4] IMPLICIT ResourceReportId OPTIONAL,

 -- For use by origin only, and only on Close request;

 -- origin requests target to include report in response.

 resourceReport [5] ResourceReport OPTIONAL,

 -- For use by target only, unilaterally on Close request;

 -- on Close response may be unilateral or in response

 -- to origin request.

 otherInfo OtherInformation OPTIONAL}

 CloseReason : := [211] IMPLICIT INTEGER{

 finished (0),

 shutdown (1),

ISO 23950:1 998(E) © ISO

60

 systemProblem (2),

 costLimit (3),

 resources (4),

 securityViolation (5),

 protocolError (6),

 lackOfActivity (7),

 peerAbort (8),

 unspecified (9)}

-- Global auxiliary definitions

 ReferenceId ::= [2] IMPLICIT OCTET STRING

 ResultSetId : := [31] IMPLICIT InternationalString

 ElementSetName ::= [103] IMPLICIT InternationalString

 DatabaseName ::= [105] IMPLICIT InternationalString

 AttributeSetId : := OBJECT IDENTIFIER

-- OtherInformation

 OtherInformation : := [201] IMPLICIT SEQUENCE OF SEQUENCE{

 category [1] IMPLICIT InfoCategory OPTIONAL,

 information CHOICE{

 characterInfo [2] IMPLICIT InternationalString,

 binaryInfo [3] IMPLICIT OCTET STRING,

 externallyDefinedInfo [4] IMPLICIT EXTERNAL,

 oid [5] IMPLICIT OBJECT IDENTIFIER}}

--

 InfoCategory : := SEQUENCE{

 categoryTypeId [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 categoryValue [2] IMPLICIT INTEGER}

-- Units

 -- IntUnit is used when value and unit are supplied together. Unit, alone, is used when just

 -- specifying a unit (without a value). For example, IntUnit is used in Term, in an RPNQuery, or

 -- it can be the datatype of an element within a retrieval record. Unit (alone) would be used in an

 -- element request, when requesting data be returned according to a particular unit.

 IntUnit : := SEQUENCE{

 value [1] IMPLICIT INTEGER,

 unitUsed [2] IMPLICIT Unit}

--

 Unit : := SEQUENCE{

 unitSystem [1] InternationalString OPTIONAL, -- e.g. 'SI'

 unitType [2] StringOrNumeric OPTIONAL, -- e.g. 'mass'

 unit [3] StringOrNumeric OPTIONAL, -- e.g. 'kilograms'

 scaleFactor [4] IMPLICIT INTEGER OPTIONAL -- e.g. 9 means 10**9

 }

--CharacterString

 InternationalString : := GeneralString

 -- When version 2 is in force, this collapses to VisibleString. That is, only characters in the

 -- visibleString repertoire may be used. (Datatype compatibility with version 2 is not affected,

 -- because references are IMPLICIT.) When version 3 is in force, the semantics of the

 -- GeneralString content may be altered by negotiation during initialization. If no such

 -- negotiation is in effect, then GeneralString semantics are in force.

StringOrNumeric : := CHOICE{

 string [1] IMPLICIT InternationalString,

 numeric [2] IMPLICIT INTEGER}

END -- IR DEFINITIONS

© ISO ISO 23950:1 998(E)

61

4.2 Protocol Procedures
Protocol procedures are described in this section. Rules for extensibility and conformance requirements are specified in sections

4.3 and 4.4 respectively.

4.2.1 Presentation and Association Control Services
The Information Retrieval protocol may be used in conjunction with the presentation layer and the association control service

element (ACSE).

4.2.1.1 Service Provided by the Presentation Layer
Z39.50 may use the presentation service as defined in ISO 8822 to provide a presentation connection for communication

between a Z39.50 origin/target pair. The communication service that supports this protocol is a connection-oriented service

defined in ISO 8822 in an established application association, in combination with ACSE, ISO 8649.

A Z39.50 origin establishes application-associations as necessary with the target. The Z39.50 application-service-element

(ASE) may then use the P-DATA service defined in ISO 8822 directly to transmit Z39.50 APDUs. This provides a connection-

oriented interaction between Z39.50 systems.

4.2.1.2 Association Control Services
The complete application service may include ACSE, and one or more specific application services, such as the Information

Retrieval application service.

ACSE, defined in ISO 8649, is used to establish an A-association, and provides association management. The life of an A-

association has three distinct phases: establishment, information transfer, and termination. ACSE provides services for the

establishment and termination phases, including the selection of an application context, specifying information including the set of

service elements that are valid during the information transfer phase. Prior to the exchange of Z39.50 APDUs, the Information

Retrieval service user invokes the association control services required to establish an association with an application contex t

encompassing the Information Retrieval service. The application context “basic-Z39.50-ac” is defined and registered in Annex 2,

CTX.

A single application-association can be used to support a series of Z-Associations. A single system can be engaged in multiple

application associations with multiple remote systems simultaneously.

4.2.2 Protocol Model
To specify protocol procedure the abstract implementation-independent concepts of service-user, service-provider, and service

primitive are used.

A service-provider provides a communication path between two service users. In this model, the service-provider is analogous

to the application layer composed of the Z39.50 origin/target pair. The client is modeled as a service-user together with an origin,

and the server is modeled as a service-user together with a target. The two service users are referred to as the origin service-user

and target service-user.

A service primitive is an element of interaction between a service-user and the service-provider. There are four types of service

primitives: Request, Indication, Response, and Confirmation. For a confirmed service initiated by the origin (i.e., for Z39.50: Init,

Search, Present, Delete, Resource-report, Sort, Scan, Extended-services) they are used as follows:

• Request — A primitive issued by the origin to the service-provider in order to invoke some procedure

• Indication — A primitive issued by the service-provider to the target service-user to indicate that a procedure has been

invoked by its peer

• Response — A primitive issued by the target service-user to the service-provider at the completion of the procedure

previously invoked by an indication

• Confirmation — A primitive issued by the service-provider to the origin service-user to complete the procedure previously

invoked by a request.

Notes:

1 . For a confirmed service initiated by the target (i.e., for Z39.50: Access-control and Resource-control) the roles of origin and

target are reversed.

2. For a non-confirmed service (i.e., for Z39.50: Segment, Trigger-resource-control, Close) only the Request and Indication

primitives are used.

Primitives are conceptual and their use neither specifies nor precludes any specific implementation of a service. Only

primitives that correspond to some element of the service involving the exchange of information between systems are defined.

From the perspective of the service-user, the service-provider is system-independent. For the exchange of protocol however, a

distinction is drawn between the portion of the service-provider residing on the client and the portion of the service-provider

residing on server (respectively, the origin and the target). The sequence of interactions for a confirmed service initiated by the

origin is:

ISO 23950:1 998(E) © ISO

62

1 . Request Primitive from origin service-user to service-provider.

2. Protocol Message from origin to target.

3. Indication Primitive from service-provider to target service-user.

4. Response Primitive from target service-user to service-provider.

5. Protocol Message from target to origin.

6. Confirmation Primitive from service-provider to origin service-user.

Notes:

1 . For a confirmed service initiated by the target, the roles of origin and target are reversed.

2. For a non-confirmed service, only steps 1 through 3 apply.

The following illustrates the sequence of interactions that occur for a Search operation:

1 . Search request from origin service-user to service-provider.

2. Search APDU from origin to target.

3. Search indication from service-provider to target service-user.

4. Search response from target service-user to service-provider.

5. Search-response APDU from target to origin.

6. Search confirm from service-provider to origin service-user.

The interactions between service user and service-provider, as represented by steps 1 and 6 for the client, and by steps 3 and 4

for the server, are described solely to facilitate the specification of protocols. These steps do not represent intersystem

communication, and the means by which they are implemented are not constrained by this specification. For example, in an actual

implementation the target service-user and service-provider might be combined in a single program, and steps 3 and 4 might not

have any real physical manifestation.

4.2.3 State Tables
This section defines Information Retrieval Protocol Machines (IRPMs) in terms of state tables (Tables 16 through 22). For both

origin and target, there are three protocol machines defined, one for the Z-Association (called the “Z-machine”) and two for

Z39.50 operations (called “O-machines”). One O-machine is for a Present operation and one O-machine is for any other type

operation, excluding Init which is included in the Z-machine.

There is one instance of the Z-machine (within a given application association) each for the origin and target; there may be

multiple concurrent instances of the O-machines.

Each state table shows the interrelationship between the state of an operation or Z-Association, the incoming events that occur

in the protocol, the actions taken, and, finally, the resulting state. The state tables do not constitute a formal definition of the IRPM.

They are included to provide a more precise specification of the protocol procedures. The following conventions are used in the

state tables:

State Table Cells. The intersection of an incoming event (row) and a state (column) forms a cell. A blank cell represents the

combination of an incoming event and a state that is not defined for the IRPM. A non-blank cell represents an incoming event an d

state that is defined for the IRPM. Such a cell contains one or more actions, separated by semicolons (;). The last such actio n

specified is always a transition to the resulting state, in parentheses.

Invalid Intersections. Blank cells indicate an invalid intersection of an incoming event and state. The state tables define correct

operation only. They do not specify actions to be taken in response to incorrect operation (for example, erroneous protocol

control information, incorrect protocol control actions, etc.). Such actions are not within the scope of the specification, although

implementations must consider them.

Predicates. Some actions are predicated on a certain condition, or “predicate.” The notation for these actions takes one of the

following two forms:

:[predicate] actions:

or

:[predicate] actions else actions:

where “actions” is either a single action or multiple actions separated by semicolons. The following predicates and variables are

defined:

Predicate Meaning

resp “Response required” on a Resource Control PDU.

noResp “No response required” on a Resource Control PDU.

conc Concurrent operations in effect.

noOps No active operations.

© ISO ISO 23950:1 998(E)

63

Variable Meaning

<op> An operation type (other than Init): search, present, delete, scan, sort, resource-report, Extended-

services.

opCnt Number of active operations.

retSt Return state. An integer; the action “(retSt)” means “go to the state whose value is retSt.”

Notes pertaining to the tables:

1 . Access-control and resource-control events, actions, and states are distinguished according to whether they pertain to an

operation or to the Z-association. (If concurrent operation is not in effect, all pertain to an operation. During initialization, all

pertain to the initialization operation.) Those that pertain to an operation are reflected in the operation state table, except for

those that occur during initialization (those are shown in part 1 of the Z-association table) and those that pertain to an aborted

operation (those apply to part 3 of the Z-association table). Those that pertain to the Z-association are shown in part 2 of the Z-

association table (except as noted in notes 4 and 5). All abbreviations for states, events, and actions for access- or resource-

control beginning with “Z-” (e.g., “Z-Acc PDU”) pertain to the Z-association. All others (e.g., “Acc PDU”) pertain to an

operation.

2. During initialization, access control or resource control requests may be received by the origin but only if the origin has

indicated support (though this is not reflected in the state tables). The origin may not send Trigger-resource-control, because

initialization is not complete so it has not yet been successfully negotiated. Neither the origin nor target may initiate Close

during initialization.

3. “End-operation indication” is a pseudo-action by the O-machine and corresponding event to the Z-machine. The O-machine

issues the indication to the Z-machine, which receives it also as an indication. Its meaning is that an operation has ended (it is

necessary for the Z-machine to keep track of the number of active operations so that it will know whether there are zero, one, or

multiple concurrent active operations).

4. After the origin sends a Close PDU, PDUs may arrive that were sent before the target receives the Close PDU. When the

origin is in “Close sent” state, it ignores all such PDUs if they pertain to an (aborted) operation. If an Access-control request

pertaining to the Z-association is received, it is similarly ignored. However, if a Resource-control request pertaining to the

application is received, and if it specifies that “no response is required” it is passed to the application, because it may include

useful information. If a resource-control request specifies “response required” it is ignored.

5. After the target sends a Close PDU, it ignores any received PDUs until it receives a Close PDU. When the target is in “Close

Recvd” state, it may send one or more Resource-control requests before sending the Close PDU, but they must indicate “no

response required.”

Definition of States

Origin States

Origin States for Z-association:

0. Closed: The origin is awaiting an Init request from the service-user.

1 . Init Sent: The origin is awaiting an Init-response PDU from the target.

2. Acc Recvd: During initialization the origin has received an Access-control PDU and is awaiting an Access-control response

from the service-user.

3. Rsc Recvd: During initialization the origin has received a resource-control PDU and is awaiting a Resource-control

response from the service-user.

4. Serial Idle: The Z-association is established, there are no active operations, and ‘serial operations’ is in effect.

5. Concurrent Idle: The Z-association is established, there are no active operations, and ‘concurrent operations’ is in effect.

6. Serial Active: There is an active operation and ‘serial operations’ is in effect.

7. Concurrent Active: There is at least one active operation, and ‘concurrent operations’ is in effect.

8. Z-Acc recvd: The origin has received an Access-control PDU pertaining to the Z-association and is awaiting an Access-

control response from the service-user.

9. Z-Rsc recvd: The origin has received a Resource-control PDU pertaining to the Z-association and is awaiting a Resource-

control response from the service-user.

10. Close sent: The origin is awaiting a Close PDU from the target.

11 . Close Received: The origin is awaiting a Close response from the service-user.

Origin States for Operation:

1 . For Present operation: Present sent: The origin is awaiting a Present-response PDU from the target. For operation other

than Present: <Op> sent: The origin is awaiting an <Op>-response PDU from the target.

ISO 23950:1 998(E) © ISO

64

2. Rsc recvd: The origin has received a Resource-control-request PDU pertaining to the operation and is awaiting a Resource-

control response from the service-user.

3. Acc recvd: The origin has received an Access-control-request PDU pertaining to the operation and is awaiting an Access-

control response from the service-user.

Target States

Target States for Z-association:

0. Closed: The target is awaiting an Init PDU from the origin.

1 . Init recvd: The target is awaiting an Init Response from the service-user.

2. Acc Sent: During initialization the target has sent an Access-control PDU and is awaiting an Access-control-response PDU

from the origin.

3. Rsc sent: During initialization the target has sent a Resource-control PDU and is awaiting a Resource-control-response

PDU from the origin.

4. Serial Idle: The Z-association is established, there are no active operations, and ‘serial operations’ is in effect.

5. Concurrent Idle: The Z-association is established, there are no active operations, and ‘concurrent operations’ is in effect.

6. Serial Active: There is an active operation and ‘serial operations’ is in effect.

7. Concurrent Active: There is at least one active operation, and ‘concurrent operations’ is in effect.

8. Z-Acc sent: The target has sent an Access-control PDU pertaining to the Z-association and is awaiting an Access-control-

response PDU from the origin.

9. Z-Rsc sent: The target has sent a Resource-control PDU pertaining to the Z-association and is awaiting a Resource-control-

response PDU from the origin.

10. Close sent: The target is awaiting a Close PDU from the origin.

11 . Close Received: The target is awaiting a Close response from the service-user.

Target States for Operation:

1 . For Present operation: Present sent: The target is awaiting a Present response from the service-user. For operation other

than Present: <Op> sent: The target is awaiting an <Op>-response PDU from the service-user.

2. Rsc sent: The target has sent a Resource-control PDU pertaining to the operation and is awaiting a Resource-Control-

response PDU from the origin

3. Acc sent: The target has sent an Access-control PDU pertaining to the operation and is awaiting an Access-control-response

PDU from the origin.

Events and Actions

Table 16 lists the events and actions that appear in the state tables (Tables 17-22). Those corresponding to a service primitive or

APDU are listed first (in alphabetical order by the abbreviation used in the tables) followed by miscellaneous actions.

Table 16: Abbreviations of Events and Actions in State Tables

Abbreviation Meaning
<op> PDU <operation type> PDU
<op> req <operation type> request
<op> resp <operation type> response
<op> conf <operation type> confirm
<op> resp PDU <operation type> Response PDU
Acc conf Access-control confirm
Acc ind Access-control indication
Acc PDU Access-control PDU
Acc req Access-control request
Acc resp Access-control response
Acc Resp PDU Access-control-response PDU
AnyOpPdu Any PDU belonging to an operation
AnyPdu Any PDU except Close
Close conf Close confirm
Close ind Close Indication
Close PDU Close PDU
Close req Close request
Close resp Close response
EndOp ind End-operation indication
Init conf+ Init confirm (accept)
Init conf Init confirm (reject)
Init ind Init indication
Init PDU Init PDU
Init req Init request

© ISO ISO 23950:1 998(E)

65

Init resp PDU+ Init-response PDU (accept)
Init resp PDU Init-response PDU (reject)
Init resp+ Init response (accept)
Init resp- Init response (reject)
Prsnt conf Present confirm
Prsnt resp PDU Present-response PDU
Prsnt resp Present response
Rsc conf Resource-control confirm
Rsc ind Resource-control indication
Rsc PDU Resource-control PDU
Rsc req Resource-control request
Rsc resp Resource-control response
Rsc resp PDU Resource-control-response PDU
Seg ind Segment Indication
Seg PDU Segment PDU

Abbreviation Meaning
Seg req Segment request
Trigrc PDU Trigger-resource-control PDU
Trigrc req Trigger-resource-control request
Z-Acc conf Access-control confirm (Z-association)
Z-Acc PDU Access-control PDU (Z-association)
Z-Acc req Access-control request (Z-association)
Z-Acc resp Access-control response (Z-association)
Z-Acc resp PDU Access-control-response PDU (Z-association)
Z-Rsc conf Resource-control confirm (Z-association)
Z-Rsc PDU Resource-control PDU (Z-association)
Z-Rsc req Resource-control request (Z-association)
Z-Rsc req noResp Resource-control request, “no response” (Z-association)
Z-Rsc resp Resource-control response (Z-association)
Z-Rsc resp PDU Resource-control-response PDU (Z-association)

Miscellaneous actions

Initiate <op> operation
1 . Initiate an O-machine for an operation of type <op>. If <op> is Present, table 2 or 5 applies (for origin or target
respectively); otherwise table 3 or 6 applies.
2. Origin: send <op> PDU.
Target: issue <op> indication.
3. Set initial state for operation to 1 .
4. If concurrent operations is in effect, increment opCnt by 1 .

KillOps Immediately terminate any active operations; all further PDUs pertaining to any of those operations are input to the Z-
machine.

Set <variable> = <x>
Set the value of the specified variable to x.

(x) Go to state x.

Decr Decrement the variable opCnt by 1 .

Exit Terminate the O-machine.

Table 17: State Table 1 (part 1 -- Origin Z39.50 Association: Initialization Phase)

State
Event

Closed
0

Init sent
1

Acc recvd
2

Rsc recvd
3

Init req Init PDU; (1)

Init resp PDU+ Init conf+; set opCnt = 0; : [conc] (5) else (4):

Init resp PDU- Init conf-; (0)

Acc PDU Acc ind; (2)

Acc resp Acc resp PDU; (1)

Rsc PDU Rsc ind; : [resp] (3) else (1):

Rsc resp Rsc resp PDU; (1)

ISO 23950:1 998(E) © ISO

66

Table 17: State Table 1 (part 2 -- Origin Z39.50 Association: Processing Phase)

State

Event

Serial
Idle
4

Concurrent Idle
5

Serial
Active

6

Concurrent Active
7

Z-Acc
recvd

8

Z-Rsc
recvd

9

<op> req Initiate <op>
operation; (6)

Initiate <op>
operation;

 (7)

Initiate <op> operation;
(7)

Initiate <op>
operation; set RetSt =

7; (8)

Initiate <op>
operation; set RetSt =

7; (9)

EndOp ind (4) Decr; : [noOps] (5) else
(7):

Decr; : [noOps] set
RetSt = 5: ; (8)

Decr; : [noOps] set
RetSt = 5: ; (9)

Z-Acc PDU Acc ind; set
RetSt = 5; (8)

Acc ind; set RetSt = 7; (8)

Z-Acc resp Acc resp PDU;
(RetSt)

Z-Rsc PDU Rsc ind; : [resp]
set RetSt = 5; (9)

else (5):

Rsc ind; : [resp] set RetSt
= 7; (9) else (7):

Z-Rsc resp Rsc Resp PDU; (RetSt)

Close req Close PDU; (10) Close PDU; (10) Close PDU; KillOps;
(10)

Close PDU; KillOps; (10) Close PDU; KillOps;
(10)

Close PDU; KillOps;
(10)

Close PDU Close ind; (11) Close ind; (11) Close ind; KillOps;
(11)

Close ind; KillOps; (11) Close ind; KillOps;
(11)

Close ind; KillOps;
(11)

Table 17: State Table 1 (part 3 -- Origin Z39.50 Association: Termination Phase)

State
Event

Close sent
10

Close Recvd
11

AnyOpPdu (10)

Z-Rsc PDU : [noResp] Rsc ind:; (10)

Z-Acc PDU (10)

Close resp Close PDU; (0)

Close PDU Close conf; (0)

Table 18: State Table 2 -- Origin Present Operation

State
Event

Present sent
1

Rsc recvd
2

Acc recvd
3

Rsc PDU Rsc ind; : [resp] (2) else (1):

Rsc resp Rsc resp PDU; (1)

Acc PDU Acc ind; (3)

Acc resp Acc resp PDU; (1)

Trigrc req Trigrc PDU; (1)

Seg PDU Seg ind; (1)

Prsnt resp PDU Prsnt conf; EndOp ind; exit

Table 19: State Table 3 -- Origin Operation Other Than Present

State
Event

<op> sent
1

Rsc recvd
2

Acc recvd
3

Rsc PDU Rsc ind; : [resp] (2) else (1):

Rsc resp Rsc resp PDU; (1)

Acc PDU Acc ind; (3)

Acc resp Acc resp PDU; (1)

Trigrc req Trigrc PDU; (1)

<op> resp PDU <op> conf; EndOp ind; exit

© ISO ISO 23950:1 998(E)

67

Table 20: State Table 4 (part 1 -- Target Z39.50 Association: Initialization Phase)

State
Event

Closed
0

Init recvd
 1

Acc sent
2

Rsc sent
3

Init PDU Init ind; (1)

Init resp+ Init resp PDU+; set opCnt =0; : [conc] (5) else (4):

Init resp- Init resp PDU-; (0)

Acc req Acc PDU; (2)

Acc resp PDU Acc conf; (1)

Rsc req Rsc PDU; : [resp] (3) else (1):

Rsc resp PDU Rsc conf; (1)

Table 20: State Table 4 (part 2 -- Target Z39.50 Association: Processing Phase)

State

Event

Serial Idle
(4)

Concurrent
Idle
5

Serial
Active

6

Concurrent Active
7

Z-Acc
sent
8

Z-Rsc
sent
9

<op> PDU Initiate <op>
operation; (6)

Initiate <op>
operation;

(7)

Initiate <op> operation;
(7)

Initiate <op>
operation; set RetSt =

7; (8)

Initiate <op>
operation; set RetSt =

7; (9)

EndOp ind (4) Decr; : [noOps] (5) else (7): Decr; : [noOps] set
RetSt = 5: ; (8)

Decr; : [noOps] set
RetSt = 5: ; (9)

Z-Acc req Acc PDU; set
RetSt = 5; (8)

Acc PDU; set RetSt = 7;
(8)

Z-Acc resp
PDU

Acc conf; (RetSt)

Z-Rsc req Rsc PDU;
:[resp] set RetSt
= 5; (9) else

(5):

Rsc PDU; : [resp] set RetSt
= 7; (9) else (7):

Z-Rsc resp
PDU

Rsc conf; (RetSt)

Close req Close PDU;
(10)

Close PDU;
(10)

Close PDU; KillOps;
(10)

Close PDU; KillOps; (10) Close PDU; KillOps;
(10)

Close PDU; KillOps;
(10)

Close PDU Close ind; (11) Close ind; (11) Close ind; KillOps;
(11)

Close ind; KillOps; (11) Close ind; KillOps;
(11)

Close ind; KillOps;
(11)

Table 20: State Table 4 (part 3 -- Target Z39.50 Association: Termination
Phase)

State
Event

Close sent
10

Close Recvd
11

AnyPdu (10)

Z-Rsc req noResp Rsc PDU; (10)

Close resp Close PDU; (0)

Close PDU Close conf; (0)

Table 21: State Table 5 -- Target Present Operation

State
Event

Present recvd
1

Rsc sent
2

Acc sent
3

Rsc req Rsc PDU; : [resp] (2) else (1):

Rsc resp PDU Rsc conf; (1)

Acc req Acc PDU; (3)

Acc resp PDU Acc conf; (1)

Trigrc PDU Trigrc ind; (1)

Seg req Seg PDU; (1)

Prsnt resp Prsnt resp PDU; EndOp ind; exit

ISO 23950:1 998(E) © ISO

68

Table 22: State Table 6 -- Target Operation Other Than Present

State
Event

<op> recvd
1

Rsc sent
2

Acc sent
3

Rsc req Rsc PDU; : [resp] (2) else (1):

Rsc resp PDU Rsc conf; (1)

Acc req Acc PDU; (3)

Acc resp PDU Acc conf; (1)

Trigrc PDU Trigrc ind; (1)

<op> resp <op> resp PDU; EndOp ind; exit

4.2.4 Protocol Errors
Any event not listed in the tables of section 4.2.3 is not valid and is considered to be a protocol error. With exceptions specified in

section 4.3, incorrectly formatted APDUs or APDUs with invalid data are also considered to be protocol errors. This standard does

not specify the actions to be taken upon detection of protocol errors. An application context may contain such a specification.

Additional conditions that may be treated as protocol errors are described in 4.4.2.2.

4.3 Rules for Extensibility
All syntactical errors in received APDUs are considered to be protocol errors except for the following case: Unknown data

elements, and unknown options within the Options data element, will be ignored on received Init APDUs.

4.4 Conformance
A system claiming to implement the procedures in this standard shall comply with the conformance requirements in 4.4.1 . These

requirements are elaborated in 4.4.2.

4.4.1 General Conformance Requirements
The system shall:

(a) Act in the role of origin or target.

(b) Support the Init, Search, and Present services. See 4.4.2.2.1 .

(c) Support the syntax in 4.1 .

(d) Support the Type-1 Query. See 4.4.2.2.2.

(e) Support (at minimum) version 2 of the protocol.

(f) Follow the procedures specified in sections 3, 4.1 , 4.2, and 4.3.

(g) Assign values to APDU data elements according to the procedures of sections 3 and 4.1 .

4.4.2 Specific Conformance Requirements
Section 4.4.2.1 provides a table of Z39.50 features for which 4.4.2.2 specifies conformance requirements. In particular,

conformance requirements are described as they pertain to version 2 and version 3 respectively.

4.4.2.1 Z39.50 Features
Table 23, Z39.50 features, indicates the applicable protocol version (2 or 3), a reference to a description of the feature, and a

reference to the section within 4.4.2.2 that describes conformance requirements for the feature. The “item” column is used by the

sections within 4.4.2.2 to refer back to the table.

Table 23: Z39.50 Features, Protocol Version, and Conformance

Item Feature Version Reference Conformance

1 Init Service V2 and V3 3.2.1 .1 4.4.2.2.1

2 Search Service V2 and V3 3.2.2.1 4.4.2.2.1

3 Query type-1 V2 and V3 3.7 4.4.2.2.2

4 Multiple attribute sets V3 Note 1 4.4.2.2.3

5 Multiple data types for search term V3 Note 2 4.4.2.2.3

6 Complex attribute values V3 Note 3 4.4.2.2.3

7 Result set restriction V3 3.7 4.4.2.2.3

8 Proximity V3 3.7.2 4.4.2.2.4

9 Query type-101 V2 and V3 3.7 4.4.2.2.4

10 Query types 0, 2, 100 V2 and V3 3.2.2.1 .1 4.4.2.2.4

11 Query type 102 V3 3.2.2.1 .1 4.4.2.2.5

© ISO ISO 23950:1 998(E)

69

Item Feature Version Reference Conformance

12 Additional-search-information parameter in

Search request and response

V3 3.2.2.1 .12 4.4.2.2.6

13 Named result sets V2 and V3 3.2.2.1 .3 4.4.2.2.23

14 Present Service V2 and V3 3.2.3.1 4.4.2.2.1

15 Additional-ranges and Comp-spec

parameters on Present request

V3 3.2.3.1 .2,

3.2.3.1 .6

4.4.2.2.7

16 Max- segment-count, -segment-size, -record-

size parameters on Present request

V3 3.2.3.1 .7 4.4.2.2.8

17 Diagnostic format -- default form V2 and V3 Note 4 4.4.2.2.9

18 Diagnostic format -- external form V3 Note 4 4.4.2.2.9

19 addinfo type VisibleString V2, V3 Note 5 4.4.2.2.10

20 addinfo type InternationalString V3 Note 5 4.4.2.2.10

21 Multiple non-surrogates in Search or Present

response

V3 Note 6 4.4.2.2.11

22 Segment Service V3 3.2.3.2 4.4.2.2.12

23 Level-1 segmentation V3 3.3.2 4.4.2.2.12

24 Level-2 segmentation V3 3.3.3 4.4.2.2.12

25 Delete Service V2 and V3 3.2.4.1 4.4.2.2.13

26 failure-10 value of Delete-list-status on

Delete response

V3 3.2.4.1 .4 4.4.2.2.15

27 Access-control Service V2 and V3 3.2.5.1 4.4.2.2.14

28 Security-challenge-response and diagnostic

in Access-control response

V3 Note 7 4.4.2.2.16

29 Resource-control Service V2 and V3 3.2.6.1 4.4.2.2.14

30 Trigger-resource-control Service V2 and V3 3.2.6.2 4.4.2.2.13

31 Resource-report Service V2 and V3 3.2.6.3 4.4.2.2.13

32 Op-id parameter of Resource-report-request V3 3.2.6.3.2 4.4.2.2.17

33 failure-5 and failure-6 values of Resource-

report-status in Resource-report response

V3 3.2.6.3.3 4.4.2.2.18

34 Sort Service V2 and V3 3.2.7.1 4.4.2.2.13

35 Scan Service V2 and V3 3.2.8.1 4.4.2.2.13

36 Extended-Services Service V2 and V3 3.2.9.1 4.4.2.2.13

37 Close Service V3 3.2.11 .1 4.4.2.2.19

38 Explain facility V2 and V3 3.2.10 4.4.2.2.20

39 Other-information (in a request or response other

than Scan, Sort, or Extended Services)

V3 Note 8 4.4.2.2.6

40 Other-information in Scan, Sort, and ES V2 and V3 Note 8 4.4.2.2.21

41 Concurrent Operations V3 3.5 4.4.2.2.22

42 InternationalString full use of GeneralString

repertoire

V3 Note 9 4.4.2.2.24

43 Reference Id V2 and V3 3.4 4.4.2.2.25

Notes:

 (1) In version 2 a type-1 query includes a single, global attribute set id, which identifies an attribute set definition that

pertains to all of the attributes within the query. In version 3 a type-1 query also includes a global attribute set id, but in

addition, each attribute within the query may also be qualified with an attribute set id (which, If included, overrides the

global attribute set id).

