

Reference number
ISO 22900-2:2009(E)

© ISO 2009

INTERNATIONAL
STANDARD

ISO
22900-2

First edition
2009-02-01

Road vehicles — Modular vehicle
communication interface (MVCI) —
Part 2:
Diagnostic protocol data unit application
programming interface (D-PDU API)

Véhicules routiers — Interface de communication modulaire du véhicule
(MVCI) —

Partie 2: Interface de programmation d'application d'unité de données
du protocole de diagnostic (D-PDU API)

ISO 22900-2:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2009 – All rights reserved

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved iii

Contents Page

Foreword ..vi
Introduction...vii
1 Scope ..1
2 Normative references..1
3 Terms and definitions ...2
4 Symbols and abbreviated terms ..2
5 Specification release version information ..4
5.1 Specification release version location ..4
5.2 Specification release version...4
6 Modular VCI use cases ...4
6.1 OEM merger ...4
6.2 OEM cross vehicle platform ECU(s) ..4
6.3 Central source diagnostic data and exchange during ECU development5
6.4 OEM franchised dealer and aftermarket service outlet diagnostic tool support............................5
7 Modular VCI software architecture ..5
7.1 Overview...5
7.2 Modular VCI D-Server software..6
7.3 Runtime format based on ODX ..7
7.4 MVCI protocol module software ..7
7.5 MVCI protocol module configurations ..7
8 D-PDU API use cases ..8
8.1 Overview...8
8.2 Use case 1: Single MVCI protocol module..8
8.3 Use case 2: Multiple MVCI protocol modules supported by same D-PDU API

implementation ..9
8.4 Use case 3: Multiple MVCI protocol modules supported by different D-PDU API

implementations ..10
9 Diagnostic protocol data unit (D-PDU) API...11
9.1 Software requirements..11
9.1.1 General requirements ...11
9.1.2 Vehicle protocol requirements...12
9.1.3 Timing requirements for protocol handler messages ...12
9.1.4 Serialization requirements for protocol handler messages..14
9.1.5 Compatibility requirements..15
9.1.6 Timestamp requirements..16
9.2 API function overview and communication principles..17
9.2.1 Terms used within the D-PDU API ...17
9.2.2 Function overview ...17
9.2.3 General usage..19
9.2.4 Asynchronous and synchronous communication ..21
9.2.5 Usage of resource locking and resource unlocking..22
9.2.6 Usage of ComPrimitives ...22
9.3 Tool integration ...38
9.3.1 Requirement for generic configuration...38
9.3.2 Tool integrator – use case..38
9.4 API functions – interface description..40
9.4.1 Overview...40

ISO 22900-2:2009(E)

iv © ISO 2009 – All rights reserved

9.4.2 PDUConstruct ..40
9.4.3 PDUDestruct...41
9.4.4 PDUIoCtl ...42
9.4.5 PDUGetVersion ..43
9.4.6 PDUGetStatus ..44
9.4.7 PDUGetLastError ...45
9.4.8 PDUGetResourceStatus..47
9.4.9 PDUCreateComLogicalLink ..48
9.4.10 PDUDestroyComLogicalLink..50
9.4.11 PDUConnect ...51
9.4.12 PDUDisconnect ..53
9.4.13 PDULockResource...54
9.4.14 PDUUnlockResource...55
9.4.15 PDUGetComParam ..56
9.4.16 PDUSetComParam...63
9.4.17 PDUStartComPrimitive..65
9.4.18 PDUCancelComPrimitive ..69
9.4.19 PDUGetEventItem ..70
9.4.20 PDUDestroyItem...71
9.4.21 PDURegisterEventCallback ..72
9.4.22 EventCallback prototype...74
9.4.23 PDUGetObjectId ...75
9.4.24 PDUGetModuleIds..76
9.4.25 PDUGetResourceIds..78
9.4.26 PDUGetConflictingResources ..79
9.4.27 PDUGetUniqueRespIdTable..80
9.4.28 PDUSetUniqueRespIdTable ..82
9.4.29 PDUModuleConnect ..87
9.4.30 PDUModuleDisconnect ...88
9.4.31 PDUGetTimestamp ..89
9.5 I/O control section ...90
9.5.1 IOCTL API command overview...90
9.5.2 PDU_IOCTL_RESET...92
9.5.3 PDU_IOCTL_CLEAR_TX_QUEUE...93
9.5.4 PDU_IOCTL_SUSPEND_TX_QUEUE..93
9.5.5 PDU_IOCTL_RESUME_TX_QUEUE..94
9.5.6 PDU_IOCTL_CLEAR_RX_QUEUE ..94
9.5.7 PDU_IOCTL_READ_VBATT ..95
9.5.8 PDU_IOCTL_SET_PROG_VOLTAGE ...95
9.5.9 PDU_IOCTL_READ_PROG_VOLTAGE ..96
9.5.10 PDU_IOCTL_GENERIC ..97
9.5.11 PDU_IOCTL_SET_BUFFER_SIZE...97
9.5.12 PDU_IOCTL_GET_CABLE_ID ...98
9.5.13 PDU_IOCTL_START_MSG_FILTER..98
9.5.14 PDU_IOCTL_STOP_MSG_FILTER..100
9.5.15 PDU_IOCTL_CLEAR_MSG_FILTER ...101
9.5.16 PDU_IOCTL_SET_EVENT_QUEUE_PROPERTIES ...101
9.5.17 PDU_IOCTL_SEND_BREAK..102
9.5.18 PDU_IOCTL_READ_IGNITION_SENSE_STATE ..103
9.6 API functions — error handling..104
9.6.1 Synchronous error handling ..104
9.6.2 Asynchronous error handling ..104
9.7 Installation ..104
9.7.1 Generic description ...104
9.7.2 Windows installation process ..105
9.7.3 Linux installation process ..106
9.7.4 Selecting MVCI protocol modules..106
9.8 Application notes...106
9.8.1 Interaction with the MDF...106
9.8.2 Accessing additional hardware features for MVCI protocol modules ...106

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved v

9.8.3 Documentation and information provided by MVCI protocol module vendors107
9.8.4 Performance Testing...107
10 Using the D-PDU API with existing applications..108
10.1 SAE J2534-1 and RP1210a existing standards ..108
11 Data structures ..108
11.1 API functions — data structure definitions ..108
11.1.1 Abstract basic data types...108
11.1.2 Definitions ..109
11.1.3 Bit encoding for UNUM32 ...109
11.1.4 API data structures..110
Annex A (normative) D-PDU API compatibility mappings..123
Annex B (normative) D-PDU API standard ComParams and protocols ..141
Annex C (informative) D-PDU API manufacturer specific ComParams and protocols............................209
Annex D (normative) D-PDU API constants ...211
Annex E (normative) Application defined tags ..225
Annex F (normative) Description files ..226
Annex G (informative) Resource handling scenarios ...269
Annex H (informative) D-PDU API partitioning...274
Annex I (informative) Use case scenarios ..278
Annex J (normative) OBD protocol initialization ...310
Bibliography..325

ISO 22900-2:2009(E)

vi © ISO 2009 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22900-2 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3,
Electrical and electronic equipment.

ISO 22900 consists of the following parts, under the general title Road vehicles — Modular vehicle
communication interface (MVCI):

⎯ Part 1: Hardware design requirements

⎯ Part 2: Diagnostic protocol data unit application programming interface (D-PDU API)

⎯ Part 3: Diagnostic server application programming interface (D-Server API)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved vii

Introduction

ISO 22900 is applicable to vehicle electronic control module diagnostics and programming.

This part of ISO 22900 was established in order to more easily exchange software and hardware of vehicle
communication interfaces (VCIs) among diagnostic applications. It defines a generic and protocol independent
software interface towards the modular vehicle communication interface (MVCI) protocol module, such that a
diagnostic application based on this software interface can exchange the MVCI protocol module or add a new
MVCI protocol module with minimal effort. Today, the automotive after market requires flexible usage of
different protocol modules for vehicles of different brands. Many of today's protocol modules are incompatible
with regard to their hardware and software interface, such that, depending on the brand, a different protocol
module is required.

The objective of this part of ISO 22900 is to specify the diagnostic protocol data unit application programming
interface (D-PDU API) as a generic software interface, and to provide a “plug and play” concept for access
onto different MVCI protocol modules from different tool manufacturers. The D-PDU API will address the
generic software interface, the protocol abstraction, its exchangeability as well as the compatibility towards
existing standards such as SAE J2534-1 and RP1210a.

The implementation of the modular VCI concept facilitates co-existence and re-use of MVCI protocol modules,
especially in the after market. As a result, diagnostic or programming applications can be adapted for different
vehicle communication interfaces and different vehicles with minimal effort, thus helping to reduce overall
costs for the tool manufacturer and end user.

Vehicle communication interfaces compliant with ISO 22900 support a protocol-independent D-PDU API as
specified in this part of ISO 22900.

INTERNATIONAL STANDARD ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 1

Road vehicles — Modular vehicle communication interface
(MVCI) —

Part 2:
Diagnostic protocol data unit application programming
interface (D-PDU API)

1 Scope

This part of ISO 22900 specifies the diagnostic protocol data unit application programming interface
(D-PDU API) as a modular vehicle communication interface (MVCI) protocol module software interface and
common basis for diagnostic and reprogramming software applications.

This part of ISO 22900 covers the descriptions of the application programming interface (API) functions and
the abstraction of diagnostic protocols, as well as the handling and description of MVCI protocol module
features. Sample MVCI module description files accompany this part of ISO 22900.

Migration from and to the existing standards SAE J2534-1 and RP1210a is addressed. This part of ISO 22900
contains a description of how to convert between the APIs. Corresponding wrapper APIs accompany this part
of ISO 22900.

The purpose of this part of ISO 22900 is to ensure that diagnostic and reprogramming applications from any
vehicle or tool manufacturer can operate on a common software interface, and can easily exchange MVCI
protocol module implementations.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 9141-2, Road vehicles — Diagnostic systems — Part 2: CARB requirements for interchange of digital
information

ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1: Specification and requirements

ISO 14230 (all parts), Road vehicles — Diagnostic systems — Keyword Protocol 2000

ISO 15031-5, Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 5: Emissions-related diagnostic services

ISO 15765 (all parts), Road vehicles — Diagnostics on Controller Area Networks (CAN)

ISO 22901-1, Road vehicles — Open diagnostic data exchange (ODX) — Part 1: Data model specification

ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1

ISO 22900-2:2009(E)

2 © ISO 2009 – All rights reserved

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
application
way of accessing the diagnostic protocol data unit application programming interface (D-PDU API)

NOTE From the perspective of the D-PDU API, it does not make any difference whether an application accesses the
software interface directly, or through an MVCI D-Server. Consequently, in this part of ISO 22900, the term “application”
represents both ways of accessing the D-PDU API.

3.2
ComLogicalLink
logical communication channel towards a single electronic control unit (ECU) or towards multiple electronic
control units

3.3
COMPARAM-SPEC
protocol-specific set of predefined communication parameters (ComParams), the value of which can be
changed in the context of a layer or specific diagnostic service

NOTE This part of the model can also contain OEM-specific ComParams.

3.4
ComPrimitive
smallest aggregation of a communication service or function

EXAMPLE A request message to be sent to an ECU.

3.5
Ethernet
physical network media type

4 Symbols and abbreviated terms

API Application Programming Interface

ASCII American Standard for Character Information Interchange

CAN Controller Area Network

CDF Cable Description File

CLL ComLogicalLink

ComParam Communication Parameter

COP Communication Primitive

CRC Cyclic Redundancy Check

DLC Data Link Connector

DLL Dynamic Link Library

D-PDU Diagnostic Protocol Data Unit

D-Server Diagnostic Server

ECU Electronic Control Unit

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 3

HDD Hard Disk Drive

HI Differential Line — High

HW Hardware

IEEE 1394 Firewire serial bus

IFR In-Frame Response

IGN Ignition

IOCTL Input/Output Control

K UART K-Line

KWP Keyword Protocol

L UART L-Line

LOW Differential Line — Low

MDF Module Description File

MVCI Modular Vehicle Communication Interface

ODX Open Diagnostic Data Exchange

OEM Original Equipment Manufacturer

OSI Open Systems Interconnection

PC Personal Computer

PCI Protocol Control Information

PGN Parameter Group Number

PROGV Programmable Voltage

PWM Pulse Width Modulation

RDF Root Description File

RX UART uni-directional receive

SCI Serial Communications Interface

SCP Standard Corporate Protocol

TX UART uni-directional transmit

USB Universal Serial Bus

USDT Unacknowledged segmented data transfer1)

UUDT Unacknowledged un-segmented data transfer2)

1) ISO 15765-2 network layer includes protocol control information for segmented data transmission, which results in a
maximum of 7 data bytes for normal addressing and 6 data bytes for extended addressing.

2) Single CAN frames do not include protocol control information, which results in a maximum of 8 data bytes for normal
addressing and 7 data bytes for extended addressing.

ISO 22900-2:2009(E)

4 © ISO 2009 – All rights reserved

VCI Vehicle Communication Interface

VPW Variable Pulse Width

XML Extensible Markup Language

5 Specification release version information

5.1 Specification release version location

Specification release version information is contained in each modular VCI release document specification
under the same clause title “Specification release version information”. It is important to check for feature
support between modular VCI release specifications if the most recent API features shall be implemented.
The D-PDU API supports the reading of version information by the API function call PDUGetVersion.

Release version information is also contained in the following files:

⎯ root description file (RDF);

⎯ module description file (MDF);

⎯ cable description file (CDF);

⎯ D-PDU API library file.

5.2 Specification release version

The specification release version of this part of ISO 22900 is: 2.2.0.

6 Modular VCI use cases

6.1 OEM merger

In the past, several OEMs in the automotive industry have merged into one company.

