

Reference number
ISO 22900-3:2012(E)

© ISO 2012

INTERNATIONAL
STANDARD

ISO
22900-3

Second edition
2012-12-01

Road vehicles — Modular vehicle
communication interface (MVCI) —

Part 3:
Diagnostic server application
programming interface (D-Server API)

Véhicules routiers — Interface de communication modulaire du véhicule
(MVCI) —

Partie 3: Interface pour la programmation des applications du serveur
de diagnostic (D-Server API)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2012 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved iii

Contents Page

Foreword ... v

Introduction .. vi

1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions, symbols and abbreviated terms ... 1
3.1 Terms and definitions ... 1
3.2 Symbols .. 3
3.3 Abbreviated terms ... 4

4 Conventions ... 5
4.1 General ... 5
4.2 Typographical conventions and mnemonics ... 5
4.3 Sequence diagrams ... 6
4.4 Stereotypes .. 6

5 Specification release version information .. 6

6 Structure of a MVCI diagnostic server .. 6

7 Diagnostic server .. 10
7.1 MCD system object ... 10
7.2 Description of terms .. 11
7.3 Version information retrieval ... 16
7.4 States of the MCD system .. 16
7.5 State changes .. 19
7.6 Project configuration .. 19
7.7 Interface structure of server API .. 21
7.8 Collections ... 46
7.9 Registering/deregistering of the EventHandler .. 50
7.10 MCD value .. 51
7.11 Use cases ... 54

8 Function block Diagnostic in detail ... 60
8.1 Constraints ... 60
8.2 System Properties ... 70
8.3 Diagnostic DiagComPrimitives and Services ... 71
8.4 Suppress positive response .. 101
8.5 eEND_OF_PDU as RequestParameter .. 102
8.6 Variable length parameters .. 104
8.7 Variant identification ... 106
8.8 Use cases ... 117
8.9 Read DTC ... 135
8.10 Logical Link .. 144
8.11 Functional addressing .. 156
8.12 Tables ... 158
8.13 Dynamically Defined Identifiers (DynId) .. 168
8.14 Internationalization .. 179
8.15 Special Data Groups ... 179
8.16 ECU (re-) programming ... 181
8.17 Handling binary flash data ... 188
8.18 Library... 190
8.19 Jobs .. 191
8.20 ECU configuration ... 212

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

iv © ISO 2012 – All rights reserved

8.21 Audiences and additional audiences ... 229
8.22 ECU states ... 231
8.23 Function dictionary .. 234
8.24 Sub-Component data model description ... 242
8.25 Monitoring vehicle bus traffic .. 244
8.26 Support of VCI module selection and other VCI module features according to ISO 22900-2 .. 246
8.27 Handling DoIP entities .. 255
8.28 Mapping of D-PDU API methods ... 258

9 Error Codes ... 263
9.1 Principle ... 263
9.2 Description of the errors .. 265

Annex A (normative) Value reading and setting by string ... 267
A.1 Datatype conversion into Unicode2 string .. 267
A.2 Representation floating numbers ... 267
A.3 Normalized floating-point numbers .. 268

Annex B (normative) System parameter .. 269
B.1 Overview .. 269
B.2 Description of the system parameters ... 270

Annex C (normative) Overview optional functionalities .. 272

Annex D (informative) Monitoring message format .. 278
D.1 General ... 278
D.2 CAN format .. 278
D.3 K-Line Format .. 279
D.4 DoIP Format ... 280

Bibliography ... 281

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22900-3 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3,
Electrical and electronic equipment.

This second edition cancels and replaces the first edition (ISO 22900-3:2009), which has been technically
revised.

ISO 22900 consists of the following parts, under the general title Road vehicles — Modular vehicle
communication interface (MVCI):

 Part 1: Hardware design requirements

 Part 2: Diagnostic protocol data unit application programming interface (D-PDU API)

 Part 3: Diagnostic server application programming interface (D-Server API)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

vi © ISO 2012 – All rights reserved

Introduction

0.1 Overview

This part of ISO 22900 has been established in order to define a universal application programmer interface of
a vehicle communication server application. Today's situation in the automotive market requires different
vehicle communication interfaces for different vehicle OEMs supporting multiple communication protocols.
However, until today, many vehicle communication interfaces are incompatible with regard to interoperability
with multiple communication applications and vehicle communication protocols.

Implementation of the MVCI diagnostic server concept supports overall cost reduction to the end user
because, for example, a single diagnostic or programming application will support many vehicle
communication interfaces supporting different communication protocols and different vehicle communication
modules of different vendors at one time.

A vehicle communication application compliant with this part of ISO 22900 supports a protocol independent D-
PDU API (Protocol Data Unit Application Programming Interface) as specified in ISO 22900-2. The server
application will need to be configured with vehicle- and ECU-specific information. This is accomplished by
supporting the ODX data format (Open Diagnostic Exchange format) as specified in ISO 22901-1.

A server compliant with this part of ISO 22900 supports the function block Diagnostics (D). A compliant server
also supports Job-Language (Java) and may support optional features like ECU (re)programming. The
defined object-oriented API provides for a simple, time saving and efficient interchangeability of different
servers.

The client application and the communication server do not necessarily need to run on the same computer. A
remote use via an interface may also be envisaged and is supported by the design of the server API. This
interface is provided for ASAM GDI, COM/DCOM [10] [Technology Reference COM-IDL], for C++ [11]
[Technology Reference C++] and for Java [12] [Technology Reference Java].

0.2 ASAM e.V. implementation reference documents

This part of ISO 22900 references several ASAM e.V. documents which contain the Technology Reference
Mapping Rules for COM-IDL, C++ and Java.

The following ASAM documents are relevant for the implementation of this part of ISO 22900:

 ASAM Technology Reference COM-IDL, COM-IDL Technology Reference Mapping Rules [10]:
this document describes the platform, programming language and linking mechanisms for the
implementation of the generic object model in COM-IDL.

 ASAM Technology Reference C++, C++ Technology Reference Mapping Rules [11]:
this document describes the platform, programming language and linking mechanisms for the
implementation of the generic object model in C++.

 ASAM Technology Reference Java, Java Technology Reference Mapping Rules [12]:
this document describes the platform, programming language and linking mechanisms for the
implementation of the generic object model in Java.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

INTERNATIONAL STANDARD ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 1

Road vehicles — Modular vehicle communication interface
(MVCI) —

Part 3:
Diagnostic server application programming interface (D-Server
API)

1 Scope

This part of ISO 22900 focuses on the description of an object-oriented programming interface. The objective
is the ability to implement server applications, used during the design, production and maintenance phase of
a vehicle communication system, compatible to each other and thus exchangeable. From a user’s
perspective, access and integration of on-board control units is provided by a corresponding application, the
communication server and a VCI module for diagnostics. The user is granted access for the handling of
control units (ECUs) in vehicles for the diagnostic services.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 14229 (all parts), Road vehicles — Unified diagnostic services (UDS)

ISO 14230-3, Road vehicles — Diagnostic systems — Keyword protocol 2000

ISO 15765 (all parts), Road vehicles — Diagnostic communication over Controller Area Network (DoCAN)

ISO 22901-1, Road vehicles — Open diagnostic data exchange (ODX) — Part 1: Data model specification

ISO 22900-2, Road vehicles — Modular vehicle communication interface (MVCI) —Part 2: Diagnostic protocol
data unit application programming interface (D-PDU API)

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1
AccessKey
path identifier through the inheritance hierarchy as defined in ISO 22901-1 ODX to a diagnostic data element

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

2 © ISO 2012 – All rights reserved

3.1.2
ancestor object
parent object
located above in the object hierarchy with respect to a given object

3.1.3
descendant object
child object
object, located below in the object hierarchy with respect to a given object

3.1.4
FlashJob
new class derived from MCDJob which is used to start FlashSessions within the MVCI diagnostic server

NOTE This information is provided by the databases. At the runtime object it is possible to set the FlashSession that
has to be flashed by this service. Only one session can be set for one job. The application can access the priority defined
in the database for every FlashSession and sort the sessions according to this priority.

The job interface of flash jobs (MCDFlashJob) extends the job interface of normal diagnostic jobs (MCDSingleECUJob) by
a session object, i.e. its method prototype is extended as follows:

JobName(...,MCDDbFlashSession session)

3.1.5
FlashKey
unique identification for a flash session

3.1.6
FlashSessionClass
user-defined collection of FlashSessions, which can be used to separate FlashSessions for different tasks
(e.g. sessions for data, sessions for boot, or sessions for code and data)

3.1.7
FlashSession
smallest unit that can be flashed separately by the MVCI diagnostic server, and which may consist of several
data blocks

3.1.8
functional class
set of diagnostic services

3.1.9
function dictionary
hierarchical function catalog to organize external test equipment user interfaces (available at MCDDbProject):

 references to one or several ECUs and their diagnostic data content relevant for that function;

 references to services/jobs to make functions “executable”;

 definition of function input and output parameters with optional references to parameters of related
services

3.1.10
interface connector
connector at the vehicle’s end of the interface cable between the vehicle and the communication device

3.1.11
job
sequence of diagnostic services and other jobs with a control flow

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 3

3.1.12
location
set of diagnostic data valid on a given hierarchical level of inheritance according to ISO 22901-1 ODX

NOTE The following locations exist:

 Multiple ECU Job,

 Protocol,

 Functional Group,

 ECU Base Variant,

 ECU Variant.

3.1.13
Logical Link
set of data, identifying the physical line, the interface and protocol used for an ECU

3.1.14
physical interface link
physical connection between the VCI connector of a VCI and the interface connector

3.1.15
physical link
physical vehicle link connected to a physical interface link, so it is the connection from the interface of the
diagnostic server to the ECU in the vehicle

3.1.16
physical vehicle link
unique bus system in a vehicle, so it is the connection between the vehicle connector and the ECU

3.1.17
priority
term used by test systems to decide in which order the sessions have to be flashed

3.1.18
project
pool of diagnostic data

NOTE References between such data are resolvable inside this same project.

3.1.19
sub component
ECU sub functionality or components

EXAMPLE LIN-slaves (available at MCDDbLocation).

3.1.20
vehicle connector
connector on a vehicle providing access to the bus systems in the vehicle

3.2 Symbols

Figure 1 shows the legend of hierarchical models.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

4 © ISO 2012 – All rights reserved

color print black/white print

 green dark grey

green dark grey

white white
yellow grey

blue black

yellow grey

Figure 1 — Legend of hierarchical models

3.3 Abbreviated terms

API Application Programmers Interface

ASAM Association for Standardisation of Automation and Measuring Systems

ASCII American Standard for Character Information Interchange

AUSY AUtomation SYstem

CAN Controller Area Network

COM/DCOM Distributed Component Object Model

CORBA Common Object Request Broker Architecture

CRC Cyclic Redundancy Check

D Diagnostics

Diag Diagnostic

DLL Dynamic Link Library

DoCAN Diagnostic communication over CAN

DOP diagnostic Data Object Property

DoIP Diagnostic Over Internet Protocol

DTC Diagnostic Trouble Code

DTD Document Type Definition

DynID Dynamically Defined Identifiers

ECU Electronic Control Unit

ECU MEM Electronic Control Unit MEMory

ERD Entity Relationship Diagram

IDL Interface Description Language

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 5

JAVA RMI JAVA Remote Method Invocation

KWP KeyWord Protocol

LIN Local Interconnect Network

MCD Measurement Calibration Diagnostic

MDF Module Description File

MVCI Modular Vehicle Communication Interface

ODX Open Diagnostic data eXchange

OEM Original Equipment Manufacturer

PC Personal Computer

PDU Protocol Data Unit

SDG Special Data Groups

SI Système International d'unités

UDS Unified Diagnostic Services

UTC Coordinated Universal Time

VI Variant Identification

VIS Variant Identification and Selection

VIT VehicleInformationTable

XML eXtended Markup Language

4 Conventions

4.1 General

This part of ISO 22900 is based on the conventions discussed in the OSI Service Conventions
(ISO/IEC 10731:1994) as they apply for diagnostic services.

4.2 Typographical conventions and mnemonics

Normal text of the specification is presented like this.

Source code and technical artifacts within the text are presented like this.

Diagrams that denote interaction sequences, relationships or dependencies between interfaces are presented
using the Unified Modeling Language’s (UML) convention.

The name of each interface and each class defined by this part of ISO 22900 shall use the prefix of the
stereotype, e.g. “D”.

The leading letter of each method and each parameter is small.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

6 © ISO 2012 – All rights reserved

The leading word of each method shall be a verb.

The letter “_” is not allowed in interface names, method names and parameter names, but it is allowed for
constants.

The leading letter of each constant is “e” and behind this the name is written in capital letters.

ODX element names are written in upper cases, e.g. SHORT-NAME. MVCI diagnostic server Names are
written in mixed fixed, e.g. MCDDbProject.

4.3 Sequence diagrams

With the help of Sequence Diagrams the interactive use of the API and the sequences for certain general
cases are presented in chronological order.

The sequence diagrams are oriented according to the presentation in UML and are structured as follows. The
chronological sequence arises while reading from top downwards. The commentary column, in which single
activities are commented, is placed at the left margin. Within the sequence diagram the Client application is
shown on the left; if necessary for the respective case, the EventHandler is shown there as well. The API
objects necessary for the respective case are located to the right of the Client (with or without EventHandler).
If necessary, the MVCI diagnostic server is presented at the right, outside.

Not all API objects possible for the respective instant of time are shown; instead, only those of relevance for
the respective case are shown. The thin line leading down vertically from the objects represents the life line,
the wider sections on it represent activities of the object.

The black horizontal arrows between the single objects, Client and MVCI diagnostic server represent the
actions necessary for the respective case. The object to which the arrow points at will execute the action. The
grey horizontal arrows represent the return of objects.

4.4 Stereotypes

Stereotypes are abbreviation characters which are used in MVCI diagnostic servers to mark the affiliation of
statements, interfaces and methods to one of the possible parts.

Table 1 defines the stereotypes which are used in MVCI diagnostic servers.

Table 1 — Stereotypes

Stereotype Usage of method and class is in following Function Blocks allowed

<<MCD>> Measurement, Calibration and Diagnostic

<<D>> Diagnosis

<<JD>> Methods with this stereotype can only be used inside of Diagnostic Job. These methods are not
available for use at the API.

5 Specification release version information

The specification release version of this part of ISO 22900 is: 3.0.0.

6 Structure of a MVCI diagnostic server

Each server is divided into the functional block "D" (Diagnostic) and the database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 7

Figure 2 shows the architecture of an MVCI diagnostic server.

Database
(ODX)

Job

ABC

Job
XYZCommunication Processor

Data Processor

Flash Data Processor

Job Processor

Client Application

Communication Services
GDI, COM/DCOM, Java RMI, C++

Communication Services

MCD-3 D Object Model

ECU
ECU

ECU

MVCI
Protocol Module

Software

any
diagnosis protocol

D-PDU API

D-PDU API

Figure 2 — Architecture of an MVCI diagnostic server

With the help of a server the control units are optimally adapted to the relevant requirements for their use in
vehicles. This procedure is often referred to as “Applying”.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

8 © ISO 2012 – All rights reserved

The following features (interfaces and methods) are optional:

 MCDDbProjectConfiguration,

 ECU Configuration,

 ECU Reprogramming (Flash),

 DynID,

 Monitoring,

 System properties,

 Function dictionary,

 SubComponents,

 Audiences,

 ECU state,

 Multiple ECU Jobs,

 PDU Time stamps,

 Library concept,

 DoIP,

 PDU API support,

 the concept of System generated Vehicle Information table.

Optional means that the runtime, as well as the database part of the model, do not have to be implemented by
a diagnostic server that is omitting the feature in question. When a client application calls a method that is part
of an optional feature, the diagnostic server should return an empty collection if the return type of the method
is inheriting from MCDCollection. Otherwise, such a method call should throw an MCDSystemException
of type eSYSTEM_METHOD_NOT_SUPPORTED. In the case of support of optional features these have to be
implemented completely. An overview of methods which belong to optional functionalities can be found in
Annex C.

The number of control units applied in vehicles is continuously increasing. The capabilities of the single control
unit concerning diagnosis become available for the server by means of control unit description files (Data
Description Interface). The control unit description files represent a manufacturer independent data exchange
format, which means that any server may handle the data out of a control unit description file. All configuration
data of the diagnostic server, the internal data of ECUs or ECU nets and the communication methods for the
ECU access are stored in the ODX database. This database is server and operating system independent and
therefore allows data to be exchanged between vehicle manufacturers and ECU suppliers.

An application can read out all data from the database that is necessary to drive the MVCI diagnostic server;
this means only the MVCI diagnostic server can access the information of the separate control unit description
files comprised within one database. With this, at the same time the consistency of the information between
AUSY and MVCI diagnostic server is guaranteed.

Also, a decoupling from the used data description exchange format (XML) takes place.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 9

The MVCI diagnostic server has to manage the database and to provide the required and necessary
information for the single MVCI diagnostic server objects. The database does not belong to one specific MVCI
diagnostic server object, but is available within the whole diagnostic server. The organization of the object or
reference allocation is solved implementation specifically by the diagnostic server.

The object model supports Single Client Systems, to provide for a simple use for this most typical and most
frequently occurring application case. This means that no client references are included within the single
objects. The administration of the client references is done by the diagnostic server and has to be solved
implementation specifically.

The object model has been designed in a technology and programming language independent way. It may be
used remotely as well as locally.

The object model of MVCI diagnostic server enables the linking of MVCI diagnostic servers to automation
systems. The objective of this linking is the remote control of the MVCI diagnostic server in test stands. By
means of the object model, the functionality, which means the interfaces with accompanying methods, are
standardized. The communication has to be realized via the particular implementation of the object model for
the used platform, programming language and linking mechanisms.

Among others the following are realized:

 ASAM GDI,

 JAVA,

 COM/DCOM and

 C++.

The necessary specifications for this will be described and published in separate documents. For this process
design patterns and mapping rules are defined and published.

All other specifications will be set up and realized implementation specifically by the respective system
provider.

Within the function block diagnostic a breaking down into characteristic sub tasks will take place, which are
shown in the following:

The Communication Processor is responsible for generating and analysing request and response telegrams
to ECUs. This processor handles all protocol-specific tasks like timings, creation of protocol headers and
checksums, etc. Diagnostic protocol specification is (at the moment) not a task of ASAM, because this is
covered by ISO activities according to ISO 14230-3 KWP 2000, ISO 14229 UDS and ISO 15765 DoCAN.
Nevertheless, the communication processor shall be parameterized via Communication Parameters. The
Communication Processor is an interface (the only one) to the ECU.

The Data Processor is responsible for the supply of parameters and results on a physical level. By means of
the Data Processor all necessary information is fetched from the database. Additionally, the Data Processor
converts ECU answers from hexadecimal representation into a physical or any text representation and vice
versa. The Data Processor is an interface (the only one) to the ODX database and offers an ODX library to the
Job Processor. The Data processor also handles Jobs, as they are stored in the ODX database.

The Flash Data Processor is responsible for the loading of programs and data in ECUs. The flash data is
part of the database. The Flash Data Processor provides access to the ASAM MCD2-ECU-MEM which
contains all information about physical/logical data-/code-layout and possible combinations of data and code
segments and more. The Flash Data Processor is an interface (the only one) to the flash data and offers a
flash library (flash object) to the Job Processor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

10 © ISO 2012 – All rights reserved

The Job Processor is responsible for the execution of service sequences and only uses objects of the ASAM
MVCI diagnostic server API. Via the Job Processor all processors may be accessed. The Jobs are part of the
database. The Job Processor is based on the ODX format. The Job Processor provides several libraries for
standardized access to the Communication Processor, Data Processor, Flash Data Processor and to the Job
Processor itself. The Job Processor uses the same objects to interact with the different Processors like the
ASAM MVCI diagnostic server API to insure consistency between ASAM MVCI diagnostic server API and Job
Processor. The Job Processor gets its code to be executed from the Data Processor. The Data Processor
itself reads the ODX database file.

7 Diagnostic server

7.1 MCD system object

The server interface is a client’s first access point to the MVCI diagnostic server. From this every interface is
reachable. Each client gets its own MCDSystem object (implements the MCDSystem interface) from the
MVCI diagnostic server. But all clients work on the same project and database. The project has the
connection to a special part of the whole database and this part will be made available after selecting the
project. The selection of another project at the same time is not allowed and will throw an exception.

Figure 3 shows the system scheduling.

Client

MCDSystem

MVCI diagnostic server

MCDDbProject

Selected
MCDProject

Communication Processor

Data Processor

Flash Data Processor

Job Processor

Figure 3 — System scheduling

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 11

The diagrams specified in this part of ISO 22900 always refer to the representation within the client and are
not designed for MultiClient scenarios.

7.2 Description of terms

7.2.1 General

This section describes the most important terms in more detail. A brief definition is included in 3.1. For each
term which is directly related to an ISO 22901-1 ODX element, the corresponding ODX element name is given
in parentheses.

7.2.2 Access key (AccessKey)

By means of the AccessKey, the access position within the inheritance hierarchy of the ODX diag layers is
identified.

One AccessKey element is composed of the type information [ElementIdentifier] embedded in square
brackets followed by the short name of the element instance. That is, the AccessKey is a sequence of tuples
of ElementIdentifier and short name. The allowed combinations of ElementIdentifiers are defined by the
Locations. AccessKeys are unique within one database.

Table 2 defines the ElementIdentifiers.

Table 2 — ElementIdentifiers

ElementIdentifiers

[MultipleEcuJob]

[Protocol]

[FunctionalGroup]

[EcuBaseVariant]

[EcuVariant]

For every element accessed via an AccessKey there is a LongName and a Description. LongName and
Description shall be in UNICODE.

7.2.3 Functional Class (FUNCTIONAL-CLASS)

Functional classes are groups of services (freely definable). A service can be part of multiple functional
classes but can have only one semantics. A functional class is an arbitrary, user definable group of services.

7.2.4 Job (SINGLE-ECU-JOB, MULTIPLE-ECU-JOB)

Sequence of diagnostic services and other jobs with control flow inside job, based on received results. Use
cases for jobs are ECU (re)programming, Encryption of seed key algorithm and gateway tests.

7.2.5 Location

A Location represents a hierarchical level for diagnostic Services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

12 © ISO 2012 – All rights reserved

The following locations are permitted:

 [D] Multiple ECU Job,

 [D] Protocol,

 [D] Functional Group,

 [D] ECU Base Variant,

 [D] ECU Variant.

The location is the access point to data base specific definitions (meta information) , e.g. available Services,
DiagComPrimitives, CompuMethods.

Figure 4 shows the location hierarchy of ASAM MCD database.

[Protocol]

[ECUBaseVariant][FunctionalGroup]

[ECUVariant]

[MultipleECUJob]

Figure 4 — Location hierarchy of ASAM MCD database

Each Location is addressed by means of an AccesKey. The following AccessKeys of possible Locations in the
hierarchical system are allowed:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 13

 [Protocol]Instancename

 [Protocol]Instancename.[FunctionalGroup]Instancename

 [Protocol]Instancename.[EcuBaseVariant]Instancename

 [Protocol]Instancename.[EcuBaseVariant]Instancename.[EcuVariant]Instancename

 [MultipleEcuJob]MultipleECUJob

Figure 5 shows the AccessKey example.

Functional Group

Protocol

ECU BaseVariant
DoorLeftStep1 DoorLeftStep2

DoorLeft InteriorLight

InteriorBus FlashProgramming

UDS KWP2000

Figure 5 — AccessKey example

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

14 © ISO 2012 – All rights reserved

Resulting AccessKeys:

 [Protocol]UDS,

 [Protocol]UDS.[FunctionalGroup]InteriorBus,

 [Protocol]UDS.[FunctionalGroup]FlashProgramming,

 [Protocol]UDS.[EcuBaseVariant]DoorLeft,

 [Protocol]UDS.[EcuBaseVariant]DoorLeft.[EcuVariant]DoorLeftStep1,

 [Protocol]UDS.[EcuBaseVariant]DoorLeft.[EcuVariant]DoorLeftStep2,

 [Protocol]UDS.[EcuBaseVariant]InteriorLight,

 [Protocol]KWP2000.[EcuBaseVariant]InteriorLight,

 [Protocol]KWP2000;

7.2.6 Logical Link (LOGICAL-LINK)

A Logical Link is a logical connection to ECUs. Normally this is only one ECU, but in cases of a Functional
Group it can be more than one ECU. The Logical Link is represented by a short name. Information about a
Logical Link is contained in the Logical Link Table. Elements of this table are the AccessKey and the Physical
Vehicle Link or Interface. Logical Links are used to access the same ECU on different ways, or access more
than one ECU instance on different links. For more details see Clause 8.

7.2.7 Physical Interface Link

A Physical Interface Link is a logical connection between MVCI diagnostic server and Interface Connector.
The Physical Interface Link is represented by a short name. Information about a Physical Interface Link is
contained in the Interface Connector Information Table. In this table the description of the Interface connector
is included. The available Physical interface links are defined by the available interfaces of a MVCI diagnostic
server.

The Interface Connector Information Table has an entry for each Physical Interface Link and one connector
for this Link.

The Interface Connector Information Table uses the standardized short name of a Physical Link.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 15

7.2.8 Physical Link

A physical Link is a Physical Vehicle Link connected to a Physical Interface Link, so it is the connection from
the interface of the MVCI diagnostic server to the ECU in the vehicle.

Figure 6 shows the overall scheme between different links and tables in D.

Vehicle
Connector

Accesskey

Physical
VehicleLink

ECU

Vehicle Information
Table

Logical
Link
Table

Vehicle
Connector
Information
Table

Interface
Connector
Information
Table

KLine 1

Physical Link
Physical Interface Link

MVCI diagnostic server API

MVCI diagnostic server

~ ~~ ~
D-PDU API

MVCI
Protocol
Module A

MVCI
Protocol

Module B

KLine 2

CAN HI

CAN LO

Interface
Connector

Interface Connector Pin

Protocol
Module
Connector

MVCI
Protocol
Module
Connector
Pin

Figure 6 — Overall scheme between different links and tables in D

The pins of the Vehicle Connector are connected to identical pins of the Interface connector.

7.2.9 Physical Vehicle Link (PHYSICAL-VEHICLE-LINK)

The physical vehicle link describes the unique bus system in a vehicle, so it is the connection between the
vehicle connector and the ECU. The physical vehicle link is represented by a short name. Information about a
vehicle link is contained in the Vehicle Connector Information Table. In this table the Vehicle Connector
Information is included.

The Vehicle Connector Information Table has an entry for each Physical Vehicle Link and one or more Vehicle
Connectors (Pins) for this Link.

The available Physical vehicle links are defined by the vehicle.

7.2.10 Project

A project is a logical grouping for defined test installations selected by the user. Within a project, all
information necessary for a test installation has to be contained. It is only permitted to work within one project,
which has to be considered for the logical grouping (e.g. two model series within one project). It is for this
reason that the project tuple is not part of the AccessKey.

At project level, the forming of manufacturer-specific hierarchies is possible, as for this level no
standardization takes place.

Typically, a project contains:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

16 © ISO 2012 – All rights reserved

 all static database information (Diagnosis Services, ...),

 jobs,

 flash containers, and

 configuration files.

Within the MVCI diagnostic server, first the selection of a project out of the list of the existing projects takes
place, before any database information can be accessed. Because of this mechanism only one project can be
active.

The database of a project is not restricted to a physical file.

7.3 Version information retrieval

The method MCDSystem::getASAMMCDVersion():MCDVersion returns the ASAM release number
of the interface. For this specification it is the major value 3 and the minor value 0 defined.

The method MCDSystem::getVersion():MCDVersion returns the tool version.

The technology version number is available via the interface
MCDSystem::getInterfaceNumber():A_UINT32.

The version number of the model (specification) and the version number of the reference implementations are
kept synchronous. The so-called “interface number (IFN)” is used as a build number for the reference
implementations. Each reference implementation maintains its own interface number. This number will be
incremented continuously within a minor version. Increments are applied whenever a new reference
implementation is generated and shipped. The “interface number” is reset to zero for each new minor or major
version. Please, note that this number is completely independent from the version numbers. The technology
version number is incremented separately for each technology.

7.4 States of the MCD system

Within the state eINITIALIZED the MCDSystem object is transmitted to the client by the MVCI diagnostic
server. Within this state, the database project descriptions can be listed and general system initialisations can
be done.

By selecting the project to be worked on, the system takes the state ePROJECT_SELECTED. Within this
state the database can be polled for information, but no communication to the hardware is possible.

As soon as the first Logical Link has been created, the MCDSystem object takes the state
eLOGICALLY_CONNECTED and can execute the communication by means of the created Logical Links. If
the last Logical Link has been removed from the runtime project, the system automatically takes the state
ePROJECT_SELECTED again. By means of deselectProject() the MCDSystem Object is set to the
initial state eINITIALIZED again.

The diagnostic server changes the state to eDBPROJECT_CONFIGURATION by loading a database project
at object MCDDbProjectConfiguration. Searching in the database is possible in this state.
Configuration (add and remove elements) of the database can also be done in this state. ECU-MEMs can be
added. ECU-MEMs should be temporarily loaded to an MCDDbProject or permanently added to a project
configuration. ECU-MEMs are necessary for flashing.

Figure 7 shows the system state transitions.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 17

eINITIALIZED

eDBPROJECT_
CONFIGURATION

ePROJECT_
SELECTED

eLOGICALLY_
CONNECTED

selectProject

se
lectP

roject

close

remove

load
add

load
add

deselectProject

START

STOP

first
createLogicalLink

last
removeLogicalLink

1
1

Key

1 'load' or 'add' of DbProject includes an implicit close of actual opened DbProject.

Figure 7 — System state transitions

It has to be distinguished between the states of clients and the central state of the server (internal
MCDSystem).

At the server side there may only be one state (eINITIALIZED, eDBPROJECT_CONFIGURATION,
ePROJECT_SELECTED, eLOGICALLY_CONNECTED). As soon as a client has successfully called
selectProject, the internal MCDSystem transits to the state ePROJECT_SELECTED.

Table 3 defines the system states.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

18 © ISO 2012 – All rights reserved

Table 3 — System states

 MCDSystem
MCDDbProject
Configuration

MCDProject MCDDb Project

System State

M
C

D
D

b
V

eh
ic

le
In

fo
rm

at
io

n
 s

el
ec

te
d

se
le

ct
P

ro
je

ct

se
le

ct
P

ro
je

ct
B

yN
a

m
e

d
es

el
ec

tP
ro

je
ct

lo
ad

cl
o

se

g
et

A
d

d
it

io
n

al
E

cu
M

em
N

am
es

g
et

A
ct

iv
eD

b
P

ro
je

ct

se
le

ct
D

b
V

eh
ic

le
In

fo
rm

at
io

n

se
le

ct
D

b
V

eh
ic

le
In

fo
rm

at
io

n
B

yN
am

e

d
es

el
ec

tV
eh

ic
le

In
fo

rm
at

io
n

C
re

at
eL

o
g

ic
al

L
in

k…

lo
ad

N
ew

E
cu

M
em

eINITIALIZED no X X X state does not occur

ePROJECT_SELECTED yes X X a X a X X

no X X X X

eLOGICALLY_CONNECTED yes X X a X a X

no X state
does not

occur

eDB_PROJECT_CONFIGURATION no X X X X X X X

a This is a valid action in cases where different vehicle information has not already been selected, no state transition; otherwise it is an invalid action and
an exception will be thrown. See corresponding method definition.

Figure 8 shows the system lock states.

eLOCKED_BY_THIS_
OBJECT

eUNLOCKED

LockServer

UnlockServer

START

STOP eLOCKED_BY_ANOTHER_
OBJECTonSystemUnlocked

1

Key

1 this transition can only be done in system state eINITIALIZED

Figure 8 — System lock states

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 19

Each MCDSystem object may be locked for exclusive use of the whole MVCI diagnostic server by the client
application. The locking of the MCDSystem may only take place within the eINITIALIZED state and refers
to the internal server MCDSystem object. No other client can then communicate with the diagnostic server.
Within the states ePROJECT_SELECTED, eLOGICALLY_CONNECTED and
ePROJECT_CONFIGURATION this is not allowed. If an MCDSystem Object is exclusive locked, the locking
client exclusively accesses the MVCI diagnostic server. All clients will be informed by system event of locking
and unlocking.

MCDProject/MCDSystem LongName and Description are server-specific values and can be empty. An
exception will not be used.

7.5 State changes

The behaviour for methods which should change a state should always be the same, i.e. a call for transition to
a state which is available before the call throws an exception without a state change.

This behaviour is used by MCDSystem, MCDLogicalLink, MCDDiagComPrimitive.

If any exception occurs during a state changing operation, the state shall not be changed.

7.6 Project configuration

Within the state ePROJECT_CONFIGURATION of the MCDSystem a database project may be loaded and
browsed. Runtime objects may not be created within this state. Once the transition to this state has taken
place, this state can only be left by closing down the database project or selecting the corresponding runtime
project. This selection implicates the saving of all changes which were made. In this state the used database
project can be changed by loading or creating another database project; the so far used project will be
implicitly saved if changes were made.

The Method MCDSystem:getDbProjectConfiguration returns a MCDProjectConfiguration
Object, which can be used for

 browsing (without existing RunTimeObjects, MCD: MCDProjectConfiguration:load) and

 modification (D: MCDDbProject:loadNewECUMem) of DbProjects.

The state transition from eINITIALIZED to ePROJECT_CONFIGURATION takes place only after a Client
opens a DbProject by means of add/load.

The Methods

 MCDSystem::selectProject(),

 MCDDbProject::loadNewEcuMem() and

 MCDDbProjectConfiguration::getAdditionalEcuMemNames

check the consistence of data read from the database. An error of type eDB_INCONSISTENT_DATABASE
should be thrown when inconsistent data has been identified.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

20 © ISO 2012 – All rights reserved

Figure 9 shows the project configuration.

M
C

D
S

ys
te

m

<
<

M
,C

,D
>

>
 d

es
el

ec
tP

ro
je

ct
()

<
<

D
>

>
 d

et
ec

tI
nt

er
fa

ce
s(

)
<

<
M

,C
,D

>
>

 g
et

A
ct

iv
eP

ro
je

ct
()

<
<

M
,C

,D
>

>
 g

et
A

S
A

M
M

C
D

V
er

si
o

n(
)

<
<

D
>

>
 g

et
C

on
ne

ct
ed

In
te

rf
ac

es
()

<
<

D
>

>
 g

et
C

ur
re

nt
In

te
rf

ac
es

()
<

<
M

,C
,D

>
>

 g
et

D
bP

ro
je

ct
C

on
fig

ur
at

io
n(

)
<

<
M

,C
,D

>
>

 g
et

D
bP

ro
je

ct
D

es
cr

ip
tio

ns
()

<
<

D
>

>
 g

et
E

nu
m

V
a

lu
e(

)
<

<
M

,C
,D

>
>

 g
et

In
te

rf
ac

eN
um

be
r(

)
<

<
M

,C
,D

>
>

 g
et

Lo
ck

S
ta

te
()

<
<

D
>

>
 g

et
P

ro
pe

rt
y(

)
<

<
D

>
>

 g
et

P
ro

pe
rt

yN
a

m
es

()
<

<
M

,C
,D

>
>

 g
et

S
er

ve
rT

yp
e(

)
<

<
M

,C
,D

>
>

 g
et

S
ta

te
()

<
<

D
>

>
 g

et
S

ys
te

m
P

ar
am

et
er

()
<

<
M

,C
,D

>
>

 g
et

V
er

si
on

()
<

<
D

>
>

 is
U

ns
up

po
rt

ed
C

om
P

ar
am

et
er

sA
cc

ep
te

d(
)

<
<

M
,C

,D
>

>
 lo

ck
S

er
ve

r(
)

<
<

D
>

>
 p

re
pa

re
In

te
rf

ac
e(

)
<

<
D

>
>

 p
re

pa
re

V
ci

A
cc

es
sL

ay
er

()
<

<
M

,C
,D

>
>

 r
el

ea
se

E
ve

n
tH

an
dl

er
()

<
<

D
>

>
 r

es
et

P
ro

pe
rt

y(
)

<
<

M
,C

,D
>

>
 s

el
ec

tP
ro

je
ct

()
<

<
M

,C
,D

>
>

 s
el

ec
tP

ro
je

ct
B

yN
am

e(
)

<
<

M
,C

,D
>

>
 s

et
E

ve
nt

H
an

d
le

r(
)

<
<

D
>

>
 s

et
P

ro
pe

rt
y(

)
<

<
M

,C
,D

>
>

 u
nl

oc
kS

er
ve

r(
)

<
<

D
>

>
 u

np
re

pa
re

In
te

rf
ac

e(
)

<
<

D
>

>
 u

np
re

pa
re

V
ci

A
cc

e
ss

La
ye

r(
)

<
<

D
>

>
 u

ns
up

po
rt

ed
C

om
P

ar
am

et
er

sA
cc

ep
te

d(
)

<
<

M
,C

,D
>

>

M
C

D
D

bP
ro

je
ct

C
on

fig
ur

at
io

n

<
<

M
,C

,D
>

>
 c

lo
se

()
<

<
M

,C
,D

>
>

 g
et

A
ct

iv
eD

bP
ro

je
ct

()
<

<
D

>
>

 g
et

A
dd

iti
on

al
E

C
U

M
E

M
N

am
e

s(
)

<
<

M
,C

,D
>

>
 lo

ad
()<

<
M

,C
,D

>
>

M
C

D
P

ro
je

ct

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

k(
)

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

kB
yA

cc
es

sK
ey

()
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yA
cc

es
sK

ey
A

nd
In

te
rf

ac
e(

)
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yA
cc

es
sK

ey
A

nd
In

te
rf

ac
eR

es
ou

rc
e(

)
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yI
nt

e
rf

ac
e

()
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yI
nt

e
rf

ac
e

R
es

ou
rc

e(
)

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

kB
yN

am
e(

)
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yN
am

eA
n

dI
nt

er
fa

ce
()

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

kB
yN

am
eA

n
dI

nt
er

fa
ce

R
es

ou
rc

e(
)

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

kB
yV

ar
ia

n
t(

)
<

<
D

>
>

 c
re

at
e

Lo
gi

ca
lL

in
kB

yV
ar

ia
n

tA
nd

In
te

rf
ac

e(
)

<
<

D
>

>
 c

re
at

e
Lo

gi
ca

lL
in

kB
yV

ar
ia

n
tA

nd
In

te
rf

ac
eR

es
ou

rc
e(

)
<

<
D

>
>

 c
re

at
e

M
on

ito
rin

g
Li

nk
()

<
<

D
>

>
 c

re
at

e
V

al
ue

()
<

<
M

,C
,D

>
>

 d
es

e
le

ct
V

eh
ic

le
In

fo
rm

at
io

n
()

<
<

D
>

>
 e

xe
cI

O
C

tr
l()

<
<

M
,C

,D
>

>
 g

et
A

ct
iv

e
D

bV
eh

ic
le

In
fo

rm
at

io
n(

)
<

<
D

>
>

 g
et

C
la

m
p

S
ta

te
()

<
<

M
,C

,D
>

>
 g

et
D

bP
ro

je
ct

()
<

<
D

>
>

 g
et

IO
C

o
nt

ro
lN

am
es

()
<

<
D

>
>

 r
e

m
ov

eL
og

ic
al

Li
nk

()
<

<
D

>
>

 r
e

m
ov

eM
on

ito
rin

gL
in

k(
)

<
<

M
,C

,D
>

>
 s

el
ec

tD
bV

e
hi

cl
eI

nf
o

rm
at

io
n(

)
<

<
M

,C
,D

>
>

 s
el

ec
tD

bV
e

hi
cl

eI
nf

o
rm

at
io

nB
yN

am
e

()

<
<

M
,C

,D
>

>

M
C

D
D

bP
ro

je
ct

<
<

D
>

>
 g

et
A

cc
es

sK
e

ys
()

<
<

D
>

>
 g

et
D

bE
cu

B
as

eV
ar

ia
n

ts
()

<
<

D
>

>
 g

et
D

bE
cu

M
em

s(
)

<
<

D
>

>
 g

et
D

bE
le

m
en

tB
yA

cc
es

sK
ey

()
<

<
D

>
>

 g
et

D
bF

un
ct

io
na

lG
ro

up
s(

)
<

<
D

>
>

 g
et

D
bF

un
ct

io
nD

ic
tio

na
rie

s(
)

<
<

D
>

>
 g

et
D

bM
ul

tip
le

E
cu

Jo
b

Lo
ca

tio
n

()
<

<
M

,C
,D

>
>

 g
et

D
b

P
hy

si
ca

lV
eh

ic
le

Li
nk

O
rI

n
te

rf
ac

es
()

<
<

D
>

>
 g

et
D

bP
ro

to
co

lL
oc

at
io

ns
()

<
<

M
,C

,D
>

>
 g

et
D

b
V

eh
ic

le
In

fo
rm

at
io

ns
()

<
<

M
,C

,D
>

>
 g

et
V

er
si

on
()

<
<

D
>

>
 lo

ad
N

ew
E

C
U

M
E

M
()

<
<

M
,C

,D
>

>

1
1

1
1

1
1

Figure 9 — Project configuration

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 21

7.7 Interface structure of server API

7.7.1 Hierarchical model overview

Figure 10 shows the hierarchical model of a diagnostic server part I.

Figure 10 — Hierarchical model of a diagnostic server part I

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

22 © ISO 2012 – All rights reserved

Figure 11 shows the hierarchical model of a diagnostic server part II.

Figure 11 — Hierarchical model of a diagnostic server part II

Figure 12 shows the hierarchical model of a diagnostic server part III.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 23

Figure 12 — Hierarchical model of a diagnostic server part III

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

24 © ISO 2012 – All rights reserved

Figure 13 shows the hierarchical model of a diagnostic server part IV.

Figure 13 — Hierarchical model of a diagnostic server part IV

As can be seen, all database interfaces are derived from MCDDbOject, and all database Collections from
MCDNamedCollection. The Runtime interfaces are usually derived directly from MCDObject.
Collections, Exceptions and NamedObjects each form basic classes for a further detailed structuring. Apart
from MCDSystem and MCDProject also all database interfaces belong to the NamedObjects.

The MCDEventHandler represents an exception concerning this classification and is not derived from
MCDObject. It is used as means of communication of the diagnostic server with the Client and provides for
Callback methods for the Event sending.

The MCDEnumValue is the super class of all classes representing enumerations in this API. It provides two
methods to translate between the object and the string representation of the enumeration and vice versa. So
string need not be delivered at the API if there is no need to, and the server can implement enumerations and
their representation very efficiently with a hash map.

7.7.2 Database and runtime side

7.7.2.1 Basics

Within the whole model there is a separation into database (yellow in black/white in the light) and runtime
(green in black/white in the dark). The database part is invariable and is used as the basis for the creation of
most runtime objects. Database objects/classes contain the sub string "Db" in their names. This sub string
signals that the corresponding class is associated with information originating from a data file (ODX, Flash
Data, etc.). "Db" objects cannot be modified by the client application. A "Db" object is static, has no status and
exists only once.

All access is done by methods of the interfaces. There are no attributes except in the classes which should
behave like an enumeration.

The object oriented model of the API has been separated in communication (runtime) and database part, to
provide for a data set with minimum redundancy and for a very slim communication layer.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 25

The database part contains all information which could be detected from ODX, as well as environmental
settings relevant for the API. Within the database part, all created objects exist only once to avoid
unnecessary redundancies. That means that the respective communication objects only have a reference to
its database objects, so that the information does not have to be duplicated.

The database objects are static and do not have an internal status. The once-created information content may
not be modified by the Client or MVCI diagnostic server. As soon as the project has been selected, all
information is available. It does not have to be existing within objects at this moment, but the option to access
it has to be guaranteed within an acceptable period of time.

The access to database objects is realized optionally via the short name of the object or via iteration within the
database structure.

The diagnostic server should generate suitable shortnames, as shortnames are not obtainable from ODX.
These shortnames should have a prefix “#RtGen_” that uniquely classifies them as generated.

Figure 14 shows the project associations.

<<M,C,D>>
MCDDbVehicleInformations

<<M,C,D>>
MCDDbProject

<<M,C,D>>
MCDSystem

<<M,C,D>>
MCDDbVehicleInformation

<<M,C,D>>
MCDDbLogicalLinks

<<M,C,D>>
MCDDbLocation

<<M,C,D>>
MCDDbLogicalLink

<<M,C,D>>
MCDProject

<<M,C,D>>
MCDLogicalLink

<<D>>
MCDDiag

ComPrimitive

*

0..**

1

1

acti
ve

 D
bVehicl

eInform
atio

n

*1

11

1

1

1

1

1

1

1

*

1

1

*

1

1
<<D>>

MCDDiag
ComPrimitives

Figure 14 — Project associations

The entry object is the MCDSystem, a runtime object. From this a runtime project will be created on the basis
of its database project. Selecting the Vehicle Information Table makes access to all database Logical Links
possible. This access is necessary to create the runtime Logical Links from which all runtime activities can be
done.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

26 © ISO 2012 – All rights reserved

The communication part contains all interfaces via which the communication with the ECUs takes place. The
majority of the runtime objects are created on the basis of database objects and thus have a direct reference
to these. Some objects implementing interfaces of the communication part may be instanced only once (these
are unique objects/singletons), others may be multiply instanced (multiple objects). The multiply instanced
runtime objects of an identical database object may be parameterised differently.

The runtime objects may be executed (executable), have an internal status and return results.

Table 4 defines the overview RunTimeObjects.

Table 4 — Overview RunTimeObjects

Unique runtime objects /singletons Multiple runtime objects

MCDSystem MCDAccessKey

MCDProject All derived from MCDDiagComPrimitive

MCDJobApi MCDError

--- MCDException

--- All derived from MCDException

--- MCDLogicalLink

--- MCDTextTableElement

--- All derived from MCDParameter

--- MCDResponse

--- MCDResult

--- MCDResultState

--- MCDValue

--- MCDRequest

--- All derived from MCDDbObject

7.7.2.2 Structure of the database

The database which can be polled via the Object Model is structured in such a way that each database
element is available only once. Because of this, redundancies are avoided. Connections between the single
database elements can be queried via methods. These methods return instances or references.

All database interfaces have methods for the polling of ShortName, LongName and Description.

A more detailed description can be found with the description of the hierarchic model and the Entity
Relationship diagrams.

Database information may be accessed immediately in state eDBPROJECT_CONFIGURATION or after the
instancing of the RunTime Project.

If there are optional elements not filled in ODX no exception shall be used.

Within the database part templates for all DiagComPrimitives and their parameters, information for ECU
(re)programming and the information concerning the ECUs and the Vehicle Connector Table are deposited.

The meta information of the different communication primitives may be polled by the interfaces derived from
MCDDbDiagComPrimitive. The objects filled with information from the ODX at the moment of execution
are used as a template for the runtime communication primitives.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 27

7.7.2.3 Structure of the runtime side

On the runtime side the communication actions are carried out by means of DiagComPrimitives, which also
include the Services and all three kinds of jobs (FlashJob, SingleEcuJob and MultipleEcuJob). A specific
feature of the Diagnostic part is the use of RequestParameters as input for the DiagComPrimitives and the
ResultState as Snapshot for the state of the Result.

MCDDiagComPrimitive is the superior class for all runtime communication primitives. Communication
Primitives represent, for example, state transitions of the Logical Link (MCDStartCommunication) and
real communication objects such as, for example, Services and Jobs. Jobs and Services are derived from
DataPrimitives and thus they have to be handled alike.

7.7.3 Parent functionality

The parent functionality in objects MCDError, MCDResponseParameter,
MCDResponseParameters, MCDResponse, MCDResponses and MCDDiagComPrimitive of
the model should give the user the possibility to go through the model not only in top down but also in button
up direction. The parent for the object which has the functionality is always the logical parent, e.g. for the
DiagComPrimitive, the parent is the LogicalLink.

Table 5 defines the delivered parent.

Table 5 — Get parent functionality in diagnostic

Class delivers

MCDResponseParameter MCDResponseParameters

MCDResponseParameters MCDResponse or MCDResponseParameters

MCDResponse MCDResponses

MCDResponses MCDResult

MCDDiagComPrimitive MCDLogicalLink

MCDError MCDResponseParameter or MCDResponse or MCDResult

7.7.4 Entity Relationship Diagrams

7.7.4.1 Objective

Within the Entity Relationship diagrams (ERD) the relations between the single interfaces or the objects to be
created from these are visualized.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

28 © ISO 2012 – All rights reserved

7.7.4.2 Relation between Vehicle Connector Information Table and Logical Link Table

Figure 15 shows the DbProject and relation to Logical Link and Vehicle Information Table.

<<D>>
MCDDbVehicleConnectorPin

<<M,C,D>>
MCDDbPhysicalVehicleLinkOrInterfaces

<<D>>
MCDDbVehicleConnectorPins

<<M,C,D>>
MCDDbLogicalLink

<<D>>
MCDDbVehicleConnector

<<M,C,D>>
MCDDbVehicleInformations

<<M,C,D>>
MCDDbLogicalLinks

<<D>>
MCDDbVehicleConnectors

<<M,C,D>>
MCDDbVehicleInformation

1

1

1 11

1

1

1

1

1 11

1

*

* **

*

1

1

1 1

<<M,C,D>>
MCDDbProject

1

Vehicle Connector Information Table Logical Link Table

Figure 15 — DbProject and relation to Logical Link and Vehicle Information Table

Within this ERD the relations between the database interface of the project and the ECUs and Vehicle
Information contained in the project are shown. The following is shown: which information may be listed in
collections and in which number the respective objects should be existing within the database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 29

In the Logical Link Table each ECU will occur in several Locations if there are different paths to this ECU.

Exactly one Location and one Physical Vehicle Link belongs to each Logical Link, according to the entry in the
Logical Link Table. The Vehicle Connectors and the ConnectorPins according to the Physical Vehicle Link can
be listed. Within the Vehicle Information Table the VehicleConnectors with their pin-assignments and the
respective Logical Links are listed. As far as the Logical Link is concerned, it references the Physical Vehicle
Link which describes the connection between pins and ECU.

Besides the VehicleInformationTables that are defined in ODX, an MCD System may optionally support the
concept of runtime generated Vehicle Information Tables.

A runtime generated Vehicle Information Table shall be named with prefix “#RtGen_” and is generated
internally by the server. This VIT can be used by a client application like any other VIT. Which DbLogicalLinks
will be contained in the VIT is server specific. It could be, for example, one of the following:

 The VIT contains the collection of all DbLogicalLink which are defined in single VITs (e.g.
#RtGen_SmartVIT).

 The VIT contains the collection of all DbLogicalLinks which can be generated out of the DbLocations of
the project (e.g. #RtGen_DefaultVIT).

7.7.4.3 ERD DbLocation

Within this ERD the associations between a DbLocation, which represents an ECU, and the related interfaces
are shown. At the DbLocation a number of Collections may be polled, which are filled with items.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

30 © ISO 2012 – All rights reserved

Figure 16 shows the location association for D.

<<D>>
MCDDbFunctionalClass

<<D>>
MCDDbFunctionalClasses

1 *1

<<D>>
MCDDbDataPrimitve

<<D>>
MCDDbDataPrimitives

1 *1

<<D>>
MCDDbControlPrimitive

<<D>>
MCDDbControlPrimitives

1 *1

<<D>>
MCDDbEcu1

<<D>>
MCDDbJob

<<D>>
MCDDbJobs

1 *1

<<D>>
MCDDbService

<<D>>
MCDDbServices

1 *1

<<D>>
MCDDbDiagService

<<D>>
MCDDbDiagServices

1 *1

<<D>>
MCDDbDiagComPrimitive

<<D>>
MCDDbDiagComPrimitives

1 1 *

<<D>>
MCDDbPhysicalMemory

<<D>>
MCDDbPhysicalMemories

1 *1

<<D>>
MCDDbFlashSession

Classes 1 *1

<<D>>
MCDDbFlashSession

Class

<<D>>
MCDDbFlashSessions

1 *1

<<D>>
MCDDbFlashSession

<<D>>
MCDDbConfiguration

Data

<<D>>
MCDDbConfiguration

Datas 1 *1

<<D>>
MCDDbAdditional

Audience

<<D>>
MCDDbAdditional

Audiences 1 *1

<<D>>
MCDDbEcuStateChart

<<D>>
MCDDbEcuStateCharts

1 *1

<<D>>
MCDDbDiagTrouble

Code

<<D>>
MCDDbDiagTrouble

Codes 1 *1

<<D>>
MCDDbEnvDataDesc

<<D>>
MCDDbEnvDataDescs

1 *1

<<D>>
MCDDbFaultMemory

<<D>>
MCDDbFaultMemories

1 *1

<<D>>
MCDDbSpecialData

Group

<<D>>
MCDDbSpecialData

Groups 1 *1

<<D>>
MCDDbSubComponent

<<D>>
MCDDbSubComponents

1 *1

<<M,C,D>>
MCDDbUnit

<<M,C,D>>
MCDDbUnits

1 *1

<<D>>
MCDDbMatchingPattern

<<D>>
MCDDbMatchingPatterns

1 *1

<<D>>
MCDDbUnitGroup

<<D>>
MCDDbUnitGroups

1 *1

<<D>>
MCDDbTable

<<D>>
MCDDbTables

1 *1
1

<<D>>
MCDDbResponseParameter

<<D>>
MCDDbResponse

Parameters1 1 *
1

Figure 16 — Location association for D

These associations are created from the information out of ODX description files, whereas MCDDBLocation
corresponds with ECU.

At this MCDDBLocation there is a link to the DbECU Interface and Collections for the different database
objects that can be assigned to an ECU. Every Collection contains 0..n objects of the same class or children
of a common super class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 31

7.7.4.4 ERD Logical Link and DiagComPrimitives

Figure 17 shows the Logical Link associations in function block D.

<<D>>
MCDDbVariantIdentification

<<D>>
MCDVariantIdentification

<<M,C,D>>
MCDLogicalLink

<<D>>
MCDDbStartCommunication

<<D>>
MCDStartCommunication 0..1 1

<<D>>
MCDDbStopCommunication

<<D>>
MCDStopCommunication

0..1 1

0..1 1

<<D>>
MCDDbVariant

IdentificationAndSelection

<<D>>
MCDVariant

IdentificationAndSelection 0..1 1

<<D>>
MCDDbService

<<D>>
MCDService 0..* 1

<<D>>
MCDDbSingleEcuJob

<<D>>
MCDSingleEcuJob 0..* 1

<<D>>
MCDDbMultipleEcuJob

<<D>>
MCDMultipleEcuJob 0..* 1

<<D>>
MCDDbFlashJob

<<D>>
MCDFlashJob 0..* 1

0..1

0..1

0..*

0..*

0..*

0..*

0..*

0..*

1

<<D>>
MCDDbProtocolParameterSet

<<D>>
MCDProtocolParameterSet

<<D>>
MCDDbHexService

<<D>>
MCDHexService 0..* 1

0..* 1

0..*

0..*

<<D>>
MCDDbDynIdRead

ComPrimitive

<<D>>
MCDDynIdRead

ComPrimitive

<<D>>
MCDDbDynIdDefine

ComPrimitive

<<D>>
MCDDynIdDefine

ComPrimitive 0..* 1

0..* 1

0..*

0..*

<<D>>
MCDDbDynIdClear

ComPrimitive

<<D>>
MCDDynIdClear

ComPrimitive 0..* 10..*

<<D>>
MCDConfiguration

Records

<<D>>
MCDConfiguration

Record1 1 0..*

Figure 17 — Logical Link associations in function block D

Within this Entity Relationship Diagram, the relation between a Logical Link and the Communication Primitives
(called DiagComPrimitive) which can be created within it, as well as the relations between the runtime and the
database part of the communication primitives, are shown.

For each Logical Link 0 to n different DiagComPrimitives can be created at the same time.

The following runtime ControlPrimitives may be created only once per Logical Link:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

32 © ISO 2012 – All rights reserved

 MCDStartCommunication,

 MCDStopCommunication,

 MCDVariantIdentification,

 MCDVariantIdentificationAndSelection.

All other DiagComPrimitives may be created as often as one likes and exist in parallel. They may be
parameterised differently.

Each Runtime DiagComPrimitive of a type uses exactly the database DiagComPrimitive of the same type of
this Location. It is not necessary to create a runtime DiagComPrimitive within the Logical Link for each
database DiagComPrimitive.

7.7.4.5 ERD Request and Response Parameter associations

Figure 18 shows the request parameter associations.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 33

<<D>>
MCDDbParameter

<<D>>
MCDDbRequest

1

1

1

<<D>>
MCDDbResponseParameters

1

1

<<D>>
MCDDbResponseParameter

*

*

*

1

1

1

11

1

1

1 Request n possible Responses

<<D>>
MCDDbServices

<<D>>
MCDDbFunctionalClass

1

1

<<D>>
MCDDbService

<<D>>
MCDDbDiagService

<<D>>
MCDDbDiagComPrimitive

<<D>>
MCDDbResponses

<<D>>
MCDDbResponse

*

*

1

1

<<D>>
MCDDbDataPrimitive

<<D>>
MCDDbJob

<<D>>
MCDDbRequestParameters

<<D>>
MCDDbRequestParameter

Figure 18 — Request parameter associations

Within this ERD the relations concerning the kinds of parameters of the object model are shown.

Within this ERD the database side is considered in detail. Within the upper part it is shown that
MCDDbFuncionalClass contains a collection of Services and that Services belong to the
MCDDbDataComPrimitives. Request Parameters always belong to each DataComPrimitive and possibly (that
means from 0 to as many as one likes) predefined Responses together with the respective Response
Parameters, which describe the general structure of the Response. This is illustrated in Figure 81.

Each Request Parameter may contain a Simple DOP or as Complex DOP a STRUCTURE or EndOfPDU, so
a nested structure can be built. Response Parameter, however, may build any nested structure out of
Complex and Simple DOP.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

34 © ISO 2012 – All rights reserved

7.7.4.6 ERD result access

Figure 19 shows the response parameters associations.

<<D>>
MCDDbParameter

<<D>>
MCDDiagComPrimitive

<<M,C,D>>
MCDResults

<<M,C,D>>
MCDResult

<<M,C,D>>
MCDResponses

<<D>>
MCDDbResponse

<<M,C,D>>
MCDResponse

<<M,C,D>>
MCDValue

<<D>>
MCDDbResponseParameter

<<M,C,D>>
MCDResponseParameters

<<M,C,D>>
MCDResponseParameter

0..*

0..*

0..*

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

Figure 19 — Response parameters associations

Within this ERD the runtime side of the Result is considered in detail and the relation between
DiagComPrimitive, Result, Response and Response Parameter up until the value of the Response Parameter
is shown.

This means by calling fetchResults() a collection of results is returned. This collection consists of 1..n
MCDResults. Each MCDResult has for each ECU used by the DiagComPrimitive one response. The
response is described in the database with an MCDDbResponse. Each MCDResponse has a collection of
Response Parameters. In the following the Response Parameters can be structured to build the structure of
the return values of one ECU. The structure is given by database template.

Figure 80 illustrates the detailed result structure in the D part.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 35

7.7.4.7 ERD Jobs

Within this Entity Relationship Diagram, the relations of the Job interfaces are shown. MCDDbJob is derived
from MCDDbDataPrimitive. MCDDbMultipleEcuJob, MCDDbFlashJob and
MCDDbSingleEcuJob are derived from MCDDbJob. A relation to the MCDDbVersion interface exists.

Figure 20 shows the Job associations.

<<D>>
MCDDbDataPrimitive

<<D>>
MCDDbDiagComPrimitive

<<D>>
MCDDbJob

<<D>>
MCDVersion

<<D>>
MCDDb

SingleEcuJob

<<D>>
MCDDb

MultipleEcuJob

<<D>>
MCDDb
FlashJob

getVersion()

1 1

Figure 20 — Job associations

7.7.5 ODX Data Type mapping for database and runtime side

7.7.5.1 Basics

In general, runtime data has to be in conformance with the database template for the respective association. If
the data type of the parameter is a complex data type, data sections are repeated.

DbObjects are static and will be not be influenced by Run Time side objects. This means that the delivered
dbObjects are always the same no matter which access way is used (dbSide or
RTSide::getDbObject::getDbParameters).

For the special complex data type eTABLE_ROW the hints are directly included in 8.12.

In general the ODX isVisible attribute is not considered.

The following complex datatypes

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

36 © ISO 2012 – All rights reserved

 eSTRUCTURE,

 eFIELD, eEND_OF_PDU,

 eMULTIPLEXER, and

 eENVDATA, eENVDATADESC

are shown in more detail.

7.7.5.2 eSTRUCTURE

A parameter of data type eSTRUCTURE consists of 0 to n elements. Each element can be of simple or
complex data type. The parameter collection below the complex eSTRUCTURE parameter contains the
MCD(Db)Parameter mappings of ODX PARAM elements that are combined in the ODX STRUCTURE.

Parameters of data type eSTRUCTURE might appear in a request structure as well as in a response
structure.

ODX-Data (extract) of the DB-Template

<DATA-OBJECT-PROP ID=”SimpleDOP_ID”>
 <SHORT-NAME>SimpleDOP</SHORT-NAME>
 (…)
 <DIAG-CODED-TYPE (…)>
 (…)
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE=”A_UNICODE2STRING”/>
</DATA-OBJECT-PROP>
<STRUCTURE ID=”SimpleSTRUCT_ID”>
 <SHORT-NAME>SimpleSTRUCT</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_A</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_B</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<DIAG-SERVICE ID=”ServiceXYZ_ID”>
 <SHORT-NAME>ServiceXYZ</SHORT-NAME>
 (…)
 <REQUEST-REF ID-REF=”Req_ID”/>
 (…)
</DIAG-SERVICE>
<REQUEST ID=”Req_ID”>
 <SHORT-NAME>Req</SHORT-NAME>
 (…)
 <PARAMS>
 <PARAM xsi:type=”CODED-CONST”>
 <SHORT-NAME>SID</SHORT-NAME>
 <DIAG-CODED-TYPE BASE-DATA-TYPE=”A_UINT32” (…)>
 (…)
 </DIAG-CODED-TYPE>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 37

 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DataItems</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleSTRUCT_ID”/>
 </PARAM>
 </PARAMS>
</REQUEST>

Figure 21 shows the datatype eSTRUCTURE at database and runtime side.

data base

MCDDbResponseParameters
or

MCDDbRequestParameters

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: DataItems
DataType: eSTRUCTURE
ParameterType: eVALUE

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

runtime

MCDResponseParameters
or

MCDRequestParameters

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: DataItems
DataType: eSTRUCTURE
ParameterType: eVALUE

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

Figure 21 — Datatype eSTRUCTURE at database and runtime side

7.7.5.3 eFIELD

A parameter of data type eFIELD consists of 0 to n elements. Each element contains one element of data type
eSTRUCTURE with a short name equal to the SHORT-NAME of the ODX STRUCTURE, this means the
STRUCTURE element of ODX will be used independently from the isVisible data. The structure itself consists
of arbitrarily simple or complex elements (the actual field content). On database side exactly one field element
(eSTRUCTURE with content) is shown. On runtime side the number of included eSTRUCTURE elements
depends on how often this structure is contained in the response PDU according to the termination condition
of the special field type. Please note that the short names of the field elements will not be unique.

Parameters of type eFIELD appear in response structures only. They are built from ODX DOPs STATIC-
FIELD, DYNAMIC-LENGTH-FIELD, DYNAMIC-ENDMARKER-FIELD, and END-OF-PDU-FIELD.

ODX-Data (Extract) of the DB-Template

<DATA-OBJECT-PROP ID=”SimpleDOP_ID”>
 <SHORT-NAME>SimpleDOP</SHORT-NAME>
 (…)
 <DIAG-CODED-TYPE (…)>
 (…)
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE=”A_UNICODE2STRING”/>
</DATA-OBJECT-PROP>
<STRUCTURE ID=”SimpleSTRUCT_ID”>
 <SHORT-NAME>SimpleSTRUCT</SHORT-NAME>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

38 © ISO 2012 – All rights reserved

 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_A</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_B</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<DYNAMIC-ENDMARKER-FIELD ID=”DYN_EM_FIELD_ID”>
 <SHORT-NAME>DEMF</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF=”SimpleSTRUCT_ID”/>
 (…)
</DYNAMIC-ENDMARKER-FIELD>
<DIAG-SERVICE ID=”ServiceXYZ_ID”>
 <SHORT-NAME>ServiceXYZ</SHORT-NAME>
 (…)
 <POS-RESPONSE-REF ID-REF=”Rsp_ID”/>
 (…)
</DIAG-SERVICE>
<POS-RESPONSE ID=”Rsp_ID”>
 <SHORT-NAME>Rsp</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”CODED-CONST”>
 <SHORT-NAME>SID</SHORT-NAME>
 <DIAG-CODED-TYPE BASE-DATA-TYPE=”A_UINT32” (…)>
 (…)
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>RepeatedItems</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”DYN_EM_FIELD_ID”>
 </PARAM>
 </PARAMS>
</POS-RESPONSE>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 39

Figure 22 shows the datatype eFIELD at database and runtime side.

ShortName: RepeatedItems
DataType: eFIELD
ParamterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParamterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

data baseruntime

MCDResponseParameters

ShortName: RepeatedItems
DataType: eFIELD
ParamterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParamterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParamterType: eGENERATED

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

MCDDbResponseParameters

Figure 22 — Datatype eFIELD at database and runtime side

7.7.5.4 eEND_OF_PDU

A parameter of data type eEND_OF_PDU consists of 0 to n elements. Each element contains one element of
data type eSTRUCTURE with a short name equal to the SHORT-NAME of the ODX STRUCTURE; this
means the STRUCTURE element of ODX will be used independently from the isVisible data. The structure
itself consists of arbitrarily simple or complex elements (the actual field content). On database side exactly
one field element (eSTRUCTURE with content) is shown. On runtime side the number of included
eSTRUCTURE elements depends on how often this structure shall be repeated in the request PDU. Initially,
this number is equal to the minimum number of items defined by MIN-NUMBER-OF-ITEMS in ODX. It might
be extended calling MCDRequestParameter::addParameters until the maximum given by MAX-
NUMBER-OF-ITEMS in ODX is reached. Please note that the short names of the field elements will not be
unique.

Parameters of type eEND_OF_PDU appear in request structures only. They are built from ODX END-OF-
PDU-FIELD.

ODX-Data (Extract) of the DB-Template

<DATA-OBJECT-PROP ID=”SimpleDOP_ID”>
 <SHORT-NAME>SimpleDOP</SHORT-NAME>
 (…)
 <DIAG-CODED-TYPE (…)>
 (…)
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE=”A_UNICODE2STRING”/>
</DATA-OBJECT-PROP>
<STRUCTURE ID=”SimpleSTRUCT_ID”>
 <SHORT-NAME>SimpleSTRUCT</SHORT-NAME>
 <PARAMS>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

40 © ISO 2012 – All rights reserved

 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_A</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Data_B</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<END-OF-PDU-FIELD ID=”EOP_FIELD_ID”>
 <SHORT-NAME>EOPF</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF=”SimpleSTRUCT_ID”/>
 <MAX-NUMBER-OF-ITEMS>4</MAX-NUMBER-OF-ITEMS>
 <MIN-NUMBER-OF-ITEMS>2</MIN-NUMBER-OF-ITEMS>
</END-OF-PDU-FIELD>
<DIAG-SERVICE ID=”ServiceXYZ_ID”>
 <SHORT-NAME>ServiceXYZ</SHORT-NAME>
 (…)
 <REQUEST-REF ID-REF=”Req_ID”/>
 (…)
</DIAG-SERVICE>
<REQUEST ID=”Req_ID”>
 <SHORT-NAME>Req</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”CODED-CONST”>
 <SHORT-NAME>SID</SHORT-NAME>
 <DIAG-CODED-TYPE BASE-DATA-TYPE=”A_UINT32” (…)>
 (…)
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>RepeatedItems</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”EOP_FIELD_ID”/>
 </PARAM>
 </PARAMS>
</REQUEST>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 41

Figure 23 shows the datatype eEND_OF_PDU at database and runtime side.

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: RepeatedItems
DataType: eEND_OF_PDU
ParameterType: eVALUE

data baseruntime

MCDRequestParameters

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: RepeatedItems
DataType: eEND_OF_PDU
ParameterType: eVALUE

ShortName: SimpleSTRUCT
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: Data_B
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

MCDDbRequestParameters

Figure 23 — Datatype eEND_OF_PDU at database and runtime side

7.7.5.5 eMULTIPLEXER

A parameter of data type eMULTIPLEXER consists of 0 to n branches. Each branch contains one element of
data type eSTRUCTURE with name equal to CASE SHORT-NAME; this means the STRUCTURE element of
ODX will be used independently from isVisible data. The structure itself consists of arbitrarily simple or
complex elements. On database side all branches of a multiplexer are described including possibly empty
cases which do not reference a STRUCTURE, and the optional default case. On runtime side only one branch
is available.

ODX-Data (Extract) of the DB-Template

<DATA-OBJECT-PROP ID=”SwitchKeyDOP_ID”>
 <SHORT-NAME>SwitchKeyDOP</SHORT-NAME>
 (…)
</DATA-OBJECT-PROP>
<DATA-OBJECT-PROP ID=”SimpleDOP_ID”>
 <SHORT-NAME>SimpleDOP</SHORT-NAME>
 (…)
 <DIAG-CODED-TYPE (…)>
 (…)
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UNICODE2STRING"/>
</DATA-OBJECT-PROP>
<STRUCTURE ID=”DefaultCaseSTRUCT_ID”>
 <SHORT-NAME>DefaultCaseSTRUCT</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

42 © ISO 2012 – All rights reserved

 <SHORT-NAME>DefaultData_A</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DefaultData_B</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<STRUCTURE ID=”Case1STRUCT_ID”>
 <SHORT-NAME>Case1STRUCT</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Case1Data_A</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Case1Data_B</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Case1Data_C</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<STRUCTURE ID=”Case2STRUCT_ID”>
 <SHORT-NAME>Case2STRUCT</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Case2Data</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
</STRUCTURE>
<MUX ID=”MUX_ID”>
 <SHORT-NAME>Multiplexer</SHORT-NAME>
 (…)
 <SWITCH-KEY>
 (…)
 <DATA-OBJECT-PROP-REF ID-REF=”SwitchKeyDOP_ID”/>
 </SWITCH-KEY>
 <DEFAULT-CASE>
 <SHORT-NAME>DefaultCase</SHORT-NAME>
 <STRUCURE-REF ID-REF=”DefaultCaseSTRUCT_ID”/>
 </DEFAULT-CASE>
 <CASES>
 <CASE>
 <SHORT-NAME>Case1</SHORT-NAME>
 <STRUCTURE-REF ID-REF=”Case1STRUCT_ID”/>
 (…)
 </CASE>
 <CASE>
 <SHORT-NAME>Case2</SHORT-NAME>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 43

 <STRUCTURE-REF ID-REF=”Case2STRUCT_ID”/>
 (…)
 </CASE>
 <CASE>
 <SHORT-NAME>EmptyCase3</SHORT-NAME>
 (…)
 </CASE>
 </CASES>
</MUX>
<DIAG-SERVICE ID=”ServiceXYZ_ID”>
 <SHORT-NAME>ServiceXYZ</SHORT-NAME>
 (…)
 <POS-RESPONSE-REF ID-REF=”Rsp_ID”/>
 (…)
</DIAG-SERVICE>
<POS-RESPONSE ID=”Rsp_ID”>
 <SHORT-NAME>Rsp</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”CODED-CONST”>
 <SHORT-NAME>SID</SHORT-NAME>
 <DIAG-CODED-TYPE BASE-DATA-TYPE=”A_UINT32” (…)>
 (…)
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>MuxItems</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”MUX_ID”/>
 </PARAM>
 </PARAMS>
</POS-RESPONSE>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

44 © ISO 2012 – All rights reserved

Figure 24 shows the datatype eMULTIPLEXER at database and runtime side.