 (2) In version 2 a search term must be of ASN.1 type OCTET STRING. In version 3 it may be any of the following: OCTET

STRING, INTEGER, InternationalString, OBJECT IDENTIFIER, GeneralizedTime, EXTERNAL, IntUnit, or NULL.

 (3) In version 2, in a type-1 query, an attribute value must be numeric (i.e. ASN.1 type INTEGER). In version 3, an attribute

value may be numeric or 'complex'. The complex form may include multiple values, each either numeric or character

string, and a semantic action indicator (corresponding to some semantic action defined within the attribute set definition).

 (4) See introductory text of Annex ERR.

 (5) In version 2, when using default diagnostic format, the addInfo parameter must be ASN.1 type VisibleString. In version 3

it may be type InternationalString.

ISO 23950:1 998(E) © ISO

70

 (6) In version 2, a Search or Present response may include at most a single non-surrogate diagnostic record. In version 3 a

Search or Present response may include multiple non-surrogate diagnostic records. (Responses other than Search or

Present that include diagnostics may include multiple non-surrogate diagnostics regardless of version.)

 (7) In version 2, in the Access control response, securityChallengeResponse must occur, and no diagnostic may occur. In

version 3, securityChallengeResponse may be omitted, if the parameter 'diagnostic' is present.

 (8) In version 2, the parameter otherInformation may be used only in Scan, Sort, and Extended Services requests and

responses. In version 3 it may be used in any request or response.

 (9) See definition of InternationalString in ASN.1 for APDUs.

4.4.2.2 Detailed Requirements

4.4.2.2.1 Init, Search, and Present Services (See items 1 , 2 and 14 in Table 23). A system must support the Init, Search, and

Present services.

This means that an origin must be capable of sending Init, Search, and Present requests and receiving the respective responses.

A target must respond properly to Init, Search, and Present requests with respective responses.

An origin may indicate (via option bits) during initialization that it does not intend to utilize the Present service during the Z-

association; this does not constitute non-conformance. If, however, an origin indicates that it does intend to utilize the Present

service, and the target refuses, this does constitute non-conformance on the part of the target.

This requirement is independent of version.

4.4.2.2.2 Type-1 Query (See item 3 in Table 23). An origin must be capable of formulating a type-1 query within a Search

request, and a target should expect to receive a type-1 query.

An origin or target may support other query types. If the origin fails to send a type-1 query during a Z-association, this does not

constitute non-conformance on the part of the origin. If, however, the origin does send a type-1 query and the target responds with

a diagnostic indicating “query type not supported” this does constitute non-conformance on the part of the target.

This requirement does not mean that any specific feature of the type-1 query must be supported. A target that receives a type-1

query that conforms to the type-1 query syntax but which includes a feature that it does not support must not treat this condit ion as

a protocol error (but instead should return an appropriate diagnostic, however, that diagnostic must not indicate “query type not

supported”).

This requirement is independent of version.

4.4.2.2.3 Multiple attribute sets, Multiple data types for search term, Complex attribute values, Result set restriction, and

Proximity (See items 4, 5, 6, 7, and 8 in Table 23). For version 2, the origin may not use any of these features in a type-1 query. If

target receives a type-1 query with any of these features, it may treat this condition as a protocol error.

For version 3, the origin may, but is not required, to use any of these features in a type-1 query. The target should expect type-1

queries to include any or all of these features, but is not required to support any of these features. If the target receives a type-1

query which includes any of these features that it does not support, it must not treat this condition as a protocol error (but rather

should return an appropriate diagnostic).

4.4.2.2.4 Query types 0, 2, 100, and 101 (See items 9 and 10 in Table 23). An origin is not required to support queries of any of

these types. A target should expect to receive, but need not support queries of these types. If a target receives a query of one of

these types that it does not support it must not treat this condition as a protocol error but instead should return a diagnostic

indicating that the query type is not supported.

This requirement is independent of version.

4.4.2.2.5 Query Type-102 (See item 11 in Table 23). For version 2, an origin may not use the type-102 query. If a target receives

a type-102 query it may treat this condition as a protocol error.

For version 3, an origin may, but need not support the type-102 query. A target should expect to receive, but need not support,

type-102 queries; if it receives a type-102 query it must not treat this condition as a protocol error.

Note: ISO 23950 lists type-102 as a valid query type (for version 3) but does not include a definition.

4.4.2.2.6 Additional-search-information parameter in Search request or response; Other-information parameter in any

request or response other than Scan, Sort, or Extended Services (See items 12 and 39 in Table 23). For version 2, a system

may not use these parameters; if a system receives one of these parameters it may treat this condition as a protocol error.

For version 3, a system is never required to use any of these parameters. However, a system should expect to receive these

parameters, but is not required to interpret or process the information contained within any of these parameters.

© ISO ISO 23950:1 998(E)

71

4.4.2.2.7 Additional-ranges and Comp-spec parameters on Present request (See item 15 in Table 23). For version 2, the

origin may not use these parameters. If the target receives one of these parameters it may treat this condition as a protocol error.

For version 3, the origin is not required to, but may use either of these parameters. The target should expect to receive, but need

not support either of these parameters. If the target receives but does not support one of these parameters, it should not treat this

condition as a protocol error (but instead should return an appropriate status value and/or diagnostic).

4.4.2.2.8 Max-segment-count, Max-segment-size, and Max-record-size parameters on Present request (See item 16 in Table

23). For version 2, as well as for version 3 when segmentation is not in effect, the origin may not use these parameters; if the target

receives any of these parameters it may treat this condition as a protocol error.

For version 3:

• If level-1 segmentation is in effect:

— The origin may but is not required to support Max-segment-count. The target should expect to receive, but need not

support Max-segment-count. If the target receives but does not support Max-segment-count, it must not treat this condition

as a protocol error (but instead should return an appropriate status value and/or diagnostic).

— The origin may not use Max-segment-size or Max-record-size. If target receives either it may treat this condition as a

protocol error.

• If level-2 segmentation is in effect:

— The origin may but is not required to support any of these three parameters. The target should expect to receive, but need

not support any of these parameters. If the target receives but does not support a parameter, it must not treat this condition as

a protocol error (but instead should return an appropriate status value and/or diagnostic).

4.4.2.2.9 Diagnostic format (See items 17 and 18 in Table 23). For version 2, the target may send diagnostics in a Search or

Present response using the default form only. If the origin receives a diagnostic which does not conform to the default form, it may

treat this condition as a protocol error.

Note: This rule applies to Search and Present responses only. Responses other than Search or Present that include diagnostics are

not affected.

For version 3, the target may send diagnostics using the default or external form. The origin should expect to receive

diagnostics in either form.

4.4.2.2.10 Addinfo of default diagnostic format (See items 19 and 20 in Table 23). For version 2, when the target sends a

diagnostic in a Search or Present response using the default form, the addinfo parameter must be of ASN.1 type VisibleString. If

the origin receives a diagnostic that violates this rule, it may treat this condition as a protocol error.

For version 3 the addinfo parameter may be of either type VisibleString or InternationalString.

4.4.2.2.11 Multiple non-surrogates in Search or Present response (See item 21 in Table 23). For version 2, the target must not

include multiple non-surrogate diagnostics in a Search or Present response; if it does so, the origin may treat this condition as a

protocol error.

Note: This rule applies to Search and Present responses only. There are responses other than Search or Present that include

diagnostics, and these are not affected.

For version 3, the target may (but is not required to) include multiple non-surrogate diagnostics in a Search or Present response

and if it does, the origin must not treat this condition as a protocol error.

4.4.2.2.12 Segmentation (See items 22, 23, and 24 in Table 23). For version 2, as well as for version 3 when segmentation is not

in effect, the target may not send a Segment request, and if it does, the origin may treat this condition as a protocol error.

For version 3, level-1 or level-2 segmentation may be negotiated, however neither the target not the origin is required to

support segmentation.

4.4.2.2.13 Delete service, Trigger-resource-control service, Resource-report service, Sort service, Scan service, and

Extended-Services service (See items 25, 30, 31 , 34, 35, and 36 in Table 23). A system is not required to support any of these

services. They are independently negotiable. If the target receives a request of one of these types and the respective service is not

in effect, it may treat this condition as a protocol error.

This requirement is independent of version.

ISO 23950:1 998(E) © ISO

72

4.4.2.2.14 Access-control and Resource-control services (See items 27 and 29 in Table 23). A system is not required to support

either of these services. They are independently negotiable. If the origin receives an Access-control or Resource-control request

and the respective service is not in effect (or if the request occurs while the origin is awaiting an Init response and the origin has

not proposed the respective option in the Init request), it may treat this condition as a protocol error.

This requirement is independent of version.

4.4.2.2.15 ‘failure-10’ value of Delete-list-status on Delete response (See item 26 in Table 23). For version 2, the target may

not return this value; if it does the origin may treat this condition as a protocol error.

For version 3, the target may return this value.

4.4.2.2.16 Security-challenge-response and Diagnostic in Access-control response (See item 28 in Table 23). For version 2, the

origin must include in the Access-control response the parameter Security-challenge-response, and may not include a diagnostic. If

the target receives an Access-control response that violates this rule it may treat this condition as a protocol error.

For version 3, the origin may include a diagnostic, and if so, the parameter securityChallengeResponse may be omitted.

4.4.2.2.17 Op-id parameter of Resource-report request (See item 32 in Table 23). For version 2, the origin may not use this

parameter; if the target receives this parameter it may treat this condition as a protocol error.

For version 3, the origin may, but is not required to include this parameter. The target should expect to receive, but need not

support the parameter. If the target receives but does not support this parameter, it should not treat this condition as a protocol

error but instead should return an appropriate status.

4.4.2.2.18 failure-5 and failure-6 Resource-report-status in Resource-report response (See item 33 in Table 23). For version

2, the target may not return either value for this status; if it does the origin may treat this condition as a protocol error.

For version 3, the target may return either value.

4.4.2.2.19 Close service (See item 37 in Table 23). For version 2, the Close service may not be used. If a system receives a Close

request, it may treat this condition as a protocol error.

For version 3, a system must expect to receive a Close request, and must be capable of responding with a Close response. A

system is not required to send a Close request.

4.4.2.2.20 Explain facility (See item 38 in Table 23). There are no conformance requirements pertaining to the Explain facility,

either for version 2 or version 3. A system may choose to support or not support Explain.

Note that implementation of Explain requires, at minimum, support for searching the Explain database and for the Explain

record syntax. This standard does not require support for searching any particular database or support for any particular record

syntax.

4.4.2.2.21 Other-information parameter in Scan, Sort, and Extended Services request (See item 40 in Table 23). The

parameter Other-information may occur in a Scan, Sort, or Extended Services request or response. A system should expect to

receive this parameter, but is not required to interpret or process the information contained within the parameter.

This requirement is independent of version.

4.4.2.2.22 Concurrent Operations (See item 41 in Table 23). For version 2, as well as for version 3 when concurrent operations

is not in effect, if an origin attempts to initiate concurrent operations (i.e., attempts to initiate an operation when an operation is

already active), the target may treat this as a protocol error.

For version 3, a system may choose to support or not to support concurrent operations.

4.4.2.2.23 Named Result sets (See item 13 in Table 23). A system may choose to support or not support named result sets. If the

target receives a Search request where the value of the parameter Result-set-id is other than ‘default’ and the target does not

support named result sets, the target should not treat this condition as a protocol error but should instead return an appropriate

diagnostic.

This requirement is independent of version.

4.4.2.2.24 InternationalString Definition (See item 42 in Table 23). For version 2, a value of a parameter of ASN.1 type

InternationalString must conform to the VisibleString definition. A system that receives a value that violates this rule may treat this

condition as a protocol error.

For version 3, a value of a parameter of ASN.1 type InternationalString must conform to the GeneralString definition. A system

that receives a value that does not conform to the VisibleString definition (but does conform to the GeneralString definition) must

not treat this condition as a protocol error.

© ISO ISO 23950:1 998(E)

73

4.4.2.2.25 Reference-id (See item 43 in Table 23). For both version 2 and version 3, an origin may choose to support or not

support the Reference-id parameter; a target must support the Reference-id parameter. Note, however, for version 3, origin support

of concurrent operations (see 4.4.2.2.22) implies support for the reference-id parameter.

ISO 23950:1 998(E) © ISO

74

Annex 1

(Normative)

OID: Z39.50 Object Identifiers

OID.1 Object Identifier Assigned to This Standard

ANSI has assigned the following object identifier to this standard:

{iso (1) member-body (2) US (840) ANSI-standard-Z39.50 (10003)}

Note:This OID was originally assigned to Z39.50-1992; it applied also to Z39.50-1995; it now applies also to ISO 23950. Z39.50

object identifiers are maintained subordinate to this object identifier. No object identifiers are maintained subordinate to the

nominal ISO 23950 object identifier { ISO Standard 23950} .

OID.2 Object Classes Assigned by This Standard

This standard assigns the following values for object classes, at the level immediately subordinate to ANSI-standard-Z39.50:

1 = application context definitions

2 = abstract syntax definition for APDUs

3 = attribute set definitions

4 = diagnostic definitions

5 = record syntax definitions

6 = transfer syntax definitions

7 = resource report format definitions

8 = access control format definitions

9 = extended services definitions

10 = user information format definitions

11 = element specification format definitions

12 = variant set definitions

13 = database schema definitions

14 = tag set definitions

The following ASN.1 module establishes shorthand notation for the Z39.50 object identifier, and for the object classes.

The notation is used in appendixes that follow.

ANSI-Z39-50-ObjectIdentifier DEFINITIONS : :=

BEGIN

Z39-50 OBJECT IDENTIFIER : :=

{ iso (1) member-body (2) US (840) ANSI-standard-Z39.50 (10003)}

Z39-50-context OBJECT IDENTIFIER : := { Z39-50 1 } -- See Annex 2, CTX.

Z39-50-APDU OBJECT IDENTIFIER : := { Z39-50 2} -- See Annex 1 , OID.3.1 .

Z39-50-attributeSet OBJECT IDENTIFIER : := { Z39-50 3} -- See Annex 3, ATR.

Z39-50-diagnostic OBJECT IDENTIFIER : := { Z39-50 4} -- See Annex 4, ERR.

Z39-50-recordSyntax OBJECT IDENTIFIER : := { Z39-50 5} -- See Annex 5, REC.

Z39-50-transferSyntax OBJECT IDENTIFIER : := {Z39-50 6} -- See note below.

Z39-50-resourceReport OBJECT IDENTIFIER : := { Z39-50 7} -- See Annex 6, RSC.

Z39-50-accessControl OBJECT IDENTIFIER : := { Z39-50 8} -- See Annex 7, ACC.

Z39-50-extendedService OBJECT IDENTIFIER : := { Z39-50 9} -- See Annex 8, EXT.

Z39-50-userInfoFormat OBJECT IDENTIFIER : := { Z39-50 10} -- See Annex 9, USR.

Z39-50-elementSpec OBJECT IDENTIFIER : := { Z39-50 1 1 } -- See Annex 10, ESP.

Z39-50-variantSet OBJECT IDENTIFIER : := { Z39-50 12} -- See Annex 11 , VAR.

Z39-50-schema OBJECT IDENTIFIER : := { Z39-50 13} -- See Annex 12, TAG.

Z39-50-tagSet OBJECT IDENTIFIER : := { Z39-50 14} -- See Annex 12, TAG.

END

© ISO ISO 23950:1 998(E)

75

No object identifier is assigned by this standard for any transfer syntax. For the purpose of presentation context negotiation

for an abstract syntax (including the abstract syntax for the APDUs, defined in 4.1), the abstract syntax is paired with a transfer

syntax. This pairing is represented by a pair of object identifiers, one for the abstract-syntax (e.g., Z39.50-APDU) and one for the

encoding rules. For abstract syntaxes described using ASN.1 (e.g., Z39.50-APDU), a set of basic encoding rules are specified by

“ASN.1 Basic Encoding Rules,” ISO 8825, identified by the following object identifier:

{ joint-iso-ccitt asn1 (1) basic-encoding (1) }

OID.3 Object Identifiers Assigned by This Standard

All object identifiers assigned by this standard (with the exception of the OID for Z39.50 APDUs, assigned in OID.3.1) are

explicitly assigned in the appendixes that follow.

OID.3.1 Object Identifiers for Z39.50 APDUs

This standard assigns the following object identifier for the ASN.1 definition of APDUs in 4.1 .

Z39-50-APDU {Z39-50-APDU 1}

Note: the same OID is used for APDUs both for Z39.50-1992 and Z39.50-1995 (as well as ISO 23950), because of the

interworking capability between the two versions.

OID.4 Object Identifiers Used by This Standard

Z39.50 object identifiers are either public or locally defined. Public Z39.50 object identifiers are officially registered by this

standard or by the Z39.50 Maintenance Agency (see OID.5). Locally defined Z39.50 object identifiers are registered by a

registered Z39.50 implementor (see OID.6 and OID.7).

OID.5 Object Identifiers Assigned by the Z39.50 Maintenance Agency

Additional object identifiers (official Z39.50 object identifiers not registered by this standard) may be assigned by the Z39.5 0

Maintenance Agency (see note), in the form:

 {Z39-50 n m}

where { z39-50 n} is an object class defined in OID.2, or is an additional object class defined by the Maintenance Agency.

Note: At the time of approval of this standard, the Z39.50 Maintenance Agency is the Library of Congress.

OID.6 Locally Registered Objects

Locally registered objects take the form:

{Z39-50 n 1000 p m}

where { z39-50 n} is as described in OID.5, and ‘p’ is the OID index of a registered Z39.50 Implementor (contact the Z39.50

Maintenance Agency for procedures for registration of an implementor). A locally registered object may be published or private.

Local published objects are those whose definitions are coordinated with and published by the Z39.50 Maintenance Agency. Local

private objects are those whose definitions are not published by the Z39.50 Maintenance Agency.

OID.7 Experimental Objects

Experimental objects take the form:

{Z39-50 n 2000 p m}

where { z39-50 n} is as described in OID.5, and ‘p’ is the OID index of a registered Z39.50 Implementor.

ISO 23950:1 998(E) © ISO

76

Annex 2

(Normative)

CTX: Application Context basic-Z39.50-ac

This standard defines and registers the application context basic-Z39.50-ac. The object identifier for application context basic-

Z39.50-ac is:

{ Z39-50-context 1 }

Definition of application context basic-Z39.50-ac

ANSI-standard-Z39.50 application context basic-Z39.50-ac supports an application-entity that contains only the following two

application service elements (ASEs):

1 . the association control service element (ACSE, ISO 8650), and

2. the Z39.50 service element.

Z39.50 and ACSE are used according to the procedures in section 4.2.1 .

The presentation services required are those contained in the presentation kernel functional unit and the session duplex

functional unit. All Information Retrieval protocol data units will be mapped onto the P-Data service.

In the event of protocol errors, the system detecting the error shall abort the association.

Only the origin may invoke the A-RELEASE service (to initiate orderly release of an A-association).

© ISO ISO 23950:1 998(E)

77

Annex 3

(Normative)

ATR: Attribute Sets

This standard registers the attribute sets listed below, and assigns the following object identifiers:

Bib-1 {Z39-50-attributeSet 1} (See ATR.1)

Exp-1 {Z39-50-attributeSet 2} (See ATR.2)

Ext-1 {Z39-50-attributeSet 3} (See ATR.3)

CCL-1 {Z39-50-attributeSet 4}

GILS {Z39-50-attributeSet 5}

STAS {Z39-50-attributeSet 6}

Each attribute set defines a set of types and for each type a set of values. An attribute list (see AttributeList in the ASN.1

for APDUs, 4.1), constructed from an attribute set definition, is a list of attribute pairs. An attribute pair (AttributeElement in the

ASN.1 for APDUs) consists of an attribute type and a value list (attributeValue within AttributeElement), where each value in the

list is defined for that type.

When version 2 is in force, each value list is a single value and is an integer. When version 3 is in force, attributeValue

(within AttributeElement) may select ‘complex’ , allowing the value list to include multiple values (each may be integer or string)

and also to specify a ‘semanticAction’ , indicating how the target is to treat the multiple attributes.

When an attribute list contains any attribute pair where attributeValue selects ‘complex’ , there must not be any attribute

type within the attribute list for which there is more than a single attribute pair.

ATR.1 Attribute Set bib-1

This section defines the attribute set bib-1 .

ATR.1.1 Bib-1 Types and Values

This section lists attribute types and values for attribute-set bib-1 (Tables A3-1 through A3-6).

Attribute Type Value Attribute Type Value Attribute Type Value

Use 1 Position 3 Truncation 5

Relation 2 Structure 4 Completeness 6

Table A3-1: Bib-1 Use Attributes

Use Value Use Value Use Value

Personal name 1 NAL call number 18 Title parallel 35

Corporate name 2 MOS call number 19 Title cover 36

Conference name 3 Local classification 20 Title added title page 37

Title 4 Subject heading 21 Title caption 38

Title series 5 Subject Rameau 22 Title running 39

Title uniform 6 BDI index subject 23 Title spine 40

ISBN 7 INSPEC subject 24 Title other variant 41

ISSN 8 MESH subject 25 Title former 42

LC card number 9 PA subject 26 Title abbreviated 43

BNB card no. 10 LC subject heading 27 Title expanded 44

BGF number 11 RVM subject heading 28 Subject precis 45

Local number 12 Local subject index 29 Subject rswk 46

Dewey classification 13 Date 30 Subject subdivision 47

UDC classification 14 Date of publication 31 No. nat'l biblio. 48

Bliss classification 15 Date of acquisition 32 No. legal deposit 49

LC call number 16 Title key 33 No. govt pub. 50

NLM call number 17 Title collective 34 No. music publisher 51

ISO 23950:1 998(E) © ISO

78

Table A3-1: Bib-1 Use Attributes (continued)

Use Value Use Value Use Value

Number db 52 Author-name personal 1004 Editor 1020

Number local call 53 Author-name corporate 1005 Bib-level 1021

Code--language 54 Author-name conference 1006 Geographic-class 1022

Code--geographic area 55 Identifier--standard 1007 Indexed-by 1023

Code--institution 56 Subject--LC children's 1008 Map-scale 1024

Name and title 57 Subject name -- personal 1009 Music-key 1025

Name geographic 58 Body of text 1010 Related-periodical 1026

Place publication 59 Date/time added to db 1011 Report-number 1027

CODEN 60 Date/time last modified 1012 Stock-number 1028

Microform generation 61 Authority/format id 1013 Thematic-number 1030

Abstract 62 Concept-text 1014 Material-type 1031

Note 63 Concept-reference 1015 Doc-id 1032

Author-title 1000 Any 1016 Host-item 1033

Record type 1001 Server-choice 1017 Content-type 1034

Name 1002 Publisher 1018 Anywhere 1035

Author 1003 Record-source 1019 Author-Title-Subject 1036

Table A3-2: Bib-1 Relation Attributes

Relation Value Relation Value Relation Value

less than 1 greater than 5 relevance 102

less than or equal 2 not equal 6 AlwaysMatches 103

equal 3 phonetic 100

greater or equal 4 stem 101

Table A3-3: Bib-1 Position Attributes

Position Value Position Value Position Value

first in field 1 first in subfield 2 any position in field 3

Table A3-4: Bib-1 Structure Attributes

Structure Value Structure Value Structure Value

phrase 1 date (un-normalized) 100 document-text 106

word 2 name (normalized) 101 local number 107

key 3 name (un-normalized) 102 string 108

year 4 structure 103 numeric string 109

date (normalized) 5 urx 104

word list 6 free-form-text 105

© ISO ISO 23950:1 998(E)

79

Table A3-5: Bib-1 Truncation Attributes

Truncation Value Truncation Value Truncation Value

right Truncation 1 do not truncate 100 regExpr-2 103

left truncation 2 process # in search term 101

left and right 3 regExpr-1 102

Table A3-6: Bib-1 Completeness Attributes

Completeness Value Completeness Value Completeness Value

incomplete subfield 1 complete subfield 2 complete field 3

ATR.1.2 Bib-1 Attribute Combinations

If a target does not support a given attribute list, it should fail the search and supply an appropriate diagnostic.

A given attribute type may appear zero times, one time, or more than one time, in an attribute list.

• If an attribute type does not occur in an attribute list, then (in the absence of any prior understanding, either outside of the

standard or via the Explain facility) the origin should not expect any particular default target behavior.

• If an attribute type occurs exactly once in an attribute list, then the attribute value specifies the preferred target behavior

with respect to that attribute type.

• It is recommended that an attribute type not occur more than once in an attribute list, unless an associated "semantic

action" is included (i.e. attributeValue selects 'complex').

When attributeValue selects 'complex', 'semanticAction' may be included. SemanticAction is a sequence of integers; for bib-1 ,

it is either a single integer or a sequence of two integers.

For the first integer in the sequence, values are:

1 May not substitute another attribute. If none in the list is supported, fail the search.

2 May substitute another attribute, but only if none in the list is supported.

3 May substitute another attribute at target discretion (even if one or more in the list is supported).

The second integer in the sequence is to be supplied if and only if there are multiple attributes in the list.

 Values are:

1 Select the first supported attribute in the list.

2 Select the best attribute in the list.

ATR.2 Attribute Set exp-1

This section defines the attribute-set exp-1 , for use with an Explain database. The attribute set exp-1 defines a single attribute

type, 'Use'. In addition, this attribute set definition imports non-Use bib-1 attributes, i.e. those of type Relation, Position, Structure,

Truncation, and Completeness (see tables A-3-2 through A-3-6). The types and values defined within the bib-1 attribute set for

these attributes may be used within the exp-1 attribute set, using the object identifier for this attribute set. It is recommended that a

target supporting the Explain facility support the Relation attribute 'equal', Position attribute 'any' position in field', and Structure

attribute 'key'.

Note: If the target supports searching based on date ranges (e.g. to limit a search to records created before or after a particular date

or between two dates), the target should also support one or more of the following relation attributes: 'less than', 'less than or

equal', 'greater than', and 'greater or equal'.

Table A3-7: Exp-1 Use Attributes

Use Value Use Value Use Value

ExplainCategory 1 RecordSyntaxOID 6 DateExpires 11

HumanStringLanguage 2 TagSetOID 7 ElementSetName 12

DatabaseName 3 ExtendedServiceOID 8 ProcessingContext 13

TargetName 4 DateAdded 9 ProcessingName 14

AttributeSetOID 5 DateChanged 10 TermListName 15

ISO 23950:1 998(E) © ISO

80

Table A3-7: Exp-1 Use Attributes (continued)

Use Value Use Value Use Value

SchemaOID 16 Proprietary 20 Keyword 25

Producer 17 UserFee 21 ExplainDatabase 26

Supplier 18 VariantSetOID 22 ProcessingOID 27

Availability 19 UnitSystem 23

Notes:

 (1) The search terms for Use attribute ExplainCategory are listed in table A-3-8.

 (2) The search term when the Use attribute is HumanStringLanguage is the three-character language code from ANSI/NISO

Z39.53-1994 -- Codes for the Representation of Languages for Information Interchange.

 (3) The search terms when the Use attribute is ProcessingContext are listed in table A-3-9.

 (4) Where the search term is an object identifier (where the name of the Use attribute ends with "OID"): for version 2, it is

recommended that the term be a character string representing a sequence of integers (each represented by a character

string) separated by periods. For version 3, it is recommended that the term be represented as ASN.1 type OBJECT

IDENTIFIER.

 (5) Use attribute Keyword is used when searching for DatabaseInfo records (i.e. in combination with an operand where Use is

ExplainCategory and term is DatabaseInfo). Its use is to search in the keyword element, for terms that match one of the

query terms.

 (6) Use attribute ExplainDatabase is used when searching for DatabaseInfo records (i.e. in combination with an operand

where Use is ExplainCategory and term is DatabaseInfo). The term should be NULL, for version 3, or otherwise ignored

by the target. The Relation attribute either should be omitted or should be AlwaysMatches.

Table A3-8: Search terms associated with use attribute ExplainCategory

TargetInfo TermListInfo SortDetails

DatabaseInfo extendedServicesInfo Processing

SchemaInfo AttributeDetails CategoryList

TagSetInfo TermListDetails VariantSetInfo

RecordSyntaxInfo ElementSetDetails UnitInfo

AttributeSetInfo RetrievalRecordDetails

Table A3-9: Search terms associated with use attribute ProcessingContext

Access RecordPresentation RecordHandling

SearchRetrieval

ATR.3 Attribute Set ext-1

This section defines the attribute-set ext-1 , for use with an Extended Services database (see Tables A-3-10 and A-3-11). Two

types are defined:

Attribute Type Value

Use 1

Permissions 2

Additional attributes (types and/or values) may be defined within a specific Extended Service definition. The attribute set id to

be used to identify those attributes is the ObjectIdentifier that identifies the specific Extended Service.

© ISO ISO 23950:1 998(E)

81

Table A3-10: Ext-1 Use Attributes

Use Value Use Value Use Value

UserId 1 TaskStatus 4 TargetReference 7

PackageName 2 PackageType 5

CreationDatetime 3 RetentionTime 6

Table A3-11: Ext-1 Permission Attributes

Permission Value Permission Value Permission Value

Delete 1 ModifyPermissions 3 Invoke 5

Modify 2 Present 4 Any 6

Note: The Permission attribute is for use only when the value of the Use attribute is UserId, in which case the purpose is to search

for task packages for which the specified user has the specified permission.

ISO 23950:1 998(E) © ISO

82

Annex 4

(Normative)

ERR: Error Diagnostics

This standard defines and registers the diagnostic set bib-1 and the diagnostic format diag-1 . The following object identifiers are

assigned:

 bib-1 {Z39-50-diagnostic 1} (See ERR.1)

 diag-1 {Z39-50-diagnostic 2} (See ERR.2)

When version 2 is in force, a diagnostic record must conform to the following format:

DefaultDiagFormat : := SEQUENCE{

diagnosticSetId OBJECT IDENTIFIER,

condition INTEGER,

addinfo VisibleString}

The diagnostic record includes an integer corresponding to a condition or error, and an (object) identifier of the diagnostic

set definition that lists the condition corresponding to that integer.