All companies try to leverage existing (legacy) components and jointly develop new products, which are
common across different vehicle types and badges.

If OEMs already had modular VCI compliant test equipment, it would be simple to connect MVCI protocol
modules from merged OEMs into one chassis or device. All protocols would be supported by a single MVCI
protocol module configuration without any replacement of MVCI protocol module hardware at the dealer site.
The same applies for engineering and some of this concept might also work for production plants (end of line).

6.2 OEM cross vehicle platform ECU(s)

OEMs specify requirements and design electronic systems to be implemented in multiple vehicle platforms in
order to avoid re-inventing a system for different vehicles. The majority of design, normal operation, and
diagnostic data of an electronic system are re-used if installed in various vehicles. The engineering
development centres are located worldwide. A great amount of re-authoring of diagnostic data is performed to
support different engineering test tools.

Providing diagnostic data in an industry standard format like ODX and XML will avoid re-authoring into various
test tool specific formats at different system engineering locations. The D-PDU API supports this re-use
concept by fully abstracting vehicle protocols into the industry supported ComParam descriptions.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 5

6.3 Central source diagnostic data and exchange during ECU development

Single source origin of diagnostic data (as depicted in Figure 1 — Example of central source engineering
diagnostic data process), combined with a verification and feedback mechanism and distribution to the end
users, is highly desirable in order to lower engineering expenses. Engineering, manufacturing, and service
specify which protocol and data shall be implemented in the ECU. This information will be documented in a
structured format like XML. Furthermore, the same structured data files can be used to setup the diagnostic
engineering tools to verify proper communication with the ECU and to perform functional verification and
compliance testing of the ECU. Once all quality goals are met, these structured data files shall be released to
the OEM database. An Open Diagnostic data eXchange (ODX) schema has been developed for the purpose
of supporting these structured formatted files used for ECU diagnosis and validation.

Figure 1 — Example of central source engineering diagnostic data process

6.4 OEM franchised dealer and aftermarket service outlet diagnostic tool support

The service shop uses the modular VCI hardware and software for vehicle diagnosis and enhanced
procedural testing. By using the same engineering, manufacturing, and service functions as those used for
individual ECU testing, the reliability of the data is maintained. A modular VCI protocol module can be used
with any PC (handheld or stationary) and can be utilised as an embedded device.

7 Modular VCI software architecture

7.1 Overview

The modular VCI concept is mainly based on three software components (see Figure 2 — MVCI software
architecture):

⎯ MVCI D-Server software;

⎯ runtime data based on ODX;

⎯ MVCI protocol module software.

ISO 22900-2:2009(E)

6 © ISO 2009 – All rights reserved

The application accesses the MVCI D-Server through the MVCI D-Server API. The D-Server obtains all
required information about the ECU(s) out of the ODX runtime data. Using the ODX runtime data information,
the D-Server converts the application's request into a byte stream, which is called a diagnostic protocol data
unit (D-PDU). The D-PDU is handed over to the MVCI protocol module through the D-PDU API. The MVCI
protocol module transmits the D-PDU to the vehicle's ECU(s). The other way around, the MVCI protocol
module receives the vehicle's response(s) and reports the response data to the D-Server. Again using the
ODX runtime data, the D-Server interprets the D-PDU and provides the interpreted symbolic information to the
application.

NOTE The grey shading of symbols indicates reference to the following International Standards:

⎯ ODX: ISO 22901-1;

⎯ D-Server API: ISO 22900-3;

⎯ D-PDU API: ISO 22900-2;

⎯ MVCI protocol module: ISO 22900-1.

Figure 2 — MVCI software architecture

7.2 Modular VCI D-Server software

The MVCI D-Server is accessible through the MVCI D-Server API. By accessing this API, the application may
browse the available features for each ECU and initiate a request towards an ECU using simple symbolic
expressions. If the request requires input parameters, they can be specified using symbolic expressions as
well. The MVCI D-server takes the symbolic request, including input parameters, and converts them into a
diagnostic request message as defined at the protocol level. The diagnostic request message represents the
diagnostic protocol data unit (D-PDU) as passed to the MVCI protocol module through the D-PDU API. Vice
versa, the D-Server converts diagnostic response messages as retrieved from the MVCI protocol module back
to symbolic information and provides it to the application.

For a detailed description and the complete MVCI D-Server API definition, see ISO 22900-3.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 7

7.3 Runtime format based on ODX

For every conversion from symbolic requests to diagnostic request messages, and vice versa for responses,
the MVCI D-Server obtains the required information from the runtime database. The database defines the
structure of every diagnostic request and response as supported by an ECU. The database defines byte and
bit positions, width, and type of every input and output parameter.

Even though the MVCI D-Server obtains its information from a runtime database, the runtime database and
format are not specified by the MVCI standard. Instead, the MVCI standard defines an exchange format to
import and export the ECU description across OEMs and tool suppliers. The runtime format is left up to the
system designers.

The exchange format is called open diagnostic data exchange format (ODX format). For a detailed description,
see ISO 22901-1.

7.4 MVCI protocol module software

The MVCI protocol module is accessible through the D-PDU API. The application issues diagnostic requests
through the D-PDU API. The MVCI protocol module takes the request D-PDU and transmits it to the vehicle's
ECU(s) according to the vehicle communication protocol. Header type, checksum information, and D-PDU
segmentation depend on the vehicle communication protocol, and shall be handled transparently by the MVCI
protocol module. Also, the MVCI protocol module observes the timing between message frames and requests
and responses on the physical interfaces. After completion, the MVCI protocol module simply has to deliver
the response back to the application or report an error condition.

7.5 MVCI protocol module configurations

The D-PDU API and MVCI protocol modules work in many configurations. A MVCI D-Server is not required as
the application interface to the D-PDU API.

Figure 3 — MVCI configurations shows two such configurations to point out the differences.

Key
A application with MVCI D-Server
B application without MVCI D-Server

NOTE From the perspective of the D-PDU API, it does not make a difference whether an application accesses the
software interface directly, or through an MVCI D-Server. Consequently, in this part of ISO 22900, the term “application”
represents both ways of accessing the D-PDU API.

Figure 3 — MVCI configurations

ISO 22900-2:2009(E)

8 © ISO 2009 – All rights reserved

8 D-PDU API use cases

8.1 Overview

The MVCI protocol module is the key component to exchange implementations of diagnostic protocols among
OEMs and tool suppliers without re-engineering already implemented software. By relying on the D-PDU API,
the application may easily access other or additional MVCI protocol module implementations. In a similar way
to existing standards like SAE J2534-1 and RP1210a, applications compliant to the MVCI standard are
basically independent of the underlying device as long as the required physical interface is supported and no
tool supplier specific feature is required.

Even though the D-PDU API extends the capabilities beyond the definitions of SAE J2534-1 and RP1210a,
the existing standards and their related devices and applications do not become obsolete by introducing the
D-PDU API. Instead, the transition and co-existence of all standards are facilitated to save development and
investment costs. The definition of the D-PDU API is closely related to SAE J2534-1 and RP1210a to allow
mapping of functionality in both directions. However, it extends their definitions to cover the full width of
enhanced diagnostics.

The fulfilment of the following use cases is crucial for the inter-exchange of protocol module implementations
according to MVCI, SAE J2534-1 and RP1210a.

NOTE In the use case figures below, the grey boxes suggest a specific software component architecture. This
representation is not intended to be construed as the only possible architectural solution. Depending on the situation, there
can be more software components, or fewer software components.

8.2 Use case 1: Single MVCI protocol module

The single MVCI protocol module configuration (see Figure 4 — MVCI configuration with single MVCI protocol
module) is the simplest configuration where the D-PDU API implementation and the MVCI protocol module
hardware are obtained from the same vendor. The application will access the single MVCI protocol module
through a single D-PDU API. Parallel access onto multiple D-PDU APIs is not required. Resource handling is
completely covered inside the D-PDU API implementation.

This use case applies to basically all stand-alone MVCI protocol module device configurations.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 9

Figure 4 — MVCI configuration with single MVCI protocol module

8.3 Use case 2: Multiple MVCI protocol modules supported by same D-PDU API
implementation

There are different configurations with multiple MVCI protocol modules. In this use case, a D-PDU API
implementation may support more than one MVCI protocol module at a time, where both modules and
D-PDU API implementations are from a single vendor (see Figure 5 — Multiple MVCI protocol modules
supported by same D-PDU API implementation). The application will access the MVCI protocol modules
through a single D-PDU API. Parallel access onto multiple D-PDU APIs is not required. However, the
application may access and operate the MVCI protocol modules at the same time in parallel if the D-PDU API
implementation provides the capabilities. Resource handling is completely covered inside the D-PDU API
implementation.

This use case applies to MVCI protocol module device configurations where the vendor integrates support for
multiple MVCI protocol modules into one software package.

ISO 22900-2:2009(E)

10 © ISO 2009 – All rights reserved

Figure 5 — Multiple MVCI protocol modules supported by same D-PDU API implementation

8.4 Use case 3: Multiple MVCI protocol modules supported by different D-PDU API
implementations

In most cases, when combining MVCI protocol modules of different suppliers, the MVCI protocol modules are
not accessed through the same D-PDU API implementation (see Figure 6 — Multiple MVCI protocol modules
supported by different D-PDU API implementations). Neither of the implementations knows about the other
suppliers' MVCI protocol modules. It cannot communicate with them, since the D-PDU API does not define an
explicit interface hardware type, nor the communication protocol on the interface. Therefore, MVCI protocol
modules of different suppliers will be addressed through separate D-PDU API implementations. Each
D-PDU API implementation may support more than one MVCI protocol module at a time, and more than one
D-PDU API implementation may co-exist on the same runtime environment at the same time.

The application may access multiple D-PDU APIs (and their MVCI protocol modules) in parallel, if it needs to
use resources of more than one D-PDU API. As a result, each D-PDU API implementation shall be able to run
concurrently with other D-PDU API implementations. As in use case 2, resource handling is completely
covered inside the D-PDU API implementation with respect to one implementation. As use case 3 assumes
multiple D-PDU API implementations not knowing each other, the application is required to handle the
resources across D-PDU API implementations.

This use case applies to MVCI protocol module device configurations where a tool supplier integrates support
for multiple MVCI protocol modules of different vendors into one software package.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 11

Figure 6 — Multiple MVCI protocol modules supported by different D-PDU API implementations

9 Diagnostic protocol data unit (D-PDU) API

9.1 Software requirements

9.1.1 General requirements

The MVCI devices shall be accessed through dynamically linkable software modules, i.e. dynamic link
libraries for Windows systems (DLLs) and/or library modules for Linux systems. The linkable software module
will be referred to as the D-PDU API implementation. It queries the available MVCI protocol modules, takes
care of device identification (e.g. reading firmware version, etc.) and low-level communication with all MVCI
Protocol modules supported by the respective library. However, the device query and identification does not
contain any functionality of the system level driver, as it is required for USB, Ethernet and wireless
communication. The system low-level driver is responsible for the detection and enumeration of the device
interface. The system level driver is considered a part of the delivery from the MVCI protocol module supplier,
but its interface is proprietary and not part of this part of ISO 22900.

Multiple MVCI protocol modules may be separately accessible by the application using the same D-PDU API
implementation. This could typically apply to MVCI protocol module variants from a single supplier. However,
MVCI protocol modules may also be accessible through separate D-PDU API implementations. Such cases
would typically occur when combining multiple MVCI protocol modules from different suppliers.

ISO 22900-2:2009(E)

12 © ISO 2009 – All rights reserved

In order to declare the capabilities of a D-PDU API implementation, a MVCI protocol module vendor shall
provide a module description file (MDF) in XML. The MDF shall contain all information about supported MVCI
protocol module types, bus types, protocols, and communication links, as well as all related information
regarding parameters and I/O controls. The application may parse the file for resources and use them
dynamically. It may also make use of static information. In the latter case, the application developer could
create a C header file containing and statically matching all necessary resource Ids. For a detailed description
and structure of the files, see Clause F.2.

All API functions return a SNUM32 value representing the function result.

The D-PDU API implementation shall not be restricted to a dedicated operating system or programming
language and shall be portable. However, for unique and clear definition, C was chosen as the programming
language to describe the API.

In general, the D-PDU API implementation shall be made available as a dynamically linkable software module
independent of the target operating system. The approach of a separate software module guarantees easy
exchange. However, in some cases, it may be useful or more appropriate to link the software module statically.
Those cases are considered as proprietary solutions and shall not be the main target of this part of ISO 22900.

The D-PDU API implementation shall support, at a minimum, single clients and asynchronous, multi-thread
operation. Multi client support is not a requirement, but may be offered as an additional feature by an MVCI
protocol module vendor. A multi client implementation shall support multiple sessions and links in parallel. For
every communication link, the implementation shall take care of queuing communication requests.

The D-PDU API implementation shall cover full duplex and event-driven communication, enabling coverage of
advanced vehicle communication principles (e.g. response on event, periodic transmission, etc).

9.1.2 Vehicle protocol requirements

The D-PDU API functions shall be protocol independent. Since protocol standards have frequently changed in
the past and new protocols will be released in the future, the D-PDU API needs to be flexible and generic
enough to easily cover additional protocols not taken into account at time of definition. In order to provide the
application the capability to use any protocol and any of its tool supplier specific implementations, all protocol-
related ComParams have to be documented in a standardized and generic manner. The documentation is
stored in a module description file (MDF) in XML and shall be provided by the MVCI protocol module supplier.

In general, there is no minimum set of protocols with respect to the D-PDU API. However, in order to provide
the required SAE J2534-1 and RP1210a compatibility, and to avoid interference of D-PDU API
implementations of different suppliers, minimal protocol naming conventions are necessary. For all protocols
and ComParams defined in SAE J2534-1 and RP1210a, appropriate definitions will be specified for the
D-PDU API to achieve full compatibility.