ShortName: Case1
DataType: eSTRUCTURE
ParamterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: Case1Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: B
DataType: eA_UNICODE2STRING

Case1Data_

ParameterType: eVALUE

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: MuxItems
DataType: eMULTIPLEXER
ParameterType: eVALUE

ShortName: C
DataType: eA_UNICODE2STRING

Case1Data_

ParameterType: eVALUE

ShortName: Case2
DataType: eSTRUCTURE
ParamterType: eGENERATED

ShortName: Case2Data
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: EmptyCase3
DataType: eSTRUCTURE
ParamterType: eGENERATED

ShortName: DefaultCase
DataType: eSTRUCTURE
ParamterType: eGENERATED

ShortName: Default
DataType: eA_UNICODE2STRING

CaseData_A

ParameterType: eVALUE

ShortName: Default
DataType: eA_UNICODE2STRING

CaseData_B

ParameterType: eVALUE

data baseruntime

MCDResponseParameters

ShortName: Case1
DataType: eSTRUCTURE
ParamterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: Case1Data_A
DataType: eA_UNICODE2STRING
ParameterType: eVALUE

ShortName: B
DataType: eA_UNICODE2STRING

Case1Data_

ParameterType: eVALUE

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: MuxItems
DataType: eMULTIPLEXER
ParameterType: eVALUE

ShortName: C
DataType: eA_UNICODE2STRING

Case1Data_

ParameterType: eVALUE

MCDDbResponseParameters

Figure 24 — Datatype eMULTIPLEXER at database and runtime side

7.7.5.6 eENVDATADESC

A database parameter of data type eENVDATADESC contains 0 items.

A runtime parameter of data type eENVDATADESC contains 0 to 2 elements of data type eENVDATA. The
parameter collection of the eENVDATADESC parameter is empty, if the response PDU does not contain any
environment data. Otherwise, the collection contains 0 or 1 common environment data parameters according
to the optional ODX ALL-VALUE of the ODX ENV-DATA-DESC followed by 0 or 1 environment data
parameters for a specific diagnostic trouble code.

ODX-Data (extract) of the DB-Template

<DATA-OBJECT-PROP ID=”SimpleDOP_ID”>
 <SHORT-NAME>SimpleDOP</SHORT-NAME>
 (…)
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
</DATA-OBJECT-PROP>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 45

<ENV-DATA-DESC ID=”EnvDataDesc_ID”>
 <SHORT-NAME>EnvDataDesc</SHORT-NAME>
 <PARAM-SNREF SHORT-NAME=”SwitchKeyDTC”/>
 <ENV-DATAS>
 <ENV-DATA ID=”EnvData_DTC_210_and_220_ID”
 <SHORT-NAME>EnvData_DTC_210_and_220</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>EngineSpeed</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Voltage</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
 <DTC-VALUES>
 <DTC-VALUE>210</DTC-VALUE>
 <DTC-VALUE>220</DTC-VALUE>
 </DTC-VALUES>
 </ENV-DATA>
 <ENV-DATA>
 <SHORT-NAME>EnvData_All</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>EventCounter</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 </PARAMS>
 <ALL-VALUE/>
 </ENV-DATA>
 </ENV-DATAS>
</ENV-DATA-DESC>
<DIAG-SERVICE ID=”ServiceXYZ_ID”>
 <SHORT-NAME>ServiceXYZ</SHORT-NAME>
 (…)
 <POS-RESPONSE-REF ID-REF=”Rsp_ID”>
 (…)
</DIAG-SERVICE>
<POS-RESPONSE ID=”Rsp_ID”>
 <SHORT-NAME>Rsp</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”CODED-CONST”>
 <SHORT-NAME>SID</SHORT-NAME>
 <DIAG-CODED-TYPE BASE-DATA-TYPE=”A_UINT32” (…)>
 (…)
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>SwitchKeyDTC</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_ID”/>
 </PARAM>
 <PARAM>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

46 © ISO 2012 – All rights reserved

 <SHORT-NAME>EnvData</SHORT-NAME>
 <DOP-REF ID-REF=”EnvDataDesc_ID”/>
 </PARAM>
 </PARAMS>
</POS-RESPONSE>

Figure 25 shows the datatype eENVDATADESC / eENVDATA at database and runtime side.

ShortName: EnvData
DataType: eENVDATADESC
ParamterValue: eVALUE

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: SwitchKeyDTC
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: EnvData_All
DataType: eENVDATA
ParameterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: EventCounter
DataType: eA_UINT32
ParamterType: eVALUE

ShortName: EnvData_DTC_210_and_220
DataType: eENVDATA
ParameterType: eGENERATED

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: EngineSpeed
DataType: eA_UINT32
ParamterType: eVALUE

MCDDbRequestParameter
ShortName: SID
DataType: eA_UINT32

ShortName: Voltage
DataType: eA_UINT32
ParamterType: eVALUE

data baseruntime

MCDResponseParameters

ShortName: EnvData
DataType: eENVDATADESC
ParamterValue: eVALUE

ShortName: SID
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: SwitchKeyDTC
DataType: eA_UINT32
ParameterType: eVALUE

MCDDbResponseParameters

Figure 25 — Datatype eENVDATADESC/eENVDATA at database and runtime side

7.8 Collections

7.8.1 Types and methods

A Collection is a collection of single elements. The ordering criteria are not defined by the MVCI diagnostic
server specification. Single objects within the Collection may be accessed by means of an Index. The Index
may also be used to iterate over all elements of the Collection. The counting in collections starts with zero.
The Collection offers the possibility to query the number of elements currently located within the Collection.
The Interface NamedCollection has been derived from the general Collection. NamedCollections
additionally offer the possibility to poll a list with the names of all elements currently located within the
Collection and to access an element via its name. The kind of elements stored within a Collection can be
determined from the InterfaceName. The methods getItemByIndex and getItemByName are only
declared within the specific Interfaces and by this way are declared type safe.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 47

Figure 26 shows the principle of collections.

MCDCollection

<<MCD>> getCount() : A_UINT32

<<MCD>>

MCDNamedCollection

<<MCD>> getNames() : MCDDatatypeShortName[]

<<MCD>>

MCDDbLogicalLinks

<<MCD>> getItemByIndex(index : A_UINT32) : MCDDbLogicalLink
<<MCD>> getItemByName(name : MCDDatatypeShortName) : MCDDbLogicalLink

<<MCD>>

MCDResults

<<MCD>> getItemByIndex(index : A_UINT32) : MCDResult
<<D>> add() : MCDResult

<<MCD>>

Figure 26 — Principle of collections

7.8.2 RunTime collections

Figure 27 shows the RunTime collections MCD.

1

<<M,C,D>>
MCDProject

<<M,C,D>>
MCDLogicalLink

<<D>>
MCDDiagComPrimitive

<<D>>
Service

<<M,C,D>>
MCDSystem

0..*0..*

0..*

1

1

Figure 27 — RunTime collections MCD

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

48 © ISO 2012 – All rights reserved

Within this ERD the associations between MCDProject and its Logical Links are shown. Also the relations
of the Logical Link to the DiagComPrimitives and Services are visible.

Logical Links and DiagComPrimitives (incl. Services and Jobs) do not form a Collection that can be polled via
the API.

Only the Results and their sub-structures are mapped as Runtime collections. In cases of these collections
there is no danger that names are assigned twice, as they are created by the server or Job.

7.8.3 Database collections

Collections are used for the listing of database objects with identical interface. The Collections reflect the
content of the database of the used project. The database is static; that means nothing can be added or
modified. The collections are always derived from MCDNamedCollection, so that its items may be
accessed via index and via name. It has to be guaranteed for the uniqueness of the names of the items within
the database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 49

Figure 28 shows the database collections part I.

Figure 28 — Database collections part I

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

50 © ISO 2012 – All rights reserved

Figure 29 shows the database collections part II.

Figure 29 — Database collections part II

7.9 Registering/deregistering of the EventHandler

For each Interface that may use an EventHandler, two methods have to be implemented:

Registering: setEventHandler (handler.MCDEventHandler): A_UINT32,

Deregistering: releaseEventHandler (Id: A_UINT32): void.

Because of this kind of registering several EventHandler may be connected per object at the same time.
These are identified by means of the Id that is assigned at registration.

If the server cannot register another EventHandler because of internal restrictions, e.g. resources or
exceeding MAX A_UINT32 (232) EventHandlers, an MCDProgramViolationException will be thrown.
It contains the error eSYSTEM_RESOURCE_OVERLOAD.

To meet the requirement that the EventHandling has to also be fully functional with only one EventHandler, all
methods for the Event reception are expected within each EventHandler. It is up to the Client–Implementation
how many EventHandler will be registered and if these EventHandler each implement all methods for the
event handling or use some of them only as rudimentary data sinks. It is only required that each registered
EventHandler provides for all methods. The functionality derived from the methods is implementation specific.

The EventHandler may be registered at different objects that take a key position of the run time process, for
example MCDSystem and MCDLogicalLink. If for the Logical Link an Event shall be sent to the
EventHandler, it is only sent to the EventHandler which is registered at the Logical Link. If no EventHandler is
registered at the Logical Link, the Event is sent to the EventHandler of the MCDSystem. It is not sent to both
EventHandlers, if there are EventHandler registered at both objects.

If one or more event handler are registered at least one of them has to be registered at the MCDSystem
since all events not handled before are finally sent to the MCDSystem.

The registering of an EventHandler at the system is optional. The EventHandler at the MCDSystem may also
receive all messages as only EventHandler as long as no other EventHandler is registered.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 51

Figure 30 shows the using of EventHandler.

registered
on

registered
on

Lo
gi

ca
lL

in
kE

ve
nt

SystemEvent

MVCI diagnostic server

Figure 30 — Using of EventHandler

The releaseEventHandler method can be called in any state without throwing an exception
(Implementation hint to the client programmer: The releaseEventHandler method should be called in
the same states where the corresponding setEventHandler had been called).

7.10 MCD value

CreateValue() returns a reference to an MCDValue object that has been attached to the class/object
at which the createValue() method has been called. Note that this behaviour is identical for all
other createXXX-methods (e.g. createException(), createError(), createValue(),
createResult(), createLogicalLink). If there are different calls to the same server object, only
new references to the same instantiated object are delivered. The object is initialised with the default value
stated in the corresponding database template.

GetValue() returns a copy of the MCDValue object that has been attached to the class/object the
getValue() method has been called at. If there is no MCDValue object available, the getValue()-
method should throw an exception.

SetValue(MCDValue) takes a MCDValue object and overwrites the MCDValue object (if present) that is
attached to the class/object the method setValue() has been called.

NOTE The string representation of MCDValue is shown in Annex A.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

52 © ISO 2012 – All rights reserved

Figure 31 shows the behaviour of MCDRequestParameter (create/get and set value methods).

MCDValue

Remark: setting/adjusting
 the value is possible
 via MCDValue methods
 e.g. setUint32()

Copy
overwrites
value A

Client

Server

Deliver
a copy

A’

MCDValue

A

MCDValue

B

MCDValue

B’

MCDRequestParameter.
getValue()

MCDRequestParameter.
setValue()

setxxx(B)

MCDValue

A

MCDRequestParameter.
createValue()

Deliver a reference
(pointer)

MCDValue with
default values
from database

Figure 31 — Behaviour of MCDRequestParameter (create/get and set value methods)

Job INPUT- and OUTPUT PARAMs have references to a DOP-BASE. However DOPs are applied differently
from services:

The conversion method is ignored, meaning an input parameter is passed to the job as-is and always as a
physical value. PHYSICALDEFAULT-VALUE shall only be used if INPUT-PARAM references a DATA-
OBJECTPROP.

Output parameters are returned by the job as physical values. The physical values returned by the job shall
comply with the PHYSICAL-TYPE specification of the associated DOP-BASE.

Special cases are input parameters that have a TEXTTABLE defined as COMPUMETHOD. Here, the valid
texts of the TEXTTABLE can be listed within an application. Upon selection, the corresponding text (the
physical value) is passed to the job. Hence, the COMPU-METHOD is only used for comfort reasons, not for
actual conversion of the input parameter from a physical into a coded type. By consequence, the DIAG-
CODED-TYPE of the DOP associated by a job parameter (regardless of whether it is an INPUT- or OUTPUT-
PARAM) is ignored.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 53

Figure 32 shows the behaviour of MCDResponseParameter (get value method).

MCDValue

Client

Server

Deliver
a copy

A’

MCDValue

A

MCDResponseParameter.
getValue()

Figure 32 — Behaviour of MCDResponseParameter (get value method)

Figure 33 shows the MCD Values in jobs.

<<M,C,D>>
MCDValue

<<M,C,D>>
MCDResponseParameter

3 MCDValue.setxxx() xxx = Asciistring
Bitfield
Boolean
Bytefield
Float32
Float64

Int16
Int32
Int64
UInt8
UInt16
U

Int8

Int32
UInt64
Unicode2string

1 MCDResponseParameter.getType()

2 MCDJobAPI.createValue()

4 MCDResponseParameter.setValue()

copy overwrites value

Figure 33 — MCD Values in jobs

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

54 © ISO 2012 – All rights reserved

7.11 Use cases

7.11.1 View

With the help of Sequence Diagrams the interactive use of the API and the sequences for certain general
cases are presented in chronological order.

It is acted from the view of a single client and it is assumed that each action is executed successfully.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 55

7.11.2 Instantiation of projects

Figure 34 shows the starting work with the MVCI diagnostic server.

Start with the MCDSystem
object. How to get this is
described in the companions.

set the main EventHandler
to get every callback from
the Server;
returns the id for
this EventHandler

get the descriptions of all
available data base projects

select a project via a
project description of a
data base project or if the
project is already
selected (from an other
client) get the project
via method
getActiveProject()

 : Application : MCDEventHandler

CLIENT

get the data base
project, it is
possible to access all
data base elements
(data transfer from the Db)

alter-
native

ne
w

 P
ro

je
ct

e
xi

st
in

g
 P

ro
je

ct
 : MCDSystem

 : MCDProject : MCDDbProject : MCDDb
VehicleInformation

setEventHandler(eventHandler)

returns the project description of the data base

returns the newly created project

returns the data base project to the actual project

returns the actual project

getDbProjectDescriptions()

onFirstEvent()

selectProject(dbProjectDescription)

onSystemProjectSelected()

getDbProject()

getActiveProject()

MVCI
diagnostic

server

getActiveDbVehicleInformation()

get all available Vehicle
Information Tables for this project

getDbVehicleInformations()

selectDbVehicleInformation(dbVehicleInformation)

returns all Vehicle Information Tables from the data base

returns the active Vehicle Information Table

returns the active Vehicle Information Table

onSystemVehicleInfoSelected()

in state ePROJECT_SELECTED
the data base is ready and
accessable and all run time action
can be done (with the first
Logical Link creation the state
changes to eLOGICALLY_CONNECTED)

this will select the Vehicle
Information Table usable
to all clients (the first will
select and all others will
get it via method
getActiveDb
VehicleInformation())

alter-
native

Figure 34 — Starting work with the MVCI diagnostic server

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

56 © ISO 2012 – All rights reserved

As an entry into the API the Client gets the MCDSystem object from the diagnostic server. How this has to be
done for the separate mappings of the object model for different programming languages and platforms
(ASAM GDI, Java, COM/DCOM, C++) has to be described within the respective documents mapping the
MVCI diagnostic server D object model.

The object MCDSystem is handed over within the state eINITIALIZED. First register the main
EventHandler to get all events delivered by the diagnostic server. Now the Client may poll the collection of all
project descriptions available within the database. In the next step the Client will select one of these projects
and thus provide for access to the database contents from the ODX with Vehicle Information Table, Logical
Link Table and environmental variables for this project. After this, the MCDSystem object is within the state
ePROJECT_SELECTED. If another Client has already selected a project this Client ask for the active project,
because only one project can be active at one time.

Now, out of the project, the desired Vehicle Information Table is selected from the collection of available
Vehicle Information Tables depending on the database project. Within this table all MCDDbLogicalLink
objects are located, which are necessary for connection to the ECUs.

Alternatively to the procedure mentioned above, the Client might skip the polling for information from the
database, if the short names of all necessary objects are already known. This possibility is shown in the
following diagram.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 57

Figure 35 shows the starting work with the MVCI diagnostic server (via short name).

: MCDSystem

 : MCDProject : MCDDbProject : MCDDb
VehicleInformation

start with the MCDSystem

object. How to get this is
described in the companions.

set the main
EventHandler to
get every
callback from
the Server;
returns the id for
this EventHandler

select a project via
short name of a data
base project or if the
project is already
selected (from an other
client) get the project
via method
getActiveProject()

setEventHandler(eventHandler)

returns the active project

returns the active project

returns the data base project to the actual project

selectProjectByName(dbProjectName)

getDbProject()

onFirstEvent()

onSystemProjectSelected()

getActiveProject()

get the data base
project, it is
possible to access all
data base elements
(data transfer from the Db)

 : Application : MCDEventHandler

CLIENT

API
MVCI

diagnostic
server

alter-
native

this will select
the Vehicle
Information Table
usable to all clients
(the first will select
and all others will
get it via method
getActiveDb
VehicleInformation())

in state
ePROJECT_SELECTED

the data base is
ready and accessable
and all run time action
can be done (with the
first Logical Link creation
the state changes to
eLOGICALLY_CONNECTED)

getActiveDbVehicleInformation()

selectDbVehicleInformationByName(dbVehicleInformationTableName)

returns the actual Vehicle Information Table

returns the actual Vehicle Information Table

onSystemVehicleInfoSelected()

alter-
native

Figure 35 — Starting work with MVCI diagnostic server (via short name)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

58 © ISO 2012 – All rights reserved

7.11.3 Database access

For the MCDDbLogicalLink selected out of the Logical Link collection, the information stored in the
Logical Link Table can be accessed: the ShortName, the Physical Vehicle Link or Interface (and its type) and,
from the corresponding DbLocation, the AccessKey.

Depending on the type of the DbLocation there are several collections filled with database elements like
Services and DiagComPrimitives. Also the information about the Gateway property from the Logical Link
Table can be accessed too.

This sequence diagram shows only the access to the topmost elements of the database, which are the
elements below shown in the corresponding ERD diagrams (see Figure 16).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 59

Figure 36 shows the database access.

 : MCDDb
VehicleInformation

 : MCDDb
LogicalLinks

 : MCDDb
LogicalLink

 : MCDDbPhysical
VehicleLinkOrInterface

getDbLogicalLinks()

getItemByIndex(index)

getDbPhysicalVehicleLinkOrInterface()

returns the data base physical vehicle link or interface object

returns the collection of the data base logical links

returns a data base logical link

returns the location of the logical link

getType()

getDbLocation()

getType()

starts with selected
project and
Vehicle Information Table

returns all available
Logical Links of this
MCDDbVehicleInformationTable
and represent the
Logical Link Table

D: Physical Vehicle Link
MC: Interface
(Part of the Logical Link Table)

ePROTOCOL,
eFUNCTIONAL_GROUP,
eECU_BASE_VARIANT,
eECU_VARIANT

the location of the
MCD Logical Link object refers
to the available services,
DiagComPrimitives and so on

getShortName()

getAccessKey()
the AccessKey identifies
the position within the
system

(part of the

Logical Link Table)

short name of Logical Link
(Part of the Logikal Link Table)

(this is one line of
Logical Link Table)

select Logical Link
of collection

 : Application

CLIENT

API

Type can be: CAN,
J1850,KLINE,...

 : MCDDbLocation

getDbDiagComPrimitives()

getDbFlashSessionClasses()

getDbFlashSessions()

getDbFunctionalClasses()

getDbServices()

isAccessedViaGateway()

getGatewayMode()Gateway info is part
of the Logical Link
Table

the Variants are
beneath this

returns the ECU object

getDbECU()

yes

no

Figure 36 — Database access

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

60 © ISO 2012 – All rights reserved

7.11.4 Destruction

Figure 37 shows the destruction.

starts in
ePROJECT_SELECTED : MCDSystem : MCDProject

deselectVehicleInformation()

deselectProject()

onSystemProjectDeselected()

onSystemVehicleInfoDeselected()

releaseEventHandler(clientId)

onLastEvent()

release the main
EventHandler

now the MCDSystem
is in state eINITIALIZED

deactivate the
active project

deactivate the active
Vehicle Information Table

 : Application : MCDEventHandler

CLIENT

API
MVCI

diagnostic
server

Figure 37 — Destruction

This Sequence Diagram starts in the MCDSystem state ePROJECT_SELECTED and with an active Vehicle
Information Table. Logical Links do not exist at this time anymore.

First deactivate the Vehicle Information Table and after successful deactivation an event will be delivered.
Then the project can be deactivated and for this state transition of the MCDSystem an event will be delivered
too. The last action is to release the main EventHandler.

8 Function block Diagnostic in detail

8.1 Constraints

In ODX, the validity of the internal value can be restricted to a given interval via internal constraints. The
physical value can be restricted via physical constraints. The value definition of both kinds of constraints can
be obtained by using the methods getInternalConstraint() and getPhysicalConstraint()
at MCDDbParameter. With the type of constraint, how the MCDInterval and its limits have to be
interpreted is defined. Values regarding the internal constraint definition have to be interpreted by the internal
data type. The values regarding the physical constraint definition have to be interpreted by the physical data
type.

The implicit valid range of a value is defined in ODX by the integral data type. In the case of internal constraint
definition the implicit valid range is additionally restricted by the encoding and the size of the parameter, which
is defined either by the number of 1 in a condensed bit mask or the bit length. The explicit valid range is
defined by the limits of the outer constraint (internal or physical constraint), which is always a VALID interval,
minus all inner scale constraints (SCALE-CONSTR in ODX) where the attribute VALIDITY is not equal to

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 61

VALID. The attribute VALIDITY of each constraint definition can take the values VALID, NOT-VALID, NOT-
DEFINED or NOT-AVAILABLE. The interval of a constraint is defined in ODX by the UPPER-LIMIT and
LOWER-LIMIT attribute. If UPPER-LIMIT and/or LOWER-LIMIT are missing, the explicit valid range is not
restricted in that direction. In general, the valid range is defined by the intersection of the implicit and the
explicit valid range.

If the corresponding interval type is set to eLIMIT_INFINITE, the lower and upper limit are defined by the
lowest and highest possible value of the integral data type.

For example the method getUpperLimit() will return the maximum positive value of the corresponding
data type if getUpperLimitIntervalType() returns MCDInterval::eLIMIT_INFINITE.

In cases of a request, the physical values given by the user or pre-defined in ODX shall be checked against
the physical constraint by the diagnostic server. If the check is successful the physical values will be
converted to the corresponding internal values. Finally, (after applying the computational method) the
diagnostic server will check the internal values against the internal constraints. If successful, the data can be
coded into the request message.

If the value violates the physical constraints in cases of a request the computational method will not be
applied. MCDRequestParameter::setValue() will throw an
MCDParameterizationException with error code ePAR_INVALID_VALUE. In this state the methods
getValue() and getCodedValue() will deliver an MCDValue that is not initialized.

In cases of a response, the internal values extracted from the ECU response message and interpreted by the
internal data type shall be checked against the internal constraint by the diagnostic server. If the check is
successful, the internal values will be converted to the corresponding physical values by application of the
computational method. Finally, the diagnostic server will check the physical values against the physical
constraints.

If the value violates the internal constraints in cases of a response, the computational method will not
be applied. In this state MCDParameter::getValue() will throw an
MCDProgramViolationException with error code eRT_ELEMENT_NOT_AVAILABLE and
getCodedValue() returns the internal value that violates the internal constraints.

The MCDRangeInfo will be set according to the validity of the value (request/response).

The valid range of a constraint is defined by the intersection of the implicit and the explicit valid range. The
implicit valid range of the internal constraint is defined by the coded data type restricted by the encoding and
the size of the parameter, which is defined either by the number of 1 in a condensed BIT-MASK or the BIT-
LENGTH. The implicit valid range of the physical constraint is defined by the physical data type only. The
explicit valid range is defined by UPPER-LIMIT and LOWER-LIMIT of the constraint minus all SCALE-
CONSTR with VALIDITY != VALID. If UPPER-LIMIT and/or LOWER-LIMIT are missing in the ODX data, the
explicit valid range is not restricted in that direction.

The validity of a value is determined by the following multiple step process:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

62 © ISO 2012 – All rights reserved

 If the value is outside of the intersection of implicit and explicit valid range, ignoring any SCALE-CONSTR
definition, the method MCDParameter::getValueRangeInfo() delivers eVALUE_NOT_VALID.

 If the value is inside of the valid range (intersection of implicit and explicit valid range with respect to the
SCALE-CONSTR definitions), the method MCDParameter::getValueRangeInfo() delivers
eVALUE_VALID.

 If the value is inside any SCALE-CONSTR value range the method MCDParameter::getValueRangeInfo()
returns the validity defined by the SCALE-CONSTR in ODX.

 Figure 38 shows the application of Constraints during Data Extraction Process.

23h 20h 48h 13h 03h

SID Address Size

Request: read three bytes starting
at memory address 204813h

63h 00h 46h FBh

SID Requested three bytes

Response: the requested three bytes

1

2

3

4

5

6

7

8

a1

a2

a3

a4

a5

a6

a7

a8

0

0

Vcc1

GND

Extraction

Compu-Method

UNIT conversion

Data Type associated
 = 18171

(Internal value ODX)
Coded value

Physical value = 1817,1 (r/m in)

Display value = 30,285 r/sec

ECU

Application of Bitmask,
Encoding, etc.

This value is
checked against the
internal constraints.

This value is
checked against the
physical constraints.

Figure 38 — Application of Constraints during Data Extraction Process

For the examples following, this ODX specification of DIAG-CODED-TYPE is assumed:

 <DIAG-CODED-TYPE xsi:type="STANDARD-LENGTH-TYPE" BASE-DATA-TYPE="A_INT32"
 CONDENSED="true" BASE-TYPE-ENCODING="SM">
 <BIT-LENGTH>12</BIT-LENGTH>
 <BIT-MASK>0E07</BIT-MASK>
 </DIAG-CODED-TYPE>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 63

Within the message the parameter has a length of 12 bit, but the condensed bitmask restricts the length of the
signed integer value to actually 6 bit. Because it is encoded as SM (see ISO 22901-1 for details of encodings),
the implicit valid range is [-31, +31].

In the first example the explicit valid range is (-, +) and therefore the intersection between the explicit and
implicit valid ranges is [-31, +31].

Figure 39 shows the use of constraints: No explicit restrictions (no INTERNAL-CONSTR).

VALID

-5 -4 -3 -2 -1 0 54321 6 7

Figure 39 — Use of constraints: No explicit restrictions (no INTERNAL-CONSTR)

In the second example the internal constraint is limited by the lower limit value -3 and the upper limit value 5.
Both limits are defined with the interval type CLOSED.

<INTERNAL-CONSTR>
 <LOWER-LIMIT INTERVAL-TYPE = "CLOSED">-3</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "CLOSED">5</UPPER-LIMIT>
</INTERNAL-CONSTR>

The explicit valid range is [-3, +5] and, therefore, the intersection between the explicit and implicit valid ranges
is [-3, +5].

Figure 40 shows the use of constraints: One valid interval.

VALID

-5 -4 -3 -2 -1 0 54321 6 7

Figure 40 — Use of constraints: One valid interval

In the next example no limits for the internal constraint are defined but two inner scale constraints.

<INTERNAL-CONSTR>
 <SCALE-CONSTRS>
 <SCALE-CONSTR VALIDITY = "NOT-DEFINED">
 <LOWER-LIMIT INTERVAL-TYPE = "OPEN">4</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "CLOSED">5</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY = "NOT-VALID">
 <LOWER-LIMIT INTERVAL-TYPE = "OPEN">5</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "CLOSED">6</UPPER-LIMIT>
 </SCALE-CONSTR>
 </SCALE-CONSTRS>
</INTERNAL-CONSTR>

With no limits for the INTERNAL-CONSTR the explicit validity of the internal value is defined in the interval (-
, +). Within this outer interval the interval (4, 5] is declared via SCALE-CONSTRS as NON-DEFINED and
the interval (5, 6] is declared as NOT-VALID, which is illustrated in the following figure.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

64 © ISO 2012 – All rights reserved

The explicit valid ranges are (-, +4] and (+6, +), therefore, the intersections between the explicit and implicit
valid ranges are [-31, +4] and (+6, +31]. Because the internal type is an integer type, the second range is
equivalent to [+7, +31].

Figure 41 shows the use of constraints: No INTERNAL-CONSTR limits.

VALID

-5 -4 -3 -2 -1 0 54321 6 7

NOT-VALIDNOT-DEFINED

Figure 41 — Use of constraints: No INTERNAL-CONSTR limits

The next and the last example regarding internal constraints is defined by the following ODX data.

<INTERNAL-CONSTR>
 <LOWER-LIMIT INTERVAL-TYPE = "CLOSED">0</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "INFINITE"/>
 <SCALE-CONSTRS>
 <SCALE-CONSTR VALIDITY = "NOT-DEFINED">
 <LOWER-LIMIT INTERVAL-TYPE = "OPEN">4</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "CLOSED">5</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY = "NOT-AVAILABLE">
 <LOWER-LIMIT INTERVAL-TYPE = "OPEN">5</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE = "CLOSED">6</UPPER-LIMIT>
 </SCALE-CONSTR>
 </SCALE-CONSTRS>
</INTERNAL-CONSTR>

This ODX data defines the explicit validity of the internal value in the interval [0, +) by defining limits for the
INTERNAL-CONSTR. Within this outer interval the interval (4, 5] is declared via SCALE-CONSTRS as NON-
DEFINED and the interval (5, 6] is declared as NOT-AVAILABLE, which is illustrated in the following figure.

The explicit valid ranges are [0, +4] and (+6, +), therefore, the intersections between the explicit and implicit
valid ranges are [0, +4] and (+6, +31]. Because the internal type is an integer type, the second range is
equivalent to [+7, +31].

Figure 42 shows the use of constraints: Clipping.

VALID

-5 -4 -3 -2 -1 0 54321 6 7

NOT-VALIDNOT-DEFINED

Figure 42 — Use of constraints: Clipping

In a similar way, it is possible to specify constraints for the physical value if the physical type is a numerical
type. In this case, the implicit valid range is not restricted by the size or encoding of the internal data type but
by the physical data type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 65

General diagnostic server behaviour for CODED-CONST and PHYS-CONST Parameters:

As CODED-CONST and PHYS-CONST parameters are parameters like any other in ODX, these parameters
are also available at the diagnostic server API. That is, these parameters are contained in the collections
delivered by getRequestParameters() and getResponseParameters(). However, it is
impossible for a client application or job to change the value of a constant parameter.

TextTable

If one uses MCDTextTableElement::getInterval the lower and upper limit shall deliver the coded
values of the according text table elements in ODX.

Interval information for CODED-CONST and PHYS-CONST parameters:

CODED-CONST:
The diagnostic server generates an MCDInterval object where the return value of the methods
MCDInterval::getLowerLimit(), MCDInterval::getUpperLimit(), and
MCDDbParameter::getDefaultValue() is the same value, namely the physical value of this
constant parameter.

The methods MCDInterval::getLowerLimitIntervalType() and
MCDInterval::getUpperLimitIntervalType() both return
MCDLimitType::eLIMIT_CLOSED.

In cases of a CODED-CONST parameter, the methods MCDInterval::getLowerLimit() and
MCDInterval::getUpperLimit() both return the same coded value – the constant coded value.

PHYS-CONST:
In cases of a PHYS-CONST parameter, an MCDInterval object is returned which corresponds to the
information in the ODX data.

The method getCodedValue() always delivers an object of type MCDValue containing the coded value
of the MCDResponseParameter object. The types used to store a coded value in a MCDValue object are
the appropriate coded ODX types.

NRC-CONST
Parameters of type CODED-CONST or PHYS-CONST possess only one possible value and may appear at
both request and response parameters. In contrast to that, parameters of type NRC-CONST consist of a
collection of possible CODED-CONST values and may only appear at response parameters. Due to that,
parameters of type NRC-CONST behave differently from parameters of type CODED-CONST or
PHYS-CONST and throw the exception MCDProgramViolationException with error code
eRT_VALUE_NOT_AVAILABLE for the following methods:

 MCDDbParameter::getDefaultValue(),

 MCDDbParameter::getCodedDefaultValue(),

 MCDDbParameter::getInternalConstraint(),

 MCDDbParameter::getPhysicalConstraint().

Parameters of type NRC-CONST may only appear at response parameters of services. They may not appear
in response parameters of jobs.

Matching of result parameters can be done in one of the following ways:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

66 © ISO 2012 – All rights reserved

 MATCHING-REQUEST-PARAM (repetition of data from request),

 CODED-CONST (matching with fixed coded-value),

 NRC-CONST (matching with one of the fixed coded-values),

 PHYS-CONST (matching with fixed physical value).

NRC-CONST is used only in negative responses. All values have to be transmitted to the PDU API for each
execution and a high number of values can have a strong negative influence on the performance. It describes
a set of negative response codes as coded values. The response shall contain one of the given coded values
in the encoding defined by the DIAG-CODED-TYPE. It differs from a CODED-CONST only in that it describes
a set of values and shall not be used in a REQUEST or in a POS-RESPONSE. The values are used in
matching a negative response. For example one might define a VALUE parameter that uses a TEXTTABLE
COMPU-METHOD to map all possible negative response codes to descriptive texts. An additional NRC-
CONST parameter can make the NEG-RESPONSE match if one of a specific subset of these codes is
actually returned.

The NRC-CONST is located at the same PDU position as the VALUE parameter. As a VALUE parameter is
never used to match a RESPONSE, the parameter (and its associated TEXTTABLE) does not suffice to select
the response.

Behaviour of MCDResponseParameter::getCodedValue():

 When an MCDResponseParameter contains a valid coded value, a copy of the corresponding MCDValue
object containing the server-internal coded value is returned.

 When an MCDResponseParameter does not contain a valid coded value and therefore no coded type,
MCDResonseParameter::getCodedValue() returns an MCDValue object of type A_BITFIELD which is
initialized with the bits representing the corresponding parameter in the response PDU.

 When the parameter is of type CODED-CONST, the method getCodedValue() returns the constant coded
value as defined in ODX. For coded const parameters, this value is mandatory.

 When the parameter is of type PHYS-CONST, the method getCodedValue() returns an object of type
MCDValue which is initialised with the coded value calculated from the constant physical value.

 When the parameter is of type RESERVED, the method getCodedValue() returns the coded value as
extracted from the response PDU. If no coded value and therefore no coded type is defined in ODX,
getCodedValue() returns an MCDValue object of type A_BITFIELD which is initialized with the bits
representing the corresponding parameter in the response PDU. Any coded value defined for a reserved
response parameter in ODX is ignored.

 For complex parameters, the method getCodedValue() returns the same values as defined for the
method MCDParameter::getValue().

Behaviour of MCDRequestParameter::getCodedValue():

The method getCodedValue() always delivers an object of type MCDValue containing the coded value of
the MCDRequestParameter object. The types used to store a coded value in an MCDValue object are the
appropriate coded ODX types.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 67

 When an MCDRequestParameter contains a valid coded value (set via setValue() or
setCodedValue()), a copy of the corresponding server-internal coded value is returned in the form of
an MCDValue object.

 When setValue() or setCodedValue() have not been called before but a physical default value
is defined in ODX, an object of type MCDValue is returned which is initialised with the coded value
calculated from the physical default value.

 When the parameter is of type CODED-CONST, the method getCodedValue() returns the constant
coded value as defined in ODX. For coded const parameters, this value is mandatory.

 When the parameter is of type PHYS-CONST, the method getCodedValue() returns an object of
type MCDValue which is initialised with the coded value calculated from the constant physical value.

 When the parameter is of type RESERVED, the method getCodedValue() returns the coded value
as defined in ODX. If no coded value is defined in ODX, getCodedValue() returns a correctly typed
MCDValue object (coded ODX value type), which is initialized with the value which would be used by the
server when sending the request. This means that the server is not to alter the coded value after it has
been returned to a client via getCodedValue() once.

 When setValue() or setCodedValue() have not been called before and no physical default
value is defined in ODX, the method getCodedValue() returns a correctly typed MCDValue object
(coded ODX value type). The internal state of this MCDValue is “uninitialized” and its value is “undefined”.
That is, calling a getXXX()-Method at this MCDValue (where XXX represents the type of this MCDValue)
will result in an exception being thrown. The type of this exception is MCDProgramViolationException with
error code eRT_VALUE_NOT_INITIALIZED.

 For complex parameters, the method getCodedValue() returns the same values as defined for the
method MCDParameter::getValue().

Behaviour of MCDRequestParameter::setCodedValue():

If MCDRequestParameter::setCodedValue(MCDValue) is called, the coded value passed is used
to alter the server-internal PDU accordingly. Also the physical value of the affected parameter has to be
updated (backward conversion), if possible. If it is not possible to perform backwards conversion of the coded
value to a corresponding physical value (e.g. an appropriate conversion formula is missing), the range
information of that parameter is set to eVALUE_CODED_TO_PHYSICAL_FAILED. Thereafter, the physical
value of that request parameter with range information set to eVALUE_CODED_TO_PHYSICAL_FAILED is
considered invalid. However, it is still possible to read the coded value via
MCDRequestParameter::getCodedValue().

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

68 © ISO 2012 – All rights reserved

Behaviour of setting values for CODED-CONST and PHYS-CONST Parameters:

 Parameters of type CODED-CONST or PHYS-CONST cannot be changed by using the method
MCDRequestParameter::setValue(). So, calling method MCDRequestParameter::setValue() leads to an
MCDParameterizationException with error code ePAR_INVALID_VALUE.

 The same applies for the method MCDResponseParameter::setValue(), which can be called by a job to
fill the response parameter structure. When a job tries to overwrite a CONST value using this method, a
MCDParameterizationException with error code ePAR_INVALID_VALUE will be thrown.

 Responses returned by an ECU that do not match values for CONST values, similarly to wrong values for
other types of parameters in ODX, should be marked as erroneous. This is achieved by a flag which can
be queried by hasError() at various classes, e.g. MCDResult::hasError(),
MCDResponse::hasError(), and MCDResponseParameter::hasError(). The error code
in this case is eRT_VALUE_OUT_OF_RANGE.

Retrieval of all valid physical or internal intervals:

Usually, constraints and computational methods of a parameter defined in ODX should be consistent.
That means, for each value passing a constraint, there should be a suitable COMPU-METHOD that could be
used to compute a physical value from the coded one or vice versa. But this cannot be guaranteed.
Furthermore, a client can get the valid physical intervals of a parameter according to the physical constraints
before setting the value, but the value possibly does not pass the internal constraints or vice versa. Due
to the lack of access to the COMPU-METHODs a client cannot retrieve all necessary information in advance
needed to find out, whether a value is actually valid or not. Depending on the COMPU-METHOD, implicit and
explicit value ranges there might be zero, one or more intervals of valid values for one parameter. These
intervals can be retrieved by calling MCDDbParameter::getValidPhysicalIntervals or
MCDDbParameter::getValidInternalIntervals. The following example shows how the valid
internal and physical intervals are computed from a certain ODX parameter definition.

ODX Data

<DIAG-CODED-TYPE xsi:type=”STANDARD-LENGTH-TYPE” BASE-DATA-TYPE=”A_UINT32”>
 <BIT-LENGTH>12</BIT-LENGTH> --> value restricted to interval [0..4095]
</DIAG-CODED-TYPE>
<PHYSICAL-TYPE BASE-DATA-TYPE=”A_UINT32”/>
<COMPU-METHOD>
 <CATEGORY>SCALE-LINEAR</CATEGORY>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE> (1) --> phys = 2 + 2 x coded
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>0</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>100</UPPER-LIMIT>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR><V>2</V><V>2</V></COMPU-NUMERATOR>
 <COMPU-DENOMINATOR><V>1</V></COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 <COMPU-SCALE> (2) --> phys = 3 + 2 x coded
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>102</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>300</UPPER-LIMIT>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR><V>3</V><V>2</V></COMPU-NUMERATOR>
 <COMPU-DENOMINATOR><V>1</V></COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 <COMPU-SCALE> (3) --> phys = 4 + 2 x coded
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>1900</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>2020</UPPER-LIMIT>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 69

 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR><V>4</V><V>2</V></COMPU-NUMERATOR>
 <COMPU-DENOMINATOR><V>1</V></COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>
<INTERNAL-CONSTR>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>5000</UPPER-LIMIT>
 <SCALE-CONSTRS>
 <SCALE-CONSTR VALIDITY=”NOT-DEFINED”> (a)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>0</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>100</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”VALID”> (b)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>101</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>333</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”NOT-AVAILABLE”> (c)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>334</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>513</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”VALID”> (d)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>514</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>1000</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”NOT-VALID”> (e)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>1500</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>2000</UPPER-LIMIT>
 </SCALE-CONSTR>
 </SCALE-CONSTRS>
</INTERNAL-CONSTR>
<PHYS-CONSTR>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>5000</UPPER-LIMIT>
 <SCALE-CONSTRS>
 <SCALE-CONSTR VALIDITY=”NOT-DEFINED”> (A)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>200</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>250</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”VALID”> (B)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>251</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>500</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”NOT-AVAILABLE”> (C)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>501</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>550</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”VALID”> (D)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>551</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”CLOSED”>4020</UPPER-LIMIT>
 </SCALE-CONSTR>
 <SCALE-CONSTR VALIDITY=”NOT-VALID”> (E)
 <LOWER-LIMIT INTERVAL-TYPE=”CLOSED”>4021</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE=”INFINITE”/>
 </SCALE-CONSTR>
 </SCALE-CONSTRS>
</PHYS-CONSTR>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

70 © ISO 2012 – All rights reserved

Valid internal intervals:

A_UINT32 + BIT-LENGTH 12: [0..4095], no restrictions based on INTERNAL-CONSTR interval

[0..5000]

less not VALID SCALE-CONSTRs (a), (c), (e):

[101..333], [514..1499], [2001, 4095]

Intersection with available COMPU-SCALEs: (2): [102..300] und (3) [2001, 2020]

Calculated physical intervals:

[207, 603], [4006, 4044]

less not VALID SCALE-CONSTR (A), (C), (E):

Interval 1: [251..500]

Interval 2: [551..603]

Interval 3: [4006..4020]

8.2 System Properties

A global mechanism to handle system properties is provided by the methods getPropertyNames(),
getProperty(A_ASCIISTRING propertyName), setProperty(A_ASCIISTRING
propertyName, MCDValue value) and resetProperty(A_ASCIISTRING
propertyName) at the interface MCDSystem. The methods allow retrieval and modification of all system
properties defined within the diagnostic server. System properties are separated into mandatory and optional
properties.

Every vendor or OEM is free to define its own additional server properties. To avoid namespace conflicts, the
shortnames of these properties have to be prefixed according to Sun's rules for java package names, e.g.
starting with com.company.<PROPERTY_NAME>.

For all properties defined by a vendor or OEM, the following information shall be included in the corresponding
server documentation:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 71

 Name of the property,

 Type of the value,

 Valid values,

 Default value,

 Description,

 Mandatory/Optional,

 Precondition.

8.3 Diagnostic DiagComPrimitives and Services

8.3.1 Diagnostic DiagComPrimitives

8.3.1.1 DCP types and hierarchy

These are the types of DiagComPrimitives declared in the API:

MCDHexService performs a diagnostic hexservice (low level service)

MCDService performs a diagnostic service

MCDProtocolParameterSet provides the set of protocol parameters defined for the location

MCDStartCommunication performs protocol-specific initialisation

MCDStopCommunication performs protocol-specific termination

MCDVariantIdentification performs a variant identification

MCDVariantIdentification
AndSelection

performs a variant identification and selects the identified variant

MCDSingleEcuJob performs a job on a single ECU

MCDMultipleEcuJob performs a job on multiple ECUs

MCDFlashJob performs a Flash Job

MCDDynIdDefineComPrimitive Define the data structure for a dynamically defined identifier

MCDDynIdReadComPrimitive read the service, which used a dynamically defined identifier data
structure

MCDDynIdClearComPrimitive Delete the DynId and the assigned data structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

72 © ISO 2012 – All rights reserved

Figure 43 shows the hierarchy of inheritance of DiagComPrimitive.

<<D>>
MCDDiagComPrimitive

<<D>>
MCDJob

<<D>>
MCDDataPrimitive

<<D>>
MCDDiagService

<<D>>
MCDControlPrimitive

<<D>>
MCDService

<<D>>
MCDHexService

<<D>>
MCDDynIdRead

ComPrimitive

<<D>>
MCDDynIdClear

ComPrimitive

<<D>>
MCDDynIdDefine

ComPrimitive

<<D>>
MCDMultipleEcuJob

<<D>>
MCDSingleEcuJob

<<D>>
MCDFlashJob

<<D>>
MCDVariantIdentificationAndSelection

<<D>>
MCDVariantIdentification

<<D>>
MCDProtocolParameterSet

<<D>>
MCDStopCommunication

<<D>>
MCDStartCommunication

Figure 43 — Hierarchy of inheritance of DiagComPrimitive

The DiagComPrimitives are divided into two different types: DataPrimitives and ControlPrimitives.

ControlPrimitives perform state transitions, protocol settings or recognize the real ECU. They exist only once
per Logical Link. While execution of one of these ControlPrimitives the Logical Link Activity Queue has to be
empty and the Activity state has to be eACTIVITY_IDLE. They cannot be executed asynchronously.

DataPrimitives perform an action on the ECU. They are divided into those with PDU information, such as the
service, and those without PDU information, such as the jobs. All DataPrimitives can be (if the DataPrimitive
carries the IS-CYCLIC flag within the database) executed in cyclic mode and/or asynchronously. Only
DataPrimitivesWithPDU can be executed in repetition mode. That is why only DataPrimitive can resize the
ResultBuffer.

All communication primitives have the equivalent result structure as diagnostic services. Each noncyclic
DiagCom Primitive has exactly one result record per execution.

When a DiagComPrimitive, e.g. MCDDynIdDefineComPrimitive,
MCDDynIdReadComPrimitive, or MCDDynIdClearComPrimitive, is not available (either in the

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 73

MVCI diagnostic server or in the ODX database), an exception of type eDB_ELEMENT_NOT_AVAILABLE is
thrown.

List of MCDObjectTypes for which an object can be created by calling
MCDLogicalLink::createDiagComPrimitiveByType (only object types for which no additional
information is required during the creation, that is, no additional parameters):

 eMCDHEXSERVICE,

 eMCDPROTOCOLPARAMETERSET,

 eMCDSTARTCOMMUNICATION,

 eMCDSTOPCOMMUNICATION,

 eMCDVARIANTIDENTIFICATION,

 eMCDVARIANTIDENTIFICATIONANDSELECTION.

If the method calls for a different MCDObjectType than for the ones not in this list, an exception of type
ePAR_INVALID_OBJECTTYPE_FOR_DIAGCOMPRIMITIVE is thrown.

8.3.1.2 States of DiagComPrimitives

Each runtime DiagComPrimitive has two states, eIDLE and ePENDING. It is created within the state eIDLE
and may be deleted within this state only. Furthermore, within this state the parameterisation and the
evaluation of the results can be carried out. As soon as the objects has been started is takes the state
ePENDING and is executed by the MVCI diagnostic server. After this or after the execution has been stopped
by cancel() it returns to the state eIDLE.

Figure 44 shows the state diagram MCDDiagComPrimitive.

START

STOP

eIDLE ePENDING
executeSync or executeAsync

cancel

onPrimitiveTerminated

Figure 44 — State diagram MCDDiagComPrimitive

MCDService will be considered in more detail within the next section.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

74 © ISO 2012 – All rights reserved

8.3.2 Service overview

A diagnostic service will be executed by the Data Processor of the MVCI diagnostic server.

Table 6 defines a subdivision of the diagnostic services.

Table 6 — Types of diagnose services

RuntimeMode RepetitionMode Transmission Mode Kind of Execution

eNONCYCLIC eSINGLE eSEND_AND_RECEIVE Async and Sync

- - eSEND_ONLY Async and Sync

- - eRECEIVE_ONLY Async and Sync

- eREPEATED eSEND_AND_RECEIVE Async

- - eSEND_ONLY Async

- - eRECEIVE_ONLY Async

eCYCLIC eSINGLE eSEND_AND_RECEIVE Async

- - eSEND_ONLY Async

- - eRECEIVE_ONLY Async

 Reflection in

 Repetition State

Generally, Jobs are handled like Diag services.

The features of the services are polled by means of the RunTimeMode and the RepetitionMode of the
database template.

If the feature Repeated is reported, this service can be executed by means of startRepetition() within
the Repetition Mode or executeSync() or executeAsync() within the Single Mode. If the MVCI
diagnostic server does not support the RepetitionMode, the error message “Function not supported” is
returned to this function call.

If a service with the Repetition Mode Single is called by startRepetition(), an error message is
returned.

A non-cyclic diagnostic service returns exactly one result record. Non-cyclic services end with the returning of
the result or are terminated by a Timeout. Non-cyclic services may be started synchronously or
asynchronously. A non-cyclic diagnostic service (no Job !) may be executed in Repetition Mode (if supported
by the MVCI diagnostic server and permitted by the available data, start by means of the method
startRepetition()). Thus, after its execution (Event: onPrimitveHasResult), the non-cyclic
diagnostic service is automatically started anew by the server. The execution is repeated until the method
stopRepetition() is called. The time interval between two automatic executions of the non-cyclic
diagnostic service by the diagnostic server may be set by the Client (RepetitionTime). The Activity Queue of
the Logical Link is not bothered by the automatic starting of the non-cyclic diagnostic service by the diagnostic
server. However, a delay of the repeated execution may occur, if other methods within the Activity Queue are
executed.

Cyclic diagnostic services return complete result records within non-equidistant time intervals. The structure of
the independent result records is in accordance with the database template. Cyclic diagnostic services usually
end with the call of the method cancel() (onPrimitiveCanceledDuringExecution) or after an
internal Timeout (onPrimitiveTerminated). Cyclic diagnostic services may be started asynchronously
only.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 75

Diagnostic services which are started by executeSync(), deliver the Result State as return value and no
Event onPrimitiveTerminated, while diagnostic services which are executed by executeAsync() get
the Event onPrimitiveTerminated and evaluate the Result State by means of this event.

The Service is derived from DiagComPrimitive (via DataPrimitive and DiagService) and thus also has the two
states eIDLE and ePENDING, which are used in the same way. Additionally there are the two states
eNOT_REPEATING and eREPEATING. Within the state eNOT_REPEATING the Service may be
parameterised for the execution within the repeated mode. As soon as the Service starts its execution by
startRepetition(), it takes the state eREPEATING. Within the state eREPEATING it also may
change between eIDLE and ePENDING, if for example its RequestParameter are set anew. It may be
parameterised anew but not start a new execution. After finishing the execution within repeated mode by
stopRepetition(), the Service returns to the state eNOT_REPEATED and eIDLE.

Figure 45 shows the state diagrams MCDService.

eIDLE

eNOT_REPEATING

ePENDING

eREPEATING
startRepetition

stopRepetition

executeSync
executeAsync

cancel

onPrimitiveTerminated

Figure 45 — State diagrams MCDService

NOTE The instruction queue shown in the following pictures is represented by Activity state.

The handling of pending responses should always be performed below the diagnostic server because
otherwise the diagnostic server would need to interpret responses. As a result the diagnostic server and/or the
client would need to implement protocol interpreters. The protocol drivers used with a diagnostic server shall
not be allowed to switch off the response pending handling.

Table 7 defines the SingleShot diagnostic services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

76 © ISO 2012 – All rights reserved

Table 7 — SingleShot diagnostic services

EM a

T
er

m
in

at
io

n
 (

T
)

AM b

In
te

rm
ed

ia
te

R

es
u

lt
 (

IR
)

Termination Events

S
yn

ch
ro

n
o

u
s

A
sy

n
ch

ro
n

o
u

s

P
h

ys
ic

al

F
u

n
ct

io
n

al

SPR = Single-Part Response MPR = Multi-Part Response

X Response
or Timeout
or VCL

X

ca
nn

ot
 o

cc
ur

1 MCDResult (to caller)

In cases of VCL the empty result
contains the error
eCOM_LOST_COMM_TO_VCI

Not allowed

X Timeout or
VCL

 X

ca
nn

ot
 o

cc
ur

1 MCDResult (to caller) with <= m
MCDResponses

Not allowed

 X Response
(only if not
multi-part)
or Timeout
or VCL

X

ca
nn

ot
 o

cc
ur

1 MCDResult with 1 MCDResponse

1 x onPrimitiveTerminated

1 MCDResult with p MCDResponses

1 x onPrimitiveTerminated

 X Cancel X

ca
nn

ot
 o

cc
ur

 No MCDResult

1 x onPrimitiveCanceledDuring-
Execution
or
1 x
onPrimitiveCanceledFromQueue

No MCDResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

 X Timeout
or VCL

 X

ca
nn

ot
 o

cc
ur

1 MCDResult with <= m
MCDResponses

1 x onPrimitiveTerminated

1 MCDResult with <= (p *m)
MCDResponses

1 x onPrimitiveTerminated

 X Cancel X

ca
nn

ot
 o

cc
ur

 No MCDResult

1 x onPrimitiveCanceledDuring-
Execution
or
1 x
onPrimitiveCanceledFromQueue

No MCDResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

a Execution Mode

b Addressing Mode

m number of ECUs in functional group

p number of available multi-part responses per ECU

n number of execution cycles during cyclic or repeated execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 77

Table 8 defines the cyclic diagnostic services.

Table 8 — Cyclic diagnostic services

EM a
T

er
m

in
at

io
n

 (
T

)
AM b

In
te

rm
ed

ia
te

R

es
u

lt
 (

IR
)

Termination Events

S
yn

ch
ro

n
o

u
s

A
sy

n
ch

ro
n

o
u

s

P
h

ys
ic

al

F
u

n
ct

io
n

al

SPR = Single-Part Response MPR = Multi-Part Response

 X Cancel

P
hy

si
ca

l

ca

nn
ot

 o
cc

ur
 n MCDResults with 1 MCDResponse

each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution

n MCDResults with p MCDResponses
each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution

 X Timeout/
BusError
or VCL

P
hy

si
ca

l

ca
nn

ot
 o

cc
ur

n MCDResults with 1 MCDResponse
each

n x onPrimitiveHasResult

1 x onPrimitiveTerminated

n MCDResults with p MCDResponses
each

n x onPrimitiveHasResult

1 x onPrimitiveTerminated

 X Cancel

F
un

ct
io

n
al

ca
nn

ot
 o

cc
ur

 n MCDResults with <= m
MCDResponses each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution

n MCDResults with <= (p * m)
MCDResponses each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution

 X Timeout/
BusError
or VCL

F
un

ct
io

n
al

ca
nn

ot
 o

cc
ur

n MCDResults with <= m
MCDResponses each

n x onPrimitiveHasResult

1 x onPrimitiveTerminated

n MCDResults with <= (p * m)
MCDResponses each

n x onPrimitiveHasResult

1 x onPrimitiveTerminated

a Execution Mode

b Addressing Mode

m number of ECUs in functional group

p number of available multi-part responses per ECU

n number of execution cycles during cyclic or repeated execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

78 © ISO 2012 – All rights reserved

Table 9 defines the Repeated diagnostic services.

Table 9 — Repeated diagnostic services

EM a

T
er

m
in

at
io

n
 (

T
)

AM b

In
te

rm
ed

ia
te

R

es
u

lt
 (

IR
)

Termination Events

S
yn

ch
ro

n
o

u
s

A
sy

n
ch

ro
n

o
u

s

P
h

ys
ic

al

F
u

n
ct

io
n

al

SPR = Single-Part Response MPR = Multi-Part Response

 X

S
to

p-

R
ep

et
iti

on
 X

ca
nn

ot
 o

cc
ur

 n MCDResults with 1 MCDResponse
each

n x onPrimitiveHasResult

1 x onPrimitiveRepetitionStopped

n MCDResults with p MCDResponses
each

n x onPrimitiveHasResult

1 x onPrimitiveRepetitionStopped

 X

S
to

p-

R
ep

et
iti

on
 X

ca
nn

ot
 o

cc
ur

 n MCDResults with <= m
MCDResponses each

n x onPrimitiveHasResult

1 x onPrimitiveRepetitionStopped

n MCDResults with <= (p * m)
MCDResponses each

n x onPrimitiveHasResult

1 x onPrimitiveRepetitionStopped

 X

C
an

ce
l

X

ca
nn

ot
 o

cc
ur

n MCDResults with 1 MCDResponse
each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

n MCDResults with p MCDResponses
each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

 X

C
an

ce
l

 X

ca
nn

ot
 o

cc
ur

n MCDResults with <= m
MCDResponses each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

n MCDResults with <= (p * m)
MCDResponses each

n x onPrimitiveHasResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

a Execution Mode

b Addressing Mode

m number of ECUs in functional group

p number of available multi-part responses per ECU

n number of execution cycles during cyclic or repeated execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 79

Table 10 defines the Java-Job services.

Table 10 — Java-Job services

EM a
T

er
m

in
at

io
n

 (
T

)
AM b

In
te

rm
ed

ia
te

R

es
u

lt
 (

IR
)

Termination Events

S
yn

ch
ro

n
o

u
s

A
sy

n
ch

ro
n

o
u

s

P
h

ys
ic

al

F
u

n
ct

io
n

al

SPR = Single-Part Response MPR = Multi-Part Response

X

R
es

po
ns

e
or

T

im
eo

ut
 X

ca
n

oc
cu

r 1 MCDResult (to caller)

x Intermediate results

x onPrimitiveHasIntermediateResult

Not allowed

 X

R
es

po
ns

e
(o

nl
y

if
no

t m
ul

ti-
pa

rt
)

or
 T

im
eo

ut
 X

ca
n

oc
cu

r

1 MCDResult

x Intermediate results

x onPrimitiveHasIntermediateResult

1 x on PrimitiveTerminated

Not allowed

 X

C
an

ce
l

X

ca
n

oc
cu

r

No MCDResult

x Intermediate results

x onPrimitiveHasIntermediateResult

1 x
onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

Not allowed

X X Not allowed Not allowed

 X X Not allowed Not allowed

a Execution Mode

b Addressing Mode

m number of ECUs in functional group

p number of available multi-part responses per ECU

n number of execution cycles during cyclic or repeated execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

80 © ISO 2012 – All rights reserved

Table 11 defines the Repeated Java-Job services.

Table 11 — Repeated Java-Job services

EM a

T
er

m
in

at
io

n
 (

T
)

AM b

In
te

rm
ed

ia
te

R

es
u

lt
 (

IR
)

Termination Events

S
yn

ch
ro

n
o

u
s

A
sy

n
ch

ro
n

o
u

s

P
h

ys
ic

al

F
u

n
ct

io
n

al

SPR = Single-Part Response MPR = Multi-Part Response

 X

S
to

p-

R
ep

et
iti

on

X

ca
n

oc
cu

r

x Intermediate results

x onPrimitiveHasIntermediateResult

n MCDResults with 1 MCDResponse each

n x onPrimitiveHasResult

1 x onPrimitiveRepetitionStopped

Not allowed

 X

C
an

ce
l

X

ca
n

oc
cu

r

x Intermediate results

x onPrimitiveHasIntermediateResult

n MCDResults with 1 MCDResponse each

n x onPrimitiveHasResult

1 x onPrimitiveCanceledDuringExecution
or
1 x onPrimitiveCanceledFromQueue

Not allowed

 X X Not allowed Not allowed

a Execution Mode

b Addressing Mode

m number of ECUs in functional group

p number of available multi-part responses per ECU

n number of execution cycles during cyclic or repeated execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 81

Figure 46 shows the principle result handling in cases of physical/functional services for Single and Multi Part
Responses. Please note that in cases of Multi part Responses the Responses Collection in the Result Object
can contain more than 1 Response for each ECU.

...
.

Collection: MCDResponses

MCD
Response

MCD
Result

For every result
exists an own
result object.

MCDResult

For every ECU exists
one response.

MCDResponse

Physical

GNR

DbGlobalNegative
Response

GNR

DbGlobalNegative
Response

LNR

DbLocalNegative
Response

PR

DbPositive
Response

...
.

RT DB

For every result
exists an own
result object.

MCDResult

For every ECU exists
one response.

MCDResponse

Functional

GNR

DbGlobalNegative
Response

GNR

DbGlobalNegative
Response

LNR

DbLocalNegative
Response

PR

DbPositive
Response

...
.

RT DB

MCD
Response

MCD
Result

MCD
Response

MCD
Response

PR

DbPositive
Response

a) SPR in case of physical services

c) MPR in case of physical services d) MPR in case of functional services

b) SPR in case of functional services

...
.PR

DbPositive
Response

RT

RT

MCD
Result

...
.

MCD
Response

MCD
Response

MCD
Response

MCD
Result

...
.

MCD
Response

MCD
Response

MCD
Response

MCD
Response

MCD
Response

MCD
Response

MCD
Response

MCD
Response

...
.

Figure 46 — Principle result handling in cases of physical and functional services for SPR and MPR

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

82 © ISO 2012 – All rights reserved

8.3.3 Non-cyclic single diagnostic service

Figure 47 shows the non -yclic single diagnostic service (asynchronous executed outside jobs).

Client Application

MCDLogicalLink

ECU

executeAsync()
executeSync() MCDResult

Queue MCDEventHandler::
onPrimitiveTerminated()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

DiagComPrimitive State eIDLE ePENDING ePENDINGePENDING eIDLEeIDLE eIDLE

Repetition State eNOT_REPEATING

Figure 47 — Non-cyclic single diagnostic service (asynchronous executed outside jobs)

IMPORTANT — After sending the request it is possible to start other services from the queue to the
ECU. This is dependent on the used protocol, which means it is not necessary to wait until the
response is available.

Figure 48 shows the non-cyclic single diagnostic service (synchronous executed outside jobs).

Client Application

MCDLogicalLink

ECU

executeSync() Queue

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

DiagComPrimitive State eIDLE ePENDING eIDLE

Repetition State eNOT_REPEATING

MCDResult

Figure 48 — Non-cyclic single diagnostic service (synchronous executed outside jobs)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 83

Sample: normal diagnostic service as specified in ISO 14230-3 KWP 2000 (e.g. ReadDTC)

DiagComPrimitive method description:

executeSync() synchronous start of DiagComPrimitive execution

executeAsync() asynchronous start of DiagComPrimitive execution

cancel() quit DiagComPrimitive execution as fast as possible or remove it from
execution activity queue

States:

The repetition state of the DiagComPrimitive execution is eNOT_REPEATING.

The DiagComPrimitive state changes from eIDLE (initially; state before starting DiagComPrimitive execution)
to ePENDING (state while execution) back to eIDLE (state after execution). The states of the
DiagComPrimitive are set by the MVCI diagnostic server.

Results:

There can be only 0 or 1 result. There cannot be intermediate results. The result is the return value of the
synchronous execution. The result state can be requested from the Service itself.

Functional addressing delivers also only one complete result.

Figure 49 shows the non-cyclic single diagnostic service or job (executed inside jobs).

Job

MCDLogicalLink

ECU

executeSync() Queue

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

DiagComPrimitive State eIDLE ePENDING eIDLE

Repetition State eNOT_REPEATING

MCDResult

Figure 49 — Non-cyclic single diagnostic service or job (executed inside jobs)

Remark:

Inside a job only non-cyclic single diag services and jobs can be executed and these shall be started
synchronously.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

84 © ISO 2012 – All rights reserved

Results:

There can be only 0 or 1 result. There cannot be intermediate results.

The result is the return value of the synchronous execution. The result state can be requested from the
Service itself.

Functional addressing delivers also only one complete result.

The results of this service will be evaluated inside the job (see 8.19).

8.3.4 Cyclic diagnostic service

Figure 50 shows the Cyclic diagnoctic services.

eNOT_REP = eNOT_REPEATING; ePEND = ePENDING

cancel()executeAsync()

Client Application

MCDLogicalLink

ECU

DiagComPrimitive State eIDLE

eNOT_REPEATING

ePENDING eIDLE

Repetition State

MCDEventHandler::
onPrimitiveCanceledDuringExecution()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

MCDEventHandler::
onPrimitiveHasResult()

Figure 50 — Cyclic diagnostic services

Sample: ISO 14230-3 KWP 2000 periodic transmission

DiagComPrimitive method description:

executeAsync() asynchronous start of DiagComPrimitive execution

cancel() quit DiagComPrimitive execution as fast as possible or remove it from
execution queue

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 85

States:

The repetition state of the DiagComPrimitive execution is eNOT_REPEATING.

The DiagComPrimitive state changes from eIDLE (initially; state before starting DiagComPrimitive execution)
to ePENDING (state while execution) back to eIDLE (state after execution). The states of the
DiagComPrimitive are set by the MVCI diagnostic server. While ePENDING several results can be reported via
event and requested from ring buffer. The execution will normally be terminated by cancel(). But a termination
with TimeOut or BusError is also possible and is not in all use cases an indication of errors (e.g. in ECU a loop
with 100 data registrations). In this case a onPrimitiveTerminated event will be sent.

Results:

There can be several (zero or more) results, stored in the ring buffer. For every result there is an event sent to
the Client Application. The results do not have to occur in equidistant time intervals.

There cannot be intermediate results. The execution state, the number of results or the result(s) can
be requested after getting one of the events onPrimitiveHasResult or
onPrimitiveCanceledDuringExecution.

8.3.5 Repeated diag service

Figure 51 shows the Repeated diagnostic service.

eNOT_REP = eNOT_REPEATING; ePEND = ePENDING

stopRepetition()

startRepetition()

updateRepetitionParameter()

Client Application

MCDLogicalLink

ECU

DiagComPrimitive State eIDLE eIDLE

eNOT_REP

ePEND

eREPEATING eNOT_REPRepetition State

MCDEventHandler::
onPrimitiveRepetitionStopped()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

Life time of repeated service

MCDEventHandler::
onPrimitiveHasResult()

eIDLE

Figure 51 — Repeated diagnostic service

Description: Repeated execution of a NON-CYCLIC DIAG SERVICE

The time between two repeated executions will be set by the client application and is not stored in database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

86 © ISO 2012 – All rights reserved

DiagComPrimitive method description:

startRepetition() start of DiagComPrimitive execution, after passing the
queue, the service will live in a loop and start action (not
through the queue)

stopRepetition() quit DiagComPrimitive execution

cancel() quit DiagComPrimitive execution as fast as possible

updateRepetitionParameter () in the state eIDLE the service parameter can be changed;
this method does not go through the queue

States:

The repetition state changes from eNOT_REPEATING (before startRepetition()) to eREPEATING
(after startRepetition() and back to eNOT_REPEATING (after stopRepetition() or cancel()).

The DiagComPrimitive state changes from eIDLE to ePENDING is made every time the Client Application
starts a method that goes through the queue until end of this method (e.g. startRepetition()), not for
repeated execution, updateRepetionParameters and stopRepition.

Results:

There can be one or more results, stored in the ring buffer. There cannot be intermediate results. The
execution state, the number of results or the result(s) can be requested after getting one of the events
onPrimitiveHasResult or onPrimitiveRepetitionStopped.

8.3.6 Repeated send only diag service

Figure 52 shows the Repeated send only diagnostic service.

eNOT_REP = eNOT_REPEATING; ePEND = ePENDING

stopRepetition()startRepetition()

Client Application

MCDLogicalLink

ECU

DiagComPrimitive State eIDLE eIDLE

eNOT_REP

ePEND

eREPEATING eNOT_REPRepetition State

MCDEventHandler::
onPrimitiveRepetitionStopped()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

Life time of repeated service

eIDLE

Figure 52 — Repeated send only diagnostic service

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 87

Sample: 1. send single CAN frames (ISO 14229-3 UDSonCAN unacknowledged unsegmented data
transfer)

 2. RestBus Simulation

Description: Special case of Repeated Diagnostic Service

Results: There are no results.

8.3.7 Repeated receive only diag service

Figure 53 shows the Repeated receive only diagnostic service.

eNOT_REP = eNOT_REPEATING; ePEND = ePENDING

stopRepetition()startRepetition()

Client Application

MCDLogicalLink

ECU

DiagComPrimitive State eIDLE eIDLE

eNOT_REP

ePEND

eREPEATING eNOT_REPRepetition State

MCDEventHandler::
onPrimitiveRepetitionStopped()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

Life time of repeated service

MCDEventHandler::
onPrimitiveHasResult()

eIDLE

Figure 53 — Repeated receive only diagnostic service

Sample: 1. ISO 15765 receive single CAN frames

 2. ISO 14229:2012 ResponseOnEvent

Description: Special case of Repeated Diag Service

Results:

There can be one or more results, stored in the ring buffer. There cannot be intermediate results. The
execution state, the number of results or the result(s) can be requested after getting one of the events
onPrimitiveHasResult or onPrimitiveRepetitionStopped.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

88 © ISO 2012 – All rights reserved

8.3.8 Summary

Table 12 shows the overview about methods and events.

Table 12 — Overview about methods and events

ServiceType Start method Stop method Event

NonCyclicDiagService executeSync

executeAsync

onPrimitiveTerminated

CyclicDiagService executeAsync

cancel

onPrimitiveCanceldDuringExecution

RepeatedDiagService startRepetition

stopRepetition

onPrimitiveRepetitionStopped

Table 13 defines the events in cases of single or repeated execution of DiagService and Jobs.

Table 13 — Events in cases of single or repeated execution of DiagService and Jobs

 Single Repeated

DiagService onPrimitiveTerminated onPrimitiveHasResult

 onPrimitiveRepetitionStopped

Job onPrimitiveHasIntermediateResult 2 onPrimitiveHasIntermediateResult 2

 onPrimitiveTerminated 1 onPrimitiveHasResult 1

 onPrimitiveRepetitionStopped

The Job API’s sendFinalResult 1 raises an event of type onPrimitiveTerminated in cases of
non-repeated execution and raises onPrimitiveHasResult in cases of repeated execution. The Job
API’s sendIntermediateResult 2 raises an event of type
onPrimitiveHasIntermediateResult independent from case of single or repeated execution.

8.3.9 Protocol parameters

8.3.9.1 General

For a diagnostic server to exchange data with an ECU, it needs to be able to correctly set up the
communications link to be used, e.g. regarding baud rate, protocol timings, tester present behaviour and so
on. To be able to handle these kinds of settings in a protocol-independent manner, the concept of protocol
parameters (also called communication parameters in this part of ISO 22900) has been introduced. Protocol
parameters are used to define all settings that are relevant for diagnostic communication, and described by
specific elements within an ODX data set. The diagnostic server is agnostic concerning the contents of
protocol parameters, and usually passes them on to its protocol layer implementation (e.g. a D-PDU API
layer), which contains the according logic to understand and correctly use protocol parameter semantics. This
section describes how protocol parameters are represented at the MVCI diagnostic server API, and how client
applications can modify and use protocol parameters to configure a communication link’s behaviour.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 89

8.3.9.2 Introduction related to ISO 22901-1 ODX

Figure 54 shows the PROT-STACKS and its COMPARAM-SUBSETs.