When version 3 is in force, a diagnostic record may assume the form above, or alternatively, may be defined as

EXTERNAL, identified by an OBJECT IDENTIFIER (which identifies the diagnostic format, rather than the diagnostic set).

Bib-1 is a diagnostic set. It was originally defined and registered in Z39.50-1992. This standard includes an extended

definition; the conditions listed below for bib-1 include all those that were listed in the Z39.50-1992 bib-1 definition, as well as

several additional diagnostics that have been added. (In particular, several of the conditions described by diag-1 that can be

expressed by the above format have been added to bib-1 .)

Diag-1 is a diagnostic format. It includes several structures for diagnostic information, each tailored to the error

information being described. It also includes a single structure through which a diagnostic from a diagnostic set (e.g., bib-1) can

be referenced.

Diag-1 allows several diagnostic conditions within a single diagnostic record, to describe multiple errors pertaining to the

same record or operation. In particular, diagnostics from different diagnostic sets may be included within the same diag-1

diagnostic record.

ERR.1 Diagnostic Set Bib-1

Table A4-1 below is for use when DiagnosticSetId (within DefaultDiagFormat) equals the object identifier for diagnostic set bib-1 ,

in which case Condition takes values from the “Code” column below.

This table may also be used by diagnostic format diag-1 when defaultDiagRec is selected for “diagnostic,” and

DiagnosticSetId equals the object identifier for this diagnostic set. In that case, the values of “code” and “addinfo” are taken from

this table.

AddInfo is ASN.1 type VisibleString. However, for several of the diagnostics below, AddInfo is used to express the value

of a parameter that has an ASN.1 type other than VisibleString. Where Addinfo is used to express a numeric value, it should be a

character string representation of that value. Where Addinfo is used to express an object identifier, it should take the form of a

sequence of integers (each represented by a character string) separated by periods.

Table A4-1: Diagnostic Conditions

Code Meaning Addinfo

1 permanent system error (unspecified)

2 temporary system error (unspecified)

3 unsupported search (unspecified)

4 Terms only exclusion (stop) words (unspecified)

5 Too many argument words (unspecified)

6 Too many Boolean operators (unspecified)

7 Too many truncated words (unspecified)

8 Too many incomplete subfields (unspecified)

9 Truncated words too short (unspecified)

10 Invalid format for record number (search term) (unspecified)

11 Too many characters in search statement (unspecified)

12 Too many records retrieved (unspecified)

© ISO ISO 23950:1 998(E)

83

13 Present request out-of-range (unspecified)

14 System error in presenting records (unspecified)

15 Record not authorized to be sent intersystem (unspecified)

16 Record exceeds Preferred-message-size (unspecified)

17 Record exceeds Exceptional-record-size (unspecified)

18 Result set not supported as a search term (unspecified)

19 Only single result set as search term supported (unspecified)

20 Only ANDing of a single result set as search term (unspecified)

21 Result set exists and replace indicator off (unspecified)

22 Result set naming not supported (unspecified)

23 Specified combination of databases not supported (unspecified)

24 Element set names not supported (unspecified)

25 Specified element set name not valid for specified database (unspecified)

26 Only generic form of element set name supported (unspecified)

27 Result set no longer exists - unilaterally deleted by target (unspecified)

28 Result set is in use (unspecified)

29 One of the specified databases is locked (unspecified)

30 Specified result set does not exist (unspecified)

31 Resources exhausted - no results available (unspecified)

32 Resources exhausted - unpredictable partial results available (unspecified)

33 Resources exhausted - valid subset of results available (unspecified)

100 (unspecified) error (unspecified)

101 Access-control failure (unspecified)

102 Challenge required, could not be issued - operation terminated (unspecified)

103 Challenge required, could not be issued - record not included (unspecified)

104 Challenge failed - record not included (unspecified)

105 Terminated at origin request (unspecified)

106 No abstract syntaxes agreed to for this record (unspecified)

107 Query type not supported (unspecified)

108 Malformed query (unspecified)

109 Database unavailable database name

110 Operator unsupported operator

111 Too many databases specified maximum

112 Too many result sets created maximum

113 Unsupported attribute type type

114 Unsupported Use attribute value

115 Unsupported term value for Use attribute term

116 Use attribute required but not supplied (unspecified)

117 Unsupported Relation attribute value

118 Unsupported Structure attribute value

119 Unsupported Position attribute value

120 Unsupported Truncation attribute value

121 Unsupported Attribute Set oid

122 Unsupported Completeness attribute value

123 Unsupported attribute combination (unspecified)

124 Unsupported coded value for term value

125 Malformed search term (unspecified)

126 Illegal term value for attribute term

127 Unparsable format for unnormalized value value

128 Illegal result set name name

129 Proximity search of sets not supported (unspecified)

130 Illegal result set in proximity search result set name

131 Unsupported proximity relation value

132 Unsupported proximity unit code value

201 Proximity not supported with this attribute combination attribute list

202 Unsupported distance for proximity distance

203 Ordered flag not supported for proximity (unspecified)

205 Only zero step size supported for Scan (unspecified)

ISO 23950:1 998(E) © ISO

84

206 Specified step size not supported for Scan step size

207 Cannot sort according to sequence sequence

208 No result set name supplied on Sort (unspecified)

209 Generic sort not supported (database-specific sort only supported) (unspecified)

210 Database specific sort not supported (unspecified)

211 Too many sort keys number

212 Duplicate sort keys key

213 Unsupported missing data action value

214 Illegal sort relation relation

215 Illegal case value value

216 Illegal missing data action value

217 Segmentation: Cannot guarantee records will fit in specified segments (unspecified)

218 ES: Package name already in use name

219 ES: no such package, on modify/delete name

220 ES: quota exceeded (unspecified)

221 ES: extended service type not supported type

222 ES: permission denied on ES - id not authorized (unspecified)

223 ES: permission denied on ES - cannot modify or delete (unspecified)

224 ES: immediate execution failed (unspecified)

225 ES: immediate execution not supported for this service (unspecified)

226 ES: immediate execution not supported for these parameters (unspecified)

227 No data available in requested record syntax (unspecified)

228 Scan: malformed scan (unspecified)

229 Term type not supported type

230 Sort: too many input results max

231 Sort: incompatible record formats (unspecified)

232 Scan: term list not supported alternative term list

233 Scan: unsupported value of position-in-response value

234 Too many index terms processed number of terms

235 Database does not exist database name

236 Access to specified database denied database name

237 Sort: illegal sort (unspecified)

238 Record not available in requested syntax alternative suggested syntax(es)

239 Record syntax not supported syntax

240 Scan: Resources exhausted looking for satisfying terms (unspecified)

241 Scan: Beginning or end of term list (unspecified)

242 Segmentation: max-segment-size too small to segment record smallest acceptable size

243 Present: additional-ranges parameter not supported (unspecified)

244 Present: comp-spec parameter not supported (unspecified)

245 Type-1 query: restriction (‘resultAttr’) operand not supported (unspecified)

246 Type-1 query: ‘complex’ attributeValue not supported (unspecified)

247 Type-1 query: ‘attributeSet’ as part of AttributeElement not supported (unspecified)

ERR.2 Diagnostic Format Diag-1

This section defines the diagnostic format diag-1 .

DiagnosticFormatDiag1

{Z39-50-diagnosticFormat diag-1 (2)} DEFINITIONS : :=

BEGIN

IMPORTS Term, Specification, AttributeList, SortElement, DatabaseName,

DefaultDiagFormat, InternationalString FROM Z39-50-APDU-1995;

DiagnosticFormat : := SEQUENCE OF SEQUENCE{

diagnostic [1] CHOICE{

defaultDiagRec [1] IMPLICIT DefaultDiagFormat,

explicitDiagnostic [2] DiagFormat} OPTIONAL,

message [2] IMPLICIT InternationalString OPTIONAL}

© ISO ISO 23950:1 998(E)

85

DiagFormat : := CHOICE{

tooMany [1000] IMPLICIT SEQUENCE{

tooManyWhat [1] IMPLICIT INTEGER{

argumentWords (1),

truncatedWords (2),

BooleanOperators (3),

incompleteSubfields (4),

characters (5),

recordsRetrieved (6),

dataBasesSpecified (7),

resultSetsCreated (8),

indexTermsProcessed (9)} ,

max [2] IMPLICIT INTEGER OPTIONAL},

badSpec [1001] IMPLICIT SEQUENCE{ -- element set name or specification

spec [1] IMPLICIT Specification, -- esn or element spec not supported

db [2] IMPLICIT DatabaseName OPTIONAL,

-- if db specified, above spec not supported for db; otherwise,

-- spec not supported period.

goodOnes [3] IMPLICIT SEQUENCE OF Specification OPTIONAL

-- target supplies ones that are supported

} ,

dbUnavail [1002] IMPLICIT SEQUENCE{ -- database unavailable

db [1] IMPLICIT DatabaseName,

why [2] IMPLICIT SEQUENCE{

reasonCode [1] IMPLICIT INTEGER{

doesNotExist (0),

existsButUnavail (1),

locked (2),

accessDenied (3)} OPTIONAL,

message [2] IMPLICIT InternationalString OPTIONAL}} ,

unSupOp [1003] IMPLICIT INTEGER{ -unsupported operator

and (0),

or (1),

and-not (2),

prox (3)} ,

attribute [1004] IMPLICIT SEQUENCE{

 -- Applies for unsupported attribute set, attribute type,

 -- attribute value, or term (for a given attribute type or value).

id [1] IMPLICIT OBJECT IDENTIFIER,

-- if only “id” occurs, then attribute set is not supported

type [2] IMPLICIT INTEGER OPTIONAL,

-- must occur if value occurs.

value [3] IMPLICIT INTEGER OPTIONAL,

-- if omitted, and Type occurs, then Type is what is unsupported

term [4] Term OPTIONAL

-- If occurs, term is illegal or not supported, for attribute value,

-- if value occurs; otherwise, for type.

} ,

attCombo [1005] IMPLICIT SEQUENCE{ -- attribute combination not supported

 unsupportedCombination [1] IMPLICIT AttributeList,

 recommendedAlternatives [2] IMPLICIT SEQUENCE OF AttributeList OPTIONAL},

term [1006] IMPLICIT SEQUENCE{

problem [1] IMPLICIT INTEGER{

codedValue (1),

unparsable (2),

tooShort (3),

ISO 23950:1 998(E) © ISO

86

type (4)} OPTIONAL,

term [2] Term},

proximity [1007] CHOICE{ -- proximity diagnostics:

 resultSets [1] IMPLICIT NULL, -- proximity between sets not supported

badSet [2] IMPLICIT InternationalString, -- bad result set specified

relation [3] IMPLICIT INTEGER, -- 1 to 6 ; relation not supported

unit [4] IMPLICIT INTEGER, -- unsupported unit code

distance [5] IMPLICIT INTEGER, -- unsupported distance

attributes [6] AttributeList, -- proximity not supported with specified

-- attribute combination

ordered [7] IMPLICIT NULL, -- ordered flag not supported

exclusion [8] IMPLICIT NULL -- exclusion flag not supported

} ,

scan [1008] CHOICE{ -- scan diagnostics:

nonZeroStepSize [0] IMPLICIT NULL, -- only zero step size supported

specifiedStepSize [1] IMPLICIT NULL, -- specified step size not supported

termList1 [3] IMPLICIT NULL, -- term list not supported (no alternative supplied)

termList2 [4] IMPLICIT SEQUENCE OF AttributeList,

-- term list not supported (alternatives supplied)

posInResponse [5] IMPLICIT INTEGER{ --value of positionInResponse not supported

mustBeOne (1),

mustBePositive (2),

mustBeNonNegative (3),

other (4)} ,

resources [6] IMPLICIT NULL, -- resources exhausted looking for satisfying terms

endOfList [7] IMPLICIT NULL -- beginning or end of term list

} ,

sort [1009] CHOICE{

sequence [0] IMPLICIT NULL, -- cannot sort according to sequence

noRsName [1] IMPLICIT NULL, -- no result set name supplied

tooMany [2] IMPLICIT INTEGER, -- Too many input result sets,

-- maximum supplied.

incompatible [3] IMPLICIT NULL, -- records with different formats

-- not compatible for sorting

generic [4] IMPLICIT NULL, -- generic sort not supported

-- (db specific only)

dbSpecific [5] IMPLICIT NULL, -- db specific sort not supported

sortElement [6] SortElement,

key [7] IMPLICIT INTEGER{

tooMany (1), -- too many sort keys

duplicate (2)} , -- duplicate sort keys

action [8] IMPLICIT NULL, -- unsupported missing data action

illegal [9] IMPLICIT INTEGER{

relation (1), -- illegal sort relation

case (2), -- illegal case value

action (3), -- illegal missing data action

sort (4)} , -- illegal sort

 inputTooLarge [10] IMPLICIT SEQUENCE OF InternationalString,

-- one or more of the input result sets too large to sort

aggregateTooLarge [11] IMPLICIT NULL -- aggregate result set too large

} ,

segmentation [1010] CHOICE{

segmentCount [0] IMPLICIT NULL,

-- Cannot guarantee record will fit within max segments. Target

-- suggests that origin try again to retrieve record, without

-- including max-segment-count.

segmentSize [1] IMPLICIT INTEGER

-- record cannot be segmented into fragments such that the

-- largest will fit within max segment size specified. Target

-- supplies (in bytes) the smallest acceptable value of Max-

© ISO ISO 23950:1 998(E)

87

-- segment-size to retrieve the record.

} ,

extServices [1011] CHOICE{

req [1] IMPLICIT INTEGER{ -- bad request

nameInUse (1), -- package name already in use

noSuchName (2), -- no such package, on modify/delete

quota (3), -- quota exceeded

type (4)} , -- extended service type not supported

permission [2] IMPLICIT INTEGER{ -- permission denied on ES, because:

id (1), -- id not authorized, or

modifyDelete (2)} , -- cannot modify or delete

immediate [3] IMPLICIT INTEGER{ -- immediate execution:

failed (1), -- failed,

service (2), -- not supported for this service, or

parameters (3) -- for these parameters.

}} ,

accessCtrl [1012] CHOICE{

noUser [1] IMPLICIT NULL, -- no user to display challenge to

refused [2] IMPLICIT NULL, -- access control information refused by user

simple [3] IMPLICIT NULL, -- only simple form supported (target used

-- externally defined)

oid [4] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER,

-- oid not supported (origin supplies alternative

-- suggested oids)

alternative [5] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER,

-- origin insists that target use an alternative

-- challenge for this data (e.g., stronger

-- authentication or stronger Access control). The

-- origin supplies suggested alternative oids.

pwdInv [6] IMPLICIT NULL, -- password invalid

pwdExp [7] IMPLICIT NULL -- password expired

} ,

recordSyntax [1013] IMPLICIT SEQUENCE{ -- record cannot be transferred in requested syntax

unsupportedSyntax [1] IMPLICIT OBJECT IDENTIFIER,

suggestedAlternatives [2] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL}

}

END

ISO 23950:1 998(E) © ISO

88

Annex 5

REC: Record Syntaxes

(Normative)

This standard registers the following object identifiers for record syntaxes:

Object identifiers assigned for bibliographic syntaxes, not described via ASN.1:

Unimarc {Z39-50-recordSyntax 1 }

Intermarc {Z39-50-recordSyntax 2 }

CCF {Z39-50-recordSyntax 3 }

USmarc {Z39-50-recordSyntax 10 }

UKmarc {Z39-50-recordSyntax 11 }

Normarc {Z39-50-recordSyntax 12 }

Librismarc {Z39-50-recordSyntax 13 }

Danmarc {Z39-50-recordSyntax 14 }

Finmarc {Z39-50-recordSyntax 15 }

MAB {Z39-50-recordSyntax 16 }

Canmarc {Z39-50-recordSyntax 17 }

SBN {Z39-50-recordSyntax 18 }

Picamarc {Z39-50-recordSyntax 19 }

Ausmarc {Z39-50-recordSyntax 20 }

Ibermarc {Z39-50-recordSyntax 21 }

Note: The following transfer syntax (see ISO 2709) may be used in conjunction with the above bibliographic definitions:

ISO2709 {iso standard 2709 transfer-syntax (1) character-encoding (1)}

When presentation context negotiation is used, the above syntaxes may be paired with the transfer syntax identified by the object

identifier ISO2709 for the transfer-syntax for bibliographic records defined in ISO 2709. When presentation context negotiation is

not used, the above record syntaxes are assumed to be paired with ISO2709.

Object identifiers assigned for syntaxes which are described via ASN.1:

Explain {Z39-50-recordSyntax 100} (See REC.1)

SUTRS {Z39-50-recordSyntax 101} (See REC.2)

OPAC {Z39-50-recordSyntax 102} (See REC.3)

Summary {Z39-50-recordSyntax 103} (See REC.4)

GRS-1 {Z39-50-recordSyntax 105} (See REC.5)

Extended Services {Z39-50-recordSyntax 106} (See REC.6)

Note: The following transfer syntax (see ISO 8825) may be used in conjunction with these definitions:

ISO8825 : := OBJECT IDENTIFIER

{joint-iso-ccitt (2) basic-encoding (1)}

When presentation context negotiation is used, these syntaxes may be paired with the transfer syntax identified by the object

identifier ISO8825 for the transfer-syntax defined in ISO 8825. When presentation context negotiation is not used, the above

record syntaxes are assumed to be paired with ISO8825.

REC.1 Explain Record Syntax

RecordSyntax-explain

{Z39-50-recordSyntax explain (100)} DEFINITIONS : :=

© ISO ISO 23950:1 998(E)

89

BEGIN

IMPORTS AttributeSetId, Term, OtherInformation, DatabaseName, ElementSetName, IntUnit, Unit,

StringOrNumeric, Specification, InternationalString, AttributeList, AttributeElement FROM Z39-50-APDU-1995;

Explain-Record : := CHOICE{

-- Each of these may be used as search term when Use attribute is ‘explain-category’ .

 targetInfo [0] IMPLICIT TargetInfo,

 databaseInfo [1] IMPLICIT DatabaseInfo,

 schemaInfo [2] IMPLICIT SchemaInfo,

 tagSetInfo [3] IMPLICIT TagSetInfo,

 recordSyntaxInfo [4] IMPLICIT RecordSyntaxInfo,

 attributeSetInfo [5] IMPLICIT AttributeSetInfo,

 termListInfo [6] IMPLICIT TermListInfo,

 extendedServicesInfo [7] IMPLICIT ExtendedServicesInfo,

 attributeDetails [8] IMPLICIT AttributeDetails,

 termListDetails [9] IMPLICIT TermListDetails,

 elementSetDetails [10] IMPLICIT ElementSetDetails,

 retrievalRecordDetails [11] IMPLICIT RetrievalRecordDetails,

 sortDetails [12] IMPLICIT SortDetails,

 processing [13] IMPLICIT ProcessingInformation,

 variants [14] IMPLICIT VariantSetInfo,

 units [15] IMPLICIT UnitInfo,

 categoryList [100] IMPLICIT CategoryList}

-- Element set name ‘B’ (brief) retrieves:

-- - ‘commonInfo’ (except for otherInfo within commonInfo)

-- - key elements

-- - other elements designated as ‘non-key brief elements’

-- Esn ‘description’ retrieves brief elements as well as ‘description’ , and specific additional descriptive

-- elements if designated.

-- Element set name ‘F’ (full) retrieves all of the above, as well as those designated as “non-brief elements.” Some

-- elements designated as OPTIONAL may be mandatory in full records, and are so identified. (Note that all

-- elements that are not part of the brief element set must be designated as OPTIONAL in the ASN.1 , otherwise

-- it would be illegal to omit them.)

-- Other esns are defined (below) as needed.

— - - - - - - - - - - - - Info Records

 — Info records are mainly for software consumption

 — They describe individual entities within the target system:

 — The target itself

 — Individual databases

 — Schemas

 — Tag sets

 — Record syntaxes

 — Attribute sets

 — Term lists

 — Extended services

 — The information about each Schema, Tag Set, Record Syntax and Attribute Set should

 -- match the universal definitions of these items. The only exception is that a target may omit any

 -- items it doesn’ t support, for example the description of the bib-1 attribute set may omit attributes

 -- that the target does not support under any circumstances.

 — Databases that may be searched together can be listed in the dbCombinations element of the TargetInfo record.

TargetInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 name [1] IMPLICIT InternationalString,

 — Non-key brief elements follow:

 recent-news [2] IMPLICIT HumanString OPTIONAL,

ISO 23950:1 998(E) © ISO

90

 icon [3] IMPLICIT IconObject OPTIONAL,

 namedResultSets [4] IMPLICIT BOOLEAN,

 multipleDBsearch [5] IMPLICIT BOOLEAN,

 maxResultSets [6] IMPLICIT INTEGER OPTIONAL,

 maxResultSize [7] IMPLICIT INTEGER OPTIONAL,

 maxTerms [8] IMPLICIT INTEGER OPTIONAL,

 timeoutInterval [9] IMPLICIT IntUnit OPTIONAL,

 welcomeMessage [10] IMPLICIT HumanString OPTIONAL,

 — non-brief elements follow:

 — ‘description’ esn retrieves the following two (as well as brief):

 contactInfo [11] IMPLICIT ContactInfo OPTIONAL,

 description [12] IMPLICIT HumanString OPTIONAL,

 nicknames [13] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

 usage-restrictions [14] IMPLICIT HumanString OPTIONAL,

 paymentAddr [15] IMPLICIT HumanString OPTIONAL,

 hours [16] IMPLICIT HumanString OPTIONAL,

 dbCombinations [17] IMPLICIT SEQUENCE OF DatabaseList OPTIONAL,

 addresses [18] IMPLICIT SEQUENCE OF NetworkAddress OPTIONAL,

 languages [101] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

-- Languages supported for message strings. Each is a three-character

-- language code from Z39.53-1994.

-- characterSets [102] this tag reserved for “character sets supported for name and message strings.”

 — commonAccessInfo elements list objects the target supports. All objects listed in

 — AccessInfo for any individual database should also be listed here.

 commonAccessInfo [19] IMPLICIT AccessInfo OPTIONAL}

DatabaseInfo : := SEQUENCE {

-- A target may provide “virtual databases” that are combinations of individual databases. These

-- databases are indicated by the presence of subDbs in the combination database’ s DatabaseDescription.

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 name [1] IMPLICIT DatabaseName,

 — Non-key brief elements follow:

 explainDatabase [2] IMPLICIT NULL OPTIONAL,

-- If present, this database is the Explain database, or an Explain database

-- for a different server, possibly on a different host. The means by which

-- that server may be accessed is not addressed by this standard. One

-- suggested possibility is an implementor agreement whereby the

-- database name is a url which may be used to connect to the server.

 nicknames [3] IMPLICIT SEQUENCE OF DatabaseName OPTIONAL,

 icon [4] IMPLICIT IconObject OPTIONAL,

 user-fee [5] IMPLICIT BOOLEAN,

 available [6] IMPLICIT BOOLEAN,

 titleString [7] IMPLICIT HumanString OPTIONAL,

 — Non-brief elements follow:

 keywords [8] IMPLICIT SEQUENCE OF HumanString OPTIONAL,

 description [9] IMPLICIT HumanString OPTIONAL,

 associatedDbs [10] IMPLICIT DatabaseList OPTIONAL,

-- databases that may be searched in combination with this one

 subDbs [11] IMPLICIT DatabaseList OPTIONAL,

 -- When present, this database is a composite representing the combined

 -- databases ‘subDbs’ . The individual subDbs are also available.

 disclaimers [12] IMPLICIT HumanString OPTIONAL,

 news [13] IMPLICIT HumanString OPTIONAL,

 recordCount [14] CHOICE {

 actualNumber [0] IMPLICIT INTEGER,

 approxNumber [1] IMPLICIT INTEGER} OPTIONAL,

© ISO ISO 23950:1 998(E)

91

 defaultOrder [15] IMPLICIT HumanString OPTIONAL,

 avRecordSize [16] IMPLICIT INTEGER OPTIONAL,

 maxRecordSize [17] IMPLICIT INTEGER OPTIONAL,

 hours [18] IMPLICIT HumanString OPTIONAL,

 bestTime [19] IMPLICIT HumanString OPTIONAL,

 lastUpdate [20] IMPLICIT GeneralizedTime OPTIONAL,

 updateInterval [21] IMPLICIT IntUnit OPTIONAL,

 coverage [22] IMPLICIT HumanString OPTIONAL,

 proprietary [23] IMPLICIT BOOLEAN OPTIONAL, -- mandatory in full record

 copyrightText [24] IMPLICIT HumanString OPTIONAL,

 copyrightNotice [25] IMPLICIT HumanString OPTIONAL,

 producerContactInfo [26] IMPLICIT ContactInfo OPTIONAL,

 supplierContactInfo [27] IMPLICIT ContactInfo OPTIONAL,

 submissionContactInfo [28] IMPLICIT ContactInfo OPTIONAL,

 — accessInfo lists items connected with the database. All listed items should be in the target’ s AccessInfo.

 accessInfo [29] IMPLICIT AccessInfo OPTIONAL}

SchemaInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 schema [1] IMPLICIT OBJECT IDENTIFIER,

 — Non-key brief elements follow:

 name [2] IMPLICIT InternationalString,

 — Non-brief elements follow:

 description [3] IMPLICIT HumanString OPTIONAL,

 tagTypeMapping [4] IMPLICIT SEQUENCE OF SEQUENCE {

tagType [0] IMPLICIT INTEGER,

tagSet [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

-- If tagSet is omitted, then this tagType is for a tagSet locally defined

-- within the schema that cannot be referenced by another schema.

defaultTagType [2] IMPLICIT NULL OPTIONAL

 } OPTIONAL,

 recordStructure [5] IMPLICIT SEQUENCE OF ElementInfo OPTIONAL}

— ElementInfo referenced in SchemaInfo and RecordSyntaxInfo

ElementInfo : := SEQUENCE {

elementName [1] IMPLICIT InternationalString,

elementTagPath[2] IMPLICIT Path,

dataType [3] ElementDataType OPTIONAL, — If omitted, not specified.

 required [4] IMPLICIT BOOLEAN,

repeatable [5] IMPLICIT BOOLEAN,

 description [6] IMPLICIT HumanString OPTIONAL}

— Path is referenced by ElementInfo as well as PerElementDetails

 Path : := SEQUENCE OF SEQUENCE{

 tagType [1] IMPLICIT INTEGER,

 tagValue [2] StringOrNumeric}

ElementDataType : := CHOICE{

 primitive [0] IMPLICIT PrimitiveDataType,

 structured [1] IMPLICIT SEQUENCE OF ElementInfo}

PrimitiveDataType : := INTEGER{

 octetString (0),

 numeric (1),

 date (2),

 external (3),

 string (4),

 trueOrFalse (5),

 oid (6),

ISO 23950:1 998(E) © ISO

92

 intUnit (7),

empty (8),

 noneOfTheAbove (100) — see ‘description’

}

TagSetInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 tagSet [1] IMPLICIT OBJECT IDENTIFIER,

 — non-key brief elements follow:

 name [2] IMPLICIT InternationalString,

 — non-brief elements follow:

 description [3] IMPLICIT HumanString OPTIONAL,

 elements [4] IMPLICIT SEQUENCE OF SEQUENCE {

 elementname [1] I MPLICIT InternationalString,

nicknames [2] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

 elementTag [3] StringOrNumeric,

 description [4] IMPLICIT HumanString OPTIONAL,

dataType [5] PrimitiveDataType OPTIONAL,

-- If the data type is expected to be structured, that is described in the schema info,

-- and datatype is omitted here.

 otherTagInfo OtherInformation OPTIONAL} OPTIONAL}

RecordSyntaxInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 recordSyntax [1] IMPLICIT OBJECT IDENTIFIER,

 — Non-key brief elements follow:

 name [2] IMPLICIT InternationalString,

 — non-brief elements follow:

 transferSyntaxes [3] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 description [4] IMPLICIT HumanString OPTIONAL,

 asn1Module [5] IMPLICIT InternationalString OPTIONAL,

 abstractStructure [6] IMPLICIT SEQUENCE OF ElementInfo OPTIONAL

— Omitting abstractStructure only means target isn’ t using

 — Explain to describe the structure, not that there is no structure.

 }

AttributeSetInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 attributeSet [1] IMPLICIT AttributeSetId,

 — non-key brief elements follow:

 name [2] IMPLICIT InternationalString,

 — non-brief elements follow:

 attributes [3] IMPLICIT SEQUENCE OF AttributeType OPTIONAL,

-- mandatory in full record

 description [4] IMPLICIT HumanString OPTIONAL}

-- AttributeType referenced in AttributeSetInfo

AttributeType : := SEQUENCE {

name [0] IMPLICIT InternationalString OPTIONAL,

description [1] IMPLICIT HumanString OPTIONAL,

 attributeType [2] IMPLICIT INTEGER,

attributeValues [3] IMPLICIT SEQUENCE OF AttributeDescription}

AttributeDescription : := SEQUENCE {

name [0] IMPLICIT InternationalString OPTIONAL,

description [1] IMPLICIT HumanString OPTIONAL,

© ISO ISO 23950:1 998(E)

93

attributeValue [2] StringOrNumeric,

equivalentAttributes [3] IMPLICIT SEQUENCE OF StringOrNumeric OPTIONAL

-- each is an occurrence of ‘attributeValue’ from AttributeDescription for a

-- different attribute. Equivalences listed here should be derived from the

-- attribute set definition, not from a particular server’ s behavior.

}

TermListInfo : := SEQUENCE{

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 — Non-key brief elements follow:

 termLists [2] IMPLICIT SEQUENCE OF SEQUENCE{

name [1] IMPLICIT InternationalString,

title [2] IMPLICIT HumanString OPTIONAL,

 --Title is for users to see and can differ by language. Name, on the

-- other hand, is typically a short string not necessarily meant to be

 -- human-readable, and not variable by language.

searchCost [3] IMPLICIT INTEGER {

optimized (0),-- The attribute (or combination) associated

-- with this list will do fast searches.

 normal (1),-- The attribute (combination) will work as

-- expected. So there’ s probably an index for the

-- attribute (combination) or some similar

 -- mechanism.

 expensive (2),-- Can use the attribute (combination), but it

-- might not provide satisfactory results.