9.1.3 Timing requirements for protocol handler messages

There can be unexpected results if two requests are made to the same ECU “simultaneously”. Most ECUs will
ignore the second request, but some ECUs will ignore both requests. As a result, the protocol handler has to
properly serialize requests across multiple CLLs, while still allowing valid parallel communication.

It should also be emphasized that for the cases where CLLs are sharing a physical serial bus, all timing
requirements (CP_P3Min, CP_P3Phys and CP_P3Func) shall be satisfied before subsequent transmissions
can occur.

Message serialization is also required for some complex single CLL scenarios. Consider the case where
Tester Present messages, functionally addressed ComPrimitives and physically addressed ComPrimitives are
all occurring on one bus. Message serialization may be required to assure that the protocol handler adheres to
proper inter-transmit timing and receive timing. All standard Protocols have their timing individually defined
using ComParams. This allows for minor changes in the timing behaviour of a protocol in order to satisfy the
unique attributes of an installed vehicle ECU.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 13

NOTE For functional Tester Presents, it is sent regardless of the P3 physical delay value. The protocol handler is
careful to not wait for a P3Phys delay (see CP_P3Phys) when sending a functional request where the previous request
was a physical message (no delay should occur). A protocol handler waits a P3Func delay (See CP_P3Func) if the
previous message was a functional request. This rule is applicable only for CAN protocols at this time.

Timing between message requests on the serial bus is the responsibility of the MVCI Protocol Handlers. The
MVCI protocol module shall ensure that the inter-message timing is correctly managed (see Table 1 —
Functional and physical address handling).

Table 1 — Functional and physical address handling

New request
addressing type

Previous request
addressing type

Handling in the tester

Physical with response

physical with
response

physical with
response

Wait until the completion of the previous physical request (pos. response or
negative response other than 0x78) before transmitting a new physical
request. There is no timing applied to this rule, the tester can transmit the
physically addressed request immediately after the previous physically
addressed service has been finished (final response received).

physical with
response

functional with
response

Wait until the completion of the previous functional request that requires a
response (pos. response or negative response other than 0x78) before
transmitting the physical request. There is no timing applied to this rule, the
tester can transmit the physically addressed request immediately after the
previous functionally addressed service has been finished (final response
received).

physical with
response

functional without
response

The tester is allowed to transmit the physical request immediately (e.g.
functional Tester Present followed by any physical request).

Functional without response

functional without
response

physical with
response

The tester is allowed to transmit the functional request that does not require
a response immediately (e.g. any physical request followed by a functional
Tester Present).

NOTE For physical cyclic responses, the tester waits for the first response before
sending a functional Tester Present).

functional without
response

functional with
response

Wait CP_P3Func after the transmission of the functional request that
requires a response before transmitting the functional request that does not
require a response.

functional without
response

functional without
response

Wait CP_P3Func after the transmission of the functional request that does
not require a response before transmitting the next functional request that
does not require a response.

Functional with response

functional with
response

physical with
response

Wait until the completion of the previous physical request (pos. response or
negative response other than 0x78) before transmitting the functional
request that requires a response. There is no timing applied to this rule, the
tester can transmit the functionally addressed request immediately after the
previous physically addressed service has been finished (final response
received).

functional with
response

functional with
response

Wait until the completion of the previous functional request that requires a
response (pos. response or negative response other than 0x78) before
transmitting the next functional request that requires a response. There is no
timing applied to this rule, the tester can transmit the functionally addressed
request immediately after the previous functionally addressed service has
been finished (final response received).

functional with
response

functional without
response

Wait CP_P3Func after the transmission of the functional request that does
not require a response before transmitting the functional request that
requires a response.

ISO 22900-2:2009(E)

14 © ISO 2009 – All rights reserved

Table 1 (continued)

New request
addressing type

Previous request
addressing type

Handling in the tester

Physical with response

physical with
response

physical without
response

Wait CP_P3Phys after the completion of the previous physical request
without response before transmitting a new physical request.

Physical without response

physical without
response

physical with
response

Wait until the completion of the previous physical request (pos. response or
negative response other than 0x78) before transmitting a new physical
request. There is no timing applied to this rule, the tester can transmit the
physically addressed request immediately after the previous physically
addressed service has been finished (final response received).

physical without
response

physical without
response

Wait CP_P3Phys after the completion of the previous physical request
without response before transmitting a new physical request.

physical without
response

functional with
response

Wait until the completion of the previous functional request that requires a
response (pos. response or negative response other than 0x78) before
transmitting the physical request. There is no timing applied to this rule, the
tester can transmit the physically addressed request immediately after the
previous functionally addressed service has been finished (final response
received).

physical without
response

functional without
response

The tester is allowed to transmit the physical request immediately (e.g.
functional Tester Present followed by any physical request).

Functional without response

functional without
response

physical without
response

The tester is allowed to transmit the functional request that does not require
a response immediately (e.g. any physical request followed by a functional
Tester Present).

Functional with response

functional with
response

physical without
response

Wait CP_P3Func after the completion of the previous physical request
before transmitting a new functional request.

9.1.4 Serialization requirements for protocol handler messages

Many vehicle serial bus protocols require serialization of messages sent on the bus, e.g. sending functional
and physical messages on a shared physical serial bus can be accomplished if the physically addressed ECU
is not in the functional group (i.e. a group of ECUs which can be addressed with the same functional address).
For this case, the CLLs share the ECU being addressed, and the messages/frames need to be serialized. See
Figure 7 — Example: CLLs sharing physical bus with message serialization.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 15

Figure 7 — Example: CLLs sharing physical bus with message serialization

9.1.5 Compatibility requirements

In order to provide a smooth migration path for existing applications onto the MVCI architecture, the
D-PDU API shall define all functionality necessary to implement compatibility layers for SAE J2534-1 and
RP1210a interfaces. Existing applications can use these compatibility layers to easily migrate to the MVCI
architecture, such that they may be preserved without any porting efforts. Clause 10 shows applications based
on both SAE J2534-1 and RP1210a, and how their migration could be accomplished using compatibility layers.

Per definition, the D-PDU API shall support, at a minimum, only one client at a time. However, the RP1210a
standard defines multi-client communication at its API level. Therefore, the compatibility layer for RP1210a
shall handle all multi-client requirements.

ISO 22900-2:2009(E)

16 © ISO 2009 – All rights reserved

In the opposite direction, a new MVCI-compliant application shall also run on existing SAE J2534-1 or
RP1210a compliant hardware with minimal porting effort. This implies that the D-PDU API would have to be
implemented on top of the SAE J2534-1 or RP1210a API. The resulting D-PDU API implementation would
have the same limitations as the APIs it is based on.

Summarizing all compatibility requirements, the D-PDU API shall be defined as close as possible to the
existing standards SAE J2534-1 and RP1210a. Additional naming conventions shall be included to facilitate
exchange of software.

9.1.6 Timestamp requirements

9.1.6.1 General information

This subclause describes the requirements of the timestamp mechanism that shall be used for the D-PDU API.

The unit of all timestamps is the microsecond and is defined in a 32 Bit value. The granularity of the
timestamp is limited by the capability of the device. The time base is reset to zero within the
PDU_IOCTL_RESET function and after boot-up. All of the logical links, events, and errors of one device
derive their timestamps from the same time base.

The D-PDU API does not have any mechanism to detect a timestamp overflow. The application shall take
care of an overflow.

9.1.6.2 Timestamp for transmitted messages

For all UART-based protocols, the timestamp will be taken at the end (last Bit) of the message. In the case of
a controller-based protocol, the timestamp will be taken when the controller indicates the successful
transmission of the message or the last frame of a message.

9.1.6.3 Timestamp for received messages

For all UART-based protocols, the timestamp will be taken at the end (last Bit) of the message. In the case of
a controller-based protocol, the timestamp will be taken when the controller indicates the successful reception
of the message, or the last frame of a message. Indication of the start of a message or first frame is handled
as an event, and is described below.

9.1.6.4 Timestamp for events, errors and indications

For events and errors, the timestamp will be taken when the event or error is detected.

9.1.6.5 Timestamp for start of message indication

The indication of the start of message (see Table D.5 — RxFlag) will be handled as outlined below.

⎯ For UART-based protocols, the timestamp will be taken at the first bit of the received message. In this
case, the timestamp shall be calculated (see example below).

EXAMPLE To calculate the timestamp for the first bit of a 9 600 baud line running 8N1, the equation would be:

1 seconds
First bit timestamp first byte timestamp 10 bits

9 600 bit
= − ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎯ For controller-based protocols, the timestamp will be taken when the controller indicates the reception of
the first frame of the message.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 17

9.2 API function overview and communication principles

9.2.1 Terms used within the D-PDU API

9.2.1.1 Resource

A resource defines a communication channel towards a single ECU or towards multiple ECUs. It covers
diagnostic protocols, and MVCI protocol module hardware (transceivers, UART, multiplexer, etc.), including
the Diagnostic Link Connector (DLC) of the MVCI protocol module.

9.2.1.2 ComLogicalLink

A ComLogicalLink (CLL) defines a logical communication channel towards a single ECU or towards multiple
ECUs. The configuration of the CLL is based on the selected Bustype, pins, and protocol. A CLL can be
created on an existing and available resource. The protocol for the CLL is configured using ComParams. The
D-PDU API is not restricted in the number of CLLs opened on a single resource, unless there are limitations
for the protocol. The client-application shall be aware of conflicts on resources.

9.2.1.3 ComPrimitive

A ComPrimitive (CoP) is a basic communication element holding data and controlling the exchange of data
between the D-PDU API implementation and the ECU.

9.2.1.4 ComParam

A ComParam is a protocol communication parameter used to define the functionality of the vehicle
communication protocol selected for a ComLogicalLink. Each protocol has a set of applicable ComParams
that are set to a default value upon creation of a ComLogicalLink. A set of ComParams is used to individually
define communication to a single ECU, or a functional group of ECUs.

9.2.2 Function overview

Table 2 — D-PDU API functions overview lists all D-PDU API functions, and classifies them in functional
groups.

Table 2 — D-PDU API functions overview

Function Description

General Functions

PDUConstruct Constructor with optional, manufacturer-specific arguments. Required to call for each
D-PDU API implementation prior to any other D-PDU API function call.

PDUDestruct Destructor required as last D-PDU API function call to free all resources.

PDUModuleConnect Connect to a specific MVCI protocol module.

PDUModuleDisconnect Disconnect from a specific MVCI protocol module.

PDURegisterEventCallback Register or unregister a callback function for event notification.

PDUIoCtl Invokes I/O control functions of an MVCI protocol module or ComLogicalLink.

ISO 22900-2:2009(E)

18 © ISO 2009 – All rights reserved

Table 2 (continued)

Function Description

Information Functions

PDUGetVersion Obtains version information for a specified MVCI protocol module and its D-PDU API
implementation.

PDUGetStatus Obtains runtime information (status, life sign, etc.) from an MVCI protocol module,
ComLogicalLink or ComPrimitive.

PDUGetLastError Obtains the code for the last error that occurred in an MVCI protocol module or
ComLogicalLink.

PDUGetTimestamp Obtains the Timestamp information for a specific MVCI protocol module.

PDUGetObjectId Obtains an Id for a given shortname for a PDUObjectType. This is in addition to the
possibility of parsing the MDF file.

Resource Management

PDUGetResourceIds Obtains all resource Ids that match the requested resource information.

PDUGetResourceStatus Obtains the status of the requested resource Id.

PDUGetConflictingResources Obtains a list of resource Ids that are in conflict with the given resource Id (e.g.
2 resources sharing the same physical controller).

PDUGetModuleIds Obtains the Ids of all MVCI protocol modules currently connected to the D-PDU API.

PDULockResource Obtains a lock on the requested resource Id.

PDUUnLockResource Releases the lock on the requested resource Id.

ComLogicalLink Handling

PDUCreateComLogicalLink Create a ComLogicalLink for a given D-PDUResource.

PDUDestroyComLogicalLink Destroy a ComLogicalLink.

PDUConnect Physically connects the previously created ComLogicalLink to the communication
line.

PDUDisconnect Physically disconnects the previously connected ComLogicalLink from the
communication line.

Link and ComParam Handling

PDUGetComParam Obtains current value of specified ComParam.

PDUSetComParam Sets specified ComParam to given value. Overwrites previous values.

PDUGetUniqueRespIdTable Obtains a table of Unique Response Identifiers. Each Unique Response Identifier is
associated with a set of ComParams used to uniquely define an ECU response

PDUSetUniqueRespIdTable Set a table of Unique Response Identifiers. Each Unique Response Identifier value is
assigned by the application.

Message Handling

PDUStartComPrimitive Start the operation of given ComPrimitive (e.g. sending/receiving data).

PDUCancelComPrimitive Cancel current execution of given ComPrimitive (e.g. cancel a running periodic send
operation or an operation which has not yet been executed).

PDUGetEventItem Retrieve item data (e.g. received data) for given event source (i.e. MVCI protocol
module, ComLogicalLink and ComPrimitive).

PDUDestroyItem Destroy given item.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 19

9.2.3 General usage

The sequences of function calls differ between the D-PDU API and existing APIs like for SAE J2534-1 and
RP1210a. Therefore, the following subclauses show a minimal sequence of calls in order to facilitate
understanding. Also, the terms “asynchronous” and “synchronous” communication are defined in the
subsequent subclauses.

In order to initialize the D-PDU API implementation and to prepare communication for one channel, the
application needs to go through the following minimal sequence of API function calls.

Table 3 — General usage of D-PDU API function calls lists the D-PDU API functions in a sequential order to
facilitate better understanding.