PROT-STACK
PROT-STACK

COMPARAM-SPEC

PROT-STACK COMPARAM-SUBSET
transport layer

COMPARAM-SUBSET
physical layer

COMPARAM-SUBSET
application layer

Figure 54 — PROT-STACKS and its COMPARAM-SUBSETs

Protocol parameters are defined within an ODX part called a PROT-STACK. Within a PROT-STACK,
communication parameters are grouped into different COMPARAM-SUBSETs, usually with respect to the OSI
layer they belong to (e.g. physical-, transport- or protocol-layer). At the MVCI diagnostic server API,
communication parameters are not distinguished according to the different COMPARAM-SUBSET/OSI layers
they belong to; rather, a superset of all available communication parameters (within the active PROT-STACK)
will be delivered to the client application. Exactly one PROT-STACK is used during runtime and defines the
active communication parameter set for a communication link. The communication parameter values defined
within the PROT-STACK (default values) can be redefined at different contexts like diagnostic layers (DIAG-
LAYER), diagnostic service (DIAG-SERVICE), logical link and physical vehicle link. There are dependencies
between the different redefinition contexts. For example, the redefinition of a communication parameter at
PROTOCOL level is also applied in all the more specialized DIAG-LAYERS (e.g. BASE-VARIANT) using this
PROTOCOL. A complete description of redefinition of communication parameters can be found in
ISO 22901-1. In general, two types of communication parameter exist in ODX: The simple COMPARAM
holding a single value of a simple data type and the COMPLEX-COMPARAM, which contains a complex
structure of values. The following list shows the general mapping between communication parameter types
defined in ODX and types of MCDDbProtocolParameters.

 A COMPLEX-COMPARAM with ALLOW-MULTIPLE-VALUES set to 'true' results in a protocol parameter
with datatype eSTRUCT_FIELD containing an arbitrary number of COMPLEX-COMPARAMs. The
shortnames of the inner structure elements are generated by the diagnostic server according to the
following pattern: #RtGen_<NameOfComplexComParam>_<unique_number>.

 A COMPLEX-COMPARAM with ALLOW-MULTIPLE-VALUES set to 'false' results in a protocol parameter
with datatype eSTRUCTURE containing an arbitrary number of simple COMPARAMs or COMPLEX-
COMPARAMs.

 A simple COMPARAM results in a protocol parameter with parameter type eVALUE. The datatype of
such a protocol parameter is defined by the DOP of this parameter in ODX.

In cases of a COMPLEX-COMPARAM with ALLOW-MULTIPLE-VALUES set to true (mapped to
eSTRUCT_FIELD), the COMPLEX-COMPARAM value can be redefined by multiple-value structures within
one context, which results in multiple-field items.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

90 © ISO 2012 – All rights reserved

Such a COMPLEX-COMPARAM cannot be redefined partially, i.e. it is not possible to overwrite only parts of a
COMPLEX-COMPARAM that is inherited from a higher layer. A redefinition will always substitute the entire
COMPLEX-COMPARAM, regardless of whether the new definition contains less data than the overridden one.
For example, consider the COMPLEX-COMPARAM CP_SessionTimingOverride, which contains an array of
structures containing session timing data, one structure for each defined session. If this parameter is
redefined in a DIAG-LAYER (overriding a definition that, for example, contains timing data for sessions A and
B), the new definition again has to provide array entries for all sessions where a timing override should be
applied at runtime. If CP_SessionTimingOverride is redefined for session A but not for session B, no timing
override is applied at runtime for session B.

In contrast to COMPLEX-COMPARAMs with ALLOW-MULTIPLE-VALUES set to false, the order of sub-
parameters (field items) of a COMPLEX-COMPARAM with ALLOW-MULTIPLE-VALUES set to true does not
carry any information. Therefore, a diagnostic server does not have to guarantee the same sequence for such
field items as defined in ODX. Redefinition of communication parameter values is done by the ODX element
COMPARAM-REF with an attached value definition. Only a COMPLEX-COMPARAM with ALLOW-
MULTIPLE-VALUES set to true might be referenced by a COMPARAM-REF without a value definition to reset
the communication parameter value to an empty field.

At the diagnostic server API, communication parameters are represented by MCDDbRequestParameter
or MCDRequestParameter objects. In the following, the MCDDbRequestParameter and
MCDRequestParameter objects are both called ProtocolParameters if there is no need to distinguish
between both types.

NOTE The MCDRequestParameters of an MCDProtocolParameterSet control primitive represents
the protocol parameters of the Logical Link.

As an example, the protocol parameter structure at the diagnostic server API level for the complex protocol
parameter CP_SessionTimingOverride is illustrated in the figure below, followed by the appropriate protocol
parameter data set in ODX.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 91

Figure 55 shows the complex Comparam CP_SessionTimingOverride at MVCI diagnostic server level.

MCDDbRequestParameters
or

MCDRequestParameters

ShortName: #RtGen_CP_SessionTimingOverride_0
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: CP_SessionNumber
DataType: eA_UINT32
Value: 1212
ParameterType: eVALUE

ShortName: CP_P2Max_High
DataType: eA_UINT32
Value: 11
ParameterType: eVALUE

ShortName:
DataType: eSTRUCTURE

#RtGen_CP_SessionTimingOverride_1

ParameterType: eGENERATED

ShortName:
DataType: eA_UINT

CP_SessionNumber
32

Value: 2323
ParameterType: eVALUE

ShortName: C
DataType:

P_P2Max_High
eA_UINT32

Value: 13
ParameterType: eVALUE

ShortName: CP_
DataType: eA_UINT

P2Max_Low
32

Value: 2
ParameterType: eVALUE

ShortName:
DataType:
Value: 4

CP_P2Star_High
eA_UINT32

ParameterType: eVALUE

ShortName: CP_
DataType:
Value: 2

P2Star_Low
eA_UINT32

ParameterType: eVALUE

ShortName:
DataType: eA_UINT

CP_P2Max_Low
32

Value: 1
ParameterType: eVALUE

ShortName:
DataType:

CP_P2Star_High
eA_UINT32

Value: 5
ParameterType: eVALUE

ShortName:
DataType:

CP_P2Star_Low
eA_UINT32

Value: 3
ParameterType: eVALUE

ShortName:
DataType: eSTRUCT_FIELD

CP_SessionTimingOverride

ParameterType: eGENERATED

Figure 55 — Complex Comparam CP_SessionTimingOverride at MVCI diagnostic server level

<COMPARAM-REFS>
 <COMPARAM-REF ID-REF="ISO_15765_3.CP_SessionTimingOverride">
 <COMPLEX-VALUE>
 <SIMPLE-VALUE>1212</SIMPLE-VALUE>
 <SIMPLE-VALUE>11</SIMPLE-VALUE>
 <SIMPLE-VALUE>2</SIMPLE-VALUE>
 <SIMPLE-VALUE>4</SIMPLE-VALUE>
 <SIMPLE-VALUE>2</SIMPLE-VALUE>
 </COMPLEX-VALUE>
 </COMPARAM-REF>
 <COMPARAM-REF ID-REF="ISO_15765_3.CP_SessionTimingOverride">
 <COMPLEX-VALUE>
 <SIMPLE-VALUE>2323</SIMPLE-VALUE>
 <SIMPLE-VALUE>13</SIMPLE-VALUE>
 <SIMPLE-VALUE>1</SIMPLE-VALUE>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

92 © ISO 2012 – All rights reserved

 <SIMPLE-VALUE>5</SIMPLE-VALUE>
 <SIMPLE-VALUE>3</SIMPLE-VALUE>
 </COMPLEX-VALUE>
 </COMPARAM-REF>
</COMPARAM-REFS>

The ODX definition of the complex protocol parameter CP_SessionTimingOverride used by the example
above looks as follows:

<COMPLEX-COMPARAM ID="ISO_15765_3.CP_SessionTimingOverride" CPTYPE="OPTIONAL"
CPUSAGE="TESTER" PARAM-CLASS="TIMING" ALLOW-MULTIPLE-VALUES="true">
 <SHORT-NAME>CP_SessionTimingOverride</SHORT-NAME>
 <COMPARAM ID="ISO_15765_3.CP_SessionNumber" CPTYPE="OPTIONAL"
CPUSAGE="TESTER" PARAM-CLASS="TIMING">
 <SHORT-NAME>CP_SessionNumber</SHORT-NAME>
 <PHYSICAL-DEFAULT-VALUE>0</PHYSICAL-DEFAULT-VALUE>
 <DATA-OBJECT-PROP-REF ID-REF="ISO_15765_3.DOP_IDENTICAL_16Bit"/>
 </COMPARAM>
 <COMPARAM ID="ISO_15765_3.CP_P2Max_High" CPTYPE="OPTIONAL" CPUSAGE="TESTER"
PARAM-CLASS="TIMING">
 <SHORT-NAME>CP_P2Max_High</SHORT-NAME>
 <PHYSICAL-DEFAULT-VALUE>0</PHYSICAL-DEFAULT-VALUE>
 <DATA-OBJECT-PROP-REF ID-REF="ISO_15765_3.DOP_IDENTICAL_8Bit_1ms"/>
 </COMPARAM>
 <COMPARAM ID="ISO_15765_3.CP_P2Max_Low" CPTYPE="OPTIONAL" CPUSAGE="TESTER"
PARAM-CLASS="TIMING">
 <SHORT-NAME>CP_P2Max_Low</SHORT-NAME>
 <PHYSICAL-DEFAULT-VALUE>0</PHYSICAL-DEFAULT-VALUE>
 <DATA-OBJECT-PROP-REF ID-REF="ISO_15765_3.DOP_IDENTICAL_8Bit_1ms"/>
 </COMPARAM>
 <COMPARAM ID="ISO_15765_3.CP_P2Star_High" CPTYPE="OPTIONAL" CPUSAGE="TESTER"
PARAM-CLASS="TIMING">
 <SHORT-NAME>CP_P2Star_High</SHORT-NAME>
 <PHYSICAL-DEFAULT-VALUE>0</PHYSICAL-DEFAULT-VALUE>
 <DATA-OBJECT-PROP-REF ID-
REF="ISO_15765_3.DOP_LINEAR_8Bit_Resolution_10ms"/>
 </COMPARAM>
 <COMPARAM ID="ISO_15765_3.CP_P2Star_Low" CPTYPE="OPTIONAL" CPUSAGE="TESTER"
PARAM-CLASS="TIMING">
 <SHORT-NAME>CP_P2Star_Low</SHORT-NAME>
 <PHYSICAL-DEFAULT-VALUE>0</PHYSICAL-DEFAULT-VALUE>
 <DATA-OBJECT-PROP-REF ID-
REF="ISO_15765_3.DOP_LINEAR_8Bit_Resolution_10ms"/>
 </COMPARAM>
 <COMPLEX-PHYSICAL-DEFAULT-VALUE></COMPLEX-PHYSICAL-DEFAULT-VALUE>
</COMPLEX-COMPARAM>
…..
<DATA-OBJECT-PROP ID="ISO_15765_3.DOP_IDENTICAL_8Bit_1ms">
 <SHORT-NAME>DOP_IDENTICAL_8Bit_1ms</SHORT-NAME>
 <LONG-NAME>DOP_IDENTICAL_8Bit_1ms</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>IDENTICAL</CATEGORY>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_UINT32" xsi:type="STANDARD-LENGTH-TYPE">
 <BIT-LENGTH>8</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
 <UNIT-REF ID-REF="ISO_15765_3.ms"/>
</DATA-OBJECT-PROP>
<DATA-OBJECT-PROP ID="ISO_15765_3.DOP_LINEAR_8Bit_Resolution_10ms">

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 93

 <SHORT-NAME>DOP_LINEAR_8Bit_Resolution_10ms</SHORT-NAME>
 <LONG-NAME>DOP_LINEAR_8Bit_Resolution_10ms</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>LINEAR</CATEGORY>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR>
 <V>0</V>
 <V>10</V>
 </COMPU-NUMERATOR>
 <COMPU-DENOMINATOR>
 <V>1</V>
 </COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-INTERNAL-TO-PHYS>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_UINT32" xsi:type="STANDARD-LENGTH-TYPE">
 <BIT-LENGTH>8</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
 <UNIT-REF ID-REF="ISO_15765_3.ms"/>
</DATA-OBJECT-PROP>
<DATA-OBJECT-PROP ID="ISO_15765_3.DOP_IDENTICAL_16Bit">
 <SHORT-NAME>DOP_IDENTICAL_16Bit</SHORT-NAME>
 <LONG-NAME>DOP_IDENTICAL_16Bit</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>IDENTICAL</CATEGORY>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_UINT32" xsi:type="STANDARD-LENGTH-TYPE">
 <BIT-LENGTH>16</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
</DATA-OBJECT-PROP>

In ODX, protocol parameters are classified into three different categories:

 MCDProtocolParameterClass (ODX: PARAM-CLASS),

 MCDProtocolParameterType (ODX: CPTYPE),

 MCDProtocolParameterUsage ODX: CPUSAGE).

The enumeration MCDProtocolParameterClass comprises the following items:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

94 © ISO 2012 – All rights reserved

 eBUSTYPE: This class of parameters is used to define bus type specific parameters (e.g. baud rate).
Most of these parameters affect the physical hardware. These parameters can only be modified by the
first Logical Link that acquired the physical resource. When a second Logical Link is created for the same
resource, these parameters that were previously set will be active for the new Logical Link.

 eCOM: General communication parameters.

 eERRHDL: Parameter defining the behaviour of the runtime system when an error occurred, e.g. the
runtime system could either continue communication after a timeout was detected, or stop and reactivate
the communication link.

 eINIT: Parameters for initiation of communication, e.g. trigger address or wakeup pattern. These
parameters shall not be overwritten within an ECU-Variant layer in any way.

 eTESTER_PRESENT: This type of communication parameter is relevant for the various aspects of tester
present functionality, e.g. they determine tester present timeout settings or tester present message
contents.

 eTIMING: Message flow timing parameters, e.g. inter-byte-time or time between request and response.

 eUNIQUE_ID: This type of communication parameter is used to indicate to both the ComLogicalLink and
to the application that the information is used for protocol response handling from a physical or functional
group of ECUs to uniquely identify an ECU response.

The enumeration MCDProtocolParameterType comprises the following items:

 eSTANDARD: A communication parameter belonging to a standardized protocol that has to be supported
by a runtime system implementing this standardized protocol. Diagnostic data using a protocol not
supported by the runtime system cannot be executed by the diagnostic server.

 eOPTIONAL: This communication parameter does not have to be supported by the runtime system. If a
DIAG-COMM uses an unsupported communication parameter of this type, the parameter can be ignored
and the DIAG-COMM can nevertheless be executed.

 eOEM-SPECIFIC: The communication parameter is part of a non-standardized OEM-specific protocol;
nevertheless it is required to be implemented by the runtime system. Diagnostic data using an OEM-
specific protocol not supported by the runtime system cannot be executed by the diagnostic server.

 eOEM-OPTIONAL: This communication parameter is a non-standardized, OEM-specific parameter that
does not have to be supported by the protocol layer implementation of the runtime system (D-PDU API).

 As stated above, DiagComPrimitives with associated protocol parameters of type STANDARD or OEM-
SPECIFIC will not be executed by the diagnostic server if one or more of these protocol parameters are
not supported by the protocol driver (D-PDU API). In this case, an MCDCommunicationException of type
eCOM_COMPARAM_NOT_SUPPORTED will be thrown when the client application tries to execute such
a DiagComPrimitive. The same applies to the method MCDLogicalLink::gotoOnline() if at least one of the
protocol parameters to be set is not supported by the protocol driver.

The enumeration MCDProtocolParameterUsage comprises the following items:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 95

 eECU-COMM parameters are relevant for basic properties of the communication channel with an ECU
(e.g. timings and addresses).

 eECU-SOFTWARE parameters are only used for ECU software generation and configuration.
Communication parameters of this type shall be ignored by the diagnostic server.

 eAPPLICATION parameters are only evaluated by the client application. Communication parameters of
this type shall not be passed down to the D-PDU API by the diagnostic server, but they shall be
accessible via the diagnostic server API.

 eTESTER parameters are only valid to the tester during diagnostic communication; they are not relevant
to the use case of ECU software generation and calibration.

The DISPLAY-LEVEL of COMPARAMs is used to restrict the visibility (and therefore changeability) of the
COMPARAMs in a client application. Therefore the diagnostic server only delivers the DISPLAY-Level to the
client application, which has to implement any functionality based on display level information.

8.3.9.3 Inheritance of protocol parameters

During runtime a diagnostic layer is linked with a PROT-STACK to import a valid set of communication
parameters (COMPARAM and COMPLEX-COMPARAM elements). This unambiguous link is defined via the
PROTOCOL or the LOGICAL-LINK. The COMPARAM values are inherited between the different layers. An
inherited COMPARAM value is identical to that in the parent layer, i.e. it has the same value. A
communication parameter has to be overridden to change its value.

Figure 56 shows the inheritance of COMPARAMs between different layers.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

96 © ISO 2012 – All rights reserved

ECUVariant

BaseVariant

Protocol

LogicalLink

DiagComPrimitive

PhysicalVehicleLink

Functional
Group

Layer

1 2

Key

1 If there is a protocol parameter defined at the layer and the the physical vehicle link, it will be taken from the link.

2 The logical link cannot redefine protocol parameters from the physical vehicle link (checker-rule).

Figure 56 — Inheritance of COMPARAMs between different layers

Protocol parameters can be overwritten at different layers to change their value. The following issues have to
be considered:

 Overwritten communication parameter values on a FUNCTIONAL-GROUP level are not inherited by
lower layers (i.e. the inheriting base variants).

 Base variants inherit their set of communication parameter values directly from the protocol layer, and
can then override them with locally defined values.

 Since a logical link always includes one dedicated protocol, all multiple inheritance issues can be
resolved unambiguously at runtime.

A simplified inheritance example for simple communication parameters without redefinition of communication
parameters at Physical Vehicle Link and Logical Link is illustrated in Figure 57, which shows a PROTOCOL
instance (PROT-A) referencing the PROT-STACK instance PS-B as the active PROT-STACK. As a
consequence, the valid set of communication parameters consists of A, B and C. Because COMPARAM A
value is overridden within the protocol layer, the valid values in the scope of PROT-A are A=4, B=5 and C=15.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 97

ECU Variant

Protocol

Base Variant

PROT-A (A=4)

BV-A (B=7)
Services:

- BVA_S1 (A=1)
- PA_S1 I

ECU A V1 (A=2,C=18)
Services:

- V1A_S1 (A=1,C=6,E=20)
- BVA_S1 I
- PA_S1 I

ECU A V2 (A=3,E=2)
Services:

- BVA_S1 (A=2) O
- PA_S1 I

Services:
- PA_S1 (B=6)

CPS-A : COMPARAM-SPEC PS-B : PROT-STACK

A =3
B =5
C=15

PS-A : PROT-STACK

A =3
D=5
E =7

Legende:
I
O

Inheritance
Overwriting

Figure 57 — UML representation of inheritance of communication parameters (example)

These values apply to all the DIAG-COMM that do not override a communication parameter value themselves.
The DIAG-SERVICE with the identifier PA_S1 in the PROTOCOL PROT-A shown in the example overrides
the COMPARAM B value. This is done within the data by a COMPARAM-REF element. The COMPARAM set
for this special DIAG-SERVICE results in [A=4, B=6, C=15].

The BASE-VARIANT instance BV-A overrides the COMPARAM B value. All other COMPARAM values are
derived from the protocol layer PROT-A. The COMPARAM set in the scope of BV-A is [A=4, B=7, C=15]. Two
DIAG-COMMs are available in this base variant layer. The DIAG-SERVICE BVA_S1 defined within BV-A and
the DIAG-SERVICE PA_S1 derived from the parent layer PROT-A. The COMPARAM set for PA_S1 at the
base variant level is [A=4, B=6, C=15] and COMPARAM set for BVA_S1 is [A=1, B=7, C=15].

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

98 © ISO 2012 – All rights reserved

There are two instances of an ECU-VARIANT both inherited from BV-A. For ECU-A-V1 the COMPARAM set
is [A=2, B=7, C=18]. There are three DIAG-SERVICEs available at ECU-A-V1. The inherited PA_S1 with
[A=2, B=6, C=18], the inherited BVA_S1 with [A=1, B=7, C=18] and locally defined V1A_S1 with [A=1, B=7,
C=6]. Because the COMPARAM E is not part of the current communication parameter set the COMPARAM-
REF element at V1A_S1 that tries to override the COMPARAM E value exclusively for the DIAG-SERVICE
has no effect and can be ignored. The ECU-VARIANT instance ECU-A-V2 applies the COMPARAM values
[A=3, B=7, C=15]. E is ignored because it is not part of the active PROT-STACK. The available DIAG-
SERVICEs are the value inherited PA_S1 with [A=3, B=6, C=15] and the locally defined BVA_S1 which
overrides the BVA_S1 defined at the layer above. The COMPARAM set for BVA_S1 in the scope of ECU-A-
V2 is [A=2, B=7, C=15].

8.3.9.4 Runtime part

Local and global protocol parameters

At runtime, it is distinguished between “local” protocol parameters at diagnostic services or certain control
primitives (MCD(Db)DiagService, MCD(Db)StartCommunication and
MCD(Db)StopCommunication), and “global” protocol parameters which apply to entire Logical Links. For
ease of reading, DiagComPrimitives will be referred to in the remainder of this section instead of explicitly
stating that protocol parameters are only available for elements of type MCD(Db)DiagService,
MCD(Db)StartCommunication and MCD(Db)StopCommunication.

The local protocol parameter collection of a DiagComPrimitive is a subset of all protocol parameters of the
related Logical Link. The values of all Logical Link protocol parameters that are temporarily valid for a
DiagComPrimitive at execution time are determined through the rules described in the following paragraphs.

In general, a DiagComPrimitive is executed in the context of the protocol parameter values that are currently
valid at the Logical Link – except when the local protocol parameters collection of the DiagComPrimitive is not
empty; in this case, the value of each local protocol parameter overwrites the value of the corresponding
global protocol parameter. The diagnostic server has to set the DiagComPrimitive specific protocol
parameters before executing the DiagComPrimitive, and has to restore the original protocol parameter
settings afterwards. These temporary changes of protocol parameters are only valid during this
DiagComPrimitive’s execution time. All other DiagComPrimitives are executed in their own context of protocol
parameters consisting of the protocol parameters currently valid at the Logical Link and their own temporarily
overwritten protocol parameters.

Global protocol parameters are set at the logical link by using the MCDProtocolParameterSet control
primitive.

DiagComPrimitives of type MCDProtocolParameterSet are not handled differently from other
DiagComPrimitives. That is, these ControlPrimitives can only be executed in Logical Link states eONLINE
and eCOMMUNICATION. If a Logical Link needs to be prepared via protocol parameters before going into
communication, the client application has to take care to execute the proper
MCDProtocolParameterSet prior to all other DiagComPrimitives, especially
MCDStartCommunication.

The protocol parameters for a Logical Link are set via the
MCDProtocolParameterSet::executeSync() method. The effect is a global change of the protocol
parameters of the link the MCDProtocolParameterSet primitive was created on. It is not allowed to
execute a ControlPrimitive of type MCDProtocolParameterSet in case at least one repeated
DiagComPrimitive is currently executed on the same Logical Link. In this case, an exception of type
MCDProgramViolationException with error code eRT_REPEATED_SERVICE_RUNNING shall be
thrown.

Figure 58 shows the relation between database and hardware for the MCDRequestParameter.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 99

data
base

Interface
(Hardware)

MCDRequestParameter

MCDRequestParameters

MCDProtocolParameterSet

*

1

1

1

1
3

2

Key

1 MCDProtocolParameterSet::resetToDefaultValues() or
MCDProtocolParameterSet::resetToDefaultValues(parameterName)

2 MCDProtocolParameterSet::fetchValuesFromInterface() or
MCDProtocolParameterSet::fetchValuesFromInterface(parameterName)

3 MCDProtocolParameterSet::executeSynch()

Figure 58 — Relation between database and hardware for MCDRequestParameter

By means of the method fetchValueFromInterface() the current values from the interface will be set
to the RequestParameters of the MCDProtocolParameterSet primitive.

Behaviour in cases of non-exclusive setting of Protocol Parameters:

 The diagnostic server binds the current protocol parameters (current parameters in the interface, plus
temporary parameters from ODX) to the DiagComPrimitive during its execution. This binding is valid as
long as the DiagComPrimitive is active (the Logical Link the DiagComPrimitive is executed on is in state
MCDActivityState::eACTIVITY_RUNNING, where the state change from an eACTIVITY_IDLE
has been caused by the execution of the DiagComPrimitive).

 If the diagnostic server, the protocol engine and the ECU allow nested/parallel execution of
DiagComPrimitives, each DiagComPrimitive may have its own set of protocol parameters, and they are
treated in the same way as above.

 If these conditions are valid, the setting of protocol parameters can be queued.

 The ProtocolParameterSet control primitive can only be executed synchronously.

When using MCDProtocolParameterSet::executeSync(), only those communication parameters
which have to be changed at the protocol layer (D-PDU API) will be set. That is, the ProtocolParameterSet will
always be sent as an incomplete set (set of parameter to be changed) of communication parameters to the
protocol layer (D-PDU API).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

100 © ISO 2012 – All rights reserved

The diagnostic server maintains the mirror values of the protocol parameters of every Logical Link, and keeps
track of all changes to the values since the last execution of the MCDProtocolParameterSet control
primitive. On the next execution of MCDProtocolParameterSet control primitive, only the changed
values will be written to the interface.

There are two ways for the diagnostic server to deal with protocol parameters that are not supported by its D-
PDU API implementation. If the setting of a protocol parameter fails, the diagnostic server can continue
operating and executing diagnostic services on the communications link that caused the failure. This
behaviour is most useful in engineering environments, where bus topologies and diagnostic data sets are still
under development. Alternatively, the diagnostic server can refuse the execution of diagnostic services on a
link when the setting of a protocol parameter has not been successful, as could be appropriate in more
restricted environments (e.g. an after sales workshop), to ensure consistent behaviour and functionality of
vehicle diagnostics.

It is up to the client application whether to use OEM-specific protocol parameters. With the method
MCDSystem::isUnsupportedComParametersAccepted() it can be determined if the diagnostic
server will be accepting non-standard protocol parameters. The method
MCDLogicalLink::unsupportedComParametersAccepted(A_BOOLEAN)can be used to forbid
the usage of OEM-specific protocol parameters for this specific Logical Link, but this will only have an effect if
protocol parameters are accepted system wide; It is not possible to allow non-standard protocol parameters
for a logical link when they are disallowed globally.

For a diagnostic server implementation, this has the following consequences: as the
MCDProtocolParameterSet control primitive only allows the client application to set all protocol
parameters that are valid for a link in one single operation, the diagnostic server has to provide protocol
parameter consistency analogous to the transaction concept of a database system.

For example, imagine the case when a client application executes an MCDProtocolParameterSet
primitive on a logical link, which includes five protocol parameters. For each of these five parameters, the
diagnostic server in turn has to call a D-PDU API method, telling the protocol driver layer to set the desired
value for each respective protocol parameter. Now, the setting of the third protocol parameter fails because it
is not supported by the protocol driver. When the diagnostic server has been configured to accept
unsupported protocol parameters, it can continue with setting the remaining two parameters and then use that
particular link for doing diagnostic communication.

However, if the diagnostic server is configured to not accept unsupported protocol parameters, it can’t simply
abort the execution of the MCDProtocolParameterSet at this point and return the corresponding error to
the client application, because two of the five protocol parameters have already been successfully modified.
Instead, it first has to reset the first two protocol parameters to their original values, so that the value set of
protocol parameters of that link remains in a consistent state. This implies that in this case, the diagnostic
server has to cache the original values of all protocol parameters that will be modified by an
MCDProtocolParameterSet primitive, so it can undo any modifications in case the setting of any
parameter fails. Please note that this kind of consistency is also required when protocol parameters are set
implicitly by the diagnostic server, e.g. when opening a new logical link, or when executing an
MCDDiagComPrimitive that has associated overwritten protocol parameters.

The class MCDProtocolParameterSet inherits from class MCDControlPrimitive. Therefore, the
execution of an MCDProtocolParameterSet primitive needs to generate an appropriate response
object. This response object is empty (on the runtime as well as on the database side), that is the response
collection of the MCDProtocolParameterSet has zero entries. Instead, the result can be obtained from
the result collection, which can deliver the error code eRT_PROTOCOLPARAMETERSET_FAILED if the
execution of an MCDProtocolParameterSet failed.

The Execution states in cases of MCDProtocolParamterSet are:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 101

 eALL_NEGATIVE: Setting of protocol parameters failed for at least one protocol parameter.

 eALL_POSITIVE: Setting of protocol parameters succeeded for at all protocol parameters.

MCDDbProtocolParameterSet is a runtime-generated object. Therefore the following methods

 getDbResponses(),

 getDbResponsesByType(…),

all deliver an empty collection.

MCDProtocolParameterSet

If a Java-Jobs needs to alter the currently valid protocol parameters of the Logical Link, it should use and
execute an MCDProtocolParameterSet from within its code. Please note that all changes to protocol
parameters caused by an MCDProtocolParameterSet executed within a Java-Job will be persistent
after this job has terminated – just as if a client application would have issued the changes. So, a clean Job
implementation has to restore the protocol parameters at the end of the Job execution. Please note that the
usage of MCDProtocolParameterSet in a Java-Job is considered harmful, as it could cause
undocumented and therefore unexpected changes to the protocol parameters of a logical link at runtime.

8.4 Suppress positive response

The suppress positive response feature allows to ask the ECU not to send any positive response to the
request of the current DiagComPrimitive. This allows to decrease the load on the communication bus and the
processing time in the protocol layer and MVCI diagnostic server. However, a negative response may be sent
by the ECU any time. In addition, the ECU may send a positive response after it had sent a response pending
as first answer just before.

If the suppress positive response feature is enabled for an MCDService or MCDStart/Stop
Communication primitive, the "suppress positive response" bit in the protocol data stream is set by the
protocol layer, e.g. the D-PDU API, if applicable. In an MVCI diagnostic server implementation, this is
achieved by setting the corresponding flags in the communication data structures it passes to the protocol
layer. If the protocol layer is a D-PDU API, bit 6 in byte 15 of the PDU header structure needs to be set (see
ISO 22900-2 for more information).

The diagnostic server internally applies the bit-mask given in the ODX data to the referenced request
parameter (see corresponding ODX structure) before the PDU which describes the service is passed to the D-
PDU API for sending.

The solution proposed above has the major benefit that it is independent of the concrete protocol. As a result,
the major goal of designing a protocol-independent diagnostic server has been met. Furthermore, the solution
is also capable of handling future versions of the suppress positive response feature where the bit mask
manipulates several non-contiguous bits in possibly multiple contiguous bytes. Finally, this solution does not
require the inspection of all parameters of an MCDService to find out whether there is a parameter for
switching on and off the suppress positive response feature at a service. Instead, this can be directly obtained
from the MCDService-object itself.

The suppress positive response feature is not used on level MCDHexServices and
MCDDynIdxxxComPrimitives. With MCDHexServices being plain services not controlled by the diagnostic
server but by the application, the suppress positive response feature can be used independently of the server.
However, as with all other MCDHexServices the application needs to have all the knowledge and all the
control structures to react to every possible answer to an MCDHexService by the server, e.g. response
message, exception, and timeout. Removing the suppress positive response support from the API for
MCDHexServices just prevents inconsistencies between the server internal status and the data contained in
an MCDHexService’s plain PDU. Furthermore, it prevents the server from interpreting MCDHexService-PDUs

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

102 © ISO 2012 – All rights reserved

to overcome this deficit. Please note that interpreting PDUs of an MCDHexService would impose protocol
dependencies into the server, which is out of scope by design rule.

8.5 eEND_OF_PDU as RequestParameter

8.5.1 Database side

If an MCDDbRequestParameter within the Collection of MCDDbRequestParameters has the data type
eEND_OF_PDU, the count can be polled using the method getmaxNumberOfItems().This method
delivers 1 in cases of a normal parameter type. In cases of eEND_OF_PDU, a number between 0 and
MAX_UINT32 is returned. If the field's maximum length is not defined within ODX, MAX_UINT32 is returned.
No exception is raised here.

Figure 59 shows the RequestParameter eEND_OF_PDU on database side.

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

No = 2

ShortName: GBX_PARAM_B
DataType: eA_INT64
ParameterType: eVALUE

No = 1

No = 1

MCDDbRequestParamter

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

1

1

1

Key

1 result of method getMaxNumberOfItems

Figure 59 — RequestParameter eEND_OF_PDU on database side

8.5.2 Runtime side

By means of the method MCDRequestParameter:addParameters (A_UINT32 count)
parameters can be inserted. If the type of the MCDRequestparameter, where addParameters is called, is
not eEND_OF_PDU, the exception ePAR_MCD_NO_DYNAMIC_FIELD is thrown. The diagnostic server
should consider the mininum number of items as defined in ODX for this END-OF-PDU parameter, that is,
after the request has been created, the END-OF-PDU parameter already contains <min-number-of-items>
structure parameters. If the parameter count plus the number of already existing parameters
(MCDRequestParameter::getRequestParameters()->getCount()) exceeds the value
returned by getmaxNumberOfItems(), the exception ePAR_VALUE_OUT_OF_RANGE is thrown.

After new sets of parameters (several calls of addParameters() can be executed in sequence) have
been added, the method getParameters() should be used to fetch the whole set of parameters, and
deliver a collection that contains an arbitrary number of such elements (zero number of eEND_OF_PDU
elements is allowed too), for further processing (fill-in of values etc.).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 103

Figure 60 shows the RequestParameter eEND_OF_PDU on runtime side.

a) repeated add of single parameter

add add

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

MCDRequestParameter

ShortName: GBX_PARAM_B1
DataType: eA_INT64
ParameterType: eVALUE

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

MCDRequestParameter MCDRequestParameter

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

ShortName: GBX_PARAM_B1
DataType: eA_INT64
ParameterType: eVALUE

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

ShortName: GBX_PARAM_B1
DataType: eA_INT64
ParameterType: eVALUE

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

add (2)

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

MCDRequestParameter MCDRequestParameter

ShortName: GBX_PARAM_B1
DataType: eA_INT64
ParameterType: eVALUE

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: GBX_PARAM_G
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: GBX_PARAM_X
DataType: eA_FLOAT32
ParameterType: eVALUE

ShortName: PDU_Specific
DataType: eEND_OF_PDU
ParameterType: eVALUE

ShortName: GBX_PARAM_B1
DataType: eA_INT64
ParameterType: eVALUE

ShortName: GBX_PARAM
DataType: eSTRUCTURE
ParameterType: eGENERATED

b) add of multiple parameters

Figure 60 — RequestParameter eEND_OF_PDU on runtime side – Repeated add of single parameter
and add of multiple parameters

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

104 © ISO 2012 – All rights reserved

8.6 Variable length parameters

Some diagnostic protocols (e.g. UDS) provide services that have parameters of variable length. The size of
such a parameter is defined by another parameter in the same message, the so-called length key parameter.
In ODX, length key parameters and variable length parameters have a one-to-one relationship, that is, for
each variable length parameter, there is one length key parameter. For this length key parameter, the simple
MCDParameterType eLENGTH_KEY is used in diagnostic server. As defined in ODX, parameters of type
eLENGTH_KEY code the length of a variable length parameter in bits. However, if a diagnostic protocol
requires the length to be given in a different format in the PDU, there needs to be a corresponding conversion
between the coded (protocol dependent) and physical value (protocol independent, size in bits) in the ODX
data. A diagnostic server shall only consider the physical value of a length key parameter for determining the
length of the referenced variable length parameter. At diagnostic server side the data type of a length key
parameter is mapped to eA_UINT32.

When an MCDRequest or MCDResponse object contains a parameter that is of variable length, the
corresponding MCDRequestParameter or MCDResponseParameter object of the request’s or
response’s parameter list shall return true when queried with the
MCDRequestParameter.isVariableLength() or
MCDResponseParameter.isVariableLength() method, respectively. If that method returns true,
the method MCDRequestParameter.getLengthKey() or
MCDResponseParameter.getLengthKey() can be used to retrieve the parameter with parameter
type eLENGTH_KEY that contains the associated parameter length. Both methods isVariableLength() and
getLengthKey() are also available at the corresponding database objects MCDDbRequestParameter and
MCDDbResponseParameter.

The client is responsible for setting the value of the corresponding length key parameter prior to setting the
value of a variable length parameter. Setting the corresponding length key parameter value of a variable
length parameter shall result in the following diagnostic server internal actions:

 The diagnostic server checks the new length key value and, if valid, sets the server internal length key
value to its new value. When an invalid length key value is set at an MCDRequestParameter or
MCDResponseParameter, an exception is thrown when calling the method setValue()
(MCDParameterizationException, ePAR_INVALID_VALUE) and the diagnostic server internal length
key value shall not be set to the invalid value.

 The state of the diagnostic server internal MCDValue object of the variable length parameter is set to
“uninitialized”.

 The D-PDU API position of all subsequent parameters is recalculated as far as possible.

Setting a new value at a variable length parameter that does not match the size defined by the value of its
corresponding length key parameter shall result in an exception being thrown by the diagnostic server
(MCDParameterizationException, ePAR_INVALID_VALUE). When the value of the corresponding
length key parameter is not yet initialized, a client is not allowed to set the value of the variable length
parameter. Doing so shall result in an exception being thrown by the diagnostic server
(MCDProgramViolationException, eRT_WRONG_SEQUENCE).

If a length key parameter is constant, the client is not allowed to change the size of the corresponding variable
length parameter. In that case, the size of the variable length parameter is determined by the predefined
default value of its corresponding length key parameter.

The example in Figure 61 shows the D-PDU API of a request message with two variable length parameters.
Each of these two variable length parameters has a corresponding length key parameter, which defines the
size of its variable length parameter in bits. The bit size of both length key parameters
LengthOfMemoryAddress and LengthOfMemorySize is 4 bits. Together they occupy byte #1 of the D-PDU
API. The physical value n of parameter LengthOfMemoryAddress defines the length of parameter
MemoryAddress in bits. The physical value m of parameter LengthOfMemorySize defines the length of

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 105

parameter MemorySize in bits. In order for parameters MemoryAddress and MemorySize to occupy only
complete bytes the physical value of both n and m shall be devisable by 8 without remainder. It is obvious that
when parameter LengthOfMemoryAddress has no default value assigned to it, the parameter position of
parameter MemorySize may only be calculated at runtime. In order to fulfill the above for parameters
LengthOfMemoryAddress and LengthOfMemorySize a DOP with a Linear conversion by 8 is used.

Figure 61 shows an example with variable length parameters.

ShortName: SID
DataType: eA_UINT8
ParameterType: eCODED_CONST

ShortName: LengthOfMemoryAddress
DataType: eA_UINT32
ParameterType: eLENGTH_KEY

ShortName: LengthOfMemorySize
DataType: eA_UINT32
ParameterType: eLENGTH_KEY

MCDRequest
ShortName: ReadMemoryByAddress

n

ShortName: MemoryAddress
DataType: eA_BYTEFIELD
ParameterType: eVALUE

ShortName: MemorySize
DataType: eA_BYTEFIELD
ParameterType: eVALUE

1

2

3

1 mMCD-3 D:

2 3

4 5

4

5

MCDRequestParameter.getLengthKey()

Byte: 0 1 2

(physical value of n/8)+1 (physical value of n/8)+2

(physical value of n/8)+1
+

(physical value of m/8)

D-PDU: Bit:

D-PDU Bit Stream

8 4 4 physical value of n physical value of m

Figure 61 — Example variable length parameters

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

106 © ISO 2012 – All rights reserved

8.7 Variant identification

8.7.1 Interpretation algorithm

Per ECU, for each Physical Vehicle Link only one RunTime Logical Link for Base Variants and Variants is
permitted. That means that either only one Base Variant or one Variant may be instanced. The instancing is
independent from the variant correspondence. A multiple instancing may be done by the application, whereas
references are assigned by the instanced RunTime Logical Link. The RunTime Logical Link may only be
modified by the VariantIdentificationAndSelection. For this, it is of no importance at which level the
VariantIdentificationAndSelection has been carried out (Functional Group, Base Variant, Variant). Functional
Groups and BaseVariants may be instanced at any time, independently from already accompanying instanced
Variants of the Members. After a Variant selection, in spite of an instanced Base Variant, which has been
converted to a Variant by means of VariantIdentificationAndSelection, the corresponding Variant may also be
instanced.

In contrast to VariantIdentificationAndSelection, by means of Variant Identification the corresponding Variant
is only detected and reported. An automatic switching of the database does not take place, which means the
behaviour before the Variant identification will be maintained after its execution. The Variant Identification is
allowed at each level (Functional Group, Base Variant and Variant). Each ECU of a functional group will have
its own response, so there can be no duplicate names.

All References of a RunTime Logical Link will be informed by an event, if a variant is identified or selected.
This is also valid for all members of a Functional Group. If one member of a Functional Group is identified or
selected, the Functional Group will also be informed by an event.

If no variant was identified, MCDLogicalLink::getIdentifiedVariantAccessKeys delivers an
empty collection.

MCDLogicalLink::getSelectedVariantAccessKeys delivers the selected/instantiated Variant or
the BaseVariant.

The delivered collection depends on the location type:

 BaseVariant or ECUVariant: the collection has one element. This is the selected location, independent of
whether VIS was called or not.

 Protocol: always delivers an empty collection.

 Functional Group: the collection returns only Accesskeys to MCDEcuVariant Locations that belong to this
Functional Group. If no variant is selected or instantiated the collection is empty.

The VariantIdentification and VariantIdentificationAndSelection are executed like diagnostic services and are
permitted at all locations.

The database settings at the levels BaseVariant, Variant, Protocol and MultipleECUJob are always valid for
both the transmitting and receiving data transfer direction together. At the Functional Group level, the
interpretation on the transmitter side always takes place at this level, whereas on the receiver side the level
detected or set for the respective ECU is used. This has been illustrated within the following figures by means
of a data pot containing an arrow in the direction of the MVCI diagnostic server. An interpretation algorithm to
be used is given in the following.

Independent from the interpretation mechanism, according to the actual data, the mechanisms of overwriting,
eliminating and inheritance will be used.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 107

8.7.2 Identification algorithm

In order to perform Variant Identification or Variant Identification and Selection, a runtime instance of the
corresponding control primitive – MCDVariantIdentification or
MCDVariantIdentificationAndSelection – needs to be created at the Logical Link on which the
VI or VIS is to be executed. Then, this control primitive is executed synchronously by means of
MCDDiagComPrimitive::executeSync(). Now, the diagnostic server internally executes the
DiagComPrimitives referenced from the matching parameters in the matching patterns that have been used to
generate the variant identification (and selection) control primitive in a certain order. More details on this order
and the algorithm can be found below.

One important requirement for the execution of a VI(S) is that it needs to be quick, as the concept of an
automated variant identification feature only retains its usefulness when the execution time is kept as low as
possible – after all, deliberately complex and elaborate usage scenarios can be handled, e.g., by a Java job
and should not be part of a general standard. For this reason, the following rules apply for the execution of a
variant identification (and selection) control primitive by a diagnostic server.

VI(S) pattern matching has to be done in a specific order which is defined by the matching patterns and
matching parameters in the ODX data. In principle, this matching is a three-step process:

 All ECU Variants inheriting from the ECU Base Variant which is to be resolved to a variant have to be
considered.

 For each ECU Variant, the associated Variant Patterns (matching patterns) defined in ODX have to be
checked.

 For each Variant Pattern, all Matching Parameters defined in ODX have to be checked.

ECU Variants have to be tested during VI or VIS in ascending alphabetical order of their short names. For
each ECU Variant, the diagnostic server then considers the ECU-VARIANT-PATTERNs of the ECU-
VARIANT in the order they are defined in the processed ODX data. The first matching ECU-VARIANT-
PATTERN determines that this ECU Variant is present in the vehicle. In this case, the ECU Variant this
matching pattern belongs to is considered identified. After a match, the other ECU-VARIANT-PATTERNs of
an ECU Variant will not to be tested anymore (short-cut resolution). As an ECU Variant has been identified
successfully, no further ECU Variants’ matching patterns will be tested. In cases of VIS, the identified ECU
Variant is automatically selected. That is, the MCDDbLogicalLink used for VIS is switched to the
MCDDbLocation of the identified MCDDbEcuVariant.

The MATCHING-PARAMETERs defined in an ECU-VARIANT-PATTERN need to be tested in the order
they are defined in ODX. Furthermore, all parameters referenced from a set of MATCHING-PARAMETERs
shall be checked; short-cut resolution is forbidden here. All MATCHING-PARAMETERs of an ECU-
VARIANT-PATTERN need to match in order to consider the pattern as matching the current ECU Variant.

For the execution of diagnostic services for performing a VI(S) according to the ordering rules described
above, the diagnostic server has to use the following algorithm:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

108 © ISO 2012 – All rights reserved

 Check if a variant pattern is available. Where no variant pattern is available, the variant identification or
selection fails (the execution state will be eALL_FAILED).

 For each ECU Variant (in ascending alphabetical order of their short names), iterate through the ECU-
VARIANT-PATTERNs of the ECU Variant valid for the current Logical Link.

 For each ECU-VARIANT-PATTERN, iterate the MATCHING-PARAMETERs in the order they are
defined in ODX.

 Execute the DIAG-COMM referenced from the current MATCHING-PARAMETER if it has not
been executed in the context of a previous ECU-VARIANT-PATTERN or MATCHING-
PARAMETER of the same execution cycle of VI(S).

 Match the value of the response parameter referenced from this MATCHING-PARAMETER with
its expected value. Either use a temporarily stored response of a previous execution of the
respective DIAG-COMM in the same execution cycle of VI(S) or use the current response. Store
the result of the match until the current ECU-VARIANT-PATTERN has been processed and
evaluated completely.

 Store the result of the execution of the DIAG-COMM (including its responses) for the rest of the
current execution cycle of VI(S).

 Continue with the next MATCHING-PARAMETER in the order defined in the ODX data.

 Check whether all MATCHING-PARAMETERs of the current ECU-VARIANT-PATTERN have
matched their expected values.

 If the current ECU-VARIANT-PATTERN has matched completely, mark this corresponding ECU
Variant as identified and exit the variant identification algorithm completely. In cases of VIS,
switch the Logical Link to the identified ECU Variant.

 If the current ECU-VARIANT-PATTERN has not matched completely, continue with the next
ECU-VARIANT-PATTERN in the order defined in the ODX data.

 Repeat pattern matching as described above (mind the MATCHING-PARAMETER ordering as
defined in ODX) with the next ECU Variant in the ascending order of short names if no ECU Variant
has been identified yet. As soon as an ECU-VARIANT-PATTERN matches completely, the ECU
Variant is considered as successfully identified, and the VI(S) can be stopped.

 If VI(S) terminates successfully (an ECU Variant has been identified), a positive response is to be
generated by the diagnostic server. This positive response is then returned within a corresponding result
to the client application.

 If VI(S) terminates without having successfully identified an ECU Variant, a negative response is to be
generated by the diagnostic server. This negative response is then returned within a corresponding result
to the client application.

For engineering use cases, it needs to be possible for the client application to identify which variant pattern
has matched during the ECU variant identification process. If the variant identification fails, it can be important
to know for an engineering tester which variant-patterns are available in ODX. To this end, the MVCI
diagnostic server API provides means to access the variant patterns available for an ECU Variant through the
method MCDDbLocation::getDbVariantPatterns().

A short digression concerning the demand that diagnostic services have to be executed in a defined order
depending on individual matching parameter order for each ECU variant pattern and each ECU Variant as
found in the ODX data: From the diagnostic server’s point of view, this approach is not feasible for several
reasons and would cripple the VI/VIS feature for the large majority of use cases. First, there is the fact that the
diagnostic server has to build request and result templates for VI/VIS services (if enabled by the

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 109

corresponding system property). As it is now, the diagnostic server will have to include, e.g. five request
structures in the result object, one for each of the five executed DiagComs as defined by an exemplary ODX
data set according to the rules described above and in 8.7.3. As the execution order of these services is not
defined, they will be executed only once on ECU Base Variant level for data gathering while VI/VIS is
executed, and the request and response object structures will remain manageable and execution time will be
short. In contrast to that, the demand that the execution order of VI/VIS DiagComs has to conform to the order
of the matching parameters in each of the ECU variant patterns of all possible ECU Variants for a Base
Variant link would lead to the following scenario: First of all, in the worst case (no matching ECU Variant is
built into the vehicle), the five DiagComs from the example above would have to be executed anew for each
possible permutation of ECU Variants, variant patterns, and matching parameter sets. For example, for a
Base Variant with 50 ECU Variants, with 10 variant patterns each and five matching parameters per variant
pattern, that would mean that 50*10*5 = 2 500 services would have to be executed for a single VI/VIS.
Secondly, when assuming that any of the services that are used for variant identification could cause an ECU
to change its state/behaviour, it would be necessary to perform the appropriate reset/state changing action
after (unsuccessful) testing of each matching parameter set so that such an ECU would be in the correct state
for the next test iteration. Hence, an ECU reset or similar service would have to be part of each VI/VIS pattern.
Imagining the time that would be necessary to perform a VI/VIS that executes 2 500 services, where each fifth
service causes an ECU reset, is left as an exercise to the reader. On top of these obvious problems, there is a
more subtle one: as the diagnostic server has to provide request and result structures for VI/VIS, it would have
to provide different request/result structures for each of the possible permutations of service order as
described above. When imagining an ECU with 50 variants, 10 variant patterns, 5 matching parameter
sets/associated DiagComs, with an average of 3 parameters each, that would lead to a request template
containing 50*10*5*3 = 7 500 parameters. When doing the same calculation for the result structure, there are
not only possible positive responses (and response parameters) to take into account but also negative and
global negative response structures. Again, the exercise of imagining the resulting response templates is left
to the reader. The general conclusion is, however, that defining an execution order for VI/VIS DiagComs on
the matching parameter level is not a desirable solution for a diagnostic server and will therefore not be part of
a standard solution. For the few cases where this kind of behaviour is needed for variant identification, the
user can always write an appropriate Java job or application logic to handle these specific use cases.

Figure 62 shows the interpretation algorithm for variant identification.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

110 © ISO 2012 – All rights reserved

Transmit
Diag

Service

Used
LogicalLink

Location

Target address
in list of FG?

Is Physical
Address?

Target Address
matches?

Target Address
matches?

Variant
selected?

Service
overwritten?

Service in
Base Variant
overwritten?

Interpretation via
Protocol Layer

Interpretation
Error

Interpretation
Error

Interpretation
Error

Interpretation via
Functional Group

Layer

Interpretation via
ECU Base Variant

Layer

Interpretation via
ECU Variant Layer

Interpretation via
ECU Base Variant

Layer

Interpretation via
ECU Variant Layer

Protocol

NO

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

Functional
Group

ECU Base
Variant

ECU
Variant

Figure 62 — Interpretation algorithm for variant identification

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 111

Figure 63 shows the example about location hierarchy.

DoorECU FrontRight
Services:

-BVFR:S1
-BVFR:S2
-BVFR:S3
-BVFR:S4
-FG:S1 O

Functional Group

Protocol

ECU Variant

Base Variant

KWP2000

DoorECU FR V1
Services:
- V1FR: S1;
- V1FR: S2;
- V1FR: S3;

BVFR: S1
BVFR: S2

O
O
E

E E
BVFR:S3
BVFR:S4- FG: S1

DoorECU FL V1
Services:

- V1FL: S1;
- V1FL: S2;
- V1FL: S3;

BVFL:S1
BVFL:S2
BVFL:S3

I
I
I

I- FG: S1

DoorECU FrontLeft
Services:

-BVFL:S1
-BVFL:S2
-BVFL:S3
-FG: S1 I

DoorECU FL V2
Services:

-V2FL: S1;
-V2FL: S2;
-V2FL: S3;

BVFL:S1
BVFL:S2

I
E
O

O
BVFL: S3

-FG:S1

DoorECU FR V2
Services:
- V2FR: S1;
- V2FR: S2;
- V2FR: S3;
- V2FR: S4;

BVFR:S1
BVFR:S2

E
E
O
O

O

BVFR: S3
BVFR: S4

- FG: S1

Legende:
Inheritance
Overwriting
Eliminating

I
O
E

DoorECU’s

Services:

ECUs:
-DoorECUFrontLeft
-DoorECUFrontRight

- FG: S1

Figure 63 — Example location hierarchy

8.7.3 Request and ResponseParameter of VI and VIS

8.7.3.1 General

The communication primitives MCDVariantIdentification and
MCDVariantIdentificationAndSelection typically consist of a number of diagnostic services
referenced by the MATCHING-PARAMETERs of the relevant ECU VARIANT-PATTERN definitions. Because
VI and VIS on the API are represented as single communication primitives they can have only one request
parameter structure and only one response structure. That is why there is a need to combine the needed
request parameter of the used services to a new request structure and to combine the responses of the used
services to a new response structure. The result of the whole communication primitive is independent of the
execution order of its diagnostic services, because in the ODX database there is no order defined for the
execution.

8.7.3.2 RequestParameter structure

The request parameter collection of a communication primitive (also for VI and VIS) should contain all needed
values to execute the communication primitive. In cases of VI and VIS it means that all request parameters
needed for the used services should be merged in a collection. Since the ODX database provides the
possibility of structured request parameters it is easy to do.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

112 © ISO 2012 – All rights reserved

Remark:

The short names of objects within one collection shall be unique. The short names of objects in different
collections need not to be unique, even if they belong to the same service.

Building rule:

a) For each used diagservice of the variant identification (and selection) which has its own request
parameters an MCDDbRequestParameter of data type eSTRUCTURE and parameter type
eGENERATED will be added to the collection of request parameters of the variant identification (and
selection) primitive.The short name of this request parameter has to be the short name of the
MCDDbService object it belongs to.

b) The collection of request parameters of this structure shall be the same as the collection of the
diagservice.

c) The variant identification (and selection) primitive has got a collection of request parameters containing
these structures in alphabetic order of their short names.

Figure 64 shows the RequestParameter of VI/VIS.

MCDDbService
ShortName: VarIdentSrv_GBX

MCDDbRequestParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_GAX

MCDDbRequestParameter
NShortame: GAX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_JBX

MCDDbRequestParameter
ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbRequestParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

Figure 64 — RequestParameter of VI/VIS – RequestParameters of services

Figure 65 shows the RequestParameter of VI/VIS – Separation of RequestParameters.

MCDDbRequestParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbRequestParameter
ShortName: GAX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_X
DataType: eA_FLOAT32

MCDDbRequestParameter
ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbRequestParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

MCDDbRequestParameter
ShortName: VarIdentSrv_GBX
DataType: eSTRUCTURE

MCDDbRequestParameter

DataType: eSTRUCTURE
ShortName: VarIdentSrv_GAX

MCDDbRequestParameter

DataType: eSTRUCTURE
ShortName: VarIdentSrv_JBX

Figure 65 — RequestParameter of VI/VIS – Separation of RequestParameters

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 113

Figure 66 shows the RequestParameter of VI/VIS – Combination of the result of VariantIdentification.

MCDDbRequestParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbRequestParameter
ShortName: GAX_PARAM_G
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbRequestParameter
ShortName: GAX_PARAM_X
DataType: eA_FLOAT32MCDDbRequestParameter

ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbRequestParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbRequestParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

MCDDbVariantIdentification
ShortName: VarIdentComPrimitive

MCDDbRequestParameter

DataType: eSTRUCTURE
ShortName: VarIdentSrv_GAX

MCDDbRequestParameter

DataType: eSTRUCTURE
ShortName: VarIdentSrv_GBX

MCDDbRequestParameter

DataType: eSTRUCTURE
ShortName: VarIdentSrv_JBX

Figure 66 — RequestParameter of VI/VIS – Combination of the result of VariantIdentification

8.7.3.3 ResponseParameter structure

A service that is used for variant identification shall contain at least one single positive response. If the db-
template contains more than one response, only the first, according to the ODX order, response is considered.

Negative responses are not considered at all.

The result of a communication primitive (also for VI and VIS) has got one response for each concerned ECU.
In cases of VI and VIS this ECU can be used by more than one of the used diagnostic services. Each runtime
system using the same ODX database shall build the database response for VI and VIS in the same way to
guarantee interchange ability.

Building rule

a) The MCDDbResponse object of each diagnostic service of the variant identification have to be replaced
by a MCDDbResponseParameter object of data type eSTRUCTURE and parameter type
eGENERATED, where the short name of this response parameter has to be the short name of the
MCDDbService object which has been replaced.

b) The collection of response parameters of this structure shall be the same as the collection of the former
response.

c) The response of the variant identification (and selection) has got a collection of response parameters
containing these structures in alphabetic order of their short names.

Figure 67 shows the Result of VI/VIS – Results of services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

114 © ISO 2012 – All rights reserved

MCDDbService
ShortName: VarIdentSrv_GBX

MCDDbResponse
ShortName: VarIdentResp_GBX

MCDDbResponseParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_GAX

MCDDbResponse
ShortName: VarIdentResp_GAX

MCDDbResponseParameter
ShortName: GAX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GAX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_JBX

MCDDbResponse
ShortName: VarIdentResp_JBX

MCDDbResponseParameter
ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbResponseParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

Figure 67 — Result of VI/VIS – Results of services

Figure 68 shows the Result of VI/VIS – Separation of responses.

MCDDbService
ShortName: VarIdentSrv_GBX

MCDDbResponseParameter
ShortName: DataVarIdentResp_GBX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_GAX

MCDDbResponseParameter
ShortName: DataVarIdentResp_GAX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: GAX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GAX_PARAM_X
DataType: eA_FLOAT32

MCDDbService
ShortName: VarIdentSrv_JBX

MCDDbResponseParameter
ShortName: DataVarIdentResp_JBX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbResponseParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

Figure 68 — Result of VI/VIS – Separation of responses

Figure 69 shows the Result of VI/VIS – Combination of the result of VariantIdentification.

MCDDbResponse
ShortName: VarIdentComPrimitive

MCDDbResponseParameter
ShortName: VarIdentSrv_GAX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: VarIdentSrv_GBX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: VarIdentSrv_JBX
DataType: eSTRUCTURE

MCDDbResponseParameter
ShortName: GBX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: GBX_PARAM_X
DataType: eA_FLOAT32

MCDDbResponseParameter
ShortName: GAX_PARAM_G
DataType: eA_UINT32

MCDDbResponseParameter
ShortName: GAX_PARAM_A
DataType: eA_UINT32

MCDDbResponseParameter
shortName: GAX_PARAM_X
DataType: eA_FLOAT32

MCDDbResponseParameter
ShortName: JBX_PARAM_J
DataType: eA_ASCIISTRING

MCDDbResponseParameter
ShortName: JBX_PARAM_B
DataType: eA_UINT16

MCDDbResponseParameter
ShortName: JBX_PARAM_X
DataType: eA_FLOAT32

Figure 69 — Result of VI/VIS – Combination of the result of VariantIdentification

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 115

8.7.4 Service handling in cases of different locations

The addressing mode PHYSICAL means explicit communication with a selected ECU.

The addressing mode FUNCTIONAL is broadcast communication via a Functional Group which can contain
several ECUs. Each ECU of a functional group will have its own response, so there can be no duplicate
names.

Figure 70 shows the address mode in cases of physical or functional communication.

LL Door ECU
S1.executeSync
- 0...n responses
- addresses unknown

LL Door ECU Front
S1.executeSync
- max. 1 response
- address known

Functional Group

Functional

Physical

Physical

ECU Variant

Base Variant

DoorECU

Services:
- FG: S1

DoorECU Front

Services:
- FG: S1:I

DoorECU FL V1

Services:
- FG: S1:I

LL Door ECU FL
S1.executeSync
- max. 1 response
- address known

Figure 70 — Address mode in cases of physical or functional communication

Internally, the MVCI diagnostic server chooses the correct communication mode (PHYSICAL or
FUNCTIONAL) according to the resources it has allocated.

The MVCI diagnostic server is able to decide from the data in ODX and the current Location which addressing
mode of a service has to be used if this service is defined to “FUNCTIONAL-OR-PHYSICAL”. If the
Location is a Functional Group, the service can only be executed functionally. If the Location is a Base Variant
or a Variant, then the service can only be executed physically.

Services executed functionally are automatically sent to all ECUs of a functional group. Hence, functional
addressing can always result in multiple responses.

As functional addressing is often used for Testerpresent or Sleep commands, for example, it is necessary to
open a logical link to a specific ECU and a second logical link to a functional group this ECU is contained in.
Then, the logical link to the functional group is used for functional addressing and the logical link to the ECU is
used for physical addressing.

8.7.5 Variant Patterns and Matching Parameters

Technically, variant identification is performed by the diagnostic server by executing a set of
DiagComPrimitives, and then matching the ECU responses to a set of patterns that are defined in the ODX
data set. Only the first positive response can be used for matching parameters. Negative response
parameters are not supported inside matching patterns and are ignored by the MVCI diagnostic server. Which
services have to be executed and which parameters are required to evaluate to which values is defined in so-
called matching patterns (ODX: ECU-VARIANT-PATTERN). In this specification, a matching pattern is
represented by an object of type MCDDbMatchingPattern (see Figure 71). An ordered collection of such
matching patterns can be obtained from each MCDDbLocation of MCDLocationType eECU_VARIANT. Every

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

116 © ISO 2012 – All rights reserved

matching pattern references an ordered collection of matching parameters (ODX: MATCHING-PARAMETER).
Every matching parameter – represented by an object of type MCDDbMatchingPattern in the diagnostic
server – refers to a DiagComPrimitive, a Response Parameter of this DiagComPrimitive, and an expected
value for this Response Parameter.

1

<<D>>
MCDDbLocation

<<D>>
MCDDbMatching

Patterns

1

<<D>>
MCDDbMatching

Pattern

<<D>>
MCDDbMatching

Parameters

<<D>>
MCDDbMatching

Parameter

<<D>>
MCDDbResponse

Parameter

<<D>>
MCDDbDiagCom

Primitive

<<M,C,D>>
MCDValue

<<M,C,D>>
MCDCollection

Figure 71 — Matching patterns for VI and VIS

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 117

8.8 Use cases

8.8.1 Create Logical Link and use DiagComPrimitives

Figure 72 shows the instantiation of Logical Links and DiagComPrimitive (Construction).

 : MCDProject

 : MCD
LogicalLink

: MCDStart
Communication

: MCDResult

returns the Logical Link object

return the DiagComPrimitive object

return the result state for StartCommunication

createLogicalLink(dbLogicalLink)

createDiagComPrimitiveByDbObject(dbStartCommunication)

executeSync()

open()

starts in
ePROJECT_SELECTED

create a new
Logical Link by
a data base
Logical Link object,

open the Logical
Link
(get a channel to the ECU)

Remark:
now you can create
and use services and
DiagComPrimitives

onSystemLogicallyConnected()

onLinkStateOffline(logicalLink)

 : Application

CLIENT

API
MVCI

diagnostic
server

 : MCDServicereturns the service object

createDiagComPrimitiveByDbObject(dbService)create a new
Service

the state changes
to eLOGICALLY
_CONNECTED
(an event will
indicate this)

: MCDEventHandler

onLinkStateCommunication(logicalLink)

as an example the
DiagComPrimitive
StartCommunication
will be executed

change state to
eCOMMUNICATION
via executing this
DiagComPrimitive

gotoOnline()

onLinkStateOnline(logicalLink)

Figure 72 — Instantiation of Logical Links and DiagComPrimitive (Construction)

At first, the Client creates the runtime Logical Links according to the selected database templates and opens
the connection of the Logical Link for the communication. The state of the Logical Link after open is
eOFFLINE. As soon as the first Logical Link has been created, the MCDSystem object take the state
eLOGICALLY_CONNECTED.

The first DiagComPrimitive created and executed in this diagram is MCDStartCommunication which
performs the state transition to eCOMMUNICATION for the Logical Link. Subsequently, the runtime
DiagComPrimitives and Services are created for the Logical Links according to their database templates.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

118 © ISO 2012 – All rights reserved

Figure 73 shows the ERD diagram: Possibilities for creation of Logical Links.

<<M,C,D>>
MCDDbProject

<<M,C,D>>
MCDProject

<<M,C,D>>
MCDDbVehicleInformation

<<M,C,D>>
MCDDbVehicleInformations

<<M,C,D>>
MCDDbPhysicalVehicleLink

OrInterface

<<M,C,D>>
MCDDbPhysicalVehicleLink

OrInterfaces

<<D>>
MCDAccessKey

<<D>>
MCDAccessKeys

<<M,C,D>>
MCDDbLogicalLink

<<M,C,D>>
MCDDbLogicalLinks

getDbLogicalLinks()

<<M,C,D>>
MCDDbLocation

<<D>>
MCDDbEcuVariant

<<D>>
MCDDbEcu

<<D>>
MCDDbEcuBaseVariant

<<D>>
MCDDbDiagComPrimitive

<<D>>
MCDDbDiagComPrimitives

<<D>>
MCDDbService

<<D>>
MCDDbServices

getDbEcuVariants()

getDbLocation()

getDbEcu()

getDbDiagComPrimitives() getDbServices()

<<D>>
MCDDiagCom

Primitive

<<D>>
MCDService

<<D>>
MCDJob

<<D>>
MCDDiagService

<<Interface>>
MCDLogicalLink

getDbVehicleInformations()getDbPhysicalVehicleLink
OrInterfaces() getAccessKeys() createLogicalLink()

VARIOUS CREATIONS OF LOGICAL LINK

createDiagCom
PrimitiveByDbObject()

necessary for location type
“eMCDECUBASEVARIANT”

(1) createLogicalLinkByName(shortNameLL)
(2) createLogicalLink(databaseObject)
(3) createLogicalLinkByVariant(shortNameLLBaseVariant, shortNameVariant)
(4) createLogicalLinkByAccessKey(accessKeyString, shortNamePhysicalVehicleLink)

<<D>>
MCDDataPrimitive

<<D>>
MCDControlPrimitive

1

Key

1 The client has to know the required shortname for this method. No database searching is necessary.

Figure 73 — ERD diagram: Possibilities for creation of Logical Links

In this ERD-like diagram, only the possibilities for information acquisition from the database for the purpose of
Logical Link creation are shown. The four separate possibilities are each marked with different colours.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 119

8.8.2 Removal of communication objects

The deleting of all objects used for the communication takes place in reverse order to the setting up. First to
change the state from eCOMMUNICATION to eONLINE execute the DiagComPrimitive
MCDStopCommunication. Then remove each of the Services and DiagComPrimitives of this Logical Link
with the method MCDLogicalLink::removeDiagComPrimitive (comPrimitive:
MCDDiagComprimitive). This action will take place for each Logical Link. Then disconnect the Logical
Link on hardware side from the ECU by means of close()and get the event
onLinkStateCreated()for this.

After this, every Logical Link will be removed from the project by means of
MCDProject::removeLogicalLink(link:MCDLogicalLink). If all Logical Links have been
deleted, the state transition of the MCDSystem to ePROJECT_SELECTED is announced by the event
onLogicallyDisconnected().

Figure 74 shows the removal of DiagComPrimitives and Logical Links (Destruction).

 : MCDProject : MCDLogicalLink

 : MCDStop
Communication

 : MCDStop
Communication

e.g.:

remove the Logical Link

Logical Link
stops communication

close()
close the connection
to the hardware
interface

removeLogicalLink(logicalLink)

createDiagComPrimitiveByDbObject(dbStopCommunication)

return the DiagComPrimitive object

return the resultState

executeSync()

onLinkStateCreated(logicalLink)

onLinkStateOnline(logicalLink)

starts with Logical Link
in state eONLINE and all
DiagComPrimitives and
Services are in eIDLE
and eNOT_REPEATING

removeDiagComPrimitive(diagComPrimitive)

this diagram ends in state
ePROJECT_SELECTED
because all Logical Links
are removed

onSystemLogicallyDisconnected()

 : Application

CLIENT

API
MVCI

diagnostic
server

: MCDLogicalLink

no

yes

yes

no

remove all Services and
all DiagComPrimitives of
the Logical Link

: MCDEventHandler

Figure 74 — Removal of DiagComPrimitives and Logical Links (Destruction)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

120 © ISO 2012 – All rights reserved

8.8.3 Service handling

8.8.3.1 Non-cyclic diag service execution

This Sequence Diagram shows the usual sequence of a non-cyclic diag services in asynchronous execution.
Firstly, the Request Parameters of the Service are set, in case the default values preset by the database shall
not be used. After this, the Service execution starts with the method executeAsync(). Following this, the
Service will be put into the execution queue of the Logical Link and normally will be executed within the MVCI
diagnostic server within a finite period of time. While executing the Service, the MVCI diagnostic server
creates an object for the ResultState and an object for the Result. After finishing the Service, the MVCI
diagnostic server sends the event
onPrimitiveTerminated(primitive:MCDDiagComPrimitive, link:MCDLogicalLink,
resultstate:MCDResultState) to the EventHandler of the Client. The event delivers the created
ResultState object. The ResultState Object is asked for the ExecutionState. In cases of the correct execution
of the Service, the Result-Collection with one Result object is polled by the Service and analysed. Figure 75
shows the non-cyclic diagnostic service execution (asynchronous).

set 1 ..n request

parameter to a
non-default value

getRequestParameters()

executeAsync()

returns all results from ring buffer

getExecutionState()

fetchResults(0)

Termination of the

service is reported
by an event.

get the result state from
the Event and evaluate
the execution state

Get as collection all
results from the ring
buffer. The delivered
results will be deleted
from the ring buffer in
D-System

The number of items in the
result collection can
be determined by method
getCount().

starts with instantiated
Logical Link and Service

 : Application : MCDEventHandler

CLIENT

getRequest()

onPrimitiveTerminated(diagComPrimitive, logicalLink, resultState)

onLinkActivityStateIdle(logicalLink, logicalLinkState)

onLinkActivityStateRunning(logicalLink, logicalLinkState)

 : MCDService
 : MCDRequest

Parameter: MCDRequest

 : MCDResultState : MCDResult

execute the service in the D-System

MVCI
diagnostic

server

 : MCDResult

…

Figure 75 — Non-cyclic diagnostic service execution (asynchronous)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 121

In cases of synchronous execution of a non-cyclic diag service the result state but no event is delivered as
return value. Figure 76 shows the non-cyclic diagnostic service execution (synchronous).

MVCI
diagnostic

server

 : MCDService : MCDRequest : MCDRequest
Parameter

: MCDResultState : MCDResult

set 1 ..n request
parameter to a
non-default value

returns the
result

starts with instantiated
Logical Link and Service

getRequestParameters()

getRequest()

execute the service in the D-System
executeSync()

returns the result

hasError()evaluate if the
result has no errors

 : Application

CLIENT

API

…

Figure 76 — Non-cyclic diagnostic service execution (synchronous)

8.8.3.2 Cyclic diag service execution

This Sequence Diagram shows the usual sequence of a cyclic diag service in asynchronous execution. At
first, the Request Parameters of the Service are set with the values necessary for execution, in case the
default values preset by the database shall not be used. After this, the service execution is started with the
method executeAsync(). Following this, the Service will be put into the execution queue of the Logical
Link and normally will be executed within the MVCI diagnostic server an infinite period of time. It will normally
be stopped by method cancel(). While executing the Service, the MVCI diagnostic server creates tuples of
objects for the ResultState and objects to store the cyclically occurring Results. The generated Results are
stored to a ring buffer with defined size. For each Result the MVCI diagnostic server sends the event
onPrimitiveHasResult (primitive:MCDDiagComPrimitive, link:MCDLogicalLink,
resultstate:MCDResultState) with the current MCDResultState to the client. Each event is
related to a created MCDResultState object, and the ResultState Object is asked for the ExecutionState.
In cases of the correct execution of the Service, the already generated ResultObject(s) is (are) polled by the
Service and analysed.

The MCDResultState objects reflect the current state of execution of the DiagComPrimitive. The
Execution State located within these objects shows how the execution has been running so far. As soon as
any error has cropped up at any time the Execution State cannot be eALL_POSITIVE anymore. To find out
if any error has occurred within the current result, this can directly be polled from each read in MCDResult.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

122 © ISO 2012 – All rights reserved

Figure 77 shows the Cyclic diagnostic service execution.