-- Probably there is no index, or post-

-- processing of records is required.

 filter (3)-- can’ t search with this attribute (combination) alone.

 } OPTIONAL,

 scannable [4] IMPLICIT BOOLEAN, -- ‘ true’ means this list can be scanned.

 broader [5] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

 narrower [6] IMPLICIT SEQUENCE OF InternationalString OPTIONAL

-- broader and narrower list alternative term lists related to this one.

-- The term lists so listed should also be in this termLists structure.

}

-- no non-brief elements

}

ExtendedServicesInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 type [1] IMPLICIT OBJECT IDENTIFIER,

 — Non-key brief elements follow:

 name [2] IMPLICIT InternationalString OPTIONAL,

-- should be supplied if privateType is ‘ true’

 privateType [3] IMPLICIT BOOLEAN,

 restrictionsApply [5] IMPLICIT BOOLEAN, -- if ‘ true’ see ‘description’

 feeApply [6] IMPLICIT BOOLEAN, -- if ‘ true’ see ‘description’

 available [7] IMPLICIT BOOLEAN,

 retentionSupported [8] IMPLICIT BOOLEAN,

 waitAction [9] IMPLICIT INTEGER{

waitSupported (1),

waitAlways (2),

waitNotSupported (3),

depends (4),

notSaying (5)} ,

ISO 23950:1 998(E) © ISO

94

 — non-brief elements follow:

-- To get brief plus ‘description’ use esn ‘description’

 description [10] IMPLICIT HumanString OPTIONAL,

 -- to get above elements and ‘specificExplain’ use esn ‘specificExplain’

 specificExplain [11] IMPLICIT EXTERNAL OPTIONAL,

-- Use oid of specific ES, and select choice [3] ‘explain’ . Format

-- to be developed in conjunction with the specific ES definition.

-- to get all elements except ‘specificExplain’ , use esn ‘asn’

 esASN [12] IMPLICIT InternationalString OPTIONAL -- the ASN.1 for this ES

}

— - - - - - - - - - - - - Detail records

 --The detail records describe relationships among entities supported by the target. RetrievalRecordDetails describes

 -- the way that schema elements are mapped into record elements. This mapping may be different for each

 -- combination of database, schema, record syntax. The per-element details describe the default mapping.

 -- Origin-request re-tagging can change that mapping. When multiple databases are listed in a databaseNames

 -- element, the record applies equally to all of the listed databases. This is unrelated to searching the databases

 -- together. AttributeDetails describes how databases can be searched. Each supported attribute is listed, and the

 -- allowable combinations can be described.

AttributeDetails : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 — Non-brief elements follow:

 attributesBySet [2] IMPLICIT SEQUENCE OF AttributeSetDetails OPTIONAL,

-- mandatory in full record

 attributeCombinations [3] IMPLICIT AttributeCombinations OPTIONAL}

-- AttributeSetDetails referenced by AttributeDetails

AttributeSetDetails : := SEQUENCE {

 attributeSet [0] IMPLICIT AttributeSetId,

 attributesByType [1] IMPLICIT SEQUENCE OF AttributeTypeDetails }

 AttributeTypeDetails : := SEQUENCE {

 attributeType [0] IMPLICIT INTEGER,

 defaultIfOmitted [1] IMPLICIT OmittedAttributeInterpretation OPTIONAL,

 attributeValues [2] IMPLICIT SEQUENCE OF AttributeValue OPTIONAL }

 -- If no attributeValues are supplied, all values of this type are fully

-- supported, and the descriptions in AttributeSetInfo are adequate.

OmittedAttributeInterpretation : := SEQUENCE {

 defaultValue [0] StringOrNumeric OPTIONAL,

 -- A default value is listed if that’ s how the server works

 defaultDescription [1] IMPLICIT HumanString OPTIONAL }

 -- The human-readable description should generally be provided.

-- It is legal for both default elements to be missing, which

-- means that the target will allow the attribute type to be

-- omitted, but isn’ t saying what it will do.

AttributeValue : := SEQUENCE {

 value [0] StringOrNumeric,

 description [1] IMPLICIT HumanString OPTIONAL,

 subAttributes [2] IMPLICIT SEQUENCE OF StringOrNumeric OPTIONAL,

 superAttributes [3] IMPLICIT SEQUENCE OF StringOrNumeric OPTIONAL,

 partialSupport [4] IMPLICIT NULL OPTIONAL }

-- partialSupport indicates that an attributeValue is accepted, but may not be processed in the

-- “expected” way. One important reason for this is composite databases: in this case partialSupport

-- may indicate that only some of the subDbs support the attribute, and others ignore it.

© ISO ISO 23950:1 998(E)

95

TermListDetails : := SEQUENCE{ -- one for each termList in TermListInfo

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 termListName [1] IMPLICIT InternationalString,

 — Non-key elements (all non-brief) follow:

 description [2] IMPLICIT HumanString OPTIONAL,

 attributes [3] IMPLICIT AttributeCombinations OPTIONAL,

 — Pattern for attributes that hit this list. Mandatory in full record

 scanInfo [4] IMPLICIT SEQUENCE {

 maxStepSize [0] IMPLICIT INTEGER OPTIONAL,

 collatingSequence [1] IMPLICIT HumanString OPTIONAL,

 increasing [2] IMPLICIT BOOLEAN OPTIONAL} OPTIONAL,

-- Occurs only if list is scannable. If list is scannable and if scanInfo is omitted,

-- target doesn’ t consider these important.

 estNumberTerms [5] IMPLICIT INTEGER OPTIONAL,

 sampleTerms [6] IMPLICIT SEQUENCE OF Term OPTIONAL}

ElementSetDetails : := SEQUENCE {

-- ElementSetDetails describes the way that database records are mapped to record elements. This

-- mapping may be different for each combination of database name and element set. The database record

-- description is a schema, which may be private to the target. The schema’ s abstract record structure

-- and tag sets provide the vocabulary for discussing record content; their presence in the Explain

-- database does not imply support for complex retrieval specification.

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 elementSetName [2] IMPLICIT ElementSetName,

 recordSyntax [3] IMPLICIT OBJECT IDENTIFIER,

 — Non-key Brief elements follow:

 schema [4] IMPLICIT OBJECT IDENTIFIER,

 — Non-brief elements follow:

 description [5] IMPLICIT HumanString OPTIONAL,

 detailsPerElement [6] IMPLICIT SEQUENCE OF PerElementDetails OPTIONAL -- mandatory in full record

}

RetrievalRecordDetails : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 schema [2] IMPLICIT OBJECT IDENTIFIER,

 recordSyntax [3] IMPLICIT OBJECT IDENTIFIER,

 — Non-brief elements follow:

 description [4] IMPLICIT HumanString OPTIONAL,

 detailsPerElement [5] IMPLICIT SEQUENCE OF PerElementDetails OPTIONAL

-- mandatory in full record

}

-- PerElementDetails is referenced in RetrievalRecordDetails and ElementSetDetails.

PerElementDetails : := SEQUENCE {

 name [0] IMPLICIT InternationalString OPTIONAL,

 — If the name is omitted, the record syntax’ s name for this element

-- is appropriate.

 recordTag [1] IMPLICIT RecordTag OPTIONAL,

 — The record tag may be omitted if tags are inappropriate for the record

-- syntax, or if the origin can be expected to know it for some other reason.

 schemaTags [2] IMPLICIT SEQUENCE OF Path OPTIONAL,

 — The information from the listed schema elements is combined

-- in some way to produce the data sent in the listed record tag. The

-- ‘contents’ element below may describe the logic used.

 maxSize [3] IMPLICIT INTEGER OPTIONAL,

 minSize [4] IMPLICIT INTEGER OPTIONAL,

ISO 23950:1 998(E) © ISO

96

 avgSize [5] IMPLICIT INTEGER OPTIONAL,

 fixedSize [6] IMPLICIT INTEGER OPTIONAL,

 repeatable [8] IMPLICIT BOOLEAN,

 required [9] IMPLICIT BOOLEAN,

— ‘required’ really means that target will always supply the element.

 description [12] IMPLICIT HumanString OPTIONAL,

 contents [13] IMPLICIT HumanString OPTIONAL,

 billingInfo [14] IMPLICIT HumanString OPTIONAL,

 restrictions [15] IMPLICIT HumanString OPTIONAL,

 alternateNames [16] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

 genericNames [17] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

 searchAccess [18] IMPLICIT AttributeCombinations OPTIONAL }

-- RecordTag referenced in PerElementDetails above

RecordTag : := SEQUENCE {

 qualifier [0] StringOrNumeric OPTIONAL,

— E.g. , tag set for GRS-1

 tagValue [1] StringOrNumeric}

SortDetails : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

— Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 — No non-key brief elements

 — Non-brief elements follow:

 sortKeys [2] IMPLICIT SEQUENCE OF SortKeyDetails OPTIONAL

-- mandatory in full record

}

SortKeyDetails : := SEQUENCE {

 description [0] IMPLICIT HumanString OPTIONAL,

 elementSpecifications [1] IMPLICIT SEQUENCE OF Specification OPTIONAL,

 — each specification is a way of specifying this same sort key

 attributeSpecifications [2] IMPLICIT AttributeCombinations OPTIONAL,

 — each combination is a way of specifying this same sort key

 sortType [3] CHOICE {

character [0] IMPLICIT NULL,

numeric [1] IMPLICIT NULL,

structured [2] IMPLICIT HumanString} OPTIONAL,

 caseSensitivity [4] IMPLICIT INTEGER {

 always (0), -- always case-sensitive

never (1), -- never case-sensitive

default-yes (2), -- case-sensitivity is as specified on request, and if not

-- specified, case-sensitive.

default-no (3)} -- case-sensitivity is as specified on request, and if not

-- specified, not case-sensitive.

OPTIONAL}

ProcessingInformation : := SEQUENCE{

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Key elements follow:

 databaseName [1] IMPLICIT DatabaseName,

 processingContext [2] IMPLICIT INTEGER {

 access (0), -- e.g. , choosing databases

 search (1), -- e.g. , “search strategies” or search forms

 retrieval (2), -- e.g. , recommended element combinations

 record-presentation (3), -- display of retrieved records

 record-handling (4) -- handling (e.g., saving) of retrieved records

} ,

 name [3] IMPLICIT InternationalString,

© ISO ISO 23950:1 998(E)

97

 oid [4] IMPLICIT OBJECT IDENTIFIER,

 — No non-key brief elements

 — Non-brief elements follow:

 description [5] IMPLICIT HumanString OPTIONAL,

-- use element set name ‘description’ to retrieve all except instructions.

 instructions [6] IMPLICIT EXTERNAL OPTIONAL -- mandatory in full record

}

VariantSetInfo : := SEQUENCE {

-- A record in this category describes a variant set definition, i.e., classes, types, and values, for a specific

-- variant set definition supported by the target. Support by the target of a particular variant set definition

-- does not imply that the definition is supported for any specific database or element.

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

— Key elements follow:

 variantSet [1] IMPLICIT OBJECT IDENTIFIER,

— Non-key brief elements follow:

 name [2] IMPLICIT InternationalString,

— Non-brief elements follow:

 variants [3] IMPLICIT SEQUENCE OF VariantClass OPTIONAL

 — mandatory in full record

 }

— Subsidiary structures for VariantSetInfo

VariantClass : := SEQUENCE {

 name [0] IMPLICIT InternationalString OPTIONAL,

 description [1] IMPLICIT HumanString OPTIONAL,

 variantClass [2] IMPLICIT INTEGER,

 variantTypes [3] IMPLICIT SEQUENCE OF VariantType}

VariantType : := SEQUENCE {

 name [0] IMPLICIT InternationalString OPTIONAL,

 description [1] IMPLICIT HumanString OPTIONAL,

 variantType [2] IMPLICIT INTEGER,

 variantValue [3] IMPLICIT VariantValue OPTIONAL}

VariantValue : := SEQUENCE {

 dataType [0] PrimitiveDataType,

 values [1] ValueSet OPTIONAL }

ValueSet : := CHOICE {

 range [0] IMPLICIT ValueRange,

 enumerated [1] IMPLICIT SEQUENCE OF ValueDescription }

ValueRange : := SEQUENCE {

 — At last one the following must be supplied, both may be supplied.

 lower [0] ValueDescription OPTIONAL,

 upper [1] ValueDescription OPTIONAL }

ValueDescription : := CHOICE{

integer INTEGER,

 string InternationalString,

 octets OCTET STRING,

 oid OBJECT IDENTIFIER,

 unit [1] IMPLICIT Unit,

 valueAndUnit [2] IMPLICIT IntUnit

 — oid and unit can’ t be used in a ValueRange

 }

UnitInfo : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

— Key elements follow:

 unitSystem [1] IMPLICIT InternationalString,

 — No non-key brief elements

ISO 23950:1 998(E) © ISO

98

 — Non-brief elements follow:

 description [2] IMPLICIT HumanString OPTIONAL,

 units [3] IMPLICIT SEQUENCE OF UnitType OPTIONAL

 — mandatory in full record

 }

— Subsidiary structures for UnitInfo

UnitType : := SEQUENCE {

name [0] IMPLICIT InternationalString OPTIONAL,

description [1] IMPLICIT HumanString OPTIONAL,

unitType [2] StringOrNumeric,

units [3] IMPLICIT SEQUENCE OF Units}

Units : := SEQUENCE {

name [0] IMPLICIT InternationalString OPTIONAL,

description [1] IMPLICIT HumanString OPTIONAL,

unit [2] StringOrNumeric}

CategoryList : := SEQUENCE {

 commonInfo [0] IMPLICIT CommonInfo OPTIONAL,

 — Only one record expected per Explain database. All elements appear in brief presentation.

 categories [1] IMPLICIT SEQUENCE OF CategoryInfo }

CategoryInfo : := SEQUENCE {

 category [1] IMPLICIT InternationalString,

 originalCategory [2] IMPLICIT InternationalString OPTIONAL,

 description [3] IMPLICIT HumanString OPTIONAL,

 asn1Module [4] IMPLICIT InternationalString OPTIONAL}

— - - - - - - - - - - - - - Subsidiary definitions

CommonInfo : := SEQUENCE {

 dateAdded [0] IMPLICIT GeneralizedTime OPTIONAL,

 dateChanged [1] IMPLICIT GeneralizedTime OPTIONAL,

 expiry [2] IMPLICIT GeneralizedTime OPTIONAL,

 humanString-Language [3] IMPLICIT LanguageCode OPTIONAL,

-- following not to occur for brief:

 otherInfo OtherInformation OPTIONAL}

HumanString : := SEQUENCE OF SEQUENCE {

 language [0] IMPLICIT LanguageCode OPTIONAL,

text [1] IMPLICIT InternationalString}

IconObject : := SEQUENCE OF SEQUENCE{

-- Note that the “SEQUENCE OF” is to allow alternative representations of the same icon; it is not

-- intended to allow multiple icons.

bodyType [1] CHOICE{

 ianaType [1] IMPLICIT InternationalString,

z3950type [2] IMPLICIT InternationalString,

 otherType [3] IMPLICIT InternationalString} ,

content [2] IMPLICIT OCTET STRING}

LanguageCode : := InternationalString — from ANSI/NISO Z39.53-1994

ContactInfo : := SEQUENCE {

 name [0] IMPLICIT InternationalString OPTIONAL,

 description [1] IMPLICIT HumanString OPTIONAL,

 address [2] IMPLICIT HumanString OPTIONAL,

 email [3] IMPLICIT InternationalString OPTIONAL,

 phone [4] IMPLICIT InternationalString OPTIONAL}

NetworkAddress : := CHOICE {

 internetAddress [0] IMPLICIT SEQUENCE {

 hostAddress [0] IMPLICIT InternationalString,

© ISO ISO 23950:1 998(E)

99

 port [1] IMPLICIT INTEGER},

 osiPresentationAddress [1] IMPLICIT SEQUENCE {

 pSel [0] IMPLICIT InternationalString,

 sSel [1] IMPLICIT InternationalString OPTIONAL,

 tSel [2] IMPLICIT InternationalString OPTIONAL,

 nSap [3] IMPLICIT InternationalString} ,

 other [2] IMPLICIT SEQUENCE {

 type [0] IMPLICIT InternationalString,

address [1] IMPLICIT InternationalString}}

AccessInfo : := SEQUENCE {

-- AccessInfo contains the fundamental information about what facilities are required to use this target

-- or server. For example, if an origin can handle none of the record syntaxes a database can provide,

-- it might choose not to access the database.

 queryTypesSupported [0] IMPLICIT SEQUENCE OF QueryTypeDetails OPTIONAL,

 diagnosticsSets [1] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 attributeSetIds [2] IMPLICIT SEQUENCE OF AttributeSetId OPTIONAL,

 schemas [3] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 recordSyntaxes [4] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 resourceChallenges [5] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 restrictedAccess [6] IMPLICIT AccessRestrictions OPTIONAL,

 costInfo [8] IMPLICIT Costs OPTIONAL,

 variantSets [9] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 elementSetNames [10] IMPLICIT SEQUENCE OF ElementSetName OPTIONAL,

 unitSystems [11] IMPLICIT SEQUENCE OF InternationalString}

-- begin auxiliary definitions for AccessInfo

-- Begin Query Details

QueryTypeDetails : := CHOICE {

 private [0] IMPLICIT PrivateCapabilities,

 rpn [1] IMPLICIT RpnCapabilities,

 iso8777 [2] IMPLICIT Iso8777Capabilities,

 z39-58 [100] IMPLICIT HumanString,

 erpn [101] IMPLICIT RpnCapabilities,

 rankedList [102] IMPLICIT HumanString}

PrivateCapabilities : := SEQUENCE {

 operators [0] IMPLICIT SEQUENCE OF SEQUENCE {

 operator [0] IMPLICIT InternationalString,

 description [1] IMPLICIT HumanString OPTIONAL } OPTIONAL,

 searchKeys [1] IMPLICIT SEQUENCE OF SearchKey OPTIONAL, -- field names that can be searched

 description [2] IMPLICIT SEQUENCE OF HumanString OPTIONAL }

RpnCapabilities : := SEQUENCE {

 operators [0] IMPLICIT SEQUENCE OF INTEGER OPTIONAL,

 — Omitted means all operators are supported.

 resultSetAsOperandSupported [1] IMPLICIT BOOLEAN,

 restrictionOperandSupported [2] IMPLICIT BOOLEAN,

 proximity [3] IMPLICIT ProximitySupport OPTIONAL}

Iso8777Capabilities : := SEQUENCE {

 searchKeys [0] IMPLICIT SEQUENCE OF SearchKey, -- field names that may be searched

 restrictions [1] IMPLICIT HumanString OPTIONAL

— Omitted means supported, not specifying units.

 }

ProximitySupport : := SEQUENCE {

 anySupport [0] IMPLICIT BOOLEAN,

 -- ‘false’ means no proximity support, in which case unitsSupported not supplied.

 unitsSupported [1] IMPLICIT SEQUENCE OF CHOICE{

 known [1] IMPLICIT INTEGER, -- values from KnownProximityUnit

private [2] IMPLICIT SEQUENCE{

unit [0] IMPLICIT INTEGER,

ISO 23950:1 998(E) © ISO

1 00

description [1] HumanString OPTIONAL}} OPTIONAL}

SearchKey : := SEQUENCE {

 searchKey [0] IMPLICIT InternationalString,

 description [1] IMPLICIT HumanString OPTIONAL }

-- End Query details

AccessRestrictions : := SEQUENCE OF SEQUENCE {

 accessType [0] INTEGER {

 any (0),

 search (1),

 present (2),

 specific-elements (3),

 extended-services (4),

by-database (5)} ,

 accessText [1] IMPLICIT HumanString OPTIONAL,

 accessChallenges [2] IMPLICIT SEQUENCE OF OBJECT IDENTIFIER OPTIONAL}

Costs : := SEQUENCE {

 connectCharge [0] IMPLICIT Charge OPTIONAL, — Per-connection charge

 connectTime [1] IMPLICIT Charge OPTIONAL, — Time-based charge

 displayCharge [2] IMPLICIT Charge OPTIONAL, — Per-record charge

 searchCharge [3] IMPLICIT Charge OPTIONAL, — Per-search charge

 subscriptCharge [4] IMPLICIT Charge OPTIONAL, -- Subscription charges

 otherCharges [5] IMPLICIT SEQUENCE OF SEQUENCE{ — Other charges

forWhat [1] IMPLICIT HumanString,

charge [2] IMPLICIT Charge} OPTIONAL}

Charge : := SEQUENCE{

 cost [1] IMPLICIT IntUnit,

 perWhat [2] IMPLICIT Unit OPTIONAL,

 — e.g. , “second,” “minute,” “line,” “record.”. .

 text [3] IMPLICIT HumanString OPTIONAL}

-- End Auxiliary definitions for AccessInfo

DatabaseList : := SEQUENCE OF DatabaseName

AttributeCombinations : := SEQUENCE {

 defaultAttributeSet [0] IMPLICIT AttributeSetId,

 -- Default for the combinations. Also probably a good choice for the default

-- in searches, but that isn’ t required.

 legalCombinations [1] IMPLICIT SEQUENCE OF AttributeCombination }

AttributeCombination : := SEQUENCE OF AttributeOccurrence

— An AttributeCombination is a pattern for legal combination of attributes

AttributeOccurrence : := SEQUENCE {

— An AttributeOccurrence lists the legal values for a specific attribute type in a combination.

 attributeSet [0] IMPLICIT AttributeSetId OPTIONAL,

 attributeType [1] IMPLICIT INTEGER,

 mustBeSupplied [2] IMPLICIT NULL OPTIONAL,

 attributeValues CHOICE {

 any-or-none [3] IMPLICIT NULL, — All supported values are OK

 specific [4] IMPLICIT SEQUENCE OF StringOrNumeric}}

 — Only these values allowed

END

REC.2 Simple Unstructured Text Record Syntax

The Simple Unstructured Text Record Syntax (SUTRS) is intended to be used as a record syntax in a Search or Present response,

to present textual data so that the origin may display them with little or no analysis and manipulation.

A SUTRS record is unstructured; the text of a SUTRS record might represent individual elements, but the elements are not

explicitly identified by the syntax. The convention prescribed by the SUTRS definition is to use a delimiter within the text to

© ISO ISO 23950:1 998(E)

1 01

indicate the end of a line of text. The prescribed line terminator is ASCII LF (X’0A’), thus a SUTRS record consists simply of a

string of textual data.

This definition recommends that the maximum line length be 72 characters unless an alternative maximum is requested,

for example via a variantRequest. This is not an absolute maximum, but it is recommended that targets make a best effort to limit

lines to this length.

RecordSyntax-SUTRS

{Z39-50-recordSyntax SUTRS (101)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

 SutrsRecord : := InternationalString

-- Line terminator is ASCII LF (X’0A’).

-- Recommended maximum line length is 72 characters.

END

REC.3 OPAC Record Syntax

RecordSyntax-opac

{Z39-50-recordSyntax opac (102)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

OPACRecord : := SEQUENCE {

bibliographicRecord [1] IMPLICIT EXTERNAL OPTIONAL,

holdingsData [2] IMPLICIT SEQUENCE OF HoldingsRecord OPTIONAL}

HoldingsRecord : := CHOICE {

marcHoldingsRecord [1] IMPLICIT EXTERNAL,

holdingsAndCirc [2] IMPLICIT HoldingsAndCircData}

HoldingsAndCircData : := SEQUENCE {

— the following elements are required to display holdings in conformance with NISO standards.

typeOfRecord [1] IMPLICIT InternationalString OPTIONAL, — LDR 06

encodingLevel [2] IMPLICIT InternationalString OPTIONAL, — LDR 017

format [3] IMPLICIT InternationalString OPTIONAL, — 007 00-01

receiptAcqStatus [4] IMPLICIT InternationalString OPTIONAL, — 008 06

generalRetention [5] IMPLICIT InternationalString OPTIONAL, — 008 12

completeness [6] IMPLICIT InternationalString OPTIONAL, — 008 16

 dateOfReport [7] IMPLICIT InternationalString OPTIONAL, — 008 26-31

nucCode [8] IMPLICIT InternationalString OPTIONAL, — 852 $a

localLocation [9] IMPLICIT InternationalString OPTIONAL, — 852 $b

shelvingLocation [10] IMPLICIT InternationalString OPTIONAL, — 852 $c

callNumber [11] IMPLICIT InternationalString OPTIONAL, — 852 $h and $i

shelvingData [12] IMPLICIT InternationalString OPTIONAL, — 852 $j thru $m

copyNumber [13] IMPLICIT InternationalString OPTIONAL, — 852 $t

publicNote [14] IMPLICIT InternationalString OPTIONAL, — 852 $z

reproductionNote [15] IMPLICIT InternationalString OPTIONAL, — 843

termsUseRepro [16] IMPLICIT InternationalString OPTIONAL, — 845

enumAndChron [17] IMPLICIT InternationalString OPTIONAL, — all 85x, 86x

volumes [18] IMPLICIT SEQUENCE OF Volume OPTIONAL,

— repeats for each volume held

circulationData [19] IMPLICIT SEQUENCE OF CircRecord OPTIONAL

— repeats for each circulating item.

}

Volume : := SEQUENCE {

enumeration [1] IMPLICIT InternationalString OPTIONAL,

chronology [2] IMPLICIT InternationalString OPTIONAL,

enumAndChron [3] IMPLICIT InternationalString OPTIONAL }

CircRecord : := SEQUENCE {

availableNow [1] IMPLICIT BOOLEAN,

ISO 23950:1 998(E) © ISO

1 02

availablityDate [2] IMPLICIT InternationalString OPTIONAL,

availableThru [3] IMPLICIT InternationalString OPTIONAL,

restrictions [4] IMPLICIT InternationalString OPTIONAL,

itemId [5] IMPLICIT InternationalString OPTIONAL,

renewable [6] IMPLICIT BOOLEAN,

onHold [7] IMPLICIT BOOLEAN,

enumAndChron [8] IMPLICIT InternationalString OPTIONAL,

midspine [9] IMPLICIT InternationalString OPTIONAL,

temporaryLocation [10] IMPLICIT InternationalString OPTIONAL}

END

REC.4 Summary Record Syntax

RecordSyntax-summary

{Z39-50-recordSyntax summary (103)} DEFINITIONS : :=

BEGIN

IMPORTS OtherInformation, InternationalString FROM Z39-50-APDU-1995;

BriefBib : := SEQUENCE {

title [1] IMPLICIT InternationalString,

author [2] IMPLICIT InternationalString OPTIONAL,

callNumber [3] IMPLICIT InternationalString OPTIONAL,

recordType [4] IMPLICIT InternationalString OPTIONAL,

bibliographicLevel [5] IMPLICIT InternationalString OPTIONAL,

format [6] IMPLICIT SEQUENCE OF FormatSpec OPTIONAL,

publicationPlace [7] IMPLICIT InternationalString OPTIONAL,

publicationDate [8] IMPLICIT InternationalString OPTIONAL,

targetSystemKey [9] IMPLICIT InternationalString OPTIONAL,

satisfyingElement [10] IMPLICIT InternationalString OPTIONAL,

rank [11] IMPLICIT INTEGER OPTIONAL,

documentId [12] IMPLICIT InternationalString OPTIONAL,

abstract [13] IMPLICIT InternationalString OPTIONAL,

otherInfo OtherInformation OPTIONAL}

FormatSpec : := SEQUENCE {

type [1] IMPLICIT InternationalString,

size [2] IMPLICIT INTEGER OPTIONAL,

bestPosn [3] IMPLICIT INTEGER OPTIONAL}

END

REC.5 Generic Record Syntax 1

RecordSyntax-generic -- For detailed semantics, see Annex 14, RET.

{Z39-50-recordSyntax GRS-1 (105)} DEFINITIONS : :=

BEGIN

EXPORTS Variant;

IMPORTS IntUnit, Unit, InternationalString, StringOrNumeric, Term FROM Z39-50-APDU-1995;

GenericRecord : := SEQUENCE OF TaggedElement

TaggedElement : := SEQUENCE {

tagType [1] IMPLICIT INTEGER OPTIONAL,

-- If omitted, default should be supplied dynamically by tagSet-M;

-- otherwise it should be statically specified by the schema.

tagValue [2] StringOrNumeric,

tagOccurrence [3] IMPLICIT INTEGER OPTIONAL,

 -- Occurrence within the database record, and relative to the parent. No

© ISO ISO 23950:1 998(E)

1 03

-- default; if omitted, target not telling or it is irrelevant.

content [4] ElementData,

metaData [5] IMPLICIT ElementMetaData OPTIONAL,

appliedVariant [6] IMPLICIT Variant OPTIONAL}

ElementData : := CHOICE{

octets OCTET STRING,

numeric INTEGER,

date GeneralizedTime,

ext EXTERNAL,

string InternationalString,

trueOrFalse BOOLEAN,

oid OBJECT IDENTIFIER,

intUnit [1] IMPLICIT IntUnit,

 elementNotThere [2] IMPLICIT NULL, -- element requested but not there

elementEmpty [3] IMPLICIT NULL, -- element there, but empty

noDataRequested [4] IMPLICIT NULL, -- variant request said ‘no data’

diagnostic [5] IMPLICIT EXTERNAL,

subtree [6] SEQUENCE OF TaggedElement -- recursive, for nested tags

}

ElementMetaData : := SEQUENCE{

seriesOrder [1] IMPLICIT Order OPTIONAL, -- only for a non-leaf node

usageRight [2] IMPLICIT Usage OPTIONAL,

hits [3] IMPLICIT SEQUENCE OF HitVector OPTIONAL,

displayName [4] IMPLICIT InternationalString OPTIONAL,

-- name for element that origin can use for display

supportedVariants [5] IMPLICIT SEQUENCE OF Variant OPTIONAL,

message [6] IMPLICIT InternationalString OPTIONAL,

elementDescriptor [7] IMPLICIT OCTET STRING OPTIONAL,

surrogateFor [8] IMPLICIT TagPath OPTIONAL,

-- the retrieved element is a surrogate for the element given by this path

surrogateElement [9] IMPLICIT TagPath OPTIONAL,

-- the element given by this path is a surrogate for the retrieved element

 other [99] IMPLICIT EXTERNAL OPTIONAL}

TagPath : := SEQUENCE OF SEQUENCE{

tagType [1] IMPLICIT INTEGER OPTIONAL,

 tagValue [2] StringOrNumeric,

 tagOccurrence [3] IMPLICIT INTEGER OPTIONAL}

Order : := SEQUENCE{

ascending [1] IMPLICIT BOOLEAN,

-- “true” means monotonically increasing (i.e. , non-decreasing);

-- “false” means monotonically decreasing (i.e. , non-increasing).

order [2] IMPLICIT INTEGER

-- Same as defined by ‘elementOrdering’ in tagSet-M, though this may be

-- overridden by schema.