Table 3 — General usage of D-PDU API function calls

Action # Function Call from application D-PDU API

Initial connection to D-PDU API Library

PDUConstruct Initialize D-PDU API library. This does not necessarily connect to an
MVCI protocol module. This begins the process of figuring out what
MVCI protocol modules are available. Information about the
available modules is retrieved via the PDUGetModuleIds function.

PDUGetModuleIds Retrieve the list of available MVCI protocol modules and their
handles and modules types.

1

PDURegisterEventCallback (optional)
Register global system callback.

Initial connection to an MVCI protocol module

PDUModuleConnect Connect the D-PDU API library to one or more MVCI protocol
modules.

2

PDURegisterEventCallback (optional)
Register module callback.

Setting up a ComLogicalLink

PDUCreateComLogicalLink Create a ComLogicalLink (based on protocol, pins and Bustype).

PDURegisterEventCallback (optional)
Register ComLogicalLink callback.

PDUGetUniqueRespIdTable Retrieve the applicable set of ComParams for unique identification
of ECUs determined by the specific protocol for the ComLogicalLInk.

PDUGetComParam Get ComParam item structures initialized with the default
ComParams for the selected protocol.

PDUSetComParam Set the ComParams for the ComLogicalLink.

PDUSetUniqueRespIdTable Configure the Unique Response Identifier Table for all possible ECU
Responses to be received on the ComLogicalLink.

3

PDUConnect Connect the ComLogicalLink to the communication line.

ISO 22900-2:2009(E)

20 © ISO 2009 – All rights reserved

Table 3 (continued)

Action # Function Call from application D-PDU API

Starting vehicle communications on a ComLogicalLink

4 PDUStartComPrimitive
(PDU_COPT_STARTCOMM or
PDU_COPT_SENDRECV)

A PDU_COPT_STARTCOMM ComPrimitive is required for certain
protocols as the first ComPrimitive (e.g. ISO 14230). A
PDU_COPT_STARTCOMM ComPrimitive is also used to control the
ability to start sending tester present messages (See
CP_TesterPresentHandling). Once tester present handling is
enabled the message is sent immediately, prior to the initial tester
present cyclic time (CP_TesterPresentTime)

For all other vehicle bus communications a
PDU_COPT_SENDRECV ComPrimitive is used to begin vehicle
communications.

Using a ComLogicalLink for vehicle communications

PDUStartComPrimitive
(PDU_COPT_SENDRECV)

Set up and start ComPrimitives for vehicle bus activity:

Send only, Send Receive, or Receive only.

PDUSetComParam Change ComParams (temporary changes per ComPrimitive or
permanent changes per PDU_COPT_UPDATEPARAM type of
ComPrimitive)

PDUGetEventItem Retrieve event items

5

PDUDestroyItem Destroy event item memory from D-PDU API memory.

Stopping vehicle communications on a ComLogicalLink

6 PDUStartComPrimitive
(PDU_COPT_STOPCOMM)

A PDU_COPT_STOPCOMM ComPrimitive will stop all
communication on a ComLogicalLink.

Connecting to a newly available MVCI protocol module

Receive callback indicating new MVCI
protocol module detected by D-PDU
API

Receive a system event callback with an information type
PDU_IT_INFO indicating the list of modules has changed:
PDU_INFO_MODULE_LIST_CHG

PDUGetModuleIds Retrieve the new list of available MVCI protocol modules and their
handles and modules types. Any previously detected MVCI protocol
modules will return the same hMod handles.

NOTE If detection of an MVCI protocol module was lost and then
detection is re-established, the module handle (hMod) will not be the same
as the previous handle. This ensures that any event items stored in the initial
connection will still be available for reading prior to a PDUModuleDisconnect.

PDUModuleConnect Connect to the new MVCI protocol module.

7

PDURegisterEventCallback (optional)
Register module callback.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 21

Table 3 (continued)

Action # Function Call from application D-PDU API

Loss of communication to an MVCI protocol module and reconnection

Receive callback indicating
communications to an MVCI protocol
module has been lost.

Receive a module event callback indicating communication is lost to
an MVCI protocol module. (See
PDU_ERR_EVT_LOST_COMM_TO_VCI). The hMod information is
part of the callback. The client application should call
PDUModuleDisconnect after all items have been retrieved from the
module event queue.

NOTE 1 All ComPrimitives active for all ComLogicalLinks on the Module
will generate a PDU_COPST_CANCELLED status event item. All
ComLogicalLinks on the Module will generate a PDU_CLLST_OFFLINE
status event item.

NOTE 2 If the MVCI protocol module still maintains power after it has lost
communication with a client session, it disconnects from all vehicle buses
associated with that client session and self cleans up all resources
associated with the client session.

NOTE 3 The module handle (hMod) is preserved until a
PDUModuleDisconnect is called.

PDUModuleDisconnect Once PDUModuleDisconnect is called, the hMod handle is no longer
valid, all event items in the queues are freed, and any related
Module memory reserved by the D-PDU API library is unreserved.

Wait for a Callback indicating status
change of MVCI protocol module.

Receive a system event callback with an information type
PDU_IT_INFO indicating the list of modules has changed:
PDU_INFO_MODULE_LIST_CHG.

8

PDUGetModuleIds Retrieve the new list of available MVCI protocol modules and their
handles and modules types. Observe that the hMod from the MVCI
Protocol module that had a communication loss is no longer listed
as an available hMod.

NOTE See Step 7 (above) for steps to reconnect to a module after a
loss of communications event.

Disconnect from a MVCI protocol module

PDUDisconnect Disconnect the ComLogicalLink from the communication line.

PDUDestroyComLogicalLink Destroy the ComLogicalLink.

PDURegisterEventCallback(NULL) (optional)
Unregister the module event callback. From now on no events will
be signalled to the application for the module.

9

PDUModuleDisconnect Disconnect a specific MVCI protocol module from the D-PDU API
library and free all reserved memory resources.

Disconnection from the D-PDU API library

10 PDUDestruct De-initialize the D-PDU API and destroy/free any internal resources.

9.2.4 Asynchronous and synchronous communication

9.2.4.1 General information

The asynchronous communication operation of the D-PDU API implies that calls to the API are immediately
returned even though the requested activity might still be running or is still waiting for execution inside the
D-PDU API implementation. The D-PDU API uses asynchronous calls to support all types of vehicle
communication requirements (e.g. non-cyclic, cyclic, event driven communication, etc.), as well as status
changes and error detection events.

ISO 22900-2:2009(E)

22 © ISO 2009 – All rights reserved

The synchronous communication operation of the D-PDU API implies that calls to the API are returned with
the requested information to the application (e.g. PDUGetComParam).

In order to cover synchronous and blocking function calls, as specified for SAE J2534-1 and RP1210a, the
application has to operate the D-PDU API in polling mode, or needs to provide a simple event callback
function. For SAE J2534-1 and RP1210a, synchronous calls will be transparently mapped onto the
asynchronous D-PDU API calls. This is done by the respective compatibility layers.

The D-PDU API functions allow the application to use both event callback (asynchronous) and polled
(synchronous) communication principles to exchange data with the D-PDU API.

9.2.4.2 Event callback (asynchronous mode)

In this case, the communication between application and the D-PDU API implementation is completely event
driven. The application may register an application-specific event callback function by calling
PDURegisterEventCallback. Any events queued into an empty ComLogicalLink Event queue or the events
that are already queued at the point in time the callback function is registered will cause the callback function
to be invoked. The callback function will be called on the thread of the D-PDU API. It is the responsibility of the
application to minimize the time spent in this callback. This specification suggests that the application callback
function post an event to wake another thread to do the reading of the event data. If the application shall make
a D-PDU API function call in the callback routine, then PDUGetEventItem is the only permitted call.

9.2.4.3 Polling (synchronous mode)

In this case, the application does not make use of the event callback mechanism. The application initiates the
D-PDU API functions (just as in asynchronous mode) and uses the PDUGetStatus and PDUGetEventItem
functions to detect status changes, and to read event items from the event queues.

9.2.5 Usage of resource locking and resource unlocking

A ComLogicalLink has the ability to lock different elements of a physical resource it is connected to, using the
D-PDU API function PDULockResource. Through locking, a ComLogicalLink can prohibit all other
ComLogicalLinks access to the resource if necessary. For example, if there are two ComLogicalLinks sharing
a vehicle bus, and an ECU needs to be reprogrammed, the physical resource (the vehicle bus) can be locked
during the reprogramming sequence. The API function PDUUnlockResource is used to release the lock on a
physical resource.

9.2.6 Usage of ComPrimitives

9.2.6.1 ComPrimitive overview

To provide a generic data exchange mechanism for different communication principles, several ComPrimitive
types are specified. The behaviour and usage of each ComPrimitive type depends on the specific
communication protocol used with a ComLogicalLink. These issues have to be described for each specific
communication protocol implementation.

Table 4 — ComPrimitives overview describes the different ComPrimitive types.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 23

Table 4 — ComPrimitives overview

ComPrimitive type Description

PDU_COPT_STARTCOMM Start communication with ECU by sending an optional request. The detailed
behaviour is protocol dependent. For certain protocols (e.g. ISO 14230), this
ComPrimitive is required as the first ComPrimitive. This ComPrimitive is also
required to put the ComLogicalLink into the state
PDU_CLLST_COMM_STARTED which allows for tester present messages to
be enabled (see CP_TesterPresentHandling). Once tester present handling is
enabled the message is sent immediately, prior to the initial tester present
cyclic time (CP_TesterPresentTime)

PDU_COPT_STOPCOMM Stop communication with ECU by sending an optional request. The detailed
behaviour is protocol dependent. After successful completion of this
ComPrimitive type, the ComLogicalLink is placed into PDU_CLLST_ONLINE
state and no further tester presents will be sent. A
PDU_COPT_STARTCOMM ComPrimitive might be required by some
protocols (e.g. ISO 14230) to begin communications again.

PDU_COPT_UPDATEPARAM Copies ComParams and the UniqueRespIdTable related to a ComLogicalLink
from the working buffer to the active buffer. Prior to update, the values need to
be passed to the D-PDU API by calling PDUSetComParam and/or
PDUSetUniqueRespIdTable, which modifies the working buffer.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED state and tester present
handling is enabled (see CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to be sent immediately,
prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time before allowing any
transmit. See CP_P3Min, CP_P3Func, CP_P3Phys.

PDU_COPT_SENDRECV Send request data and/or receive corresponding response data (single or
multiple responses). See 11.1.4.17 for detailed settings.

PDU_COPT_DELAY Wait the given time span before executing the next ComPrimitive.

PDU_COPT_RESTORE_PARAM Converse functionality of PDU_COPT_UPDATEPARAM. Copies ComParams
related to a ComLogicalLink from active buffer to working buffer.

9.2.6.2 ComPrimitive send/receive cycle overview

9.2.6.2.1 General information

Each ComPrimitive is controlled by a PDU_COP_CTRL_DATA structure (see 11.1.4.17). Table 5 —
ComPrimitives send/receive cycles describes how the send and receive cycles are used. For more examples,
see also Figure 8 — Single request – single response (master/slave communication) to Figure 16 — No
request/single or multiple responses.

ISO 22900-2:2009(E)

24 © ISO 2009 – All rights reserved

Table 5 — ComPrimitives send/receive cycles

PDU_COPT_SENDRECV, PDU_COPT_STARTCOMM, PDU_COPT_STOPCOMM

 NumSendCycles NumReceiveCycles

SEND and RECEIVE # of send cycles to be performed; -1
for infinite send operation.

of expected responses per request; -1
for infinite receive operation, -2 for multiple
responses.

SEND ONLY # of send cycles to be performed; -1
for infinite send operation

0

RECEIVE ONLY 0 # of receive cycles to be performed; -1 for
infinite receive operation, -2 for multiple
responses.

No Data to transmit or receive (e.g.
PDU_COPT_STARTCOMM with
no pPduData message)

0 0

9.2.6.2.2 NumReceiveCycles description

The NumReceiveCycles is the number of expected complete responses for a ComPrimitive. An infinite receive
ComPrimitive (-1) will usually never finish (i.e. never generate a PDU_COPST_FINISHED status item, see
PDU_STATUS_DATA) unless timing is enabled for cyclic responses (see ComParam
CP_CyclicRespTimeout) and therefore shall usually be cancelled (see 9.4.18).

9.2.6.2.3 NumSendCycles description

The NumSendCycles is the number of periodic transmits to be sent on the vehicle bus. The periodic time
interval is specified in milliseconds in the PDU_COP_CTRL_DATA structure (see 11.1.4.17). If
NumSendCycles is equal to -1, it is considered an infinite send ComPrimitive. An infinite send ComPrimitive
will never finish, and shall always be cancelled (see 9.4.18). A periodic send ComPrimitive will have state
transitions to and from PDU_COPST_EXECUTING to PDU_COPST_WAITING for each periodic interval.

Table 6 — ComPrimitives combinations shows some possible combinations of ComPrimitive types and cycle
types.

Table 6 — ComPrimitives combinations

NumSendCycles NumReceiveCycles Description

1 1 Send one request and look for one response. If a response is not received
before a receive timeout occurs (e.g. P2Max), then the ComPrimitive will
complete and set a receive timeout error event.

-1 1 Continuously send requests and look for one response per request. If the
response is not received before a receive timeout occurs (e.g. P2Max), the
ComPrimitive will set a receive timeout error event
(PDU_ERR_EVT_RX_TIMEOUT) and proceed to the next send interval.

1 3 Send one request and look for three responses. The ComPrimitive is
completed when three responses are received or a receive timeout occurs
(e.g. P2Max).