 :
M

C
D

R
es

ul
tS

ta
te

 :
M

C
D

R
es

ul
t

 :
M

C
D

R
es

ul
t

 :
M

C
D

R
es

ul
tS

ta
te

 :
M

C
D

R
es

ul
t

 :
M

C
D

R
es

ul
t :
M

C
D

R
es

ul
tS

ta
te

 :
M

C
D

R
es

ul
t

se
t 1

..
n

re
qu

es
t

pa
ra

m
et

e
r

to
 a

no

n-
de

fa
ul

t
va

lu
e

ge
t t

he

R
eq

ue
st

P
ar

am
et

er
ge

tR
eq

ue
st

P
ar

am
et

er
s(

)

ge
tR

eq
ue

st
()

ex
ec

ut
eA

sy
nc

(
)

ex
ec

ut
e

th
e

se
rv

ic
e

 in
 th

e
D

-S
ys

te
m

fe
tc

hR
es

u
lts

(0
)

re
tu

rn
s

al
l r

es
ul

ts
 f

ro
m

 r
in

g
b

uf
fe

r

re
tu

rn
s

al
l r

es
ul

ts
 fr

o
m

 r
in

g
 b

uf
fe

r

ge
tE

xe
cu

tio
nS

ta
te

(
)

on
P

rim
iti

ve
H

as
R

es
ul

t(
di

ag
C

om
P

rim
iti

ve
, l

og
ic

al
Li

nk
,

re
su

ltS
ta

te
)

on
P

rim
iti

ve
H

as
R

es
ul

t(
di

ag
C

om
P

rim
iti

ve
, l

og
ic

al
Li

nk
,

re
su

ltS
ta

te
)

ge
tE

xe
cu

tio
nS

ta
te

(
)

ge
tE

xe
cu

tio
nS

ta
te

(
)

fe
tc

hR
es

u
lts

(0
)

ca
nc

el
(

)

on
P

rim
iti

ve
C

an
ce

le
dD

ur
in

gE
xe

cu
tio

n(
di

ag
C

om
P

rim
iti

ve
, l

og
ic

al
Li

nk
)

cy
cl

ic
 s

er
vi

ce
s

cr
ea

te
 u

su
al

ly
m

or
e

th
an

 o
ne

 r
es

ul
t,

 e
ac

h
of

 th
es

e
re

su
lts

 w
ill

 b
e

an
no

un
ce

d
by

 a
n

ev
en

t
an

d
ha

s
an

 o
w

n
re

su
lt

st
at

e,
 w

hi
ch

is

 a
 s

na
ps

ho
t o

f t
he

 e
xe

cu
tio

n
(s

ev
er

al
 s

ta
te

s,
 n

o
of

 r
e

su
lts

 in

ri
ng

 b
uf

fe
r,

...
)

at
 t

he
 m

om
en

t t
he

co

rr
es

po
nd

in
g

re
su

lt
is

 c
re

a
te

d

R
em

ar
k:

th
e

re
su

lts
 w

ill
 b

e
tr

an
sp

or
te

d
to

 th
e

cl
ie

nt
 a

nd
 d

el
et

ed

fr
om

 t
he

 r
in

g
bu

ffe
r

in
 th

is
 c

as
e

ge
t o

nl
y

on
e

re
su

lt

as
k

fo
r

al
l a

va
ila

bl
e

re
su

lts
 a

nd
 g

et
 t

he
 2

re

su
lts

 f
ro

m
 t

he
 r

in
g

bu
ffe

r
in

 a
 c

ol
le

ct
io

n

ca
nc

el
 th

e
ex

ec
ut

io
n

of
 th

e
cy

cl
ic

 s
er

vi
ce

 a
nd

 w
ai

t f
o

r
th

e
co

rr
es

po
nd

in
g

ev
en

t

st
ar

ts
 w

ith
 in

st
an

tia
te

d
Lo

gi
ca

l L
in

k
an

d
S

er
vi

ce

R
em

ar
k:

T
he

 r
es

ul
t s

ta
te

 w
ill

 b
e

in
va

lid
 if

 th
e

ne
xt

 r
es

ul
t

st
at

e
of

 th
is

 s
er

vi
ce

 o
cc

ur
s.

 :
A

p
p

lic
a

tio
n

 :
 M

C
D

E
ve

nt
H

a
n

dl
e

r

C
L

IE
N

T

A
P

I

on
P

rim
iti

ve
H

as
R

es
ul

t(
di

ag
C

om
P

rim
iti

ve
, l

og
ic

al
Li

nk
,

re
su

ltS
ta

te
)

on
Li

nk
A

ct
iv

ity
S

ta
te

R
un

ni
ng

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

on
Li

nk
A

ct
iv

ity
S

ta
te

Id
le

(l
og

ic
al

Li
nk

, l
og

ic
al

Li
nk

S
ta

te
)

 :
M

C
D

R
es

ul
t

 :
M

C
D

S
er

vi
ce

 :
 M

C
D

R
eq

ue
st

 :
 M

C
D

R
eq

ue
st

P
ar

a
m

e
te

r

…

M
V

C
I

d
ia

g
n

o
s

ti
c

s
e

rv
er

Figure 77 — Cyclic diagnostic service execution

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 123

8.8.4 Result access

After each execution of a Service or ComPrimitive the MVCI diagnostic server creates a result. The following
Sequence Diagram shows the evaluation of a result of a Service.

The asynchronous start of the Service has been chosen as a starting point (see diagram in Figure 78). All
information about status and result are available after termination of service execution.

As soon as the event onPrimitiveTerminated(primitive:MCDDiagComPrimitive,
link:MCDLogicalLink, resultstate:MCDResultState.) is reported to the Client, the
evaluation can be started. The status of the execution is detected by asking the event delivered ResultState
Object. If this is eALL_POSITIVE as assumed in the sequence diagram, the result collection is polled with
method fetchResults(numberOfRequestedResults) from the Service. Within the example exactly
one result exists.

Now, the result object may be polled for the created results. Using method getResponses(), the Client
gets a response collection with one response for each ECU response (valid for SPR, for MPR see Figure 46)
belonging to the Logical Link. Usually this will be exactly one ECU; in the special case Functional Group
several ECUs will answer. The method MCDResponse::getAccessKeyOfLocation() can only be
realized in the MVCI diagnostic server if the PDU API delivers, e.g. CAN-Ids back to the MVCI diagnostic
server. The name of an ECU is coded in the shortname of a Base Variant. Each single response consists of a
collection with at least one response parameter, within which the actual structuring of the result according to
the tree concept has been set up. The leaves of the tree contain the actual values, the nods of the tree
symbolize the structure elements. To get to the single values of the result it has to be iterated through the tree
and each element is asked for type and name (getDataType() / getShortName()). Node
elements are polled for sub-elements (getResponseParameters()) and leaf
elements for the value (getValue()). Thus, the Client can analyse the result of any structure.

Remark:

If the Service is executed synchronously, the result is immediately delivered to the Client as the return value,
and it is not stored in the ring buffer. Therefore, only results from asynchronous execution will be stored in the
ring buffer.

The result structure of a service or job consists of an MCDResult object with one MCDResponse object for
each ECU response. An ECU may answer with a positive or negative response (e.g. a service requires the
execution of another service before its execution). In ODX there is a list of positive responses and a list of
negative responses at the DIAG-LAYER. The correspondent object of the DIAG-LAYER at MVCI diagnostic
server API is the MCDDbLocation. The collection of MCDDbResponse objects at the class
MCDDbDiagComPrimitive contains at least two responses per ECU, a positive and at least one negative
response.

First, the positive responses are matched against the current response according to their ordering. If none of
the positive response templates matches, the specific negative responses are matched against the current
response according to their ordering. If no specific negative response matches, the global negative responses
are matched against the current response. Again their ordering is considered.

If an ECU responds with a PDU which cannot be mapped onto one of the Response Templates defined for
this ECU – negative and positive – the execution state of this service with respect to this ECU is
eINVALID_RESPONSE (functional addressing) or eALL_INVALID_RESPONSE (functional/physical
addressing). If a more severe error occurs, the result might have a result state of eFAILED. The result
contains an empty response object (MCDResponse) with a shortname #RtGen_Response. For this
MCDResponse object, the method getResponseMessage returns the non-matching PDU (MCDValue of
type bytefield). The new error eRT_INVALID_RESPONSE is returned by the method
MCDResponse::getError().

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

124 © ISO 2012 – All rights reserved

8.8.5 Error handling in results

Within a Result errors may occur at any place. As for each error the execution will not necessarily be aborted
and an exception will not always be thrown, the errors are not delivered until the Result is returned.

To query all errors together within a Result the method
MCDDiagComPrimitive::getErrors():MCDErrors can be used. This method returns all error
objects of the last Result as a collection. Each of these error objects via the parent functionality has a
reference to the object (Result, Response or ResponseParameter) at which the error had occurred. This way,
the error unambiguously references the place of error within the structure of the Result.

The MCDResult Object contains the error with the highest severity found at the result, any response or
response parameter. Errors in result, any response or response parameters are static. This is the case
regardless of whether the result (responses, response parameter) elements are accessed or the method
hasError is called.

MCDDiagComPrimitive::getErrors():MCDErrors always delivers an error code if present, even
if no result will be delivered.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 125

Figure 78 shows the result access (Part 1).

 :
M

C
D

S
er

vi
ce

 :
M

C
D

R
e

su
ltS

ta
te

 :
M

C
D

R
es

ul
t

 :
M

C
D

R
es

p
on

se
s

 :
 M

C
D

R
es

po
ns

e
 :

M
C

D
R

es
po

ns
eP

a
ra

m
e

te
rs

 :
M

C
D

R
es

po
ns

eP
ar

am
et

er
 :

M
C

D
R

es
ul

ts

ex
e

cu
te

A
sy

nc
(

)

on
P

rim
iti

ve
Te

rm
in

at
ed

(d
ia

g
C

om
P

rim
iti

ve
, l

og
ic

al
Li

nk
, r

es
ul

tS
ta

te
)

on
Li

n
kA

ct
iv

ity
S

ta
te

R
un

ni
ng

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

on
Li

n
kA

ct
iv

ity
S

ta
te

Id
le

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

ge
tE

xe
cu

tio
nS

ta
te

(
)

fe
tc

hR
es

u
lts

(0
)

re
tu

rn
 a

ll
re

su
lts

 in
 a

 c
ol

le
ct

io
n

re
tu

rn
 a

 r
e

su
lt

re
tu

rn
 a

ll
re

sp
o

ns
es

 f
or

 o
ne

 r
es

u
lt

in
 a

 c
ol

le
ct

io
n

re
tu

rn
 a

 r
e

sp
on

se

ge
tR

es
po

ns
es

(
)

ge
tC

ou
n

t(
)

ge
tIt

em
B

yI
nd

ex
(0

)

ge
tC

ou
n

t(
)

fo
r

ev
e

ry
 r

es
ul

t d
o

ne
xt

 s
te

ps

ge
tIt

em
B

yI
nd

ex
(0

)

as
k

fo
r

nu
m

be
r

of

re
su

lts

in
 th

is
 c

as
e

1
re

su
lt

as
k

fo
r

nu
m

be
r

of

re
sp

on
se

s
in

 o
ne

re

su
lt

fo
r

ec
h

 E
C

U
 o

ne

re
sp

on
se

 e
xi

st
is

in

 th
is

 c
as

e
1

re
sp

on
se

fo
r

ev
e

ry
 r

es
ul

t
ex

is
ts

 a
n

ow
n

re
su

lt
ob

je
ct

st
a

rt
s

w
ith

 a
n

ex
is

tin
g

Lo

gi
ca

l L
in

k
an

d
S

e
rv

ic
e

e.
g.

: n
on

cy
cl

ic
 a

sy
n

c.

se
rv

ic
e

ex
ec

ut
io

n

th
e

se
rv

ic
e

ha
s

te
rm

in
at

e
d

an
d

th
e

re
su

lt
is

 a
va

ila
bl

e

if
th

e
ex

ec
u

tio
n

st
at

e
is

 e
O

K
 th

e
re

su
lt

ca
n

be
 e

va
lu

at
ed

 :
 A

pp
lic

at
io

n
 :

 M
C

D
E

ve
nt

H
a

nd
le

r

C
L

IE
N

T

A
P

I
M

V
C

I
d

ia
g

n
o

st
ic

se
rv

er

Figure 78 — Result access (Part 1)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

126 © ISO 2012 – All rights reserved

Figure 79 shows the result access (Part 2).

 :
M

C
D

S
er

vi
ce

 :
 M

C
D

R
e

su
ltS

ta
te

 :
 M

C
D

R
es

ul
t

 :
 M

C
D

R
e

sp
o

n
se

s
 :

 M
C

D
R

es
p

o
ns

e
 :

 M
C

D
R

e
sp

o
n

se
P

a
ra

m
e

te
rs

 :
M

C
D

R
e

sp
o

n
se

P
a

ra
m

e
te

r
 :

M
C

D
R

e
su

lts

g
e

tR
e

sp
o

n
se

P
a

ra
m

e
te

rs
(

)

re
tu

rn
 a

 c
o

lle
ct

io
n

 o
f

re
sp

o
ns

e
 p

a
ra

m
e

te
rs

re
tu

rn
 a

 r
e

sp
o

n
se

 p
a

ra
m

et
e

r

g
e

tI
te

m
B

yI
n

d
e

x(
in

d
e

x)

g
e

tT
yp

e
(

)

g
e

tS
h

or
tN

a
m

e
(

)

g
e

tV
a
lu

e
(

)

D
o

 s
te

ps
 A

 -
 E

 f
o

r
th

e
n

e
xt

 le
ve

l

fo
r

e
ve

ry
 r

e
sp

o
n

se
 d

o
 :

co
m

pl
e

x

si
m

p
le

ite
ra

te
 t

h
ro

u
gh

 o
f

re
sp

o
n

se
 p

a
ra

m
et

e
rs

in

 o
n

e
 r

e
sp

o
n

se

 :
 A

pp
lic

at
io

n
 :

M
C

D
E

ve
n

tH
an

dl
e

r

C
L

IE
N

T

A
P

I

D
D

O
?

A B C D E

M
V

C
I

d
ia

g
n

o
s
ti

c
s
er

v
e
r

Figure 79 — Result access (Part 2)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 127

Generally is valid:

The availability of results of DiagServices is reported via Events. Exactly one Event is reported per complete
result record. The following Events are used:

 OnPrimitiveTerminated (can, but does not have to return a result),

 onPrimitiveHasIntermediateResult (for complete result data records of Services in Jobs),

 onPrimitiveHasResult (for complete result data records of cyclic diagnostic services or for complete result
data records of non-cyclic diagnostic services in execution mode Repetition),

 onPrimitiveRepetitionStopped.

After one of these events has occurred it is possible to poll the number of complete result data records in
hand.

The results of asynchronous execution for each Service/DiagComPrimitive are stored to a ring buffer with the
following features:

RING BUFFER

One default value for the size in the whole MVCI diagnostic server:

 for every Service different values can be set,

 Range: >= 1, maximum 232 – 1,

 read results are deleted from the ring buffer (decrementing number of results).

The result ring buffer is internal to the MVCI diagnostic server and can contain 0 to N result entries. If the ring
buffer is full, any further result will overwrite the oldest result.

The ring buffer will not be emptied if a new execution starts and so all results from former executions which
had not been fetched by the Client or had not been overwritten (in cases of buffer overflow) are in the ring
buffer. The results can be fetched at any time the Client wants to fetch.

The method fetchResult() supports with parameter numReq different possibilities of result access:

Table 14 defines the result access possibilities.

Table 14 — Result access possibilities

Value of numReq Meaning

- n (n  N, n <> 0) returns n results. If n > m, where m is the number of available results in the buffer, m results will
be delivered. The results in the delivered collection are ordered by their timestamp. The element
with the lowest index has got the newest timestamp. All results will be removed from the queue.

0 returns the whole buffer. After this the buffer is empty. The results in the delivered collection are
ordered by their timestamp. The element with the lowest index has got the oldest timestamp.

+ n (n  N, n <> 0) returns n results. If n > m, where m is the number of available results in the buffer, m results will
be delivered. The results in the delivered collection are ordered by their timestamp. The element
with the lowest index has got the oldest timestamp.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

128 © ISO 2012 – All rights reserved

The complete result data records are taken from the MCDResult Object. This contains one MCDResponse
Object for each ECU response participating in the result. Each MCD ResponseObject is recursively composed
of MCDResponseParameter objects in collections, because of which structured results may be
decomposed up until its comprised elementary components.

For structured results the elements eFIELD (arrays or sequences), eSTRUCTURE and eMULTIPLEXER
(union) are used.

The relation between the MCDResponseParameter objects and ODX are described in 7.7.5 and 8.12.2.

Figure 80 shows the result structure DTC from example.

MCD
Response

MCD
Result

MCD
Response

MCD
Response

Described in data base

For every result
exists an own
result object.

MCDResult

For every ECU
response exists
one response.

MCDResponse

FSP

FSP_
Sequence FSP

Complete

Env_
Sequence

Temperature

Env

Env

FSP

DTC

Any structuring of
simple and complex
data types are done
with them.

MCD
ResponseParameter

Collection: MCDResponses

Collection: MCDResponseParameters

Temperature

Speed

Figure 80 — Result structure DTC from example

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 129

Figure 80 shows the result structure DTC.

ShortName: FSP_Sequence
DataType: eFIELD
ParameterType: eVALUE





























































 No: 1

No: 1

No: 1

No: 2

No: 2

No: 2

No: 2

No: 2

No: 2

No: 3

No: 3

No: 3

No: 3

No: 3

V: 10

V: 100

V: 1500

V: 11

V: 1600

V: 200

V: 86

V: 20

V: 300

V: 85

V: 30

V: 3500

V: 31

V: 3600

V: 32

V: 3700

V: 85

 getDataType()
getShortName()
getParameters()

 getDataType()
getShortName()
getValue()
MCDValue::getxxx()

In case of Multiplexer the method getValue() delivers the switch type (index of the branch).

data base

ShortName: FSP
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eA_UINT

DTC
32

ParameterType: eVALUE

ShortName:
DataType: eA_UINT16

DTC_State

ParameterType: eVALUE

ShortName:
DataType: eMULTIPLEXER

Complete

ParameterType: eVALUE

ShortName: Case_1
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: Case_2
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName:
DataType: eFIELD

Env_Sequence

ParameterType: eVALUE

ShortName:
DataType: eSTRUCTURE

Env

ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

 No: 1

 No: 1

 No: 1

runtime side

ShortName: FSP_Sequence
DataType: eFIELD
ParameterType: eVALUE

ShortName: FSP
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eA_UINT

DTC
32

ParameterType: eVALUE

ShortName:
DataType: eA_UINT16

DTC_State

ParameterType: eVALUE

ShortName:
DataType: eMULTIPLEXER

Complete

ParameterType: eVALUE

ShortName: Case_2
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eFIELD

Env_Sequence

ParameterType: eVALUE

ShortName :
DataType: eSTRUCTURE

E nv

ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName :
DataType: eSTRUCTURE

E nv

ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName :
DataType: eSTRUCTURE

E nv

ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName :
DataType: eSTRUCTURE

E nv

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName :
DataType: eSTRUCTURE

E nv

ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName: FSP
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eA_UINT

DTC
32

ParameterType: eVALUE

ShortName:
DataType: eA_UINT16

DTC_State

ParameterType: eVALUE

ShortName:
DataType: eMULTIPLEXER

Complete

ParameterType: eVALUE

ShortName: Case_2
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eFIELD

Env_Sequence

ParameterType: eVALUE

ShortName: FSP
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName:
DataType: eA_UINT

DTC
32

ParameterType: eVALUE

ShortName:
DataType: eA_UINT16

DTC_State

ParameterType: eVALUE

ShortName:
DataType: eMULTIPLEXER

Complete

ParameterType: eVALUE

ShortName: Case_1
DataType: eSTRUCTURE
ParameterType: eGENERATED

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

Figure 81 — Result structure DTC

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

130 © ISO 2012 – All rights reserved

ODX data for database template result structure DTC

<PARAM xsi:type="VALUE">
 <SHORT-NAME>FSP_Sequence</SHORT-NAME>
 <DOP-REF ID-REF=“EOP_DOP_ID“/>
</PARAM>
<END-OF-PDU-FIELDS>
 <END-OF-PDU-FIELD IS-VISIBLE="true" ID="EOP_DOP_ID">
 <SHORT-NAME>EOP_DOP</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF="FSP_DOP_ID"/>
 </END-OF-PDU-FIELD>
</END-OF-PDU-FIELDS>
<STRUCTURE ID=”FSP_DOP_ID”>
 <SHORT-NAME>FSP</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DTC</SHORT-NAME>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DTC_State</SHORT-NAME>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Complete</SHORT-NAME>
 <DOP-REF ID-REF="MUX_DOP_ID"/>
 </PARAM>
 </PARAMS>
</STRUCTURE>

<MUX ID="MUX_DOP_ID">
 <SHORT-NAME>Mux_DOP</SHORT-NAME>
 <SWITCH-KEY>
 <DATA-OBJECT-PROP-REF ID-REF="SwitchKey_DOP_ID"/>
 </SWITCH-KEY>
 <CASES>
 <CASE>
 <SHORT-NAME>Case_1</SHORT-NAME>
 <STRUCTURE-REF ID-REF="Case1_DOP_ID"/>
 </CASE>
 <CASE>
 <SHORT-NAME>Case_2</SHORT-NAME>
 <STRUCTURE-REF ID-REF="Case2_DOP_ID"/>
 </CASE>
 </CASES>
</MUX>

<STRUCTURE ID="Case1_DOP_ID">
 <SHORT-NAME>StructCase_1</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Temperature</SHORT-NAME>
 </PARAM>
 </PARAMS>
</STRUCTURE>

<STRUCTURE ID="Case2_DOP_ID">
 <SHORT-NAME>StructCase_2</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Env_Sequence</SHORT-NAME>
 <DOP-REF ID-REF="Field_DOP_ID"/>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 131

 </PARAM>
 </PARAMS>
</STRUCTURE>

<DYNAMIC-ENDMARKER-FIELD ID="Field_DOP_ID">
 <SHORT-NAME>Field_DOP</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF="Env_DOP_ID"/>
</DYNAMIC-ENDMARKER_FIELD>

<STRUCTURE ID="Env_DOP_ID">
 <SHORT-NAME>Env</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Temperature</SHORT-NAME>
 </PARAM>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Speed</SHORT-NAME>
 </PARAM>
 </PARAMS>
</STRUCTURE>

All runtime responses and Response Parameters of the Results are based upon the respective database
templates, which contain the related meta information. Thus, the name (semantic assignment) as well as the
type is predefined. Concerning its structure, a RunTime result always has to be in conformance with the
database template.

Firstly, the type of the Response Parameter always has to be requested. If this is a simple data type, the value
and short name of the element can be polled (for the semantic interpretation of the result).

In cases of a complex data type the number of the Response Parameters on the next hierarchical level is
polled and then the list of these Response Parameters is read in.

This is repeated as long as no further Response Parameter is in hand.

In cases of a Multiplexer the Value contains the select value (branch index beginning at 0) which has been
used for the respective branch. The numbering of mux branches is determined by the ordering of the CASE
elements of ODX data. If the ODX data defines a DEFAULT-CASE element, that element is appended as the
last mux branch.

If an empty CASE (CASE without DOP) is used within a Multiplexer (MUX), it is not shown at the DbTemplate.
The RunTime Result delivers a Multiplexer Element without a following ResponseParameter.

Parametername of Parameter in Mux shall be the Name of the Case in ODX (the cases make reference to a
structure, which has its own name; the elements of this structure will be used at next level of parameters at
MVCI diagnostic server API).

Additionally, there is a possibility to poll the result for the related Service and the Service Parameters used for
the execution.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

132 © ISO 2012 – All rights reserved

Table 15 defines the overview about Request-, Response- and Protocol parameter data types.

Table 15 — Overview about Request-, Response- and Protocol parameter data types

DataType
as delivered by
getDataType()

Type Included in
Request

Parameter

Included in
Response
Parameter

Physical data
type of the
MCDValue

delivered by
getValue()

Content of the Value delivered
by getValue()

eFIELD complex ― Yes A_UINT32 Number of structure entries
directly contained in the field

eMULTIPLEXER complex ― Yes A_UINT32 Branch index, beginning at 0

eSTRUCTURE complex Yes Yes A_UINT32 Number of entries directly
contained in the structure

eSTRUCT_FIELD complex Yes (only at
Protocol
Parameters)

― A_UINT32 Number of structure entries
directly contained in the field

eENVDATA complex ― Yes A_UINT32 Value of eDTC

eENVDATADESC complex ― Yes A_UINT32 Number of entries directly
contained in the
ENVDATADESC parameter

eDTC simple Yes Yes A_UINT32 Value of the corresponding
element TROUBLE-CODE

eEND_OF_PDU complex Yes ― A_UINT32 Number of entries directly
contained in the END_OF_PDU
parameter

eTEXTTABLE simple Yes Yes A_UNICODE2S
TRING

Text of current conversion

eTABLE_ROW complex Yes Yes A_UINT32 Number of entries directly
contained in the table row

Complex means that the data type is structured. The next hierarchical level of parameters can contain
elements. So in cases of a complex (structured) data type the next collection of parameters shall be taken
over with getResponseParameters/getParameters.

Table 16 defines parameter types for parameters generated by the MVCI diagnostic server (only if no direct
relation to a parameter in ODX):

Table 16 — Parameter types

DataType
as delivered by getDataType()

ParameterType
ss delivered by getMCDParameterType()

eSTRUCTURE eGENERATED (in cases where the structure represents a MUX-CASE or is
directly contained in a FIELD, eSTRUCT_FIELD or an END_OF_PDU)

eTABLE_ROW eGENERATED

Table 17 defines the parameter types for protocol parameters.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 133

Table 17 — Table of parameter types for protocol parameters

Type of Protocol
Parameter with respect

to ODX

ParameterType
as delivered by getParameterType()

DataType as delivered by
getDataType()

COMPARAM eVALUE depends on referenced DOP in ODX

COMPLEX-COMPARAM eGENERATED eSTRUCT_FIELD

Notes concerning the example:

For each ECU n errors may occur. Each error is symbolized by the ResponseParameter FSP. The errors of
one ECU at a certain instance of time have been framed in the FSP Sequence for comparison with older
versions of this specification. Using the object model, the framing of errors into the FSP Sequence would not
be necessary, as each error may be handed over as independent Response Parameter. Within the figure in
hand, each Response contains only one Response Parameter (FSP_Sequence).

Basically, the result structure of a Service is determined by the data with which the RunTime Result has to be
in conformance. However, generally it can be implied that for each complete result data record (of a Cyclic
Diag Service or non-cyclic Service in Repetition mode), one ResultObject is created; that means that the
number of result data records is identical to the number of ResultObjects.

The example "read diagnostic trouble code" is also used as Job example. For this, the ECU is polled every
minute, and an intermediate result of the Job is given out every two minutes. In this case also, the number of
Results is two.

Subsequently an example for a simple data type (e.g. temperature) is shown. In this case the Response
Structure only contains the element with the basic data type.

Figure 82 shows the response structure DTC for only one ResponseParameter.

For every result
exists an own
result object.

For every ECU
response exists
one response.

Any structuring of
simple and complex
data types are done
with them.

MCDResponse MCD
ResponseParameter

MCD
Response

* MCDResponses
** MCDResponseParameters

*

**

MCD
Result

Temperature

MCDResult

Described in data base

Figure 82 — Response structure DTC for only one ResponseParameter

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

134 © ISO 2012 – All rights reserved

Remark for Result handling in cases of Functional Groups

For each ECU a DbResponse is available (the DbResponses of different ECU shall be identical) and so for a
Functional Group exactly one DbResponse is available.

Database:

 1 DbFunctional Group,

 1 DbService,

 1 DbResponse (ODX: n DbResponses).

Runtime:

 1 Functional Group,

 1 Service,

 n Responses.

Figure 83 shows an example for one service.

MCDDbResponseMCDResponse

MCDResult

* 1

MCDService

1

1

functionalGroup:
MCDLogicalLink

1

1

1

1

example for 1 Service:

MCDResponses

1

*

Figure 83 — Example for one service

The physical type of a Response shall be identical. The conversion type (coding type) can be ECU-specific.
The rule for interpretation in implementations is shown in Figure 62.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 135

 In the case of functional communication the access key of the responding ECU is part of its response:

 In the case of response with the physical address the access key will be of base variant or variant.

 In the case of response with functional address the access key will be of functional group.

8.9 Read DTC

8.9.1 ODX Data for Example Read DTC

ODX-Data (Extract) of the DB-Template

<DTC-DOP ID=”DTC_DOP_ID”>
 <SHORT-NAME>DTC_DOP</SHORT-NAME>
 (…)
<DIAG-CODED-TYPE xsi:type="STANDARD-LENGTH-TYPE" BASE-DATA-TYPE="A_ UINT32">
 <BIT-LENGTH>16</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
 <DTCS>
 <DTC ID=”DTC_110_ID”>
 <SHORT-NAME>DTC_110</SHORT-NAME>
 <TROUBLE-CODE>110</TROUBLE-CODE>
 (…)
 </DTC>
 <DTC ID=”DTC_120_ID”>
 <SHORT-NAME>DTC_120</SHORT-NAME>
 <TROUBLE-CODE>120</TROUBLE-CODE>
 (…)
 </DTC>
 <DTC ID=”DTC_130_ID”>
 <SHORT-NAME>DTC_130</SHORT-NAME>
 <TROUBLE-CODE>130</TROUBLE-CODE>
 (…)
 </DTC>
 (…)
 </DTCS>
<PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
</DTC-DOP>

<DATA-OBJECT-PROP ID=”SimpleDOP_Uint_ID”>
 <SHORT-NAME>SimpleDOP_Uint</SHORT-NAME>
 (…)
<PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
</DATA-OBJECT-PROP>

<DATA-OBJECT-PROP ID=”SimpleDOP_Uint16_ID”>
 <SHORT-NAME>SimpleDOP_Uint16</SHORT-NAME>
 (…)
<PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT16"/>
</DATA-OBJECT-PROP>

<DATA-OBJECT-PROP ID=”SimpleDOP_Int_ID”>
 <SHORT-NAME>SimpleDOP_Int</SHORT-NAME>
 (…)
<PHYSICAL-TYPE BASE-DATA-TYPE="A_INT32"/>
</DATA-OBJECT-PROP>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

136 © ISO 2012 – All rights reserved

<ENV-DATA-DESC ID=”EnvDataDesc_ID”>
<SHORT-NAME>EnvDataDesc</SHORT-NAME>
<PARAM-SNREF SHORT-NAME=”DTC”/>
<ENV-DATAS>
 <ENV-DATA ID=”EnvData_DTC_110_ID”
 <SHORT-NAME>EnvData_A</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Temperature</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Uint_ID”/>
 </PARAM>
 </PARAMS>
 <DTC-VALUES>
 <DTC-VALUE>110</DTC-VALUE>
 </DTC-VALUES>
 <ENV-DATA>
 <ENV-DATA ID=”EnvData_DTC_120_ID”
 <SHORT-NAME>EnvData_B</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Env_Sequence</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleFieldDOP_ID”/>
 </PARAM>
 </PARAMS>
 <DTC-VALUES>
 <DTC-VALUE>120</DTC-VALUE>
 </DTC-VALUES>
 <ENV-DATA>
 <ENV-DATA ID=”EnvData_DTC_130_ID”
 <SHORT-NAME>EnvData_C</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Temperature</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Uint_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Speed</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Int_ID”/>
 </PARAM>
 </PARAMS>
 <DTC-VALUES>
 <DTC-VALUE>130</DTC-VALUE>
 </DTC-VALUES>
 <ENV-DATA>
 <ENV-DATA>
 <SHORT-NAME>Common</SHORT-NAME>
 <PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Env_Sequence</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”CommonFieldDOP_ID”/>
 </PARAM>
 </PARAMS>
 <ALL-VALUE/>
 </ENV-DATA>
</ENV-DATAS>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 137

</ENV-DATA-DESC>

<DYNAMIC-ENDMARKER-FIELD ID=”SimpleFieldDOP_ID”>
 <SHORT-NAME>DEMF_Simple</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF=”EnvStruct_ID”>
 (…)
</DYNAMIC-ENDMARKER-FIELD>

<DYNAMIC-ENDMARKER-FIELD ID=”CommonFieldDOP_ID”>
 <SHORT-NAME>DEMF_Common</SHORT-NAME>
 <BASIC-STRUCTURE-REF ID-REF=”CommonStruct_ID”>
 (…)
</DYNAMIC-ENDMARKER-FIELD>

<STRUCTURE ID=”EnvStruct_ID”>
 <SHORT-NAME>Env</SHORT-NAME>
 (…)
<PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Temperature</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Uint_ID”/>
 </PARAM>
</PARAMS>
</STRUCTURE>

<STRUCTURE ID=”CommonStruct_ID”>
 <SHORT-NAME>CommonStruct</SHORT-NAME>
 (…)
<PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Temperature</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Uint_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>Speed</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Int_ID”/>
 </PARAM>
</PARAMS>
</STRUCTURE>

<STRUCTURE ID=”FSP_ID”>
 <SHORT-NAME>FSP</SHORT-NAME>
 (…)
<PARAMS>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DTC</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”DTC_DOP_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>DTC_State</SHORT-NAME>
 (…)
 <DOP-REF ID-REF=”SimpleDOP_Uint16_ID”/>
 </PARAM>
 <PARAM xsi:type=”VALUE”>
 <SHORT-NAME>EnvRelation</SHORT-NAME>
 (…)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

138 © ISO 2012 – All rights reserved

 <DOP-REF ID-REF=”EnvDataDesc_ID”/>
 </PARAM>
</PARAMS>
</STRUCTURE>

<END-OF-PDU-FIELD ID=”EOP_ID”>
 <SHORT-NAME>EOP</SHORT-NAME>
(…)
 <BASIC-STRUCTURE-REF ID-REF=”FSP_ID”/>
</END-OF-PDU-FIELD>

8.9.2 Reading without FaultMemories

All DTC values available for a Location may be read out directly using MCDDbLocation::getDbDTCs().
The DTCs have a manufacturer-specific priority structure. For each DTC value all environment data can be
polled with MCDDbLocation::getDbEnvDataByTroubleCode. The result MCDResponseParameters
contains only one MCDResponseParameter of type eENVDATA for each DTC, which is corresponding
ENVDATA to this trouble code.

In general, a DB template for environment data could contain several DTC DOPs and several
ENVDATADESC DOPs. These DOPs can be structured arbitrarily. They can even reside on different
hierarchical levels in the DB template.

In the case of DTCs there are three additional ResponseParameter types.

The type eDTC is a Simple DOP. For a ResponseParameter of the type eDTC, getValue returns the
TroubleCode of the DTC as A_UINT32 encapsulated in MCDValue.

The type eENVDATA on the other hand is a Complex DOP, which represents the environment data. This type
combines the advantages of a structure with the characteristic features of a Multiplexer. eENVDATA returns a
Collection of ResponseParameters, which according to the occurring data types (Simple or Complex DOP)
may contain data or further Collections of ResponseParameters. In cases of a complex type only eFIELD,
eSTRUCTURE, or eMULTIPLEXER are allowed. For a ResponseParameter of the type eENVDATA method
getValue returns the Switch-Param as A_UINT32. This value is equal to the value of eDTC.

This shall be demonstrated with help of parts of the Database Template in Figure 81.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 139

Figure 84 shows the different eEnvData blocks for an eDTC element I.

ShortName: Temperature
DataType: eA_UINT32

ShortName: EnvData_A (specific 110)
DataType: eENVDATA

ShortName: Speed
DataType: eA_INT32

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Temperature
DataType: eA_UINT32

ShortName: EnvData_C (specific 130)
DataType: eENVDATA

ShortName: EnvData_B (specific 120)
DataType: eENVDATA

ShortName:
DataType: eSTRUCTURE

Env

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Common (AllValues)
DataType: eENVDATA

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: 32

Speed
eA_INT

ShortName: CommonStruct
DataType: eSTRUCTURE

Figure 84 — Different eEnvData blocks for an eDTC element I

The type eENVDATADESC is a complex DOP, which announces the inclusion of an environment data
(eENVDATA) block. Inside a Db result template eENVDATADESC and eDTC shall be on the same hierarchical
level.

Every path in a response structure starting at its root element down to a leaf shall contain at most one element
of type eENVDATADESC.

The collection of DbResponseParameters at this DOP (eENVDATADESC) consists of zero and the collection
of ResponseParameters (run time side) consist of zero or one till two elements of type eENVDATA, i.e. the
collection is empty if there is no environment data available. The method delivers first 0 or 1 ALL-VALUE
ENV_Data and then 0 or 1 ENV-Data for the specific trouble code.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

140 © ISO 2012 – All rights reserved

Figure 85 shows the usage of Type eEnvDataDesc together with eDTC I.

ShortName: FSP_Sequence
DataType: eFIELD

ShortName: FSP
DataType: eSTRUCTURE

ShortName:
DataType: eDTC

DTC

ShortName:
DataType: eA_UINT16

DTC_State

ShortName: EnvRelation
DataType: eENVDATADESC

Figure 85 — Usage of Type eEnvDataDesc together with eDTC I

The names of all Response Parameters of the type eENVDATA within a Database Template have to be
unique. The advantage of the separation between the database template finished with eENVDATADESC and
the different eENVData constructs is that, independent from the Response Parameter eDTC (the DTC
Value), all variants of the EnvironmentData, which may occur via the selected Service for this Location, have
not been included within the Database Template.

Figure 86 shows the relation between database template and different environment data blocks I.

ShortName: EnvData_A (specific 110)
DataType: eENVDATA

ShortName: Temperature
DataType: eA_UINT32

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName: EnvData_B (specific 120)
DataType: eENVDATA

ShortName: EnvData_C
DataType: eENVDATA

(specific 130)

ShortName:
DataType: eFIELD

Env_Sequence

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

V:110
V:120

V:130

V:110
V:120

V:130

ShortName: FSP_Sequence
DataType: eFIELD

ShortName: FSP
DataType: eSTRUCTURE

ShortName:
DataType: eDTC

DTC

ShortName:
DataType: eA_UINT16

DTC_State

ShortName: EnvRelation
DataType: eENVDATADESC

ShortName: Common (AllValues)
DataType: eENVDATA

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: 32

Speed
 eA_INT

ShortName: CommonStruct
DataType: eSTRUCTURE

Figure 86 — Relation between database template and different environment data blocks I

On the runtime side, the result is populated dynamically. Here, the value of the eDTC element defines which
eENVDATA block is to be used in the runtime response structure.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 141

Figure 87 shows the RunTime result for DTC example I.

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Common (AllValues)
DataType: eENVDATA

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: 32

Speed
eA_INT

ShortName: EnvData_B (specific 120)
DataType: eENVDATA

ShortName:
DataType: eFIELD

Env_Sequence

V:120

 getValue()

V:120

ShortName: FSP_Sequence
DataType: eFIELD

ShortName: FSP
DataType: eSTRUCTURE

ShortName:
DataType: eDTC

DTC

ShortName:
DataType: eA_UINT16

DTC_State

ShortName: EnvRelation
DataType: eENVDATADESC

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

ShortName: CommonStruct
DataType: eSTRUCTURE

V:120

Figure 87 — RunTime result for DTC example I

8.9.3 Reading with FaultMemories

Per location (DIAG-LAYER), different fault memories exist, each containing a set of DTCs. In diagnostic
server all variant-related DTCs should be returned for the database part. An element of type
MCDDbFaultMemory (ODX: DTC-DOP) contains a collection of type MCDDbDiagTroubleCodes.
The members of this collection are elements of type MCDDbDiagTroubleCode (ODX: DTC).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

142 © ISO 2012 – All rights reserved

Figure 88 shows the relation between FaultMemory and EnvDataDesc.

ShortName:
DataType: eFIELD

Env_Sequence

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Temperature
DataType: eA_UINT32

ShortName: FSP
DataType: eSTRUCTURE

ShortName: EnvData_B
DataType: eENVDATA

(specific 120)

ShortName:
DataType: eFIELD

Env_Sequence

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName: EnvData_C
DataType: eENVDATA

(specific 130)

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Common (all values)
DataType: eENVDATA

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: 32

Speed
eA_INT

Fault Memory

Anton

DTC Values
110 120 130

EnvDataDesc

ShortName: EnvData_D
DataType: eENVDATA

(specific 140)

EnvDataDesc

ShortName: EnvData_E
DataType: eENVDATA

(specific 150)

ShortName: EnvData_F
DataType: eENVDATA

(specific 160)

ShortName: EnvData_G
DataType: eENVDATA

(specific 110)

EnvDataDesc

ShortName: EnvData_H
DataType: eENVDATA

(specific 170)

ShortName: EnvData_I
DataType: eENVDATA

(specific 180)

Fault Memory

Berta

DTC Values
140 150 160

Fault Memory

Cesar

DTC Values
110 170 180

ShortName: MCDDbParameter
DataType: eENVDATADESC

ShortName: MCDDbParameter
DataType: eENVDATADESC

ShortName: MCDDbParameter
DataType: eENVDATADESC

ShortName: EnvData_A
DataType: eENVDATA

(specific 110)

ShortName: Temperature
DataType: eA_UINT32

ShortName: Common (all values)
DataType: eENVDATA

ShortName:
DataType: eA_INT

Env_State
32

ShortName:
DataType: eA_INT

Env_State
32

ShortName:
DataType: eA_INT

Env_State
32

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName:
DataType: eFIELD

Env_Sequence

ShortName:
DataType: eSTRUCTURE

Env

ShortName: Speed
DataType: eA_INT32

ShortName: Temperature
DataType: eA_UINT32

ShortName: Speed
DataType: eA_INT32

ShortName: CommonStruct
DataType: eSTRUCTURE

Figure 88 — Relation between FaultMemory and EnvDataDesc

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 143

In ODX, several DTC-DOPs can be referenced from one ECU. Furthermore, DTC-DOPs can be linked into
another DTC-DOP. This allows the composition of a new DTC-DOP from existing DTC-DOPs. At the interface
of the diagnostic server, any DTC-DOP to be presented, that is, every DTC-DOP referenced by an ECU, is
already converted into a flat list of DTCs – all links have been resolved.

In addition, there can be several eENVDATADESCs in ODX. Therefore, a response parameter of type
eENVDATADESC in diagnostic server links together an eENVDATADESC from ODX with a response
parameter of type eDTC. The value of this response parameter of type eDTC is then used in the server to
calculate the sub-structures of the corresponding response parameter of type eENVDATADESC at runtime.

With respect to ODX, elements of type ENV-DATA are COMPLEXDOPs of type BASIC-STRUCTURE.
Therefore, a response parameter of type eENVDATADESC can contain more than one complex response
parameter of type eENVDATA.

Per ENV-DATA-DESC there can be at most one ENV-DATA applying to all DTCs; all others need to be DTC-
specific. Every DTC can have at most one specific ENV-DATA applying to it. The order of the corresponding
structures is defined as: ALL-VALUE ENVDATA comes first (named common in diagnostic server and may be
empty, which means no data in ODX), then the DTC-specific ENV-DATA.

ENVDATAs are returned as collection of type MCDDbResponseParameters.

The method MCDbEnvDataDesc::getCompleteDbEnvDatasByDiagTroubleCode (A_UNIT32
troubleCode) returns a collection of type MCDDbResponseParameters. This collection contains at most
an MCDDbResponseParameter of type eENVDATA which contains response parameters representing
common environment data and at most an MCDDbResponseParameter of type eENVDATA which contains
response parameters representing environment data specific to a certain DTC value (mind the order).

The method MCDbEnvDataDesc::getCommonDbEnvDatas() returns a collection of type
MCDDbResponseParameters. This collection contains at most an MCDDbResponseParameter of type
eENVDATA which contains response parameters representing common environment data.

Figure 89 shows the common eEnvData block for Fault Memory with name "Anton".

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Common (AllValues)
DataType: eENVDATA

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: 32

Speed
eA_INT

ShortName: CommonStruct
DataType: eSTRUCTURE

Figure 89 — Common eEnvData block for Fault Memory with name "Anton"

The method MCDbEnvDataDesc::getSpecificDbEnvDatasByDiagTroubleCode (A_UNIT32
troubleCode) returns a collection of type MCDDbResponseParameters. This collection contains at most
an MCDDbResponseParameter of type eENVDATA which contains response parameters representing
environment data specific to a certain DTC value.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

144 © ISO 2012 – All rights reserved

Figure 90 shows the Different eEnvData blocks for an eDTC element II.

ShortName: Temperature
DataType: eA_UINT32

ShortName: EnvData_A (specific 110)
DataType: eENVDATA

ShortName: Speed
DataType: eA_INT32

ShortName: Temperature
DataType: eA_UINT32

ShortName:
DataType: eFIELD

Env_Sequence

ShortName: Temperature
DataType: eA_UINT32

ShortName: EnvData_C
DataType: eENVDATA

(specific 130)ShortName: EnvData_B
DataType: eENVDATA

(specific 120)

ShortName:
DataType: eSTRUCTURE

Env

Figure 90 — Different eEnvData blocks for an eDTC element II

For details and an example see 8.9.2.

8.9.4 DTC Read Service

The SEMANTIC-Attribute “FAULTREAD”, which is allowed to occur only once for each Location, is used for
the instancing of the Read DTC Service by means of the method
MCDLogicalLink::createDiagComPrimitiveBySemanticAttribute(semantic:A_ASCI
ISTRING):MCDDiagComPrimitive.

The method MCDDbLocation::getDbServicesBySemanticAttribute
(semantic_A_ASCIISTRING):MCDDbServices is used to filter out Services from the database on
the basis of the Semantic Attributes defined within the database. To leave open the possibility to define further
Semantic Attributes, the Semantic Attribute is handed over as String.

In cases of the existence of more than one service for one semantic attribute the method
MCDLogicalLink::createDiagComPrimitiveBySemanticAttribut does not create any
service but returns the error eRT_NO_UNIQUE_SEMANTIC_ATTRIBUTE. Some semantic attributes are
unique (e.g. STARTCOM, STOPCOM).

8.10 Logical Link

8.10.1 Connection overview

Information about a Logical Link is contained in the Logical Link Table. Elements of this table are the
AccessKey, which includes protocol, and the Physical Vehicle Link (because it is only a description of the
vehicle side). Logical Links are used to access the same ECU on different ways, or access more than one
ECU instance on different links.

By selecting a Logical Link, the selection of a Location and the respective access path within the Client takes
place.

The application can use the short name of Logical Links to instance and work with ECUs. The short name is
defined in the Logical Link Table. One method of the Logical Link will deliver the access key.

Logical Links are used to access the same ECU on different ways or access more than one ECU instance on
different links. Different Logical Links can share the same PhysicalLink to different ECUs. Each Logical Link is
assigned its own instruction queue (represented by Activity state) for the execution of DiagComPrimitives.

Within the Logical Link Table, only the BaseVariant is entered for each ECU, which describes an
unambiguous access path to the ECU. The Variant may be polled or identified; the instancing of a Variant is
also possible via the Logical Link. For every instantiated Logical Link only one Location can be active at one
point in time for one ECU.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 145

8.10.2 State diagram of Logical Link

At the Logical Link it is distinguished between the Logical Link States and the Activity (Queue) States. The
state diagrams are influenced by the states of the Primitives/Services (see Table 12).

All state transitions are indicated by means of Events. Non-state changing operations, for Logical Link State
and the Activity (Queue) State, will not produce an event.

The <D> method MCDLogicalLink:reset()called in state eCREATED does not produce an event or an
exception. This is a state transition inside the state.

Figure 91 shows the state diagram Logical Link in function block D.

eCREATED

eOFFLINE

eONLINE

eCOMMUNICATION

close,
reset

removeLogicalLinkcreateLogicalLink...

open

gotoOnline

START STOP

close,
reset

M
C

D
S

top
C

om
m

un
ica

tio
n

M
C

D
S

tart
C

om
m

un
ica

tion

on
Lin

kS
tateO

n
lin

e
(trigge

red
on

E
C

U
)

o
nS

ta
tic

In
te

rf
a

c
e

Er
ro

r
o

nI
n
te

rf
a

c
e

Er
ro

r
or

reset

Figure 91 — State diagram Logical Link in function block D

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

146 © ISO 2012 – All rights reserved

Table 18 defines the Logical Link states.

Table 18 — Logical Link states

 MCD
Project

MCDLogicalLink MCDStart
Communi
cation

MCDStop
Communi
cation

MCD
Interface

S
ys

te
m

 S
ta

te

L
o

g
ic

al
L

in
k

S
ta

te

re
m

o
ve

L
o

g
ic

al
L

in
k

o
p

en

cl
o

se

re
s

et

g
et

In
te

rf
ac

eR
es

o
u

rc
e

g
o

to
O

n
lin

e

se
n

d
B

re
ak

cr
e

at
eD

ia
g

C
o

m
P

ri
m

it
iv

e

ex
e

cu
te

S
yn

c

ex
e

cu
te

S
yn

c

d
is

co
n

n
ec

t

eL
O

G
IC

A
LL

Y
_

C
O

N
N

E
C

T
E

D
 eCREATED X X X X --- --- X --- --- X a

eOFFLINE --- --- X X X X X X --- --- ---

eONLINE --- --- X X X --- X X X --- ---

eCOMMUNICATION --- --- X X X --- X X --- X ---

a This is a valid action in cases where all MCDLogicalLinks, referencing this MCDInterface, are in state eCREATED; otherwise it is an
invalid action and an exception will be thrown. See corresponding method definition.

In cases of an error MCDLogicalLink::close() throws an exception and does not perform a state
change. reset() never throws an exception. The same holds true for MCDLogicalLink::open() and
MCDLogicalLink::gotoOnline(). MCDLogicalLink::reset() never throws an exception.

If any exception occurs during a state changing operation, the state shall in general not be changed For
successful state changes the MCDExecutionState shall be eALL_POSITIVE. State is not changed, if
MCDExecutionState is eNEGATIVE / eALL_NEGATIVE or eFAILED.

Table 19 defines the Logical Link state description.

Table 19 — Logical Link state description

Logical Link State Description

eCREATED

Event: onLinkStateCreated

Logical Link has been created, but is not ready for operation.

eOFFLINE

Event: onLinkStateOffline

The Logical Link has opened a hardware channel.

No logical connection to the ECU exists, which means no communication has
taken place.

eONLINE

Event: onLinkStateOnline

A logical connection to the ECU exists, but no DiagComPrimitive or Service is
executed.

eCOMMUNICATION

Event: onLinkStateCommunicating

A logical connection to the ECU exists; at least one DiagComPrimitive or Service
is executed.

Figure 92 shows the state diagram ACTIVITY (QUEUE) states.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 147

executeAsync or
startRepetition

executeAsync or
startRepetition

clearQueue

suspend

stopRepetition

onLinkActivityStateIdle
resume

START

STOP

cancel

suspend

eACTIVITY_IDLE eACTIVITY_RUNNING eACTIVITY_SUSPENDED

executeAsync or
startRepetition or

Figure 92 — State diagram ACTIVITY (QUEUE) states

Table 20 defines the Activity states.

Table 20 — Activity states

 MCDLogicalLink

System
State

LL State Activity State suspend resume clearQueue getQueueState

eL
O

G
IC

A
LL

Y
_C

O
N

N
E

C
T

E
D

eCREATED

eACTIVITY_IDLE - - - -

eACTIVITY_RUNNING - - - -

eACTIVITY_SUSPENDED - - - -

eOFFLINE

eACTIVITY_IDLE - - - -

eACTIVITY_RUNNING - - - -

eACTIVITY_SUSPENDED - - - -

eONLINE &
eCOMMUNICATION

eACTIVITY_IDLE X - - X

eACTIVITY_RUNNING X - - X

eACTIVITY_SUSPENDED - X X X

The method MCDLogicalLink::suspend() has effect on all services, as well as on repeated services.
Results coming in while the Activity queue is suspended will be deleted and not be given to the client
application. Non-cyclic single diagnostic services currently running on the ECU are completed and the result is
delivered to the client. The results of cyclic diagnostic services are not delivered to the application but the
cyclic service will be continued on the ECU. The results of currently running repeated services are not
delivered to the application; repetition of the service will not continue until a call
MCDLogicalLink::resume(). The repetition timer of a repeated service is unaffected by suspension. If
the repetition time is reached during suspension no action is taken and the repetition timer is rescheduled.
New services from the client and services already in repetition shall be executed intermittently by the MVCI
diagnostic server after resume.

Repetition of services is performed by a scheduler in the diagnostic server. Thus, stopRepitition()
does not require to send any information to the ECU. Rather, stopRepitition() is a method that tells
the diagnostic server internal scheduler not to insert the respective service into the queue again to avoid
another repetition cycle. In contrast, the method startRepitition() inserts a service into the queue
which is then to be repeated by the diagnostic server. For updateRepitition() the same applies as for
stopRepitition(). As a result, stopRepitition() and updateRepitition() are not queued
nor do these methods queue any service.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

148 © ISO 2012 – All rights reserved

The method MCDLogicalLink::clearQueue() has no effect on running repeated and cyclic services.
This method does not change the state eACTIVITY_SUSPENDED.

Calls of the methods executeAsync() and startRepetition() are allowed in state
eACTIVITY_SUSPENDED; the execution will not be started unless resume() has been called.

A call of resume() changes the state from eACTIVITY_SUSPENDED to eACTIVITY_RUNNING. In
cases of an empty queue the state eACTIVITY_IDLE is reached with an event
OnLinkActivityStateIdle.

Running cyclic services and repeated services are stopped by the MVCI diagnostic server through cancel or
stopRepetition calls, respectively. The state will be changed from eACTIVITY_SUSPENDED to
eACTIVITY_IDLE.

VariantIdentification(AndSelection) are also allowed in logical link state eONLINE.

Table 21 defines the Activity queue states description.

Table 21 — Activity queue states description

Activity State Description

eACTIVITY_IDLE

Event: onLinkActivityStateIdle

A logical connection to the ECU exists, but no DiagComPrimitive or Service is
executed (DiagComPrimitiveState: eIDLE, RepetitionState: eNOT_REPEATING).

eACTIVITY_RUNNING

Event:
onLinkActivityStateRunning

A logical connection to the ECU exists; at least one DiagComPrimitive or Service is
executed (DiagComPrimitiveState: ePENDING, RepetitionState: eREPEATING or
eNOT_REPEATING).

As soon as all services have been finished, the state switches back to
eACTIVITY_IDLE.

New services from the client and services already in repetition shall be executed
intermittently by the MVCI diagnostic server.

eACTIVITY_SUSPENDED

Event:
onLinkActivityStateSuspended

The execution via activity queue has been stopped.

Within this state, a DiagComPrimitive which is already in the activity queue can be
cancelled or a DiagComPrimitive may be put into the activity queue asynchronously
or by means of startRepetition().

All services are affected, also repeating and cyclic.

Results of repeating or cyclic services will not be transferred to the application.

Non-cyclic single services currently running on the ECU get completed and the result
is delivered to the client.

Cyclic services are continuing on the ECU and have to be cancelled separately.

Repeating services get stopped until resume.

The repetition timer is unaffected by the suspension.

If the repetition time is reached during suspension, no action is taken and the
repetition timer is rescheduled.

ClearQueue deletes all single and repeating services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 149

Figure 93 shows the Logical Link state diagram in function block D including ACTIVITY (QUEUE) state.

eONLINE

eCOMMUNICATION

gotoOnline

START STOP

eCREATED

eOFFLINE

close, reset

removeLogicalLinkcreateLogicalLink...

open close,
reset

MCDStopCommunicationMCDStartCommunication
onLinkStateOnline
(triggered on ECU)

executeAsync or
startRepetition

executeAsync or
startRepetition

clearQueue

suspend

stopRepetition

onLinkActivityStateIdle
resume

START

STOP

cancel

suspend

eACTIVITY_IDLE eACTIVITY_RUNNING eACTIVITY_SUSPENDED

executeAsync or
startRepetition

executeAsync or
startRepetition

clearQueue

suspend

stopRepetition

onLinkActivityStateIdle
resume

START

STOP

cancel

suspend

eACTIVITY_IDLE eACTIVITY_RUNNING eACTIVITY_SUSPENDED

executeAsync or
startRepetition or

executeAsync or
startRepetition or

o
n
St

a
tic

In
te

rfa
c

e
Er

ro
r

o
n
In

te
rf
a

c
e

Er
ro

r
or

reset

Figure 93 — Logical Link state diagram in function block D including ACTIVITY (QUEUE) state

The synchronous execution of Services takes place directly within the ACTIVITY States eACTIVITY_IDLE and
eACTIVITY _RUNNING and does not cause a state change.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

150 © ISO 2012 – All rights reserved

Table 22 defines the relations between states and actions.

Table 22 — Relations between states and actions

 Logical Link ECU Database Activity

eCREATED Logical Link
Object created

Not connected Location accessed, no DB
changes

―

eOFFLINE Channel
allocated

Connected
communication

Location accessed, no DB
changes

―

eONLINE/eIDLE Communicating Connected
communication

VI/VIS and DB changes
possible

No service running

eCOMMUNICATION

eACTIVITY_IDLE

Communicating Communicating VI/VIS and DB changes
possible

No service running

eACTIVITY_RUNNING Communicating ― No DB changes Services running

eACTIVITY_SUSPENDED Communicating ― No DB changes Suspended

Remark:

The location will be reset to the first defined within the state change from eCOMMUNICATION to eONLINE or
eCREATED.

For setQueueSize the logical link state shall be in state eOFFLINE or a further state. When the new
queue size is smaller than the current queue size, the reduction becomes effective as soon as the actual
activity queue is below the new threshold. The size is given as the number of DiagComPrimitives.

For setEventHandler, releaseEventHandler (for the logical link event) and
removeDiagComPrimitive the activity queue shall not be running.

At the first creation of a Logical Link, within the MVCI diagnostic server an object is created and the reference
to this object is returned to the Client. If this or another Client creates a further Logical Link with the same
combination of the MCDDbLocigalLink, MCDDbLocation, MCDInterface and
MCDInterfaceResource, only a reference to the already created Logical Link within the MVCI diagnostic
server is returned.

Only for methods createLogicalLinkByInterfaceResource,
createLogicalLinkByNameAndInterfaceResource and
createLogicalLinkByVariantAndInterfaceResource the instance of a LogicalLink is unique in
cases of qualitative identical parameters. The usage of methods createLogicalLinkBy…Interface
(without MCDInterfaceResource) is implementation-specific, because it depends on how the underlying
communication layer selects a certain interface resource.

Furthermore, the combination of accesskey and physicalVehicleLink may not uniquely identify a
certain logicalLink, e.g. if the vehicleInformation contains several logicalLinks, having the same
accesskey and physicalVehicleLink but different communication parameters. In that case a deterministic
creation of logicalLinks is not possible. Thus, for supporting such use-cases other methods than
createLogicalLinkByAccessKey... should be used instead.

Because of this, all DiagComPrimitives and Services which are executed on this Logical Link are put into the
same activity queue and are executed there. Thus, no overlapping and undesired parallel executions of
DiagComPrimitives may occur. As many diagnostic services as desired may be executed via the Activity
Queue per Logical Link. This provides for the possibility to execute diagnostic services parallel.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 151

The MVCI diagnostic server has to make sure that the results of the DiagComPrimitive or Service executions
get to the right reference of the Logical Link.

As long as there is no DiagComPrimitive or Service within the Activity Queue, the Activity Queue is within
state eACTIVITY_IDLE. If a DiagComPrimitive or Service is put into the Activity Queue for execution, the
Activity Queue takes the state eACTIVITY_RUNNING.

8.10.3 VCI communication lost handling

8.10.3.1 Basics

If the D-PDU API or any proprietary diagnostic VCI connection detects a connection lost to the VCI, one of the
events MCDEventHandler::onInterfaceError or
MCDEventHandler::onStaticInterfaceError is fired. The client can detect that the
communication with the VCI was lost and should take appropriate actions.

After firing one of the two events, all ComPrimitives running on logical links on the VCI are cancelled. All
opened logical links on this VCI change their state into eOFFLINE.

It is important for the client to know that all consecutive calls to MCDLogicalLink::gotoOnline() will
fail with an exception as the internal logical link cannot be recovered (as specified in D-PDU API) and thus the
link can never reach the state eONLINE anymore. Even if the communication to the VCI were to be
recovered in the meantime, the logical link shall be removed and created again to continue the
communication.

Upon receiving the onInterfaceError() or onStaticInterfaceError all comprimitives are
canceled and the MCDResult object is available and can be processed. Running comprimitives will be
terminated by the MVCI diagnostic server itself. In this case MCDExecutionState will be set to
eCANCELED_DURING_EXECUTION and the result contains the error eCOM_LOST_COMM_TO_VCI.

8.10.3.2 Example of how a client could behave upon receiving onInterfaceError or
onStaticInterfaceError

For all comprimitives:

 MCDResult processing (if necessary)

 MCDLogicalLink::removeDiagComPrimitive()

For all logical links:

 MCDLogicalLink::reset()

 MCDProject::removeLogicalLink()

Case static VCIs (call to MCDSystem::prepareInterface()):

One time

 MCDSystem::unprepareInterface() in cases of static VCI

To recover the communication

 Repeated call to MCDSystem::prepareInterface() / prepareVCIAccessLayer()

 Create new logical links and continue the communication

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

152 © ISO 2012 – All rights reserved

Cases of dynamic VCIs (call to MCDSystem::prepareVCIAccessLayer()):

 MCDInterface::disconnect()
Upon receiving the event MCDSystem::onInterfacesChanged(), call
MCDSystem::getCurrentInterfaces, select VCI and continue. A call to
MCDSystem::prepareVCIAccessLayer is not necessary.

8.10.4 Logical Link examples

The Logical Link Table consists of five columns. The first column is just a counter for the row. The following
three columns (Shortname of Logical Link, AccessKey, Shortname of PhysicalVehicleLink) are part of a
Logical Link. The last two columns (Logical Link ShortName of Gateway and GetGatewayMode) are for
information and initialisation purposes.

 The unique short name of a Logical Link is used by the application/job to access the ECU.

 The MVCI diagnostic server uses the unique short name of a Logical Link to find the related row in the
Logical Link Table. From this row the MVCI diagnostic server reads the AccessKey and the Physical
Vehicle Link needed to physically address the ECU.

 Only ECUs which are referred by Logical Links in the Logical Link Table can be accessed by
applications/jobs.

 The Logical Link Table is vehicle dependent.

EXAMPLE I:

the following exist in databases:

 one reference of the ECM;

 a test with the instances of four ECMs and their different Logical Links.

Figure 94 shows the four ECMs of the same type in one test in one project.

1
2

3
4

1
2

3
4

ECM ECM ECM ECM

KLine1

CAN1

VehicleConnector2

VehicleConnector1

KLine2 KLine3
KLine4

CAN2
CAN3

CAN4

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

ECM ECM ECM ECM

KLine1

CAN1

VehicleConnector2

VehicleConnector1

KLine2 KLine3
KLine4

CAN2
CAN3

CAN4

Figure 94 — Four ECMs of the same type in one test in one project

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 153

Table 23 defines the Logical Link Table for example I.

Table 23 — Logical Link Table for example I

ShortName AccessKey V2.0
ShortNamePhysical

Vehicle Link

Logical Link
ShortName of

Gateway

Get
Gateway

Mode

ECM-KLine1 [Protocol]KWP2000.[ECUBaseVariant].ECM KLINE1 --- ---

ECM-KLine2 [Protocol]KWP2000.[ECUBaseVariant].ECM KLINE2 --- ---

ECM-KLine3 [Protocol]KWP2000.[ECUBaseVariant].ECM KLINE2 --- ---

ECM-KLine4 [Protocol]KWP2000.[ECUBaseVariant].ECM KLINE4 --- ---

ECM-CAN1 [Protocol]DiagOnCan.[ECUBaseVariant].ECM CAN1 --- ---

ECM-CAN2 [Protocol]DiagOnCan.[ECUBaseVariant].ECM CAN2 --- ---

ECM-CAN3 [Protocol]DiagOnCan.[ECUBaseVariant].ECM CAN3 --- ---

ECM-CAN4 [Protocol]DiagOnCan.[ECUBaseVariant].ECM CAN4 --- ---

The Vehicle Connector Information Table has five columns. The first column is just a counter for the row. The
following two columns (Physical Vehicle Link and Vehicle Connector Information) describe the one to many
relation (1-n) between the Physical Vehicle Links and the Pins of the VehicleConnector.

 Because one Physical Vehicle Link could be accessed by two different connectors (see rows 1 and 2) the
MVCI diagnostic server could find multiple rows in this table.

 The entries for connector and pins in the column Vehicle Connector Information are unique, because two
Physical Vehicle Links cannot be connected.

 One Physical Vehicle Link, i. e. CAN, could use more than one pin at a connector.

 Table 24 defines the Vehicle Connector Information Table for example I.

Table 24 — Vehicle Connector Information Table for example I

No ShortName of Physical
Vehicle Link

VehicleConnectorInformation Type LongName

1 KLine1 Connector1_Pin1 KLINE Diagnostic Line

2 KLine2 Connector1_Pin2 KLINE Diagnostic Line

3 KLine2 Connector1_Pin3 KLINE Diagnostic Line

4 KLine4 Connector1_Pin4 KLINE Diagnostic Line

5 CAN1 Connector2_Pin1 CAN Body CAN High Speed

6 CAN2 Connector2_Pin2 CAN Body CAN High Speed

7 CAN3 Connector2_Pin3 CAN Body CAN High Speed

8 CAN4 Connector2_Pin4 CAN Body CAN High Speed

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

154 © ISO 2012 – All rights reserved

EXAMPLE II:

Figure 95 shows the example Logical Link with functional group.

ECM GearBox

DoorRRDoorRL

ECU1

FctGroup
Powertrain

LL: Door RL

LL: ECM

LL: ECM-CAN

LL: DoorRL-CAN

1
2

3
4

1

2

3

4

1
2

3
4

1

2

3

4

1
2

3
4

1

2

3

4

KLine1

CAN1

CAN2

Vehicle
Connector 1

Vehicle
Connector 2

Interface

Interface
Connector

1 3 42

1:1

Client Application

Communication Services
GDI, COM/DCOM, Java RMI, C++

Communication Processor

Data Processor

Flash Data Processor

Job Processor

Communication Services

MCD-3 D Object Model

MVCI
diagnostic
server

1

Key

1 Not possible at moment, because Vehicle Connector 2 is connected to Interface Connector.

Figure 95 — Example Logical Link with functional group

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 155

Table 25 defines the Logical Link Table for example II.

Table 25 — Logical Link Table for example II

No. ShortName of
Logical Link

AccessKey V2.0 ShortName
Physical

Vehicle Link

Logical Link
ShortName
of Gateway

Get
Gateway

Mode

1 ECM [Protocol]KWP2000.
[ECUBaseVariant]ECM

KLINE1 --- ---

2 Powertrain [Protocol]KWP2000[FunctionalGroup]
Powertrain

KLINE1 --- ---

3 GearBox [Protocol]KWP2000.
[ECUBaseVariant]GearBox

KLINE1 --- ---

4 ECU1 [Protocol]KWP2000.
[ECUBaseVariant]ECU1

KLINE1 --- visible

5 DoorRR [Protocol]KWP2000.
[ECUBaseVariant]DoorRR

KLINE1 ECU1 ---

6 DoorRL [Protocol]KWP2000.
[ECUBaseVariant]DoorRL

KLINE1 ECU1 --

7 ECM-CAN [Protocol]DiagOnCAN.
[ECUBaseVariant]ECM

CAN1 --- ---

8 GearBox-CAN [Protocol]DiagOnCAN.
[ECUBaseVariant]GearBox

CAN1 --- ---

9 ECU1-CAN [Protocol]DiagOnCAN.
[ECUBaseVariant]ECU1

CAN2 --- ---

10 DoorRR-CAN [Protocol]DiagOnCAN.
[ECUBaseVariant]DoorRR

CAN2 --- ---

11 DoorRL-CAN [Protocol]DiagOnCAN.
[ECUBaseVariant]DoorRL

CAN2 --- ---

12 CAN [Protocol]DiagOnCAN CAN1 --- ---

13 KWP [Protocol]KWP2000 KLINE1 --- ---

It is distinguished between

 visible and

 transparent

gateways. In cases of transparent gateways Logical Links of ECUs behind the gateway are used in the same
way as ECUs without gateways in the Logical Link (AccessKey). The server handles this automatically, so that
the gateway handling is not visible for the application.

Before communication with an ECU, it should be checked if the ECU is a member. In this case all referenced
gateways of the ECU will be listed. If the corresponding gateway is already open, it will be used. Otherwise,
the gateway will be opened before.

A Client creates a Logical Link either to an ECU or to a Gateway. In cases of a Logical Link to an ECU, the
MVCI diagnostic server internally opens the necessary communication to the corresponding Gateway. This
process is transparent for the Client, that is, the Client does not know about the composition of this physical
communication connection (Internal management in MVCI diagnostic server: check of Members opened via a
certain Gateway).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

156 © ISO 2012 – All rights reserved

Gateway will be closed by the MVCI diagnostic server, if no Logical Link to a Member exists and also no
Logical Link to the Gateway.

If the communication to a Gateway is interrupted/broken, an Event (onLinkStateOnline) is sent to the
Client for each accessed Member (open Logical Link) of the Gateway.

If there is any open member the protocol parameters of the gateway cannot change.

Table 26 — Vehicle Connector Information Table for example II

No. ShortName of Physical
Vehicle Link

VehicleConnectorInformation Type LongName

1 KLine1 Connector1_Pin1 KLINE Diagnostic Line

2 KLine1 Connector2_Pin1 KLINE Diagnostic Line

3 CAN2 Connector2_Pin3CanH

Connector2_Pin4CanL

CAN Body CAN High Speed

4 CAN1 Connector1_Pin3CanH

Connector1_Pin4CanL

CAN Powertrain CAN

8.11 Functional addressing

Functional addressing is a communication mode similar to a multicast in established network environments.
While a physically addressed service is targeted at (and answered by) only one ECU, a functionally addressed
service is usually received and answered by multiple ECUs. An example use case would be an OBD scenario
where all ECUs that are emission-critical are part of one functional group and can all be addressed by a single
functional service. To use functional addressing, a logical link to a functional group has to be opened. This
logical link can then be used for functional communication with the set of ECUs that are part of the functional
group. It is also possible to use functional addressing alongside physical addressing. To this end, a logical link
to a specific ECU and a second logical link to the functional group this ECU belongs to have to be opened.
Then, the logical link of the functional group can be used for functional addressing and the logical link of the
ECU can be used for physical addressing.

The following pseudo code shows an exemplary interaction between a client application and the diagnostic
server for using functional addressing [assuming the initial logical link is pointing to an ECU Base Variant]*:

1. MCDDbLogicalLink.getDbLocation().getAccesskey().getProtocol()
=> MCDDbDatatypeShortName protocolNameBV

2. MCDDbLogicalLink.getDbLocation().getDbEcu() => MCDDbEcu dbEcu

3. [IF dbEcu.getObjectType() EQUALS eMCDDBECUBASEVARIANT]*
((MCDDbEcuBaseVariant)dbEcu).getDbFunctionalGroups()
=> MCDDbEcuFunctionalGroups dbFunctionalGroups

4. For each MCDDbFunctionalGroup in dbFunctionalGroups
MCDDbFunctionalGroup.getDbLocations() => MCDDbLocations dbLocations

5. For each MCDDbLocation in dbLocations MCDDbLocation.getAccessKey()
=> MCDAccessKey accessKey

6. accessKey.getProtocol() => MCDDatatypeShortname protocolNameFG

7. If protocolNameBV equals protocolNameFG

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 157

8. MCDDbLogicalLink.getDbPhysicalVehicleLinkOrInterface.getShortname()
=> baseVariantPhysicalVehicleLink

9. MCDProject.createLogicalLinkByAccessKey(accesskeyLL,
baseVariantPhysicalVehicleLink)

When communicating functionally, the request of the functionally executed service is used as defined at the
functional group. However, the response of this service could be overridden on BaseVariant or EcuVariant
level. If this is the case, the responses of ECUs will be evaluated using the response patterns of the most
specific diagnostic layer that is applicable (EcuVariant layer if ECU variant identification has been performed
beforehand, the BaseVariant layer otherwise). If the request of a service defined on a functional level is
overridden on the BaseVariant or EcuVariant level, this overridden request is only used when the service is
executed physically (the service is created and executed on a logical link that points to a BaseVariant or
EcuVariant location).