}

Usage : := SEQUENCE {

type [1] IMPLICIT INTEGER{

redistributable (1), — Element is freely redistributable.

restricted (2), — Restriction contains statement.

licensePointer (3) -- Restriction contains license pointer.

} ,

restriction [2] IMPLICIT InternationalString OPTIONAL}

HitVector : := SEQUENCE{

ISO 23950:1 998(E) © ISO

1 04

-- Each hit vector points to a fragment within the element, via location and/or token.

satisfier Term OPTIONAL, -- sourceword, etc.

offsetIntoElement [1] IMPLICIT IntUnit OPTIONAL,

length [2] IMPLICIT IntUnit OPTIONAL,

hitRank [3] IMPLICIT INTEGER OPTIONAL,

targetToken [4] IMPLICIT OCTET STRING OPTIONAL

-- Origin may use token subsequently within a variantRequest (in

-- an elementRequest) to retrieve (or to refer to) the fragment.

}

Variant : := SEQUENCE{

 globalVariantSetId [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

-- Applies to the triples below, when variantSetId omitted. If

-- globalVariantSetId omitted, default applies. Default may be provided by

-- the tagSet-M element defaultVariantSetId.

triples [2] IMPLICIT SEQUENCE OF SEQUENCE{

variantSetId [0] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

-- If omitted, globalVariantSetId (above)

-- applies, unless that too is omitted, in

 -- which case, default is used.

class [1] IMPLICIT INTEGER,

type [2] IMPLICIT INTEGER,

value [3] CHOICE{

 INTEGER,

 InternationalString,

 OCTET STRING,

 OBJECT IDENTIFIER,

 BOOLEAN,

NULL,

-- Following need context tags:

unit [1] IMPLICIT Unit,

valueAndUnit [2] IMPLICIT IntUnit}}}

END

REC.6 Record Syntax For Extended Services Task Package

RecordSyntax-ESTaskPackage

{Z39-50-recordSyntax ESTaskPackage (106)} DEFINITIONS : :=

BEGIN

IMPORTS Permissions, InternationalString, IntUnit, DiagRec FROM Z39-50-APDU-1995;

TaskPackage : := SEQUENCE{

packageType [1] IMPLICIT OBJECT IDENTIFIER,

-- oid of specific ES definition

packageName [2] IMPLICIT InternationalString OPTIONAL,

userId [3] IMPLICIT InternationalString OPTIONAL,

retentionTime [4] IMPLICIT IntUnit OPTIONAL,

permissions [5] IMPLICIT Permissions OPTIONAL,

description [6] IMPLICIT InternationalString OPTIONAL,

targetReference [7] IMPLICIT OCTET STRING OPTIONAL,

creationDateTime [8] IMPLICIT GeneralizedTime OPTIONAL,

taskStatus [9] IMPLICIT INTEGER{

 pending (0),

© ISO ISO 23950:1 998(E)

1 05

 active (1),

 complete (2),

 aborted (3)} ,

packageDiagnostics [10] IMPLICIT SEQUENCE OF DiagRec OPTIONAL,

taskSpecificParameters [11] IMPLICIT EXTERNAL

-- Use oid for specific ES definition

-- (same oid as packageType above)

-- and select [2] “taskPackage.”

}

END

ISO 23950:1 998(E) © ISO

1 06

Annex 6

(Normative)

RSC: Resource Report Formats

This standard defines and registers the resource report formats resource-1 and resource-2. The following object identifier are

assigned:

resource-1 {Z39-50-resourceReport 1} (See RSC.1)

resource-2 {Z39-50-resourceReport 2} (See RSC.2)

RSC.1 Resource Report Format Resource-1

ResourceReport-Format-Resource-1

{Z39-50-resourceReport resource-1 (1)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

--

ResourceReport : := SEQUENCE{

estimates [1] IMPLICIT SEQUENCE OF Estimate,

message [2] IMPLICIT InternationalString}

--

Estimate : := SEQUENCE{

type [1] IMPLICIT EstimateType,

value [2] IMPLICIT INTEGER, -- the actual estimate

currency-code [3] IMPLICIT INTEGER OPTIONAL

-- code for representation of currencies defined in ISO 4217-1990.

-- Applicable only to monetary estimates.

}

EstimateType : := INTEGER{

currentSearchRecords (1), -- estimated no. records in current (incomplete) result set for search

finalSearchRecords (2), -- estimated no. records that will be in result set if search completes

currentPresentRecords (3), -- estimated number of records in current (incomplete) set of

-- records to be returned on Present

finalPresentRecords (4), -- estimated number of records that will be in the set of records

-- to be returned by Present if Present completes

currentOpTimeProcessing (5), -- processing time (in .001 CPU seconds) used by operation so far

finalOpTimeProcessing (6), -- estimated total processing time (in .001 CPU seconds) that will

-- be used by this operation if it completes

currentAssocTime (7), -- estimated processing time used by association (in .001 CPU sec.)

currentOperationCost (8), -- estimated cost for this operation so far

finalOperationCost (9), -- estimated cost for this operation if it completes

currentAssocCost (10), -- estimated cost for this association so far

finalOpTimeElapsed (11), -- estimated elapsed time for operation if it completes (in .001 sec.)

percentComplete (12), -- estimated percent complete

currentSearchAssocCost (13), -- estimated search cost for association so far

currentPresentAssocCost (14), -- estimated present cost for this association so far

currentConnectAssocCost (15), -- estimated connect time cost for association so far

currentOtherAssocCost (16) -- estimated other cost (not included in 13-15) for association so far

}

END

RSC.2 Resource Report Format Resource-2

ResourceReport-Format-Resource-2

{Z39-50-resourceReport resource-2 (2)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString, StringOrNumeric, IntUnit FROM Z39-50-APDU-1995;

© ISO ISO 23950:1 998(E)

1 07

--

ResourceReport : := SEQUENCE{

estimates [1] IMPLICIT SEQUENCE OF Estimate OPTIONAL,

message [2] IMPLICIT InternationalString OPTIONAL}

--

Estimate : := SEQUENCE{

type [1] StringOrNumeric,

-- Numeric values of 1 -16 are the same as used in Resource-1 .

value [2] IMPLICIT IntUnit

-- When expressing currency:

-- unitSystem (of Unit) is ‘z3950’ (case insensitive)

-- unitType is ‘ iso4217-1990’ (case insensitive)

-- unit is currency code from ISO 4217-1990.

}

END

ISO 23950:1 998(E) © ISO

1 08

Annex 7

(Normative)

ACC: Access Control Formats

This standard defines and registers the access control format definitions below, and assigns the following object identifiers:

prompt-1 {Z39-50-accessControl 1}

des-1 {Z39-50-accessControl 2}

krb-1 {Z39-50-accessControl 3}

Access control formats are defined for use within the parameters securityChallenge and securityChallengeResponse of the

AccessControlRequest and AccessControlResponse APDUs, and idAuthentication of the InitializeRequest APDU.

AccessControlFormat-prompt-1

{Z39-50-accessControl prompt-1 (1)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString, DiagRec FROM Z39-50-APDU-1995;

--

 PromptObject : := CHOICE{

challenge [1] IMPLICIT Challenge,

response [2] IMPLICIT Response}

 Challenge : := SEQUENCE OF SEQUENCE {

promptId [1] PromptId,

-- Target supplies a number (for an enumerated prompt) or string (for a non

-- -enumerated prompt), for each prompt, and the origin returns it in response, for

-- this prompt, so target may correlate the prompt response with the prompt.

defaultResponse [2] IMPLICIT InternationalString OPTIONAL,

promptInfo [3] CHOICE{

character [1] IMPLICIT InternationalString,

encrypted [2] IMPLICIT Encryption} OPTIONAL,

-- Information corresponding to an enumerated prompt. For example if 'type', within

-- PromptId, is 'copyright', then promptInfo may contain a copyright statement.

regExpr [4] IMPLICIT InternationalString OPTIONAL,

-- A regular expression that promptResponse should match. See IEEE 1003.2

-- Volume 1 , Section 2.8 "Regular Expression Notation." For example if promptId

-- is "Year of publication," regExpr might be "19[89][0-9] |20[0-9][0-9]".

responseRequired [5] IMPLICIT NULL OPTIONAL,

allowedValues [6] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

-- e.g. promptId="Desired color"; allowed = 'red', 'blue','Green'.

shouldSave [7] IMPLICIT NULL OPTIONAL,

-- Target recommends that origin save the data that it prompts from the

-- user corresponding to this prompt, because it is likely to be requested again (so

-- origin might not have to prompt the user next time).

 dataType [8] IMPLICIT INTEGER{

integer (1),

date (2),

float (3),

alphaNumeric (4),

url-urn (5),

boolean (6)} OPTIONAL,

-- Target telling origin type of data it wants. E.g., if "date" is specified,

-- presumably the origin will try to prompt something "date-like" from the user.

 diagnostic [9] IMPLICIT EXTERNAL OPTIONAL

-- Intended for repeat requests when there is an error the origin

-- should report to the user from previous attempt.

}

© ISO ISO 23950:1 998(E)

1 09

 Response : := SEQUENCE OF SEQUENCE {

promptId [1] PromptId,

-- Corresponds to a prompt in the challenge, or may be unprompted, for

-- example "newPassword." If unprompted, should be "enumerated."

-- If this responds to a non-enumerated prompt, then nonEnumeratedPrompt

-- should contain the prompt string from the challenge.

promptResponse [2] CHOICE{

string [1] IMPLICIT InternationalString,

accept [2] IMPLICIT BOOLEAN,

acknowledge [3] IMPLICIT NULL,

diagnostic [4] DiagRec,

encrypted [5] IMPLICIT Encryption}}

 PromptId : := CHOICE{

enummeratedPrompt [1] IMPLICIT SEQUENCE{

type [1] IMPLICIT INTEGER{

groupId (0),

userId (1),

password (2),

newPassword (3),

copyright (4),

-- When type on Challenge is 'copyright', promptInfo has text of

-- copyright message to be displayed verbatim to the user. If

-- promptResponse indicates 'acceptance', this indicates the user has been

-- shown, and accepted, the terms of the copyright. This is not intended

-- to be legally binding, but provides a good-faith attempt on

-- the part of the target to inform the user of the copyright.

sessionId (5)} ,

suggestedString [2] IMPLICIT InternationalString OPTIONAL},

nonEnumeratedPrompt [2] IMPLICIT InternationalString}

 Encryption : := SEQUENCE{

cryptType [1] IMPLICIT OCTET STRING OPTIONAL,

credential [2] IMPLICIT OCTET STRING OPTIONAL,

--random number, SALT, or other factor

data [3] IMPLICIT OCTET STRING}

END

AccessControlFormat-des-1
{Z39-50-accessControlFormat des-1 (2)} DEFINITIONS : :=

BEGIN

DES-RN-Object : := CHOICE {

challenge [1] IMPLICIT DRNType,

response [2] IMPLICIT DRNType}

DRNType : := SEQUENCE{

userId [1] IMPLICIT OCTET STRING OPTIONAL,

salt [2] IMPLICIT OCTET STRING OPTIONAL,

randomNumber [3] IMPLICIT OCTET STRING}

END

ISO 23950:1 998(E) © ISO

1 1 0

AccessControlFormat-krb-1

{Z39-50-accessControlFormat krb-1 (3)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

 KRBObject : := CHOICE {

challenge [1] IMPLICIT KRBRequest,

response [2] IMPLICIT KRBResponse}

 KRBRequest : := SEQUENCE{

service [1] IMPLICIT InternationalString,

instance [2] IMPLICIT InternationalString OPTIONAL,

realm [3] IMPLICIT InternationalString OPTIONAL}

-- target requests a ticket for the given service, instance, and realm

 KRBResponse : := SEQUENCE{

userid [1] IMPLICIT InternationalString OPTIONAL,

ticket [2] IMPLICIT OCTET STRING}

-- origin responds with a ticket for the requested service

END

© ISO ISO 23950:1 998(E)

1 1 1

Annex 8

(Normative)

EXT: Extended Services Defined by This Standard

This standard defines and registers the Extended Services listed below, and assigns the following object identifiers:

PersistentResultSet {Z39-50-extendedServices 1}

PersistentQuery {Z39-50-extendedServices 2}

PeriodicQuerySchedule {Z39-50-extendedServices 3}

ItemOrder {Z39-50-extendedServices 4}

DatabaseUpdate {Z39-50-extendedServices 5}

ExportSpecification {Z39-50-extendedServices 6}

ExportInvocation {Z39-50-extendedServices 7}

EXT.1 provides service descriptions, and EXT.2 provides ASN.1 definitions.

EXT.1 Service Definitions

An Extended Service is carried out by an Extended Service (ES) task, which is invoked by an ES operation. The ES Service is

described in 3.2.9.1 .

Execution of the ES Operation results in the creation of a task package, represented by a database record in the ES database. A

task package contains parameters, some of which are common to all task packages regardless of package type, and others that are

specific to the task type. Among the common parameters, some are supplied by the origin as parameters in the ES request, and

others are supplied by the target.

Table A8-1: Parameters Common to All Extended Services

Common Task Origin Target

Package Parameter Supplied Supplied

packageType x

packageName x (opt)

userId x (opt)

retentionTime x (opt) x (opt)

permissionsList x (opt) x (opt)

description x (opt)

targetReference x (opt)

creationDateTime x (opt)

taskStatus x

packageDiagnostics x (opt)

The specific parameters are derived from the ES request parameter Task-specific-parameters. Table A8-1 provides a summary

of common parameters. Their descriptions are included in 3.2.9.1 . For parameters listed as both “origin supplied” and “target

supplied,” when both origin and target supply a value, the target supplied value overrides the origin supplied value.

EXT.1.1 Persistent Result Set Extended Service

The Persistent Result Set Extended Service allows an origin to request that the target create a persistent result from a transient

result set belonging to the current Z-association. The Persistent Result Set task has no effect on the transient result set; it remains

available for use by the Z-association. The persistent result set is saved for later use, during the current or a different Z-association.

It may subsequently be deleted, by deletion of the task package.

Note: the origin may thus cause deletion of the persistent result set by deleting the task package if the origin user has “delete”

permission for that package.

A Present (using the ResultSetName element specification), against the Persistent Result Set Parameter Package returns a

Parameter Package that contains a target-supplied transient result set name, which may be used during the same Z-association

wherever a result set name may be used (e.g., within a query, or in Present, Sort, or Delete request).

The parameters of the Persistent Result Set Extended Service are those shown in Table A8-1 as well as those in Table A8-2.

ISO 23950:1 998(E) © ISO

1 1 2

Table A8-2 Specific Parameters for Persistent Result Set

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

originSuppliedResultSet x (if appl)

replaceOrAppend x (if appl)

targetSuppliedResultSet x (if appl) x (if appl)

numberOfRecords x (opt) x (opt)

originSuppliedResultSet—The origin supplies the name of a transient result set belonging to the Z-association. If function is

‘create’ , the target is to create a persistent result set from this transient result set. If function is ‘modify’ the target is to either

replace an existing persistent result set (corresponding to the specified package name) with this result set, or append this result set

to an existing persistent result set. This parameter is mandatory when the value of the request parameter function is ‘create’ or

‘modify’ , and is not included when function is ‘delete’ .

replaceOrAppend—This parameter occurs when function is ‘modify’ (and is valid only when the origin user has

“modify-contents” permission). Its value is ‘replace’ or ‘append’ meaning that the specified result set is, respectively, to replace, or

to be appended to, the existing persistent result set.

targetSuppliedResultSet—When the origin retrieves the task package, the target supplies the name of a transient result set, which

then belongs to the Z-association. The result set is a copy of the persistent result set represented by the package. The target

includes this parameter only when the task package is retrieved (i.e., not on an ES response) and does not include the parameter if

the element set name on the Present request indicates that the parameter is not to be included.

numberOfRecords—The target indicates the total number of records in the persistent result set.

EXT.1.2 Persistent Query Extended Service

The Persistent Query Extended Service allows an origin to request that the target save a Z39.50 Query for later reference, during

the same or a subsequent Z-association.

The parameters of the Persistent Query Extended Service are those shown in Table A8-1 as well as those in Table A8-3.

Table A8-3 Specific Parameters for Persistent Query

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

querySpec x

actualQuery x x

databaseNames x (opt) x (opt)

additionalSearchInformation x (opt) x (opt)

querySpec and ActualQuery—The origin supplies either the query to be saved or the name of another persistent query to be

copied into this package. The target supplies the actualQuery: if the origin has supplied a query, the target uses that query; if the

origin supplies a task package name, the target copies the corresponding query.

databaseNames—The origin optionally supplies a list of databases.

additionalSearchInformation—See 3.2.2.1 .12.

EXT.1.3 Periodic Query Schedule Extended Service

The Periodic Query Schedule Extended Service allows an origin to request that the target establish a Periodic Query Schedule. The

origin can also request that the schedule be “activated,” either as part of the initial request to create the schedule, or as part of a

subsequent request to modify the schedule. The parameters of the Periodic Query Schedule Extended Service are those shown in

Table A8-1 as well as those in Table A8-4.

© ISO ISO 23950:1 998(E)

1 1 3

Table A8-4: Specific Parameters for Periodic Query Schedule

Specific Task

Task Origin Target Package

Parameter Supplied Supplied Parameter

activeFlag x x

querySpec x

actualQuery x x

databaseNames x (if appl) x (if appl)

period x x (opt) x

expiration x (opt) x (opt) x (opt)

resultSetPackageName x (opt) x (if appl) x (if appl)

resultSetDisposition x (if appl) x (if appl)

alertDestination x (opt) x (opt)

exportParameters x (opt) x (opt)

lastQueryTime x x

lastResultNumber x x

numberSinceModify x (opt) x (opt)

activeFlag—On a Create request, if this flag is set, the Periodic Query Schedule is to be activated immediately upon receipt and

validation of its parameters; otherwise the schedule is to be Created but not activated. On a Modify request (which may contain as

little as just the ActiveFlag), the origin may activate or deactivate the schedule. In the parameter package, this parameter indicates

whether the schedule is active.

querySpec and ActualQuery—The origin supplies either a query or the name of a Persistent Query Package. (If the origin

supplies a query, or if the specified query package does not include a list of databases, then the databaseNames parameter is

required.) The target supplies the actualQuery: if the origin has supplied a query, the target uses that query; if the origin supplies a

task package name, the target copies the corresponding query.

databaseNames—The origin may supply a list of databases; the list is required if the origin supplies a query rather than a query

package name for querySpec, or if the specified query package does not include a list of databases.

period—The time period between invocations of the query. The target may override the period specified by the origin. Period

may be a number of days, a frequency (e.g., daily, business daily, weekly, monthly), or ‘continuous’ , meaning the search is to be

run continuously (or at the target’ s discretion).

expiration—The origin may optionally supply a time/date for the target to discontinue execution of this Periodic Query. If the

origin does not supply a value, the origin is proposing “no expiration.” The target may override the origin supplied value. If the

origin supplies a value and the target does not support expiration, the target should reject the ES request.

resultSetPackageName—The origin may optionally supply the name of an existing Persistent Result Set package. If the origin

omits this parameter, the target is to create a persistent result set, unless the parameter exportParameters is included.

resultSetDisposition—This parameter takes on the value ‘createNew’ , ‘replace’ , or ‘append’ , indicating respectively whether the

target is to create a new result set each time the query is invoked, replace the contents of the existing result set, or append any new

results to the end of the result set. The value ‘createNew’ should be used only if the origin and target have an agreement about

naming conventions for the resulting package. If the value of the parameter Period is ‘continuous’ it is recommended that the

value of this parameter be ‘append’ . The value ‘append’ allows the target to continually extend the result set by appending new

records.

alertDestination—The origin may optionally supply a destination address for Alerts triggered by receipt of new Periodic Query

results (e.g, fax number, X.400 address, pager number).

exportParameters—The origin may optionally supply the name, or actual contents, of an Export Parameter Package to be used

with this Periodic Query. It is included only if the origin wants newly posted results to be exported; if so, new results may also be

posted to ResultSetName if also specified.

lastQueryTime—The target indicates the last time this Periodic Query was invoked.

ISO 23950:1 998(E) © ISO

1 1 4

lastResultNumber—The target indicates the number of new records obtained last time query was invoked.

numberSinceModify—The target indicates the total number of records obtained via invocation of the Query since the last time

this Periodic Query Package was modified.

EXT 1.4 Item Order Extended Service

The Item Order Extended Service allows an origin to submit an item order request to the target. The parameters of the Item Order

Extended Service are those shown in Table A8-1 as well as those in Table A8-5.

Table A8-5 Task-Specific Parameters for Item Order

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

requestedItem x

itemRequest x (if appl) x (if appl)

supplementalDescription x (opt) x (opt)

contactInformation x (opt) x (opt)

additionalBillingInfo x (opt) x (opt)

statusOrErrorReport x x

auxiliaryStatus x (opt) x (opt)

requestedItem—The origin identifies the requested item, either by:

(a) a request whose format is defined externally, and which may be an Interlibrary Loan Request APDU of ISO 10161 ; or

(b) a result set item (name of a transient result set belonging to the current Z-association and an ordinal number of an entry

within that result); or

(c) both.

itemRequest—If requestedItem is (a) (an interlibrary loan request, for example), the target copies it into the task package

(although the target might first modify the request). If requestedItem is (b), the target may construct a corresponding item re quest;

if it does not, then the requested item will not be identified within the task package.

supplementalDescription—The origin may supply additional descriptive information pertaining to the requested item, as a

supplement to requestedItem.

contactInformation—The origin may optionally supply a name, phone number, and electronic mail address of a contact-person.

additionalBillingInfo—The origin may optionally indicate payment method, credit card information, customer reference, and

customer purchase order number.

statusOrErrorReport—The target supplies a status or error report. The definition of the report is external to this standard, and

may be based on the StatusOrErrorReport APDU of the ILL protocol.

auxiliaryStatus—The target may provide an auxiliary status as a supplement to the status information which might be provided

by the statusOrErrorReport.

EXT 1.5 Database Update Extended Service

The database Update Extended Service allows an origin to request that the target update a database: insert new records, replace or

delete existing records, or update elements within records.

Note: this service definition does not address concurrency; if multiple users try to update the same record, it may be that only the

first request served by the target will update the intended data, and the remaining requests may update a record whose content has

changed.

The parameters of the databaseUpdate Extended Service are those shown in Table A8-1 as well as those in Table A8-6.

© ISO ISO 23950:1 998(E)

1 1 5

Table A8-6: Task-Specific Parameters for DatabaseUpdate

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

action x x

databaseName x x

schema x (opt) x (opt)

suppliedRecords x

recordIds x (opt)

supplementalIds x (opt)

correlationInfo x (opt) x (opt)

elementSetName x (opt) x (opt)

updateStatus x (if appl) x (if appl)

globalDiagnostics x (if appl) x (if appl)

taskPackageRecords x (if appl) x (if appl)

recordStatuses x (if appl) x (if appl)

action—The origin indicates recordInsert, recordReplace, recordDelete, or elementUpdate.

databaseName—The origin indicates the database to which the action pertains.

schema—The origin indicates the database schema that applies for this update.

Note: The action, databaseName, and schema are specified once, and apply to all of the included records.

suppliedRecords—The origin supplies one or more records. (Along with each the origin may also supply a recordId,

supplemental identification, and correlation information; see following three parameters.) For recordInsert or recordReplace, the

origin supplies whole records. For recordReplace or recordDelete, each supplied record (or corresponding supplemental

identification or recordId) must include sufficient information for the target to identify the database record. For recordDelete,

sufficient identifying information should be supplied for each record, but the whole record need not necessarily be supplied.

For elementUpdate, the elements within a supplied record are to replace the corresponding elements within the database record,

and the remainder of the database record is unaffected. Records must be supplied in a manner that allows the corresponding

elements in the database record to be identified (e.g., via tags defined by the schema). For any element within a supplied record, if

there is no corresponding element within the database record, if there is more than a single occurrence of the corresponding

element, or if the element is not sufficiently identified, the update will not be performed for that record. (For elementUpdate,

supplementalId may be used for identification of the record, but not for identification of elements.)

recordIds—Corresponding to each supplied record the origin may optionally supply a record Id.

supplementalIds—Corresponding to each supplied record the origin may supply supplemental identification to allow the target to

identify the database record, or to identify the correct version of the database record. This may be a timestamp, a version number,

or may take some other form, for example, a previous version of the record.

CorrelationInfo—Corresponding to each supplied record, the origin may include one or both of the following:

• a correlationNote,

• a correlationIdentifier.

The correlationIdentifier may be used to identify the record only within the context of this update task, for correlation purposes

only (i.e to correlate a task package record with its corresponding supplied record). It may be used in the task package in lieu of a

record id, for a record that might not have an unambiguous record id.

ElementSetName—The origin indicates an element set name indicating which elements of the updated records are to be included

in the task package. If omitted, updated records are not to be included in the task package.

updateStatus—This parameter occurs in the task package only when taskStatus is ‘complete’ or ‘aborted’ . It is one of the

following:

success - Update performed successfully.

partial - Update failed for one or more records.

failure - Target rejected execution of the task (one or more non-surrogate diagnostics should be

supplied in parameter globalDiagnostics).

ISO 23950:1 998(E) © ISO

1 1 6

globalDiagnostics—One or more non-surrogate diagnostics, supplied if updateStatus is Failure.

taskPackageRecords—When taskStatus is ‘complete’ : the task package includes a structure for each supplied record. The

structure may include part or all of the updated record (depending on ‘elementSetName’) or a surrogate diagnostic (when

recordStatus, below, is ‘failure’), as well as correlationInfo and record status (see next parameter).

When taskStatus is ‘pending’ or ‘active’ : the task package includes the above for each record for which update action is

complete. For those records for which action is not complete, the structure includes the correlationInfo and status.

recordStatuses—Corresponding to each task package record, the task package includes a record status:

success - The record was updated successfully.

queued - The record is queued for update, or the update is in process (this status may be used in lieu of

inProcess, when the target does not wish to distinguish between these two statuses).

inProcess - The update for this record is in process.

failure - The update for this record failed. A surrogate diagnostic should be supplied in lieu of the

record (within the structure corresponding to the record, within the parameter

taskPackageRecords).

EXT 1.6 Export Specification Extended Service

The Export Specification Extended Service allows an origin to request that the target establish an export specification. Once

established, the export specification may be subsequently invoked (repeatedly) by an Export Invocation Extended Services task; in

fact, multiple invocations may be running simultaneously.

An Export Specification includes a delivery destination as well as other information that controls the delivery of a unit of

information (one or more result set records). The destination might be a printer or some other device. The delivery mechanism

could include fax, electronic mail, file transfer, or a target-supported print device. The parameters of the Export Specificati on

Extended Service are those shown in Table A8-1 as well as those in Table A8-7.

Table A8-7 Task-Specific Parameters for Export Specification

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

composition x x

exportDestination x x

composition—This parameter consists of a record syntax, element specification, variants, etc. of the records to be Exported.

exportDestination—The origin indicates an address or other destination instruction (e.g., e-mail address, printer address, fax

number).

EXT 1.7 Export Invocation Extended Service

The Export Invocation Extended Service allows an origin to invoke an export specification. The origin may supply an export

specification, or the name of an export specification that has been established by an Export Specification task as described in EXT

1 .6. The parameters of the Export Invocation Extended Service are those shown in Table A8-1 as well as those in Table A8-8.

Table A8-8 Task-Specific Parameters for Export Invocation

Specific Task Origin Target Task Package

Parameter Supplied Supplied Parameter

exportSpecification x x

resultSetId x

resultSetRecords x

numberOfCopies x x

estimatedQuantity x (opt) x (opt)

quantitySoFar x (opt) x (opt)

estimatedCost x (opt) x (opt)

costSoFar x (opt) x (opt)

© ISO ISO 23950:1 998(E)

1 1 7

exportSpecification—The origin supplies the packageName, or actual contents, of an export specification.

resultSetId—The origin supplies the name of a transient result set, from which records are selected for export.

resultSetRecords—The origin indicates which records are to be exported. This parameter may specify that all records in the result

set are to be exported, or it may specify a set of ranges of result set records, in which case the last range may indicate that all

records beginning with a specific record are to be exported.

numberOfCopies—The origin indicates the number of copies requested.

estimatedQuantity and quantitySoFar—The target optionally indicates the number of pages, message packets, etc., estimated in

the information to be exported, and the actual amount exported so far.

estimatedCost and costSoFar—The target optionally supplies an estimate of the cost to export this information, and the cost

accrued so far.

EXT.2 ASN.1 Definitions of Extended Services Parameter Package

Each definition below corresponds to an individual extended service. Each structure occurs within an ES request or as a task

package. Correspondingly, each is defined as a CHOICE of ‘esRequest’ and ‘taskPackage’ . If the structure occurs within an ES

request, it occurs as the parameter taskSpecificParameters. The structure may occur as a task package either within an ES response

(the parameter taskPackage), or in a record retrieved from an ES database, within the parameter taskSpecificParameters within the

structure defined by the record syntax ESTaskPackage; see Annex 5, REC.6.

‘esRequest’ consists of all service parameters supplied by the origin in the ES request, divided into those that are to be retained

in the task package (‘to keep’) and those that are not (‘not to keep’). ‘ taskPackage’ consists of all specific task parameters divided

into those that are supplied by the origin (‘originPart’) and those supplied by the target (‘ targetPart’). Note that ‘ toKeep’ (from

‘esRequest’) is always the same sub-structure as ‘originPart’ (from taskPackage), so that structure is shared, in OriginPartToKeep.