1 -1 Send one request and look for continuous responses. This case is equivalent
to ODX IS-CYCLIC = TRUE. The application shall cancel this ComPrimitive
since it will never finish. A cyclic receive timeout can be used if the
NumReceiveCycles is set to infinite (-1). (See CP_CyclicRespTimeout
ComParam.) In the case of a cyclic receive timeout the ComPrimitive will
transition to PDU_COPST_FINISHED.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 25

Table 6 (continued)

NumSendCycles NumReceiveCycles Description

1 -2 Send one request and wait for a receive timeout (e.g. P2Max). Should be
used for functional addressing when number of responses is unknown or with
physical addressing with possible unknown number of responses. This case
would be appropriate for ODX IS-MULTIPLE = TRUE.

1 0 Send one message and ignore any responses.

-1 0 Continuously send messages and ignore any responses.

0 1 Look for a single received message.

0 -1 Continuously look for received messages. A cyclic receive timeout will be
used if the NumReceiveCycles is set to infinite (-1). (See
CP_CyclicRespTimeout ComParam.)

NOTE If cyclic time is set to 0 in the PDU_COP_CTRL_DATA, then the ComPrimitive is put on the transmit queue
after each completion cycle, but is at a lower priority than other ComPrimitives and Tester Present Messages.

9.2.6.3 ComPrimitive principles

9.2.6.3.1 General information

The following subclauses describe how to use ComPrimitives for different communication principles known
from automotive communication protocols. All of the described actions assume the D-PDU API has been
initialized and a ComLogicalLink has been created (for details, see Table 3 — General usage of D-PDU API
function calls). In addition to the D-PDU API function calls shown in the tables, additional API calls can be
used for additional functions (like status requests, etc.). Any memory allocation or de-allocation initiated by
create, start, and destroy calls is handled within the D-PDU API.

9.2.6.3.2 Starting communication

To initiate communication between a tester and an ECU, different initialization methods exist for various
communication protocols. For OBD Initialization handling, see Annex J. The list below describes different
standard initialization use cases.

a) No initialization (using PDU_COPT_SENDRECV)

Directly start sending a request to the ECU using a PDU_COPT_SENDRECV ComPrimitive. This method
is used for protocols like CAN and SAE J1850 which do not require an initialization sequence.

b) No initialization (using PDU_COPT_STARTCOMM)

⎯ Directly start sending a request to the ECU after a PDU_COPT_STARTCOMM ComPrimitive. This
method is used for protocols like CAN and SAE J1850 which do not require an initialization sequence,
but might use a ComPrimitive message to enter diagnostic mode (e.g. StartDiagnosticSession
service). An optional message can be sent for the PDU_COPT_STARTCOMM ComPrimitive for
these protocols.

⎯ No initialization response If an optional message is sent with NumReceiveCycles != 0, then the
D-PDU API waits for a response message. If an optional message is not sent, the ComPrimitive
finishes right away and no result data is returned. The internal state of the ComLogicalLink changes
accordingly (PDU_CLLST_COMM_STARTED).

ISO 22900-2:2009(E)

26 © ISO 2009 – All rights reserved

c) 5 baud initialization (using PDU_COPT_STARTCOMM)

⎯ Initialize the communication link to the ECU by sending a 5 baud initialization sequence. This method
is used for many K-Line protocols, e.g. KWP2000. During 5 baud initialization the tester sends the
ECU address on the bus and then calculates the baud rate to be used for further communication.
See ComParams (CP_InitializationSettings, CP_5BaudMode, CP_5BaudAddressFunc,
CP_5BaudAddressPhys)

⎯ 5 baud initialization response The NumReceiveCycles shall be set to 1 for the ECU key bytes
to be returned to the client application, in this case a result message data structure (see 11.1.4.11.4
PDU_RESULT_DATA) will contain the key bytes in the following order:

⎯ PDU[0]=key byte 1

⎯ PDU[1]=key byte 2

⎯ A PDUGetComParam can be called to read the CP_Baudrate ComParam which will contain the
calculated baud rate.

⎯ No optional message will be allowed for a 5-baud initialization start communication request. The
client application should send a new SendRecv ComPrimitive for communication after a 5-baud init
completes.

⎯ After a 5-baud initialization sequence completes, the protocol handler will begin sending keep-alive
messages (See CP_TesterPresent ComParams) if enabled.

⎯ If the ECU key bytes indicate that extended timing is supported, the ComParam CP_ExtendedTiming
can be used to override the default values of ISO 14230-2.

d) Fast initialization (using PDU_COPT_STARTCOMM)

⎯ Initialize the communication link to the ECU by sending a wakeup pattern optionally followed by a
service request provided in the ComPrimitive request data.

⎯ Fast initialization response The PDU_COPT_STARTCOMM ComPrimitive behaves like a normal
SendRecv ComPrimitive if an optional request message is contained in the data. Therefore any ECU
responses that match the expected response structure will be returned to the client application.

⎯ If the ECU key bytes indicate that extended timing is supported, the ComParam CP_ExtendedTiming
can be used to override the default values of ISO 14230-2.

e) Tester Present Messages (ComLogicalLink State = PDU_CLLST_COMM_STARTED)

Tester Present messages will only be enabled when the ComLogicalLink is in the state
PDU_CLLST_COMM_STARTED. A successful PDU_COPT_STARTCOMM ComPrimitive is required to
enter this state (pCoPData for this ComPrimitive is optional). See CP_TesterPresentHandling for more
information on tester present message enabling. Once tester present handling is enabled the message is
sent immediately, prior to the initial tester present cyclic time (CP_TesterPresentTime).

See Table 7 — Starting communications for a generic approach to starting communications on a
ComLogicalLink.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 27

Table 7 — Starting communications

Sequence Action Description

1 PDUCreateCommLogicalLink Create a logical link on a physical resource. The state is
PDU_CLLST_OFFLINE until connected.

2 PDUSetComParam Set ComParams required for ECU communication, like ECU target address,
Initialization Settings, etc.

3 PDUSetUniqueRespIdTable Set of ComParams required for uniquely identifying different ECUs. A
unique identifier that will be provided by the application during this function
call is returned to the client application indicating which ECU response
matched the ComPrimitive. The unique identifier is returned to the client
application in a PDU_RESULT_DATA structure.

4 PDUConnect Physically connect the resource to the vehicle bus. The state of the
ComLogicalLink is now PDU_CLLST_ONLINE. The vehicle bus can now be
monitored with receive only type of ComPrimitives. A transmit on the vehicle
bus is possible via a PDU_COPT_STARTCOMM or
PDU_COPT_SENDRECV ComPrimitive.

5 Optional:

PDUStartComPrimitive
(PDU_COPT_STARTCOMM)

This ComPrimitive is placed on the ComPrimitive queue. Upon execution,
the ECU communication will be initialized using the configured initialization
method. An optional Start Communication Message can be sent to the ECU.
ComParams are used to define the type of initialization to perform and the
addressing type (physical/functional). In case of fast initialization the request
message, which is defined in the message data structure (pCopData), will
be sent after the wakeup pattern.

Immediately after successful initialization the following occurs:

Any ECU responses matching the CoP expected response structure are
returned as result items (PDU_IT_RESULT).

If tester present handling is enabled (see CP_TesterPresentHandling), the
message is sent immediately, prior to the initial tester present cyclic time
(CP_TesterPresentTime). After initial transmission, the periodic intervals are
started.

The ComLogicalLink is set to PDU_CLLST_COMM_STARTED.

The ComPrimitive status is set to PDU_COPST_FINISHED.

6 PDUStartComPrimitive

(PDU_COPT_SENDRECV)

Continue with ECU communication using ComPrimitives.

NOTE Tester Present messages can only be enabled if the ComLogicalLink is in
the state PDU_CLLST_COMM_STARTED (see sequence step 5 above).

9.2.6.3.3 Stopping communication

The recommended approach for stopping communication can be found in Table 8 — Stopping communication.

ISO 22900-2:2009(E)

28 © ISO 2009 – All rights reserved

Table 8 — Stopping communication

Sequence Action Description

1 …. Running ECU communication using ComPrimitives

2 PDUStartComPrimitive

(PDU_COPT_STOPCOMM)

This ComPrimitive is placed on the ComPrimitive queue. Upon execution, all
ECU communication will be terminated. An optional Stop Communication
Message can be sent to the ECU.

If no message is sent to the ECU, the ComPrimitive status directly changes to
PDU_COPST_FINISHED.

Immediately after successful stopping of ECU communications the following
occurs:

Any ECU responses matching the CoP expected response structure are
returned as result items (PDU_IT_RESULT).

The ComLogicalLink is set to PDU_CLLST_ONLINE.

All currently queued ComPrimitives and currently executing ComPrimitives
are cancelled (PDU_COPST_CANCELLED).

Periodic Tester Present Messages are stopped.

9.2.6.3.4 Send and receive handling

The recommended approach for send and receive message handling can be found in Table 9 —
ComPrimitive Send/Receive Handling.

Table 9 — ComPrimitive Send/Receive Handling

Function Description

Sending Message Handling A ComLogicalLink shall be in the state PDU_CLLST_COMM_STARTED for Tester
Present messages to be periodically sent. A ComLogicalLink can only be placed in a
Comm Started state after a successful completion of a PDU_COPT_STARTCOMM
ComPrimitive (see 9.2.6.3.2).

When a protocol running on a ComLogicalLink has been properly configured using the
ComParams for the selected protocol type, then the D-PDU API can correctly construct
a full D-PDU to be sent to the vehicle's ECU. Proper construction of a message is based
on raw mode configuration of the ComLogicalLink (see D.2.3) and is protocol specific.
Therefore proper construction could consist of message header bytes, transport layer
handling, and checksumming features. Furthermore, messages are constructed based
on the type of addressing scheme selected (physical or functional addressing defined as
a ComParam.

In non-Raw mode the first byte of the pCopData of the ComPrimitive received from the
application would usually consist of the service ID (if applicable to the protocol).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 29

Table 9 (continued)

Function Description

Receive Message Handling Every message received from the vehicle bus will first be subjected to the Pass/Block
filters (if configured). Initially the D-PDU API configures the filters based on the Unique
Response Identifier Table. The client application can override this auto configuration of
the filters by using any of the PDUIoctl commands PDU_ioctl_xxx_MSG_FILTER.

Next, the ECU message will be checked for correctness (checksum, PCI information,
etc).

The UniqueRespIdTable is then referenced to determine a match to a known ECU
identifier. The UniqueRespIdentifer table can be configured to pass all ECU identification
(see 9.4.28.7). The UniqueRespIdentifier will be used in the PDU_IT_RESULT event
item to indicate to the application which ECU the message belongs to.

Finally the D-PDU API will determine a match of the ECU message to a ComPrimitive
Expected Response Structure (See Structure for expected response). The D-PDU API
will first compare the ECU message to the current active Send/Receive ComPrimitive
and if not matched it will search through the Receive Only list. The message is
considered bound when it matches to the first ComPrimitive and no further ComPrimitive
matching is continued after the initial match.

If the response cannot be bound to any ComPrimitive's ExpectedResponseStructure,
the message is discarded.

NOTE A transport layer uses the UniqueRespIdentifer table and the ComParams from the
currently active SendRecv ComPrimitive for initial receive handling of frames/messages. If the
ComLogicalLink does not have an active SendRecv ComPrimitive, then the ComLogicalLinks active
ComParam buffer is used. Once the frame/message is bound to a ComPrimitive, the set of
ComParams attached to the ComPrimitive is used for any further processing (e.g. receive timing).

SEND ONLY

NumReceiveCycles = 0

(PDU_COPT_SENDRECV)

If the NumReceiveCycles is equal to zero and the NumSendCycles is not equal to zero,
then the ComPrimitive is considered to be a send only ComPrimitive. This type of
ComPrimitive can still be periodic by setting the delay time interval in the
PDU_COP_CTRL_DATA structure (see 11.1.4.17).

The D-PDU API will construct the proper message to be transmitted, but will not set up
any receive timers for responses from an ECU(s). Any ComParams defined for “time
between transmits” (e.g. CP_P3Min) will be used to ensure proper vehicle bus timing.

If the protocol type allows for an immediate transmit of another message, then any
pending ComPrimitives would be available for immediate execution.

Once the ComPrimitive has completed all transmission send cycles (NumSendCycles),
the status of the ComPrimitive is set to PDU_COPST_FINISHED and the status item
(see Structure for status) is placed on the ComLogicalLink's Event Queue.

RECEIVE ONLY

NumSendCycles = 0

(PDU_COPT_SENDRECV)

If the NumSendCycles is equal to zero and the NumReceiveCycles is not equal to zero,
then the ComPrimitive is considered to be a receive only ComPrimitive. The
NumReceiveCycle count is used to monitor the vehicle bus for messages that match the
ExpectedResponseStructure (see 11.1.4.18). When the receive count has been
reached, the ComPrimitive transitions to PDU_COPST_FINISHED.

Once all the expected responses have been received the status of the ComPrimitive is
set to PDU_COPST_FINISHED and the status item (see Structure for status) is placed
on the ComLogicalLink's Event Queue.

NOTE 1 A cyclic receive timeout can be used if the NumReceiveCycles is set to infinite (-1) (See
CP_CyclicRespTimeout ComParam.) In the case of a cyclic receive timeout the ComPrimitive will
transition to PDU_COPST_FINISHED. Otherwise, the application cancels the ComPrimitive via
PDUCancelComPrimitive.

NOTE 2 No pCopData bytes are supplied in this ComPrimitive type.

ISO 22900-2:2009(E)

30 © ISO 2009 – All rights reserved

Table 9 (continued)

Function Description

SEND AND RECEIVE

NumReceiveCycles != 0

NumSendCycles != 0

(PDU_COPT_SENDRECV)

When both the NumSendCycles and the NumReceiveCycles are not equal to zero, the
ComPrimitive will attempt to deliver the number of responses specified in
NumReceiveCycles each time the ComPrimitive is sent. If the number of responses
specified by NumReceiveCycles is not found before a receive timeout occurs (e.g.
P2Max), the ComPrimitive will generate an error event, indicating that a receive timeout
occurred. If the ComPrimitive is periodic, it will NOT transition to
PDU_COPST_FINISHED even on a receive timeout, the cyclic transmissions will
continue.