A functional group can contain services with and without responses. Services without responses (send-only
services) can always be executed on the functional group level. For these services, no definition of physical
addresses is required, that is, no information on the physical ECUs is necessary, e.g. to identify which ECUs
have responded. An example for such a service would be a functional tester present message. For services
with responses, response interpretation takes place on the FunctionalGroup, BaseVariant (no variant
identified) or EcuVariant (variant identified) level. In case a base variant overrides the response of a functional
group service, the service's response is interpreted on the base variant level for this ECU. The decision
whether to use the response pattern defined on the functional group level or the one defined on the base
variant level needs to be made individually for every ECU at runtime. This means that information on the
physical addresses of all possibly responding ECUs is required. The physical addresses need to be defined
on the base variant level, e.g. by means of corresponding communication parameter definitions. When a
functional service is overridden in an EcuVariant, a flag is set on the corresponding BaseVariant instance.
This flag informs the diagnostic server not to interpret the response of this ECU until variant identification has
taken place. If in this context an ECU variant cannot be identified, the responses of that ECU are not
interpreted at all. Instead, an error is put in the result for this respective response and the response's PDU is
returned without interpretation. Setting the flag when overriding a functional service on an EcuVariant level is
considered mandatory.

There are two ways for managing the physical response addresses of ECUs which can potentially respond to
a functional request – either a list of physical response addresses on the functional group level or a
communication parameter at each individual BaseVariant layer. In cases of a list of physical response
addresses at the functional group, no ECU base variants need be defined in order to be able to perform
functional communication (OBD use case). When interpreting a response, the response addresses on the
base variant level are considered first. If none of these addresses match, the list of response addresses
stored on the functional group level is considered. Effectively, at runtime the superset of both lists is used
(where duplicates have been removed).

If a response to a functional request is received which does not match

 the response template at the EcuVariant level, if variant identification and selection has taken place,

 the response template defined on the base variant level,

 the response template defined on the functional group level (mind the order),

an interpretation error will occur. In this case, the diagnostic server passes the erroneous response PDU to
the application along with the error. Please note: Every response to a functional request can be defined as
multi-part in ODX. In this case, there can be several responses per physical ECU to a functional request.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

158 © ISO 2012 – All rights reserved

Example for implementation with D-PDU API

To implement the functionality of a list of physical response addresses in the context of ODX data definitions
and the D-PDU API specification, a complex communication parameter called CP_UniqueRespIdTable has
been introduced by ODX (the equivalent concept is called URID Table in the D-PDU API specification
ISO 22900-2). The purpose of this communication parameter is to provide a table that allows the diagnostic
server to map the ECU responses to functional requests to their physical source ECUs. Within the
CP_UniqueRespIdTable communication parameter, the parameter CP_ECULayerShortName is also of
special importance. The value of the communication parameter CP_ECULayerShortName is used to set up
the correct Access Keys for every received response. Therefore, a diagnostic server implementation has to be
aware of the special semantics of these communication parameters CP_ECULayerShortName and
CP_ECULayerShortName as allow for a protocol-independent implementation of functional addressing. In
principle, functional addressing works as follows: When asked to execute a functional service, the diagnostic
server composes the unique response id table according to the rules defined in 7.4.9.4 (Sequence of Events
for Functional Addressing) in ISO 22901-1:2008. Basically, the dagnostic server creates a table entry for each
ECU base variant that is part of the functional group in question and assigns a unique identifier to each of the
entries. Then, the diagnostic server passes the unique response id table to the D-PDU API implementation
alongside the request to execute the functional service in question. The D-PDU API sends the functional
request and matches each ECU response to the unique response id table. If a match is found (i.e. the sender
of a response to the functional request is identified as an entry in the unique response id table), the D-PDU
API tags that match with the unique identifier of the answering ECU. This then allows the diagnostic server to
relate each response to a specific ECU from the functional group and use this ECU's data for interpretation of
the response PDU. For more details and information about dealing with deviations from the simplified
procedure described above, see the relevant sections of the ODX and D-PDU API specification ISO 22901-1,
ISO 22900-2).

8.12 Tables

8.12.1 General

Tables have been introduced in ODX to support the concept of data identifiers and parameter identifiers. This
concept describes the association of a data structure definition to a unique identifier. Thus, tables are used to
describe, for example, lists of:

 Measurement values which can be read by the same (set of) DiagComPrimitive(s).

 Actuator values which can be written by the same (set of) DiagComPrimitive(s).

Tables shall be browseable in the database part of diagnostic server independently of a specific
DiagComPrimitive, which means without having an MCDDbDiagComPrimitive selected. Therefore the
interfaces MCDDbTable(s) and MCDDbTableParameter(s) have to be used (see Figure 96).

Each ODX table is represented by an MCDDbTable within a diagnostic server. All tables defined in the
database for a certain location can be obtained by calling MCDDbLocation::getDbTables(). A subset
of this collection will be delivered by
MCDDbLocation::getDbTablesBySemanticAttribute(A_ASCIISTRING semantic) which
returns all tables of the given semantic.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 159

MCDDbTable

MCDDbTableParameter

DataType: eTABLE_ROW
ParameterType:eGENERATED

ShortName: Row_I

ShortName:
DataType: eSTRUCTURE
ParameterType:

Env

eVALUE

ShortName:Temperature
DataType: eA_UINT 32
ParameterType:eVALUE

ShortName:Speed
DataType: eA_INT 32
ParameterType:eVALUE

ShortName:
DataType: eFIELD
ParameterType:

Env_Sequence

eVALUE

ShortName:Temperature
DataType: eA_UINT 32
ParameterType:eVALUE

ShortName:Speed
DataType: eA_INT 32
ParameterType:eVALUE

ShortName:STR_
DataType: eSTRUCTURE
ParameterType:

Env

eGENERATED

ShortName:Temperature
DataType: eA_UINT 32
ParameterType:eVALUE

MCD3 Table

2

1

2

2

ShortName:DOP_NAME
DataType: eA_FLOAT3 2
ParameterType:eGENERATED

2

Collection: MCDDbParameters

Collection: MCDDbParameters

Collection: MCDDbParameters

Collection: MCDDbParameters

Collection: MCDDbParameters

Collection: MCDDbParameters

Collection: MCDDbParameters

2

2

2

Collection: MCDDbTableParameters

MCDDbTableParameter

DataType: eTABLE_ROW
ParameterType:eGENERATED

ShortName: Row_II

MCDDbTableParameter

DataType: eTABLE_ROW
ParameterType:eGENERATED

ShortName: Row_III

MCDDbTableParameter

DataType: eTABLE_ROW
ParameterType:eGENERATED

ShortName: Row_IV

MCDDbTableParameter

DataType: eTABLE_ROW
ParameterType:eGENERATED

ShortName: Row_V2

Key

1 getDbTableRows

2 getDbParameters

Figure 96 — Browse through an MCDDbTable

ODX-Data (Extract) of the DB-Template

<?xml version="1.0" encoding="UTF-8"?>
<ODX MODEL-VERSION="2.2.0" xsi:noNamespaceSchemaLocation="odx.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <DIAG-LAYER-CONTAINER ID="DLC_BV_BV1">
 <SHORT-NAME>DLC_BV_BV1</SHORT-NAME>
 <LONG-NAME>BV1</LONG-NAME>
 <BASE-VARIANTS>
 <BASE-VARIANT ID="BV_BV1">
 <SHORT-NAME>BV_BV1</SHORT-NAME>
 <LONG-NAME>BV1</LONG-NAME>
 <DIAG-DATA-DICTIONARY-SPEC>
 <DATA-OBJECT-PROPS>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

160 © ISO 2012 – All rights reserved

 <DATA-OBJECT-PROP ID="BV_BV1.DOP_TexttKeyDOP.DATA- OBJECT-PROP">
 <SHORT-NAME>DOP_TexttKeyDOP</SHORT-NAME>
 <LONG-NAME>Texttable_KeyDOP</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>TEXTTABLE</CATEGORY>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <LOWER-LIMIT>1</LOWER-LIMIT>
 <COMPU-CONST>
 <VT>ONE</VT>
 </COMPU-CONST>
 </COMPU-SCALE>
 <COMPU-SCALE>
 <LOWER-LIMIT>2</LOWER-LIMIT>
 <COMPU-CONST>
 <VT>TWO</VT>
 </COMPU-CONST>
 </COMPU-SCALE>
 <COMPU-SCALE>
 <LOWER-LIMIT>3</LOWER-LIMIT>
 <COMPU-CONST>
 <VT>THREE</VT>
 </COMPU-CONST>
 </COMPU-SCALE>
 <COMPU-SCALE>
 <LOWER-LIMIT>4</LOWER-LIMIT>
 <COMPU-CONST>
 <VT>FOUR</VT>
 </COMPU-CONST>
 </COMPU-SCALE>
 <COMPU-SCALE>
 <LOWER-LIMIT>5</LOWER-LIMIT>
 <COMPU-CONST>
 <VT>FIVE</VT>
 </COMPU-CONST>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-INTERNAL-TO-PHYS>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_UINT32" xsi:type="STANDARD-
LENGTH-TYPE">
 <BIT-LENGTH>8</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UNICODE2STRING"/>
 </DATA-OBJECT-PROP>
 <DATA-OBJECT-PROP ID="BV_BV1.DOP_IdentUInt32.DATA-OBJECT-PROP">
 <SHORT-NAME>DOP_IdentUInt32</SHORT-NAME>
 <LONG-NAME>Identical_UInt32</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>IDENTICAL</CATEGORY>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_UINT32" xsi:type="STANDARD-
LENGTH-TYPE">
 <BIT-LENGTH>32</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_UINT32"/>
 </DATA-OBJECT-PROP>
 <DATA-OBJECT-PROP ID="BV_BV1.DOP_IdentInt32.DATA-OBJECT-PROP">
 <SHORT-NAME>DOP_IdentInt32</SHORT-NAME>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 161

 <LONG-NAME>Identical_Int32</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>IDENTICAL</CATEGORY>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_INT32" xsi:type="STANDARD-
LENGTH-TYPE">
 <BIT-LENGTH>32</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_INT32"/>
 </DATA-OBJECT-PROP>
 <DATA-OBJECT-PROP ID="BV_BV1.DOP_NAME.DATA-OBJECT-PROP">
 <SHORT-NAME>DOP_NAME</SHORT-NAME>
 <LONG-NAME>Identical_Float32</LONG-NAME>
 <COMPU-METHOD>
 <CATEGORY>IDENTICAL</CATEGORY>
 </COMPU-METHOD>
 <DIAG-CODED-TYPE BASE-DATA-TYPE="A_FLOAT32"
xsi:type="STANDARD-LENGTH-TYPE">
 <BIT-LENGTH>32</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 <PHYSICAL-TYPE BASE-DATA-TYPE="A_FLOAT32"/>
 </DATA-OBJECT-PROP>
 </DATA-OBJECT-PROPS>
 <STRUCTURES>
 <STRUCTURE ID="BV_BV1.Example_STRUCT_A.STRUCTURE">
 <SHORT-NAME>Example_STRUCT_A</SHORT-NAME>
 <LONG-NAME>Example_STRUCT_A</LONG-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Temperature</SHORT-NAME>
 <LONG-NAME>Temperature</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <DOP-SNREF SHORT-NAME="DOP_IdentUInt32"/>
 </PARAM>
 </PARAMS>
 </STRUCTURE>
 <STRUCTURE ID="BV_BV1.STR_Env.STRUCTURE">
 <SHORT-NAME>STR_Env</SHORT-NAME>
 <LONG-NAME>STR_Env</LONG-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Temperature</SHORT-NAME>
 <LONG-NAME>Temperature</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <DOP-SNREF SHORT-NAME="DOP_IdentUInt32"/>
 </PARAM>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Speed</SHORT-NAME>
 <LONG-NAME>Speed</LONG-NAME>
 <BYTE-POSITION>4</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <DOP-SNREF SHORT-NAME="DOP_IdentInt32"/>
 </PARAM>
 </PARAMS>
 </STRUCTURE>
 <STRUCTURE ID="BV_BV1.Example_STRUCT_B.STRUCTURE">
 <SHORT-NAME>Example_STRUCT_B</SHORT-NAME>
 <LONG-NAME>Example_STRUCT_B</LONG-NAME>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

162 © ISO 2012 – All rights reserved

 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Env_Sequence</SHORT-NAME>
 <LONG-NAME>Env_Sequence</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <DOP-SNREF SHORT-NAME="EOPF_Field"/>
 </PARAM>
 </PARAMS>
 </STRUCTURE>
 <STRUCTURE ID="BV_BV1.Example_STRUCT_C.STRUCTURE">
 <SHORT-NAME>Example_STRUCT_C</SHORT-NAME>
 <LONG-NAME>Example_STRUCT_C</LONG-NAME>
 <PARAMS>
 <PARAM xsi:type="VALUE">
 <SHORT-NAME>Env</SHORT-NAME>
 <LONG-NAME>Env</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <DOP-SNREF SHORT-NAME="STR_Env"/>
 </PARAM>
 </PARAMS>
 </STRUCTURE>
 </STRUCTURES>
 <END-OF-PDU-FIELDS>
 <END-OF-PDU-FIELD ID="BV_BV1.EOPF_Field.END-OF-PDU-FIELD">
 <SHORT-NAME>EOPF_Field</SHORT-NAME>
 <LONG-NAME>Field</LONG-NAME>
 <BASIC-STRUCTURE-REF ID-REF="BV_BV1.STR_Env.STRUCTURE"/>
 </END-OF-PDU-FIELD>
 </END-OF-PDU-FIELDS>
 <TABLES>
 <TABLE ID="BV_BV1.TAB_Table.TABLE">
 <SHORT-NAME>TAB_Table</SHORT-NAME>
 <LONG-NAME>Table1</LONG-NAME>
 <KEY-DOP-REF ID-REF="BV_BV1.DOP_TexttKeyDOP.DATA-OBJECT-
PROP"/>
 <TABLE-ROW ID="BV_BV1.TAB_Table.ROW_I.TABLE-ROW">
 <SHORT-NAME>ROW_I</SHORT-NAME>
 <LONG-NAME>ONE</LONG-NAME>
 <KEY>ONE</KEY>
 <STRUCTURE-REF ID-
REF="BV_BV1.Example_STRUCT_A.STRUCTURE"/>
 </TABLE-ROW>
 <TABLE-ROW ID="BV_BV1.TAB_Table.ROW_II.TABLE-ROW">
 <SHORT-NAME>ROW_II</SHORT-NAME>
 <LONG-NAME>TWO</LONG-NAME>
 <KEY>TWO</KEY>
 <STRUCTURE-REF ID-
REF="BV_BV1.Example_STRUCT_B.STRUCTURE"/>
 </TABLE-ROW>
 <TABLE-ROW ID="BV_BV1.TAB_Table.ROW_III.TABLE-ROW">
 <SHORT-NAME>ROW_III</SHORT-NAME>
 <LONG-NAME>THREE</LONG-NAME>
 <KEY>THREE</KEY>
 <STRUCTURE-REF ID-
REF="BV_BV1.Example_STRUCT_C.STRUCTURE"/>
 </TABLE-ROW>
 <TABLE-ROW ID="BV_BV1.TAB_Table.ROW_IV.TABLE-ROW">
 <SHORT-NAME>ROW_IV</SHORT-NAME>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 163

 <LONG-NAME>FOUR</LONG-NAME>
 <KEY>FOUR</KEY>
 <DATA-OBJECT-PROP-REF ID-REF="BV_BV1.DOP_IdentUINT32.DATA-
OBJECT-PROP"/>
 </TABLE-ROW>
 <TABLE-ROW ID="BV_BV1.TAB_Table.ROW_V.TABLE-ROW">
 <SHORT-NAME>ROW_V</SHORT-NAME>
 <LONG-NAME>FIVE</LONG-NAME>
 <KEY>FIVE</KEY>
 </TABLE-ROW>
 </TABLE>
 </TABLES>
 </DIAG-DATA-DICTIONARY-SPEC>
 <DIAG-COMMS>
 <DIAG-SERVICE ID="BV_BV1.DS_ExampServi.DIAG-SERVICE">
 <SHORT-NAME>DS_ExampServi</SHORT-NAME>
 <LONG-NAME>Example_Service</LONG-NAME>
 <AUDIENCE/>
 <REQUEST-REF ID-REF="BV_BV1.REQ_ExampServi.REQUEST"/>
 <POS-RESPONSE-REFS>
 <POS-RESPONSE-REF ID-REF="BV_BV1.PRE_ExampServi.POS-
RESPONSE"/>
 </POS-RESPONSE-REFS>
 </DIAG-SERVICE>
 </DIAG-COMMS>
 <REQUESTS>
 <REQUEST ID="BV_BV1.REQ_ExampServi.REQUEST">
 <SHORT-NAME>REQ_ExampServi</SHORT-NAME>
 <LONG-NAME>Example_Service</LONG-NAME>
 <PARAMS>
 <PARAM xsi:type="CODED-CONST" SEMANTIC="SERVICE-ID">
 <SHORT-NAME>ServiID</SHORT-NAME>
 <LONG-NAME>Service ID</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <CODED-VALUE>25</CODED-VALUE>
 <DIAG-CODED-TYPE xsi:type="STANDARD-LENGTH-TYPE" BASE-
DATA-TYPE="A_UINT32" IS-HIGHLOW-BYTE-ORDER="true" BASE-TYPE-ENCODING="NONE">
 <BIT-LENGTH>8</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM ID="BV_BV1.REQ_ExampServi.Example_KEY.PARAM"
xsi:type="TABLE-KEY">
 <SHORT-NAME>Example_KEY</SHORT-NAME>
 <LONG-NAME>Table_Key</LONG-NAME>
 <BYTE-POSITION>1</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <TABLE-REF ID-REF="BV_BV1.TAB_Table.TABLE"/>
 </PARAM>
 <PARAM xsi:type="TABLE-STRUCT">
 <SHORT-NAME>Param_TABLE_STRUCT</SHORT-NAME>
 <LONG-NAME>Table_Struct</LONG-NAME>
 <BYTE-POSITION>2</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <TABLE-KEY-REF ID-
REF="BV_BV1.REQ_ExampServi.Example_KEY.PARAM"/>
 </PARAM>
 </PARAMS>
 </REQUEST>
 </REQUESTS>

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

164 © ISO 2012 – All rights reserved

 <POS-RESPONSES>
 <POS-RESPONSE ID="BV_BV1.PRE_ExampServi.POS-RESPONSE">
 <SHORT-NAME>PRE_ExampServi</SHORT-NAME>
 <LONG-NAME>Example_Service</LONG-NAME>
 <PARAMS>
 <PARAM xsi:type="CODED-CONST" SEMANTIC="SERVICE-ID">
 <SHORT-NAME>ServiID</SHORT-NAME>
 <LONG-NAME>Service ID</LONG-NAME>
 <BYTE-POSITION>0</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <CODED-VALUE>89</CODED-VALUE>
 <DIAG-CODED-TYPE xsi:type="STANDARD-LENGTH-TYPE" BASE-
DATA-TYPE="A_UINT32" IS-HIGHLOW-BYTE-ORDER="true" BASE-TYPE-ENCODING="NONE">
 <BIT-LENGTH>8</BIT-LENGTH>
 </DIAG-CODED-TYPE>
 </PARAM>
 <PARAM ID="BV_BV1.PRE_ExampServi.Example_KEY.PARAM"
xsi:type="TABLE-KEY">
 <SHORT-NAME>Example_KEY</SHORT-NAME>
 <LONG-NAME>Table_Key</LONG-NAME>
 <BYTE-POSITION>1</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <TABLE-REF ID-REF="BV_BV1.TAB_Table.TABLE" DOCREF="BV_BV1"
DOCTYPE="LAYER"/>
 </PARAM>
 <PARAM xsi:type="TABLE-STRUCT">
 <SHORT-NAME>Param_TABLE_STRUCT</SHORT-NAME>
 <LONG-NAME>Table_Struct</LONG-NAME>
 <BYTE-POSITION>2</BYTE-POSITION>
 <BIT-POSITION>0</BIT-POSITION>
 <TABLE-KEY-REF ID-
REF="BV_BV1.PRE_ExampServi.Example_KEY.PARAM"/>
 </PARAM>
 </PARAMS>
 </POS-RESPONSE>
 </POS-RESPONSES>
 </BASE-VARIANT>
 </BASE-VARIANTS>
 </DIAG-LAYER-CONTAINER>
</ODX>

In ODX a table is made up of a non-empty set of TABLE-ROWs. Each TABLE-ROW references a
STRUCTURE or a simple DOP and can be uniquely identified by a key. All table-rows of an MCDDbTable
will be delivered by MCDDbTable::getDbTableRows().

In diagnostic server the interface MCDDbTableParameter is used to represent a table-row of an ODX
table or a parameter in the structure referenced from a table-row, respectively. That is, it represents the ODX
elements TABLE-ROW and STRUCTURE where the STRUCTURE is referenced from the TABLE-ROW.

When representing a TABLE-ROW, the MCDDbTableParameter is of data type eTABLE_ROW. Calling
the method MCDDbTableParameter::getKey() delivers the value of the key associated with the
MCDDbTableParameter in the corresponding MCDDbTable. In all other cases (representing the
referenced STRUCTURE or one of its elements), the general diagnostic server mapping of ODX-Elements to
MCDDataTypes is applied.

8.12.2 Usage of tables within DiagComPrimitives

For the usage of tables within requests and responses of DiagComPrimitives the parameter types TABLE-
STRUCT, TABLE-KEY and TABLE-ENTRY are defined in ODX.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 165

The principle is similar to a multiplexer. The content of a TABLE-STRUCT parameter depends on a certain
switch value. This switch value is given by the TABLE-KEY parameter referenced by the TABLE-STRUCT
parameter.1

More detailed, a parameter of type TABLE-KEY is the part of the PDU where the KEY (data identifier) has to
be read in the case of a response or written in the case of a request. A TABLE-KEY parameter selects a
TABLE-ROW of a TABLE. The selection can be done by referencing a TABLE-ROW directly (static parameter
definition) or by referencing a TABLE and selecting a TABLE-ROW at runtime by using the current value of
the TABLE-KEY to match it against the unique KEYs of that TABLE (dynamic parameter definition). The
content of a TABLE-STRUCT parameter is the content of the STRUCTURE or simple DOP referenced by the
selected TABLE-ROW.

If a TABLE-ROW which is not executable is selected, the Diag Service is also not executable. This does not
change the visibility of the Diag Service. Audiences have no influence on visibility or the possibility of
execution.

Inside a Job IsExecutable has no influence.

TABLE-KEY, TABLE-STRUCT and TABLE-ENTRY parameters are represented within diagnostic server as
MCD(Db)Parameter objects of parameter type eTABLE_KEY, eTABLE_STRUCT and
eTABLE_ENTRY.

To query all keys that can be read (MCDResponseParameter) or written (MCDRequestParameter) at
runtime by a parameter of type eTABLE_KEY the method MCDDbParamter::getKeys() can be used at
the corresponding MCDDbParameter object. Note that in cases of static parameter definition the returned
collection contains exactly one key – the key of the statically referenced TABLE-ROW.

If a client needs to know which eTABLE_STRUCT parameters depend on a certain eTABLE_KEY parameter
within one request or response, they can call MCDDbParameter::getDbTableStructParams() for
the corresponding eTABLE_KEY parameter. Vice versa, calling
MCDDbParameter::getDbTableKeyParam() on a eTABLE_STRUCT parameter will deliver the
referenced eTABLE_KEY parameter.

As stated before, the decomposition of an eTABLE_STRUCT parameter into further parameters represents
exactly one table row of the table referenced by the corresponding eTABLE_KEY parameter. To get the
MCDDbTable the parameter structure of an eTABLE_STRUCT parameter taken from
MCDDbParameter::getDbTable() can be used. Note that in cases of a static parameter definition, the
decomposition can already be obtained at an eTABLE_STRUCT parameter by calling the method
MCDDbParameter::getDbParameters(). In cases of a dynamic parameter definition, the collection
returned by the method MCDDbParameter::getDbParameters() is empty.

If an MCDDbTableParameter with datatype eTABLE_ROW references a simple DOP in ODX, the
resulting MCDDbParameters collection delivered by
MCDDbTableParameter::getDbParameters() contains exactly one MCDDbTableParameter.
The MCDDbTableParameter’s parameter type is eGENERATED. Its data type and ShortName are obtained
from the referenced simple DOP

1 In ODX, several parameters of type TABLE-STRUCT are allowed to reference the same parameter of type TABLE-
KEY. The only restriction is that these parameters need to be located on the same level in the parameter hierarchy.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

166 © ISO 2012 – All rights reserved

The structure of an MCDDbParameter with parameter type eTABLE_ENTRY depends on the value of the
TARGET attribute of the TABLE-ENTRY parameter in ODX:

 TARGET = KEY: The MCDDbParameter has the datatype of the KEY-DOP of the TABLE-ROW that is
referenced from the TABLE-ENTRY parameter.

 TARGET = STRUCT: The parameter has the datatype eSTRUCTURE. The containing
MCDDbParameters, delivered by method MCDDbTableParameter::getDbParameters(),
are the parameters that are contained at the referenced TABLE-ROW structure of the TABLE-ENTRY
parameter.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 167

Figure 97 shows an example of a table ROW I, ROW II, ROW III.

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ODX Table

KEY_LABEL
String STRUCTURE_REF

TABLE-ROW

TABLE-ROW

TABLE-ROW

ROW Identifier Reference to structure DOP
or simple DOP

KEY_LABEL
String STRUCTURE_REF

KEY_LABEL
String STRUCTURE_REF

KEY_LABEL
String SIMPLE_DOP_REF

MCD3
TABLE_KEY
simple DOP
(e.g. A_UINT32)

TABLE_STRUCT

ShortName: Example_KEY
DataType:
ParameterType: eTABLE_KEY

A_UNICODE2STRING

Request or Response

ShortName: Param_TABLE_
DataType: eSTRUCTURE
ParameterType: eTABLE_STRUCT

STRUCT

ShortName:
DataType: eFIELD
ParameterType: eVALUE

Env_Sequence

ShortName: STR_
DataType: eSTRUCTURE
ParameterType: eGENERATED

Env

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Speed
DataType: eA_INT32
ParameterType: eVALUE

ShortName: Env_State
DataType: eA_INT32
ParameterType: eVALUE

ShortName:
DataType: eSTRUCTURE
ParameterType:

Env

eVALUE

ShortName: STR_
DataType: eSTRUCTURE
ParameterType: eGENERATED

Env

ShortName:
DataType: eFIELD
ParameterType:

Env_Sequence

eVALUE

ShortName:
DataType: eSTRUCTURE

Example_STRUCT_C

ShortName: DOP_NAME
DataType: eA_FLOAT32
ParameterType: eGENERATED

ShortName:
DataType: eSTRUCTURE

Example_STRUCT_B

ShortName: Example_STRUCT_A
DataType: eSTRUCTURE

TABLE-ROW

KEY_LABEL
String

TABLE-ROW

ShortName: Example_KEY
DataType: A_UNICODE2STRING
ParameterType: eTABLE_KEY

ShortName: Param_TABLE_
DataType: eSTRUCTURE
ParameterType: eTABLE_STRUCT

STRUCT

ShortName: Example_KEY
DataType:
ParameterType: eTABLE_KEY

A_UNICODE2STRING

ShortName: Param_TABLE_
DataType: eSTRUCTURE
ParameterType: eTABLE_STRUCT

STRUCT

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Temperature
DataType: eA_UINT32
ParameterType: eVALUE

ShortName: Env_State
DataType: eA_INT32
ParameterType: eVALUE

ShortName:
DataType: eSTRUCTURE
ParameterType:

Env

eVALUE

I

II

III

IV

V

Figure 97 — Example of a table ROW I, ROW II, ROW III

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

168 © ISO 2012 – All rights reserved

Figure 98 shows the usage of ODX Tables.

Figure 98 — Usage of ODX Tables

8.13 Dynamically Defined Identifiers (DynId)

8.13.1 General

Various diagnostic application layer protocols (e.g. ISO 14229-1 or ISO 14230-3) incorporate the concept of
dynamically defined diagnostic services, i.e. services where the user can define the response’s contents
dynamically at runtime. This section describes how the concept of dynamically defined services is handled in

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 169

the MVCI diagnostic server API. Support for dynamically defined identifiers is an optional part of this part of
ISO 22900.

8.13.2 DYNID principle and requirements

To use a dynamically defined identifier, a diagnostic application first has to declare the identifier definition to
an ECU. This means that a service will be sent to the ECU, which associates a certain dynamic identifier with
a set of values that should be returned on future requests with that identifier. After definition of a dynamic
identifier, the diagnostic application can then use a read-dynamically-defined-identifier service to retrieve the
set of values that was associated with the dynamic identifier. When a diagnostic application does not need a
dynamically defined identifier anymore, a dynamic identifier definition can be revoked by sending a clear-
dynamically-defined-identifier service, which tells the ECU to delete a dynamic service definition with the
identifier. In ODX, these three services are marked by a specific diagnostic class:

 DYN-DEF-MESSAGE for definition of new dynamic services

 READ-DYN-DEF-MESSAGE for reading the contents of a previously defined dynamic service and

 CLEAR-DYN-DEF-MESSAGE for clearing a previously defined dynamic service definition

Although the usage principle is the same in all cases, in the context of ODX data it is distinguished between
fully dynamic, semi-dynamic and static DynID. These three cases differ only in terms of how certain
parameters concerning the DYN-DEF-MESSAGE service are set up in ODX:

 For the fully dynamic case, the application is entirely free to choose the contents of a dynamic service.

 In the semi-dynamic case, a part of the dynamic service’s response signature is pre-defined by CODED-
CONST parameters in ODX. However, the application is allowed to add more parameters to that dynamic
service. Here, the client application can use the READ-DYN-DEF-MESSAGE service like a normal
diagnostic service, without first having to explicitly define the contents of the specific dynamic service id.
However, the client application still has to create the appropriate DynID definition service for that service
id, and execute it using its default parameters.

 In the static case, all response parameters for a certain dynamic service definition are pre-set by CODED-
CONST parameters in ODX. The application is not allowed to add more parameters to a dynamic service
definition. Here, the client application uses the READ-DYN-DEF-MESSAGE service like a normal
diagnostic service, and it is not allowed to change the contents of the specific dynamic service id
beforehand. However, the client application still has to create the appropriate DynID definition service for
that service id, and execute it using its default parameters.

The steps a diagnostic application has to follow when using dynamically defined services are outlined below:

a) Creation of a dynamic ID

 Use a DiagComPrimitive for DynID definition (DYN-DEF-MESSAGE in ODX)

 Get supported and available dynamic identifiers (MCDDbLocation::getSupportedDynIds)

 Get a set of parameters for parameterisation of a dynamic service, set relevant parts of that
parameter structure

 Execute the DynID definition service

b) Reading by dynamic ID

 Use a DiagComPrimitive to read by DynID (READ-DYN-DEF-MESSAGE in ODX)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

170 © ISO 2012 – All rights reserved

 The MVCI diagnostic server knows through previous DynID-definition how to interpret DynID reading-
service results

c) Deletion of a dynamic ID

 Use a DiagComPrimitive for DynID deletion (CLEAR-DYN-DEF-MESSAGE in ODX)

8.13.3 Lifecycle

8.13.3.1 General

The three steps that have to be executed during a diagnostic session that uses dynamically defined identifiers
are outlined in more detail in this section.

8.13.3.2 Creation of dynamically defined identifier

Before a dynamic service can be used by an application (MCDDynIdReadComPrimitive), it has to be
defined first by using the MCDDynIdDefineComPrimitive.

In ODX, a specific location (EcuBaseVariant or EcuVariant) defining a DYN-DEFINED-SPEC can contain an
arbitrary number of DiagComPrimitives with a diagnostic class of CLEAR-DYN-DEF-MESSAGE, READ-
DYN-DEF-MESSAGE, or DYN-DEF-MESSAGE. That means that these ComPrimitives are not unique
within a location. However, each location may only contain one DYN-DEFINED-SPEC with a certain
definition mode (ODX: DEF-MODE), and for each definition mode there can only be one associated CLEAR-
DYN-DEF-MESSAGE, READ-DYN-DEF-MESSAGE, or DYN-DEF-MESSAGE service. This means that
the combination of a location and a DYN-DEFINED-SPEC with a certain definition mode will result in a unique
set of DiagComPrimitives for defining, reading and clearing of a dynamically defined identifier.

To create the default MCDDynIdDefineComPrimitive, MCDDynIdReadComPrimitive and
MCDDynIdClearComPrimitive for a selected DYN-DEFINED-SPEC, the method
MCDLogicalLink::createDynIdComPrimitiveByTypeAndDefinitionMode(MCDObjectT
ype type, A_ASCIISTRING definitionMode) shall be used, using one of the unique
MCDObjectType values

 eMCDDYNIDDEFINECOMPRIMITIVE,

 eMCDDYNIDREADCOMPRIMITIVE or

 eMCDDYNIDCLEARCOMPRIMITIVE,

in combination with a definition mode (DEF-MODE) like

 DATA-ID

 COMMON-ID,

 LOCAL-ID or

 ADDRESS.

Please note that the list of valid definition modes can be extended in ODX. Only the values DATA-ID,
COMMON-ID, LOCAL-ID, and ADDRESS are predefined. The list of definition modes available for a certain
DynID DiagComPrimitive can be obtained by using the method
MCDDbDynIdxxxComPrimitive::getDefinitionModes().

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 171

As described above, only the combination of a definition mode and a DynID-related MCDObjectType uniquely
identifies a DiagComPrimitive for fully dynamic identifier within a DYN-DEFINED-SPEC in ODX.

Please note that if methods execueSync() or executeAsync() are called for a
MCDDynIdxxxComPrimitive with no definition mode or if no valid DynID is set (see below) a
MCDParameterizationException is thrown with error code
ePAR_INCOMPLETE_PARAMETERIZATION.

MCDDbLocation::getSupportedDynIds(A_ASCIISTRING definitionMode) returns the list
of DynIDs supported at this location for a given definition mode. This list contains all supported DynIDs (e.g.
0xF0 … 0xF9 in ISO 14230-3) regardless of the fact whether a DynID has already been assigned to a
dynamic service or not.

NOTE Supported DynIDs are dependent on location and definition mode.

For every DynID that is actually to be defined at runtime, a MCDDynIdDefineComPrimitive has to be
executed. The actual DynID to be used is set at the different DiagComPrimitives
(MCDDynIdDefineComPrimitive, MCDDynIdReadComPrimitive,
MCDDynIdClearComPrimitive) by using the method setDynId. The setDynId-methods are used to
parameterize a MCDDynId...ComPrimitive with a specific Id (e.g., 0xF0 … 0xF9 in ISO 14230-3).

The method
MCDDynIdDefineComPrimitive::setDynIdParams(MCDDatatypeAsciiStrings
paramNames) is used to add a collection of parameters which should be part of the newly defined dynamic
service. The parameters are selected from the respective ODX tables by using positive filter expressions (see
setDynIdParams() below).

In case of a fully dynamic MCDDynIdDefineComPrimitive, all parameters have to be set by using this
method. In case of a semi-dynamic MCDDynIdDefineComPrimitive, only the dynamic part of the
parameter set can be defined by this method, i.e. the parameters are appended to the static part of the
dynamic service. In cases of a static MCDDynIdDefineComPrimitive, a
MCDParameterizationException with error code ePAR_INCONSISTENT_VALUE_LIST is thrown
when the client application tries to set DynID parameters. All DynID parameters used in a static, semi-dynamic
or dynamic DynIdComPrimitive have to be located in the tables obtainable by
MCDDbLocation::getDbTableByDefinitionMode(A_ASCIISTRING definitionMode).

The returned table is generated with the name “#RtGen_<definitionMode>”. As in ODX there may be multiple
Tables for the same definition mode; the rows of these tables are merged. To be unique, which is required
inside one table, the short name is extended with the table short name. The naming rule is “<table
shortname>_<row shortname>”.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

172 © ISO 2012 – All rights reserved

Figure 99 shows the example for definition Mode LOCAL-ID.

ShortName: LID_Row0
DataType: eSTRUCTURE

ShortName: Anton
DataType: eKEY
Value: 01

ShortName: E0
DataType: eSTRUCTURE

ShortName: EngineCoolantTemperature (A)
DataType: eA_UINT8

ShortName: VehicleSpeed (D)
DataType: eA_UINT10

ShortName: ThrottlePosition (C)
DataType: eA_UINT16

ShortName: EngineSpeed (B)
DataType: eA_UINT32

ShortName: EngineSpeed (E)
DataType: eA_UINT32

ShortName: LID_Row1
DataType: eSTRUCTURE

ShortName: Berta
DataType: eKEY
Value: 02

ShortName: E1
DataType: eSTRUCTURE

ShortName: #RtGen_LOCAL-ID
DataType: eTable

Figure 99 — Example for definition Mode LOCAL-ID

When an MCDDynIdDefineComPrimitive service is first created, the dynamic part of the request
template is empty. It is filled by means of the method setDynIdParams(MCDDatatypeAsciiStrings
paramNames). An empty collection object of type MCDDatatypeAsciiStrings can be obtained by executing
the method MCDDataPrimitive::getNewAsciiStrings():MCDDatatypeAsciiStrings.

Every entry in the collection of filter keys has the format

< Table Name> |

< Row Name > |

<eSTRUCTURE Shortname>|

<ShortName>|…|<ShortName> (path to the element).

If the MCDDynIdDefineComPrimitive has no valid definition mode set, calling method
setDynIdParams(MCDDatatypeAsciiStrings paramNames) will throw an
MCDParameterizationException with error code ePAR_INCOMPLETE_PARAMETERIZATION.

In addition, this method should throw an MCDProgramViolationException with error code
eRT_NO_UNIQUE_ELEMENT if there are duplicate filter keys in the set of filter keys supplied as parameter
to the method. Please note that is not necessary to name the <eKEY> parameter shortname, because eKey
Shortname and eSTRUCTURE Shortname are a unit for each row.

This shall be demonstrated with help of the Database Template in Figure 99.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 173

The filter keys are declared as unstructured Collection of elements. At this, one element is given as a
sequence of DbShortNames each separated by a | (ASCII 124), starting from the root. Simplifications are
achieved as in a positive case all elements contained below the Parameter are taken over automatically. The
main structure has to be retained in any case. This means, that in case of naming E1 all elements of this
structure (D + E) are used.

Filter Keys are created by giving the elements to be used. It is done in a way that all Response Parameter to
be used are stated completely. On the left side one can see the filter keys which should be used and on the
right side the Collection of sequences of DbShortnames, which is used to create the filter keys from the
original Database template. Every picture shows a new example.

Figure 100 shows the example, which uses the following multiple filter keys in the collection:

 #RtGen_LOCAL-ID | LID_Row0 | E0 | EngineCoolantTempearture (A)

 #RtGen_LOCAL-ID | LID_Row1 | E1 | EngineSpeed (E)

ShortName: LID_Row0
DataType: eSTRUCTURE

ShortName: Anton
DataType: eKEY
Value: 01

ShortName: E0
DataType: eSTRUCTURE

ShortName: EngineCoolantTemperature (A)
DataType: eA_UINT8

ShortName: EngineSpeed (E)
DataType: eA_UINT32

ShortName: LID_Row1
DataType: eSTRUCTURE

ShortName: Berta
DataType: eKEY
Value: 02

ShortName: E1
DataType: eSTRUCTURE

ShortName: #RtGen_LOCAL-ID
DataType: eTable

Figure 100 — Multiple filter key

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

174 © ISO 2012 – All rights reserved

Figure 101 shows the example, which uses the following filter key in the collection:
#RtGen_LOCAL-ID | LID_Row1 | E1

ShortName: VehicleSpeed (D)
DataType: eA_UINT10

ShortName: EngineSpeed (E)
DataType: eA_UINT32

ShortName: LID_Row1
DataType: eSTRUCTURE

ShortName: Berta
DataType: eKEY
Value: 02

ShortName: E1
DataType: eSTRUCTURE

ShortName: #RtGen_LOCAL-ID
DataType: eTable

Figure 101 — Single filter key

In ODX the DYN-DEFINED-SPEC references all Tables which can be used for creation of new DynID
records. As well as the DynID DiagComPrimitives the Tables are grouped by the definition mode. For each
filter key the MVCI diagnostic server tries to find the TableRow that fits to the <KEY> given through the filter.
Therefore the MVCI diagnostic server looks up only Tables selected by the current definition mode of the
MCDDynIdDefineComPrimitive. In cases where the MVCI diagnostic server finds a fitting TableRow
it uses the further part of the filter key to select a certain parameter within the eSTRUCTURE referenced by
that TableRow. The runtime system has the protocol-specific knowledge to prepare the request structure at
runtime for the MCDDynIdDefineComPrimitive using the parameters selected by
setDynIdParams(paramNames). This structure is also used to create the response structure at runtime
for the corresponding MCDDynIdReadComPrimitive. The sequence of parameters will have the same
order as the parameters added by this method. For each Logical Link, the MVCI diagnostic server should
internally maintain a list detailing which dynamic Ids are defined and which response structure is bound to a
certain dynamic service Id.

If a value (MCDValue) is passed to a setDynId method which is not in the list of supported dynamic Ids,
which are obtainable by calling the method MCDLogicalLink::getDefinableDynIds(), an
MCDParameterizationException exception with error code ePAR_VALUE_OUT_OF_RANGE is
thrown.

The method setDynId is used to assign a DynID to a DynIdComPrimitve, regardless of whether a static, a
semi-dynamic, or a dynamic DynId service is to be used. If a DynID parameter that the client application tries
to change is defined as CODED-CONST in ODX, this method should throw an
MCDProgramViolationException with error code ePAR_INVALID_VALUE.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 175

When executing an MCDDynIdDefineComPrimitve, the DynId defined in the DYN-ID parameter of this
DiagComPrimitve is added to the list of used DynIds at the logical link. If this DynId is already occupied, a
MCDProgramViolationException with error code eRT_DYNID_ALREADY_USED is thrown.

It is not allowed to execute a service for DynID definition repeatedly, therefore if a
MCDDynIdDefineComPrimitive is called with method startRepetition a
MCDProgramViolationException with error code eRT_SERVICE_REPEATED_NOT_ALLOWED is
thrown.

8.13.3.3 Reading by dynamically defined identifier

A dynamically defined LID can be read from the ECU by executing an MCDDynIdReadComPrimitive.

The D-Server will fill the dynamic part of the response template at runtime depending on the request
parameters of a previously executed MCDDynIdDefineComPrimitive with the same definition mode as
the MCDDynIdReadComPrimitive.

8.13.3.4 Deletion of dynamically defined identifier

Dynamic services exist until the end of a diagnostic session [execution of MCDStopCommunication, or
until the ECU falls out of diagnostics by itself (see Figure 91)].

DynIDs can be deleted by executing an MCDDynIdClearComPrimitive.

 A DynId will be removed from the list that contains the assignable DynIds when the execution of an
MCDDynIdDefineComPrimitive returns with a positive result. To avoid that a DynId is assigned
multiple times by different DynIdDefineComPrimitives executed simultaneously, the DynId used
in this service needs to be locked temporarily during execution of an
MCDDynIdDefineComPrimitive.

 A DynId will be re-added to the definable DynId list (the list that contains the assignable DynIds) when an
MCDDynIdClearComPrimitive executed with that DynId as parameter returns with a positive
response from the ECU.

 If the ECU transits from the state eCOMMUNICATION to eONLINE, all DynIDs will become available again.

If a DynID list changes, the event onLinkDefinableDynIdListChanged(MCDValues,
MCDLogicalLink) will be created by the logical link and sent to all registered event handlers. It transports
the actual list of available (not defined) DynIds, as well as the corresponding logical link.

8.13.3.5 DB-Templates for requests and responses regarding dynamically defined identifier

As the DynID concept is an intrinsically dynamic concept of diagnostics at runtime, no complete database
template for read DynID-services can be obtained from the ODX database. The part of the response that will
be filled dynamically at runtime can be identified by an MCDDbParameter with parameter type eDYNAMIC.
Calling method MCDDbParameter::getDbParameters() for this parameter will always deliver an
empty collection. The client application is responsible for assembling a DynID ComPrimitive by selecting
physical values from ODX tables and adding them as parameters to a DynIdComPrimitive by using the
MCDDynIdDefineComPrimitive.

Note that the current specification of the DynID ComPrimitives as shown in the examples in the ODX
specification requires protocol-dependent knowledge in the MVCI diagnostic server. The protocol dependence
is manifest in the fact that number, type, and meaning of the different elements in a DynID item structure and
DynID content parameter is purely protocol dependent and requires protocol-specific knowledge in the MVCI
diagnostic server. To overcome this specification gap, ODX data that aims to be useable in a protocol-
independent manner has to define specific semantic values for all the parameters that are used for DynID-
related services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

176 © ISO 2012 – All rights reserved

Table 27 defines a value for the semantic attribute of each relevant parameter that will be recognized by the
MVCI diagnostic server to allow protocol-independent handling of DynId data.

Table 27 — DYNID parameter semantic attribute definitions

Parameter name Semantic value Description

DYNID DYN-ID The parameter that contains the DynId-value to be
assigned/read/deleted.

STRUCT_DYNIDItem DYNID-DEF-STRUCT The structure definition that contains the parameters necessary for
DynID definition at runtime.

definitionMode DYNID-DEF-MODE Definition mode for a certain DynID parameter, protocol specific in
ODX.

positionInDYNID DYNID-POS Position of the parameter in the response returned by a DynID read
service, protocol specific in ODX.

memorySize DYNID-MEMORY-SIZE The size of the parameter that is to be included in a DynID service,
protocol specific in ODX.

LID DYNID-LID The LOCAL-ID, COMMON-ID, or ADDRESS that is the source of
the DynID parameter, protocol specific in ODX.

positionInRecordLID DYNID-LID-POS The position of the DynID parameter in its source LID, protocol
specific in ODX.

DYNID DYN-ID The parameter that contains the DynId-value to be
assigned/read/deleted.

Note that the statements above do not have any implication on the MVCI diagnostic server API. Rather, they
affect the MVCI diagnostic server internal realization of DynID.

ODX data that is supposed to allow an MVCI diagnostic server to support DynID in a protocol-independent
way has to adhere to the parameter semantic definitions outlined in Table 27.

8.13.3.6 Procedure description

The execution of an MCDDynIdDefineComPrimitive, an MCDDynIdReadComPrimitive or an
MCDDynIDClearComPrimitive is only allowed in the logical link states eONLINE and
eCOMMUNICATION.

After successful execution of the MCDDynIdDefineComPrimitive, a database template for the
corresponding MCDDynIdReadComPrimitive is generated internally within the MVCI diagnostic server.
The database template is stored for one specific DynID. If an MCDDynIdReadComPrimitive is executed
on this DynID, the stored database template is used to interpret the MCDDynIdReadComPrimitive’s
response.

A stored database template for a DynID is deleted internally in the following cases:

 The ECU changes state from eCOMMUNICATION to eONLINE.

 The MCDDynIdClearComPrimitive is called (the DynID is deleted within the ECU).

Whenever the DiagComPrimitives MCDDynIdDefineComPrimitive,
MCDDynIdReadComPrimitive, and MCDDynIdClearComPrimitive are called in the wrong
sequence, e.g. a read is executed before the corresponding DynID has been defined, an
MCDProgramViolationException with error code eRT_WRONG_SEQUENCE is thrown.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 177

Whenever one of the ComPrimitives MCDDynIdDefineComPrimitive,
MCDDynIdReadComPrimitive, and MCDDynIdClearComPrimitive is called that has not been
parameterised completely, e.g. the DynID has not been set before execution, an
MCDParameterizationException with error code ePAR_INCOMPLETE_PARAMETERIZATION is
thrown.

Figure 102 shows the usage of dynamically defined identifier (Part 1).

 :
M

C
D

D
bL

oc
at

io
n

 :
M

C
D

Lo
gi

ca
lL

in
k

de
liv

er
 O

D
X

 T
a

bl
e

fo
r

C
O

M
M

O
N

-I
D

,
LO

C
A

L
-I

D
, A

D
D

R
E

S
S

id
 is

 e
.g

. F
0

de
liv

er
 a

ll
nu

m
b

er
s

of

po
ss

ib
le

 D
yn

Id
In

st
an

ce
s

in
 a

 c
ol

le
ct

io
n

of
 M

C
D

V
al

ue
e.

g.
F

0
-

F
9

in
 K

W
P

 2
0

00

fil
l i

n
R

es
po

ns
e

S
tr

uc
tu

re
fo

r
ex

is
tin

g
a

nd
 c

or
re

sp
on

di
ng

D

bD
yn

Id
R

ea
dC

o
m

P
rim

iti
ve

A
P

I

ge
tD

bD
yn

D
ef

in
ed

S
pe

cT
a

bl
eB

yD
ef

in
iti

on
M

o
de

(d
ef

in
iti

on
M

od
e)

ge
tS

up
po

rt
ed

D
yn

Id
s(

d
ef

in
iti

on
M

od
e)

ex
ec

u
te

A
sy

nc
()

cr
ea

te
D

ia
gC

om
P

rim
iti

ve
B

yT
yp

e
A

nd
D

ef
in

iti
on

M
o

de
(e

M
C

D
D

Y
N

ID
D

E
F

IN
E

C
O

M
P

R
IM

IT
IV

E
,

de
fin

iti
on

M
o

de
)

re
tu

rn
s

th
e

M
C

D
D

yn
Id

D
ef

in
eC

om
P

rim
itv

e
ob

je
ct

 :
M

C
D

D
yn

Id
D

ef
in

e
C

om
P

rim
iti

ve

se
tD

yn
Id

P
ar

am
s(

as
ci

iS
tr

in
gs

)

se
tD

yn
Id

(id
)

 :
M

C
D

D
bD

yn
Id

R
ea

dC
om

P
rim

iti
ve

 :
M

C
D

D
at

at
yp

e
A

sc
iiS

tr
in

gs

ge
tN

ew
A

sc
iiS

tr
in

gs
()

ad
d(

pa
ra

m
et

er
N

am
e

)

fil
l i

t w
ith

 th
e

na
m

es
 o

f t
he

pa

ra
m

e
te

rs
 w

hi
ch

sh

ou
ld

 b
e

de
liv

e
re

d
af

te
r

ex
ec

u
tio

n
of

M

C
D

D
yn

Id
R

ea
dC

om
P

ri
m

iti
ve

on
P

ri
m

iti
ve

Te
rm

in
a

te
d(

d
yn

D
ef

in
e

C
om

P
rim

iti
ve

, l
in

k,
 r

es
ul

t)

on
D

ef
in

ab
le

D
yn

Id
Li

st
C

ha
ng

ed
(d

yn
Id

L
is

t,l
in

k)

 :
A

pp
lic

at
io

n

C
L

IE
N

T

 :
M

C
D

E
ve

nt
H

an
dl

er

ge
t a

 n
ew

 A
sc

iiS
tr

in
g

co
lle

ct
io

n

co
lle

ct
io

n
o

f s
tr

in
g

s

M
V

C
I

d
ia

g
n

o
s

ti
c

se
rv

er

Figure 102 — Usage of dynamically defined identifier (Part 1)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

178 © ISO 2012 – All rights reserved

Figure 103 shows the usage of dynamically defined identifier (Part 2).

ta
ke

 th
e

sa
m

e
 id

as

 in
 D

ef
in

eC
om

P
ri

m
iti

ve

re
tu

rn
s

th
e

M
C

D
D

yn
Id

R
ea

dC
om

P
ri

m
itv

e
ob

je
ct

 :
M

C
D

D
yn

Id
R

ea
dC

om
P

rim
iti

ve

ex
e

cu
te

A
sy

nc
()

se
tD

yn
Id

(i
d)

 :
 M

C
D

R
es

ul
t

 :
M

C
D

R
e

sp
on

se
s

 :
 M

C
D

R
es

p
on

se

 :
 M

C
D

R
es

po
ns

e
P

a
ra

m
et

er
s

E
0

:
M

C
D

R
e

sp
o

n
se

P
ar

a
m

et
e

r

A
 :

M
C

D
R

es
po

n
se

P
ar

am
e

te
r

 :
 M

C
D

R
es

po
n

se
P

ar
am

et
er

s

E
1

: M
C

D
R

e
sp

o
n

se
P

ar
a

m
e

te
r

E
 :

 M
C

D
R

e
sp

o
ns

e
P

a
ra

m
et

e
r

 :
 M

C
D

R
es

po
ns

e
P

ar
am

et
er

s

1

1

11

1

n=
1

n=
1

n=
2

1

1

 :
 M

C
D

D
bL

oc
at

io
n

 :
 M

C
D

Lo
g
ic

a
lL

in
k

A
P

I

 :
 M

C
D

D
yn

Id
D

ef
in

e
C

o
m

P
rim

iti
ve

s
 :
 M

C
D

D
bD

yn
Id

R
e
ad

C
om

P
rim

iti
ve

 :
 A

p
pl

ic
at

io
n

C
L

IE
N

T

 :
 M

C
D

E
ve

nt
H

an
dl

er

11 n=
1

1

on
P

rim
iti

ve
Te

rm
in

a
te

d
(d

yn
Id

R
e

ad
C

om
P

ri
m

iti
ve

, l
in

k,
 r

es
ul

tS
ta

te
)

 :
M

C
D

D
yn

Id
C

le
ar

C
o
m

P
rim

iti
ve

cr
ea

te
D

ia
g

C
o

m
P

rim
iti

ve
B

yT
yp

eA
n

dD
ef

in
iti

on
M

o
d

e
(e

M
C

D
D

Y
N

ID
R

E
A

D
C

O
M

P
R

IM
IT

IV
E

,
de

fin
iti

on
M

od
e

)

 :
 M

C
D

R
es

ul
tS

ta
te

ge
tD

e
fin

a
bl

e
D

yn
Id

s(
)

fe
tc

h
R

e
su

lts
(0

)

cr
ea

te
D

ia
g

C
o

m
P

rim
iti

ve
B

yT
yp

eA
n

dD
ef

in
iti

on
M

o
d

e
(e

M
C

D
D

Y
N

ID
R

E
A

D
C

O
M

P
R

IM
IT

IV
E

,
de

fin
iti

on
M

od
e

)

ex
e

cu
te

A
sy

nc
()

se
tD

yn
Id

(i
d)

on
D

e
fin

ab
le

D
yn

Id
Li

st
C

h
an

g
ed

(d
yn

Id
Li

st
,

lin
k)

on
P

rim
iti

ve
Te

rm
in

a
te

d
(d

yn
Id

C
le

a
rC

om
P

ri
m

iti
ve

, l
in

k,
 r

e
su

ltS
ta

te
)

ta
ke

 th
e

sa
m

e
 id

as

 in
 D

ef
in

eC
om

P
ri

m
iti

ve

de
liv

er
s

re
su

lt
o

f
D

yn
ID

 b
a

se
d

on

se
le

ct
e

d
ite

m
s

of
 ta

bl
e

de
liv

er
s

a
ll

nu
m

b
e

rs

of
 a

va
ila

b
le

 a
n

d
n

ot

de
fin

ed
 D

yn
Id

In
st

an
ce

s
in

 a
 M

C
D

V
a

lu
e

 c
o

lle
ct

io
n

M
V

C
I

d
ia

g
n

o
st

ic
se

rv
er

Figure 103 — Usage of dynamically defined identifier (Part 2)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 179

8.14 Internationalization

8.14.1 Multi language support

As well as having a short namer, every database object also has a long name and description. To support
country-specific settings for messages (e.g. long names) and descriptions, a string ID is used. With the string
ID every string can be mapped in the local language by the Client. To get the string ID each database object
has two additional methods: getLongNameID() and getDescriptionID().

For MCDParameter and MCDResponse the values for translation can be received by the corresponding
database objects via the method getDbObject.

8.14.2 Units

All units in the diagnostic server are given in relation to SI units. However, in many client applications country-
specific settings are needed. Therefore the database provides units and unit groups. The unit group (of type
“COUNTRY”) can be set for each Logical Link separately (it makes no sense to set a single unit). If the unit
group “DEFAULT” is set, the diagnostic server sets the unit group back to the original settings given by the
database.

Figure 104 shows the Unit groups.

SpeedSpeedSpeed

PowerPowerPower

VolumeVolumeVolume

PressurePressurePressure

TemperatureTemperatureTemperature

EU

km/hkm/h

°C°C

kWkW

barbar

ll

US
miles/hmiles/h °F°Fhphppsipsigallongallon

SI
ll m/sm/s KKkWkWpascalpascal

“COUNTRY”

“COUNTRY”

“COUNTRY”

“EQUIV-UNITS”

Figure 104 — Unit groups

8.15 Special Data Groups

The generic Special Data Groups (SDGs) structure was introduced to allow the definition of company-specific
data structures necessary for arbitrary use cases. This can the case for highly company-specific purposes,
such as ECU programming or flash processes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

180 © ISO 2012 – All rights reserved

Special Data Groups (SDGs) are used to add additional information to specific ODX elements, e.g. DIAG-
COMM (MCDDbDataPrimitive), DTCs, or FlashSessions. SDGs have been introduced in ODX to be able
to capture information that is not covered by general ODX mechanisms. For example, SDGs can be used to
attach error set conditions to DTCs or to provide error trees. However, SDGs have been introduced to be able
to provide additional information but not calculation-relevant information, i.e. SDGs do not have semantics.

An SDG contains an optional MCDDbSpecialDataGroupCaption to describe the SDG content, and a
list of MCDDbSpecialDataGroup and MCDDbSpecialDataElement objects that contain the special
data. This list can contain an arbitrary number of MCDDbSpecialDataGroup and
MCDDbSpecialDataElement, and the ordering of these MCDDbSpecialDataGroup and
MCDDbSpecialDataElement is not restricted in any way. Note that SDGs can be nested recursively; that
way, very complex data structures may be defined as SDGs. The MCDDbSpecialDataElement is used
to add semantic information to the appropriate object.

SDGs can belong to data primitives like diag services and jobs, flash sessions, flash data blocks or diag
trouble codes. Figure 105 shows the Special Data Groups.

<<M,C,D>>
MCDObject

<<M,C,D>>
MCDNamedObject

<<D>>
MCDDbSpecial

DataGroupCaption

<<M,C,D>>
MCDDbObject

<<D>>
MCDDbSpecial
DataElement

<<D>>
MCDDbSpecial

DataGroup

1

1

0...1

<<M,C,D>>
MCDCollection

<<D>>
MCDDbSpecial

Data

<<D>>
MCDDbSpecial

DataGroups

*

*

{ordered}

<<D>>
MCDDbDataPrimitive

<<D>>
MCDDbFlashSession

<<D>>
MCDDbFlashDataBlock

<<D>>
MCDDbDiagTroubleCode

1

1

1

1

1

1

1

Figure 105 — Special Data Groups

Table 28 provides an overview about the related ODX element, where the SDG information can be taken
from.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 181

Table 28 — Special Data Group relation

ODX Element MVCI API Class

CONFIG-DATA MCDDbConfigurationData

CONFIG-ITEM, OPTION-ITEM MCDDbConfigurationItem

CONFIG-RECORD MCDDbConfigurationRecord

DATABLOCK MCDDbFlashDataBlock

DATA-RECORD MCDDbDataRecord

DIAG-COMM MCDDbDataPrimitive

DIAG-LAYER MCDDbLocation

DTC MCDDbDiagTroubleCode

ECU-MEM-CONNECTOR MCDDbECUMem

ITEM-VALUE MCDDbItemValue

MULTIPLE-ECU-JOB MCDDbDataPrimitive

PARAM MCDDbParameter

REQUEST MCDDbRequest

RESPONSE MCDDbResponse

SESSION-DESC, SESSION MCDDbFlashSession

TABLE MCDDbTable

TABLE-ROW MCDDbParameter

FUNCTION-DICTIONARY MCDDbFuntionDictionary

BASE-FUNCTION-NODE MCDDbFunctionNode

8.16 ECU (re)programming

8.16.1 Goal

The design of the ECU (re)programming is based on the following items:

 The DB part of the object model has to provide access to all fields within the ASAM ECU-MEM.

 The MVCI diagnostic server shall be able to list ECU MEMs independent of the selected
MCDDbLocation.

 It shall be possible to write a generic flash job that can be programmed independently from the data and
where the session which has to flash can be parameterised by runtime.

 All protocol-dependent activities have to be done in a job, or inside the protocol processor (for ISO
underneath D-PDU API).

 Upload will in this version not be supported.

 Offsets will be handled by the MVCI diagnostic server internally to calculate start- and end-addresses.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

182 © ISO 2012 – All rights reserved

8.16.2 Structuring of the function block flash

8.16.2.1 Database part

The root element of DB part of the flash processor is the MCDDbLocaton object. This object can list all
sessions that are defined for the actual MCDDbLocation. It also gives access to a collection of
MCDDbFlashSessionClasses to give the application the possibility to structure the FlashSessions. From
this root element one has access to all information that is stored within the ECU-MEM and the FlashSession
data.

The methods MCDDbFlashSession::getLongName(),
MCDDbFlashSession::getShortName(), and MCDDbFlashSession::getDescription()
return the corresponding values of a SESSION-DESCRIPTION element in ODX.

The data returned by MCDDbFlashSession::getDescriptionID,
MCDDbFlashSession::getLongNameID and
MCDDbFlashSession::getUniqueObjectIdentifier is taken over from the SESSION-
DESCRIPTION element in ODX.

The next ERD shows the associations between the database objects for a single FlashJob in UML notation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 183

Figure 106 shows the Flash associations.

<<D>>
MCDDbJob

<<D>>
MCDJob

<<D>>
MCDDbFlashJob

<<D>>
MCDFlashJob

<<D>>
MCDDbFlashDataBlocks

<<D>>
MCDDbFlashSessions

<<D>>
MCDDbFlashSession

<<D>>
MCDDbFlashData

<<D>>
MCDDbFlashDataBlock

<<D>>
MCDDbFlashSegments

<<D>>
MCDDbFlashSegment

<<D>>
MCDDbFlashFilters

<<D>>
MCDDbFlashFilter

*

**

*

0..*

1

11

1

<<D>>
MCDDbFlashSessionClasses

<<D>>
MCDDbFlashSessionClass

*

1

<<D>>
MCDDbFlashSecurity

<<D>>
MCDDbFlashSecurities

*

1

<<D>>
MCDDbFlashChecksum

<<D>>
MCDDbFlashChecksums

*

1

<<D>>
MCDDbFlashIdent

<<D>>
MCDDbIdentDescription

<<D>>
MCDDbFlashIdents

*

1

0..2

1

1

11

1

1

1

1

1

1

1

1 1 1

1

1 1 1

1 1

<<D>>
MCDDbDataPrimitive

<<D>>
MCDDbRequestParameter

1

11

Figure 106 — Flash associations

An MCDDbFlashFilter is used to enable handling of segments of binary or hexadecimal files, that is, to
extract a part from such a file (binary data does not include a start address).

Use case 1: Binary data file

A binary data file does not include the start address. Therefore the flash filter delivers this as start address.
This start address is delivered by MCDDbFlashSegment::getSourceStartAddress():A_UINT32

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

184 © ISO 2012 – All rights reserved

Use case 2: Hex data file (e.g. motorola srecord, intel hex)

A hex data file includes the start address and the size. In this case the filter delivers start and end address of
an area in the file, e.g. code/data/boot.

When no SEGMENTs are specified in ODX, the MCDDbFlashSegments will be constructed from the inline
data or the referenced file. Each MCDDbFlashSegment will be given the ShortName:
“Segment_“<SourceAddressStart>”_”<SourceAddressEnd>.

EXAMPLE Example: “Segment_0x00000000_0x000000FF”

No namespace conflicts will arise, because no other Segments are available in the segments collection and
the segments may not overlap.

When no SEGMENTs are specified in ODX, the SourceStartAddress and the SourceEndAddress will be read
from the inline data or the referenced file respectively. This applies only for the formats Motorola-S and
IntelHex.

If the data is stored in binary representation and no SEGMENTS are defined in ODX, the data cannot be
flashed. Therefore no MCDDbFlashSegment object will be defined and the Method
MCDDbFlashDataBlock::getDbFlashSegments():MCDDbFlashSegments returns an empty
collection.

If the flash data is in binary format, reprogramming is only possible if there are also FlashSegments defined.
Otherwise, reprogramming is not possible. Therefore, the definition of FlashSegements is mandatory here. On
the other hand, the definition of FlashSegments is optional in case of hex data. As a result, segments for hex
data have to be determined internally if they cannot be read from the ODX database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 185

Figure 107 shows the inheritance of the single Interfaces for all flash objects.

<<M,C,D>>
MCDDbObject

<<M,C,D>>
MCDNamedObject

<<D>>
MCDDbFlashChecksum

<<D>>
MCDDbFlashFilter

<<D>>
MCDDbFlashSecurity

<<D>>
MCDDbFlashIdent

<<D>>
MCDDbFlashData

<<D>>
MCDDbFlashSegment

<<D>>
MCDDbFlashDataBlock

<<D>>
MCDDbFlashSession

<<D>>
MCDFlashJob

<<D>>
MCDDiagComPrimitive

<<D>>
MCDDataPrimitive

<<D>>
MCDJob

<<M,C,D>>
MCDObject

Figure 107 — Flash interfaces

8.16.2.2 Online part

To execute ECU (re)programming it is possible to get the correct flash job for a session from the
MCDDbSession object. For this MCDFlashJob object one can call the method setSession() to choose
the session to be flashed. It is only possible to set one session at a time.

To start the download of that session call the executeSync() or executeAsync() method.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

186 © ISO 2012 – All rights reserved

If one has to flash more than one session, the above described sequence has to be done for every session. If
one needs to sort the sessions, this has to be done by the application. The application can get the priority for
every session from the projects data basis via the MVCI diagnostic server.

Within the job the whole flash sequence is described. e.g.

 security access,

 start diagnostic session

 download of every data block within the selected FlashSession

 checksum prove

 ECU reset

This job has all information to generate all telegrams needed to send to the ECU. (For KW2000 the job can
create all “0x34”, “0x36”, “0x37” sequences for all segments). The binary data for every segment can be
accessed by the method getBinaryData at the MCDDbFlashSegment interface. If the data is in any other
format than binary (e.g. MotorolaS or IntelHex) the MVCI diagnostic server has to convert the data to provide
it as binary for the job.

For the purposes of simplification and reuse it is possible to create sub-jobs that will flash one whole data
block, or a job that will flash a single segment. The MVCI diagnostic server API provides all mechanisms that
this creation of sub-jobs is possible. All these jobs used for ECU (re)programming should not be executed at
the API directly. For this reason they have to be signed as not executable. The DbPart still lists these jobs, but
the creation of an online object of these jobs outside the MCDDbFlashJob will be denied by the MVCI
diagnostic server (eRT_SERVICE_EXECUTION_FAILED).

8.16.2.3 Progress information

A general mechanism for progress in jobs is:

If flash job is executed synchronously or asynchronously, the application can retrieve progress by calling
method MCDJob::getProgress()and JobInfo by method MCDJob::getJobInfo().

If flash job is executed asynchronously, MVCI diagnostic server will issue events of type
onPrimitiveProgressInfo according to the flash job's setProgress method calls. The progress
event shall provide the progress. The progress is expressed in values between 0 and 100.

If flash job is executed asynchronously, MVCI diagnostic server will issue events of type
onPrimitiveJobInfo according to the flash job's setJobInfo method calls.

8.16.2.4 Ident mechanism

ASAM ECU-MEM provides expected identification values for every FlashSession and own identification
values for every data block. This information is stored in the ECU-MEM and could simply be accessed by the
MVCI diagnostic server. After reading the FlashIdents from the ECU, they can be compared with the
corresponding values in the ECU-MEM. The object model provides a reference to a service that reads/writes
this id out of the ECU for every FlashIdent object. This link between the ECU-MEM and the diagnostic data is
definitively necessary. Idents may be linked with a Read- and a Write-Service. The information as to which
parameter holds the ident value is reachable via the MCDDbIdentDescription. The IDENT-DESCs shall
not have parameters with COMPLEX-DOPs.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 187

Figure 108 shows the FlashIdent.

<<D>>
MCDDbFlashIdent

<<D>>
MCDDbIdentDescription

0..2

<<D>>
MCDDbRequestParameter

<<D>>
MCDDbDiagComPrimitive

1 1

1

1

Figure 108 — FlashIdent

8.16.3 ECU-MEM

In ODX an ECU-MEM is connected with the belonging ECU-VARIANTs and BASE-VARIANTs through an
ECU-MEM-CONNECTOR. The methods MCDDbEcuMem::getLongName(),
MCDDbEcuMem::getShortName(), and MCDDbEcuMem::getDescription() return the
corresponding values of an ECU-MEM-CONNECTOR in ODX.

It should be possible to load ECU-Descriptions and ECU-MEMs for a project. The state of the MCDSystem
shall be eDBPROJECT_CONFIGURATION.

ECU-Descriptions and ECU-MEMs should be loaded to n MCDDbProject or permanently added to a project
configuration.

It is possible to list all ECU-MEMs at MCDDbProject using the method MCDDbProject:getDbECUMems.

It is possible to list ECU-MEMs at MCDDbProject, using the method
MCDDbProjectConfiguration.getAdditionalECUMEMNames() : A_ASCIISTRINGs,
which are not included in the project. It will be searched within the paths of the System. This is the current list
of ECU-MEMs. Two calls can deliver different lists.

By means of the method MCDDbProject:loadNewECUMEM(MCDDatatypeShortName
ecumemName, bool permanent=false) an ECU_MEM, which does not exist within in the project, will
be loaded in the project. The parameter permanent controls if this ECU MEM is added permanently or not.

The method MCDDbProject::loadNewEcuMem() throws an exception of type ePAR
_SHORTNAME_INVALID when a file for the MCDDatatypeShortname value supplied as parameter to this
method was not found in the database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

188 © ISO 2012 – All rights reserved

Figure 109 shows the Physical memory.

1..*

1

<<D>>
MCDDbPhysical

Memories

<<M,C,D>>
MCDDbLocation

1

1

1

1

<<D>>
MCDDbPhysical

Memory

<<D>>
MCDDbPhysical

Segments

<<D>>
MCDDbPhysical

Segment

*

1

Figure 109 — Physical memory

The MVCI diagnostic server needs no API-method to provide an address-offset. Offsets will be handles by the
MVCI diagnostic server internally to calculate start- and end-addresses. Addresses are represented as byte
addresses.

8.17 Handling binary flash data

8.17.1 Late-bound data files

In the context of data files for ECU programming, the term late-bound denotes that the corresponding data file
will be loaded by a diagnostic server as late as possible. That is, a late-bound data file is loaded the latest

 when one of the methods
MCDDbFlashSegment::getBinaryData(),
MCDFlashSegmentIterator::getFirstBinaryDataChunk(),
MCDFlashSegmentIterator::hasNextBinaryDataChunk(),
MCDFlashSegmentIterator::getNextBinaryDataChunk()
is called for one of the MCDDbFlashSegments contained in an MCDDbFlashDataBlock
or

 when the method getFlashSegments() is called for the first time at an MCDDbFlashDataBlock
in cases of a Motorola-S or an Intel-Hex data file.