Each definition may define one or more of OriginPartToKeep, OriginPartNotToKeep, and TargetPart. In EXT.1 , in the

parameter table in the service definition for a specific ES, for each parameter:

• If the parameter is marked “origin supplied,” but is not marked in the right column (i.e., it does not occur in the task

parameter package) then that parameter is represented in OriginPartNotToKeep.

• If the parameter is marked “origin supplied,” and also marked in the right column, then that parameter is represented in

OriginPartToKeep.

• If the parameter is marked “target supplied” (in which case it will always also be marked in the right column), and not also

marked “origin supplied” then that parameter is represented in TargetPart.

• If the parameter is marked “origin supplied,” and also marked “target supplied” (in which case it will be marked in the right

column), then it is a parameter for which the origin may suggest a value and the target may override that value. In this case

the origin suggested value is represented in OriginPartNotToKeep and the target value (which may be the same) is

represented in TargetPart.

ESFormat-PersistentResultSet

{Z39-50-extendedService PersistentResultSet (1)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

PersistentResultSet : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] IMPLICIT NULL,

notToKeep [2] OriginPartNotToKeep OPTIONAL},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] IMPLICIT NULL,

targetPart [2] TargetPart OPTIONAL}}

OriginPartNotToKeep : := SEQUENCE{

originSuppliedResultSet [1] IMPLICIT InternationalString OPTIONAL,

-- name of transient result set, supplied on request, mandatory unless function is 'delete'

replaceOrAppend [2] IMPLICIT INTEGER{ -- only if function is "modify"

replace (1),

append (2)} OPTIONAL}

ISO 23950:1 998(E) © ISO

1 1 8

TargetPart : := SEQUENCE{

targetSuppliedResultSet [1] IMPLICIT InternationalString OPTIONAL,

-- Name of transient result set, supplied by target, representing the persistent result set to which

-- package pertains. Meaningful only when package is presented. (i.e. not on ES response).

numberOfRecords [2] IMPLICIT INTEGER OPTIONAL}

END

ESFormat-PersistentQuery

{Z39-50-extendedService PersistentQuery (2)} DEFINITIONS : :=

BEGIN

IMPORTS Query, InternationalString, OtherInformation FROM Z39-50-APDU-1995;

PersistentQuery : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep OPTIONAL,

notToKeep [2] OriginPartNotToKeep},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep OPTIONAL,

targetPart [2] TargetPart}}

OriginPartToKeep : := SEQUENCE{

dbNames [2] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

additionalSearchInfo [3] OtherInformation OPTIONAL}

OriginPartNotToKeep : := CHOICE{

package [1] IMPLICIT InternationalString,

query [2] Query}

TargetPart : := Query

END

ESFormat-PeriodicQuerySchedule

{Z39-50-extendedService PeriodicQuerySchedule (3)} DEFINITIONS : :=

BEGIN

IMPORTS Query, InternationalString, IntUnit FROM Z39-50-APDU-1995

ExportSpecification, Destination FROM ESFormat-ExportSpecification;

PeriodicQuerySchedule : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep,

notToKeep [2] OriginPartNotToKeep},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep,

targetPart [2] TargetPart}}

OriginPartToKeep : :=SEQUENCE{

activeFlag [1] IMPLICIT BOOLEAN,

databaseNames [2] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

resultSetDisposition [3] IMPLICIT INTEGER{

replace (1),

append (2),

createNew (3) -- Only if origin and target have agreement about

-- naming convention for the resulting package,

 -- and only if no result set is specified.

} OPTIONAL, -- Mandatory on 'create' if result set is specified, in

-- which case it must be 'replace' or 'append.

alertDestination [4] Destination OPTIONAL,

exportParameters [5] CHOICE{

packageName [1] IMPLICIT InternationalString,

exportPackage [2] ExportSpecification} OPTIONAL}

© ISO ISO 23950:1 998(E)

1 1 9

OriginPartNotToKeep : := SEQUENCE{

querySpec [1] CHOICE{

actualQuery [1] Query,

packageName [2] IMPLICIT InternationalString} OPTIONAL,

-- mandatory for 'create'

originSuggestedPeriod [2] Period OPTIONAL, -- mandatory for 'create'

expiration [3] IMPLICIT GeneralizedTime OPTIONAL,

resultSetPackage [4] IMPLICIT InternationalString OPTIONAL}

TargetPart : := SEQUENCE{

actualQuery [1] Query,

targetStatedPeriod [2] Period,

-- Target supplies the period, which may be same as origin proposed.

expiration [3] IMPLICIT GeneralizedTime OPTIONAL,

-- Target supplies value for task package. It may be the same as origin

-- proposed or different from (and overrides) origin proposal, but if

-- omitted, there is no expiration.

resultSetPackage [4] IMPLICIT InternationalString OPTIONAL,

-- May be omitted only if exportParameters was supplied. Target

-- supplies same name as origin supplied, if origin did supply a name.

lastQueryTime [5] IMPLICIT GeneralizedTime,

lastResultNumber [6] IMPLICIT INTEGER,

numberSinceModify [7] IMPLICIT INTEGER OPTIONAL}

Period : := CHOICE{

 unit [1] IMPLICIT IntUnit,

 businessDaily [2] IMPLICIT NULL,

 continuous [3] IMPLICIT NULL,

 other [4] IMPLICIT InternationalString}

END

ESFormat-ItemOrder

{Z39-50-extendedService ItemOrder (4)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString FROM Z39-50-APDU-1995;

ItemOrder : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep OPTIONAL,

notToKeep [2] OriginPartNotToKeep},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep OPTIONAL,

targetPart [2] TargetPart}}

OriginPartToKeep : := SEQUENCE{

supplDescription [1] IMPLICIT EXTERNAL OPTIONAL,

contact [2] IMPLICIT SEQUENCE{

 name [1] IMPLICIT InternationalString OPTIONAL,

 phone [2] IMPLICIT InternationalString OPTIONAL,

 email [3] IMPLICIT InternationalString OPTIONAL} OPTIONAL,

addlBilling [3] IMPLICIT SEQUENCE{

paymentMethod [1] CHOICE{

billInvoice [0] IMPLICIT NULL,

prepay [1] IMPLICIT NULL,

depositAccount [2] IMPLICIT NULL,

creditCard [3] IMPLICIT CreditCardInfo,

cardInfoPreviouslySupplied [4] IMPLICIT NULL,

privateKnown [5] IMPLICIT NULL,

privateNotKnown [6] IMPLICIT EXTERNAL},

ISO 23950:1 998(E) © ISO

1 20

customerReference [2] IMPLICIT InternationalString OPTIONAL,

customerPONumber [3] IMPLICIT InternationalString OPTIONAL}

OPTIONAL}

CreditCardInfo : := SEQUENCE{

nameOnCard [1] IMPLICIT InternationalString,

expirationDate [2] IMPLICIT InternationalString,

cardNumber [3] IMPLICIT InternationalString}

OriginPartNotToKeep : := SEQUENCE{ -- Corresponds to 'requestedItem' in service definition.

-- Must supply at least one, and may supply both.

resultSetItem [1] IMPLICIT SEQUENCE{

resultSetId [1] IMPLICIT InternationalString,

item [2] IMPLICIT INTEGER} OPTIONAL,

itemRequest [2] IMPLICIT EXTERNAL OPTIONAL

-- When itemRequest is an ILL-Request APDU,

-- use OID { iso standard 10161 abstract-syntax (2) ill-apdus (1)}

}

TargetPart : := SEQUENCE{

itemRequest [1] IMPLICIT EXTERNAL OPTIONAL,

-- When itemRequest is an ILL-Request APDU, use OID 1 .0.10161 .2.1 (as above)

statusOrErrorReport [2] IMPLICIT EXTERNAL OPTIONAL,

-- When statusOrErrorReport is an ILL Status-Or-Error-Report APDU, use OID 1 .0.10161 .2.1 (as above)

auxiliaryStatus [3] IMPLICIT INTEGER{

notReceived (1),

loanQueue (2),

forwarded (3),

unfilledCopyright (4),

filledCopyright (5)} OPTIONAL}

END

ESFormat-Update

{Z39-50-extendedService Update (5)} DEFINITIONS : :=

BEGIN

IMPORTS DiagRec, InternationalString FROM Z39-50-APDU-1995;

Update : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep,

notToKeep [2] OriginPartNotToKeep},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep,

targetPart [2] TargetPart}}

OriginPartToKeep : := SEQUENCE{

action [1] IMPLICIT INTEGER{

 recordInsert (1),

 recordReplace (2),

recordDelete (3),

elementUpdate (4)} ,

databaseName [2] IMPLICIT InternationalString,

schema [3] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

elementSetName [4] IMPLICIT InternationalString OPTIONAL}

OriginPartNotToKeep : := SuppliedRecords

© ISO ISO 23950:1 998(E)

1 21

TargetPart : := SEQUENCE{

updateStatus [1] IMPLICIT INTEGER{

success (1),

partial (2),

failure (3)} ,

globalDiagnostics [2] IMPLICIT SEQUENCE OF DiagRec OPTIONAL,

-- These are non-surrogate diagnostics relating to the task,

-- not to individual records.

taskPackageRecords [3] IMPLICIT SEQUENCE OF TaskPackageRecordStructure

-- There should be a TaskPackageRecordStructure for every record

-- supplied. The target should create such a structure for every

-- record immediately upon creating the task package to include

-- correlation information and status. The record itself would not

-- be included until processing for that record is complete.

}

-- Auxiliary definitions for Update

SuppliedRecords : := SEQUENCE OF SEQUENCE{

recordId [1] CHOICE{

number [1] IMPLICIT INTEGER,

string [2] IMPLICIT InternationalString,

opaque [3] IMPLICIT OCTET STRING} OPTIONAL,

supplementalId [2] CHOICE{

timeStamp [1] IMPLICIT GeneralizedTime,

versionNumber [2] IMPLICIT InternationalString,

previousVersion [3] IMPLICIT EXTERNAL} OPTIONAL,

correlationInfo [3] IMPLICIT CorrelationInfo OPTIONAL,

record [4] IMPLICIT EXTERNAL}

CorrelationInfo : := SEQUENCE{

-- origin may supply one or both for any record:

note [1] IMPLICIT InternationalString OPTIONAL,

id [2] IMPLICIT INTEGER OPTIONAL}

TaskPackageRecordStructure : := SEQUENCE{

recordOrSurDiag [1] CHOICE {

record [1] IMPLICIT EXTERNAL,

-- Choose 'record' if recordStatus is 'success', and

-- elementSetName was supplied.

diagnostic [2] DiagRec

-- Choose 'diagnostic', if RecordStatus is failure.

} OPTIONAL,

-- The parameter recordOrSurDiag will thus be omitted only if

-- 'elementSetName' was omitted and recordStatus is

-- 'success'; or if record status is 'queued' or in 'process'.

correlationInfo [2] IMPLICIT CorrelationInfo OPTIONAL,

-- This should be included if it was supplied by the origin.

recordStatus [3] IMPLICIT INTEGER{

success (1),

queued (2),

inProcess (3),

failure (4)}}

END

ISO 23950:1 998(E) © ISO

1 22

ESFormat-ExportSpecification

{Z39-50-extendedService ExportSpecification (6)} DEFINITIONS : :=

BEGIN

EXPORTS ExportSpecification, Destination; IMPORTS CompSpec, InternationalString FROM Z39-50-APDU-1995;

ExportSpecification : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep,

notToKeep [2] IMPLICIT NULL},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep,

targetPart [2] IMPLICIT NULL}}

OriginPartToKeep : := SEQUENCE{

composition [1] IMPLICIT CompSpec,

exportDestination [2] Destination}

 Destination : := CHOICE{

phoneNumber [1] IMPLICIT InternationalString,

faxNumber [2] IMPLICIT InternationalString,

x400address [3] IMPLICIT InternationalString,

emailAddress [4] IMPLICIT InternationalString,

pagerNumber [5] IMPLICIT InternationalString,

ftpAddress [6] IMPLICIT InternationalString,

ftamAddress [7] IMPLICIT InternationalString,

printerAddress [8] IMPLICIT InternationalString,

other [100] IMPLICIT SEQUENCE{

vehicle [1] IMPLICIT InternationalString OPTIONAL,

destination [2] IMPLICIT InternationalString}}

END

ESFormat-ExportInvocation

{Z39-50-extendedService ExportInvocation (7)} DEFINITIONS : :=

BEGIN

IMPORTS InternationalString, IntUnit FROM Z39-50-APDU-1995

ExportSpecification FROM ESFormat-ExportSpecification;

ExportInvocation : := CHOICE{

 esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep,

notToKeep [2] OriginPartNotToKeep},

 taskPackage [2] IMPLICIT SEQUENCE{

originPart [1] OriginPartToKeep,

targetPart [2] TargetPart OPTIONAL}}

OriginPartToKeep : := SEQUENCE{

exportSpec [1] CHOICE{

packageName [1] IMPLICIT InternationalString,

packageSpec [2] ExportSpecification} ,

numberOfCopies [2] IMPLICIT INTEGER}

OriginPartNotToKeep ::= SEQUENCE{

resultSetId [1] IMPLICIT InternationalString,

records [2] CHOICE{

all [1] IMPLICIT NULL,

ranges [2] IMPLICIT SEQUENCE OF SEQUENCE{

start [1] IMPLICIT INTEGER,

count [2] IMPLICIT INTEGER OPTIONAL

-- Count may be omitted only on last range, to indicate

-- "all remaining records beginning with 'start'."

}}}

© ISO ISO 23950:1 998(E)

1 23

TargetPart : := SEQUENCE{

estimatedQuantity [1] IMPLICIT IntUnit OPTIONAL,

quantitySoFar [2] IMPLICIT IntUnit OPTIONAL,

estimatedCost [3] IMPLICIT IntUnit OPTIONAL,

costSoFar [4] IMPLICIT IntUnit OPTIONAL}

END

ISO 23950:1 998(E) © ISO

1 24

Annex 9

(Normative)

USR: User Information Formats

User Information formats are defined for the following: userInformationField in the Init and InitResponse APDUs,

additionalSearchInfo in the Search and SearchResponse APDUs, and otherInfo in all APDUs.

This standard defines and registers the userInformation format SearchResult-1 , defined for use within a SearchResponse

APDU. The following object identifier is assigned:

SearchResult-1

{Z39-50-userInfoFormat 1} (See USR.1)

UserInformation formats may include negotiation records, defined for the parameters userInformationField and otherInfo in the

Init and InitResponse APDUs. These are described in USR.2.

USR.1 User Information Format SearchResult-1

SearchResult-1 is for use primarily within the AdditionalSearchInformation parameter in the Search Response. The format allows

the target to provide information per query component (the whole query or a sub-query, possibly restricted to a subset of the

specified databases). The target may also create and provide access to a result set for each query component.

This format may also be used as a Resource Report format, within the ResourceReport parameter of the resource-control

request, to allow the target to report on the progress of the search. However, when used in this manner, the target should not create

a result set for a query component unless processing for that component is complete.

UserInfoFormat-searchResult-1

{Z39-50-userInfoFormat searchResult-1 (1)} DEFINITIONS : :=

BEGIN

IMPORTS DatabaseName, Term, Query, IntUnit, InternationalString FROM Z39-50-APDU-1995;

SearchInfoReport : := SEQUENCE OF SEQUENCE{

subqueryId [1] IMPLICIT InternationalString OPTIONAL,

-- shorthand identifier of subquery

fullQuery [2] IMPLICIT BOOLEAN, -- ‘ true’ means this is the full query;

-- ‘false’ ,

-- a subquery

subqueryExpression [3] QueryExpression OPTIONAL, -- A subquery of the query as

-- submitted. May be whole query;

-- if so, “fullQuery” should be

-- ‘ true’ .

subqueryInterpretation [4] QueryExpression OPTIONAL, -- how target interpreted subquery

subqueryRecommendation [5] QueryExpression OPTIONAL, -- target-recommended alternative

subqueryCount [6] IMPLICIT INTEGER OPTIONAL,

-- Number of records for this

-- subQuery, across all of the

-- specified databases. (If during

-- search, via resource control,

--number of records so far).

subqueryWeight [7] IMPLICIT IntUnit OPTIONAL,

-- relative weight of this subquery

resultsByDB [8] IMPLICIT ResultsByDB OPTIONAL}

ResultsByDB : := SEQUENCE OF SEQUENCE{

databases [1] CHOICE{

all [1] IMPLICIT NULL,

-- applies across all of the databases in Search PDU

list [2] IMPLICIT SEQUENCE OF DatabaseName

-- applies across all databases in this list

} ,

© ISO ISO 23950:1 998(E)

1 25

count [2] IMPLICIT INTEGER OPTIONAL,

-- Number of records for query component (and, as above, if during search,

-- via resource control, number of records so far).

resultSetName [3] IMPLICIT InternationalString OPTIONAL

-- Target-assigned result set by which subQuery is available. Should not

-- be provided unless processing for this query component is concluded (i.e. ,

-- when this report comes during search, via resource control, as opposed

-- to after search, via additionalSearchInfo).

 }

QueryExpression : := CHOICE {

term [1] IMPLICIT SEQUENCE{

queryTerm [1] Term,

termComment [2] IMPLICIT InternationalString OPTIONAL},

query [2] Query}

END

USR.2 Negotiation Records

Negotiation records are defined for use within the parameters otherInfo (version 3 only) and userInformationField in the Init

and InitResponse APDUs. No negotiation records are defined by this standard. Publicly defined negotiation record definitions

are available from the Z39.50 Maintenance Agency.

In general, a negotiation record is defined for use as follows: the origin includes the negotiation record within the Init

APDU (identified by its OID) to propose that some condition be in effect for the Z-association. The target may (but is not

obligated to) respond to the proposal, using the same negotiation record format, and the target’ s response, if any, indicates

whether the proposal is accepted, or may indicate a counterproposal, which will then be in effect for the Z-association. Thus a

negotiation record definition should include the format of both the origin proposal and the target response.

The following rules and guidelines apply to the definition and use of negotiation records:

• A negotiation record should be defined for the purpose of negotiating a single item of information, except in the

following case: negotiation of related items may be defined for the same negotiated record where it is not practical to

separate their negotiation, for example, because of interdependence among the negotiation of these items.

• If the origin does not propose negotiation (i.e. , does not submit a negotiation record) for a given item, then it is

considered that “no negotiation takes place” for that item. If the origin does propose negotiation for an item, but the

target does not respond (i.e. , does not include a corresponding negotiation record), similarly, no negotiation takes place

for that item.

• A negotiation record definition must not specify behavior governing the condition where no negotiation takes place. (If

no negotiation takes place, neither origin nor target can be assumed to know any rules associated with the negotiation

record definition.)

• If the target does not recognize the oid for a negotiation record submitted by the origin, it should ignore it (and not

return a negotiation record of that type).

Note: When the target does not recognize the oid of a negotiation record, the target cannot be certain that it is indeed a

negotiation record. Therefore, care should be taken in general in defining user information formats to ensure that if the targe t

does not recognize an oid it may ignore it with impunity.

• If the origin does not submit a negotiation record of a particular type in the Init request, then the target is not to include a

negotiation record of that type in the response.

• If multiple negotiation records are included in an Init request, there is no significance to their order, and there is no

relationship between them: for example, if the origin includes two negotiation records, and the target does not recognize

the first (in which case negotiation fails for the first) negotiation may still succeed for the second.

ISO 23950:1 998(E) © ISO

1 26

Annex 10

(Normative)

ESP: Element Specification Formats

This Standard defines and registers the element specification format eSpec-1 , and assigns it the following object identifier:

eSpec-1 {Z39-50-elementSpec 1}

ElementSpecificationFormat-eSpec-1 -- For detailed semantics, see Annex 14, RET.

{Z39-50-elementSpec eSpec-1 (1)} DEFINITIONS : :=

BEGIN

IMPORTS Variant FROM RecordSyntax-generic

StringOrNumeric, InternationalString FROM Z39-50-APDU-1995;

--

Espec-1 : := SEQUENCE{

elementSetNames [1] IMPLICIT SEQUENCE OF InternationalString OPTIONAL,

-- Origin may include one or more element set names, each

-- specifying a set of elements. Each of the elements is to be

-- treated as an elementRequest in the form of simpleElement,

-- where occurrence is 1 .

defaultVariantSetId [2] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

-- If supplied, applies whenever variantRequest

-- does not include variantSetId.

defaultVariantRequest [3] IMPLICIT Variant OPTIONAL,

-- If supplied, then for each simple elementRequest that does not

 -- include a variantRequest, the defaultVariantRequest applies.

-- (defaultVariantRequest does not apply to a compositeRequest.)

defaultTagType [4] IMPLICIT INTEGER OPTIONAL,

-- If supplied, applies whenever ‘tagType’ (within ‘tag’ within TagPath)

-- is omitted.

elements [5] IMPLICIT SEQUENCE OF ElementRequest OPTIONAL}

--

ElementRequest: := CHOICE{

simpleElement [1] IMPLICIT SimpleElement,

compositeElement [2] IMPLICIT SEQUENCE{

elementList [1] CHOICE{

primitives [1] IMPLICIT SEQUENCE OF InternationalString,

-- Origin may specify one or more element

-- set names, each identifying a set of elements,

-- and the composite element is the union.

specs [2] IMPLICIT SEQUENCE OF SimpleElement} ,

deliveryTag [2] IMPLICIT TagPath,

-- DeliveryTag tagPath for compositeElement may not

-- include wildThing or wildPath.

variantRequest [3] IMPLICIT Variant OPTIONAL}}

SimpleElement : := SEQUENCE{

path [1] IMPLICIT TagPath,

variantRequest [2] IMPLICIT Variant OPTIONAL}

TagPath : := SEQUENCE OF CHOICE{

specificTag [1] IMPLICIT SEQUENCE{

tagType [1] IMPLICIT INTEGER OPTIONAL,

-- If omitted, then ‘defaultTagType’ (above) applies, if supplied, and

-- if not supplied, then default listed in schema applies.

tagValue [2] StringOrNumeric,

© ISO ISO 23950:1 998(E)

1 27

 occurrence [3] Occurrences OPTIONAL

-- default is “first occurrence”

} ,

wildThing [2] Occurrences,

-- Get Nth “thing” at this level, regardless of tag, for each N specified by

-- “Occurrences” (which may be ‘all’ meaning match every element at this level).

-- E.g., if “Occurrences” is 3 , get third element regardless of its tag or the tag of

-- the first two elements.

wildPath [3] IMPLICIT NULL

-- Match any tag, at this level or below, that is on a path for which next tag in this

-- TagPath sequence occurs. WildPath may not be last member of the TagPath

-- sequence.

}

--

Occurrences : := CHOICE{

all [1] IMPLICIT NULL,

last [2] IMPLICIT NULL,

values [3] IMPLICIT SEQUENCE{

start [1] IMPLICIT INTEGER,

-- if ‘start’ alone is included, then single occurrence is requested

howMany [2] IMPLICIT INTEGER OPTIONAL

-- For example, if ‘start’ is 5 and ‘howMany’ is 6, then request is for

-- “occurrences 5 through 10.”

}}

END

ISO 23950:1 998(E) © ISO

1 28

Annex 11

(Normative)

VAR: Variant Sets

This standard defines and registers the variant set variant-1 , and assigns it the following object identifier:

variant-1 {Z39-50-variantSet 1}

This definition describes the classes, types, and values, for the variant set Variant-1 , that may occur in a variant specification.

A variant specification is a sequence of triples; each triple is a variant specifier (as referenced by the identifier variantSpecifier in

GRS-1 and ES-1). The first component of the triple is a “Class” (integer), the second is a “Type” (integer) defined within that

class, and the third is a “Value” defined for that type (its datatype depends on the type).

The following classes, types, and values are defined for Variant-1 (For detailed semantics of variant-1 , see Annex 14, RET) .

Class Type Value(s)

1 = variantId

Class 1 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = variantId OCTET STRING

2 = BodyPartType

Class 2 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = ianaType/subType InternationalString: "<ianaType>/<subType>" e.g. "application/postscript", where

<ianaType> and <subType> are registered with IANA (Internet Assigned Numbers

Authority)

2 = Z39.50Type[/subType] InternationalString: e.g. " 'sgml/'dtdName" (for example "sgml/TEI") or "sgml"

3 = otherType[/subType] InternationalString; bilaterally agreed upon

Note: subtype is optional for types 2 and 3.

3 = formatting/presentation

Class 3 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = characters per line INTEGER

2 = line length IntUnit

3 = lines per page INTEGER

4 = dots per inch INTEGER

5 = paperType-Size InternationalString; e.g. A-1 , B, C.

6 = deliverImages BOOLEAN

7 = PortraitOrientation BOOLEAN ('true' means "portrait")

8 = textJustification InternationalString; 'left', 'right', 'both', or 'center'

9 = fontStyle InternationalString

10 = fontSize InternationalString

11 = fontMetric InternationalString

12 = lineSpacing INTEGER

13 = numberOfColumns INTEGER

14 = verticalMargins IntUnit

15 = horizontalMargins IntUnit

16 = pageOrderingForward BOOLEAN

17 = beginDocsOnNewPage BOOLEAN ('false' means "concatenate documents")

18 = termHighlighting BOOLEAN

19 = footnoteLocation InternationalString: 'inline', endOfPage', 'endEachDoc', 'endLastDoc'

20 = paginationType InternationalString

© ISO ISO 23950:1 998(E)

1 29

4 = Language/CharacterSet

Class 4 may be used within a supportedVariant, variantRequest, or appliedVariant.

1 = language InternationalString (from ANSI/NISO Z39.53-1994)

2 = registered character set INTEGER: registration number from ISO International Register of Character Sets

3 = character set id OBJECT IDENTIFIER

4 = encoding id OBJECT IDENTIFIER

5 = private string InternationalString

5 = Piece

Class 5 may be used within a variantRequest or appliedVariant.

1 = what fragment wanted INTEGER (variantRequest only)

1 = start

2 = next

3 = previous

4 = current

5 = last

2= what fragment returned INTEGER (appliedVariant only)

1 = start

2 = middle

3 = last

4 = end for now

5 = whole

3 = start IntUnit

4 = end IntUnit

5 = howMuch IntUnit

6 = step INTEGER or IntUnit

7= targetToken OCTET STRING

6 = meta-data requested

Class 6 may be used within a variantRequest only.

1 = cost Unit or NULL

2 = size Unit or NULL

3 = hits, variant-specific NULL

4 = hits, non-variant-specific NULL

5 = variant list NULL

6 = is variant supported? NULL

7 = document descriptor NULL

8 = surrogate information NULL

998 = all meta-data NULL

999 = other meta-data OBJECT IDENTIFIER

7 = meta-data returned

Class 7 may be used within a supportedVariant or appliedVariant.

1 = cost IntUnit

2 = size IntUnit

3 = integrity INTEGER

4 = separability INTEGER

5 = variant supported BOOLEAN

8 = Highlighting

Class 8 may be used within a variantRequest or appliedVariant.

1 = prefix OCTET STRING

2 = postfix OCTET STRING

3 = server default NULL (variantRequest only)

ISO 23950:1 998(E) © ISO

1 30

9 = miscellaneous

1 = NoData NULL (variantRequest only)

2 = Unit Unit (variantRequest only--origin requests element according to specific unit)

3 = Version InternationalString

© ISO ISO 23950:1 998(E)

1 31

Annex 12

(Normative)

TAG: TagSet Definitions and Schemas

A database schema represents a common understanding, shared by the origin and target, of the information contained in the

records of the database represented by that schema, to allow retrieval of portions of that information.

The primary component of a database schema is an abstract record structure, which lists schema elements in terms of their

tagPaths. A tagPath is a representation of the hierarchical path of an element, expressed as a sequence of nodes, each represented

by a tag. Each tag in a tagPath consists of a tagType and tagValue. The tagType is an integer; the tagValue may be an integer or

character string. The tagType qualifies the tagValue; it might identify a tagSet, which might be registered (or alternatively, it might

be defined locally within the schema).

Also included in a schema is a definition of how the various tagTypes are used within the tagPaths for the schema elements.

The definition might simply be a mapping of tagTypes to tagSets.

For all schemas, tagTypes 1 through 3 are assumed to have the following meaning:

tagType used to qualify:

1 an element defined in tagSet-M (see TAG.2.1)

2 an element defined in tagSet-G (see TAG.2.2)

3 a tag locally defined by the target (intended primarily for string tags, but numeric tags are not

precluded)

For a detailed description of the use of schemas, tagSets, etc. see Annex 14, RET.

TAG.1 Schema Definitions

This standard registers the following object identifiers for Schemas:

WAIS {Z39-50-schema 1}

GILS {Z39-50-schema 2}

TAG.2 TagSet Definitions

This standard defines and registers the tag set definitions tagSet-M and tagSet-G. TagSet-M includes elements intended for use as

meta-data associated with a database record. TagSet-G includes generic elements.

The object identifier for these definitions are:

tagSet-M {Z39-50-tagSet 1}

tagSet-G {Z39-50-tagSet 2}

For detailed semantics of the elements defined in these tagSets, see Annex 14, RET.

In addition, this standard registers the following tagSet:

tag-Set-STAS {Z39-50-tagSet 3}

ISO 23950:1 998(E) © ISO

1 32

TAG.2.1 Definition of tagSet-M

Recommended

Element tag ASN.1 datatype

schemaIdentifier 1 OBJECT IDENTIFIER

elementsOrdered 2 BOOLEAN

elementOrdering 3 INTEGER

defaultTagType 4 INTEGER

defaultVariantSetId 5 OBJECT IDENTIFIER

defaultVariantSpec 6 VariantSpec

processingInstructions 7 InternationalString

recordUsage 8 INTEGER

restriction 9 InternationalString

rank 10 INTEGER

userMessage 11 InternationalString

url 12 InternationalString

record 13 structured

local control number 14 InternationalString

creation date 15 GeneralizedTime

dateOfLastModification 16 GeneralizedTime

dateOfLastReview 17 GeneralizedTime

score 18 INTEGER

wellKnown 19 InternationalString

recordWrapper 20 structured

defaultTagSetId 21 OBJECT IDENTIFIER

schemaIdentifier—Identifies the schema in use. This element is available for cases where the origin does not specify a schema in

the request, or where the target uses a schema different than that requested by the origin.

elementsOrdered—If ‘true’ , then sibling elements (i.e., with the same parent) are presented as follows: tagTypes are ascending;

for elements with the same tagType, integer tag values are ascending, and precede elements with string tags (which are not

necessarily ordered).

elementOrdering—How sibling elements with the same tag are ordered:

1 = “Normal” consumption order (pages, frames).