The D-PDU API will construct the proper message to be transmitted. Once the message
has been properly transmitted the receive timers for the ComLogicalLink will be enabled
waiting for matching ECU responses. See ExpectedResponseStructure and
PDU_COP_CTRL_DATA (11.1.4.17).

Multiple Expected Responses (IS-MULTIPLE) (11.1.4.17 PDU_COP_CTRL_DATA –
NumReceiveCycles = -2), Each received message will reset the receive timer (e.g.
P2Max) on a matching response. A receive timeout with no matching responses from
any ECU will generate an error event (PDU_ERR_EVT_RX_TIMEOUT). The
ComPrimitive will end without an error when a receive timeout has occurred (e.g.
P2Max), and at least one valid response has been received. All functional requests with
expected responses should set the NumReceiveCycles to IS-MULTIPLE (-2).

Infinite Responses (IS-CYCLIC) (11.1.4.17 PDU_COP_CTRL_DATA –
NumReceiveCycles = -1), When the ComLogicalLink completes the transmit and
receives the first positive response, the ComPrimitive is placed into a receive only mode.
This allows other ComPrimitives to be transmitted on the ComLogicalLink while still
receiving responses from the cyclic ComPrimitive. A cyclic receive timeout can be used
if the NumReceiveCycles is set to infinite (-1). (See CP_CyclicRespTimeout
ComParam.) In the case of a cyclic receive timeout the ComPrimitive will transition to
PDU_COPST_FINISHED. Otherwise, the application shall cancel the ComPrimitive via
PDUCancelComPrimitive.

Once all the expected responses have been received and all transmission send cycles
have been completed, the status of the ComPrimitive is set to PDU_COPST_FINISHED
and the status item (see Structure for status) is placed on the ComLogicalLink's Event
Queue.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 31

Table 9 (continued)

Function Description

7F Handling This level of protocol message handling has been moved to the D-PDU API to ensure
proper low-level real-time requirements. This functionality can be handled in RawMode if
the Response Code Offset ComParam is correctly configured and the number of header
bytes can be determined by the protocol handler (some protocols allow configuration of
header byte count via ComParams).

Negative response (0x7F) handling can be enabled or disabled by properly setting the
correct ComParams in a ComLogicalLink. (See ComParam CP_RCxxHandling in
Annex B).

Only response codes 0x21, 0x23 and 0x78 are configurable to be handled by the
D-PDU API. Not all protocol implementations support all negative responses codes.

The ComLogicalLink shall actively process a ComPrimitive with expected responses to a
request to proceed with any 0x7F handling (i.e. negative response handling is not
enabled for receive only ComPrimitives).

The D-PDU API will bypass any addressing information (based on protocol) to
determine if an ECU has responded with a 0x7F. The 0x7F code is typically contained in
the first byte of the payload data, followed by the requested service id, and the
Response Code (See CP_RCByteOffset for configurable response code byte offset
processing). The Response Code is extracted from the payload data and used to
determine if further 0x7F handling is necessary by the D-PDU API.

Based on the type of Response Code, the D-PDU API will begin the timing/retry
handling. The D-PDU API is protected from infinite retries by CP_RCxx
CompletionTimeout ComParam. If the ECU fails to generate a positive response in the
specified Completion Timeout time, then the D-PDU API will generate an error event
item indicating no responses received PDU_ERR_EVT_RX_TIMEOUT.

If negative response handling is not enabled or the response code is not recognized by
the D-PDU API, then the negative response message is placed in a result item and
added to the ComLogicalLink's Event Queue.

9.2.6.3.5 ComPrimitives in non-raw mode

The idea of Non-RawMode, is that everything about an ECU or a functional group of ECUs is known and can
be configured using ComParams for the selected protocol. The ComParam information would normally be
contained in a database. A database schema such as ODX, and a COMPARAM-SPEC have been developed
to support the concept of fully abstracting ComParams to be used by the D-PDU API.

Each ComLogicalLink is directed to a single ECU and/or a functional group of ECUs. The ECU information
can be configured initially and not changed during the course of ECU communication. If switching between
ECUs is necessary on a single vehicle serial bus, then it is suggested that the application create another
ComLogicalLink for the additional ECU communication.

It shall be noted that an additional ComLogicalLink cannot be created if it would result in the use of a non-
shareable resource (e.g. DLC pins have already been reserved by another ComLogicalLink with a different
protocol id). Also, if a second ComLogicalLink requires a “Start Communication Message” which causes the
vehicle bus pins to be driven into a different impedance state, this situation would have an undeterminable
behaviour on the vehicle bus. All other ComLogicalLinks that are sharing the resource would begin to report
errors because communication has been lost to their specific ECU (e.g. ISO 14230/ISO 9141-2 initialization
sequence would cause another ComLogicalLink using the same protocol and pins to lose communication to
an ECU).

9.2.6.3.6 ComPrimitives in raw mode (PassThru)

The idea of Raw Mode is that everything about an ECU or a functional group of ECUs, and the protocol is
known by the Client application. The application takes on the responsibility over the entire protocol message
structure, including header bytes and checksums. The only exception would be the necessary requirements of
things like the transport layer (ISO 15765-2) and inter-byte/inter-message timing (ISO 9141-2/ISO 14230).

ISO 22900-2:2009(E)

32 © ISO 2009 – All rights reserved

The application shall handle all knowledge about protocol header byte configuration, CAN IDs, extended
addressing, negative responses, receive timeout timing (e.g. P2Max), tester present handling, and the binding
of response(s) to the request. Therefore, the application cannot be protocol-independent (abstract) in its use
of the D-PDU API.

Raw Mode has been added by the D-PDU API to support pass-through programs such as SAE J2534-1 and
RP1210a. It is not the intended default use of the D-PDU API.

For ISO 15765, SAE J1939, and ISO 11898, the first 4 bytes of the pCopData shall be the CAN ID (11 bit or
29 bit). If extended addressing is enabled (see D.2.1), then the byte following the CAN ID contains the
extended address byte.

9.2.6.4 ComPrimitive sequence diagrams

9.2.6.4.1 Single request/single response (master/slave communication) — Event notification

This communication principle is used for classic master/slave communication (e.g. ISO 14230 KWP 2000
standard services).

Figure 8 — Single request – single response (master/slave communication)

NOTE A callback is only initiated when an event is placed into an empty queue.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 33

9.2.6.4.2 Single request/single response (master/slave communication) — Polling mode

Applications working without event notification can poll for results related to a specific ComPrimitive by calling
PDUGetStatus. In this case, the callback function will not be called as depicted in Figure 9 — Single request –
single response (master/slave communication) — Polling mode.

Figure 9 — Single request – single response (master/slave communication) — Polling mode

9.2.6.4.3 Single request/multiple responses

This communication principle is used in many protocols for finite and infinite communication sequences. The
basic principle for this ComPrimitive type is shown in Figure 10 — Single request/multiple responses.

ISO 22900-2:2009(E)

34 © ISO 2009 – All rights reserved

Figure 10 — Single request/multiple responses

NOTE 1 The API function calls PDUGetEventItem and PDUDestroyItem as well as the result data processing by the
application can be executed overlapped to the D-PDU API's receiving process of ECU responses.

NOTE 2 An event callback does not have to be called for each data item. It is up to the callback routine to check for
further event items before returning. A callback is initiated either when an event is placed into an empty queue or when
events are already queued when the PDURegisterEventCallback function is called that registers a callback function.

PDUGetEventItem actions may also be mixed with event callback function actions.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 35

9.2.6.4.4 Single request/multiple responses — Functional Addressing

Figures 11 to 14 show examples of single request/multiple response ComPrimitives for specific protocol
implementations. The API calls are not shown in detail, because they are already described in the figures
above.

Figure 11 — Example of single request/multiple responses
(ISO 14230-3 KWP2000, functional addressing)

Figure 12 — Example of single request/multiple responses
(ISO 14229-1 UDS, finite periodic mode (e.g. time window))

ISO 22900-2:2009(E)

36 © ISO 2009 – All rights reserved

Figure 13 — Example of single request/multiple responses
(ISO 14229-1 UDS, ReadDataByPeriodic-Identifier, type #2)

Figure 14 — Example of ISO 14229-1 UDS, ResponseOnEvent (RoE)

9.2.6.4.5 Single or multiple requests/no responses

This communication principle is used especially in on-board communication (e.g. CAN).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 37

Figure 15 — Single or multiple requests / no responses

9.2.6.4.6 No request/single or multiple responses

This communication principle is used especially in on-board communication (e.g. CAN).

Figure 16 — No request/single or multiple responses

9.2.6.5 Parallel execution of ComPrimitives

When the application starts a ComPrimitive with PDUStartComPrimitive, the ComPrimitive is put into the
ComLogicalLink's internal ComPrimitive queue. Several ComPrimitives may be put into the queue sequentially.
On the other end of the queue, the internal protocol driver fetches the ComPrimitives sequentially from the
queue. The protocol driver decides at which moment it is possible to start executing the next ComPrimitive.
Depending on the type of protocol, it may be possible that one or more ComPrimitives can be executed in
parallel by the protocol driver, according to certain rules, which are defined for the protocol.

EXAMPLE While a ComPrimitive delivering cyclic responses from the ECU is being executed, another single
request/single response ComPrimitive can be executed.

NOTE It is advisable that the protocol driver be able to generally execute cyclic send/receive ComPrimitives in
parallel. It depends on the implementation and how many of such ComPrimitives can be executed in parallel.

ISO 22900-2:2009(E)

38 © ISO 2009 – All rights reserved

9.2.6.6 Cancelling a running ComPrimitive

It is possible to cancel a ComPrimitive using PDUCancelComPrimitive. If the ComPrimitive is still in the
ComLogicalLink's internal ComPrimitive queue, it will just be removed from the queue. If it is already
executing in the protocol driver, execution will be cancelled without any further interaction towards the ECU.
The ComPrimitive status changes to PDU_COPST_CANCELLED. If the ComPrimitive has already reached a
PDU_COPST_FINISHED state, no further action will be taken. A running ComPrimitive is never cancelled by
starting a new ComPrimitive.

9.2.6.7 Destruction of ComPrimitives

A ComPrimitive completes when it has reached either the PDU_COPST_FINISHED state or the
PDU_COPST_CANCELLED state, this status event item is placed on the ComLogicalLink event queue. Once
a ComPrimitive has reached the FINISHED or CANCELLED state, no more result items will be queued for the
ComPrimitive in the ComLogicalLink's event queue. The D-PDU API will destroy a ComPrimitive internally as
soon as the last ComPrimitive status item is read from the event queue. After internal destruction of a
ComPrimitive, no more operations can be executed related to this ComPrimitive (a PDU ERROR
PDU_ERR_INVALID_HANDLE will be returned for a function call referencing the destroyed ComPrimitive.)

9.3 Tool integration

9.3.1 Requirement for generic configuration

The requirements to keep the D-PDU API close to existing standards on the one hand, and to take a generic
and open approach on the other hand, make it difficult to limit the capabilities and therefore simplify the API.
The configuration is not restricted to a predefined number of protocols, bus types and ComParams for
SAE J2534-1. Instead, the D-PDU API shall support any protocols, bus types and ComParams as needed,
independent of any definitions in a standard. Even the way equivalent protocols are implemented shall not be
predefined by this part of ISO 22900, i.e. there is no limitation in terms of which protocol and bus type
ComParams to use (the only exception would be protocols and ComParams defined in SAE J2534-1).

Since the D-PDU API is kept open and generic, there is a major requirement to describe the MVCI protocol
module's capabilities. Furthermore, once multiple MVCI protocol modules are bought and combined into one
setup, the application running on the same setup requires a well-defined process to determine what's installed
and what capabilities it has. There shall be a standardized entry point (similar to SAE J2534-1) and a
navigation path through the configuration of the overall setup.

9.3.2 Tool integrator – use case

An MVCI configuration used by an application may contain MVCI protocol modules and cables from different
vendors. A client may purchase different MVCI protocol modules for their different implemented features (e.g.
one MVCI protocol module has SAE J1850 support, the other MVCI protocol module has ISO 15765 support).
Each MVCI protocol module vendor shall supply the following items: one or more module description files
(MDF) (see Clause F.2), one or more cable description files (CDF) (see Clause F.3), and a D-PDU API
DLL/Shared Library (see Clause F.1). The application relies on the “Tool Integrator” to have knowledge of the
overall system. Since there is no real plug-and-play functionality between different vendors, a knowledgeable
Configuration Person would be required to use the Tool Integration Program to configure the overall system.

Figure 17 — Use case reflecting a typical integration process for an MVCI setup reflects a use case where two
MVCI protocol modules are developed and introduced to the market by two independent vendors A and B at
different times. A tool integrator, who is not necessarily one of the previous vendors, takes the MVCI protocol
module A and its respective MVCI protocol module Description File from vendor A. The tool integrator adds
information describing where to find the D-PDU API implementation A and its description file. This information
is stored in a file called D-PDU API root description file. In addition, the tool integrator knows what kind of
cables shall be used, and therefore, adds information on all potential cables and how to map them onto the
MVCI protocol module's resources. This information is stored in a file called cable description file.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 39

At some point later in time, there is a need to extend this tool's capabilities, e.g. due to a merger or new
vehicle protocols. The tool integrator adds the MVCI module description file B to his system and adapts the
information describing where to find the D-PDU API implementation B and its description file. However, the
integrator also has to adapt his cable information to reflect the correct mapping.