The binary data associated with an MCDDbFlashDataBlock can only be marked late-bound if this binary
data is located in an external file referenced from the ODX data. That is, the binary data is not embedded into
the ODX data.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 189

If the value returned by MCDDbFlashData::isLateBound() is ‘false’ at a reference to an external
resource file (e.g. job code, flash data, coding data), this is considered a guarantee that the content of this
resource file will not change while a diagnostic server is running. More precisely, the content of the external
resource file shall be static for the time between MCDSystem::selectProjectXXX() and
MCDSystem::deselectProject() for the same project.

Please note that exchanging external resource files may lead to non-deterministic behavior of a diagnostic
server. In particular, this statement holds in cases where the late-bound property is set to ‘true’ for some ODX
element.

8.17.2 Wildcards in data file names

The reference to external binary data from an element of type MCDDbFlashData attached to an
MCDDbFlashDataBlock can either point to a specific external data file or it can be unspecific. In the first
case (specific data file), the value of type A_ASCIISTRING returned by the method
MCDDbFlashData::getDataFileName() does not contain any wildcards, that is, none of the
characters ‘?’ or ‘*’ are contained in the filename. Here, the external data file can be accessed at any time,
e.g. to read the binary data or to calculate MCDDbFlashSegments.

In cases of an unspecific data file, the filename returned by MCDDbFlashData::getDataFileName()
contains one or more wildcard characters ‘?’ or ‘*’. These wildcards need to be resolved at runtime in order to
identify matching data files. Please note that wildcards are only allowed in a filename if the flash data is also
marked late-bound, that is, if the method MCDDbFlashData::isLateBound() returns true for
MCDDbFlashData element. Here, the binary data file to be used for a corresponding
MCDDbFlashDataBlock needs to be determined at runtime. For this purpose, the following steps need to
take place:

 The client application calls the method MCDDbFlashDataBlock::getMatchingFileNames().
Now, the diagnostic server tries to identify all files which match the pattern returned by the method
getDataFileName() at the MCDDbFlashData in the database part of the current
FlashDataBlock. The result of the calculation is a collection of MCDDatatypeAsciiString
objects where each MCDDatatypeAsciiString represents the filename of a matching data file.
Note that the search scope of the diagnostic server depends on vendor-specific definitions and settings.
That is, each implementation of a diagnostic server may have a different definition of the directories,
which are searched for matching data files. Please refer to the documentation of the specific diagnostic
server implementation for more details.

 The client application calls the method MCDDbFlashData::setActiveFileName to select the
flash file to be used.

 The client application calls the method MCDDbFlashDataBlock::getFlashSegments(). The
diagnostic server now creates the MCDDbFlashSegments for the current MCDDbFlashDataBlock.

8.17.3 Flash segment iterator

Flash data files can become quite large (several tens of megabytes). As a consequence, keeping data files in
the main memory of a tester consumes huge amounts of memory. To also support thin tester applications with
less main memory capacity, the concept of FlashSegmentIterators has been introduced. Such a
FlashSegmentIterator allows reading the data, which represents the binary data of an
MCDDbFlashSegment in an external data file, in small chunks. As a result, large data files can be handled
by tester applications with less memory consumption.

In this part of ISO 22900, a FlashSegmentIterator is represented by the interface
MCDFlashSegmentIterator. A new iterator for an MCDDbFlashSegment can be obtained by calling
the method MCDDbFlashSegment::createFlashSegmentIterator(size : A_UINT32). The
parameter size of this method defines the maximum size of the chunks that will be delivered by the newly
created iterator in bytes. Note that the last chunk delivered by the diagnostic server is potentially smaller than

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

190 © ISO 2012 – All rights reserved

defined by size. By means of the method
MCDFlashSegmentIterator::getFirstBinaryDataChunk(), the first piece of binary data is
obtained from the external data file, if possible. In addition, the FlashSegmentIterator’s internal pointer is set to
the next piece of binary data.

By means of the method MCDFlashSegmentIterator::hasNextBinaryDataChunk(), a client
application can check whether there are more binary data chunks available in the iterator. If this is the case,
the method MCDFlashSegmentIterator::getNextBinaryDataChunk() can be used to obtain
this next piece of binary data.

The MCDFlashSegmentIterator shall be removed by the client if it is not needed anymore by calling the
function MCDDbFlashSegment::RemoveFlashSegmentIterator().

Figure 110 shows an example of a DbFlashDataBlock BCMApplicationData which references an external data
file bcm_app.msr via a corresponding element of type MCDDbFlashData. This FlashDataBlock is
decomposed into two FlashSegments SegA and SegB. In the example, the client application has created a
new FlashSegmentIterator with a size of 300 bytes for Flash Segment SegA. When iterating through the Flash
Segments binary data, the FlashSegmentIterator returns three chunks of 300 bytes and a fourth chunk of 100
bytes. After the fourth chunk has been obtained by the client application, the end of Flash Segment SegA has
been reached. Therefore, no further chunks are available. That is, the method
MCDFlashSegmentIterator::hasNextBinaryDataChunk() returns false after the fourth chunk
has been obtained.

0000 1000 2500

0300 0600 0900

chunk 1 chunk 2 chunk 3 chunk 4 (chunk size <=300)

MCDDbFlashSegment SegA MCDDbFlashSegment SegB

MCDDbFlashDataBlock
(external data file)

BCMApplicationData
bcm_app.msr

Figure 110 — Example of data chunks obtained from a FlashSegment SegA

8.18 Library

Library elements are used within ODX to specify additional program code which is used ('included' in Java
terms) by the executable code referenced by the CODE-FILE attribute of a PROG-CODE instance. A data
element of type PROG-CODE is used by ODX to specify Java program code which is executable by the
diagnostic server. Libraries are defined by LIBRARY elements in ODX and can be referenced by one or
multiple PROG-CODE elements to extend the classpath that is associated with that PROG-CODE. A PROG-
CODE can be executed in the classpath environment defined by the program code (class file or JAR)
referenced by the CODE-FILE attribute at PROG-CODE, as well as the program code referenced by CODE-
FILE attribute of the referenced LIBRARY elements. This also applies if the PROG-CODE execution is
embedded within another program code (Java job) execution. In such a case, the calling job and the called job
need to be executed within different classloader environments if a different class context is defined by the
associated ODX data.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 191

In ODX, LIBRARY definitions are associated with a DIAG-LAYER and can be referenced by
MCDDbCodeInformation (ODX: PROG-CODE) instances at MCDDbSingleEcuJob (ODX: SINGLE-
ECU-JOB), MCDDbMultipleEcuJob (ODX: MULTIPLE-ECU-JOB) and COMPU-METHOD of category
COMPUCODE. Please note that ODX also allows library elements to point to arbitrary other types of data [e.g.
it is possible to reference a dynamic system library (so or dll)] from a LIBRARY element. These cases cannot
be covered in the scope of this part of ISO 22900, and diagnostic server behaviour has to be defined in a
customer- and project-specific way.

The following resources of program code have to be included into the Java classpath environment for a
PROG-CODE (MCDDbCodeInformation and DOPs referencing Java code):

 Resources referenced by the PROG-CODE itself.

 Resources referenced by any of the LIBRARY elements that are referenced by PROG-CODE.

 Permitted packages of the standard JRE.

 MVCI diagnostic server API (except for COMPUCODE)

For performance improvements a classloader may be reused by any PROG-CODE which defines the same
Java class environment.

Figure 111 shows the relation between Library and Prog-code.

CODE-FILE[1] : string
ENCRYPTION[0..1] : string
SYNTAX[1] : string
REVISION[1] : string
ENTRYPOINT[0..1] : string

PROG-CODE

SYNTAX := 'JAVA' | 'CLASS' | 'JAR'

«attr» ID[1] : ID
«attr» OID[0..1] : string
«trans» HANDLE[1] : ELEMENT-ID
CODE-FILE[1] : string
ENCRYPTION[0..1] : string
SYNTAX[1] : string
REVISION[1] : string
ENTRYPOINT[0..1] : string

LIBRARY *

* «odxlink»

Figure 111 — Relation between Library and Prog-code

Please note that in contrast to “CLASS” and “JAR”, the support of Java source code is optional for a
diagnostic server. Resources referenced by PROG-CODE or LIBRARY with SYNTAX=“JAVA” would either
have to be compiled at runtime, or during a pre-processing step transforming the ODX resources to a
proprietary runtime format.

8.19 Jobs

8.19.1 General

The source code of Jobs is always identical, regardless of whether it is executed in the MVCI diagnostic
server or in the Client.

Job Diagnostic Sequence executed by Job Processor (Java) of MVCI diagnostic server

Sequence Diagnostic Sequence executed by Client of MVCI diagnostic server

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

192 © ISO 2012 – All rights reserved

Figure 112 shows the execution of jobs as a job in MVCI diagnostic server or as a sequence in the client.

Client Application

Communication Services
GDI, COM/DCOM, Java RMI, C++

Communication Processor

Data Processor

imports

Flash Data Processor

Job Processor

Communication Services

Object Model of
Functional Services 3 D

MVCI
diagnostic
server

MCD 2D Database

Job
ABC

Job
XYZ

Job
XYZ

Sequence

Figure 112 — Executing jobs as a job in MVCI diagnostic server or as a sequence in the client

Generally, Jobs are handled like diagnostic services. However, they may be called only non-cyclic and single.
A Job has Meta information about the input and output parameters and the services used within the Job.
Anyway, a Job may return 0..n intermediate results and only one final result. After the final result no further
intermediate result can be delivered.

Threads or processes are not allowed inside a job. Parallel execution of the same SingleECUJob shall be
possible on different Logical Links; this means the SingleECUJob shall be re-entrant. Only exceptions defined
in the ASAM MVCI diagnostic server API may be thrown, other exceptions, for example of Java SDK, shall not
be thrown.

The Job exchange format is Java source code. Interfaces and methods of API, as well as some special Java
libraries, are all allowed (see 8.19.8). Inheritance is allowed for all classes within the classpath of the MVCI
diagnostic Server. Further information to classpath definition and classloader handling with Jobs can be found
in 8.18.

MCDControlPrimitives may be used in jobs, however the jobs shall be defined in the base variant and
shall not be overwritten or excluded by any variant. The application is responsible for taking care of potential
parallel running threads, because the execution may cause logical link state changes, etc.

Communication Parameters can be modified. If a Java-Job needs to alter the currently valid protocol
parameters of the Logical Link, it should use and execute an MCDProtocolParameterSet from within its
code. Please note that all changes to protocol parameters caused by an MCDProtocolParameterSet
executed within a Java-Job will be persistent after this job has terminated – just as if a client application had
issued the changes. So, a clean Job implementation has to restore the protocol parameters at the end of the
Job execution. Please note that the usage of MCDProtocolParameterSet in a Java-Job is considered

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 193

harmful, as it could cause undocumented and therefore unexpected changes to the protocol parameters of a
logical link at runtime.

8.19.2 Input and output parameters

Job input and output parameters (including results) can use complex and simple DOP. There may not be a
difference between results of jobs and diag services.

For a diag job, the definition of input and output parameters is always static. This means the number of
elements may be increased for a field, whereas the field type may not be changed into any other data type at
run-time.

With respect to ODX, a Single ECU Job or a Multiple ECU Job , hereafter referred to as "Jobs", has a possibly
empty set of input parameters, a possibly empty set of positive output parameters, and a possibly empty set of
negative output parameters. These three sets of parameters are represented by three database objects ― a
request, a positive response, and a negative response ― that can be obtained from the database object of a
Job. With this in mind, the diagnostic server needs to generate the required request and response templates
(DB request and DB response). The Shortname of the generated request object should be
"#RtGen_Request". The Shortname of the generated positive response should be
"#RtGen_Positive_Response". The Shortname of the generated negative response should be
"#RtGen_Local_Neg_Response".

The type of a response ― positive response or negative response ― can be obtained by
MCDDbResponse::getResponseType(). For a positive reponse the value is
“ePOSITIVE_RESPONSE”. For a negative reponse, the value is “eLOCAL_NEG_RESPONSE”.

As all sets of parameters of a Job ― input parameters, positive output parameters, and negative output
parameters ― can be empty, the request and response templates of a Job can be empty, that is, they do not
contain any request or response parameters, respectively.

As the set of request parameters, positive response parameters, and negative response parameters are
optional (cardinality 0..n) in ODX (see ISO 22901-1), the parameter collections of the corresonding request
and response objects can be empty. However, the database objects for request, positive response, and
negative response of a Job are nevertheless generated by the diagnostic server.

At MVCI diagnostic server API level, there is always the same static access to the input and output
parameters, as with diagnostic services.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

194 © ISO 2012 – All rights reserved

Figure 113 shows the separation between database and job source code.

<<MCD>>
MCDDbResponse

Parameter

<<MCD>>
MCDVersion

<<D>>
MCDDbRequest

Parameter
<<D>>

MCDDbSingle
EcuJob

1

n1

1

11

n

1

1

n 1 1 1

a b

c1 c2 d1

public class implements

public

public void

throws

 Job JobTemplate
{

 Job ()
{}

 execute
(MCDRequestParameter inputParameters[],
 MCDJobApi jobHandler,
 MCDLogicalLink link,
MCDSingleEcuJob apiJobObject) MCDExeption
{

}

/** Constructor */

/** the execution instructions for this job */

1 Job
Sourcecode

Key

a MCDDbRequest

b MCDDbRequestParameters

c1 MCDDbResponses

c2 MCDDbResponse

d MCDDbResponseParameters

Figure 113 — Separation between database and job source code

8.19.3 Job result

The result of the Job is freely designed by the Job writer. Because of this it is optional if elements of the
intermediate results are included within the result of the Job or not. Every result (intermediate or final) shall
correspond to the output parameters described in the Meta information.

The Job writer defines what has to be returned as intermediate or final result of the job. Thus, it is also not
defined that an intermediate result has to be identical to a complete result set of a diagnostic service used
within the Job. It is up to the Job writer to decide if elements of the intermediate results shall be put out within
the final result again. Anyway, a Job may return 0..n intermediate results and only one final result. After the
final result no further intermediate result can be delivered.

Intermediate and final results shall use the same database template.

Jobs with dynamically reduced results (i.e. returning only subsets of the results defined in the DB template)
are to be allowed under the following conditions:

 to enable dynamic results to be called for the function enableReducedResults,

 if a job marked with the ODX flag IS-REDUCED-RESULT-ENABLED is to be executed while dynamic
results are disabled, the error eRT_NO_DYNAMIC_MODE shall be reported,

 if job supports dynamic results can be asked with the method isReducedResultEnabled.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 195

Events for intermediate results are initiated by the diagnostic job. The MVCI diagnostic server (not the Job
itself) passes the event towards the application. Whether the application uses the intermediate results or not is
left up to the application itself. The application may just ignore the event signal and leave the result data in the
ring buffer until the final result shows up. Depending on the ring buffer’s maximum count of elements, the
application will then have access to zero, several or all intermediate results besides the final result.

If the initiation of intermediate result events is to be activated depending on the user’s needs, the job can
provide an appropriate input parameter.

Also, if the contents of intermediate and final results are of different types, the differentiation shall be done
within a single and static result structure (template), e.g. this can be handled by using a multiplexer entry at
the template’s root.

Figure 114 shows the principle of single execution of jobs.

Client

MVCI diagnostic server

API

Job
executing

EventHandler

MCDJobApi

fetchResults()

asynchronous:
 - onPrimitiveHasIntermediateResult(...)
 - onPrimitiveTerminated(...)
synchronous:
 MCDResultState

Resultringbuffer

Client

MVCI diagnostic server

API

Job
executingEventHandler

Executing a job in
the MVCI diagnostic
server

Executing a job as a
sequence in the Client

Operations with D-System

sendFinalResult(MCDResult)
sendIntermediateResult(MCDResults)

sendFinalResult(MCDResult)
sendIntermediateResult(MCDResults)

MCDJobApi

asynchronous:

synchronous:
 MCDResultState

 - onPrimitiveHasIntermediate
 Result(...)
 - onPrimitiveTerminated(...)

2

2

3

4

set
MCDResult
to the
ring buffer

Figure 114 — Principle of single execution of jobs

8.19.4 Single ECU jobs

SingleECUJobs have to be assigned to one location at run-time, that is, functional addressing is not possible.
As as result these kind of Jobs can only be executed in levels of Protocol, Base-Variant, and Variant. Inside
the job code no reference to the accessed location will be necessary because the system already knows the
accessed location. For SingleECUJobs the mechanism of inheritance, overwriting and elimination is supported
(see ISO 22901-1).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

196 © ISO 2012 – All rights reserved

In a SingleECUJob no Logical Link can be created. The location on which the Job is executed is an input
parameter for the execute method. Thereby SingleECUJobs can be executed on different locations which
have the same service names (and the services have the same result structures), e.g. Base Variant or
Variant.

8.19.5 FlashJobs

A FlashJob is derived from Job and behaves like a Single ECU Job which is used to start flash sessions within
the MVCI diagnostic server. This information is provided by the databases. At the runtime object it is possible
to set the Session that have to be flashed by this service. Only one session can be set for one job. The
application can access the priority defined in the database for every flash session and can then sort the
Sessions according to this priority.

8.19.6 Multiple ECU jobs

For multiple ECU jobs the location [MultipleEcuJob] is used. This location only contains jobs; no services are
allowed.

The MVCI diagnostic server will provide the mechanism to list the locations (Protocols, Functional Groups,
ECU Base Variant, ECU Variant) which are referred to in such a job.

In a MultipleECUJob various Logical Links can be created. Thereby all these locations (e.g. different ECUs)
can be used inside this Job. The Job writer handles the creation and destruction of the location objects, as
with the used services. The Logical Links select the access paths.

When using the method createLogicalLinkByAccessKey for a MultipleECUJob the parameter for
ShortNamePhysicalVehicleLink shall be ignored.

Figure 115 shows the relation between MCDMultipleECUJob to MCDResponse (MCDDbResponse).

MCDDbResponseMCDResponse

MCDResult

1 1

MCDMultipleEcuJob

1

1

1

1

MCDResponses

1

1

Figure 115 — Relation between MCDMultipleECUJob to MCDResponse (MCDDbResponse)

A MultipleEcuJob delivers one runtime Response in the Result for the one and only existing DbResponse.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 197

8.19.7 Job execution

8.19.7.1 Single execution of a Job

Figure 116 shows the Job execution asynchronous.

executeAsync() Queue

MCDEventHandler::
onPrimitiveHasIntermediateResult()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

DiagComPrimitive State eIDLE eIDLE

Repetition State

Client Application

MCDLogicalLink

ECU

ePENDING

eNOT_REPEATING

MCDEventHandler::
onPrimitiveTerminated()

Figure 116 — Job execution asynchronous

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

198 © ISO 2012 – All rights reserved

Figure 117 shows the Job execution synchronous.

Client Application

MCDLogicalLink

ECU

executeSync() Queue

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

DiagComPrimitive State eIDLE ePENDING eIDLE

Repetition State eNOT_REPEATING

MCDResult

Figure 117 — Job execution synchronous

Sample: normal execution of a Single ECU Job

DiagComPrimitive method description

executeAsync() asynchronous start of Job execution

executeSync() synchronous start of Job execution

cancel() quit Job execution as fast as possible or remove it from execution queue

Remark:

It is allowed to execute a job itself in a synchronous way, but in this way no intermediate results were
delivered.

Intermediate results can only be delivered if the job is executed in an asynchronous way.

All diagnostic services or jobs which will be executed inside a job had to be started synchronous
(executeSync()).

States:

The repetition state of the Job execution is eNOT_REPEATING.

The DiagComPrimitive state changes from eIDLE (initially; state before starting Job execution) to ePENDING
(state while execution) back to eIDLE (state after execution). The states of the DiagComPrimitive are set by
the MVCI diagnostic server.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 199

Results:

There can be only 0 or 1 FINAL result and several (0..n) INTERMEDIATE results.

All results (intermediate and final) are stored in a ring buffer.

Intermediate results can be complete result sets of the used diagnostic services. They are independent from
the final job result.

Requesting the result state or the result itself is allowed after getting the event
onPrimitiveHasIntermediateResult().

Inside a job only non-cyclic single diagnostic services and jobs can be executed, and these shall be started
synchronous (see Figure 49).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

200 © ISO 2012 – All rights reserved

Figure 118 shows the service execution inside job(Part1).

 :
M

C
D

Lo
gi

ca
lL

in
k

Jo
b

: M
C

D
Jo

b

O
ut

er
R

es
ul

t :

M
C

D
R

e
su

lt

cr
ea

te
D

ia
gC

o
m

P
rim

iti
ve

B
yD

b
O

bj
ec

t(
db

Jo
b)

cr
ea

te
D

ia
gC

om
P

rim
iti

ve
B

yD
bO

bj
ec

t(
d

bS
er

vi
ce

)

ex
ec

ut
eA

sy
nc

(
)

cr
e

at
eR

es
ul

t(
re

su
ltT

yp
e,

 e
rr

or
C

od
e,

 e
rr

o
rD

es
cr

ip
tio

n,

ve
nd

or
C

o
de

, v
en

do
rD

es
cr

ip
tio

n,
 s

e
ve

rit
y)

ex
ec

ut
e

S
yn

c(
)

re
tu

rn
s

th
e

re
su

lt

re
tu

rn
 th

e
 In

n
er

 S
er

vi
ce

 o
bj

e
ct

re
tu

rn
 t

he
 J

ob
 o

bj
ec

t

st
a

rt
s

w
ith

 a
n

in
st

an
tia

te
d

L

og
ic

al
 L

in
k

a
nd

 th
e

da
ta

b
as

e
jo

b

cr
ea

te
 a

 n
ew

 jo
b

o
n

ba
se

of

a
d

at
a

ba
se

 jo
b

in
 t

he
 jo

b
so

ur
ce

 c
od

e
do

:




cr
ea

te
 s

er
vi

ce
s

us
ed

 in
 jo

b




e
xe

cu
te

 t
hi

s
se

rv
ic

e
 (

on
ly

 s
yn

ch
ro

no
us

 is
 a

llo
w

e
d)




cr
ea

te
 th

e
fir

st

re

su
lt

in
te

rm
e

di
at

e

T
he

 r
es

u
lt

w
ill

 b
e

se
n

t f
ro

m

Jo
bA

p
i t

o
D

-s
er

ve
r.

In

th
e

D
-s

er
ve

r
th

e
 r

es
u

lt
w

ill
 b

e
co

lle
ct

ed
 in

 th
e

ri
ng

b

uf
fe

r,
 t

h
e

co
rr

es
p

on
di

ng

re
su

lt
st

at
e

w
ill

 b
e

cr
ea

te
d

a
nd

 a
n

ev
en

t w
ill

 b
e

de
liv

er
e

d.




T
he

 in
te

rm
ed

ia
te

 r
es

ul
t

 w
ill

 b
e

 s
e

n
t

to
 J

o
bA

p
i.

 :
A

pp
lic

at
io

n
 :

 M
C

D
E

ve
n

tH
an

dl
er

C
L

IE
N

T

A
P

I

ex
ec

ut
e

 th
e

jo
b

(o
n

 a
sy

nc
 w

a
y

th
e

in

te
rm

ed
ia

te
 r

es
ul

ts

ca
n

be
 e

va
lu

at
e

d)

se
nd

In
te

rm
ed

ia
te

R
es

u
lts

(in
te

rm
ed

ia
te

R
es

u
lts

)

In
ne

rS
er

vi
ce

 :

M
C

D
S

er
vi

ce

executing Job source code

In
n

er
R

es
ul

tS
ta

te
 :

M
C

D
R

es
ul

tS
ta

te

O
ut

er
R

e
su

ltS
ta

te
 :

M
C

D
R

e
su

ltS
ta

te

In
ne

rR
es

ul
t

:
M

C
D

R
es

ul
t

In
ne

rR
es

ul
t :

M
C

D
R

es
u

lt

 :
M

C
D

Jo
bA

pi

do
 r

e
su

lt
in

 r
in

g

bu
ffe

r
an

d
cr

ea
te

re

su
lt

st
a

te

o
nP

rim
iti

ve
H

a
sI

nt
e

rm
ed

ia
te

R
es

ul
t(

di
ag

C
o

m
P

rim
iti

ve
, l

o
gi

ca
lL

in
k,

 r
e

su
ltS

ta
te

)

o
nL

in
kA

ct
iv

ity
S

ta
te

R
un

ni
ng

(lo
gi

ca
lL

in
k,

 lo
g

ic
a

lL
in

kS
ta

te
)

ge
tE

xe
cu

tio
nS

ta
te

(
)

G
et

 th
e

ex
ec

ut
io

n
st

at
e

w
hi

ch
is

 a
 s

na
ps

ho
t o

f t
he

 c
u

rr
en

t
ex

ec
u

tio
n

of
 th

e
jo

b.

M
V

C
I

d
ia

g
n

o
st

ic
se

rv
er

Figure 118 — Service execution inside job(Part1)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 201

Figure 119 shows the service execution inside job(Part2).

re
tu

rn
s

th
e

re
su

lt

re
tu

rn
s

th
e

co
lle

ct
io

n
 o

f a
ll

av
ai

la
bl

e
re

su
lts

 fo
r

th
is

 jo
b

R
em

ar
k:

re
su

lt
ac

ce
ss

 li
ke

 o
th

er
 (

in
 t

h
is

 c
a

se

th
es

e
 a

re
 2

 o
r

m
o

re
 r

e
su

lts
)

di
a

gr
a

m

e
xe

cu
te

S
yn

c(
)

cr
e

a
te

R
es

u
lt(

re
su

ltT
yp

e
, e

rr
o

rC
od

e,
 e

rr
o

rD
e

sc
ri

p
tio

n
,

ve
n

d
o

rC
od

e,
 v

en
d

or
D

e
sc

rip
tio

n
, s

e
ve

ri
ty

)

re
m

o
ve

D
ia

g
C

om
P

rim
iti

ve
(in

ne
rS

e
rv

ic
e

)

ge
tE

xe
cu

tio
nS

ta
te

(
)

se
nd

F
in

al
R

es
u

lt(
fin

al
R

es
ul

t)

fe
tc

h
R

e
su

lts
(

0
)

S
ta

rt
 th

e
se

rv
ic

e
 n

th
 t

im
e

to
 g

e
t

th
e

n
ex

t
re

su
lt.

E
va

lu
a

te
 th

e
 r

e
su

lt
fr

o
m

 t
he

S

er
vi

ce
 a

nd
 c

re
at

e
 a

 n
e

w

re
su

lt
fo

r
th

e
 J

ob
.

R
em

ar
k:

E

ve
ry

 jo
b

 c
a

n
de

liv
er

 in
te

rm
e

d
ia

te
 r

es
u

lts
 a

s
m

u
ch

 a
s

ne
ce

ss
a

ry
 a

nd
 o

n
ly

 o
n

e
 fi

n
al

 r
es

ul
t.

 T
he

y
n

e
ed

 n
o

t t
o

be
 e

q
ui

d
is

ta
nt

 o
r

at
 th

e
en

d
o

f a
 s

er
vi

ce
/jo

b
e

xe
cu

tio
n

, b
ut

 t
h

ey
 h

av
e

to
 u

se
 th

e
 d

at
a

 b
a

se
 s

tr
uc

tu
re

 f
o

r
th

e
re

sp
on

se
.

T
hi

s
is

 d
ec

la
re

d
 a

s
fin

al
 r

es
ul

t
an

d
w

ill
 b

e
se

n
t

to
 J

ob
A

p
i.

T
he

 fi
n

al
 r

es
ul

t
w

ill
 b

e
 h

a
nd

el
e

d

lik

e
th

e
 in

te
rm

e
di

a
te

 r
e

su
lt

on
ly

an

 o
th

er
 e

ve
n

t w
ill

 b
e

se
n

t.

T
he

 u
se

d
 S

er
vi

ce
 w

ill
 b

e

re
m

ov
ed

.

G
e

t t
h

e
e

xe
cu

tio
n

 s
ta

te
 w

h
ic

h

is

 a
 s

na
ps

h
ot

 o
f

th
e

cu
rr

en
t

ex
ec

ut
io

n
of

 t
h

e
jo

b.

In
ne

rR
es

u
ltS

ta
te

 :
M

C
D

R
e

su
ltS

ta
te

In
ne

rR
e

su
lt

:
M

C
D

R
e

su
lt

In
ne

rR
es

u
lt

:
M

C
D

R
es

u
lt

O
u

te
rR

e
su

lt
:

M
C

D
R

e
su

lt

O
u

te
rR

es
u

ltS
ta

te
 :

M

C
D

R
es

u
ltS

ta
te

do
 r

es
ul

t
in

 r
in

g
bu

ffe
r

a
nd

cr

ea
te

re

su
lt

st
at

e

 :
M

C
D

Lo
g

ic
al

Li
nk

Jo
b

:
M

C
D

Jo
b

 :
 A

p
p

lic
a

tio
n

 :
M

C
D

E
ve

n
tH

an
d

le
r

C
L

IE
N

T

A
P

I

 :
 M

C
D

Jo
bA

pi

executing Job source code

In
ne

rS
e

rv
ic

e
:

M
C

D
S

e
rv

ic
e

In
n

er
S

e
rv

ic
e

 :
M

C
D

S
er

vi
ce

o
nP

rim
iti

ve
Te

rm
in

at
e

d(
d

ia
g

C
om

P
ri

m
iti

ve
,

lo
g

ic
al

L
in

k,
 r

es
u

ltS
ta

te
)

o
nL

in
kA

ct
iv

ity
S

ta
te

Id
le

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

M
V

C
I

d
ia

g
n

o
st

ic
se

rv
er

Figure 119 — Service execution inside job(Part2)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

202 © ISO 2012 – All rights reserved

Every service or job inside a job has to be executed synchronously, because there is no possibility to get the
event announcing the termination of the work of the Service or job and transporting the result state. The
synchronous execution returns the result state as the return value, so that it can be evaluated. Mostly, the
results, especially the values from the results of the executed services, will be used to create a job result
(intermediate or final).

The next sequence diagram shows the execution of a job in a job. The job started by the Client will be called
OuterJob. The job started by the OuterJob will be called InnerJob. The InnerJob is handled by the OuterJob
like a service. The execution of the source code of the InnerJob is like any job execution, but no intermediate
result will be evaluated by the OuterJob because of synchronous execution of the InnerJob.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 203

Figure 120 shows the Job execution inside job(Part1).

 :
M

C
D

Lo
gi

ca
lL

in
k

Jo
b

: M
C

D
Jo

b

O
ut

er
R

es
ul

tS
ta

te
 :

M
C

D
R

es
ul

tS
ta

te

O
ut

er
R

es
ul

t :

M
C

D
R

es
ul

t

In
ne

rJ
ob

 :
M

C
D

Jo
b

st
ar

ts
 w

ith
 a

n
in

st
an

tia
te

d
Lo

gi
ca

l L
in

k
an

d
th

e
da

ta
 b

as
e

jo
b

Lo
gi

ca
l l

in
k

is
 in

S

ta
te

 e
C

O
M

M
U

N
IC

A
T

IN
G

cr
ea

te
 a

 n
ew

 jo
b

on
 b

as
e

of
 a

da
ta

 b
as

e
jo

b

ex
ec

ut
e

th
e

Jo
b

(o
n

as
yn

c

w

ay
 th

e
 in

te
rm

ed
ia

te
 r

es
ul

ts

ca
n

be
 e

va
lu

at
ed

)

in
 th

e
jo

b
so

ur
ce

 c
od

e
do

:



 c
re

at
e

jo
b

us
ed

 in
 jo

b




ex
ec

ut
e

th
is

 In
ne

r
Jo

b
(o

nl
y

sy
nc

hr
on

ou
s

is
 a

llo
w

ed
)




cr
ea

te
 t

he
 fi

rs
t

in
te

rm
ed

ia
te

ly
 r

es
ul

t
 T

he
 r

es
ul

t w
ill

 b
e

se
nt

 fr
om

Jo
bA

pi
 to

 M
C

D
 s

ys
te

m
.In

th

e
M

C
D

 s
ys

te
m

 th
e

re
su

lt
w

ill
 b

e
co

lle
ct

e
d

in
 th

e
rin

g
bu

ffe
r,

th
e

co
rr

es
po

nd
in

g
re

su
lt

st
at

e
w

ill
 b

e
cr

ea
te

d
an

d
an

 e
ve

nt
 w

ill
 b

e
de

liv
er

ed
.




T
he

 in
te

rm
ed

ia
te

 r
es

ul
t

w
ill

 b
e

se
nt

 to
 J

ob
A

pi
.

G
et

 th
e

ex
ec

ut
io

n
st

at
e

w
hi

ch

is

 a
 s

na
ps

ho
t o

f t
he

 c
ur

re
nt

ex

ec
ut

io
n

of
 th

e
jo

b.

cr
e

at
e

D
ia

g
C

om
P

rim
iti

ve
B

yD
bO

b
je

ct
(d

b
Jo

b
)

cr
ea

te
D

ia
gC

om
P

rim
iti

ve
B

yD
bO

bj
ec

t(
db

Jo
b)

re
tu

rn
s

th
e

Jo
b

ob
je

ct

re
tu

rn
s

th
e

re
su

lt
of

 I
nn

er
 J

o
b

ex
e

cu
te

A
sy

nc
(

)

re
tu

rn
 th

e
 In

ne
rJ

ob
 o

bj
ec

t

ge
tE

xe
cu

tio
nS

ta
te

(
)

ex
ec

u
te

S
yn

c(
)

cr
e

at
eR

es
ul

t(
re

su
ltT

yp
e,

 e
rr

or
C

o
de

,
er

ro
rD

es
cr

ip
tio

n
,

ve
nd

o
rC

o
de

,
ve

nd
or

D
es

cr
ip

tio
n,

 s
e

ve
rit

y)




T
he

 in
ne

r
jo

b
pe

rf
or

m
s

it'
s

so
ur

ce
 c

od
e

an
d

at
 th

e
 e

nd

a
fin

al
 r

es
ul

t w
ill

 b
e

se
nd

to
 M

C
D

 s
ys

te
m

 a
nd

 th
e

re
su

lt
st

at
e

is
 d

el
iv

er
ed

to

 th
e

ou
te

r
jo

b.

 :
A

p
p

lic
a

tio
n

 :
 M

C
D

E
ve

n
tH

an
d

le
r

C
L

IE
N

T

A
P

I

se
nd

In
te

rm
ed

ia
te

R
es

ul
ts

(i
nt

er
m

ed
ia

te
R

es
ul

ts
)

executing Job source code

on
P

rim
iti

ve
H

as
In

te
rm

ed
ia

te
R

es
ul

t(
di

ag
C

om
P

rim
iti

ve
, l

og
ic

a
lL

in
k,

 r
es

ul
tS

ta
te

)

on
Li

nk
A

ct
iv

ity
S

ta
te

R
un

ni
ng

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

cr
ea

te
R

es
ul

t(
re

su
ltT

yp
e,

 e
rr

or
C

o
de

,
er

ro
rD

es
cr

ip
tio

n
,

ve
nd

o
rC

od
e,

 v
en

d
or

D
e

sc
ri

pt
io

n,
 s

e
ve

rit
y)

In
ne

rR
es

ul
tS

ta
te

 :
M

C
D

R
es

u
ltS

ta
te

In
ne

rR
es

ul
t :

M

C
D

R
es

ul
t

In
ne

rR
es

ul
t :

M

C
D

R
es

ul
t

 :
M

C
D

Jo
bA

pi

se
nd

F
in

al
R

es
ul

t(
fin

al
R

es
ul

t)

fo
r

In
ne

r
Jo

b:
do

 r
e

su
lt

in
 r

in
g

bu
ffe

r
an

d
cr

ea
te

re

su
lt

st
at

e

fo
r

O
ut

er
 J

ob
:

do
 r

e
su

lt
in

 r
in

g
bu

ffe
r

an
d

cr
ea

te

re
su

lt
st

at
e

M
V

C
I

d
ia

g
n

o
st

ic
se

rv
er

Figure 120 — Job execution inside job(Part1)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

204 © ISO 2012 – All rights reserved

Figure 121 shows the Job execution inside job(Part2).

R
em

a
rk

:
re

su
lt

ac
ce

ss
 li

ke
 o

th
e

r
 (

in
 th

is
 c

as
e

 a
re

2

m
or

e
re

su
lts

)
d

ia
g

ra
m

R
em

ar
k:

E

ve
ry

 jo
b

 c
an

 d
el

iv
e

r
in

te
rm

e
di

a
te

 r
es

ul
ts

 a
s

m
uc

h
a

s
n

ec
e

ss
ar

y
an

d
 o

n
ly

 o
ne

 fi
na

l r
es

ul
t.

T
h

ey
 n

e
ed

 n
ot

 to
 b

e
 e

q
ui

d
is

ta
n

t o
r

a
t t

h
e

 e
n

d
 o

f
a

 s
e

rv
ic

e/
jo

b
e

xe
cu

tio
n,

 b
ut

 th
e

y
h

av
e

to
 u

se
 t

he

da
ta

 b
a

se
 s

tr
u

ct
u

re
 f

or
 th

e
 r

e
sp

on
se

.

T
h

is
 is

 d
ec

la
re

d
 a

s
fin

al
 r

es
u

lt
an

d
 w

ill
 b

e
 s

e
n

t t
o

 J
ob

A
p

i.

T
h

e
 fi

n
al

 r
e

su
lt

w
ill

 b
e

 h
a

n
de

le
d

lik

e
 th

e
 in

te
rm

e
d

ia
te

 r
e

su
lt

on
ly

an

 o
th

er
 e

ve
nt

 w
ill

 b
e

se
n

t.

T
h

e
 u

se
d

 I
nn

e
r

Jo
b

w
ill

be

re
m

ov
e

d.

G
et

 th
e

 e
xe

cu
tio

n
 s

ta
te

 w
h

ic
h

is
 a

sn
a

ps
ho

t o
f t

h
e

 c
ur

re
nt

ex

e
cu

tio
n

 o
f

th
e

jo
b

.

re
m

ov
eD

ia
g

C
o

m
P

rim
iti

ve
(in

ne
rJ

ob
)

e
xe

cu
te

S
yn

c(
)

g
e

tE
xe

cu
tio

nS
ta

te
(

)

se
n

dF
in

a
lR

e
su

lt(
fin

al
R

es
u

lt)

cr
ea

te
R

es
ul

t(
re

su
ltT

yp
e,

 e
rr

or
C

od
e,

er

ro
rD

es
cr

ip
tio

n,
 v

en
do

rC
od

e,

ve
nd

or
D

es
cr

ip
tio

n,
 s

ev
er

ity
)

T
h

e
 in

ne
r

jo
b

p
er

fo
rm

s
it'

s

so
u

rc
e

co
d

e
an

d
 a

t t
he

 e
nd

 a
 fi

n
al

 r
es

u
lt

w
ill

 b
e

 s
e

n
d

to
 M

C
D

 s
ys

te
m

 a
n

d
th

e
 r

es
ul

t
st

a
te

 is
 d

el
iv

e
re

d
to

 t
he

ou

te
r

jo
b

.

In
n

er
R

e
su

lt
:

M
C

D
R

es
ul

t

In
ne

rR
e

su
lt

:
M

C
D

R
es

ul
t

O
u

te
rR

es
ul

t :
M

C
D

R
es

ul
t

fo
r

In
n

e
r

Jo
b:

do
 r

es
ul

t
in

 r
in

g
b

u
ffe

r
a

nd
 c

re
a

te

re
su

lt
st

at
e

fo
r

O
ut

er
 J

ob
:

do
 r

es
ul

t
in

 r
in

g
b

u
ffe

r
a

nd
 c

re
a

te

re
su

lt
st

at
e

se
n

dF
in

al
R

es
u

lt(
fin

a
lR

e
su

lt)

 :
 M

C
D

Lo
g

ic
a

lL
in

k

 :
A

pp
lic

at
io

n
 :

M
C

D
E

ve
nt

H
an

dl
er

C
L

IE
N

T

A
P

I

 :
M

C
D

Jo
bA

p
i

In
ne

rJ
o

b
 :

M
C

D
Jo

b

In
n

er
Jo

b
:

M
C

D
Jo

b

executing Job source code

Jo
b

:
M

C
D

Jo
b

cr
ea

te
R

es
ul

t(
re

su
ltT

yp
e,

 e
rr

or
C

od
e,

er

ro
rD

es
cr

ip
tio

n,
 v

en
do

rC
od

e,

ve
nd

o
rD

es
cr

ip
tio

n,
 s

ev
e

rit
y)re

tu
rn

s
th

e
re

su
lt

of
 I

nn
er

 J
ob

S
ta

rt
 th

e
 In

n
e

r
Jo

b
 s

e
co

nd

tim
e

 t
o

g
e

t t
h

e
n

ex
t r

e
su

lt.

on
P

rim
iti

ve
Te

rm
in

at
e

d(
re

su
lt)

on
L

in
kA

ct
iv

ity
S

ta
te

Id
le

(lo
gi

ca
lL

in
k,

 lo
gi

ca
lL

in
kS

ta
te

)

O
u

te
rR

es
u

lt
:

M
C

D
R

es
ul

t

In
n

e
rR

e
su

ltS
ta

te
 :

M

C
D

R
es

ul
tS

ta
te

M
V

C
I

d
ia

g
n

o
st

ic
se

rv
e

r

Figure 121 — Job execution inside job(Part2)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 205

8.19.7.2 Repeated execution of Job

Jobs can be executed repeatedly, so that a job is repeated multiple times without having a loop statement in
the job. That is, the job does not “know” that it is executed multiple times in a loop. As a result, every
execution delivers one single result (as an final result). Jobs and Services act identically in cases of repeated
execution.

Figure 122 shows the Job execution repeated.

eNOT_REP = eNOT_REPEATING; ePEND = ePENDING

stopRepetition()startRepetition() updateRepetition
Parameter()

Client Application

MCDLogicalLink

ECU

DiagComPrimitive State eIDLE eIDLE

eNOT_REP

ePEND

eREPEATING eNOT_REPRepetition State

MCDEventHandler::
onPrimitiveRepetitionStopped()

no other DiagComPrimitive can be executed at this time,
not interruptable by queue or repeated service

Life time of repeated service

MCDEventHandler::
onPrimitiveHasResult()

eIDLE

MCDEventHandler::onPrimitiveHasIntermediateResult()

Figure 122 — Job execution repeated

Description: Repeated execution of a Job

The time between two repeated executions will be set by Client Application and is not stored in database.

DiagComPrimitive method description:

startRepetition() start of DiagComPrimitive execution, after passing the
queue, the job will live in a loop and start action (not
through the queue)

stopRepetition() quit DiagComPrimitive execution

cancel() quit DiagComPrimitive execution as fast as possible

updateRepetitionParameter() in the state eIDLE the job parameter can be changed; this
method does not go through the queue

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

206 © ISO 2012 – All rights reserved

States:

The repetition state changes from eNOT_REPEATING (before startRepetition()) to eREPEATING
(after startRepetition() and back to eNOT_REPEATING (after stopRepetition() or
cancel()).

The DiagComPrimitive state changes from eIDLE to ePENDING is made every time the Client Application
starts a method that goes through the queue until the end of this method (e.g. startRepetition()), not
for repeated execution, updateRepetitionParameters and stopRepetition.

Results:

There can be one or more results stored in the ring buffer. For each completed Job execution exactly one
result is returned by the Job processor. The result of a Job is based on a DB template, which can be either a
positive or (in future) a negative template. In cases of repeated execution, every execution cycle can result in
a different result because each execution of a Job is independent of previous executions. This result is passed
on to the JobAPI using sendFinalResult. After the result has been entered to the result ring buffer by the
MVCI diagnostic server, the sending of the event onPrimitiveHasResult takes place. Additionally,
there might be intermediate results at the Job execution. These results are reported to the JobAPI by means
of sendIntermediateResults and after being entered to the result buffer, these results will be
indicated to the application by sending the event onPrimitiveHasIntermediateResult. The
sending of intermediate results is Job specific and is an addition to the repeated execution of DiagServices. All
results (intermediate and final results) have to correspond to the Response Database Template of the Job.
Requesting the result state, the number of results or the result(s) is allowed after getting one of the events
onPrimitiveHasResult or onPrimitiveRepetitionStopped.

8.19.8 Allowed java libraries

A Java job is usually executed within the runtime environment of the MVCI diagnostic server. Therefore, any
lock-ups, memory leaks, exception conditions or performance issues caused by job code can potentially
degrade the MVCI diagnostic server performance or even render it completely useless. For this reason, it is
strongly suggested that a Java job (including the associated libraries defined in the ODX data) only use the
external libraries listed in Table 29.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 207

Table 29 — Allowed Java Libraries

Package Allowed Classes Description

Java.lang Boolean, Byte, Character, Character.Subset,
Character.UnicodeBlock, Class, Double, Float, Integer, Long,
Math, Number, Object, Short, StrictMath, String, StringBuffer,
Throwable, Void, ArithmeticException,
ArrayIndexOutOfBoundsException, ArrayStoreException,
ClassCastException, ClassNotFoundException,
CloneNotSupportedException, Exception,
IllegalAccessException, IllegalArgumentException,
IllegalMonitorStateException, IllegalStateException,
IllegalThreadStateException, IndexOutOfBoundsException,
InstantiationException, InterruptedException,
NegativeArraySizeException, NoSuchFieldException,
NoSuchMethodException, NullPointerException,
NumberFormatException, RuntimeException,
SecurityException, StringIndexOutOfBoundsException,
UnsupportedOperationException, AbstractMethodError,
AssertionError, ClassCircularityError, ClassFormatError,
Error, ExceptionInInitializerError, IllegalAccessError,
IncompatibleClassChangeError, InstantiationError,
InternalError, LinkageError, NoClassDefFoundError,
NoSuchFieldError, NoSuchMethodError, OutOfMemoryError,
StackOverflowError, ThreadDeath, UnknownError,
UnsatisfiedLinkError, UnsupportedClassVersionError,
VerifyError, VirtualMachineError

Provides classes that are fundamental to
the design of the Java programming
language.

Java.math All classes allowed Provides classes for performing arbitrary-
precision integer arithmetic (BigInteger)
and arbitrary-precision decimal arithmetic
(BigDecimal).

Java.text All classes allowed Provides Classes and interfaces for
handling text, dates, numbers, and
messages in a manner independent of
natural languages.

Java.util ArrayList, Arrays, BitSet, Collections, Date (no deprecated
methods), GregorianCalendar, HashMap, HashSet,
Hashtable, LinkedList, Random, SimpleTimeZone, Stack,
StringTokenizer, TimeZone, TreeMap, TreeSet, Vector,
WeakHashMap, ConcurrentModificationException,
EmptyStackException, MissingResourceException,
NoSuchElementException, TooManyListenersException

Contains the collections framework,
legacy collection classes, event model,
date and time facilities,
internationalisation, and miscellaneous
utility classes (a string tokeniser, a
random-number generator, and a bit
array).

asam.mcd All classes allowed Provides interfaces for interacting with the
MVCI diagnostic server

asam.d All classes allowed Provides interfaces for interacting with the
MVCI diagnostic server

asam.job All classes allowed Provides interfaces for interacting with the
MVCI diagnostic server

NOTE The usage of external libraries is potentially harmful, as the MVCI diagnostic server is not able to control or
restrict what is being done by job code. Therefore, server vendors are not to be held liable for any damage caused by a
Java job using external libraries.

Java jobs are allowed to use standard Java class inheritance mechanisms. The general rules and practices of
Java programming and class loading apply, e.g. it is recommended to use packages to avoid naming conflicts.
For further information on Java programming guidelines and relevant style guides, please refer to the Sun
Java documentation pages.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

208 © ISO 2012 – All rights reserved

To be able to use packages with Java Jobs, classes have to be given fully-qualified in the source code, Java
code has to be given including subdirectories (path of packages), and for jar-files the entry point has to be
given fully-qualified (+ jar-file including path).

8.19.9 Naming conventions

Job files use the name: MCD3_jobname.java. The name is built with the MCD3 prefix and the job name. The
major version, minor version and revision shall be placed in the @version attribute of the Java source code.

Shortname of the Job object at the API and the name of the Job file (source code) can differ. If more than one
source code is assigned to a Job these source codes need to be semantically equivalent. As this is not
decidable by any algorithm, the data engineer has to take care that this rule is fulfilled.

In the diagnostic server, the base directory of Java Jobs should be configurable to be able to extract the
correct package structure from a Java code’s path description.

8.19.10 Job Communication Parameter handling

If a Java job needs to alter the currently valid communication parameters, it should use and execute an
MCDProtocolParameterSet primitive within its code. Please note that all changes to communication
parameters caused by an MCDProtocolParameterSet executed within a Java job will be persistent after
the job has terminated ― just as if the application had issued the same change. However, the usage of
MCDProtocolParameterSets in a Java job's code is considered harmful as this can cause undocumented and
therefore unexpected changes to the communication parameters of a logical link at runtime.

Please note that in contrast to DIAG-COMMs, SINGLE-ECU-JOBs and MULTIPLE-ECU-JOBs cannot
have local communication parameters. As a result, the MVCI diagnostic server is not required to handle local
and overwritten communication parameters for Java jobs.

8.19.11 Job Result Generation

The construction of a job's result object structure is achieved by a set of methods provided by the MCDJobApi
class. These methods and their usage are described in this section. Because a job has one set of positive
response parameters and one set of negative response parameters, it has to be decided within the job's
source code whether a positive or a negative response is to be created before calling
MCDResponses::add(MCDDbLocation dbLocation, boolean isPositive = true). By
setting the isPositive flag to either true or false, it is possible to create a negative as well as a positive
response within job source code.

The starting point for a job result is its database template. Based upon this, a corresponding result structure is
created the same way as for 'normal' diagnostic services. In case of dynamic result elements (fields/arrays,
multiplexers and environment data), the job code has additional possibilities when creating the result
structure:

 Fields let the job create an arbitrary number of elements of one given sub-element.

 A multiplexer (MUX) lets the job choose between one of many branches.

 The same applies for env-data elements, which are a part of DTC handling.

These dynamic elements can occur at any level of the result structure.

If a dynamic element has to be created, the job has to choose which and how many of the selectable
sub-elements are to be included in the response structure. In cases of a field (array), an element is added
using the MCDResponseParameters::addElement() and
MCDResponseParameters::addElementWithContent(…) method. In cases of a dynamic element
of the type multiplexer, the respective branch is added using the
MCDResponseParameters::addMuxBranch*(…) method. On the level of an element of type

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 209

eENVDATADESC, the method MCDResponseParameters::addEnvDataByDTC(A_UNIT32) is
used to insert an eENVDATA block.

Other than that, complex (structured) elements of type eENVDATADESC and eSTRUCTURE are handled like
any other simple element and are inserted into the response structure in the same way.

Table 30 defines the methods for result construction in Jobs.

Table 30 — Methods for result construction in Jobs

DOP Type MCDResponseParameter Methods Used by DataType

Complex DOP addElement for Fields

addElementWithContent

addEnvDataByDTC at EnvDataDesc

addMuxBranch for MuxBranch

addMuxBranchByIndex

addMuxBranchByIndexWithContent

addMuxBranchByMuxValue

addMuxBranchWithContent

setParameterWithName for simple DOPs

Simple DOP setvalue for simple DOPs

A job's result structure has to be constructed anew for each job run. However, it is possible to reuse result
objects for intermediate results by temporarily storing and copying the result structure(s) within the job code.

When creating, adding or selecting a multiplexer branch to a result structure, the MVCI diagnostic server
verifies the relevant data using the job's database template. That way result structure integrity is tested at
each step of response construction, and it is guaranteed that the output format corresponds to the database
template.

In cases of some of the complex DOPs (eFIELD, eMULTIPLEXER, eSTRUCTURE, eENVDATA), the internal
values of these elements (which the client application retrieves by calling the
MCDResponseParameter.getValue() method of the elements that correspond to these complex
DOPs) are updated internally by the MVCI diagnostic server's job processor. They are not to be updated
within the job source code.

An MCDResponseParameter used as a parameter for an addXXX(…) method needs to comply to the
corresponding MCDDbResponseParameter definition of the database response object (structure, types,
ranges). Otherwise, the addXXX(…) method throws an MCDException. If the passed parameter value
does not comply with the database template of the parameter, no information is copied.

Rules for MCDResponseParameters::addElementWithContent(…) - Content is copied for:

 MCDError and Error Availability,

 MCDResponseParameters,

 MCDValue.

Rules for MCDResponseParameters::addMuxBranchByIndexWithContent(…):

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

210 © ISO 2012 – All rights reserved

 The target MCDResponseParameter is of type eMULTIPLEXER. Otherwise an MCDException
will be thrown.

 The parameter index is the index of the target MUX-branch. It selects the MUX-branch in the DB-template
of the target MCDResponseParameter which is to be used for validity checks.

 The elements of the MCDResponseParameters collection used as the content parameter represent
the (complex) values of the top-level elements of the target MUX branch, in the order (by index) they are
placed in the collection. That is, the values of the first element inside the target MUX branch are copied
from the first element in the source collection.

 For copying the content of every element in the source collection to the corresponding element in the
target MUX branch, the same rules apply as for
MCDResponseParameters::addElementWithContent(…).

Rules for MCDResponseParameters::addMuxBranchWithContent(…):

 The target is of type eMULTIPLEXER.

 The branch parameter identifies the branch of the target MUX-branch. That is, it selects the MUX-branch
in the DB-template of the target MCDResponseParameter which is to be used for validity checks.

 The elements of the MCDResponseParameters collection used as the content parameter represent the
(complex) values of the top-level elements of the target MUX branch, in the order (by index) they are
placed in the collection. That is, the values of the first element inside the target MUX branch are copied
from the first element in the source collection.

 For copying the content of every element in the source collection to the corresponding element in the
target MUX branch, the same rules apply as for
MCDResponseParameters::addElementWithContent(…).

Rules for MCDResponseParameters::addEnvDataByDTC(…):parameters:

 Adds a single structured response parameter of type eENVDATA to the collection of response
parameters.

 Parent element of this response parameter needs to be of type eENVDATADESC. Otherwise, an
MCDException will be thrown.

 Similarly to addMuxBranch(), an 'empty' response parameter structure is added up to the first
dynamic element. Empty means that no parameter values have been filled in.

 Returns the response parameter of type eENVDATA which was added to the collection of response
parameters. Parameters with parameter type eTABLE_KEY are handled like other simple parameters.
For parameters of type eTABLE_STRUCT, it is distinguished between the following two cases:

 The corresponding eTABLE_KEY parameter has a valid MCDValue ― see a)

In this case, an eTABLE_STRUCT parameter is handled like a static complex parameter (data type
eSTRUCTURE). Thus, all elements will be automatically inserted in the created result structure up to
the first dynamic result element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 211

 The corresponding eTABLE_KEY parameter has no valid MCDValue ― see b)

In this case, an eTABLE_STRUCT parameter is handled like a dynamic complex parameter. This
means that its sub-elements will not be automatically inserted in the result structure. Thus, a call to
getParameters() for this eTABLE_STRUCT parameter will deliver an empty collection. As soon as a
valid MCDValue is set for the corresponding eTABLE_KEY parameter, the sub-elements are filled in
and the result structure and can be retrieved by calling the getParameters() method.

a) A parameter of type eTABLE_KEY will have a valid MCDValue in cases of static parameter definition or
in cases of dynamic parameter definition where either a default value is defined in the database or a
value is already set through the job at runtime.

b) An eTABLE_KEY parameter will have a not initialized MCDValue in cases of dynamic parameter
definition and neither a default value is defined in the database nor a value was set by the job at runtime.

8.19.12 Job template SingleEcuJob

This template is in the package called 'asam.job'.

/*
 * SingleEcuJobTemplate.java
 * SingleEcuJob
 * Created March 2005
 */

/**
 *
 * @author MVCI diagnostic server standardization group
 * @version 3.00.00
 */

package asam.job;

import asam.d.*;

public interface SingleEcuJobTemplate
{
 /** executes this SingleEcuJob */
 /** and sets the input parameters for this SingleEcuJob */
 public void execute
 (MCDRequestParameters inputParameters,
 MCDJobApi jobHandler,
 MCDLogicalLink link,
 MCDSingleEcuJob apiJobObject) throws MCDException;
}

8.19.13 Job template MultipleEcuJob

This template is in the package called 'asam.job'.

/*
 * MultipleEcuJobTemplate.java
 * MultipleEcuJob
 * Created March 2005
 */
/**
 *
 * @author MVCI diagnostic server standardization group

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

212 © ISO 2012 – All rights reserved

 * @version 3.00.00
 */
package asam.job;
import asam.d.*;

public interface MultipleEcuJobTemplate
{
 /** executes this MultipleEcuJob */
 /** sets the input parameters for this MultipleEcuJob */
 public void execute
 (MCDRequestParameters inputParameters,
 MCDJobApi jobHandler,
 MCDLogicalLink link,
 MCDMultipleEcuJob apiJobObject,
 MCDProject project) throws MCDException;
}

8.19.14 Job template FlashJob

This template is in the package called 'asam.job'.

/*
 * FlashJobTemplate.java
 * FlashJob
 * Created March 2005
 */
/**
 *
 * @author MVCI diagnostic server standardization group
 * @version 3.00.00
 */

package asam.job;
import asam.d.*;

public interface FlashJobTemplate
{
 /** executes this FlashJob */
 /** sets the input parameters for this FlashJob */
 public void execute
 (MCDRequestParameters inputParameters,
 MCDJobApi jobHandler,
 MCDLogicalLink link,
 MCDFlashJob apiJobObject,
 MCDDbFlashSession session) throws MCDException;
}

8.20 ECU configuration

8.20.1 Introduction

ECU configuration, also known as variant coding, describes the data elements and the process of configuring
an ECU ― either in the vehicle or in a test bench. The feature of ECU configuration is optional in a diagnostic
server. That means that a diagnostic server implementation may not support ECU configuration and still be
considered standard conformant.

In ECU configuration, an ECU is integrated into its vehicle environment (functional environment as well as
electrical environment). For this purpose, two different types of configuration information can be distinguished

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 213

― functional configuration and non-functional configuration information. By means of functional configuration
information, setup information on the electrical and digital network within a vehicle is written to ECUs. For
example, the presence of a GPS antenna system can be notified to an infotainment ECU. Furthermore,
software features can be enabled and disabled by means of functional configuration information. In contrast,
non-functional configuration information comprises all kinds of additional information which does not change a
vehicle's behaviour or functionality. For example, the vehicle colour or the interior colour can be written to an
ECU by means of non-functional configuration information. This non-functional information can be used to, for
example, identify the correct replacement part in the service workshops.

Both functional and non-functional configuration information are passed to or read from an ECU by means of
configuration strings where each configuration string typically contains more than one piece of configuration
information. That is, a single configuration string contains information on a set of configuration items where
each configuration item either represents a functional or a non-functional configuration information. Indeed,
the difference between functional and non-functional configuration information is not visible in a configuration
string anymore. Technically, a configuration string is represented by a byte array.

8.20.2 ECU Configuration database part

In this section, the database part of the ECU configuration functionality of the diagnostic server API is
described. As this database part is closely related to ODX structures, the ODX elements which correspond to
a certain type of MVCI diagnostic server object are given in parentheses. The central terms and structures of
the ECU configuration database part are illustrated in Figure 124. For more detail on the ODX representation
of ECU configuration data, see ODX specification ISO 22901-1.

For describing the structure and the content of a certain type of configuration string, each configuration string
is associated with a database pattern. Such a database pattern is represented by an object of type
MCDDbConfigurationRecord (CONFIG-RECORD). Multiple MCDDbConfigurationRecord
objects can be contained in a configuration data container of type MCDDbConfigurationData. An
MCDDbConfigurationRecord can have a unique identifier associated, the so-called configuration
identifier (CONFIG-ID). The configuration ID allows to directly address a specific
MCDDbConfigurationRecord in the scope of a MCDDbConfigurationData.

Every MCDDbConfigurationRecord can be composed of objects of type
MCDDbConfigurationItem (CONFIG-ITEM). An MCDDbConfigurationItem represents a single
piece of configuration information.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

214 © ISO 2012 – All rights reserved

Figure 123 shows the Terms and Structure ECU Configuration Database Part.

MCDDbConfigurationItem
(CONFIG-ITEM)

MCDDbConfigurationRecord
(CONFIG-RECORD)

MCDDbItemValue
(ITEM-VALUE)
e.g. 0x56 0xAF DATA - ID

e.g. BCM110420070321
CONFIG-ID

e.g. BCM1104

0 F C 3 5 6 A F 9 9

MCDDbDataRecord
(DATA-RECORD)

e.g. 0x0F 0xC3 0x56 0xAF 0x99

0 F C 3 5 6 A F 9 9

Figure 123 — Terms and Structure ECU Configuration Database Part

The following subclasses of MCDDbConfigurationItem exist, to be able to distinguish different types of
configuration items:

 MCDDbConfigurationIdItem (CONFIG-ID-ITEM) ― defines the position in a configuration string
and the bytes that will be occupied by the configuration identifier of an
MCDDbConfigurationRecord at runtime.

 MCDDbDataIdItem (DATA-ID-ITEM) ― defines the position in a configuration string and the bytes that
will be occupied by the data identifier of an MCDDbDataRecord that has been used to define a
configuration string at runtime.

 MCDDbSystemItem (SYSTEM-ITEM) ― defines the position and the bytes in a configuration string that
will be filled with the value of the system parameter referenced by this element. An overview of system
parameters is shown in Annex B.

 MCDDbOptionItem (OPTION-ITEM) ― defines the position and the bytes in a configuration string that
represent a certain configuration option. Option items represent functional or non-functional configuration
information which can be altered by the user. Similarly to request or response parameters, a value
domain is associated with an option item.

In contrast to any other kind of MCDDbConfigurationItem, MCDDbOptionItems provide a physical
default value and optionally a set of MCDDbItemValue objects. Similarly to a text table in cases of a
request or response parameter, this set of type MCDDbItemValues defines an enumeration of possible
values of an MCDDbOptionItem. Every MCDDbItemValue has a constant physical value and optionally
a meaning and a description. The physical value is the value to be placed in a configuration string at runtime,
if the corresponding item value is selected. The meaning provides a human readable phrase which illustrates
this option item’s value. For example, the meaning ‘available’ could be assigned to an MCDDbItemValue
which is associated with an MCDDbOptionItem named ‘FogLights’.

The description of an MCDDbItemValue gives more elaborate information on the value’s meaning and can
be used to describe the effect caused in the ECU when setting this value. Both meaning and description can

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 215

be internationalised as already known from LONGNAMEs and DESCRIPTIONs in cases of other MVCI
diagnostic server objects. That is, an ID can be defined in the ODX data which is to be resolved against an
external data space for the internationalised string.

Furthermore, an MCDDbItemValue can optionally have a key and a rule assigned. The key is a unique
identifier of an MCDDbItemValue within its superior option item. It can be used to obtain a certain
MCDDbItemValue without knowing its ShortName.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

216 © ISO 2012 – All rights reserved

Figure 124 shows the ECU Configuration Model – Database part.

*

*

0..1

0..1

0..1

1

1
read write

*

1

*

*

1

<<D>>
MCDDbConfiguration

Datas

<<M,C,D>>
MCDDbLocation

<<D>>
MCDDbConfiguration

Data

<<D>>
MCDDbConfiguration

Records

*

<<D>>
MCDDbConfiguration

Record

<<D>>
MCDDbDiagComPrimitives

1

<<D>>
MCDDbDataRecords

<<D>>
MCDDbDataRecord

<<D>>
MCDDbSystem

Items

<<D>>
MCDDbSystemItem

*

<<D>>
MCDDbDataIIdtem

<<D>>
MCDDbConfiguration

IdItem

<<D>>
MCDDbOptionItem

<<D>>
MCDDbConfiguration

Item

<<D>>
MCDDbItemValues

<<D>>
MCDDbItemValue

<<D>>
MCDDbCodingData

<<enumD>>
MCDFlashDataFormat

<<D>>
MCDDbSpecialDataGroups

* *

1

0..1

0..1

<<M,C,D>>
MCDValue

<<D>>
MCDDbOptionItems

Figure 124 — ECU Configuration Model – Database part

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 217

While Figure 124 shows the classes that provide the database part of the ECU Configuration
feature, Figure 125 indicates audience-related metadata as regards these elements.

0..1

<<D>>
MCDDbConfiguration

Record

<<D>>
MCDDbDataRecord

<<D>>
MCDDbOptionItem

<<D>>
MCDDbItemValue

<<D>>
MCDAudience

0..1

*

<<D>>
MCDDbAdditional

Audiences

<<D>>
MCDDbAdditional

Audience

readwrite

disable Write

enabled Read

enabled disabled

0..1

0..1 0..1

1 1

enabled 1

disabled 1

enabled 1

disabled 1

enabled Write

disable Read

1 1 1 1

Figure 125 — MCDAudience

Default configuration strings which comply to an MCDDbConfigurationRecord are represented by
objects of type MCDDbDataRecord (DATA-RECORD). That is, for every CONFIG-RECORD, the ODX data
can contain zero or more default values, each represented by its own DATA-RECORD. To be able to uniquely
identify and address a certain default configuration string, an MCDDbDataRecord is associated with a so-
called data identifier (DATA-ID). Alternatively, the key assigned to an MCDDbDataRecord can be used.

Inside an MCDDbDataRecord, the configuration string is stored as binary data. This binary data can either
be directly contained in the ODX data or it can be placed in an external file. In cases of an external file, which
is represented by an element of type MCDDbCodingData, the filename can be marked as ‘late-bound’.
Similarly to flash data, a late-bound file, is loaded by a diagnostic server as late as possible. That is, it needs
to be loaded latest when the binary data is accessed for the first time. Furthermore, the filename of a late-
bound data file can contain wildcards. The wildcards which can be used in late-bound data files should
conform to basic regular expressions (BRE) as supported by IEEE Std 1003.1-2001 [8] In this case, the actual
filename needs to be resolved at runtime. The filenames for data files in ODX should be given as Uniform
Resource Identifiers (URIs). See RFC 3305 [9] and related documents for more details. In this case, the
method MCDDbDataRecord::getBinaryData() does not return any data. For late-bound data files
with wildcards in the filename, only the runtime part of ECU configuration is able to resolve the name.

The binary data contained in an MCDDbDataRecord or referenced by an MCDDbCodingData,
respectively, can be formatted. The following data formats are supported (see also flash programming):

 Intel-Hex Records ― formatted binary data including segment (address) information.

 Motorola-S Records ― formatted binary data including segment (address) information.

 Plain binary data ― binary large object without any segment or address information.

Segmented binary data referenced from an MCDDbDataRecord (intern or external) shall define values for at
least all addresses from zero to size of configuration record minus 1. For each of these addresses, exactly
one value shall be given, i.e. no gaps and no overlapping segments are allowed.

The size of a configuration record (configuration string) in bytes is the maximum of the sums of the SOURCE-
START-ADDRESS and the UNCOMPRESSED-SIZE from its DIAG-COMM-DATA-CONNECTORs given by
the ODX data.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

218 © ISO 2012 – All rights reserved

If the value returned by MCDDbCodingData::isLateBound() is ‘false’ at a reference to an external
resource file (e.g. job code, flash data, coding data) is considered a guarantee that the content of this
resource file will not change while a diagnostic server is running. More precisely, the content of the external
resource file shall be static for the time between MCDSystem::selectProjectXXX() and
MCDSystem::deselectProject() for the same project.

Note that exchanging external resource files may lead to non-deterministic behaviour of a diagnostic server. In
particular, this statement holds when the LATEBOUND-DATAFILE attribute is set to ‘true’.

8.20.3 ECU Configuration Runtime Part

The database part of ECU configuration merely describes the structure and the possible values of
configuration strings or configuration items associated with an ECU. The ECU configuration runtime part
provides the classes to create, modify, read, and write configuration strings. The corresponding classes are
shown in Figure 127. An example illustrating the basics is shown in Figure 126.

MCDConfigurationItem

MCDConfigurationRecord

MCDDbItemValue

0 F C 3 5 6 A F 9 9

Configuration String
e.g. 0x0F 0xC3 0x56 0xAF 0x99

0 F C 3 5 6 A F 9 9

Figure 126 — Terms and Structure ECU Configuration runtime part

At runtime, a single configuration string is represented by the value of an object of type
MCDConfigurationRecord. As a configuration string is specific to an MCDDbLocation of a certain
ECU Base Variant or ECU Variant, every MCDConfigurationRecord is stored in a collection of type
MCDConfigurationRecords which is a member of an MCDLogicalLink. New configuration strings
are created by adding a new MCDConfigurationRecord to an MCDConfigurationRecords
collection. Existing configuration strings can be discarded by removing the corresponding
MCDConfigurationRecord from the collection which contains this record. On removing an
MCDConfigurationRecord from the collection, contained DiagComPrimitives will also be removed.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 219

Figure 127 shows the ECU Configuration Model – Runtime part.

0..1

0..1

0..1

1

*

0..10..1 1 1

*

<<D>>
MCDLogicalLink

<<D>>
MCDConfiguration

Records

<<D>>
MCDReadDiag
ComPrimitives

<<D>>
MCDWriteDiag
ComPrimitives

<<D>>
MCDConfigurationIdItem

<<D>>
MCDDataIdItem

*

1

<<D>>
MCDSystemItems

*

1

<<D>>
MCDOptionItems

<<M,C,D>>
MCDValue

<<D>>
MCDDbItemValue

<<D>>
MCDDiagComPrimitive

<<D>>
MCDSystemItem

<<D>>
MCDOptionItem

<<D>>
MCDConfigurationItem

<<D>>
MCDConfiguration

Record

Figure 127 — ECU Configuration Model – Runtime part

Similarly to the database part, an MCDConfigurationRecord can be composed of objects of type
MCDConfigurationItem. Again, different types of MCDConfigurationRecords exist:

 MCDConfigurationIdItem ― defines the position in a configuration string and the bytes that will
be occupied by the configuration identifier of the MCDDbConfigurationRecord an
MCDConfigurationRecord is based on. The value of this element cannot be altered by a client application.
Instead, the value is defined in the ODX data and will be automatically inserted into a configuration string
by the diagnostic server at runtime. In cases of an upload of configuration information from an ECU, the
value of a configuration ID item is read from the ECU.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

220 © ISO 2012 – All rights reserved

 MCDDataIdItem ― defines the position in a configuration string and the bytes that will be occupied by
the data identifier of an MCDDbDataRecord that has been used to define a configuration string at
runtime. The value of this element can only be indirectly altered by a client application. The value is
defined in the ODX data and will be automatically inserted into a configuration string by the diagnostic
server at runtime whenever an MCDDbDataRecord is used to set the value of an
MCDConfigurationRecord (see below). In cases of an upload of configuration information from an
ECU, the value of a data ID item is read from the ECU.

 MCDSystemItem ― defines the position and the bytes in a configuration string that will be filled with the
value of the system parameter referenced by this element. The value of this element cannot be altered by
a client application. Instead, the value is calculated and will be inserted into a configuration string by the
diagnostic server at runtime. In cases of an upload of configuration information from an ECU, the value of
a system item is read from the ECU.

 MCDOptionItem ― defines the position and the bytes in a configuration string that represent a certain
configuration option. Option items represent functional or non-functional configuration information which
can be altered by a client application. Similarly to request or response parameters of a diagnostic service,
a value domain is associated with an option item. In cases of an upload of configuration information from
an ECU, the value of an option item is read from the ECU.

The value of as MCDConfigurationRecord can be set in different ways

 By setting the value free-form (setConfigurationRecord (A_BYTEFIELD
configRecordValue));

 By setting the value by means of a selected MCDDbDataRecord
(setConfigurationRecordByDbObject(MCDDbDataRecord dbDataRecord));

 By setting appropriate values at the MCDOptionItem objects referenced from an
MCDConfigurationRecord;

In cases of the former two options ― entering a value free-form or overwriting the value with an
MCDDbDataRecord ― the diagnostic server needs to re-calculate the values of all
MCDConfigurationItem objects contained in the current MCDConfigurationRecord, by
decomposing and translating the value of the MCDConfigurationRecord appropriately. Whenever the
value of an MCDOptionItem is changed (see below), the value of the containing
MCDConfigurationRecord needs to be re-calculated by the diagnostic server from the values of all
contained MCDConfigurationItem objects.