2 = Chronological, e.g., news articles.

3 = Semantic size, e.g., increasingly comprehensive abstracts.

4 = Generality, e.g., thesaurus words, increasing generality, concentric object snapshots, zoom-out order.

5 = Elements explicitly undistinguished by order.

6 = undefined; may (or may not) be ordered by private agreement.

7 = Singleton; never more than one occurrence.

defaultTagType—The tagType that applies for any element for which tagType is not included.

defaultVariantSetId—The Variant set identifier that applies when the target returns a variant specification for an element, but

does not include a variant set identifier.

defaultVariantSpec—If this element is present, then the specified variant applies to all subsequent elements, when applicable,

which do not include a variant specification.

processingInstructions—Recommendation by the target on how to display this record to the user.

recordUsage

1 = Redistributable.

2 = Restricted, and the tagSet-M element ‘restriction’ (defined below) contains the restriction.

3 = Restricted, and the restriction contains a license pointer.

© ISO ISO 23950:1 998(E)

1 33

restriction—This element, if present, should immediately follow recordUsage, and is a statement (if recordUsage is 1 or 2), or a

pointer to the license (if recordUsage is 3).

rank—The rank of this record within the result set. If N records are in the result set, each record should have a unique rank from 1

to N.

userMessage—A message, pertaining to this record, that the target asks the origin to display to the user.

url—Uniform resource locator. This is a URL for the record.

record—This element may be used for nested records, when the database record itself includes database records (possibly from a

different database). Note that tagSet-M elements that occur subordinate to this element apply only to that nested record.

localControlNumber—An identifier of the record, unique within the database.

creationDate—Date that the record was created.

dateOfLastModification—Most recent date that this record was modified.

dateOfLastReview—Most recent date that this record was verified.

score—A normalized score assigned to the record by the target. Each record in the result set should have a score from 1 to N

where N is the normalization factor (more than one record may have the same score). The normalization factor should be specified

in the schema.

wellKnown—When an element is defined to be “structured into locally defined elements,” the target may use this tag in lieu of, or

along with, locally defined tags. For example, an element named ‘title’ might be described to be “locally structured.” The target

might present the element structured into the following subelements: ‘wellKnown’ , “spineTitle,” and “variantTitle,” where the

latter two are string tags, target defined. In this case, ‘wellKnown’ is assumed to mean “title.”

recordWrapper—This element may be used to represent the root of the record, particularly when the record otherwise has no

root. The origin may request the record skeleton by reference to this element.

defaultTagSetId —This element may be used in lieu of defaultTagType, to identify the default tag set.

TAG.2.2 Definition of tagSet-G

Recommended

Element tag ASN.1 datatype

title 1 InternationalString

author 2 InternationalString

publicationPlace 3 InternationalString

publicationDate 4 InternationalString or

GeneralizedTime

documentId 5 InternationalString

abstract 6 InternationalString

name 7 InternationalString

date 8 GeneralizedTime

bodyOfDisplay 9 InternationalString

organization 10 InternationalString

postalAddress 11 InternationalString

networkAddress 12 InternationalString

eMailAddress 13 InternationalString

phoneNumber 14 InternationalString

faxNumber 15 InternationalString

country 16 InternationalString

description 17 InternationalString

time 18 IntUnit

DocumentContent 19 OCTET STRING

ISO 23950:1 998(E) © ISO

1 34

These elements (with the exception of bodyOfDisplay) are for generic use and their definitions are not supplied.

BodyOfDisplay—The target might combine several elements into this single element, into a display format.

© ISO ISO 23950:1 998(E)

1 35

Annex 13

(Informative)

ERS: Extended Result Set Model

Section 3.1 .6 (Model of a Result Set) notes that in the extended result set model for searching, the target maintains unspecified

information that the target might maintain to perform proximity operations requiring the extended model, or to evaluate restriction

operands.

ERS.1 Extended Result Set Model for Proximity

In the extended result set model for proximity, the target maintains information associated with each record represented by the

result set which may be used in a proximity operation as a surrogate for the search that created the result set.

Example 1 :

Let R1 and R2 be result sets produced by Type-1 query searches on the terms ‘cat’ and ‘hat’ . In the extended result set model for

proximity, the target maintains sufficient information associated with each entry in R1 and with each entry in R2 so that the

proximity operation “R1 near R2” would be a result set equivalent to the result set produced by the proximity operation “cat near

hat” (“near” is used informally to refer to a proximity test).

The manner in which the target maintains this information is not prescribed by the standard. The concept of “abstract position

vectors” may be used to describe the effect of the proximity test. A target system may implement the proximity test in any way

that produces the desired results.

An abstract position vector might include a proximity unit and a sequence of position identifiers.

Example 2:

Let R1 and R2 be result sets produced by searches on the terms ‘cat’ and ‘hat’ . Record 1000 contains ‘cat’ in paragraphs 10 and

100 and ‘hat’ in paragraphs 13 and 200. So record 1000 is represented in both R1 and R2. In R1 , it might include the two position

vectors (paragraph, 10) and (paragraph, 100). In R2, it might include the two position vectors (paragraph, 13) and (paragraph,

200). R3 = “R1 within 10 paragraphs of R2” would identify this record, and a position vector might be created (paragraph, 10,

13).

Subsequently, suppose R4 represents “rat before bat” and includes record 1000 with position vectors (paragraph, 5, 8) and

(paragraph, 15, 18). Then:

• R3 ‘before and within 2 of’ R4 would represent: “(cat near hat) before (rat before bat)” and in the resulting set, record 1000

might include position vector (paragraph, 10, 18);

• R3 ‘following and within 2 of’ R4 might represent: “(cat near hat) after (rat before bat)” and in the resulting set, record

1000 might include position vector (paragraph, 5, 13).

Note: In these two examples, the position vectors might instead be (paragraph, 10, 13, 15, 18) instead of (paragraph, 10, 18); and

(paragraph, 5, 8, 10, 13) instead of (paragraph, 5, 13). Different implementations might interpret extended proximity tests

differently.

Neither the information that the target maintains (associated with result set entries to be used in the proximity operations) nor

the manner in which the target maintains this information, is prescribed by the standard. The above is supplied as an example only.

ERS.2 Extended Result Set Model for Restriction

The Restriction operand specifies a result-set-id and a set of attributes. It might represent a set of database records identified by

the specified result set, restricted by the specified attributes, as in example 3. It might represent a set of records from the database

specified in the Search APDU, indirectly identified by the specified result set and restricted by the specified attributes, as in

example 4.

Example 3:

Let R be the result set produced by a search on the term ‘cat’ .

ISO 23950:1 998(E) © ISO

1 36

Result set position:

1 identifies record 1000, where ‘cat’ occurs in the title.

2 identifies record 2000, where ‘cat’ occurs in the title and as an author.

3 identifies record 3000, where ‘cat’ occurs in the title, and as an author and subject.

Then “R restricted to ‘author’” might produce the result set consisting of the entries 2 and 3 of R.

In the extended result set model for restriction, the target maintains information that allows this type of search to be performed.

In this example, the target might maintain the following information with the entries in result set R:

Result set position:

1 title

2 title, author

3 title, author, subject

Example 4:

In this example, R and C are two databases. R is a “registry” database containing records about chemical substances, each of

which is identified by a unique registry number. C is a bibliographic database, containing bibliographic records for documents

about chemical substances. The registry number is a searchable field in both databases. A registry number identifying a record in

R may occur in one or more logical indexes for database C.

For example, the “preparations” index for database C contains registry numbers of substances that are cited in its documents as

being used in preparations.

In this example, a search is performed against database R, creating result set L, which will in effect contain registry numbers

representing records in database R, each of which uniquely identifies a chemical substance. A second search is performed against

database C with the operand “L restricted to ‘preparations’ .” This restriction is expressed by applying the “preparations” attr ibute

to result set L. The search is performed by looking for registry numbers from result set L that occur in the “preparations” index for

database C. The result set represents the records in C where a registry number contained in result set L occurs as a preparation.

In the extended result set model for restriction, the target maintains information that allows this type of search to be performed.

In this example, the target might maintain, with each entry in L, a list of identifiers of records in C for which the registry number

occurs as a preparation.

Neither the information that the target maintains (associated with result set entries to be used in the evaluation of a Restriction

operand), nor the manner in which the target maintains this information, is prescribed by the standard. The above are supplied as

examples only.

© ISO ISO 23950:1 998(E)

1 37

Annex 14

(Informative)

RET: Z39.50 Retrieval

Search and retrieval are the two primary functions of Z39.50. Searching is the selection of database records, based on

origin-specified criteria, and the creation by the target of a result-set representing the selected records. Retrieval, idiomatically

speaking, is the transfer of result set records from the target to the origin.

This Annex describes retrieval, and thus assumes the existence of a result set. For simplicity, it is assumed that the result set has

a single record (although Z39.50 retrieval allows an origin to request the retrieval of various combinations of result set records)

and this Annex focuses on the capabilities provided by Z39.50 retrieval for retrieving information from that record.

RET.1 Overview of Z39.50 Retrieval

Though retrieval is considered informally to be the transfer of result set records, a result set, logically, does not contain records.

Rather, it contains logical items (sometimes referred to as “answers”); each item includes a pointer to a database record (the term

“result set record” is an idiomatic expression used to mean “the database record represented by a result set item”).

Moreover, a database record, as viewed by Z39.50, is purely a local data structure. In general Z39.50 retrieval does not transfer

database records (that is, the target does not transfer the information according to its physical representation within the database),

nor does Z39.50 necessarily transfer all of the information represented by a particular database record; it might transfer a subset of

that information.

Thus the “transfer of a result set record” more accurately means: the transfer of some subset of the information in a database

record (represented by that result set entry) according to some specified format. This exportable structure transferred is called a

retrieval record. (Multiple retrieval requests for a given record may result in significantly different retrieval records, both in

content and structure.)

Z39.50 retrieval supports the following basic capabilities:

• The origin may request specific logical information elements from a record (via an element specification, described below).

• The origin and target may share a name space for tagging elements (via a schema and tagsets, described below), so that

elements will be properly identified: by the origin, within an element specification; and by the target, within a retrieval

record.

• The origin may request an individual element according to a specific representation or format (via variants, described

below).

• The origin may specify how the elements, collectively, are to be packaged into a retrieval record (via a record syntax,

described below).

Correspondingly, Z39.50 retrieval has four primary functions:

• Element selection (see note)

• Element tagging

• Element representation

• Record representation

Note: Element selection pertains to retrieval, and should not be confused with record selection which pertains to searching.

Element selection pertains to selection of information elements from already-selected database records.

RET.2 Retrieval Object Classes

This section, RET.2, describes object classes used by these retrieval functions. RET.3 describes in detail specific object definitions

that are defined within this standard.

• element specifications (elementSpecs), see RET.2.1

• tagSets, see RET.2.1

• schema definitions, see RET.2.2

• variant specifications (variantSpecs), see RET.2.3

• record syntaxes, see RET.2.4.

Following is a brief overview of the object classes.

An elementSpec occurs within a Z39.50 Present request, and is used primarily for selection. In its most basic form, an

elementSpec is a request for specific elements (a set of elementRequests).

A tagSet defines a set of elements, and specifies names and recommended datatypes for individual elements within that set. The

name of an element is called its tag, and may be used alone (in an elementRequest) or accompanying the element it names (within

a retrieval record).

A schema defines an abstract record structure (see RET.2.2). The schema definition refers to one or more tagSets.

ISO 23950:1 998(E) © ISO

1 38

Although an elementSpec is used primarily for selection, it might have representation aspects: each elementRequest may

include a variantRequest, used primarily for element representation, to specify the particular form of an element, for example how

an element is to be formatted. (However, a variantRequest may include limited selection: it might ask for a specific piece or

fragment of an element.)

A variantRequest is one of three usages of a variantSpec:

• A variantRequest is a variantSpec occurring within an elementRequest.

• An appliedVariant is a variantSpec applied to an element by the target, when that element is included in a retrieval record.

• The target might provide a list of the variantSpecs supported for a given element; each is referred to as a supportedVariant.

A record syntax is applied by the target to the set of elements selected by an elementSpec (and possibly transformed by

appliedVariants) resulting in a retrieval record.

To summarize:

• An elementSpec is used (primarily) for element selection.

• A variantRequest is used for element representation.

• A record syntax is used for record representation.

• A tagSet is used for element tagging, both within an elementSpec (for element selection) and a record syntax (for record

representation).

• A schema defines an abstract record structure.

RET.2.1 Element Specification Features and TagSets

An elementSpec may be included in a Present request to specify the desired elements to comprise a retrieval record. For

example, the origin might request that the retrieval record consist of the two elements ‘author’ and ‘title’ . The elementSpec may

express this in one of two ways:

• An element set name (a primitive name) might be defined, for example ‘authorTitle’ , whose definition means “present the

author and title.”

• A dynamic specification may be used, allowing the origin to select arbitrary elements, dynamically.

The use of an element set name as an elementSpec has a significant limitation: one would need to be defined for every possible

combination of elements that might be requested.

For Z39.50 version 2, only the primitive form is allowed; the elementSpec must be an element set name (whose ASN.1 type is

VisibleString). Version 3 allows the elementSpec to alternatively assume the ASN.1 type EXTERNAL (thus referencing an

external definition, which is presumably, though not necessarily, described in ASN.1). The following illustrate some of the

features that may be provided by an elementSpec, by progressively complex ASN.1 examples.

RET.2.1.1. Simple Numeric Tags

A simple elementSpec might specify a list of elements. The elementSpec definition could be:

ESpec : := SEQUENCE OF ElementRequest

ElementRequest : := INTEGER

In this example, each element requested is represented by an integer. Both origin and target are assumed to share a common

definition, a tagSet, which assigns integers to elements. The integer is the name, or tag, of the element. In this example, the tagSet

might assign the integers 1 to ‘title’ and 2 to ‘author’ .

RET.2.1.2 String Tags

It is not always desirable to restrict element tags to integers. String tags are useful for some applications, so the element request

might take the slightly more complex form:

ElementRequest : := StringOrNumeric

Note that StringOrNumeric is a type defined within, and exported by Z39-50-APDU, defined as:

StringOrNumeric : := CHOICE{

numeric [1] IMPLICIT INTEGER,

string [2] IMPLICIT InternationalString}

In this case, the tagSet might declare that “author may also be referenced by the string tag ‘author’ , and title by ‘title’ .”

RET.2.1.3 Tag Types

Often it will be necessary (or useful) to request elements not all of whose tags are defined by a single tagSet. This capability

presents an important benefit, allowing multiple name spaces for tags, so that tagSet definitions may be developed independently.

However, this capability requires that tags be qualified by reference to tagSet.

© ISO ISO 23950:1 998(E)

1 39

A schema definition (see RET.2.2) may assign an integer to identify a tagSet (it identifies the tagSet only within the context of

the schema definition). This tagSet identifier is called a tagType. Note that a tagSet definition is a registered object and thus is

persistently identified by an object identifier. The (integer) tagType is used as a short-hand identifier.

Extending the above example to incorporate tagTypes, the elementRequest could be defined as:

ElementRequest : := SEQUENCE{

tagType [1] IMPLICIT INTEGER,

tagValue [2] StringOrNumeric}

RET.2.1.4 Tag Occurrence

A database record often contains recurring elements. An origin might want the Nth occurrence of a particular type of element (e.g.,

“the fourth image”). To introduce recurrence into the above example, the elementRequest could be defined as:

ElementRequest : := SEQUENCE{

tagType [1] IMPLICIT INTEGER OPTIONAL,

tagValue [2] StringOrNumeric,

tagOccurrence [3] IMPLICIT INTEGER}

RET.2.1.5 Tag Paths

A database record is not necessarily a flat set of elements, it may be a hierarchical structure, or tree (where leaf-nodes contain

information). An origin might request, for example “the fourth paragraph of section 3 of chapter 2 of book 1” (‘book’ , ‘chapter’ ,

‘section’ , and ‘paragraph’ might be tags). This example introduces the concept of a tag path, which is simply a nested sequence of

tags (each tag within the sequence is qualified by a type and occurrence). A tag path can be incorporated by replacing the first line

of ASN.1 in the previous example, with:

ElementRequest : := TagPath

TagPath : := SEQUENCE OF SEQUENCE{

RET.2.1.6 VariantRequests

Finally, the origin may wish to qualify an elementRequest with a variantRequest, to specify a particular composition (e.g.,

PostScript), language, character set, formatting (e.g., line length), or fragment.

ESpec : := SEQUENCE OF ElementRequest

ElementRequest : := SEQUENCE{

TagPath,

VariantRequest OPTIONAL}

Where TagPath is defined as in the previous example. Variants are described in RET.2.3.

RET.2.2 Schema and Abstract Record Structure (ARS)

A database schema represents a common understanding shared by the origin and target of the information contained in the records

of the database represented by schema. The primary component of a schema is an abstract record structure, (ARS). It lists schema

elements in terms of their tagPaths, and supplies information associated with each element, including whether it is mandatory,

whether it is repeatable, and a definition of the element. (It also describes the hierarchy of elements within the record; see

RET.2.2.5.)

An ARS is defined in terms of one or more tagSets. The schema itself may define a tagSet, and may also refer to externally

defined tagSets. In the simple example of an ARS that follows (Table A14-1), assume that the following tagSet has been defined:

Table A14-1: Simple Example of an Abstract Record Structure

Tag Element Recommended dataType

1 title InternationalString

7 name InternationalString

16 date GeneralizedTime

18 score INTEGER

14 recordId InternationalString

<locally

defined string

tag> objectElement InternationalString or OCTET STRING

ISO 23950:1 998(E) © ISO

1 40

In the ARS example shown in Table A14-1 , each “schema element” refers to an element from the above tagSet. For

objectElement, the schema would indicate that the target is to assign some descriptive string tag. For example, if the element is a

fingerprint file, the tag might be ‘fingerPrintFile’ . (In that case, the content of element ‘name’ , tag 7, might identify the person

who is the subject of the finger prints.) Since it is the only element in the ARS with a string tag, the origin will recognize it as the

objectElement.

RET.2.2.1 Relationship of Schema and TagSet

In the example, at first glance it appears there need not be separate tables for tagSet and ARS, they could be combined into a

single table. When the tagSet is defined within a schema, then there may be no need to distinguish between the tagSet and

schema. However, the tagSet might instead be defined externally and referenced by the schema.

A schema may define a tagSet as in the example, and it need not be registered. The schema could simply assign an integer

tagType to identify the tagSet. The tagSet could then be used only by that schema. But some of the elements in the example

might also be included in a different schema. For example, another schema might also define title and name, and that schema

should be able to use the same tags. For this purpose, tagSets may be registered, independent of schema definitions.

It is anticipated that there will be several, but not a large number of tagsets defined, and that many schemas will be able to

define an ARS referencing one or more registered tag sets, without the need to define a new tagSet. (There will be more than

one tagSet defined because it would be difficult to manage a single tagSet that meets the needs of all schemas.)

RET.2.2.2 Tag Types

As noted in RET.2.1 .3, within a Present request or Present response, elements are identified by their tag, and tags are qualified

by tag type. The tag type is an integer, identifying the tagSet to which it belongs. A schema lists each tagSet referenced in its

ARS and designates an integer to be used as the tag type for that tagSet.

Z39.50 currently defines two tagSets, tagSet-M and tagSet-G. These are described in RET.3.4. TagSet M includes elements

to be used primarily to convey meta-information about a record, for example dateOfCreation; tagSet-G includes primarily

generic elements, for example ‘ title’ , ‘author’ .

Among the schema elements defined in the example above, title and name are defined in tagSet-G; date, score, and recordId

are defined in tagSet-M.

The schema might provide the following mapping of tagType to tagSet:

1 --> tagSet-M

2 --> tagSet-G

3 --> locally defined tags (intended primarily for string tags, but numeric tags are not

precluded).

In the notation below, where (x,y) is used, ‘x’ is the tagType and ‘y’ is the tag. In Table A14-1 the following column would

be inserted on the left:

TagPath

(2,1)

(2,7)

(1 ,16)

(1 ,18)

(1 ,14)

(3,<locally defined string tag>)

RET.2.2.3 Recurring objectElement

The schema becomes only slightly more complex if multiple object elements (i.e. , multiple occurrences of the element

objectElement) are allowed. The schema could indicate that each occurrence of objectElement is to have a different string tag.

The entry in the ‘ repeatable’ column in the ARS, for objectElement, would be changed from ‘no’ to ‘yes’ .

For example, suppose a record includes a fingerprint file, photo, and resume, all describing an individual (and the element

‘name’ might identify the individual that they describe). The string tags for these three elements respectively might be

‘fingerPrint’ , ‘photo’ , and ‘resume’ . The origin would recognize each of these elements as an occurrence of objectElement,

because the schema designates that only objectElement may have a string tag. (This is not to imply that the origin would

recognize the type of information, e.g. , fingerprint, from its string tag; but the origin might display the string tag to the user, to

whom it might be meaningful.) The ARS would be as follows (definition column omitted):

© ISO ISO 23950:1 998(E)

1 41

Tag path Element Mandatory? Repeatable?

(2,1) Title yes no

(2,7) Name no yes

(1 ,16) Date no no

(1 ,18) Score no no

(1 ,14) RecordId no no

(3, Object

<stringTag>) Element yes yes

RET.2.2.4 Structured Elements

In the preceding examples the ARSs are flat; all elements are data- elements, i.e. , leaf-nodes. In the ARS in Table A14-2,

hierarchy is introduced; the ARS includes structured elements (i.e. , elements whose tagPath has length greater than 1).The

ARS Table A14-2 is part of a schema for a database in which each record describes an information resource. It assumes the

following tagSet:

Table A14-2: ARS with Hierarchy

Tag Element Name Recommended DataType

25 linkage InternationalString

27 recordSource InternationalString

51 purpose InternationalString

52 originator InternationalString

55 orderProcess InternationalString

70 availability (structured)

90 distributor (structured)

94 pointOfContact (structured)

97 crossReference (structured)

The notation (x,y)/(z,w) is used below to mean element (z,w) is a sub-element of element (x,y). In the “Schema Element

Name” column, indentation is used to indicate subordination. For example, distributorName, a data element, is a sub-element

of the structured element distributor, which in turn is a sub-element of the structured element availability. In this example, the

schema designates that the tagType for the above defined tagSet is 4.

Several elements in this ARS are (implicitly) imported from tagSet-G (those with tagType-2). These are: title, abstract,

name, organization, postalAddress, and phoneNumber.

The ARS describes an abstract database record consisting of title, abstract, purpose, originator, availability, point of contact,

crossReference, and recordSource. These are the “top-level” elements, among which Availability, pointOfContact, and

CrossReference are structured elements, and the others are data elements. Availability consists of distributor, orderProcess, and

Linkage; among these, distributor is a structured element.

RET.2.3 Variants

An element might be available for retrieval in various forms, or variants. The concept of an element variant applies in three

cases:

• the origin may request an element (in a Present request) according to a specific variant.

• the target may present an element (in a Present response) according to a specific variant.

• the target may indicate what variants of a particular element are available.

Correspondingly, and more formally, a variant specification (variantSpec) takes the form of a variantRequest,

appliedVariant, or supportedVariant. In all cases, a variantSpec is a sequence of variantComponents, each of which is a triple

(class, type, value). ‘class’ is an integer. ‘ type’ is also an integer and a set of types are defined for each class. Values are

defined for each type.

A variantSet definition is a registered object (whose object identifier is called a variantSetId) which defines a set of classes,

types, and values that may be used in a variantComponent. A variantSpec is always qualified by its variantSetId, to provide

context for the values that occur within the variantComponents (in the same manner that an RPN Query includes an attribute

set id, to provide context for the attribute values within the attribute lists). The variant set definition variant-1 is defined in

Annex 1 1 , VAR, and is described in detail in RET.3.3.

ISO 23950:1 998(E) © ISO

1 42

RET.2.4 Record Syntax

The target applies a record syntax to an abstract database record, forming a retrieval record. Record syntaxes fall into two

categories: content-specific and generic. Content-specific record syntaxes include:

• those of the MARC family (listed at the beginning of Annex 5, REC)

• Explain (REC.1)

• OPAC and Summary (REC.3 and REC.4)

• Extended Services (REC.6).

Generic record syntaxes are further categorized: they are structured or unstructured. Structured record syntaxes are able to

identify TagSet elements. GRS-1 , a generic, structured syntax, is defined in REC.5, and is described in detail in RET.3.2.

SUTRS (Simple Unstructured Text Record Syntax) is a generic, unstructured syntax, defined in REC.2.

RET.3 Retrieval Objects Defined in this Standard

In the remainder of this Annex, detailed descriptions are provided for the following retrieval objects defined in this standard:

element specification format eSpec-1 , record syntax GRS-1 , variant set variant-1 , and tagSets tagSet-M and tagSet-G. Within

these descriptions it is assumed that these objects are used together; for example, in the description of eSpec-1 it is assumed

that GRS-1 is to be used as the record syntax. In general, however, no such restriction applies; eSpec-1 may be used as an

element specification in conjunction with SUTRS for example.

RET.3.1 Element Specification Format eSpec-1

The element specification format eSpec-1 is defined in Annex 10, ESP. An element specification taking this form is basically a

set of elementRequests, as seen in the last member of the main structure:

elements [4] IMPLICIT SEQUENCE OF ElementRequest

Each elementRequest may be a “simple element” or a “composite element,” as distinguished by the ElementRequest

definition:

ElementRequest: := CHOICE{

simpleElement [1] . . .

compositeElement [2] . . .

Simple elements are described in RET.3.1 .1 . A composite element is constructed from one or more simple elements,

described in RET.3.1 .2. Note however an elementRequest that takes the form of simpleElement might actually result in a

request for multiple elements (see RET.3.1 .1 .3).

The element specification may include additional elementRequests, resulting from ‘elementSetNames’ in the first member

of the main sequence. All elementRequests resulting from ‘elementSetNames’ are simple elements.

Also included in the main structure are a default variantSetId and a default variantRequest. These are described in

RET.3.1 .1 .5.

RET.3.1.1 Simple Element

A request for a simple element consists of the tagPath for the element, together (optionally) with a variantRequest. The tagPath

identifies a node of the logical tree (or possibly several trees) representing the hierarchical structure of the abstract database

record to which the element specification is applied.

A tagPath is a sequence of nodes from the root of a tree to the node that the tagPath represents, where each node is

represented by a tag. The end-node of a tagPath might be a leaf-node containing data, or a non-leaf node; in the latter case, t he

request pertains to the entire subtree whose root is that node, and GRS-1 will present the subtree recursively (see RET.3.2.1 .1).

RET.3.1.1.1 Tag

Each tag is qualified by a tagType. Thus a tag consists of a tagType and a tagValue. (A tag is further qualified by its

“occurrence”; see RET.3.1 .1 .2.) Each tagType is an integer, and each tagValue may be either an integer or string.

Every tag along a tagPath is assumed to have a tagType, either explicit or implicit; it may be supplied explicitly within the

specification, and if it is omitted, a default applies (the default should be listed within the schema in use). Tags along a tagPath

may have different tagTypes.

RET.3.1.1.2 Occurrence

Each node along a tagPath is distinguished not only by its tag, but also by its occurrence among siblings with the same tag. A

record might contain recurring elements, and the origin might wish to request the Nth occurrence of a particular element (e.g. ,

“the fourth image”). The specification of the “occurrence” of a node may be omitted, in which case it defaults to 1 . Occurrence

may explicitly be specified as “last” (this capability is provided for the case where the origin does not know how many

occurrences there are, but however many, it wants the last).

© ISO ISO 23950:1 998(E)

1 43

RET.3.1.1.3 Multiple Simple Elements

In some cases a ‘simpleElement’ request (within the ElementRequest structure) results in multiple simple elements. This may

occur in the following cases: If a tagPath identifies a non-leaf node, the request represents the entire subtree (it is logically

equivalent to individual simple requests for each subordinate leaf-node).

• ‘occurrence’ may be specified as ‘all’ , meaning “all nodes with a given tag.”

• ‘occurrence’ may be specified in the form of a range (e.g. , 1 through 10).

• The tagPath may include a wild card (see RET.3.1 .5) in lieu of a specific tag.

RET.3.1.1.4 Wild-cards

A tagPath may be viewed as an expression containing tags and wild cards. There are two types of wild cards, wildThing and

wildPath, described in RET.3.1 .1 .4.1 and RET.3.1 .1 .4.2.

For this discussion of wild-cards, consider the sample record whose hierarchical structure is shown in Figure A14-1 below.

Each cell in the diagram represents an element whose tagPath is indicated within the cell. The numbers within the tagPath

are tagValues; for simplicity, tagTypes are omitted, and assumed all to be the same. Leaf-nodes are highlighted by

double-lined cells.

For example, the tagPath 1 /3/7 represents the (non-leaf-node) element with tag 7 subordinate to the element with tag 3

subordinate to the element with tag 1 . 1 /3/7/11 /12 represents the element whose (leaf-) node has tag 12.

RET.3.1.1.4.1 WildThing

A tagPath expression may include the wild card ‘wildThing’ in lieu of a tag. WildThing takes the form of an occurrence

specification. For example, the tagPath expression ‘1 /2/wildThing (occurrence 3)’ would represent the node 1 /2/9, because it is

the third child of the node 1 /2.

The expression ‘1 /wildThing (occurrence 2)’ would be equivalent to the path 1 /3 (it refers to the entire subtree whose node

has tag 3).

Figure A14-1: Sample Record Illustrating Hierarchical Structure and Wildcards

1 (root)

1 /2 1 /3

1 /2/8 (occurrence 1) 1 /2/8 (occurrence 2) 1 /2/9

1 /2/8/5

(occurrence 1)

1 /2/8/5

(occurrence 2)

1 /2/8/13

1 /3/6 1 /3/7

1 /3/6/8 1 /3/6/9 1 /3/7/10 1 /3/7/11

1 /3/6/8/5

1 /3/7/11 /5 1 /3/7/1 1 /12

ISO 23950:1 998(E) © ISO

1 44

RET.3.1.1.4.2 WildPath

A tagPath expression may include the wild card ‘wildPath’ in lieu of a tag. WildPath matches any sequence of tags, along any

path such that the tag following wildPath in the expression follows that sequence in the matched path. For example, either of

the expressions ‘wildpath/5’ or ‘1 /wildPath/5’ would result in all paths ending in 5. It would match:

1 /2/8 (occurrence 1)/5 (occurrence 1)

1 /2/8 (occurrence 1)/5 (occurrence 2)

1 /3/6/8/5, and

1 /3/7/11 /5

The expression ‘1 /2/wildPath/5’ would match the first two listed above, and the expression ‘1 /3/wildPath/5’ would match

the last two.