Figure 17 — Use case reflecting a typical integration process for an MVCI setup

Figure 18 — Example: Mapping MVCI protocol module pins to DLC pins shows an example where the
mapping of MVCI protocol module pins to the DLC (Data Link Connector) pins are depicted. In addition,
examples of the usage of these pins are shown, e.g. “K-Line 1” stands for an ISO 9141 connection. The tool
integrator has to define whether a resource of an MVCI protocol module may be mapped onto a certain pin of
his cable. For example:

⎯ “K-Line 2” of MVCI protocol module A and “K-Line 1” of MVCI protocol module B may both be mapped
onto pin “K-Line 1” of the DLC;

⎯ “K-Line 1” of MVCI protocol module A may not be mapped onto pin “1” of the DLC;

⎯ “SAEJ1850” of MVCI protocol module B may be mapped onto pin “2” of the DLC.

ISO 22900-2:2009(E)

40 © ISO 2009 – All rights reserved

As a result, the tool integrator is free to choose any kind of MVCI protocol module, but it is responsible for the
overall system configuration. Since there is no real plug-and-play functionality available, the tool integrator has
to take care of extending the configuration file deliverables.

Figure 18 — Example: Mapping MVCI protocol module pins to DLC pins

9.4 API functions – interface description

9.4.1 Overview

This subclause describes all functions the D-PDU API offers to the application. For a description of the data
types used, see 11.1.1 Abstract basic data types. Definitions for the C/C++ qualifier are contained in 11.1.2.
The function return values T_PDU_ERROR are listed in Clause D.3.

9.4.2 PDUConstruct

9.4.2.1 Purpose

Initialize the PDU API library. The D-PDU API library determines the list of all available MVCI protocol
modules and their supported resources. The D-PDU API library creates internal structures, including a
resource table. The communication state is offline, i.e. no allocation of resources and no communication over
vehicle interfaces take place.

9.4.2.2 Behaviour

a) Validates OptionStr.

b) Detects all known and accessible MVCI protocol modules.

c) Assigns Module IDs to all properly initialized MVCI protocol modules.

d) Creates a PDU_MODULE_DATA list containing MVCI protocol modules, their module types, module
handles, module status and additional vendor information strings. This function call will succeed even if
no MVCI protocol modules are detected. In the case of no detection of any MVCI protocol modules, the
call to PDUGetModuleIds will return a PDU_MODULE_ITEM with the number of entries set to zero
(NumEntries = 0).

e) All detected resources will be stored inside an internal resource table. This table will be the source for any
resource query using the functions PDUGetModuleIds, PDUGetConflictingResources,
PDUGetResourceIds, PDUGetResourceStatus, PDULockResource, and PDUUnlockResource.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 41

9.4.2.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUConstruct(CHAR8* OptionStr, void *pAPITag)

9.4.2.4 Parameters

OptionStr String containing a list of attributes and their values. An attribute and its corresponding value
are to be separated by an >=< sign. The value needs to be put inside two >'< signs. Between
pairs of attribute and value shall be at least one space character. Attributes and values are
specific to a D-PDU API implementation.

When no option is to be set, the OptionStr can either be an empty string or NULL.

pAPITag An application defined tag value. Used in event callbacks which indicate status and errors and
results for the PDU API library being used. This information can aid an application in
determining which library is making the callback. For a more detailed description of using tags
see Clause E.1.

9.4.2.5 Example

OptionStr = “UseCaching='TRUE' InterfaceCheck='FALSE' ”

9.4.2.6 Return values

Table 10 — PDUConstruct return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_SHARING_VIOLATION Function called again without a previous destruct.

PDU_ERR_INVALID_PARAMETERS At least one of the option attributes has invalid parameters.

PDU_ERR_VALUE_NOT_SUPPORTED At least one of the option values is not being supported by the D-PDU
driver.

9.4.3 PDUDestruct

9.4.3.1 Purpose

Closes all open communication links and frees communication resources. Internal memory segments shall be
freed and system-level drivers disconnected. Execution of PDUDestruct does not result in any communication
on the vehicle interfaces. After execution of PDUDestruct, PDUConstruct may be called again.

9.4.3.2 Behaviour

a) Checks internal resource table, determines any open communication links and closes them.

NOTE No communication (e.g. sending a “StopCommunication” request) takes place.

b) De-initializes all MVCI protocol modules detected before with PDUConstruct.

c) Closes all connections to connected MVCI protocol modules (See PDUModuleDisconnect).

d) Frees all internal memory resources.

ISO 22900-2:2009(E)

42 © ISO 2009 – All rights reserved

9.4.3.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUDestruct()

9.4.3.4 Parameters

There are no parameters for this function.

9.4.3.5 Return values

Table 11 — PDUDestruct return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

9.4.4 PDUIoCtl

9.4.4.1 Purpose

Generic approach to execute functions or set values related to an MVCI protocol module. An ID number
identifies the function to be executed. The input and output values are defined as demanded by the function.

The I/O controls supported by a specific MVCI protocol module are defined within the MVCI module
description file (see MVCI module description file).

9.5.1 gives a detailed view on the IOCTL API functions.

9.4.4.2 Behaviour

a) Validates all input parameters.

NOTE Required pointer parameters cannot be NULL.

b) Function takes an input data structure as allocated by the application.

c) Extracts required information from the input data structure and executes command.

d) Allocates and fills the output data in the call-by-reference variable pOutputData. The structure OutputData
has to be freed by calling PDUDestroyItem from the application.

9.4.4.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUIoCtl(UNUM32 hMod, UNUM32 hCLL, UNUM32 IoCtlCommandId,
PDU_DATA_ITEM *pInputData, PDU_DATA_ITEM **pOutputData)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 43

9.4.4.4 Parameters

hMod Handle of the MVCI protocol module to be controlled by the specified I/O control
command. hCLL shall be set to PDU_HANDLE_UNDEF to specify module related
commands (see 9.5.1).

hCLL Handle of the ComLogicalLink to be controlled by the specified I/O control command.

IoCtlCommandId ID identifying the I/O control command. All IDs supported by a specific MVCI protocol
module have to be defined within the MVCI module description file (see MVCI module
description file).

pInputData Input data item for specified command or NULL if no input data is required. The input data
item shall be created and managed by the application. The structure of the data item is
described in 11.1.4.3.

pOutputData Call-by-reference place for storing the output data item pointer. If NULL, then no output
data item will be allocated and filled by the D-PDU API implementation. If a valid address
is provided, the D-PDU API implementation will allocate a PDU_DATA_ITEM item and fill
in the output data of the specified command. A reference is stored in *pOutputData. After
usage, the application shall free the allocated data item by calling PDUDestroyItem. The
structure of the data item is described in 11.1.4.3.

9.4.4.5 Examples

PDUIoCtl may be used to set programming voltages, reset the MVCI protocol module, or run a software
update.

9.4.4.6 Return values

Table 12 — PDUIoctl return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_ID_NOT_SUPPORTED ID of I/O control not supported by this MVCI protocol module.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) reference pointer for an IOCTL Command that expects
one or both of the reference pointers to be valid (pInputData or
pOutputData).

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

9.4.5 PDUGetVersion

9.4.5.1 Purpose

Function obtains version information from an MVCI protocol module.

ISO 22900-2:2009(E)

44 © ISO 2009 – All rights reserved

9.4.5.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Fill out the PDU_VERSION_DATA structure allocated by the client application.

9.4.5.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetVersion(UNUM32 hMod, PDU_VERSION_DATA *pVersionData)

9.4.5.4 Parameters

hMod Handle of the MVCI protocol module, for which the version information is to be requested.

pVersionData Call-by-reference place for storing the version information. The structure of the data item
is described in 11.1.4.14.

9.4.5.5 Return values

Table 13 — PDUGetVersion return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) pVersionData parameter.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

9.4.6 PDUGetStatus

9.4.6.1 Purpose

Function obtains runtime information (status, life sign, etc.) from an MVCI protocol module, ComLogicalLink or
ComPrimitive.

9.4.6.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Get the latest status information for the specified handle (Module or CLL or CoP) and store the
information in the memory allocated by the client application.

c) If the D-PDU API detects a PC software version out-of-date with the MVCI protocol module firmware, the
status returned will be PDU_MODST_NOT_READY.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 45

9.4.6.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetStatus(UNUM32 hMod, UNUM32 hCLL, UNUM32 hCoP,
T_PDU_STATUS *pStatusCode, UNUM32 *pTimestamp, UNUM32 *pExtraInfo)

9.4.6.4 Parameters

hMod Handle of MVCI protocol module for which the status code is to be requested. hCLL and
hCoP shall be set to PDU_HANDLE_UNDEF to return status of only the module.

hCLL Handle of ComLogicalLink for which the status code is to be requested. hCop shall be set
to PDU_HANDLE_UNDEF to return status of only the ComLogicalLink.

hCoP Handle of ComPrimitive for which the status code is to be requested.

pStatusCode Call-by-reference place for storing the status code (see D.1.4).

pTimestamp Call-by-reference place for storing timestamp in microseconds.

pExtraInfo Call-by-reference place for storing additional information. For ComPrimitives, pExtraInfo
returns 0. For MVCI protocol modules and ComLogicalLinks, pExtraInfo contains
additional information which is defined by the MVCI protocol module supplier. If no
information is available, it shall return 0.

9.4.6.5 Return values

Table 14 — PDUGetStatus return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) pStatusCode, pTimestamp or pExtraInfo.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module, ComPrimitive or ComLogicalLink handle.

9.4.7 PDUGetLastError

9.4.7.1 Purpose

Function obtains the code for the last error from an MVCI protocol module or ComLogicalLink. This function
only returns the LAST error that occurred for the handle, and has been added to this specification for
SAE J2534-1 support. For proper error handling, a client application should be reading the error events stored
in the respective event queues to retrieve a precise chronological order of events (see PDUGetEventItem for
more information on retrieving event items).

By the time this function is called, the LAST error may already have been removed from the event queue. This
also means that the provided hCoP handle may no longer be valid because the hCoP might already be
finished and its associated resources freed.

ISO 22900-2:2009(E)

46 © ISO 2009 – All rights reserved

9.4.7.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Get the last error information for the specified handle (Module or CLL) and store the information in the
memory allocated by the client application.

c) In the case of an error being associated with a ComPrimitive, the ComPrimitive handle is returned with
the error code.

9.4.7.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetLastError(UNUM32 hMod, UNUM32 hCLL, T_PDU_ERR_EVT
*pErrorCode, UNUM32 *phCoP, UNUM32 *pTimestamp, UNUM32 *pExtraErrorInfo)

9.4.7.4 Parameters

hMod Handle of MVCI protocol module for which the error code is to be requested. hCLL shall
be set to PDU_HANDLE_UNDEF to return the last error of the MVCI protocol module.

hCLL Handle of ComLogicalLink for which the error code is to be requested.

phCoP If the last error pertained to a ComPrimitive then phCoP will contain the handle of the
ComPrimitive, or else phCoP is set to PDU_HANDLE_UNDEF.

pErrorCode Call-by-reference place for storing the error code (see Clause D.4). If no last error has
been stored for the specified handle, then pErrorCode will contain
PDU_ERR_EVT_NOERROR.

pTimestamp Call-by-reference place for storing timestamp.

pExtraErrorInfo Call-by-reference place for storing extra error information. The ExtraErrorInfo code can be
referenced from the MDF file.

9.4.7.5 Return values

Table 15 — PDUGetLastError return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) pErrorCode, phCoP, pTimestamp or pExtraErrorInfo.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 47

9.4.8 PDUGetResourceStatus

9.4.8.1 Purpose

Obtain resource status information from the D-PDU API. All resources whose status is to be retrieved are
specified in the pResourceStatus structure. For each requested resource id, the corresponding resource
status is reported back in the same structure.

The caller supplies a reference to a memory object that is an input/output resource status item
(pResourceStatus). The caller-supplied memory object is of the type PDU_RSC_STATUS_ITEM. The caller
shall provide a pointer to the data item object, specifying the correct type (i.e. == PDU_IT_RSC_STATUS),
and the number of PDU_RSC_STATUS_DATA objects for which status is to be retrieved. The D-PDU API
shall validate the object and then fill in the output portions of the structure.

9.4.8.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Function takes pResourceStatus structure as allocated by the application.

c) Fills in the status information for each requested resource id.

9.4.8.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetResourceStatus(PDU_RSC_STATUS_ITEM *pResourceStatus)

9.4.8.4 Parameters

pResourceStatus Call-by-reference place for storing the status of all requested resource ids. The caller
pre-fills the data structure prior to the call with the resource ids of interest. Data structure
is described in 11.1.4.4.

9.4.8.5 Return values

Table 16 — PDUGetResourceStatus return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle contained in the pResourceStatus
structure.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) pResourceStatus, or one or more invalid resource ids.

ISO 22900-2:2009(E)

48 © ISO 2009 – All rights reserved

9.4.9 PDUCreateComLogicalLink

9.4.9.1 Purpose

9.4.9.1.1 General

Function creates a ComLogicalLink for a given resource id. After creation, internal resources for this link are
reserved and the communication state is offline, i.e. no vehicle communication is performed. However, the
MVCI protocol module hardware shall be ready for communication at this point.

The most appropriate scheme for determining conflicting resources is to make use of MDF and CDF content
that describes which resources conflict with one another. The D-PDU API gives additional support to the
application by supplying a list of conflicts for a given resource (PDUGetConflictingResources) across multiple
MVCI protocol modules of a single vendor.

The D-PDU API supports two schemes to create a ComLogicalLink. In the first scheme, the D-PDU API is
provided with a set of resource items (bus type, protocol, and pins), but no resource id. In the second scheme,
the D-PDU API is provided with a known available resource for an MVCI protocol module.