The value of an MCDOptionItem can be changed either by entering a new value free-form
(MCDOptionItem::setItemValue(MCDValue newValue)) or by assigning the value of an
MCDDbItemValue (MCDOptionItem::setItemValueByDbObject(MCDDbItemValue
dbItemValue)). In cases where a new MCDValue object is written to an MCDOptionItem, the value
represented by this MCDValue object needs to match the value range of the MCDOptionItem. That is, the
method MCDOptionItem::setItemValue(MCDValue newValue) can fail because of the following
reasons:

 The data type of the value represented by the MCDValue object does not match the data type of the
MCDOptionItem.

 The value represented by the MCDValue object is not within the value range (interval) defined for the
MCDOptionItem. This value range can be obtained via
MCDOptionItem::getDbObject()::getInterval().

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 221

 The value represented by the MCDValue object cannot be converted into a corresponding coded value.
That is, the conversion associated with the corresponding MCDDbOptionItem in ODX failed.

 The value represented by the MCDValue object cannot be translated into a corresponding
MCDDbItemValue. This translation only takes place in cases where the collection
MCDDbItemValues is not empty at the corresponding MCDDbOptionItem. In this case, the method
MCDOptionItem::getMatchingDbItemValue() throws an exception
(MCDProgramViolationException, eRT_ELEMENT_NOT_AVAILABLE).

In cases where the value of an MCDOptionItem is changed by assigning an MCDDbItemValue, the
value of the MCDOptionItem is defined as the physical default value of this MCDDbItemValue. The
method MCDOptionItem::setItemValueByDbObject(MCDDbItemValue dbItemValue)
fails, if the MCDDbItemValue supplied as parameter is not defined for the MCDDbOptionItem which
corresponds to the current MCDOptionItem. However, if an MCDOptionItem’s value can be set by
using an MCDDbItemValue, the method MCDOptionItem::getMatchingDbItemValue() delivers
the MCDDbItemValue which corresponds to the current value of the MCDOptionItem.

8.20.4 Error Handling

On initialization or when setting a ConfigurationRecord, various errors can occur. Regardin the
MCDResponse, the method MCDConfigurationRecord::hasErrors() returns ‘true’ if the
ConfigurationRecord is faulty. The containing MCDErrors can be requested via method
MCDConfigurationRecord::getErrors().

In cases of a ConfigurationRecord initialization or uploading a configuration string from an ECU to a
ConfigurationRecord that contains ConfigurationItems, e.g. OptionItems, internal to physical value conversion
errors can occur. Such an error will be added to the corresponding ConfigurationItem. Regarding the
MCDResponseParameter, the MCDConfigurationItem offers the methods hasError() and
getError().

If one of the ConfigurationItems of the ConfigurationRecord has an error or the ConfigurationRecord could not
be initialized with its DataRecord, at least one error with the error code eRT_CONFIGRECORD_INVALID is
contained in the ConfigurationRecord. The error will be reset when the configuration string becomes valid,
regarding the ODX template.

If the execution of a ConfigurationRecord’s Write-/ReadDiagComPrimitive contains errors, these errors are
also adopted to the ConfigurationRecord. The Write-/ReadDiagComPrimitives of the ConfigurationRecord
need to be executed in the order given from ODX data. If the Write-/ReadDiagComPrimitives are executed in
the wrong order, an error with the error code eRT_WRONG_SERVICE_EXECUTION_ORDER is added to the
ConfigurationRecord. If one but not all ReadDiagComPrimitives are executed, the error with the error code
eRT_CONFIGRECORD_INCOMPLETE is added to the ConfigurationRecord. Note that the incomplete
execution of WriteDiagComPrimitives does not modify the ConfigRecord. In this case, the error code
eRT_CONFIGRECORD_INCOMPLETE is not added to the ConfigRecord.

The errors of a ConfigurationRecord and its ConfigurationItems will be reset when one of the following
methods from an MCDConfigurationRecord object is called: setConfigurationRecord
(A_BYTEFIELD configRecordValue), loadCodingData(A_ASCIISTRING fileName),
setConfigurationRecordByDbObject(MCDDbDataRecord dbDataRecord),
getReadDiagComPrimitives(), getWriteDiagComPrimitives().

An error of a ConfigurationItem will be reset when the ConfigurationItem is set with a new value. This is the
case when the configuration string of a ConfigurationRecord is set, e.g. via
MCDConfigurationRecord::setConfigurationRecord (A_BYTEFIELD
configRecordValue). In case of an OptionItem, the new value can also be set via the
MCDOptionItem methods setItemValue(MCDValue value) and
setItemValueByDbObject(MCDDbItemValue dbItemValue).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

222 © ISO 2012 – All rights reserved

8.20.5 Initialising an MCDConfigurationRecord

Whenever a new MCDConfigurationRecord is created at a Logical Link, the diagnostic server needs to
initialise the value of the configuration record such that at first valid configuration string is created within this
configuration record. The initialisation of such an MCDConfigurationRecord shall be performed as
defined by the following rules (only one rule can apply to an MCDConfigurationRecord):

 If no MCDDbDataRecord objects are defined for the MCDDbConfigurationRecord the
MCDConfigurationRecord is based on and if no MCDDbOptionItems and no
MCDDbItemValues are given in the ODX data for this MCDConfigurationRecord, the
MCDConfigurationRecord’s value (MCDValue of type A_BYTEFIELD) will not be initialized with
a value. As a result, the method “hasError” returns ‘true’ for this bytefield.

 If no MCDDbDataRecords and no MCDDbItemValues are given for the current
MCDConfigurationRecord in the ODX data but if this MCDConfigurationRecord contains
MCDOptionItems, then the MCDConfigurationRecord’s value will be initialized with the
physical default values of all these option items. These physical default values are mandatory for every
MCDDbOptionItem.

 If no MCDDbDataRecords are given in the ODX data for the MCDDbConfigurationRecord the
current MCDConfigurationRecord is based on but if option items and item values are given, the
MCDConfigurationRecord’s value will be initialized with the physical default values of all option
items. The physical default value shall match an MCDDbItemValue of the corresponding
MCDDbOptionItem.

 If exactly one MCDDbDataRecord is referenced from the MCDDbConfigurationRecord the
current MCDConfigurationRecord is based on and if no option items or item values are given, then
this MCDDbDataRecord will be used to initialise the MCDConfigurationRecord’s value. In this
case it is not relevant if a DEFAULT-DATA-RECORD (MCDDbConfigurationRecord::
getDbDefaultDataRecord()) references a MCDDbDataRecord or not.

 If more than one MCDDbDataRecord is referenced from the MCDDbConfigurationRecord the
current MCDConfigurationRecord is based on, a DEFAULT-DATA-RECORD
MCDDbConfigurationRecord::getDbDefaultDataRecord() references a
MCDDbDataRecord and if no option items or item values are given, then this
MCDConfigurationRecord’s value will not be initialised with this bytefield. As a result, the method
“hasError” returns ‘true’ for this bytefield.

 If exactly one MCDDbDataRecord, MCDDbOptionItems, and MCDDbItemValues are given for
the MCDDbConfigurationRecord the current MCDConfigurationRecord is based on, then
the MCDConfigurationRecord’s value will be initialised with the MCDDbDataRecord. In this
case it is not relevant if a DEFAULT-DATA-RECORD MCDDbConfigurationRecord::
getDbDefaultDataRecord() references an MCDDbDataRecord or not.

 If more than one MCDDbDataRecord, MCDDbOptionItems, and MCDDbItemValues are given
for the MCDDbConfigurationRecord the current MCDConfigurationRecord is based on, then
the MCDConfigurationRecord’s value will be initialised with the physical default values of all
option items. In this case it is not relevant if a DEFAULT-DATA-RECORD
MCDDbConfigurationRecord::getDbDefaultDataRecord() references a
MCDDbDataRecord or not.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 223

8.20.6 Offline versus Online Configuration

Two different use cases have been defined in the context of ECU configuration – offline configuration and
online configuration. For offline configuration, it is required to be able to define new configuration strings or to
modify existing configuration strings without communicating with the corresponding ECU, e.g. because it is
currently not available in a vehicle or a test bench. In terms of MVCI diagnostic server, offline configuration
means that it shall be possible to create or modify an MCDConfigurationRecord, e.g. by assigning a
new value to this MCDConfigurationRecord or one of its MCDConfigurationItem objects. To
support offline configuration, it is possible to add new MCDConfigurationRecord objects to the
MCDConfigurationRecords collection associated with a LogicalLink while this link is in state
eCREATED. In the same state, it is also possible to modify an MCDConfigurationRecord contained in
the collection. In logical link state eCREATED, no communication to an ECU is running.

For online configuration, it is required to be able to initialise the value of an MCDConfigurationRecord
object with the current configuration string as stored in the corresponding ECU. Online configuration is
supported in a diagnostic server by being able to use the same MCDConfigurationRecord to read a
configuration string from an ECU (upload, see 8.20.7.4) and to write this configuration string back to the ECU
after modification (download, see 8.20.7.3). Furthermore, it is possible to initialise a new
MCDConfigurationRecord with the value of a default configuration string, that is, with the value of an
MCDDbDataRecord (see 8.20.5). As a result, the following scenarios in online configuration can be realised
in a client application:

 upload of current configuration data from an ECU,

 upload of current configuration data from an ECU and modification of this configuration data,

 modification of a configuration record before download,

 upload, modification and download of a configuration record,

 initialisation of a configuration record with a selected data record,

 initialisation of a configuration record with a selected data record followed by a download.,

 … .

8.20.7 Uploading and Downloading Configuration Strings

8.20.7.1 Basics

Configuration strings can be written to an ECU (download) and can be read from an ECU (upload). This
section describes how the upload and download of configuration strings can be performed with a diagnostic
server.

In general, a configuration string can exceed the maximum size of a D-PDU which can be transferred to and
from an ECU via a LogicalLink and the diagnostic protocol the communication via this link is based on. Based
on the ODX schema, a configuration string can be transferred to and from an ECU in several fragments.

8.20.7.2 Decomposing a Configuration String for Transfer

Every configuration string is represented by an MCDConfigurationRecord in the diagnostic server. A
configuration string is transferred to and from an ECU by means of the DiagComPrimitives referenced from
such an MCDConfigurationRecord. For each of the directions upload and download, a separate set of
DiagComPrimitives is referenced (see Figure 124 and Figure 127) – a set of WriteDiagComPrimitives
(download) and a set of ReadDiagComPrimitives (upload).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

224 © ISO 2012 – All rights reserved

If a configuration string exceeds the maximum size that can be transferred with a single DiagComPrimitive,
each of the sets of ReadDiagComPrimitives and WriteDiagComPrimitives contains one DiagComPrimitive for
every piece the configuration strings needs to be decomposed into. The information on which piece is to be
transferred by which DiagComPrimitive and the size of these pieces is described by means of so-called DIAG-
COMM-DATA-CONNECTORs in the ODX data (see Figure 168 “UML representation of ECU configuration:
DIAG-COMM-DATA-CONNECTOR” in ISO 22901-1). These DIAG-COMM-DATA-CONNECTORs are only
used internally within a diagnostic server, they are not exposed at the server’s API.

Every DIAG-COMM-DATA-CONNECTOR refers to a piece of configuration string, a DiagComPrimitive,
request and/or response parameters, and optionally elements of type READ-PARAM-VALUE or WRITE-
PARAM-VALUE. The piece of the configuration string is identified by a start address in the configuration string
(starting at zero) and an uncompressed size of the piece in bytes (see Figure 128 for illustration). The
DiagComPrimitive (read or write) to be used as well as the request parameter to place the piece of
configuration string in (WriteDiagComPrimitive) or the response parameter to read the piece of configuration
string from (ReadDiagComPrimitive) are referenced directly. READ-PARAM-VALUEs can be used to obtain
additional information on the current piece of configuration string, e.g. its number, from the response of a
ReadDiagComPrimitive. WRITE-PARAM-VALUEs can be used to put additional information on the current
piece of configuration string, e.g. its number, in the request of a WriteDiagComPrimitive.

MCDConfigurationRecord

0 10000
DIAG-COMM-DATA-CONNECTOR
1
Start Adress: 0
Uncompressed Size: 3300

DIAG-COMM-DATA-CONNECTOR
2
Start Adress: 3300
Uncompressed Size: 3300

DIAG-COMM-DATA-CONNECTOR
3
Start Adress: 6600
Uncompressed Size: 3400

DIAG-COMM-DATA-CONNECTOR

$22 01 00 1A 3B 2E 00 FF 3D $2E 01 00 1A 3B 2E 00 FF 3D

Read-DiagComPrimitive

READ-DATA Response Parameter

READ-DATA

Write-DiagComPrimitive

WRITE-DATA Request Parameter

WRITE-DATA

READ-PARAM- WRITE-PARAM-

Figure 128 — Example of a configuration string which is decomposed for transfer

8.20.7.3 Downloading configuration records to an ECU

A single configuration string is written to an ECU, i.e. downloaded to this ECU as follows. First the collection of
MCDWriteDiagComPrimitives needs to be obtained from the corresponding
MCDConfigurationRecord by means of the method getWriteDiagComPrimitives(). The
content of this collection is defined as the DiagComPrimitives referenced from the corresponding WRITE-
DIAG-COMM-CONNECTORs in the ODX data.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 225

The elements in the MCDWriteDiagComPrimitives collection of DiagComPrimitives are ordered,
according to the order in the ODX data. If this collection contains more than one element, this indicates that
the configuration string represented by the current MCDConfigurationRecord is too large to be
transferred to the ECU by means of a single DiagComPrimitive. That is, the size of the configuration string
exceeds the maximum size of a DiagComPrimitive’s request in the current diagnostic protocol. In this case,
the configuration string needs to be decomposed into pieces as described in 8.20.7.2.

In the next step, all WriteDiagComPrimitives referenced by this configuration record need to be executed in
the order defined in the MCDWriteDiagComPrimitives collection obtained in the first step. Therefore,
the request parameters of every WriteDiagComPrimitive in this collection need to be filled with data as
described by the corresponding DIAG-COMM-DATA-CONNECTOR. All request parameters in the
WriteDiagComPrimitive which are not explicitly filled with a value from the information in the corresponding
DIAG-COMM-DATA-CONNECTOR shall set to default values by the diagnostic server. If a
WriteDiagComPrimitive cannot be executed after all request parameters have been set as described above,
e.g. because at least one request parameter does not have a default value, the execution of a
WriteDiagComPrimitive fails (MCDParameterizationException, ePAR_INCOMPLETE_PARAMTERIZATION)
and, as a consequence, the download of the configuration string fails.

WriteDiagComPrimitives can be executed either synchronously or asynchronously. However, the diagnostic
server does not execute any WriteDiagComPrimitives automatically. Instead, the client application is
responsible for executing the WriteDiagComPrimitives in the correct order. Only the preparation of the request
parameters is performed by the diagnostic server.

A sample workflow for writing a single configuration string to an ECU is shown in Figure 129. In this example,
an MCDDbDataRecord is obtained from the corresponding MCDDbConfigurationRecord first. Then,
a new ConfigurationRecord is created at the runtime LogicalLink. Next, the value of this ConfigurationRecord
is set by using the MCDDbDataRecord obtained in the first step. Finally, the value of the
ConfigurationRecord, that is, the configuration string, is written to the ECU. For this purpose, all
WriteDiagComPrimitives referenced at the ConfigurationRecord are executed in the correct order.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

226 © ISO 2012 – All rights reserved

 : MCDDb
Configuration

Record

 : MCDDb
DataRecords

 : MCD
LogicalLink

getDbDataRecords()

getItemByKey(key)

addByNameAndDbConfigurationData(name, dbConfigurationData, cooperationLevel)

setConfigurationRecordByDbObject(dbDataRecord)

getWriteDiagComPrimitives()

executeSync()

getConfigurationRecords()

getItemByIndex(index)

DbDataRecord
maybe choosen
via Key,
ConfigurationRecord
will be set

 : Application

CLIENT

API

no

yes

 : MCD
Configuration

Records

: MCD
Configuration

Record

: MCDWriteDiag
ComPrimitives

 : MCDDiag
ComPrimitive

 : MCDDiag
ComPrimitive

returns MCDDbDataRecords collection

returns MCDDbDataRecord

returns the ConfigrationRecords collection

returns reference to new ConfigrationRecord object

returns the WriteDiagComPrimitive collection

returns one WriteDiagComPrimitive object

writes the corresponding piece of ConfigurationRecord to ECU

hasError()

check if the ConfigurationRecord contains an error

yes

getError()

returns the error(s) that are contained in the ConfigurationError

 : MCDWriteDiag
ComPrimitives

removeWriteComPrimitives(writeDiagComs)

removes the WriteDiagComPrimitive collection

Figure 129 — Example workflow for writing a configuration string to an ECU

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 227

8.20.7.4 Uploading configuration records from an ECU

A single configuration string is read from an ECU, i.e. uploaded from this ECU as follows. First the collection
of MCDReadDiagComPrimitives needs to be obtained from the corresponding
MCDConfigurationRecord by means of the method getReadDiagComPrimitives(). The
content of this collection is defined as the DiagComPrimitives referenced from the corresponding READ-
DIAG-COMM-CONNECTORs in the ODX data.

The elements in the MCDReadDiagComPrimitives collection of DiagComPrimitives are ordered,
according to the order in the ODX data. If this collection contains more than one element, this indicates that
the configuration string represented by the current MCDConfigurationRecord is too large to be
transferred from the ECU by means of a single DiagComPrimitive. That is, the size of the configuration string
exceeds the maximum size of a DiagComPrimitive’s response in the current diagnostic protocol. In this case,
the configuration string needs to be composed from the different pieces of configuration information read from
the ECU.

In the next step, all ReadDiagComPrimitives referenced by this configuration record need to be executed in
the order defined MCDReadDiagComPrimitives collection obtained in the first step. Therefore, the
request parameters of every ReadDiagComPrimitive in this collection need to be filled with data as described
by the corresponding DIAG-COMM-DATA-CONNECTOR. All request parameters in the
ReadDiagComPrimitive which are not explicitly filled with a value from the information in the corresponding
DIAG-COMM-DATA-CONNECTOR shall set to default values by the diagnostic server. If a
ReadDiagComPrimitive cannot be executed after all request parameters have been set as described above,
e.g. because at least one request parameter does not have a default value, the execution of a
ReadDiagComPrimitive fails (MCDParameterizationException,
ePAR_INCOMPLETE_PARAMTERIZATION) and, as a consequence, the upload of the configuration string
fails.

ReadDiagComPrimitives can be executed either synchronously or asynchronously. However, the diagnostic
server does not execute any ReadDiagComPrimitive automatically. Instead, the client application is
responsible for executing the ReadDiagComPrimitives in the correct order. Only the preparation of the request
parameters is performed by the diagnostic server.

In the final step, the diagnostic server needs to write the configuration information which has been read from
the ECU into the current MCDConfigurationRecord. For this purpose, the method
setConfigurationRecord (A_BYTEFIELD configRecordValue) can be used by a diagnostic
server implementation internally. Prior to setting the value of the MCDConfigurationRecord, the value
needs to be created by concatenating the values of all those response parameters which are referenced from
the ReadDiagComPrimitives in the MCDReadDiagComPrimitives collection. The concatenation needs to
take place in the order of execution as defined by the MCDReadDiagComPrimitives collection. That is,
the return value of the second ReadDiagComPrimitive is appended to the return value of the first
ReadDiagComPrimitive, the third value is appended to the second, and so forth.

A sample workflow for reading a single configuration string from an ECU is shown in Figure 130. In this
example, a new ConfigurationRecord is created at a LogicalLink first. Then, the value of this
ConfigurationRecord is read from the ECU by means of the ReadDiagComPrimitives referenced from this
ConfigurationRecord. Finally, the (byte) value of the configuration string is read from this ConfigurationRecord
as well as the value and the meaning of every single OptionItem which is contained in the
ConfigurationRecord.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

228 © ISO 2012 – All rights reserved

 : MCD
LogicalLink

 : MCDDb
ItemValue

getOptionItems()

getReadDiagComPrimitives()

executeSync()

getConfigurationRecords()

getItemByIndex(index)

read out
configuration info

 : Application

CLIENT

API

no

yes

 : MCD
Configuration

Records

 : MCD
Configuration

Record

 : MCD
OptionItems

 : MCD
OptionItem

 : MCDReadDiag
ComPrimitives

 : MCDReadDiag
ComPrimitives

 : MCDDiag
ComPrimitive

getConfigurationRecord()

removeReadComPrimitives(readDiagComs)

getItemByIndex(index)

getMatchingDbItemValue()

getMeaning()

returns the ConfigrationRecords collection

return reference to new ConfigrationRecord object

returns the ReadDiagComPrimitive collection

removes the ReadDiagComPrimitive collection

returns one ReadDiagComPrimitive object

add piece of configuration string to corresponding ConfigurationRecord

returns A_BYTEFIELD

returns the Option Items collection

returns one OptionItem object

returns DbItemValue object

returns A_ASCIISTRING

addByNameAndDbConfigurationData
(name, dbConfigurationData, cooperationLevel)

no

yes

getError()

returns the error(s) that are contained in the ConfigurationError

hasError()

check if the ConfigurationRecord contains an error

 : MCDDiag
ComPrimitive

Figure 130 — Example workflow for reading a configuration string from an ECU

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 229

8.21 Audiences and additional audiences

8.21.1 General

Audiences and additional audiences make it possible to supply information about access restrictions for
MCD/D objects with respect to predefined target groups of users. For example, audience definitions can be
used to declare that MVCI diagnostic server database objects should only be available to a certain class of
clients (e.g. service testers). The roles that can be handled by the standard audience filter are AfterMarket,
AfterSales, Development, Manufacturing and Supplier. The feature of additional audiences (see
below) can be used to define additional roles to extend the standard audience definitions.

Filtering of diagnostic server database objects according to audience and additional audience settings shall
always be done by the client application. The reason for this is that it is not possible for the diagnostic server
to handle all cases where audience definitions can be applied to ODX data in a meaningful way. For example,
server-side filtering of database objects according to their audience settings could lead to the following
scenarios:

 Diagnostic services, which have been available at engineering time, might disappear at runtime (caused
by the diagnostic server filtering by audience settings). As a result, ECUs might be damaged, for example
when the filtered diagnostic service is necessary to finish an ECU reprogramming session.

 With respect to related services, audience attributes at DataPrimitives are potentially harmful, because a
DataPrimitive that is defined as a precondition to another DiagComPrimitive might disappear at runtime
(when it gets filtered out as a result of its audience settings).

 Also, creating ODX data which contains audience information that is to be used for variant identification or
base variant identification could result in undesirable runtime behaviour: In case the diagnostic server
executes one of these services, and in case these services in turn subsume DataPrimitives that have an
associated audience attribute which disallows them in the current diagnostic server instance, the (base)
variant identification service will fail.

 Even more subtle complications could result by the diagnostic server filtering out specific datablocks from
a flash session, or coding fragments from an ECU configuration data set.

Out of these considerations, it has been decided that audience settings will be accessible at the diagnostic
server API, but that any kind of filtering or program logic depending on audience settings will have to be
implemented by the client application. Audience settings can be defined for the following MCD/D objects (ODX
element is given in parentheses):

 MCDDbDataPrimitive (DIAG-COMM, MULTIPLE-ECU-JOB)

 MCDDbConfigurationRecord (CONFIG-RECORD)

 MCDDbItemValue (ITEM-VALUE)

 MCDDbOptionItem (OPTION-ITEM)

 MCDDbFlashDataBlock (FLASH-DATABLOCK)

 MCDDbDataRecord (DATA-RECORD)

 MCDDbFunctionNodeGroup (FUNCTION-NODE-GROUP)

 MCDDbBaseFunctionNode (FUNCTION-NODE)

 MCDDbTableParameter (TABLE-ROW)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

230 © ISO 2012 – All rights reserved

8.21.2 Audiences

Audiences reflect a predefined set of user groups for diagnostic data. The following user groups have been
defined in ODX:

 Supplier,

 Development,

 Manufacturing,

 AfterSales,

 AfterMarket.

In the MVCI diagnostic server, the current access status with respect to these audiences is represented by an
object of type MCDAudience which is returned by the method getAudienceState() available at the
database objects listed above. Within the class MCDAudience, the access status with respect to each of the
user groups is represented by a boolean attribute which can be queried by means of a corresponding method:

 isSupplier(),

 isDevelopment(),

 isManufacturing(),

 isAfterSales(),

 isAfterMarket();

Each of the attribute values can be set to "true" or "false" in ODX. If no information on the audience access
status of an element is available in ODX, then this element's access status defaults is “true” for all five user
groups. That means that the corresponding MCDAudience object is generated by the diagnostic server, and
delivers “true” for all of its status methods.

8.21.3 Additional Audiences

In addition to the predefined audiences, so-called additional audiences can be referenced from the MCD/D
objects listed in the introduction of this section. These additional audiences allow to expand or to redefine the
list of user groups that are subject to audience restrictions. The additional audiences in MVCI diagnostic
server are represented by objects of type MCDDbAdditionalAudience. Every object of this type
represents one ODX element ADDITIONAL-AUDIENCE which is contained in a DIAGLAYER. Additional
audiences define individual lists of users or user groups which can be subject to accessibility constraints on
the corresponding diagnostic elements. A diagnostic element (e.g. an MCDDataPrimitive) may contain
references to either enabled or disabled ADDITIONAL-AUDIENCE elements. By means of the method
getDbAdditionalAudiences(), the additional audiences that are associated with one of the following
elements can be listed and evaluated by a client application:

 MCDDbLocation (introduced at DIAG-LAYER in ODX and valid for DIAG-COMMs and MULTIPLE-
ECU-JOBs)

 MCDDbConfigurationData (introduced at ECU-CONFIG in ODX and valid for CONFIG-RECORD,
DATA-RECORD, ITEM-VALUE and OPTION-ITEM)

 MCDDbEcuMem (introduced at FLASH in ODX and valid for SESSION-DESC and DATA-BLOCK)

 MCDDbFunctionDictionary (introduced at FUNCTION-DICTIONARY in ODX and valid for
FUNCTION-NODE-GROUP and FUNCTION-NODE)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 231

At a specific MCD/D object (e.g. an MCDDataPrimitive), either enabled additional audiences or disabled
additional audiences can be defined. That means that the group of users with access rights is either extended
or restricted by additional audience definitions. In ODX, a corresponding element provides a so-called
ENABLED-AUDIENCE-REF or a DISABLED-AUDIENCE-REF:

 The ENABLED-AUDIENCE-REF – represented by the method
MCDDbDataPrimitive.getDbEnabledAdditionalAudiences() – means that this element,
e.g. a DIAG-COMM, is only suitable for the referenced ADDITIONAL-AUDIENCEs.

 The “DISABLED-AUDIENCE-REF” – represented by the method
MCDDbDataPrimitive.getDbDisabledAdditionalAudiences() – means that this
element is not appropriate for the referenced ADDITIONAL-AUDIENCEs, but is available for all other
listed ADDITIONAL-AUDIENCEs.

As with the predefined audiences, additional audiences have to be evaluated by the client application. That is,
the diagnostic server will not perform any access control on any MCD/D object depending on additional
audience settings.

8.22 ECU states

ECUs in vehicles are stateful electronic components. They usually implement state machines for different
purposes. The state changes in these state machines are triggered, e.g. by sensor data, by diagnostic
requests or by internal functionality. Those parts of the state machines which are relevant in vehicle
diagnostics can be modelled by means of state charts in ODX. For example, the possible session changes
and the security states can be modelled as state charts in ODX. As a result of this focus, the session and
security sub model in ODX mainly covers two aspects:

 the first is to describe possible state transitions resulting from the execution of a DiagComPrimitive;

 the second is to describe preconditions for the execution of a DiagComPrimitive.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

232 © ISO 2012 – All rights reserved

Figure 131 shows the UML Class diagram of the ECU state chart sub model.

<<M,C,D>>
MCDDbLocation

<<D>>
MCDDbEcuStateCharts

<<D>>
MCDDbEcuStateChart

<<D>>
MCDDbEcuState

Transitions

<<D>>
MCDDbEcuStates

<<D>>
MCDDbDiagCom

Primitives

<<D>>
MCDDbEcuState

<<D>>
MCDDbEcuState

Transition

<<D>>
MCDDbExternal
AccessMethod

<<D>>
MCDDbEcuState
TransitionActions

<<D>>
MCDDbDiagCom

Primitive

<<D>>
MCDDbRequest

Parameter

<<D>>
MCDDbPrecondition

Definitions

<<D>>
MCDDbEcuState
TransitionAction

<<D>>
MCDDbPrecondition

Definition

1

1

0..*

1

1

11 1
-dbPreConditionDiagComPrimitive

1

0..1

-dbSourceState

1

0..*

0..*

1

11

1

0..* 0..*

1

1

1 1

1

1..*

1 1

1

-dbTargetState

-dbStateTransitionDiagComPrimitives
1

Figure 131 — UML Class diagram of the ECU state chart sub model

Both the session handling and the security handling are modelled within one generic state machine model.
The element MCDDbEcuStateChart stores the possible states of an ECU (see Figure 131). The collection
of all state charts valid at a certain DbLocation can be fetched using the method
MCDDbLocation::getDbEcuStateCharts(). Every state within a state chart is represented by its
own MCDDbEcuState object. The attribute ‘semantic’ associated with an MCDDbEcuStateChart defines
the type of the state chart. The value of this attribute can be obtained by means of the method
MCDDbEcuStateChart::getSemantic(). The values “SESSION” and “SECURITY” are predefined for
this semantic in ODX. However, the set of values of the attribute ‘semantic’ is extendible by the user.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 233

Each state chart references all ECU states belonging to this state chart. One of these ECU states is the start
state. This start state of a state chart can be obtained by means of the method
MCDDbEcuStateChart::getDbStartState(). There is exactly one start state per state chart.

A state transition within one state machine is modelled by an object of type MCDDbStateTransition. A
state transition references exactly one source state and exactly one target state. Self transitions can be
described by state transitions with identical SOURCE and TARGET states. The state transitions belonging to
an ECU state chart are also referenced from the corresponding MCDDbEcuStateChart object. Please
note that ECU state charts need to be disjoint with respect to their collections of ECU states and state
transitions. That is, ECU states and state transitions cannot be shared between two different ECU state
charts.

State transitions are fired as a result of, for example,

 ECU-internal logic,

 processing a request of a DiagComPrimitive,

 reception of specific sensor signals.

In the first case, the corresponding MCDDbEcuStateTransition object neither provides a so-called
external access method nor references any state transition event in terms of an object of type
MCDDbStateTransitionAction. In the second case, the state transition refers to at least one
MCDDbStateTransitionAction. In the third case, the MCDDbEcuStateTransition provides
information on an external access method.

External access methods are represented by objects of type MCDDbExternalAccessMethod. An
external access method allows specifying an OEM-specific method necessary to perform the corresponding
state transition. The textual information returned by the method
MCDDbExternalAccessMethod::getMethod() needs to be interpreted by an OEM-specific
extension of a diagnostic server. The method information can be used, for example, in cases of security-
critical applications to link to protected functionality. Another example is to simulate a certain sensor signal in
cases of a test bench.

If the collection of MCDDbEcuStateTransitionAction objects which can be obtained using the
method getDbEcuStateTransitionActions() at an MCDDbEcuStateTransition is non-
empty, this has the following semantic: If the DiagComPrimitive referenced from one of the
MCDDbEcuStateTransitionActions is successfully executed, the state of the ECU changes from the
specified source state to the specified target state. In cases where the
MCDDbEcuStateTransitionAction refers to a request parameter and a value, the DiagComPrimitive
needs to have this value set at the request parameter to fire the state transition after successful execution.

Sometimes, the execution of a DiagComPrimitive is only possible or successful if the target ECU is in a certain
state, e.g. a certain session or a certain security state. In ODX, such preconditions can be modelled by means
of PRE-CONDITION-STATE-REFs at a DIAG-COMM. PRE-CONDITION-STATE-REF can be used to define
the allowed states for the execution of the DIAG-COMM in cases where the execution of the DIAG-COMM
does not result in a state-transition of the ECU but its execution is bound to the condition that the ECU already
is in a certain state. In the DB part of the diagnostic server API, a PRE-CONDITION-STATE-REF is
represented by an object of type MCDDbPreconditionDefinition. Similarly to
MCDDbStateTransitionAction, an MCDDbPreconditionDefinition can refer to a request
parameter and a value. If both are set, the precondition definition is bound to this configuration of the
referenced DiagComPrimitive. The DiagComPrimitives which are restricted by a certain ECU state can be
obtained by means of the the method
MCDDbEcuState::getDbRestrictedDiagComPrimitives(). This method returns a collection of
MCDDbPreconditionDefinition objects each referencing a DiagComPrimitive restricted by the current ECU
state.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

234 © ISO 2012 – All rights reserved

If a STATE-TRANSITION-REF is used with a DIAG-COMM in ODX, there optionally may be a PRE-
CONDITION-STATE-REF for the source states of the referenced transitions. If STATE-TRANSITION-REFs
and/or PRE-CONDITION-STATE-REFs are used, the DIAG-COMM is executable in the SOURCE states of
the referenced STATE-TRANSITIONs and in the referenced preconditions’ STATEs but no other states. This
means that the collection of MCDDbEcuState objects returned by the methods
MCDDbDiagComPrimitive::getDbPreConditionStatesByDbObject(…) and
MCDDbDiagComPrimitive::getDbPreConditionStatesBySemantic(…) are the union of the
source states of the state transitions referencing this DiagComPrimitive with those ECU states which
reference an MCDDbPreconditionDefinition to this DiagComPrimitive — both with respect to the
same ECU state chart.

If a DiagComPrimitive is referenced from neither an MCDDbEcuStateTransition nor from any
MCDDbPreconditionDefinition, this DiagComPrimitive is executable in all states and the execution
does not result in a state transition. In this case, the collection of precondition states at this DiagComPrimitive
is empty for all ECU state charts at the same DbLocation. Otherwise, this DiagComPrimitive is only
executable successfully in one of the ECU states within the collection of precondition states at this
DiagComPrimitive.

Please note that the entire ECU states and state charts model is only available at the DB part of the diagnostic
server API. The diagnostic server will not provide any support for active tracking of the current ECU states.
Moreover, the diagnostic server will not prevent the client application from executing restricted
DiagComPrimitives in ECU states not supported for these DiagComPrimitives. Hence, the client application is
responsible for processing and interpreting the information in ECU state charts.

8.23 Function dictionary

8.23.1 General

In a wide range a communication-oriented view on an ECU’s diagnostic functionality is provided by MVCI
diagnostic server and ODX. However, this does not always meet today’s way of designing vehicles, because
many functions of a vehicle are distributed across several ECUs.

Function-oriented diagnostics becomes more and more important since the functional point of view is much
closer to the customer experienced symptoms a malfunction might cause.

This is covered with the structures described in this section based on the aspects of communication-oriented
diagnostics definitions and requirements.

8.23.2 Functions and funtion groups in ODX

A function represents a vehicle subsystem or functionality (e.g. Indicator lights) considered from the point of
view of diagnostics. A function may divide into one or more system components/sub functions that each may
consist of several parts again and so on.

A function in MCDDbFunctionDictionary refers to the set of diagnostic information implemented in one
or several ECUs that is related to this function, including diagnostic services, DTCs, environment data and
parameters. It is not intended (and therefore not possible) to (re-)define any information that is already
available.

For example the function “Indicator Light Left” as a sub function of “Indicator Lights” is implemented across
different ECUs and related to the according fault memories, input/output controls, measurement values and so
on. Furthermore, the function “Blinking left” may be valid for several model lines and model years. From a
functional point of view it is interesting to know which ECUs and diagnostic elements of an ECU are part of a
function.

Finally, a function may have input and output parameters to influence the behaviour of a function respectively
indicating the correct function behaviour.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 235

Functions are defined in hierarchical structures (by recursion) to allow expressing different functional
granularities:

 Indicator Lights,

 Indicator Light Left,

 Indicator Light Right,

 Warning Indicator Lights.,

 … .

An MCDDbFunctionNodeGroup is a container for already defined MCDDbFunctionNodes regardless
of their hierarchical context. The MCDDbFunctionNodeGroup “Lights” could for example contain the
MCDDbFunctionNodes “Indicator Lights” and “Head Lights”.

 Lights,

 Head Lights,

 … ,

 Indicator Lights,

 Indicator Light Left,

 Indicator Light Right,

 Warning Indicator Lights,

 … .

An MCDDbFunctionNodeGroup may also contain other MCDDbFunctionNodeGroups. For an
MCDDbFunctionNodeGroup the same requirements apply as for an MCDDbFunctionNode (relation to
ECUs, services, DTCs, parameters…). In the example above it is use case dependent either to choose an
MCDDbFunctionNode or an MCDDbFunctionNodeGroup.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

236 © ISO 2012 – All rights reserved

8.23.3 Function dictionary data model description

Figure 132 shows the MCDDbFunctionDictionaries data model.

<<D>>
MCDDbFunction

Dictionaries

*

1

1

<<D>>
MCDDbFunction

Dictionary

<<D>>
MCDDbBaseFunction

Node

1

*

1

<<D>>
MCDDbFunction

InParameters

<<D>>
MCDDbFunction

InParameter

1

*

1

<<D>>
MCDDbFunction
OutParameters

<<D>>
MCDDbFunction
OutParameter

1

1 1

1 1

*

1

*

1

1 1

1

<<D>>
MCDDbFunction

NodeGroups

<<D>>
MCDDbFunction

NodeGroup

<<D>>
MCDDbFunction

Nodes

<<D>>
MCDDbFunction

Node

<<D>>
MCDDbFunction

Node

1

1

1

*

*

1

1

<<D>>
MCDDbComponent

Connectors

<<D>>
MCDDbComponent

Connector

<<D>>
MCDDbEcu

Variants

<<D>>
MCDDbEcu

Variant

1

1

1

1

*

1

<<D>>
MCDDbFunction

DiagComConnectors

<<D>>
MCDDbFunction

DiagComConnector

*

1

<<D>>
MCDDbTableRow

Connectors

<<D>>
MCDDbTableRow

Connector

1 1

*

1

<<D>>
MCDDbEnvData

Connectors

<<D>>
MCDDbEnvData

Connector

1

*

1

<<D>>
MCDDbDiagTrouble

CodeConnectors

<<D>>
MCDDbDiagTrouble

CodeConnector

1

*

1

<<D>>
MCDDbJobs

<<D>>
MCDDbJob

<<D>>
MCDDbDiagObject

Connector

<<D>>
MCDDbEcu
BaseVariant

1 1

<<D>>
MCDDbDiag
TroubleCode

<<D>>
MCDDbFault

Memory

1

11

<<D>>
MCDDbTable

<<D>>
MCDDbTable

Parameter

1

11

<<D>>
MCDDbEnv
DataDesc

<<D>>
MCDDbResponse

Parameter

1

11

<<D>>
MCDDb

LogicalLink

<<D>>
MCDDbDiag
ComPrimitive

1

11

1

1

1

1

1

1

<<D>>
MCDDbRequest

Parameter

<<M,C,D>>
MCDDbUnit

<<enumM,C,D>>
MCDDataType

1

1

1

1

1

Figure 132 — MCDDbFunctionDictionaries data model

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 237

An MCDDbBaseFunctionNode aggregates all common features of an
MCDDbFunctionNode/MCDDbFunctionNodeGroup (see previous section) and therefore is
implemented by the according subclasses.

The hierarchy of MCDDbFunctionNodes/MCDDbFunctionNodeGroups can be considered as a
function catalog representing the functional layout of the vehicle. It might be useful to generate the function
catalog out of the same system where the vehicle’s functional layout is described.

The element MCDDbFunctionNode represents a function as part of a function hierarchy. The requirement
of grouping functions is implemented by an MCDDbFunctionNodeGroup. An MCDDbFunctionNode or
MCDDbFunctionNodeGroup may only be relevant for or even restricted to certain departments or data
customers. To reflect this, it is allowed to specify (ADDITIONAL-) AUDIENCEs, which may be used by a
diagnostic application or as a data export/conversion filter criteria by appropriate tools.

As mentioned above, a function is often distributed across ECUs and other components of the vehicle’s
network and therefore not only implemented in one single control unit. The layout of a function may vary from
model line to model line. From that perspective it makes sense at first to describe which components
(references to BASE-/ECU-VARIANTS) are contributing to a certain function and also to describe what is the
right layout for a function.

A component’s contribution to a function from a diagnostic point of view may include DTCs
(MCDDbDiagTroubleCodes and its corresponding MCDDbFaultMemories), ENVDATAs
(MCDDbResponseParameters and its corresponding MCDDbEnvDataDescs), DIAG-COMMs
(MCDDbDiagComPrimitives via MCDDbFunctionDiagComConnector) and TABLE-ROWS
(MCDDbTableRows and its corresponding MCDDbTables). The MCDDbDiagObjectConnector
aggregates these objects. The uniqueness is guaranteed by the MCDDbLocations that are referenced by
the super ordinate MCDDbComponentConnectors.

The MCDDbComponentConnetors controls the validity for the following objects:

 BASE-FUNCTION-NODE (MCDDbFunctionNode, MCDDbFunctionNodeGroup).

 DIAG-OBJECT-CONNECTOR and its sub-objects DTC-DOPs, TABLEs and ENV-DATA-DESCs.

Case 1: Only a BASE-VARIANT is specified.

The BASE-FUNCTION-NODE/DIAG-OBJECT-CONNECTOR (DTC-DOPs, TABLEs, ENV-DATA-DESCs)
applies to this BASE-VARIANT and all of its ECU-VARIANTs.

Case 2: Only one (or more) ECU-VARIANTs are specified.

All specified ECU-VARIANTs shall inherit from the same BASE-VARIANT. The BASE-FUNCTION-
NODE/DIAG-OBJECT-CONNECTOR (DTC-DOPs, TABLEs, ENV-DATA-DESCs) applies to these ECU-
VARIANTs, not to the common BASE-VARIANT.

Case 3: A BASE-VARIANT and one (or more) ECU-VARIANTs are specified.

All specified ECU-VARIANTs shall inherit from the same BASE-VARIANT. The BASE-FUNCTION-
NODE/DIAG-OBJECT-CONNECTOR (DTC-DOPs, TABLEs, ENV-DATA-DESCs) applies to these ECU-
VARIANTs and the common BASE-VARIANT.

Case 4: Neither a BASE-VARIANT nor an ECU-VARIANT is specified. This case is forbidden.

MCDDbFunctionInParameters and MCDDbFunctionOutParameters cover the following use
cases:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

238 © ISO 2012 – All rights reserved

 Documentation of high level function input and output parameters without any technical relation, that
means, for example, no relevance for an MVCI diagnostic server.

 Documentation of Vehicle Message Matrix (VMM) input and output signals related to a function.

 Mapping of VMM-Signals to diagnostic content.

For the higher level description of a function, higher level input and output parameter descriptions can be
useful, therefore the diagnostic description of the input and output parameters is optional. The higher level
input and output parameter description could be useful, if an MCDDbMultipeEcuJob is used for diagnosing
the function.

For example, the value of an output signal of one function is described as a parameter of a measurement
value, while the value of an input signal of a function may be covered by a service parameter of a routine. In
the example the output signal and the service parameter of the routine could both be accessed by diagnostic
services, but for a higher level description only input “Current in V” and output “Temperature in C” is
necessary.

Both MCDDbFunctionInParameters and MCDDbFunctionOutParameters have an
MCDDataType (PHYSICAL-TYPE) and an MCDDbUnit to reflect this information without the necessity to
resolve the (optionally) attached parameters. Since the optional
MCDDbRequestParameters/MCDDbResponseParameters may only be referenced by SHORT-
NAME, it is necessary to specify the service scope for which the SHORT-NAME of the parameters has to be
unique. This scope is given by the MCDDbDiagDomPrimitive referenced by the
MCDDbFunctionInParameters and MCDDbFunctionOutParameters element via
MCDDbFunctionDiagComConnector. A corresponding MCDDbLogicalLink may be available in the
database where the service can be generated and executed.

NOTE The reference to the MCDDbDiagComPrimitive is optional. In the case of having no
MCDDbDiagComPrimitive referenced it is not allowed to have an
MCDDbRequestParameters/MCDDbResponseParameters referenced by SHORT-NAME specified and vice
versa.

8.23.4 Uniqueness of MVCI diagnostic server function dictionary data resolution

8.23.4.1 MVCI server resolution

The current state of the ODX Function Dictionary data model allows several instances of ambiguous
definitions that need additional information to be uniquely resolved by an MVCI diagnostic server.

8.23.4.2 Example 1

There exists a BaseVariant BV which inherits from two Protocol layers P1 and P2. There are two logical links,
LL1 pointing to BV inheriting from P1 and LL2 pointing to BV inheriting from P2.

The COMPONENT-CONNECTOR of a BASE-FUNCTION-NODE contains a reference to BV, the DIAG-
OBJECT-CONNECTOR of this COMPONENT-CONNECTOR points to a TABLE of the BV and a TABLE-
ROW from this TABLE. The STRUCTURE of the TABLE-ROW contains a parameter using a DOP-SNREF,
where the DOP is defined both in P1 and P2 but differently in each case (e.g. the DOP is a STRUCTURE with
three parameters in P1, while it is a STRUCTURE with four parameters in P2).

When this TABLE-ROW is accessed through the MCDDbComponentConnector at runtime, the MVCI
diagnostic server needs to know the context (through an MCDDbLocation) to be able to resolve the correct
parameter STRUCTURE in a unique and deterministic way.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 239

8.23.4.3 Example 2

There exists a BaseVariant BV which is inherited by two ECU Variant layers EV1 and EV2. There exists a
logical link LL pointing to BV.

The COMPONENT-CONNECTOR of a BASE-FUNCTION-NODE contains a reference to EV1 and EV2. The
DIAG-OBJECT-CONNECTOR of this COMPONENT-CONNECTOR references an ENV-DATA-DESC of the
BV and an ENV-DATA element of this ENV-DATA-DESC. The ENV-DATA definition contains one parameter –
not neccessarily on top level – with a DOP-SNREF, where the DOP is only defined in EV1 but not in EV2.

When this ENV-DATA is accessed through the MCDDbComponentConnector at runtime, the MVCI diagnostic
server needs to know the context (through an MCDDbLocation) to be able to resolve the parameter definition
in a unique and deterministic way. It is also possible that a chosen MCDDbLocation context is not sufficient to
perform complete resolution of the parameter structure (in case the MCDDbLocation representing EV2 is
chosen in the above example).

8.23.4.4 Example 3

There exists a BaseVariant BV which inherits from two Protocol layers P1 and P2. There are two logical links,
LL1 pointing to BV inheriting from P1 and LL2 pointing to BV inheriting from P2.

The COMPONENT-CONNECTOR of a BASE-FUNCTION-NODE contains a reference to BV, the DIAG-
OBJECT-CONNECTOR of this COMPONENT-CONNECTOR points to a TABLE of BV1. The same DIAG-
OBJECT-CONNECTOR references an ENV-DATA-DESC from P2.

When this TABLE is accessed through the MCDDbComponentConnector at runtime, the MVCI diagnostic
server needs to know the context (through an MCDDbLocation) to be able to resolve the correct TABLE-ROW
in a unique and deterministic way. The only valid option is LL1, while for resolving the correct ENV-DATA-
DESC the only valid option would be LL2. An MCDDbDiagObjectConnector allows the referencing of elements
which are valid on different MCDDbLocations.

8.23.4.5 Example 4

There exists a BaseVariant BV which defines a diagnostic service DC.

A BASE-FUNCTION-NODE contains a reference to a FUNCTION-IN-PARAM that in turn references a
FUNCTION-DIAG-COM-CONNECTOR. This CONNECTOR points to the diag service DC but does not
reference a logical link. Also there is no COMPONENT-CONNECTOR to the BASE-FUNCTION-NODE.

Whenever the runtime system is accessing the MCDDbRequestParameter of the
MCDDbFunctionInParameter it has to be able to resolve the context of an MCDDbLocation to be able to
uniquely identify the parameter based on its name. In the example this is not possible due to the lack of a
COMPONENT-CONNECTOR and a LOGICAL-LINK; therefore the access will fail even though it could
potentially be succeeding in special constellations.

8.23.4.6 Example 5

There exists a BaseVariant BV which is inherited by two ECU Variant layers EV1 and EV2. All three layers
define a diagnostic service DC. In addition there exists a logical link LL pointing to BV.

The COMPONENT-CONNECTOR of a BASE-FUNCTION-NODE contains a reference to variants EV1 and
EV2. This means that at runtime only these two ECU variant layers comprise the valid set of referenced
objects but not the BV layer. The BASE-FUNCTION-NODE references a FUNCTION-IN-PARAM which in turn
references a FUNCTION-DIAG-COM-CONNECTOR.

The FUNCTION-DIAG-COM-CONNECTOR has a reference to a diag service DC and a logical link LL. The
DC reference clearly points to the DC definition in EV1. Therefore an LL pointing to the base variant BV
cannot be used for providing the context for resolving object references, it is practically useless.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

240 © ISO 2012 – All rights reserved

If the DC reference of the FUNCTION-DIAG-COM-CONNECTOR points to a service on the BV the LL can be
used for context resolution, but this would contradict the information in the COMPONENT-CONNECTOR.

Such a situation could be resolved by an implementation that favours resolution of FUNCTION-DIAG-COM-
CONNECTOR references based on the LL instead of information in the COMPONENT-CONNECTOR.

These examples only illustrate a subset of the problems that could theoretically be inherent in ODX FD data.
To be able to deal with these and similar situations, the MVCI diagnostic server API incorporates an additional
parameter at methods that are provided for database browsing of FUNCTION-IN-PARAM and FUNCTION-
OUT-PARAM elements, as well as DIAG-OBJECT-CONNECTOR information. This parameter provides the
MCDDbLocation access key that is to be used as a context for object resolution. In the case where the
MCDDbLocation provided by the calling application contradicts information that is provided by the ODX FD
data, the location provided by the API function takes precedence. This can, for example, be the case when a
FUNCTION-IN/OUT-PARAM is accessed by the application where the FUNCTION-DIAG-COM-CONNECTOR
that is accessible from the PARAM provides a logical link reference (which in turn also points to a location).

In cases where the MVCI diagnostic server is unable to unambiguosly resolve a FD data reference due to a
situation as described above, the affected database browsing method shall throw an MCDDatabaseException
with error code eDB_INCONSISTENT_DATABASE.

8.23.5 Function dictionary usage scenario

Figure 133 shows the example for a vehicle with four doors, each having an ECU in it.

Door ECU
Back Left

Door ECU
Back Right

Door ECU
Front Left

Door ECU
Front Right

Figure 133 — Example four door ECUs in a vehicle network

The four ECUs each have their own functionality (e.g. window up and down, lock/unlock door), but may also
be addressed by a common functionality, e.g. central lock activating all locks or heat extraction opening all
windows simultaneously.

From the diagnostics point of view, these functions may be reflected in three ways:

a) The activation of the window or lock actuator is performed by an IO-Control service.

b) Any problems with the actuators are expressed by error codes.

c) The current position of the window or the locker of a door is requested by a measurement service.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 241

Table 31 defines the Individual and Common functionality of Door ECUs.

Table 31 — Individual and Common functionality of Door ECUs

 Door ECU Back Left Door ECU Back
Right

Door ECU Front Left Door ECU Front
Right

Individual
Functionaltity

Window Back Left
up/down

Window Back Right
up/down

Window Front Left
up/down

Window Front Right
up/down

Door Lock Back Right
open/close

Door Lock Back Left
open/close

Door Lock Front Right
open/close

Door Lock Front Left
open/close

Common Functionality Central locking

Heat Extraction

Additional Comments:

 In function hierarchies it is intentionally not defined how MCDDbFunctionNodes and their
subordinates relate regarding their diagnostic functionality. That means the author (or the diagnostic
application) decides whether the content related to a subordinate function is automatically relevant for its
superior function and is automatically considered in its context.

 Function parameters are considered mainly to be used for documentation purposes (e.g. Vehicle
Message Matrix/VMM signals). As mentioned above, if there are any
MCDDbRequestParameters/MCDDbResponseParameters referenced, their SHORT-NAMEs
are to be resolved in the scope of the related services referenced by the
MCDDbFunctionDiagComConnector aggregated to the
MCDDbFunctionInParameters/MCDDbFunctionOutParameters.

 There is no relation defined between DTCs and ENV-DATAS referenced by an
MCDDbDiagObjectConnector.

Again, the author or the diagnostic application decides about whether or not to make this relation and how to
define such a relation.

NOTE Multiple MCDDbFunctionDictionaries are allowed. However, the SHORT-NAMEs of all
MCDDbFunctionNodeGroups/MCDDbFunctionNodes shall be globally unique.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

242 © ISO 2012 – All rights reserved

8.24 Sub-Component data model description

8.24.1 Sub-Component data model

Figure 134 shows the MCDDbSubComponents data model.

1 1

*

1

*

1

<<D>>
MCDDbTableRow

Connectors

<<D>>
MCDDbTableRow

Connector

<<D>>
MCDDbEnvData

Connectors

<<D>>
MCDDbEnvData

Connector

1

<<D>>
MCDDbFunction

Node

<<D>>
MCDDbSub
Components

<<D>>
MCDDbSub
Component

1

*

1

1

*

1

<<D>>
MCDDbDiagTrouble

ConnectorsCode

<<D>>
MCDDbDiagTrouble

CodeConnector

1 1

*

1

<<D>>
MCDDbMatching

Patterns

<<D>>
MCDDbMatching

Pattern

*

1

<<D>>
MCDDbSubComponent

ParamConnectors

<<D>>
MCDDbSubComponent

ParamConnector

1 1

*

1

*

1

<<D>>
MCDDbRequest

Parameters

<<D>>
MCDDbRequest

Parameter

<<D>>
MCDDbResponse

Parameters

<<D>>
MCDDbResponse

Parameter

1

1

*

1

<<D>>
MCDDbMatching

Parameters

<<D>>
MCDDbMatching

Parameter

1

1

<<D>>
MCDDbDiag
ComPrimitive

Figure 134 — MCDDbSubComponents data model

An MCDDbSubComponent, defined at the MCDDbLocation, is considered to be a functional unit in or
outside of an ECU that covers certain additional diagnostics relevant functionality either physically (e.g. a LIN
slave) or logically. To point out the use case the SEMANTIC attribute may be used. Two SEMANTICS are
predefined:

 SLAVE, if the MCDDbSubComponent describes a physical function unit,

 FUNCTION, if the MCDDbSubComponent describes a logical function unit.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 243

The latter is interesting in a context with MCDDbFunctionDictionary, when a counterpart to an
MCDDbFunctionNode/MCDDbFunctionNodeGroup shall be defined.

In contrast to an MCDDbFunctionNode or an MCDDbFunctionNodeGroup, an
MCDDbSubComponent is always related to one explicit ECU (or even ECU-VARIANT) and can be
considered as an additional layer below MCDDbLocation.

The difference is that no new data (DTC, ENV-DATA, and TABLE-ROW) is defined but only reused
(referenced) from other layers. Therefore, the MCDDbDiagTroubleCodeConnector,
MCDDbTableRowConnector and MCDDbEnvDataConnector elements aggregated by an
MCDDbSubComponent shall always only point to elements that are part of the MCDDbLocation that the
MCDDbSubComponent belongs to.

An MCDDbSubComponentParamConnector allows reference to an MCDDbDiagComPrimitive and
optionally to one or more MCDDbRequestParameters and MCDDbResponseParameters. The
related MCDDbDiagComPrimitive is the SHORT-NAME boundary for these parameters.

NOTE The MCDDbDiagComPrimitive may be referenced without any MCDDbRequestParameter/
MCDDbResponseParameter. In this case, the whole MCDDbDiagComPrimitive is relevant for the referencing
MCDDbSubComponent.

MCDDbMatchingPatterns (MCDDbSubComponent::getDbSubComponentPatterns()) may
be used to specify how the presence of an MCDDbSubComponent can be determined at runtime. In contrast
to an ECU-VARIANT's VARIANT-PATTERN (MCDDbEcuVariant::getDbVariantPatterns()), this
is not intended to be performed automatically but only for documentation purposes. However, after an
MCDDbSubComponent has been selected or "identified" by a diagnostic application, the diagnostic
application may provide according functionality. For example it can filter out any content that is not relevant for
this MCDDbSubComponent.

NOTE There is no inheritance given for SUB-COMPONENTs. SUB-COMPONENTs should be defined for each
BASE-/ECU-VARIANT if necessary.

8.24.2 Sub-Component usage scenario

Consider a multi-purpose ECU with two Seat LIN slave controllers attached.

Figure 135 shows the multi-purpose ECU with 2 LIN slaves.

Front Seat
Left LIN-ECU

Front Seat
Right LIN-ECU

Multiple
Purpose
Front ECU

Figure 135 — Multi-purpose ECU with 2 LIN slaves

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

244 © ISO 2012 – All rights reserved

Since only the multi-purpose ECU (master) is attached to the CAN network, all diagnostic messages that have
an influence on the behaviour or request the status of the seat ECU will be sent to the master. The master
then decides how to handle those diagnostic messages. On the other hand, if an error occurs inside one of
the LIN slaves, this is probably indicated by a DTC activated in the master's fault memory since the slaves
may not have their own fault memory.

This means that the diagnostic data description of the master ECU also has to consider the diagnostic
functionality of the Slaves. This relationship can be expressed by defining an MCDDbSubComponent for
each LINslave that:

 reuses the content of the master ECU and therefore avoids redundancy,

 resides inside the diagnostic description of the master ECU, to keep the LIN-relevant parts of the ECU
self-contained within the MCDDbSubComponent,

 may be checked for validity or presence by using its MCDDbSubComponentPatterns to filter out any
information that is not relevant in the current MCDDbSubComponents context.

Additional comments:

 The MCDDbSubComponent primarily addresses documentation use cases and offers another approach
to the diagnostic content of the master. In other scenarios it might be more useful to have a separate
DIAGLAYER for the LIN slaves.

 There may be the use case to have a relationship between a function defined in
MCDDbFunctionDictonary and an MCDDbSubComponent that, for example, covers this functionality in
the ECU. This is not explicitly modeled but still can be covered by a diagnostic application mapping to
SEMANTICS or naming conventions.

8.25 Monitoring vehicle bus traffic

A common use case for a diagnostic server is the need to monitor traffic on a vehicle communication bus. To
provide simple bus monitoring capability, this chapter defines how bus monitoring shall be implemented in the
MVCI diagnostic server. The concepts presented in this chapter are based on standardized features of the D-
PDU API layer. If the system is using any other VCI, the concept is the same and should act in a similar way
as far as the VCI supports it.

The monitoring link that is introduced in this section is an entirely passive entity regarding the monitored
physical resource. That means that a monitoring link offers no way to alter any protocol parameters that are
associated with the monitored bus resource. As all information pertaining to protocol parameters is part of the
diagnostic database, this information is not available before a database is selected. Therefore, a monitoring
link will always use the already existing settings of the physical resource that is being monitored – if a logical
link to that resource already exists in the MVCI diagnostic server, a monitoring link to that resource will be
using the link settings that have previously been configured by the logical link. In cases where no logical link to
a resource exists when a monitoring link to that resource is created, the monitoring link will be using that
resource's default settings as implemented in the communication/protocol layer. As the D-PDU API allows any
link to a physical resource to modify protocol parameters at any time, it is always possible to create a logical
link to a resource that already has an associated monitoring link, and modify that resource's configuration by
setting protocol parameters at the logical link. A monitoring link could be implemented by using corresponding
D-PDU API protocols such as ISO_11898_RAW, which forwards all bus communication without applying any
application layer logic to the monitored messages.

In the MVCI diagnostic server API, the class MCDMonitoringLink is provided for performing bus
monitoring. Instances of this class can be created based on MCDInterfaceResources to monitor on one
of the communication channels available to the MVCI diagnostic server. MCDMonitoringLink instances
are created using the method MCDProject::createMonitoringLink(MCDInterfaceResource
IfResource). Note that the method MCDSystem::prepareVCIAccessLayer() has to be called
before doing bus monitoring, so that the D-PDU API layer can be set up by the MVCI diagnostic server. In

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 245

cases where the VCI access layer has not been prepared beforehand, a call to
createMonitoringLink() will result in an MCDProgramViolationException with error code
eRT_VCI_ACCESS_LAYER_NOT_PREPARED being thrown. In cases where the VCI does not support
monitoring, a call to createMonitoringLink() will result in an MCDSystemException with error code
eSYSTEM_MONITORING_NOT_SUPPORTED. The interface resource contains additional information like
the protocol, which is not taken into account for generating the monitoring link. The kernel may return the
same monitoring link object for the same bus, but other protocol resource interface. It is strongly
recommended to the application to use only one monitoring link for one physical bus interface.

The ShortName of an MCDMonitoringLink will be generated by the MVCI diagnostic server and it will
include the ShortName of the MCDInterface as well as the ShortName of the
MCDInterfaceResource that is being monitored using the following rule:

#RtGen_Monitor_<ShortnameOfMCDInterface>_<ShortnameOfMCDInterfaceResource>
Monitoring can be switched on or off on a per-link basis by calling the MCDMonitoringLink::start()
and MCDMonitoringLink::stop() methods. Monitored data will be contained in the
MCDDatatypeAsciiStrings collection returned by the
MCDMonitoringLink::fetchMonitoringFrames(A_INT32 numReq) method. Each monitored
message will be contained in one MCDDatatypeAsciiString within that collection.

A client application can either directly poll an MCDMonitoringLink object for available monitoring results,
or can use an event handler to be notified by the MVCI diagnostic server when monitoring frames are
available. The used event name which is fired is onMonitoringFramesReady(MCDMonitoringLink
monLink).

To lessen the event load on the client application, the ‘number of samples before firing event’ field can be
used to define how many samples should be collected before an event is raised by the MVCI diagnostic
server. This number of samples can be set by calling the method
MCDMonitoringLink::setNoOfSampleToFireEvent(A_UINT16 noOfSamples).

In addition, the client application can use the MCDMessageFilter class, which is available through the
MCDMessageFilters collection from an MCDMonitoringLink object, to specify filters for the incoming bus
messages. These filter definitions are analogous to the IOCTL filter data structure specifications from the D-
PDU API standard. For detailed semantic descriptions, refer to the relevant chapters of the D-PDU API
specification ISO 22900-2. If the VCI is not a D-PDU API device it may not be possible to activate filtering.

Note that, despite message filtering and other performance enhancing features of the kernel, the monitoring
solution proposed here is not supposed to be used (or expected to scale) for monitoring of high-speed, high-
volume bus traffic. Due to internal restrictions, e.g. in the coupling between MVCI diagnostic server and D-
PDU API implementation, bus monitoring using an MVCI diagnostic server is a very resource-intensive task,
and as such probably will not perform adequately for high-load situations until a more suitable solution can be
implemented based on upcoming versions of the relevant standards.

Currently, the D-PDU API will send an event to the MVCI diagnostic server for every single received frame,
which potentially results in the MVCI diagnostic server being completely overloaded by D-PDU API events in
high-traffic situations. It is of course up to the implementation of the MVCI diagnostic server and the D-PDU
API to circumvent these problems; however, such optimizations cannot be considered in this part of
ISO 22900.

The format of the monitored messages as returned by the method
MCDMonitoringLink::fetchMonitoringFrames(A_INT32 numReq) cannot be defined in
sufficient detail and comprehensiveness to cover all bus architectures and VCI driver implementations that
might have to be covered by this specification. Various data format definitions are provided in Annex D.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

246 © ISO 2012 – All rights reserved

8.26 Support of VCI module selection and other VCI module features according to
ISO 22900-2

8.26.1 Introduction

For being able to physically connect to a vehicle or a set of ECUs, respectively, an MVCI diagnostic server
uses a vehicle communication interface (VCI). This VCI can either be a proprietary interface or it can be
compliant to the D-PDU API standard ISO 22900-2. The integration of a D-PDU API compliant MVCI access is
described in this section. If different definitions are required for integrating a proprietary VCI, these are stated
in the corresponding places in addition.

The support of a D-PDU API is an optional feature for an MVCI diagnostic server. Even if the standard was
mainly developed to work with a D-PDU API, any other proprietary or standardised way to do vehicle
diagnostics may be integrated into an MVCI diagnostic server.

There are two different approaches to how a client can work with VCIs on a MCD3 3D-API. The first approach
was introduced with the MCD3 V2.0.2 specification. It uses automatic VCI selection from the D-Server.
This static VCI selection approach is selected while calling the MCDSystem::prepareInterface()
method. This prepares the VCI for use, but it does not explicitely state which VCI to use, in case more than
one VCI is available for diagnostics. The client creates logical links with one of the four methods on
MCDProject: createLogicalLink(), createLogicalLinkByAccessKey(),
createLogicalLinkByName() or createLogicalLinkByVariant().

To handle more than one VCI and to select a specific VCI to use with a given logical link, a second approach
is introduced. This approach allows selection of a given VCI and even of a given resource (e.g. one of four
CAN controllers on a VCI) to be used with a logical link. A call to
MCDSystem::prepareVCIAccessLayer() enables this approach within the MVCI diagnostic server.
The client creates the logical links with one of the
eight remaining methods on MCDProject: createLogicalLink… with suffix: “AndInterface” or
“AndInterfaceResource”.

The two VCI selection approaches are mutual exclusive. A client can call prepareInterface or
prepareVCIAccessLayer. Unless the corresponding unprepare method is not called, no call to one of
those methods is permitted anymore.

8.26.2 Definitions

The MVCI D-PDU API supports the selection of a specific VCI module to be used for diagnostic
communication by a client application, e.g. an MVCI diagnostic server. VCI module is the D-PDU API term for
a vehicle communication interface. From the D-PDU API’s point of view several of these VCI modules can be
managed below the D-PDU API at the same time. However, in general only one of these VCI modules is
actively used by the MVCI diagnostic server. Furthermore, the D-PDU API provides access to the properties
of the VCI modules.

A physical vehicle link is the physical connection between a vehicle’s diagnostic connector and the ECU. The
physical vehicle links available in a vehicle and the properties of these physical vehicle links are defined in the
ODX data used to describe a vehicle’s electrical configuration.

A physical interface link is the physical connection between the VCI connector of a VCI and the interface
connector. Technically speaking, the VCI connector and the interface connector are the connectors at the two
opposite ends of the cable connecting a VCI with a vehicle. In the VCI, a VCI connector is driven by a VCI
module (also called interface in the following sections). The VCI modules contained in a VCI and their
properties are accessed by the MVCI diagnostic server via the D-PDU API.

The interface connector (called DLC connector in the D-PDU API) at the vehicle’s end of the interface cable is
plugged into the vehicle connector. Therefore, both connectors shall match mechanically and have identical
pin layouts (1:1 match). At the other end, the interface cable is plugged into the VCI module’s VCI connector.
The cable description file (CDF) shipped with the D-PDU API lists the supported interface cables.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 247

The set of types of possibly available physical interface links and their properties are defined inside a so-
called module description file (MDF) and the so-called cable description file (CDF). Both files are shipped
together with the D-PDU API to be used by the MVCI diagnostic server.

A physical link is the combination of a physical vehicle link connected to a physical interface link.

The following subclauses describe the behaviour of an MVCI diagnostic server supporting VCI modules
according to the D-PDU API standard. 8.26.14 describes the behaviour of an MVCI diagnostic server not
supporting VCI modules according to the D-PDU API standard.

8.26.3 General behaviour of D-PDU API related MVCI diagnostic server methods

Many of the MVCI diagnostic server methods described in the following sections include a call to a D-PDU API
function. In these cases, the name of the called D-PDU API function is mentioned.

In general, each call of a D-PDU API function may fail returning a D-PDU API error code, which is described in
the D-PDU API standard.

8.26.4 Overview of VCI module related classes

The class diagram in Figure 136 shows an overview of the classes required to represent VCI modules in the
MVCI diagnostic server API and to access the corresponding D-PDU API resources.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

248 © ISO 2012 – All rights reserved

1

<<M,C,D>>
MCDSystem

<<D>>
MCDInterfaces

1

1..*

<<D>>
MCDInterface

1

<<D>>
MCDInterface

Resources

11

1..*

<<D>>
MCDInterface

Resource

1

<<D>>
MCDLogicalLink

11

1

1

<<D>>
MCDDbLogicalLink

1..*

1

<<D>>
MCDDbPhysical

VehicleLink

1..*

1

<<D>>
MCDDbVehicle
ConnectorPins

1

1

<<D>>
MCDDbVehicle
ConnectorPin

1

1..*

1

1

<<D>>
MCDDbPhysical

VehicleLinkOrInterface

<<D>>
MCDDbInterface
ConnectorPins

1

1

<<D>>
MCDDbInterface

ConnectorPin

1

1..*

<<D>>
MCDDbInterface

Cables

<<D>>
MCDDbInterface

Cable

1

1..*

11

<<enumD>>
MCDConnector

PinType

<<enumD>>
MCDInterface

Status

11

1

1

Figure 136 — Class diagram of VCI module related classes and their properties

8.26.5 VCI module selection

For some diagnostic applications based on an MVCI diagnostic server, it may be necessary to dynamically
select or re-select the VCI module to be used for vehicle diagnostics at runtime. For example, a service tester
application in a workshop with several VCI modules (indirectly) hooked up to different vehicles needs to be
able to connect to each of these VCI modules on demand.

The available VCI modules are detected by the MVCI D-PDU API internally. The application running on top of
the MVCI diagnostic server does not provide any connection parameters itself. The MVCI diagnostic server
provides the list of currently available VCI modules to the diagnostic application. In this list, every VCI module
is identified by its unique ShortName which is provided by the MVCI diagnostic server. Now, the diagnostic
application can choose the VCI module to be used for diagnostic communication from the list, connect to this
module or disconnect from this module to be able to connect to a different module in the next step.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 249

It is also possible to connect to more than one VCI module at the same time, e.g. when there are two VCI
modules connected to the same vehicle via a Y-cable with a shared interface connector.

8.26.6 MCDInterface

The class MCDInterface represents a single VCI module at the MVCI diagnostic server API and provides
access to the features of this VCI module. The class MCDInterface is derived from MCDNamedObject.

To retrieve the named collection of MCDInterfaces currently available for an MVCI diagnostic server, the
method MCDSystem::getCurrentInterfaces():MCDInterfaces has been introduced. Every
MCDInterface object can be identified by its unique ShortName. This ShortName is generated by the
MVCI diagnostic server with the following pattern: #RtGen_MCDInterface_<Number>. The number in this
generated ShortName is increased for every available or newly available VCI module. The generated
ShortName does not contain the denoted brackets. For the first instance, the number is zero. This pattern is
also used if only a single VCI module, represented by the MCDInterface object, is part of the MCDInterfaces
collection.

The LongName of the MCDInterface object is composed of the structure element that is, for example,
delivered by the D-PDU API via method PDUGetModuleIds. The PDU_MODULE_ITEM list contains the
PDU_MODULE_DATA structures. Each PDU_MODULE_DATA structure contains an optional vendor-specific
module identification name <pVendorModuleName> and an optional vendor-specific additional information
<pVendorAdditionalInfo>. These two optional strings are composed of the LongName of the corresponding
MCDInterface by the MVCI diagnostic server separated by a space character: <pVendorModuleName>
<pVendorAdditionalInfo>. The LongName does not contain the denoted brackets.