RET.3.1.1.5 Variant Request

Each request for a simple element may optionally include a variantRequest. Note that the main structure of eSpec-1 optionally

includes ‘default-VariantRequest’ . If the element request does not include a variantRequest then ‘defaultVariant-Request’

applies if it occurs in the main structure. If the element request does not include a variantRequest and ‘defaultVariantRequest’

does not occur in the main structure, there is no variant request associated with the element request.

The main structure also optionally includes ‘defaultVariantSetId’ . A variant specification may or may not include a

variantSetId. If the element request includes a variantRequest which does not include a variantSetId, then ‘defaultVariantSet’

applies. (If the element request includes a variantRequest which does not include a variantSetId, and if ‘defaultVariantSet’

does not occur in the main structure then the variantRequest is in error.)

RET.3.1.2 Composite Elements

An elementRequest for a compositeElement takes the form of a list of simple elements (as described in RET.3.1 ; alternatively,

the simple elements may be specified by one or more element set names), a delivery tag, and an optional variantRequest. The

simple elements are to be combined by the target to form a single (logical) element, to which the (optional) composite variant

is to be applied, and the target is to present the element using the supplied delivery tag.

RET.3.2 Generic Record Syntax GRS-1

A GRS-1 structure is a retrieval record representing a database record. Its logical content is a tree representing the hierarchical

structure of the abstract database record, or a sequence of trees if the abstract record itself does not have a root.

RET.3.2.1 General Tree Structure

The top level “SEQUENCE OF TaggedElement” might be a single instance of TaggedElement, representing the root of a

single tree representing the record (in the degenerate case, the record consists of a single element). Alternatively, the top-level

SEQUENCE OF might contain multiple instances of TaggedElement, in which case there is no single root for the record; the

record is represented by multiple trees, any or each of which might be a single element (thus the GRS-1 structure may

represent a flat sequence of elements).

Any leaf-node within the GRS-1 structure might correspond to an individual elementRequest that is included in the

corresponding eSpec-1 element specification. A non-leaf node may correspond to an elementRequest; if an eSpec-1

elementRequest tagPath ends at a non-leaf node, then the request is for the entire subtree represented by that node.

RET.3.2.1.1 Recursion and SubTrees

Each instance of TaggedElement may, via recursion, contain a subtree. Beginning at the root of the tree (or at one of the top

level nodes) TaggedElement identifies an immediately subordinate node, via tag and occurrence. If the CHOICE for ‘content’

is ‘ subtree’ , then the identified node is a non-leaf node: ‘subtree’ is itself defined as SEQUENCE OF TaggedElement, so the

next level of nodes is thus defined. Recursion may be thus used to describe arbitrarily complex trees.

RET.3.2.1.2 Leaf-nodes

Along any path described by the GRS-1 record, eventually a leaf-node is encountered (‘content’ other than ‘subtree’). The

content of the leaf-node is one of the following:

• Data; see RET.3.2.2.

• Empty, for one of the following reasons:

— The requested element does not exist.

— It exists, but there is no data.

— The elementRequest specified (via a variant-1 variantRequest) that no data was to be returned. (This is probably

because only meta-data was desired. So it is likely that the variantRequest also requested meta-data, and that meta-data

accompanies this node; see RET.3.2.3.)

• A diagnostic.

© ISO ISO 23950:1 998(E)

1 45

RET.3.2.2 Data

When a leaf-node contains data, then ‘content’ is one of the following ASN.1 types: OCTET STRING, INTEGER,

GeneralizedTime, EXTERNAL, InternationalString, BOOLEAN, OBJECT IDENTIFIER, or IntUnit. That is, the CHOICE for

ElementData is one of these, and the actual data must assume the chosen type. An appliedVariant may also be indicated, by

including appliedVariant from the main structure.

RET.3.2.3 Meta-data

When a leaf-node contains data or is empty, ‘metaData’ may be included, containing meta-data for the element. The meta-data

may be included along with the data, or in lieu of the data if the elementRequest asked that no data be returned (i.e. , ‘content’

is ‘noDataRequested’). Meta-data would not be included when ‘content’ is ‘elementNotThere’ , ‘elementEmpty’ , or

‘diagnostic’ .

MetaData for a leaf-node may be any or all of the following:

• usageRight: the target may declare that the element is freely distributable, or that restrictions apply. In the latter case, the

target supplies either a restriction in the form of a text message, or a license pointer.

• hits; see RET.3.2.3.1 .

• displayName: A name for the element, suggested by the target, for the origin to display.

• supportedVariants; see RET.3.2.

• message: A message for the origin to display to the user, associated with this element.

There is also one case where meta-data may be included for a non-leaf node:

• seriesOrder; see RET.3.2.3.2.

RET.3.2.3.1 Hits

Associated with an element may be one or more hit vectors. Each points to a fragment within the element. Each such fragment

bears some relationship to the search that caused the record (to which the element belongs) to be included in the result set

(from which the record is being presented). Note that the association of a hit vector to an element is meaningful only within

the context of that search.

A hit vector may optionally include a ‘ satisfier’ : for example, a term from the query, which occurs within that fragment of

the element (to which the hit vector points).

The target might return hit vectors along with an element, so that the origin may be able to quickly locate the satisfying

portions of the element, and perhaps even highlight the satisfier(s) for display to the user.

The target might return part of an element and include hit vectors, some of which point within the retrieved portion, and

others which point to fragments not included, to indicate to the origin what fragment to request to retrieve other relevant parts

of the element.

A hit vector may include location information: offset (location within the element where the fragment begins) and length.

Both are expressed in terms of IntUnit, so for example, the location information might indicate an offset of “page 10” and

length of “one page,” meaning that the satisfier occurs on page 10 (or that the fragment is page 10).

Note: if there are multiple hit vectors with the same satisfier, occurring on the same page, and if the target wishes to indicate

‘rank’ (see below), it will need to use a unit with finer granularity than ‘page’ .

The hit vector may also include ‘rank’ , relative to the other hits occurring within this set of hitVectors. Rank is a positive

integer with a value less than or equal to the number of hit vectors. More than one hit may share the same rank.

Finally, the target may assign a token to the hit vector, which points to the fragment associated with the hit. The origin may

use the token subsequently, but within the same Z-association, within a variantRequest (in an elementRequest) to retrieve (or

to refer to) the fragment.

The target might provide location information, or a token, which may be used subsequently to retrieve the specific

fragment. The target might provide both location information and a token: for example, the location information might

indicate “page 10”; the origin may subsequently retrieve the pages before and after, inclusive (i.e. , pages 9-11). If the target

also supplies a token, the origin might retrieve the “previous fragment” or “following fragment.”

Location information is always variant-specific. A token, however, may be variant-specific or variant-independent. The

origin might request “hits: non-variant-specific” for an element (via variant-1), and specify ‘noData’ . The hit vectors returned

would be variant-independent (thus only a token, and no location information, would be included in each hit vector). The

origin could subsequently use a token in an elementRequest to retrieve the corresponding fragment, independent of what

variantRequest was included in the elementRequest.

The origin might request ‘hits: variant-specific’ for an element, for a particular variant. The target might return location

information or tokens, or both, but in any case, the hit vectors would apply only for that variant. The origin could subsequently

use either the location information or token in an elementRequest to retrieve the corresponding fragment, but only when

specifying that variant.

As an alternative to hit vectors, see RET.3.3.1 .8, Highlighting.

ISO 23950:1 998(E) © ISO

1 46

RET.3.2.3.2 Series Order

The target might include the meta-data ‘seriesOrder’ (for a non-leaf node only). It indicates how immediately-subordinate

elements with the same tag are ordered. Values are listed in TAG.2.1 , but may be overridden by the schema.

The values are the same as those for elementOrdering (see RET.3.4.1 .2.3) which applies at the record level (i.e. , it applies

throughout the record, and pertains wherever sibling elements with the same tag occur).

RET.3.3 Variant Set Variant-1

This section describes the variant set variant-1 .

RET.3.3.1 variant-1 Classes

This section describes the classes, types, and values defined for the variant set variant-1 .

RET.3.3.1.1 VariantId

Variant-1 class 1 , ‘variantId’ , may be used to supply an identifier for a variant specification. (There is only one type within

class 1 , so the variantId is always class 1 , type 1). It is a transient identifier; it may be used to identify a particular variant

specification during a single Z-association. (A variantId should not be confused with variant set id, which identifies a variant

set definition.)

A variantId may be included within a supportedVariant, variantRequest, or applied-Variant. The variantList for an element

may be supplied by the target (see 3.3.2). It consists of a list of supportedVariants for the element. Each may include a

variantId, which may be used subsequently by the origin within a variantRequest (within an elementRequest), to identify that

supportedVariant (i.e. , that variant form of the element), in lieu of explicitly constructing a variant. A variantId may be used

within an appliedVariant, supplied by the target in case the origin wishes to use it in a subsequent request, possibly overriding

some of the variant parameters.

RET.3.3.1.2 BodyPartType

Variant-1 class 2, ‘BodyPartType’ , allows representation of the structure, or “body part type,” of an element. It may be used

within a supported-Variant, variantRequest, or appliedVariant.

There are three types: type 1 is ianaType/subType, for content types registered with IANA (Internet Assigned Numbers

Authority). Type 2 is for body part types registered by the Z39.50 Maintenance Agency (type 2 is used generally for formats

that have not yet been otherwise officially registered). Type 3 is for bilaterally agreed upon body part types.

Following are some of the IANA contentType/Subtypes registered:

Type Subtype

text plain

richtext

tab-separated-values

application octet-stream

postscript

oda

dx wordperfect5.1

pdf

zip

macwriteii

msword

image jpeg

gif

ief

tiff

audio basic

video mpeg

© ISO ISO 23950:1 998(E)

1 47

PostScript, for example, would be indicated by the triple (2,1 , ‘application/postscript’). SGML is not registered yet by

IANA, so it is registered as a Z39.50 body part type. It may be indicated by (2,2, ‘ sgml/<dtd>’) where <dtd> is the name of the

SGML dtd.

A Z39.50 body part type will be registered only if it is not registered as an IANA type. If it is subsequently adopted by

IANA, it is recommended that it be referenced as such.

RET.3.3.1.3 Formatting/Presentation

Variant-1 class 3, ‘ formatting’ , may be included within a variantRequest, appliedVariant, or supportedVariant. It indicates

additional formatting parameters such as line length, lines per page, font style, and margins.

RET.3.3.1.4 Language/CharacterSet

Variant-1 class 4, ‘ language/characterSet’ , may be included within a variantRequest, appliedVariant, or supportedVariant. It

indicates language and/or character set.

RET.3.3.1.5 Piece

Variant-1 class 5, ‘piece’ may be included within a variantRequest (type 1) or appliedVariant (type 2), to refer to a specific

piece or fragment of an element.

The origin may use type 1 to request:

• A fragment beginning at the beginning of the element (‘start’);

• The ‘next’ fragment (relative to the fragment indicated by targetToken, see type 7);

• the ‘previous’ fragment;

• the ‘current’ fragment (the fragment indicated by targetToken);

• the ‘ last’ fragment (within the element).

The target may use type 2 to indicate that the presented fragment:

• begins at the beginning of, but is not the whole element (‘start’);

• neither starts at the beginning of, nor ends at the end of the element (‘middle’);

• does not begin at the beginning of, but ends at the end of the element (‘end’);

• ends at the end of the element, but the element may grow in the future (‘endForNow’); or

• is the ‘whole’ element.

The target may use types 3, 4 (or 5), and 6 in lieu of type 2, to indicate the ‘start’ and ‘end’ (e.g., starts at page 1 and ends at

page 100) or ‘start’ and ‘howMuch’ (e.g. , starts at page 1 , 100 pages) of the fragment and optionally, a ‘step’ size. For

example, the target could indicate that the fragment starts at byte 10,000 and ends at byte 20,000 (in this case a step of 1 would

be indicated, or implied if ‘step’ is omitted); or it starts on page 100, ends on page 200, and includes every 5th page.

Similarly, the origin may use types 3, 4 (or 5), and 6 to request a fragment. In a variantRequest these types may be used to

further qualify a fragment indicated by types 2 and 7. For example, the request might specify a targetToken, previous fragment

(5,1 ,3), as well as a start and end, in which case the start and end are relative to the indicated fragment, i.e. , relative to the

fragment immediately prior to that indicated by the target token.

The target may use type 7 in an appliedVariant to supply a token as an identifier of the supplied fragment, and the origin

may subsequently use the token in a variantRequest to identify that fragment.

RET.3.3.1.6 MetaData Requested

Variant-1 class 6, ‘meta-data requested’ may be included within a variantRequest, to request meta-data associated with an

element.

The origin might want to know, for example, the cost to retrieve a particular element in PostScript, as well as the page

count (of the PostScript form of the element). The following variant specifiers would be included within the variantRequest for

that element:

(2,1 , ‘application/postscript’)-- PostScript

(6,1 , NULL)-- cost, please

(6,2, Unit:pages)-- size in pages, please

(9,1 , NULL)-- no data (just the

-- above metaData)

Alternatively, a variantId might be used in place of a set of explicit specifiers (i.e. , in place of the PostScript specifier, in

this example) if the origin knows the variantId of a variant for which it wants cost or size information. (Although if the orig in

knows the variantId, it may already have cost or size information because it may have obtained that id within a variantList, and

if so, the target may have included the cost and page information within the supportedVariant.)

ISO 23950:1 998(E) © ISO

1 48

The origin might also ask for the location of hits within the element (see RET.3.2.3.1). An element might have hits that are

specific to a variant, and may also have non-variant-specific hits. The request above might also ask for hits specific to the

particular variant (i.e. , PostScript), using (6,3, NULL) or non-variant-specific hits, using (6,4, NULL). In either case, the

request is for the target to return hit vectors within the retrieved GRS record.

The origin may request that the target supply the variant list for an element via the specifier (6,5, NULL). The target would

supply the variant list (consisting of a list of supportedVariants) within the GRS structure (not within the appliedVariant). See

RET.3.3.2.

The origin may use (6,6, NULL) to inquire whether a particular variant is supported. An example is provided in RET.3.3.2.

RET.3.3.1.7 Meta-data Returned

Variant-1 class 7, ‘meta-data returned’ may be included within an appliedVariant or supportedVariant. There are several

categories of element MetaData. Those of class 7: cost, size, integrity, and separability, are singled out for representation

within variant-1 , because the target may include those within a supportedVariant. Other metaData, including hits and

variantList, are included within the GRS-1 structure. Hits are described in RET.3.2.3.1 .

RET.3.3.1.8 Highlighting

Variant-1 class 8, ‘highlighting’ , may be included within a variantRequest or an appliedVariant. Highlighting may be used as

an alternative, or in addition, to hit vectors, described in RET.3.2.3.1 .

The origin may include ‘prefix’ and ‘postfix’ in a variantRequest to request that the target insert the specified strings into

the actual data surrounding hits so that the origin, upon retrieving the data, may simply locate the strings for fast access to the

hits. The origin may use ‘server default’ in lieu of ‘prefix’ and ‘postfix’ to indicate that the target should select the strings for

highlighting.

 The target may include ‘prefix’ and ‘postfix’ in an appliedVariant to indicate the strings used within the element for

highlighting hits.

RET.3.3.2 VariantList

The thoroughness of the variantList supplied by the target may depend on the implementation. For example, for an element

(representing a document) that the target provides in PostScript, consider the following cases:

• The document might already exist in print format, and the target might support only that single PostScript variant.

• The target might support a few variant forms, varying by language.

• The target might support many variant forms; varying by language.

• The target might support many variant forms, varying by language, and also varying by formatting/presentation

parameters, including lines per page, font style, etc.

The target might list a single supported-Variant in the variant list for the element, indicating that the element is available in

PostScript. In that case the origin cannot necessarily conclude which of the above cases applies. The target might instead list

three supportedVariants, each indicating PostScript and a language. In that case, it may be reasonable for the origin to surmise

that the element is available in those three languages only, but the origin probably cannot deduce which formatting parameters

apply. The target might further indicate one or more formatting parameters within each supportedVariant. Again, the extent to

which the origin may deduce what other variations are supported will depend on the implementation.

The origin may explicitly inquire whether a particular variant is supported, by constructing the desired variant (including all

of the desired formatting parameters, etc.) and indicating “is variant supported?” using the triple (6,6, NULL). The

variantRequest might also request that the target provide cost (6,1 , NULL) and size (6,2, NULL) information if the variant

does exist. The target would respond that the requested variant is or is not supported by supplying an appliedVariant (with the

element) with the same parameters, and including the triple (7,5, TRUE or FALSE). If the target indicates TRUE (that the

variant is supported) it may also supply a variantId that the origin may then use to request the variant.

The origin may construct a variantRequest that includes a variantId along with additional variant specifiers. Suppose the

target lists the following supportedVariant:

(1 ,1 , <variantId>) -- identifies this variant

(2,1 , ‘application/postscript’) -- in PostScript

(4,1 , ‘por’) -- language: Portuguese

The element is thus available in PostScript, in Portuguese. The origin may submit a variant-Request consisting of only:

(1 ,1 , <variantId>)

to request the element in PostScript, in Portuguese.

© ISO ISO 23950:1 998(E)

1 49

Suppose, instead, the target lists the following supportedVariant:

(1 ,1 , <variantId>) -- identifies this variant

(2,1 , ‘application/postscript’) -- in PostScript

Thus the target indicates that the element is available in PostScript, but no other variant information is provided.

The origin may submit a variantRequest consisting of only:

(1 ,1 , <variantId>)

(4,1 ‘por’)

Again, this is to request the element in PostScript, in Portuguese.

Or, the origin may submit the following variantRequest:

(1 ,1 , <variantId>)

(4,1 , ‘por’)

(4,2, 84) -- Portuguese character set

(5,3, page 1) -- begin on page 1

(5,4, page 100) -- end on page 100

to request the element in PostScript, in Portuguese, Portuguese character set, pages 1 -100.

RET.3.4 TagSets Defined in the Standard

Annex Tag defines two tagSets, tagSet-M (for elements which convey meta- and related information about a record) and

tagSet-G (primarily for generic elements). These two tagSets are described in RET.3.4.1 and RET.3.4.2.

RET.3.4.1 TagSet-M

TagSet-M defines a set of elements that the target might choose to return within a retrieval record, even though the element

was not requested and in fact is not actually information contained within the database record. Rather, it is information about

the database record, retrieval record, or result set record. Within a GRS-1 record, the target returns tagSet-M elements in

exactly the same manner that it returns elements from any other tagSet.

TagSet-M elements fall into three categories.

1 . Meta-information about the database record:

• processingInstructions

• recordUsage

• restriction

• userMessage

• url

• local control number

• creation date

• dateOfLastModification

• dateOfLastReview

2. Elements defined to facilitate the construction and processing of the retrieval record:

• schemaIdentifier

• elementsOrdered

• elementOrdering

• defaultTagType

• defaultVariantSetId

• defaultVariantSpec

• record

• wellKnown

• recordWrapper

3. Elements pertaining to the record’ s entry in the result Set:

• rank

• score

ISO 23950:1 998(E) © ISO

1 50

RET.3.4.1.1 Meta-Information

The definitions for these elements are provided in TAG.2.1 . Any of these elements may or may not actually occur within the

database record. However, it is emphasized that these elements describe the database record; they do not pertain to elements

within the database record which may in fact be meta-information about some object other than the record itself.

For example, tagSet-M element ‘url’ refers to a URL for the database record. The database record itself may contain URLs

for resources that the record describes; tagSet-M element ‘url’ does not pertain to those.

RET.3.4.1.2 Information about the Retrieval Record

RET.3.4.1.2.1 schemaIdentifier

A retrieval record is meaningful only within the context of a schema definition. In many (perhaps most) cases the target may

reasonably expect that the origin knows which schema definition applies to a particular retrieval record. In those cases the

target need not explicitly identify the schema. This element is provided for cases where there is a possibility of uncertainty

about which schema applies.

This element is also useful for retrieval records that include subordinate or nested records which are defined in terms of

different schemas. See RET.3.4.1 .2.5.

This element, if provided, should normally occur as the first element within the retrieval record (or within a subordinate or

nested record) and for that reason is assigned tag 1 , in case the target wishes to present elements in numerical order (see

RET.3.4.1 .2.2).

RET.3.4.1.2.2 elementsOrdered

This is a BOOLEAN flag indicating whether the elements of the retrieval record are presented in order by tag. The ordering is

described in Annex 12, TAG.2.1 . This element is defined because it may be useful for an origin to know whether elements are

presented in order when trying to locate a particular element within the retrieval record.

This element, if provided, should normally occur as the first element within the retrieval record, or the second if

schemaIdentifier is provided, and for that reason is assigned tag 2.

RET.3.4.1.2.3 elementOrdering

For a retrieval record containing recurring elements, i.e. , sibling elements with the same tag, the target might present these

elements according to some logical order, for example, chronological, increasing generality, concentric object snapshots, or

normal consumption (i.e. , pages, frames). This element indicates the order; values are listed in TAG.2.1 . Note that the values

are the same as those for seriesOrder (see RET.3.2.3.2) which applies at the element level, i.e. , it pertains to sub-elements of an

element. This element, element-Ordering, applies at the record level, i.e. , it applies throughout the record, and pertains

wherever sibling elements with the same tag occur.

RET.3.4.1.2.4 Defaults (tagType, variantSetId, and variantSpec)

defaultTagType, if provided, is the assumed tagType for presented elements where the tagType is omitted. It is defined solely

to allow simplification of the retrieval record. If there is a predominant tagType within the retrieval record, this meta-element

allows the target to omit the tagType for those elements with that tagType.

Note that the schema may also list a default tagType. If so, then defaultTagType, if it occurs, overrides the schema-listed

default. If the schema does not list a default tagType, and if this element does not occur, then every tag within the retrieval

record must include a tagType.

defaultVariantSetId is the assumed variantSetId for appliedVariants within the retrieval record that omit the variantSetId.

defaultVariantSpec, if provided, is the assumed appliedVariant for all elements within the retrieval for which an

appliedVariant is not provided. The schema may also list a default variantSetId and/or appliedVariant. If so, then these

elements, if they occur, override the schema-listed default. If the schema does not list a default variantSetId and

defaultVariantSetId is not provided, then every appliedVariant within the retrieval record must include a variantId. If the

schema does not list a default appliedVariant and defaultVariantSpec is not provided, then for elements within the retrieval

record for which an appliedVariant is not supplied, no appliedVariant is assumed to apply.

RET.3.4.1.2.5 Record

The tagSet-M element ‘ record’ may be used to present nested or subordinate records.

A retrieval record represents a single database record, but that database record may contain elements which in turn

represent database records (possibly replicated from a different database). For example, a database may contain records

representing queued database updates. Each such record might contain a set of database records to be contributed to some

other database. As another example, an OPAC database might have records defined so each includes a bibliographic record

and a corresponding holdings record, and the holdings record in turn might include a series of circulation records.

It is important to note that although a single retrieval record may include an arbitrary number of subordinate records, or

arbitrarily nested records, the retrieval record nevertheless represents a single result set record.

© ISO ISO 23950:1 998(E)

1 51

A subordinate (or nested) record defined in this manner may be presented according to a schema different from the schema

applying to the retrieval record. The tagSet-M element schemaIdentifer may be included within the element representing a

record, and if so, it applies only within that element.

RET.3.4.1.2.6 wellKnown

Some schema developers anticipate that for certain elements, different targets will want to provide several alternative forms of

the element. The element ‘wellKnown’ is defined in order to support this flexibility.

Suppose a schema defines the element ‘ title’ . The intent may be that the target simply return a single value, what the target

considers to be the title. In that case, ‘ title’ should be a leaf-node defined from tagSet-G, and ‘wellKnown’ does not apply.

But suppose the target wishes to return the element ‘ title’ encompassing several forms of the title, including one that the

origin will recognize to be the default in case it does not understand any of the others (in which case it may ignore all except

the default, or may still display them to the end-user, who might understand them even if the origin does not). The origin

returns the single element ‘ title’ , which is structured into the following sub-elements:

• the default title

• ‘abbreviatedKeyTitle’

• ‘formerTitle’

• ‘augmentedTitle’

• ‘romanizedTitle’

• ‘shortenedTitle’ .

The additional forms of title (i.e. , those other than the default title) might use the above string tags, locally defined, or they

may be known tags defined in other tag sets. However, the default title has a distinguished integer tag that is assigned to the

tagSet-M element wellKnown, to distinguish it.

The element wellKnown is thus always subordinate to a parent element whose semantics are known (e.g. , ‘ title’ , ‘address’ ,

‘name’), and the parent element is structured into one or more forms of that element, one of which is a default form,

distinguished by the tag for the element wellKnown. The context of the element wellKnown is known from its parent.

RET.3.4.1.2.7 recordWrapper

This element is defined for use in presenting a record with no root (e.g. , a flat record, or a record whose hierarchical structure

is that of multiple trees). When the origin requests this element, the request is interpreted as a request for the entire record to be

presented subordinate to this element. It is defined primarily to be used in conjunction with a variantRequest specifying

‘noData’ , for the purpose of retrieving a skeleton record (i.e. , tags only, no data). If a record does have a root, then if this

element occurs, the record’ s real root is presented subordinate to this element.

RET.3.4.1.3 Information about Result Set Record

TagSet-M elements rank and score provide information pertaining to a record’ s entry in the result Set. A record may have both

a rank and a score. The rank of a result set record is an integer from 1 to N, where there are N entries in the result set (each

record should have a unique rank). The score of a result set record is an integer from 1 to M where M is the normalization

factor, which may be independent of the size of the result set, and more than one record may have the same score. The

normalization factor should be specified in the schema.

RET.3.4.2 TagSet-G

TagSet-G includes generic elements that may be of general use for schema definitions. They are all self-explanatory, except

perhaps the element bodyOfDisplay.

RET.3.4.2.1 bodyOfDisplay

The target might combine several elements of a record into this single element, in a display format, for the origin to display to

the user.

For a given schema, perhaps for a particular application, some origins may need the target to distinguish all elements in a

retrieval record, perhaps because the origin is going to replicate the record. In other cases, the origin is satisfied for the target

to package all elements into display format for direct display to the end-user. In either of these cases, bodyOfDisplay is not

applicable (in the latter case the target may use the SUTRS record syntax instead of GRS-1).

In some cases though, the origin may need some of the elements distinguished, but is satisfied to have the target package

the remaining elements into a single retrieval element for display. In these cases bodyOfDisplay may be useful.

ISO 23950:1 998(E) © ISO

1 52

Suppose the target wishes to present twenty elements of a record, but only the first three elements are intended for origin

use, and the remaining elements are intended to be transparently passed to the user. Rather than packaging all twenty elements,

the target instead may send four elements, where the fourth delivery element packages the latter seventeen original elements,

in a display format.

The bodyOfDisplay element is similar to a composite element (as described in RET.3.1 .2) in the fact that a single retrieval

element packages multiple logical elements. But bodyOfDisplay differs from a composite element in three respects:

• The target, not the origin, selects the subset of elements for packaging.

• In a composite element there may be semantics conveyed by the tag that the origin or user might understand. For

example a request for a composite element may ask for the b subfield of the 245 field concatenated with c subfield of

246 sent back as deliveryElement called ‘ title’ (there may be some recognizable semantics associated with the tag

‘title’). The bodyOfDisplay element has no semantics other than telling the origin “here is a composite element for

display.”

• The resultant element should always be in display format. A composite element may assume display format, but it may

also assume other formats, as determined by the variant.

© ISO ISO 23950:1 998(E)

1 53

Annex 15

(Informative)

PRO: Z39.50 Profiles

This Annex lists Z39.50 profiles approved by the Open Systems Environment Implementors Workshop (OIW) Special Interest

Group on Library Applications (SIG/LA).

At the time of publication of this standard, the following profiles have been approved by the OIW SIG/LA:

1. GILS

Application Profile for the Government Information Locator Service: GILS specification for ANSI/NISO Z39.50 as well as other

aspects of a GILS conformant server that are outside the scope of Z39.50. The GILS Profile provides the specification for the

overall GILS application including the GILS core, which is a subset of all GILS locator records, and which completely specifies

the use of Z39.50 in this application.

2. WAIS

WAIS Profile of Z39.50 Version 2 (Version 1 .4): Application Profile for WAIS (Wide Area Information Servers) network

publishing systems. Based on Z39.50 Version 2 as specified in ANSI/NISO Z39.50-1995.

3. ATS-1

Specifies the use of the attribute set bib-1 within a Z39.50 type-1 query for searching by author, title, or subject, to provide basic

search access to bibliographic databases. Its purpose is to ensure that complying origins and targets can provide basic search

access to bibliographic databases, similar to the common online catalog systems used in many libraries.

4. Using Z39.50-1992 Directly over TCP

Based on an Internet RFC “Using the Z39.50 Information Retrieval Protocol in the Internet Environment,” this profile addresses

(and its scope is limited to):

• Z39.50 layered directly over TCP (without the use of the OSI ACSE, Presentation, or Session protocols).

• Z39.50-1992 (extensions for Z39.50-1995 to be developed). The profile does not address Z39.50-1988.

• Communication over the Internet.

For information on how to obtain these documents, refer to: http://lcweb.loc.gov/z3950/agency

ISO 23950:1 998(E) © ISO

1 54

Annex 16

(Informative)

Designation of Maintenance Agency

Questions concerning the implementation of this standard should be sent to the Z39.50 Maintenence Agency at the Library of

Congress, Network Development and MARC Standards Office, Washington, DC 20540; telephone 202-707-6237; e-mail:

ndmso@loc.gov.

ISO 23950:1 998(E) © ISO

ICS 35.240.30

Descriptors: documentation, computer appl ications, bibl iographic data bases, information retrieval, data processing, information
interchange, appl ication layer, services, protocols.

Price based on 1 54 pages