Before it is possible to obtain the list of available MCDInterfaces by calling the method
MCDSystem::getCurrentInterfaces():MCDInterfaces (calls the D-PDU API function
PDUGetModulIds), the method MCDSystem::prepareVciAccessLayer() shall be called.

NOTE In this case, the client has not call MCDSystem::prepareInterface.

A call to prepareVciAccessLayer() triggers the initialization of the VCI access layer (in the D-PDU
API calls the D-PDU API function PDUConstruct). This includes the identification of all available VCI modules.
Once the VCI access layer has been initialized, the D-PDU API continuously tracks which VCI modules are
currently available. This includes detection of new VCI modules in the visibility scope and detection of VCI
modules which left the visibility scope. The method to release the D-PDU APIs VCI access layer is
MCDSystem::unprepareVciAccessLayer() (in cases of static VCIs the method unprepareInterface
should be called, calls the D-PDU API function PDUDestruct). The method prepareVCIAccessLayer()
shall only be called once, unless unprepareVCIAccessLayer() is called.

The diagnostic application on top of the MVCI diagnostic server shall decide which of the available interfaces
to use for diagnostic communication to a specific vehicle. Otherwise, no diagnostic communication to an ECU
or a vehicle, respectively, can be established. This decision is usually based upon the unique ShortName
(delivered by the D-PDU API function PDUGetModuleIds) of an interface known to be physically
connected to the vehicle. To select an interface for diagnostic communication, the application calls
MCDInterface::connect():void at the corresponding interface object, which calls the D-PDU API
function PDUModuleConnect. Note that calling connect() for at least one interface is mandatory to run
any diagnostic communication in the MVCI diagnostic server, if the MVCI diagnostic server supports the D-
PDU API.

If the diagnostic application has finished its diagnostic communication via a selected interface, it needs to call
the method MCDInterface::disconnect():void to disconnect from this interface, which calls the D-
PDU API function PDUModuleDisconnect.

To find out which interfaces are currently connected, the diagnostic application can fetch the list of connected
interfaces by means of the method MCDSystem::getConnectedInterfaces(): MCDInterfaces

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

250 © ISO 2012 – All rights reserved

(calls the D-PDU API function PDUGetStatus for all VCI modules to find out which modules are connected).
This method never throws an exception; at least an empty collection is returned.

Before connecting to an interface, the diagnostic application should check if this interface is available for
connection by checking its status via MCDInterface::getStatus(): MCDInterfaceStatus
(calls the D-PDU API function for the related VCI module). Connection is only possible if the status
MCDInterfaceStatus::eAVAILABLE is returned.

As a Logical Link requires a physical link to the vehicle to be available, at least one VCI module which is
connected and in state MCDInterfaceStatus::eREADY needs to be present, if the MVCI diagnostic
server supports the D-PDU API. Of course, this VCI module needs to provide the physical resources and
protocol resources defined for the logical link. The combination of physical resource and protocol resource is
called an MCDInterfaceResource. In principle a single interface could provide more than one
MCDInterfaceResource matching the requirements of a Logical Link. In this case, the interface resource
which will be used for a specific Logical Link is either selected automatically by the MVCI diagnostic server or
it is actively selected by the diagnostic application (see 8.26.10). The same applies if multiple interfaces are
connected to the same vehicle at the same time and if some of these interfaces provide matching interface
resources for the Logical Link.

8.26.7 VCI module selection sequence

Table 32 shows the sequence of methods to call at the MVCI D-Server API for VCI module selection, together
with the corresponding calls of D-PDU API methods from within the MVCI diagnostic server logic.

Table 32 — Method for VCI module selection — MVCI D-Server API and D-PDU API

Methods called at MVCI D-Server API Methods called at D-PDU API

MCDSystem::prepareVciAccessLayer() PDUConstruct() will be executed for all available D-PDU APIs

interfaces = MCDSystem::getCurrentInterfaces() PDUGetModuleIds(): delivers list of handles hMod1, hMod2, … of
available or connected VCI modules

Decide which interface(s) to connect to…

interface1.connect()

[interface2.connect() …]

PDUModuleConnect(hMod1)

[PDUModuleConnect(hMod2) …]

create and open Logical Links,

execute DiagComPrimitives, ….

close and remove Logical Links

…all method calls carry the selected VCI module handle hModx
as input parameter…

interface1.disconnect()

[interface2.disconnect() …]

=> Only allowed in LogicalLink state eCREATED!

PDUModuleDisconnect(hMod1)

PDUModuleDisconnect(hMod2)

MCDSystem::unprepareVciAccessLayer() PDUDestruct() will be executed for all available D-PDU APIs

8.26.8 Interface status events

Status changes of a VCI module are notified by the MVCI diagnostic server to a diagnostic application by
means of different events.

The event MCDEventHandler::onInterfaceStatusChanged(MCDInterface interface,
MCDInterfaceStatus status) indicates that the status of the VCI module given as first parameter
has changed to the state given as the second parameter. This event is, for example, triggered by a D-PDU
API module callback with a module status event item.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 251

The event MCDEventHandler::onInterfacesModified(void) indicates that the list of VCI
modules available for an MVCI diagnostic server has changed – either because a new VCI module has
become available or because a VCI module is not available anymore. This event is sent when the MVCI
diagnostic server or the D-PDU API, respectively, has automatically detected a new VCI module or when
communication to a VCI module has been lost (see paragraph below for details). This event is, for example,
triggered by a D-PDU API system callback with the information event PDU_INFO_MODULE_LIST_CHG. The
diagnostic application can use the method MCDSystem::getCurrentInterfaces() to retrieve an
updated list of currently available VCI modules in this case.

The event MCDEventHandler::onInterfaceError (MCDInterface interface,
MCDError error) indicates that the MVCI diagnostic server or the D-PDU API, respectively, has
automatically detected that communication to the VCI module given as first parameter has been lost or a
hardware fault occurred indicated by the MCDErrorCode eCOM_LOST_COMM_TO_VCI or
eCOM_VCI_HARDWARE_FAULT. These events are only possible, if the affected MCDInterface object
has been successfully connected via the method MCDInterface::connect(), and has not yet been
disconnected via the method MCDInterface::disconnect(). These events are triggered, for example,
by a D-PDU API module callback with a module error event PDU_ERR_EVT_LOST_COMM_TO_VCI or
PDU_ERR_EVT_VCI_HARDWARE_FAULT. In cases of the event onInterfaceError() the affected
MCDInterface object, including all its MCDLogicalLink objects, are invalid. In this case the
MCDLogicalLink objects can only be closed or reset. The MCDLogicalLink objects cannot be reused for
further communication. The MCDInterface object is also invalid and can only be removed from the
MCDInterfaces collection. All calls to one of the MCDInterface specific object methods lead to an
MCDProgramViolationException with the error code eRT_PDU_API_CALL_FAILED, except a final
call to the method MCDInterface::disconnect(). This final call has to be performed by the
application, after the application has received the event MCDEventHandler::onInterfaceError.

8.26.9 MCDInterfaceResource

The class MCDInterfaceResource can be used to obtain information about the resources available at an
interface (VCI module). In addition, this class allows selecting a specific interface resource to be used with a
Logical Link. If the D-PDU API is supported, an interface resource is equivalent to a “Resource” object as
defined in the D-PDU API. Hence, an interface resource is characterized by the attributes

 communication protocol

 physical interface link type (called “Bustype” in D-PDU API), and

 pins on the interface connector (called “DLC” connector in D-PDU API).

To retrieve the named collection of MCDInterfaceResources which are provided by a VCI module, the
method MCDInterface::getInterfaceResources():MCDInterfaceResources is used.
Every MCDInterfaceResource is a named object which can be identified by its ShortName. All information
needed for this method including the ShortName of a MCDInterfaceResource is provided e.g. by the D-
PDU API’s MDF file.

The method MCDInterfaceResource::getInterface():MCDInterface allows to navigate back
to the interface the current resource belongs to.

8.26.10 Selection of an interface resource

To open a Logical Link, it is necessary to select an interface resource which matches the requirements of this
Logical Link, i.e. it shall match the communication protocol type required for the Logical Link, match the
physical vehicle link type, and the pins on the vehicle connector. For a Logical Link, the requirements can be
obtained from the ODX data.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

252 © ISO 2012 – All rights reserved

This means in detail:

 The resource's physical interface link type, obtainable via the method
MCDInterfaceResource::getDbPhysicalInterfaceLink():
MCDDbPhysicalInterfaceLink::getType():A_ASCIISTRING, shall match the Logical
Link's physical vehicle link type, obtainable via
MCDDbDLogicalLink::getDbPhysicalVehicleLinkOrInterface():MCDDbPhysical
VehicleLinkOrInterface::getType():A_ASCIISTRING.

 The resource’s interface connector pins, obtainable via the method
MCDDbPhysicalVehicleLinkOrInterface::getDbInterfaceConnectorPins():
MCDDbInterfaceConnectorPins, shall match the Logical Link’s vehicle connector pins,
obtainable via the method
MCDDbPhysicalVehicleLinkOrInterface::getDbVehicleConnectorPins():
MCDDbVehicleConnectorPins, where pin number and pin type MCDConnectorPinType shall
match for each connector pin.

 The resource's communication protocol type, obtainable via the method
MCDInterfaceResource::getProtocolType():A_ASCIISTRING, shall match the Logical
Link's communication protocol type, obtainable via
MCDDbLogicalLink::getProtocolType():A_ASCIISTRING.

A matching interface resource can be selected for a Logical Link in the following two ways:

Case a)

 Automatic selection by the MVCI diagnostic server:

Before creating a Logical Link, the application decides which interface has to be used. The logical link
creation is done by calling MCDProject::createLogicalLink…ByInterface. When opening a
Logical Link, the MVCI diagnostic server automatically selects a matching interface resource, e.g.
supported by the D-PDU API function PDUGetResourceIds. In this case, the application using the
MVCI diagnostic server does not have to care about this process, no additional method calls are
necessary. During the automatic selection, the MVCI diagnostic server is free to choose which of the
matching and available interface resource to use for opening the LogicalLink. This selection may differ
between different MVCI diagnostic server implementations and is even not reproducible on multiple
executions of the same MVCI diagnostic server implementation.

Case b)

 Selection of the interface resource by the application:

Before creating a Logical Link, the application decides which interface resource has to be used. The
logical link creation is done by calling
MCDProject::createLogicalLink…ByInterfaceResource. Interface resources are
retrieved by calling an MCDInterface::getInterfaceResources().

The class MCDLogicalLink – which represents a runtime Logical Link in the MVCI diagnostic server –
provides the following method to retrieve the selected interface resource:

 MCDLogicalLink::getInterfaceResource():MCDInterfaceResource
returns the interface resource assigned to this LogicalLink. Throws an exception of type
MCDProgramViolationException with error code eRT_PDU_API_NOT_SUPPORTED if the
logical link does not support the optional D-PDU API.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 253

NOTE The method MCDInterfaceResource::isInUse():A_BOOLEAN returns true if this resource is currently
in use. Even if the resource is already in use, it may still be available - depending on the characteristics of this resource.
For example, if a resource for a CAN protocol on a certain CAN bus is already in use by one Logical Link, it may also be
used multiple times by other Logical Links, depending on the capabilities of the VCI module’s CAN protocol driver.

The status values for isAvailable() and isInUse() are retrieved e.g. via the D-PDU API function
PDUGetResourceStatus.

8.26.11 Send Break Signal

The method MCDLogicalLink::sendBreak():void allows to send a break signal on the Logical Link
if a D-PDU API is used, calls the function PDUIoCtl with command PDU_IOCTL_SEND_BREAK). A break
signal is a feature of certain physical layers and can only be sent on these physical layers (e.g. SAE J1850
VPW physical links and UART physical links - see ISO 22900-2, subclause PDU_IOCTL_SEND_BREAK, for
more details). Throws an exception of type MCDProgramViolationException with error code
eRT_NOT_ALLOWED_IN_LL_STATE_CREATED if the Logical Link is in state eCREATED, or with error
eRT_PDU_API_CALL_FAILED if the corresponding function call of PDUIoCtl() at the D-PDU API failed.

8.26.12 MCDDbInterfaceCable

A VCI module is connected to a vehicle using an interface cable which has the interface connector (to be
plugged into the vehicle connector) attached to one end of the cable and the VCI connector (to be plugged
into the VCI) attached to the other end. To connect a VCI to a vehicle with a different type of vehicle
connector, e.g. an OEM-specific connector instead of an OBD connector, a VCI is usually shipped with
several different interface cables which have different types of connectors.

The class MCDInterface offers methods to access information about the different interface cables
available for a certain VCI module. However, this information is not required for any runtime operations. It is
information only and can be used in a diagnostic application to guide the user to connect the correct cable to
the VCI module.

The method MCDInterface::getDbInterfaceCables():MCDDbInterfaceCables returns the
collection of all possible interface cables specified for the VCI module. These cables are defined in the MVCI's
cable description file (CDF). The MVCI diagnostic server shall parse the CDF file to create the result of this
method.

The method MCDInterface::getCurrentDbInterfaceCable():MCDDbInterfaceCable
returns the interface cable which is currently connected to the VCI module. A VCI module may use an
automatic cable detection or internal configuration to provide this information. The method calls, for example,
the D-PDU API function PDUIoCtl with the command PDU_IOCTL_GET_CABLE_ID, and shall parse the
CDF file in addition to retrieve the properties of the cable with the cable ID delivered by PDUIoCtl.

An MCDDbInterfaceCable object provides information about an interface cable. This information is
provided by the MVCI's cable description file (CDF):

The method MCDDbInterfaceCable::getInterfaceConnectorType():A_ASCIISTRING
returns the type of the interface connector of the interface cable. The connector type is provided in the CDF.

NOTE There is no predefined list of possible return values defined in the MVCI diagnostic server or D-DPU API
standards.

The method MCDDbInterfaceCable::getDbInterfaceConnectorPins():
MCDDbInterfaceConnectorPins returns the interface connector pins of the interface cable.

An MCDDbInterfaceConnectorPin object contains the mapping of the interface connector pin,
returned by getPinNumber():A_UINT32, to a pin on the VCI connector of the interface cable, returned
by getPinNumberOnVci():A_UINT32.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

254 © ISO 2012 – All rights reserved

NOTE The pin number on the VCI connector is only additional information which is not required for any runtime
operation. Information about the VCI connector pin number is provided in the CDF.

8.26.13 Accessing VCI module features

Several features of VCI modules are accessible by the following methods of MCDInterface:

The method MCDInterface::reset():void resets the VCI module (if a D-PDU API is used, calls the
function PDUIoCtl with the command PDU_IOCTL_RESET). The reset command will cancel all activities
currently being executed by the VCI module (without proper termination). All existing Logical Links will go in
the state eOFFLINE and associated ComPrimitives are cancelled. All hardware properties of the MVCI
Protocol Module (e.g. programming voltage) will be reset to the default settings. After the completion of the
reset command, the VCI module shall be treated as if it were a newly connected VCI module.

The method
MCDInterface::setProgrammingVoltage(pinOnInterfaceConnector:A_UINT32,
voltage:A_FLOAT64):void sets the programming voltage (in Volts) on the specified pin of the
interface connector of the VCI module (if a D-PDU API is used, calls the function PDUIoCtl with the command
PDU_IOCTL_SET_PROG_VOLTAGE).

The method
MCDInterface::getProgrammingVoltage(pinOnInterfaceConnector:A_UINT32):A_F
LOAT64 returns the programming voltage (in Volts) on the specified pin of the interface connector of the VCI
module. This method is used to read the feedback of the programming voltage from the voltage source, which
is set by the method setProgrammingVoltage (if a D-PDU API is used, calls the function PDUIoCtl with the
command PDU_IOCTL_READ_PROG_VOLTAGE).

The method MCDInterface::getBatteryVoltage():A_FLOAT64 reads the battery voltage (in
Volts) on the VCI module's VCI connector (if a D-PDU API is used, calls the function PDUIoCtl with the
command PDU_IOCTL_READ_VBATT).

The method MCDInterface::getClampState(pinOnInterfaceConnector:A_UINT32,
clampName:A_ASCIISTRING):MCDValue returns the current state of the clamp specified by the pin
number on the interface connector (first parameter). In general, the specified clamp name (second parameter)
is tool-manufacturer-specific, and shall be supplied, for example, by an equivalent manufacturer-specific
IO_CTRL-command to be carried out with the D-PDU API function PDUIoCtl, where the clamp name is
expected to match the ShortName of the IO_CTRL-command. The clamp state is returned as an MCDValue.
The data type of this value and the interpretation of the value (e.g. resolution, unit and range) depend on the
tool-manufacturer-specific definition for the specific clamp name.

The following clamp name is expected to be supplied by any MVCI diagnostic server supporting a D-PDU API:

“IgnitionClamp”: clamp to retrieve the ignition state of the vehicle. Data type of the returned value is
A_BOOLEAN, where value “true” means “ignition on”, “false” means “ignition off”. In case of PDU_API
PDU_IOCTL_READ_IGNITION_SENSE_STATE shall be used.

Tool-manufacturer-specific clamp names shall start with the domain name (similar to getProperty()). For a
german vendor A a clamp name would look like “de.VendorA.NameOfTheClamp”.

Other MCDInterface methods like getVendorName(), getPDUApiSoftwareName(),
getPDUApiSoftwareVersion(), getHardwareSerialNumber() provide information about the
VCI vendor and several different version numbers of the VCI module. This information is retrieved from the D-
PDU API by the function PDUGetVersion. A D-Server not supporting D-PDU API might return a valid
value, if it is availbable via the proprietary VCI-API. Otherwise an exception is thrown.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 255

8.26.14 Behaviour of an MVCI diagnostic server not using the VCI Module API

The MCD VCI Module API consists of MCDInterface, MCDInterfaceResource, MCDInterfaceResources,
MCDDbPhysicalVehicleLink, MCDDbPhysicalVehicleLinkOrInterface, MCDDbInterfaceConnectorPins,
MCDDbInterfaceConnectorPin, MCDInterfaceCables, and MCDInterfaceCable. If the methods
MCDSystem::prepareInterface and MCDSystem::unprepareInterface have been used to
prepare the interface, the VCI Module API cannot be used and thus it is not possible to select a specific VCI
module from the application, and also it is not possible to access any VCI module features as defined in the
classes MCDInterface and MCDInterfaceResource.

In this case the methods getConnectedInterfaces() and getCurrentInterfaces() of
MCDSystem always return an empty collection. The method getInterfaceResource()of
MCDLogicalLink throws an MCDProgramViolationException with error code
eRT_PDU_API_NOT_SUPPORTED.

The application can open a Logical Link without knowledge about any VCI module, and without having to
select a specific VCI module. Handling and selection of a VCI module is done completely inside the MVCI
diagnostic server in this case.

To open a logical link with unused VCI Module API, the methods:

 MCDProject::createLogicalLink,

 MCDProject::createLogicalLinkByAccessKey,

 MCDProject::createLogicalLinkByName,

 MCDProject::createLogicalLinkByVariant,

shall be used.

8.27 Handling DoIP entities

8.27.1 General

The following subclauses describe the detection and selection of DoIP entities using the MCDInterface API.

The description relies on D-PDU API support by the MVCI D-Server. If the D-PDU API is not supported the D-
Server has to provide the same functionality using the corresponding features of the alternatively integrated
MVCI protocol module access layer. In the following this is not explicitly mentioned but has to be considered in
any case.

8.27.2 Detection of DoIP entities

8.27.2.1 Basics

Depending on the specific implementation of the MVCI protocol module access, e.g. a D-PDU API
implementation, and usage of specific MVCI devices, the application may execute the detection of DoIP
entities at system level, e.g. using the Ethernet adaptor of the PC system, or at specific MVCI devices.

8.27.2.2 Detection of DoIP entities connected to the system

The detection of DoIP entities connected to the sytem can be done as follows:

 The application calls MCDSystem::prepareVciAccessLayer().

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

256 © ISO 2012 – All rights reserved

 The application calls MCDSystem::detectInterfaces(optionString). If the D-PDU API is
supported the D-Server will internally call PDUIoCtl(PDU_IOCTL_VEHICLE_ID_REQUEST) at D-PDU
API system level; in this case the D-PDU API module handle is PDU_HANDLE_UNDEF. The D-PDU API
executes a DoIP vehicle identification request to detect all available DoIP entities. The MVCI diagnostic
server provides the detected DoIP modules as additional MCDInterface objects, indicated by an event
onInterfacesModified. See below for the format of the parameter optionString.

 The application calls MCDSystem::getCurrentInterfaces(). This method delivers a collection
of available MVCI modules, including all MVCI devices (hardware modules) and DoIP modules, detected
by the D-PDU API.

 The application identifies a DoIP module by evaluating the LongName of the corresponding MCDInterface
object. This is the concatenation of pVendorModuleName and pVendorAdditionalInfo from D-PDU API
separated by a space, e.g. “Type=’MVCI_ISO_13400_DoIP_Entity’ EID=’0A:1B:2C:3D:4E:5F LA=’4096’
IP=’192.168.1.255’ VIN=’ABCDEFG1234567XYZ’ GroupID=’’12”.

Option string format:

The format of the input parameter “optionString” is described with the following grammar:

OptStringFmt ::= PDU_IOCTL=’PDU_IOCTL_VEHICLE_ID_REQUEST’

 <sep><PSM><sep><PSV><sep><CM><sep><VDT><sep>
 [<DAC><sep><DAList>]

PSM ::= PreselectionMode=<PreselectionMode>

PreselectionMode ::= ‘None’ | ‘VIN’ | ‘EID’

PSV ::= PreselectionValue=<PreselectionValue>

PreselectionValue ‘string’

 /* containing either an optional VIN or an EID to preselect detection of DoIP
entities, depending on parameter “PreselectionMode”. This string is left
empty if no preselection is desired (PreselectionMode=‘None’). */

CM ::= CombinationMode=<CombinationMode>

CombinationMode ::= ‘DoIP-Entity’ | ‘DoIP-Vehicle’ | ‘DoIP-Group’ | ‘DoIP-Collection’

VDT ::= VehicleDiscoveryTime=<VehicleDiscoveryTime>

VehicleDiscoveryTime ::= ‘unsigned short’

 /* Time-out to wait for vehicle identification responses. 0=return
immediately, or time in milliseconds. */

DAC ::= DestinationAddressCount=<DestinationAddressCount>

DestinationAddressCount ::= ‘unsigned short’

 /* No. of broadcast/multicast addresses in the destination address list
DAList. In case of an empty list, the sequence <DAC><sep><DAList> is
omitted. */

DAList ::= (DA<n>=’<IPv4>’ | ’<IPv6>’)+

n ::= /* current number starting with 1, maximum value according to
 DestinationAddressCount */

IPv4 ::= /* dottet decimal notation, e.g. 192.168.1.255 */

IPv6 ::= /* hexadecimal, colon separated according to RFC4291, section 2.2 */

sep ::= blank

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 257

EXAMPLE

“PDU_IOCTL=’PDU_IOCTL_VEHICLE_ID_REQUEST’ PreselectionMode=’VIN’
PreselectionValue=’ABCDEFG1234567XYZ’ CombinationMode=’DoIP-Entity’
VehicleDiscoveryTime=’5000’ DestinationAddressCount=’1’ DA1=’192.168.1.255’”

An MCDInterface object representing a DoIP module has limited capabilities:

 MCDInterface::getInterfaceResources() delivers exactly one item; this
MCDInterfaceResource object is used as input parameter when calling one of the methods
MCDProject::createLogicalLinkBy…InterfaceResource.

8.27.2.3 Detection of DoIP Entities connected to a specific MVCI device

After initial calls of MCDSystem::prepareVciAccessLayer and
MCDSystem::getCurrentInterfaces, the detection of DoIP entities connected to a specific MVCI
device can be done as follows:

 The application calls MCDInterface::detectInterfaces (optionString).This method is
only supported by an MCDInterface object representing an MVCI device that supports a DoIP vehicle
identification request. The MVCI diagnostic server will internally call PDUIoCtl() at the corresponding
MVCI module to execute a vehicle identification request on the network connected to the MVCI device.
The MVCI diagnostic server provides the detected DoIP modules as additional MCDInterface objects,
indicated by an event onInterfacesModified. The definition of the parameter optionString is identical to the
according description for the method MCDSystem::detectInterfaces.

 The application calls MCDSystem::getCurrentInterfaces() again to retrieve all available
MVCI modules, including the newly detected DoIP modules.

8.27.3 Selection of DoIP Entities

The application selects the DoIP module(s) for communication, usually to a specific vehicle, by evaluating the
LongName of the corresponding MCDInterface, and calls MCDInterface::connect() at the
corresponding MCDInterface object(s).

The application creates and opens LogicalLinks, using one of the following alternatives:

 The application selects a connected MCDInterface for the LogicalLink. The D-Server assigns the
MCDLogicalLink to the selected DoIP module, using the single available MCDInterfaceResource of this
module. For this purpose the application creates the logical link by calling one of the methods

 MCDProject::createLogicalLinkByInterface,

 MCDProject::createLogicalLinkByAccessKeyAndInterface,

 MCDProject::createLogicalLinkByNameAndInterface,

 MCDProject::createLogicalLinkByVariantAndInterface.

Matching of a DoIP entity’s LogicalGatewayAddress with the value of CP_LogicalGatewayAddress at the
LogicalLink is handled in the D-PDU API internally.

 The application selects an MCDInterfaceResource of a connected MCDInterface for the LogicalLink. The
D-Server assigns the MCDLogicalLink to the corresponding MCDInterface owning this single available

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

258 © ISO 2012 – All rights reserved

MCDInterfaceResource. For this purpose the application creates the logical link by calling one of the
methods

 MCDProject::createLogicalLinkByInterfaceResource,

 MCDProject::createLogicalLinkByAccessKeyAndInterfaceResource,

 MCDProject::createLogicalLinkByNameAndInterfaceResource,

 MCDProject::createLogicalLinkByVariantAndInterfaceResource.

Matching of a DoIP entity’s LogicalGatewayAddress with the value of CP_LogicalGatewayAddress at the
LogicalLink is handled in the D-PDU API internally.

When all LogicalLinks to a DoIP module are in state eCREATED or already removed, the application calls
MCDInterface::disconnect() for the related DoIP module.

Finally, the application disconnects all MVCI modules and unprepares the D-PDU API by
MCDSystem::unprepareVciAccessLayer().

8.28 Mapping of D-PDU API methods

8.28.1 Introduction

The following sections describe the internal behaviour of an MVCI diagnostic server implementation using a
D-PDU interface according to D-PDU API standard ISO 22900-2.

For such an MVCI diagnostic server implementation, the mapping of MVCI diagnostic server methods to
D-PDU API methods as described in this section shall be used.

8.28.2 Initialization and Selection of VCI Modules

See Table 32.

8.28.3 Communication on a Logical Link

Table 33 shows the sequence of method calls from a client application at the MVCI diagnostic server API and
the corresponding method calls from the MVCI diagnostic server implementation at the D-PDU API used for
communication on a Logical Link.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 259

Table 33 — Methods for Communication on a Logical Link – MVCI D-Server API and D-PDU API

Methods called at MVCI D-server API Methods called at D-PDU API

MCDProject::createLogicalLink_XYZ()
where XYZ refers to all variants of create logical
link methods.

Initial link state is eCREATED

(No counterpart)

MCDLogicalLink::open()

Link state changes to eOFFLINE

Access to D-PDU API resources:
PDUGetModuleIds, PDUGetObjectId or by parsing the Module Description File
(MDF)

Optional: the availability of the resources can be checked by
PDUGetResourceIds(), PDUGetResourceStatus(),
PDUGetConflictingResources()

Allocate the resource and create the D-PDU Logical Link:
PDUCreateComLogicalLink()

Setting the communication parameters:

No counterpart. MVCI diagnostic server internally
reads the communication parameters from ODX.

Get default values from the D-PDU API: PDUGetComParam(),
PDUGetUniqueRespIdTable()

Set values from ODX to the D-PDU API:
PDUSetComParam(),PDUSetUniqueRespIdTable()

MCDLogicalLink::gotoOnline()

Link state changes to eONLINE

PDUConnect()

Communication parameters become active during PDUConnect()

MCDLogicalLink::CreateDiagComPrimitive…XYZ()
refers to all variants of creation diagcomprimitives.

(No counterpart)

MCDLogicalLink::suspend() PDUIoctl(PDU_IOCTL_SUSPEND_TX_QUEUE)

MCDLogicalLink::resume() PDUIoctl(PDU_IOCTL_RESUME_TX_QUEUE)

MCDLogicalLink::clearQueue() 1. PDUIoctl (PDU_IOCTL_SUSPEND_TX_QUEUE)

2. PDUIoctl (PDU_IOCTL_CLEAR_TX_QUEUE)

3. PDUIoctl (PDU_IOCTL_RESUME_TX_QUEUE)

MCDLogicalLink::sendBreak() PDUIoctl(PDU_IOCTL_SEND_BREAK)

MCDLogicalLink::reset() 1. PDUIoctl (PDU_IOCTL_SUSPEND_TX_QUEUE)

2. PDUIoctl (PDU_IOCTL_CLEAR_TXQUEUE)

3. PDUIoctl (PDU_IOCTL_RESUME_TX_QUEUE)

4. PDUDisconnect()/PDUDestroyComLogicalLink()

MCDDiagComPrimitive::executeSync() PDUStartComPrimitive ()
The server has to suspend the calling thread until the interface has completely
processed the passed comprimitive.

MCDDataPrimitive::executeAsync() PDUStartComPrimitive ()
The server stores the comprimitive only in the related queue and returns
immediately.

MCDDataPrimitive::startRepetition() PDUStartComPrimitive ()

MCDDiagComPrimitive::cancel() PDUCancelComPrimitive()

MCDLogicalLink::close()
Or
MCDLogicalLink::reset()
Link state changes to eCREATED

Only in Link State eONLINE or eCOMMUNICATION: PDUDisconnect()
In all cases: PDUDestroyComLogicalLink()

MCDLogicalLink::remove…()
Refers to all variants of remove methods in the
MCDLogicalLinks collection

(No counterpart)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

260 © ISO 2012 – All rights reserved

Figure 137 shows the mapping of those MVCI D-Server API and D-PDU API methods which are used for
handling a Logical Link.

eCREATED

eOFFLINE

eONLINE

eCOMMUNICATION

close,
reset

removeLogicalLinkcreateLogicalLink...

open

gotoOnline

START STOP

close,
reset

M
C

D
S

top
C

om
m

unication

M
C

D
S

tart
C

om
m

unication

on
LinkS

tateO
nline

(triggered
o

n
E

C
U

)

o
nS

ta
tic

In
te

rf
a

c
e

Er
ro

r
o

nI
nt

e
rf
a

c
e

Er
ro

r
or

reset

54

6

2
3

1

7

Key

1 Only the first call of MCDProject::createLogicalLink… with the given settings leads to a state eCREATED. If a
reference on an already existing logical link is returned, the initial state of the returned logical link is the one of the
referenced logical link.

2 PDUCreateLogicalLink
3 PDUDestroyComLogicalLink
4 PDUConnect
5 PDUDisconnect, PDUDestroyComLogicalLink
6 PDUStartComPrimitive(PDU_COPT_STARTCOMM)
7 PDUStartComPrimitive(PDU_COPT_STOPCOMM)

Figure 137 — Methods for Logical Link handling (mapping between MVCI diagnostic server API and
D-PDU API)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 261

8.28.4 Handling of Communication Parameters

8.28.4.1 Changing communication parameters from the client application

A client application may want to set one or more communication parameters at runtime to values differing from
the values defined in the ODX data. Table 34 shows the sequence of method calls in the MVCI diagnostic
server API and the D-PDU API required for changing the communication parameters of a Logical Link.

Table 34 — Changing communication parameters from the client application (MVCI diagnostic server
API and D-PDU API)

Methods called at MVCI diagnostic server API Methods called at D-PDU API

create a Control Primitive of type
MCDProtocolParameterSet at the Logical Link

Get default values of all communication parameters from
the DataBase: (no counterpart)

change value of one or more Request Parameters of the
MCDProtocolParameterSet Control Primitive (the
Request Parameters of this Control Primitive correspond
to the communication parameters of the logical link)

(no counterpart)

MCDProtocolParameterSet::executeSync() Set values changed by the client application to the D-PDU
API:

PDUSetComParam() or PDUSetUniqueRespIdTable()
(depends on type of ComParam) for each modified
ComParam PDUStartComPrimitive() with ComPrimitive
type PDU_COPT_UPDATEPARAM: the changed
ComParams become active

MCDProtocolParameterSet::fetchValueFromInterface()

MCDProtocolParameterSet::fetchValuesFromInterface()

PDUGetComParam() shall be called to retrieve current
settings from interface. (either the specified one with the
given shortName or all protocolParameter defined for the
related DbLocation)

create a Control Primitive of type
MCDProtocolParameterSet at the Logical Link

Get default values of all communication parameters from
the DataBase: (no counterpart)

8.28.4.2 Setting temporary communication parameters for a DiagComPrimitive

Several communication parameter values may be overwritten at a DIAG-SERVICE in the ODX data. These
values shall only be temporarily valid for the duration of the execution of this service.

Table 35 shows the sequence of method calls for this case.

Table 35 — Setting temporary communication parameters for a DiagComPrimitive (MVCI D-Server API
and D-PDU API)

Methods called at MVCI D-Server API Methods called at D-PDU API

execute a DiagComPrimitive with temporary
ComParams

Set values overwritten at the DIAG-SERVICE in the ODX data to the D-
PDU API:
PDUSetComParam() for each overwritten ComParam
PDUStartComPrimitive() with flag TempParamUpdate set to “true” (1)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

262 © ISO 2012 – All rights reserved

8.28.4.3 Changing UNIQUE_ID Communication Parameters

The MVCI diagnostic server allows to change the values of all communication parameters (protocol
parameters) of a runtime logical link by using the control primitive MCDProtocolParameterSet. As there
is no restriction with respect to which kinds of protocol parameters can be changed, it is also possible to
change the addressing information represented by the protocol parameters of parameter class
eUNIQUE_ID. The result of overwriting the values of the UNIQUE_ID protocol parameters is that the handle
calculated from the UNIQUE_ID information can differ between runtime LogicalLink and DbLogicalLink in
case the values of the corresponding protocol parameters have been changed at the runtime LogicalLink. This
may lead to problems in the MVCI diagnostic server as it might fail in resolving responses, etc. Hence,
changing the value of UNIQUE_ID protocol parameters is considered harmful.

8.28.5 MCDStartCommunication and MCDStopCommunication

The execution of Control Primitives of type MCDStartCommunication and MCDStopCommunication is
mapped to D-PDU API method calls as shown in Table 36.

Table 36 — MCDStartCommunication and MCDStopCommunication - MVCI D-Server API and D-PDU
API

Methods called at MVCI D-Server API Methods called at D-PDU API

MCDStartCommunication::executeSync

(Note that there can be a definition for the StartCom
service in the ODX data. In this case, this service’s
request and possibly overwritten communication
parameters need to be passed to the D-PDU API.)

PDUStartComPrimitive()
with ComPrimitive type PDU_COPT_STARTCOMM

(May include request and overwritten communication
parameters if supplied by the MVCI diagnostic server,
handling as described in Table 35)

MCDStopCommunication::executeSync PDUStartComPrimitive()
with ComPrimitive type PDU_COPT_STOPCOMM

8.28.6 D-PDU API IO-Control support

The D-PDU API uses IO-Controls to execute functions or set values related to an MVCI protocol module.
Client applications often need to use some of the IO-Controls of a D-PDU API. An IO-Control is executed in
context of a VCI or in context of a logical link. Their execution is always synchronous.

For the client to use IO-Controls on the MCD3 API some requirements are necessary. The D-PDU API
function PDUIoCtl has a pInputData and pOutputData parameter. Both are C-pointers to a structure containing
IO-Control specific data. The layout of the structure is dependent on the IO-Control and can only be known by
the server for the IO-Controls specified within ISO 22900-2. The D-PDU API allows customer-specific IO-
controls. The memory layout of those structures cannot be determined at runtime from a 3D-Server. Hence it
cannot build a database object and access the data members in a symbolic way. To use IO-Controls a
memory-based approach is used. Each C-Structure is finally reduced to some consecutive bytes in memory.

An MCDValue object is used to define the input parameter. Only the datatypes A_INT8, A_INT16, A_INT32,
A_INT64, A_UINT8, A_UINT16, A_UINT32, A_UINT64 and A_BYTEFIELD can be used as input parameter,
an output parameter is always of datatype A_BYTEFIELD. If the datatype is one of the integer values, the
value is interpreted as a bytefield of the corresponding length filled with the value. Integer support is only for
client’s convenience on input parameters; the use of bytefields is recommended.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 263

9 Error Codes

9.1 Principle

This clause describes the errors which may occur. Working with the API, errors may occur during or after a
method call or generally within the MVCI diagnostic server. The MVCI diagnostic server returns the resulting
error objects (MCDError) via the API to the Client using different ways.

 If an error crops up during the method execution, i.e. before the method returns, this error is passed on by
means of an Exception. In cases of serious errors, e.g. for DiagComPrimitives, this is independent
from asynchronous or synchronous execution.

 If any error occurs independent from a method call, for example a system-wide error, this error is returned
by means of an Event. The error object will either be located directly within the Event
(onSystemError, onLinkError) and can be polled using getError, or the Event
(onPrimitiveError) transports an MCDResultState, within which the error object is located.

 In cases of a synchronous execution of a DiagComPrimitive and the cropping up of non-serious
errors, the error is handed over as return value in MCDResultState.

 In cases of asynchronous execution of DiagComPrimitives, the error is returned within an
MCDResultState object via an Event (onPrimitiveError).

Most of the methods in this object model can throw an exception, an MCDException or one of the from
MCDException derived exceptions. These exceptions only transport the error object.

Types of exception:

 MCDParameterizationException
(Inadmissible or inconsistent parameterisation for the execution of a method)

 MCDProgramViolationException
(Problem at program flow)

 MCDDatabaseException
(Problem at database access)

 MCDSystemException
(System-wide problem)

 MCDCommunicationException
(Problem in Communication between MVCI diagnostic server and ECU)

 MCDShareException
(Problem at the handling of shared objects)

An error object consists of:

 Code,

 Code description,

 Severity,

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

264 © ISO 2012 – All rights reserved

 Vendor Code,

 Vendor Code description

The Code is represented by an A_UINT16 and is defined in the following tables as a general definition of the
errors. The code 0x0000 means error free.

The Code description of the error is represented by an A_ASCIISTRING and is defined in the following
tables as a general definition of the errors.

The Vendor Code is represented by an A_UINT16 and is intended as a manufacturer-specific error
supplement (Information). The code is not standardized. The vendor code is to be useable in all cases of an
not empty code, which means a common standardized error shall be used in code.

The Vendor Code description is represented by an A_ASCIISTRING and is provided by the manufacturer of
the MVCI diagnostic server. These are the description of the manufacturer-specific vendor error code.

The Severity is used for the assessment of the error and can be subdivided as defined in Table 37.

Table 37 — Severity

Severity Short cut Description

eMESSAGE M This is important information for the user. This does not change the execution path in the
software.

eWARNING W A problem occurred and was successfully solved by the MVCI diagnostic server.

eERROR E A problem occurred and can't be handled by the client. The object still exists and could
react normally after the problem is solved by the respective clients.

eFATAL_ERROR F An unsolvable problem occurred at an object and the complete operation could not be
performed or completed work is lost. The object still exists, but cannot act normally and
usually is not accessible. The problem cannot be completely handled or solved in the
software.

eTERMINATE T An unsolvable problem occurred, the MVCI diagnostic server is in an unsafe state and
shuts down immediately (the server/MVCI diagnostic server is not accessible/the object
cannot be accessed anymore).

To unify the error handling with normal runtime response, the two Severity’s eMESSAGE and eWARNING are
used. An eMESSAGE or an eWARNING will never be reported by an exception, but could use all logging
functionality of the error handler.

The main difference between eERROR and eFATAL_ERROR is that after an eERROR the application could
continue if it handles the error. eFATAL_ERROR means that something principal is not working correctly.
Even if the application handles the error, some damage was done or it’s not possible to resolve the problem.

EXAMPLE

 If the application could not open a database file, this is an eERROR, because no damage was done and the
application could open a different database file.

 If an ECU is disconnected, this is an eFATAL_ERROR, because the application itself could not reconnect the
hardware and the operations could not be completed.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 265

9.2 Description of the errors

9.2.1 Error-free behaviour

If no error has occurred, but an error object is handed over within the Event or MCDResultState (this only
in diagnostic part), the ErrorCode of the MCDError object is 0000. The error codes defined in Table 38
and Table 39 can be used by all method calls.

9.2.2 Parameterisation errors

This errors can be carried by MCDParameterizationException, every event or MCDResultState.

An error occurred on the basis of a wrongly set method parameter. The parameter has, for example, the
wrong type or has a wrong value.

The exception can be solved by adjusting the parameter, so that it fits the defined constraints of the method.

Table 38 defines the MCD parameterisation errors.

Table 38 — MCD parameterisation errors

Error
code

Stereo type Severity Enum identifier Error text

0xC013 MCD E ePAR_INVALID_DB_OBJECT the given database object has an invalid type

0xC011 MCD E ePAR_INVALID_OBJECTTYPE invalid MCDObjectType

0xC014 MCD E ePAR_VALUE_OUT_OF_RANGE parameter out of range

0xC010 MCD E ePAR_INVALID_TYPE invalid type of input parameter

9.2.3 RunTime/ProgramViolation errors

This errors can be carried by MCDCommunicationException, MCDShareException, every event or
MCDResultState.

ProgramViolation Errors are errors where the client can do something or has provoked the error himself
(usage error), e.g. false LogicalLink state, VI in false LL state (eCREATED).

Table 39 defines the MCD RunTime/Program Violation Errors.

Table 39 — MCD RunTime/Program Violation Errors

Error
code

Stereo type Severity Enum identifier Error-Text

0xD043 MCD E eRT_INTERNAL_ERROR An internal error occurred in the MVCI
diagnostic server. See vendor-specific code
for details.

9.2.4 Database errors

Database errors occur if an access to the ODX database has failed. An error occurred while the MVCI
diagnostic server tried to access a database entry. The database access can, for example, fail if an entry is
not filled with data. The exception can be solved by adjusting the database.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

266 © ISO 2012 – All rights reserved

These errors can be carried by MCDDatabaseException, every event or MCDResultState.

9.2.5 System errors

These errors can be carried by MCDSystemException or onSystemError.

SystemErrors are critical errors where a client can do nothing (the error can be in OS or in MVCI diagnostic
server), e.g memory overflow, division by zero.

9.2.6 Communication errors

These errors can be carried by MCDCommunicationException or onSystemError.

A problem occurred during the communication between the MVCI diagnostic server and the connected ECU
(hardware) (e.g. ECU was removed from the MVCI diagnostic server, ECU does not respond, wrong ECU is
attached).

The exception can be solved by adjusting the hardware environment.

9.2.7 Share error

Problem at the handling of shared objects, such as locking problems. These ErrorObjects can be carried by
onSystemError or onLinkError.

The error occurred because a shared object could not be accessed. The object is, for example, used by
another client or another thread. The exception is automatically solved after the shared object is released from
the other binding.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 267

Annex A
(normative)

Value reading and setting by string

A.1 Datatype conversion into Unicode2 string

The following rules for the method MCDValue:getValueAsString are defined Table A.1.

Table A.1 — Data type conversion

ASAM data type Unicode2 string

eA_ASCIISTRING position by position, character by character

eA_BITFIELD position by position, bit by bit (other chars than 0 and 1 are ignored)

eA_BYTEFIELD position by position (excluding non-hex characters, including A-Fa-f)

eA_FLOAT64
normalized form: 0.0123 = 0.123 E-1 (cf. e.g. IEEE Standard 754 Floating Point Numbers)

eA_FLOAT32

eA_INT8

position by position, digit by digit, with leading sign if negative
eA_INT16

eA_INT32

eA_INT64

eA_UNICODE2STRING nothing to do

eA_UINT8

position by position, digit by digit
eA_UINT16

eA_UINT32

eA_UINT64

A.2 Representation floating numbers

The string argument of setValueAsString() shall have the following form:

[white space] [sign] [digits] [.digits] [{d | D | e | E }[sign]digits]

If no digits appear before the decimal point, at least one shall appear after the decimal point.

White space consists of space and/or tab characters, which are ignored.

Sign is either plus (+) or minus (–).

The internal format of floating values in MCDDValue objects is a normalized floating number. The output
string delivered by getValueAsString() is also in normalized format.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

268 © ISO 2012 – All rights reserved

A.3 Normalized floating-point numbers

sign * mantissa * radix exponent

For each floating-point number there is one representation that is said to be normalized. A floating-point
number is normalized if its mantissa is within the range defined by the following relation:

1/radix <= mantissa < 1

A normalized radix 10 floating-point number has its decimal point just to the left of the first non-zero digit in the
mantissa. The normalized floating-point representation of -5 is -1 * 0.5 * 10 1. In other words, a normalized
floating-point number's mantissa has no non-zero digits to the left of the decimal point and a non-zero digit
just to the right of the decimal point. Any floating-point number that doesn't fit into this category is said to be
denormalized. Note that the number zero has no normalized representation, because it has no non-zero digit
to put just to the right of the decimal point.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 269

Annex B
(normative)

System parameter

B.1 Overview

The base of all time-dependent system parameters is the local time.

Represented time information is based on ISO 8601[3].

Table B.1 defines the System parameter.

Table B.1 — System parameter

ASCIISTRING for system
parameter

data type (physical) coding example

TIMEZONE A_INT32 Count of minutes to UTC +60 (Berlin)

YEAR A_UINT32 YYYY 2004

MONTH A_UINT32 MM 03 (march)

DAY A_UINT32 DD 01 (first day of month)

HOUR A_UINT32 hh 22 (10 pm)

MINUTE A_UINT32 mm 00 (full hour)

SECOND A_UINT32 ss 00 (full minute)

TESTERID A_BYTEFIELD - "00F056"

USERID A_BYTEFIELD - "043FF0"

CENTURY A_UINT32 CC 20 (in year 2004)

WEEK A_UINT32 - 04 (fourth week of the year)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

270 © ISO 2012 – All rights reserved

B.2 Description of the system parameters

B.2.1 TIMEZONE

The timezone is coded in an A_INT32 value. The range is between –720 and +780.

Table B.2 defines examples for timezones.

Table B.2 — Examples for timezones

Minutes UTC time offset Related Towns

- 720 UTC – 12h Eniwetok, Kwajalein

- 660 UTC – 11h Midway islands, Samoa

- 600 UTC – 10h Hawaii

… - -

- 480 UTC – 8h Los Angeles, Seattle, Vancouver

… - -

- 300 UTC – 5h New York, Atlanta, Detroit, Toronto

… - -

-60 UTC – 1h Azores

0 UTC London

+60 UTC + 1h Berlin, Rome

+120 UTC + 2h Athens, Istanbul

+180 UTC + 3h Moscow, Nairobi

+210 UTC + 3,5h Teheran

+240 UTC + 4h Abu Dhabi

… - -

+720 UTC + 12h Aukland, Wellington

+780 UTC + 13h Nuku’alofa

B.2.2 YEAR

The year is coded in an A_UINT32 value with four digits.

B.2.3 MONTH

The month is coded in an A_UINT32 value with two digits. It starts with January as 01 up to December with
12.

B.2.4 DAY

The day is coded in an A_UINT32 value with two digits. It starts with the first day of the month as 01 up to the
last day of the month.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 271

B.2.5 HOUR

The hour is coded in an A_UINT32 value with two digits in a 24 hour rhythm. It starts with 12am as 00 (via
1am as 01) up to 11pm as 23.

B.2.6 MINUTE

The minute is coded in an A_UINT32 value with two digits. It starts with 00 (full hour) up to 59.

B.2.7 SECOND

The second is coded in an A_UINT32 value with two digits. It starts with 00 (full minute) up to 59.

B.2.8 TESTERID

The tester ID is coded in an A_BYTEFIELD.

B.2.9 USERID

The user ID is coded in an A_BYTEFIELD.

B.2.10 CENTURY

The century is coded in an A_UINT32 value with two digits. This value contains the first two digits of the four-
digit year (unlike language usage).

B.2.11 WEEK

The week is coded in an A_UINT32 value with two digits.

The first week of a year is the first week which includes at least four days of the new year. Alternatively, the
first week of a year is the week which includes the first Thursday of January and January 4. As a result, week
01 of a year can contain days of the previous year and week 53 can contain days of the following year. For
example, 2004-01-01 is a Thursday. Hence, 2004-W01 comprises the days 2003-12-29 to 2004-01-04.
Furthermore, 2005-01-01 is a Saturday. As a result, 2004-W53 comprises the days 2004-12-27 to 2005-01-
02. Week 2005-W01 starts on 2005-01-03.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

272 © ISO 2012 – All rights reserved

Annex C
(normative)

Overview optional functionalities

Table C.1 defines the optional methods and classes.

Table C.1 — Optional methods and classes

Optional
functionality

Optional methods Optional classes

MCDDbProject-
configuration

MCDSystem

 ::getDbProjectConfiguration()

MCDDbProjectConfiguration

ECU
Configuration
(Variantcoding)

MCDLogicalLink

 ::getConfigurationRecords

MCDDbLocation

 ::getDbConfigurationDatas

MCDConfigurationRecords
MCDConfigurationRecord
MCDConfigurationItem
MCDConfigurationIdItem
MCDDataIdItem
MCDDbConfigurationData
MCDDbConfigurationDatas
MCDDbConfigurationItem
CDDbConfigurationRecord
MCDDbConfigurationRecords
MCDDbDataRecord
MCDDbDataRecords
MCDDbSystemItems
MCDDbSystem
MCDDbCodingData
MCDDbDataIdItem
MCDDbConfigurationIdItem
MCDDbOptionItems
MCDDbOptionItem
MCDDbItemValues
MCDDbItemValue
MCDSystemItems
MCDSystemItem
MCDOptionItems
MCDOptionItem

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 273

Table C.1 — (continued)

Optional
functionality

Optional methods Optional classes

ECU RE
Programming
(Flashing)

MCDDbProject

 ::getDbEcuMems

MCDDbProject

 ::loadNewEcuMem

MCDDbLocation

 ::getDbFlashSessionClasses

 ::getDbFlashSessions

 ::getDbPhysicalMemories

MCDDbFlashChecksum
MCDDbFlashChecksums
MCDDbFlashData
MCDDbFlashDataBlock
MCDDbFlashDataBlocks
MCDDbFlashFilter
MCDDbFlashFilters
MCDDbFlashIdent
MCDDbFlashIdents
MCDDbFlashJob
MCDDbFlashSecurities
MCDDbFlashSecurity
MCDDbFlashSegment
MCDDbFlashSegments
MCDDbFlashSession
MCDDbFlashSessionClass
MCDDbFlashSessionClasses
MCDDbFlashSessions
MCDFlashJob
MCDFlashSegmentIterator
MCDDbPhysicalMemories
MCDDbPhysicalMemory
MCDDbPhysicalSegment
MCDDbPhysicalSegments
MCDDbEcuMem
MCDDbEcuMems
MCDDbIdentDescription

DynID MCDDbLocation

 ::getSupportedDynIds

MCDLogicalLink

 ::createDynIdComPrimitiveByTypeAndDefinitionMode

 ::getDefinableDynIds

MCDDbLocation

 ::getDbTableByDefinitionMode

MCDDbDynIdDefineComPrimitive
MCDDynIdDefineComPrimitive
MCDDbDynIdClearComPrimitive
MCDDynIdClearComPrimitive
MCDDbDynIdReadComPrimitive
MCDDynIdReadComPrimitive

Monitoring MCDProject

 ::createMonitoringLink

MCDMonitoringLink
MCDMessageFilter
MCDMessageFilters
MCDMessageFilterValues
MCDMessageFilterTypes

System
Properties

MCDSystem

 ::getProperty

 ::getPropertyNames

 ::resetProperty

 ::setProperty

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

274 © ISO 2012 – All rights reserved

Table C.1 — (continued)

Optional
functionality

Optional methods Optional classes

Function
Dictionary

MCDDbProject

 ::getDbFunctionDictionaries

MCDDbFunctionDictionaries
MCDDbFunctionDictionary
MCDDbFunctionNodes
MCDDbFunctionNode
MCDDbBaseFunctionNode
MCDDbFunctionNodeGroups
MCDDbFunctionNodeGroup
MCDDbComponentConnectors
MCDDbComponentConnector
MCDDbFunctionInParameters
MCDDbFunctionInParameter
MCDDbFunctionOutParameters
MCDDbFunctionOutParameter
MCDDbDiagObjectConnector
MCDDbDiagTroubleCodeConnectors
MCDDbDiagTroubleCodeConnector
MCDDbEnvDataConnectors
MCDDbEnvDataConnector
MCDDbFunctionDiagComConnectors
MCDDbFunctionDiagComConnector
MCDDbTableRowConnectors
MCDDbTableRowConnector

SubComponents MCDDbLocation

 ::getDbSubComponents

MCDDbSubComponents
MCDDbSubComponent
MCDDbDiagTroubleCodeConnectors
MCDDbDiagTroubleCodeConnector
MCDDbEnvDataConnectors
MCDDbEnvDataConnector
MCDDbTableRowConnectors
MCDDbTableRowConnector
MCDDbSubComponentParamConnectors
MCDDbSubComponentParamConnector

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 275

Table C.1 — (continued)

Optional
functionality

Optional methods Optional classes

Audiences MCDDbItemValue

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbFlashDataBlock

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbDataRecord

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbConfigurationRecord

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbDataPrimitive

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbFunctionNode

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbFunctionNodeGroup

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbTableParameter

 ::getAudienceState

 ::getDbDisabledAdditionalAudiences

 ::getDbEnabledAdditionalAudiences

MCDDbOptionItem

 ::getDbDisabledReadAdditionalAudiences

 ::getDbEnabledReadAdditionalAudiences

 ::getDbDisabledWriteAdditionalAudiences

 ::getDbEnabledWriteAdditionalAudiences

MCDDbAdditionalAudience
MCDAudience

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

276 © ISO 2012 – All rights reserved

Table C.1 — (continued)

Optional
functionality

Optional methods Optional classes

Audiences MCDDbECUMEM

 ::getDbAdditionalAudiences

MCDDbLocation

 ::getDbAdditionalAudiences

MCDDbConfigurationData

 ::getDbAdditionalAudiences

MCDDbBaseFunctionNode

 ::getAudienceState

MCDDbFunctionDictionary

 ::getDbAdditionalAudiences

MCDAudience

 ::isAfterMarket

 ::isAfterSales

 ::isDevelopment

 ::isManufacturing

 ::isSupplier

MCDDbAdditionalAudience
MCDAudience

ECU State MCDDbLocation

 ::getDbECUStateCharts

MCDDbDiagComPrimitive

 ::getDbECUStateTransitionsByDbObject

 ::getDbECUStateTransitionsBySemantic

 ::getDbPreConditionStatesByDbObject

 ::getDbPreConditionStateBySemantic

MCDDbEcuState
MCDDbEcuStateChart
MCDDbEcuStateCharts
MCDDbEcuStates
MCDDbEcuStateTransition
MCDDbEcuStateTransitionAction
MCDDbEcuStateTransitionActions
MCDDbEcuStateTransitions

Multiple ECU Jobs MCDAccessKey

 :getMultipleEcuJob

MCDDbProject

 :getDbMultipleEcuJobLocation

MCDDbBaseFunctionNode

 :getDbMultipleEcuJobs

MCDDbMultipleEcuJob
MCDMultipleEcuJob

PDU TimeStamps MCDResponse

 ::getStartTime

 ::getEndTime

MCDResult

 ::getRequestEndTime

Library MCDDbJob

 ::getDbCodeInformations

MCDDbCodeInformations
MCDDbCodeInformation

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 277

Table C.1 — (continued)

Optional
functionality

Optional methods Optional classes

DoIP MCDSystem

 ::detectInterfaces

MCDInterface

 ::detectInterfaces

PDU API MCDInterface

 ::getMVCIVersionPart1StandardVersion

 ::getMVCIVersionPart2StandardVersion

 ::getPDUApiSoftwareName

 ::getPDUApiSoftwareVersion

 ::getVendorName

 ::execIOCtrl

MCDDbInterfaceConnectorPin

 ::getPinNumberOnVCI

MCDLogicalLink

 ::execIOCtrl

MCDProject

 ::execIOCtrl

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

--``,,,``,,`,```,,,,`,```,```,,,-`-`,,`,,`,`,,`---

ISO 22900-3:2012(E)

278 © ISO 2012 – All rights reserved

Annex D
(informative)

Monitoring message format

D.1 General

The definitions in this chapter should be taken as an implementation guideline. For example, depending on
specifics of the protocol driver implementation layer of an actual system, message type flags or other
implementation details can differ from the definitions in this annex. Other protocol types might require
different/additional message format definitions.

D.2 CAN format

A format for monitored messages as returned by the method
MCDMonitoringLink::fetchMonitoringFrames() is defined in Table D.1.

Table D.1 — Format of monitored message CAN

Type Time stamp Address Length Data

RX 00000000000011700068 0000012D 8 0F 0F 00 00 30 CD 85 AC

TX 00000000000011746938 000003F6 5 03 21 02 0A 00

Message type:

The message type definitions are dependent on the actual protocol driver implementation used by the system.
For example, when using a standard D-PDU API driver and the standard link types available to such a driver
(e.g. an ISO_11898_RAW protocol link), it might not even be possible to discern between RX (receive) and
TX (transmit) messages, as the monitoring link is in a receiver-only role and doesn‘t transmit any messages of
its own. In cases where the actual implementation lends itself to a more detailed discrimination of message
types, the following type definitions should be used. Additional types may be defined by the kernel.

In any case the message type consist of two characters to ensure constant positioning.

 RX (Receive)

 TX (Transmit)

Examples for CAN-specific message types:

 ES (ERROR_STUFF) Bit stuffing error, more than five consecutive bits of equal polarity

 EF (ERROR_FORM) Form error, e.g. violation of end of frame (EOF) format

 EA (ERROR_ACK) ACK error, transmitting node receives no dominant acknowledgement bit

 EC (ERROR_CRC) CRC error, received CRC code does not match calculated code

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 279

Timestamp:

20 digit decimal (microseconds), e.g. 00000001234560089768

The timestamp is only useful for putting messages into chronological relation to each other. As multiple
controllers are potentially involved in the timestamp generation for logged messages (CAN-controller, VCI
hardware controller, the controller that is running the MVCI diagnostic server, the controller that is running the
client application, etc.), it is not feasible to provide an exhaustive definition in this part of ISO 22900. An MVCI
diagnostic server uses the timestamp from the message delivered by the underlying VCI access layer.
Otherwise the timestamp is generated by the kernel, which may lead to inaccurate values. The maximum
value fit into a 64 bit integer.

Communication node address:

8 digit hexadecimal, padded with leading zeros if necessary. In front of the address there will be a “.” and in
cases of 11 bit length addressing, and a “*” in cases of 29 bit addressing mode. In cases where there is no
address information available, the address column consist of 8 dots (‘……..’).

Data length:

Decimal value.

Data stream:

Two-digit hexadecimal, e.g. 47 61 6C 65 6F 20 05 67 (separation by blanks, no leading 0x)

General rules:

 Data blocks (message type, timestamp, address, etc.) within a message are separated by blanks (‘ ’)

In cases where an error (e.g. a buffer overrun) occurred in the communications hardware, the following
message is to be inserted into the monitoring data: "### <Error description>"

D.3 K-Line Format

A format for monitored messages as returned by the method
MCDMonitoringLink::fetchMonitoringFrames() is defined in Table D.2.

Table D.2 — Format of monitored message K-Line

Type Time stamp Data

RX 00000000000011700068 3C

Message type:

 RX (Receive)

 TX (Transmit)

 GI (GPD-Insert)

 KL (KLINE-LOW)

 KH (KLINE-HIGH)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

280 © ISO 2012 – All rights reserved

 FL (Flush-Later)

 FS (Flush)

Timestamp:

See CAN.

D.4 DoIP Format

A format for monitored messages as returned by the method
MCDMonitoringLink::fetchMonitoringFrames() is defined in Table D.3.

Table D.3 — Format of monitored message DoIP

Type Time stamp Data

TT 00000000000011700068 6E 0A2D 012D 12 0F 0F 00 00 30 CD 85 AC 30 CD 85 AC

Message type:

 TT (TCPSend)

 TR (TCPRecv)

 UT (UDPSend)

 UR (UDPRecv)

 UB (UDPBroadcast)

Timestamp:

See CAN.

Data:

Frame according ISO 13400-2 [5].

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 22900-3:2012(E)

© ISO 2012 – All rights reserved 281

Bibliography

[1] ISO 4092:1988/Cor.1:1991, Road vehicles — Diagnostic systems for motor vehicles — Vocabulary —
Technical Corrigendum 1

[2] ISO/IEC 7498-1:1984, Information technology — Open Systems Interconnection — Basic Reference
Model: The Basic Model

[3] ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times

[4] ISO/IEC 10731:1994, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

[5] ISO 13400-2, Road vehicles — Diagnostic communication over Internet Protocol (DoIP) — Part 2:
Transport protocol and network layer services

[6] ASAM-Data, ASAM Data Types V 2.0
source: http://www.asam.net

[7] ANSI/IEEE Std 754-1985, Binary Floating-Point Arithmetic for microprocessor systems
source: http://ieeexplore.ieee.org/

[8] IEEE Std 1003.1-2004, Portable Operating System Interface
source: http://ieeexplore.ieee.org/

[9] RFC 3305 Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs),
source: http://www.ietf.org/

[10] ASAM Technology Reference COM-IDL, COM-IDL Technology Reference Mapping Rules,
source: http://www.asam.net

[11] ASAM Technology Reference C++, C++ Technology Reference Mapping Rules,
source: http://www.asam.net

[12] ASAM Technology Reference Java, Java Technology Reference Mapping Rules,
source: http://www.asam.net

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.asam.net/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://www.ietf.org/
http://www.asam.net/
http://www.asam.net/
http://www.asam.net/

ISO 22900-3:2012(E)

ICS 43.040.15
Price based on 279 pages

© ISO 2012 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/02/2013 05:03:57 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
,
,
`
`
,
,
`
,
`
`
`
,
,
,
,
`
,
`
`
`
,
`
`
`
,
,
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

	1 Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviated terms
	3.1 Terms and definitions
	3.2 Symbols
	3.3 Abbreviated terms

	4 Conventions
	4.1 General
	4.2 Typographical conventions and mnemonics
	4.3 Sequence diagrams
	4.4 Stereotypes

	5 Specification release version information
	6 Structure of a MVCI diagnostic server
	7 Diagnostic server
	7.1 MCD system object
	7.2 Description of terms
	7.2.1 General
	7.2.2 Access key (AccessKey)
	7.2.3 Functional Class (FUNCTIONAL-CLASS)
	7.2.4 Job (SINGLE-ECU-JOB, MULTIPLE-ECU-JOB)
	7.2.5 Location
	7.2.6 Logical Link (LOGICAL-LINK)
	7.2.7 Physical Interface Link
	7.2.8 Physical Link
	7.2.9 Physical Vehicle Link (PHYSICAL-VEHICLE-LINK)
	7.2.10 Project

	7.3 Version information retrieval
	7.4 States of the MCD system
	7.5 State changes
	7.6 Project configuration
	7.7 Interface structure of server API
	7.7.1 Hierarchical model overview
	7.7.2 Database and runtime side
	7.7.2.1 Basics
	7.7.2.2 Structure of the database
	7.7.2.3 Structure of the runtime side

	7.7.3 Parent functionality
	7.7.4 Entity Relationship Diagrams
	7.7.4.1 Objective
	7.7.4.2 Relation between Vehicle Connector Information Table and Logical Link Table
	7.7.4.3 ERD DbLocation
	7.7.4.4 ERD Logical Link and DiagComPrimitives
	7.7.4.5 ERD Request and Response Parameter associations
	7.7.4.6 ERD result access
	7.7.4.7 ERD Jobs

	7.7.5 ODX Data Type mapping for database and runtime side
	7.7.5.1 Basics
	7.7.5.2 eSTRUCTURE
	7.7.5.3 eFIELD
	7.7.5.4 eEND_OF_PDU
	7.7.5.5 eMULTIPLEXER
	7.7.5.6 eENVDATADESC

	7.8 Collections
	7.8.1 Types and methods
	7.8.2 RunTime collections
	7.8.3 Database collections

	7.9 Registering/deregistering of the EventHandler
	7.10 MCD value
	7.11 Use cases
	7.11.1 View
	7.11.2 Instantiation of projects
	7.11.3 Database access
	7.11.4 Destruction

	8 Function block Diagnostic in detail
	8.1 Constraints
	8.2 System Properties
	8.3 Diagnostic DiagComPrimitives and Services
	8.3.1 Diagnostic DiagComPrimitives
	8.3.1.1 DCP types and hierarchy
	8.3.1.2 States of DiagComPrimitives

	8.3.2 Service overview
	8.3.3 Non-cyclic single diagnostic service
	8.3.4 Cyclic diagnostic service
	8.3.5 Repeated diag service
	8.3.6 Repeated send only diag service
	8.3.7 Repeated receive only diag service
	8.3.8 Summary
	8.3.9 Protocol parameters
	8.3.9.1 General
	8.3.9.2 Introduction related to ISO€22901-1 ODX
	8.3.9.3 Inheritance of protocol parameters
	8.3.9.4 Runtime part

	8.4 Suppress positive response
	8.5 eEND_OF_PDU as RequestParameter
	8.5.1 Database side
	8.5.2 Runtime side

	8.6 Variable length parameters
	8.7 Variant identification
	8.7.1 Interpretation algorithm
	8.7.2 Identification algorithm
	8.7.3 Request and ResponseParameter of VI and VIS
	8.7.3.1 General
	8.7.3.2 RequestParameter structure
	8.7.3.3 ResponseParameter structure

	8.7.4 Service handling in cases of different locations
	8.7.5 Variant Patterns and Matching Parameters

	8.8 Use cases
	8.8.1 Create Logical Link and use DiagComPrimitives
	8.8.2 Removal of communication objects
	8.8.3 Service handling
	8.8.3.1 Non-cyclic diag service execution
	8.8.3.2 Cyclic diag service execution

	8.8.4 Result access
	8.8.5 Error handling in results

	8.9 Read DTC
	8.9.1 ODX Data for Example Read DTC
	8.9.2 Reading without FaultMemories
	8.9.3 Reading with FaultMemories
	8.9.4 DTC Read Service

	8.10 Logical Link
	8.10.1 Connection overview
	8.10.2 State diagram of Logical Link
	8.10.3 VCI communication lost handling
	8.10.3.1 Basics
	8.10.3.2 Example of how a client could behave upon receiving onInterfaceError or onStaticInterfaceError

	8.10.4 Logical Link examples

	8.11 Functional addressing
	8.12 Tables
	8.12.1 General
	8.12.2 Usage of tables within DiagComPrimitives

	8.13 Dynamically Defined Identifiers (DynId)
	8.13.1 General
	8.13.2 DYNID principle and requirements
	8.13.3 Lifecycle
	8.13.3.1 General
	8.13.3.2 Creation of dynamically defined identifier
	8.13.3.3 Reading by dynamically defined identifier
	8.13.3.4 Deletion of dynamically defined identifier
	8.13.3.5 DB-Templates for requests and responses regarding dynamically defined identifier
	8.13.3.6 Procedure description

	8.14 Internationalization
	8.14.1 Multi language support
	8.14.2 Units

	8.15 Special Data Groups
	8.16 ECU (re)programming
	8.16.1 Goal
	8.16.2 Structuring of the function block flash
	8.16.2.1 Database part
	8.16.2.2 Online part
	8.16.2.3 Progress information
	8.16.2.4 Ident mechanism

	8.16.3 ECU-MEM

	8.17 Handling binary flash data
	8.17.1 Late-bound data files
	8.17.2 Wildcards in data file names
	8.17.3 Flash segment iterator

	8.18 Library
	8.19 Jobs
	8.19.1 General
	8.19.2 Input and output parameters
	8.19.3 Job result
	8.19.4 Single ECU jobs
	8.19.5 FlashJobs
	8.19.6 Multiple ECU jobs
	8.19.7 Job execution
	8.19.7.1 Single execution of a Job
	8.19.7.2 Repeated execution of Job

	8.19.8 Allowed java libraries
	8.19.9 Naming conventions
	8.19.10 Job Communication Parameter handling
	8.19.11 Job Result Generation
	8.19.12 Job template SingleEcuJob
	8.19.13 Job template MultipleEcuJob
	8.19.14 Job template FlashJob

	8.20 ECU configuration
	8.20.1 Introduction
	8.20.2 ECU Configuration database part
	8.20.3 ECU Configuration Runtime Part
	8.20.4 Error Handling
	8.20.5 Initialising an MCDConfigurationRecord
	8.20.6 Offline versus Online Configuration
	8.20.7 Uploading and Downloading Configuration Strings
	8.20.7.1 Basics
	8.20.7.2 Decomposing a Configuration String for Transfer
	8.20.7.3 Downloading configuration records to an ECU
	8.20.7.4 Uploading configuration records from an ECU

	8.21 Audiences and additional audiences
	8.21.1 General
	8.21.2 Audiences
	8.21.3 Additional Audiences

	8.22 ECU states
	8.23 Function dictionary
	8.23.1 General
	8.23.2 Functions and funtion groups in ODX
	8.23.3 Function dictionary data model description
	8.23.4 Uniqueness of MVCI diagnostic server function dictionary data resolution
	8.23.4.1 MVCI server resolution
	8.23.4.2 Example 1
	8.23.4.3 Example 2
	8.23.4.4 Example 3
	8.23.4.5 Example 4
	8.23.4.6 Example 5

	8.23.5 Function dictionary usage scenario

	8.24 Sub-Component data model description
	8.24.1 Sub-Component data model
	8.24.2 Sub-Component usage scenario

	8.25 Monitoring vehicle bus traffic
	8.26 Support of VCI module selection and other VCI module features according to ISO€22900-2
	8.26.1 Introduction
	8.26.2 Definitions
	8.26.3 General behaviour of D-PDU API related MVCI diagnostic server methods
	8.26.4 Overview of VCI module related classes
	8.26.5 VCI module selection
	8.26.6 MCDInterface
	8.26.7 VCI module selection sequence
	8.26.8 Interface status events
	8.26.9 MCDInterfaceResource
	8.26.10 Selection of an interface resource
	8.26.11 Send Break Signal
	8.26.12 MCDDbInterfaceCable
	8.26.13 Accessing VCI module features
	8.26.14 Behaviour of an MVCI diagnostic server not using the VCI Module API

	8.27 Handling DoIP entities
	8.27.1 General
	8.27.2 Detection of DoIP entities
	8.27.2.1 Basics
	8.27.2.2 Detection of DoIP entities connected to the system
	8.27.2.3 Detection of DoIP Entities connected to a specific MVCI device

	8.27.3 Selection of DoIP Entities

	8.28 Mapping of D-PDU API methods
	8.28.1 Introduction
	8.28.2 Initialization and Selection of VCI Modules
	8.28.3 Communication on a Logical Link
	8.28.4 Handling of Communication Parameters
	8.28.4.1 Changing communication parameters from the client application
	8.28.4.2 Setting temporary communication parameters for a DiagComPrimitive
	8.28.4.3 Changing UNIQUE_ID Communication Parameters

	8.28.5 MCDStartCommunication and MCDStopCommunication
	8.28.6 D-PDU API IO-Control support

	9 Error Codes
	9.1 Principle
	9.2 Description of the errors
	9.2.1 Error-free behaviour
	9.2.2 Parameterisation errors
	9.2.3 RunTime/ProgramViolation errors
	9.2.4 Database errors
	9.2.5 System errors
	9.2.6 Communication errors
	9.2.7 Share error