9.4.9.1.2 Unknown Resource Id Scheme

For the unknown resource id scheme, the application is allowed to call PDUCreateComLogicalLink with a set
of resources for that link (protocol id, bus type id, pin ids), without having previously checked whether that set
of resources is supported by this device, whether the resources are available, or whether this request might
conflict with another.

Although this scheme avoids the need for applications to check for availability and conflicts, it is expected that
multi-connection applications can be supported. When an application requires multiple ComLogicalLinks, it
may call PDUCreateComLogicalLink multiple times followed by corresponding calls to PDUConnect. The
D-PDU API implementation has the opportunity to rearrange the resource requests implied by calls to
PDUCreateComLogicalLink in order to avoid resource conflicts.

9.4.9.1.3 Specific Resource Id Scheme

For the specific resource id scheme, only the ResourceId parameter is used in PDUCreateComLogicalLink.
This id would be obtained by either reading the MDF file or calling PDUGetResourceIds, and could optionally
be checked for availability and conflicts, at the discretion of the application (PDUGetResourceStatus and
PDUGetConflictingResources).

9.4.9.2 Behaviour

a) Validate all input parameters.

NOTE Required pointer parameters cannot be NULL.

b) Check if resource is still available.

c) If available, mark resource as “in use” in the resource table.

d) Only the ComLogicalLink which uses PDULockResource will get exclusive rights to modify the physical
ComParams for the resource (See PDULockResource). Therefore, the default behaviour for
ComLogicalLinks which share a physical resource is that they may all modify the physical ComParams.
Since there is only one set of physical ComParams, each ComLogicalLink sharing a physical resource
will read the last values set.

e) The event status item (PDU_CLLST_OFFLINE) will NOT be generated on creation of a ComLogicalLink.
It shall be assumed by the application that OFFLINE is the initial status after creation. This is required
since the event callback function has not yet been defined by the application for the ComLogicalLink.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 49

9.4.9.2.1 Behaviour — Use Cases

When a ComLogicalLink changes status, a status event item is generated (see Status code values). The
following list describes each status change use case.

a) Use Case: CLL State = PDU_CLLST_OFFLINE

This is the initial state of the ComLogicalLink on creation (PDUCreateComLogicalLink). NO status event
item is generated on the initial creation of a ComLogicalLink because the callback registration requires
the ComLogicalLink handle (hCll) (See PDURegisterEventCallback). The ComLogicalLink shall be in the
state PDU_CLLST_ONLINE to allow any ComPrimitive queuing (See PDUConnect and
PDUStartComPrimitive).

b) Use Case: CLL State Change = (any state -> PDU_CLLST_OFFLINE)

The ComLogicalLink transitions to PDU_CLLST_OFFLINE from any other ComLogicalLink state on a
successful function call to PDUDisconnect or on a loss of communication to a module. All ComPrimitives
currently executing (i.e. periodic) and all ComPrimitives in the CoP queue will be cancelled
(PDU_COPST_CANCELLED). A status event item, PDU_COPST_CANCELLED, is generated for each
active CoP for the ComLogicalLink. The orders of events under the case of losing communications to a
module are: PDU_ERR_EVT_LOST_COMM_TO_VCI, PDU_COPST_CANCELLED,
PDU_CLLST_OFFLINE, and PDU_MODST_NOT_AVAIL.

c) Use Case: CLL State Change = (PDU_CLLST_OFFLINE -> PDU_CLLST_ONLINE)

The ComLogicalLink changes state from PDU_CLLST_OFFLINE to PDU_CLLST_ONLINE after a
successful call to PDUConnect.

d) Use Case: CLL State Change = (PDU_CLLST_ONLINE -> PDU_CLLST_COM_STARTED)

The ComLogicalLink changes state from PDU_CLLST_ONLINE to PDU_CLLST_COM_STARTED after
successful execution of the ComPrimitive of type PDU_COPT_STARTCOMM (See
PDUStartComPrimitive). If tester present handling is enabled (see CP_TesterPresentHandling), the
message is sent immediately, prior to the initial tester present cyclic time (CP_TesterPresentTime). After
initial transmission the periodic tester present cycles begin.

NOTE Tester Present messages are only enabled in the state PDU_CLLST_COM_STARTED.

e) Use Case: CLL State Change = (PDU_CLLST_COM_STARTED -> PDU_CLLST_ONLINE)

The ComLogicalLink changes state from PDU_CLLST_COM_STARTED to PDU_CLLST_ONLINE after
successful execution of the ComPrimitive of type PDU_COPT_STOPCOMM.

9.4.9.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUCreateComLogicalLink(UNUM32 hMod, PDU_RSC_DATA *pRscData,
UNUM32 resourceId, void *pCllTag, UNUM32 *phCLL, PDU_FLAG_DATA
*pCllCreateFlag)

9.4.9.4 Parameters

hMod Handle of MVCI protocol module

pRscData Resource Data Objects used to define the settings for a ComLogicalLink. Data structure
described in 11.1.4.8.

Unknown Resource Scheme: The pRscData shall not be NULL. All elements in
pRscData are checked for validity. The resourceId parameter shall be set to
PDU_ID_UNDEF.

Specific Resource Id Scheme: pRscData shall be set to NULL. The resourceId
parameter is used instead and shall be valid.

ISO 22900-2:2009(E)

50 © ISO 2009 – All rights reserved

resourceId Resource Id which maps to the resource data objects defined in the D-PDU API
Resource Table. This information is used to define the settings for the ComLogicalLink.

Unknown Resource Scheme: The resourceId parameter shall be set to
PDU_ID_UNDEF. The pRscData shall not be NULL.

Specific Resource Id Scheme: The resourceId parameter shall be valid. The Resource
Objects are selected from the D-PDU API Resource Table using the “resourceId”
parameter. pRscData shall be set to NULL.

pCllTag An application defined tag value. Used in event callbacks which indicate status and
errors and results for the ComLogicalLink. For a more detailed description of using tags
see Clause E.1.

phCLL Call-by-reference place for storage of ComLogicalLink handle.

pCllCreateFlag Call-by-reference place for storage of flag bits used in creating a ComLogical Link.
See 11.1.4.13 and Table D.6 — CllCreateFlag.

9.4.9.5 Return values

Table 17 — PDUCreateComLogicalLink return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid NULL pointer for phCLL, invalid NULL pointer for pCllCreateFlag,
or invalid resource id.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_RESOURCE_BUSY Resource busy. Resource already in use.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

9.4.10 PDUDestroyComLogicalLink

9.4.10.1 Purpose

Destroys the given ComLogicalLink.

9.4.10.2 Behaviour

a) Validate all input parameters.

b) This function destroys all unread items in the ComLogicalLink's event queue.

c) All ComPrimitives for the ComLogicalLink are cancelled without generating a
PDU_COPST_CANCELLED event (because the handle of the ComLogicalLink is no longer valid).

d) Any items that have been previously “read” by using PDUGetEventItem are still “reserved” by the
application. A call to PDUDestroyItem is still necessary to release any “reserved” memory.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 51

e) The ComLogicalLink is disconnected from the physical resource.

f) The D-PDU API releases the physical resource from the ComLogicalLink.

1) Shared resource behaviour:

⎯ If the resource is shared by another ComLogicalLink, then the physical ComParams remain
unchanged.

⎯ The physical resource remains connected to the physical bus if the sharing ComLogicalLinks are
NOT in the PDU_CLLST_OFFLINE state.

⎯ If the ComLogcialLink had a lock on the physical ComParams and/or the physical transmit
queue, the lock will automatically be removed. When the change of lock status occurs, an
information callback is made to the shared ComLogicalLinks indicating a change in lock status
(See PDULockResource and PDUUnlockResource and PDU_IT_INFO).

2) Not shared resource behaviour:

⎯ If the resource is not shared by other ComLogicalLinks, then it becomes available to the whole
system (PDU_RSCST_AVAIL_NOT_IN_USE).

g) The hCLL handle is no longer valid. No event items are queued during this function call.

9.4.10.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUDestroyComLogicalLink(UNUM32 hMod, UNUM32 hCLL)

9.4.10.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink to be destroyed.

9.4.10.5 Return values

Table 18 — PDUDestroyComLogicalLink return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See PDUModuleConnect
function.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

9.4.11 PDUConnect

9.4.11.1 Purpose

Physically connect a ComLogicalLink to the vehicle interface. The ComLogicalLink shall be in the
communication state “offline” when the function is called. After execution, the communication state changes
from “offline” to “online”. This function call is required before any communication to the vehicle ECU can take
place.

ISO 22900-2:2009(E)

52 © ISO 2009 – All rights reserved

9.4.11.2 Behaviour

a) Validate all input parameters.

b) Put working buffer ComParams into the active buffer. Locked physical ComParams are not changed.
When the condition occurs that any physical ComParam is different than the locked physical ComParam
an error event item is generated for the CLL (PDU_ERR_EVT_RSC_LOCKED) indicating that one or
more physical ComParams do not match the actual list of physical ComParams. The ComLogicalLink will
still transition to the ONLINE state even if the physical ComParams do not match.

c) Put the working table of Unique Response Identifiers into the active table.

d) Configure and enable the ComLogicalLink filters. Use the URID table for the filter configuration unless the
client application has configured filters prior to PDUConnect using any of the PDUIoCTL function calls:
PDU_START_MSG_FILTER, PDU_CLEAR_MSG_FILTER, and PDU_STOP_MSG_FILTER. The
configuration by the client application overrides any D-PDU API internal configuration using the URID
table.

e) Physically connect to the vehicle bus.

NOTE A physical connection to the vehicle bus is not done at the time of PDUConnect when a
PDU_COPT_STARTCOMM is required to determine proper physical bus parameters, e.g. connection for
ISO_OBD_on_ISO_15765_4 (OBD on CAN). (See J.1.3.4.). Improper configuration of physical ComParams could
cause significant bus errors.

f) Set the state of the CLL to PDU_CLLST_ONLINE and generate an event indicating the new state.

9.4.11.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUConnect(UNUM32 hMod, UNUM32 hCLL)

9.4.11.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink to be connected to the vehicle interface.

9.4.11.5 Return values

Table 19 — PDUConnect return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_CLL_CONNECTED CLL is already in the “online” state.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See PDUModuleConnect
function.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 53

9.4.12 PDUDisconnect

9.4.12.1 Purpose

Physically disconnect ComLogicalLink from vehicle interface. The ComLogicalLink shall be in the
communication state “online” or “com_started” when the function is called. After execution, the communication
state changes to “offline”. After calling the function, no more communication to the vehicle ECU may take
place.

9.4.12.2 Behaviour

a) Validate input parameters.

b) Prevent initiation of new ComPrimitives by marking ComLogicalLink as “disconnected” in the internal
resource table.

c) Cancel all active (executing) ComPrimitives. Cancel all idle ComPrimitives from the ComPrimitive queue.

d) All ComParam values and ComLogicalLink filters are preserved for a future reconnection (i.e. they are not
returned to their default values).

e) Physically disconnect the ComLogicalLink from the resource. The resource is still reserved by the
ComLogicalLink until a PDUDestroyComLogicalLink function call has been completed.

Shared resource behaviour:

⎯ if the resource is shared by another ComLogicalLink, then the physical ComParams remain unchanged;

⎯ if the resource is shared by another ComLogicalLink, then the physical resource remains connected to
the physical bus if the sharing ComLogicalLinks are NOT in the PDU_CLLST_OFFLINE state;

⎯ if the ComLogcialLink had a lock on the physical ComParams and/or the physical transmit queue, the lock
will automatically be removed. When the change of lock status occurs, an information callback is made to
the shared ComLogicalLinks indicating a change in lock status. (See PDULockResource and
PDUUnlockResource and PDU_IT_INFO.)

9.4.12.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUDisconnect(UNUM32 hMod, UNUM32 hCLL)

9.4.12.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink to be disconnected from vehicle interface.

9.4.12.5 Return values

Table 20 — PDUDisconnect return values

Definition Description
PDU_STATUS_NOERROR Function call successful.
PDU_ERR_FCT_FAILED Function call failed.
PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.
PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.
PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.
PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See PDUModuleConnect

function.
PDU_ERR_CLL_NOT_CONNECTED ComLogicalLink is not connected.

ISO 22900-2:2009(E)

54 © ISO 2009 – All rights reserved

9.4.13 PDULockResource

9.4.13.1 Purpose

PDULockResource will allow exclusive privileges for a ComLogicalLink on a physical resource. This function
can be used by an application which wants to have physical bus protection from multiple ComLogicalLinks
which share the physical resource.

If the function call is successful, the ComLogicalLink has been granted exclusive rights to the physical
resource based on the lockMask value (see Table D.2 — Resource lock/unlock values (bit encoded)).

Monitoring or receiving messages from a physical resource is not influenced nor affected by locking.

The call to PDULockResource will fail if another ComLogicalLink already has acquired the requested lock type
on the same resource.

9.4.13.2 Behaviour

a) Validate all input parameters.

b) Check for other locks and currently active transmissions on the resource. Resume with c) if this is not the
case. Otherwise, return with value PDU_ERR_RSC_LOCKED or PDU_ERR_FCT_FAILED.

c) Set the status of the ComLogicalLink's resource.

9.4.13.3 Behaviour — Use Cases

a) Transmit Queue Lock A lock on the transmit queue will force a SUSPEND_TX_QUEUE to all other
ComLogicalLinks sharing the physical resource. Any new ComLogicalLink are assumed to have their
ComPrimitive queue in the SUSPEND_TX_QUEUE mode. See PDUIoctl function
PDU_IOCTL_SUSPEND_TX_QUEUE. When the lock on the transmit queue is released a
RESUME_TX_QUEUE is sent to all ComLogicalLinks sharing the physical resource (See
PDU_IOCTL_RESUME_TX_QUEUE).

NOTE When a ComPrimitive queue is suspended, tester present messages will also be stopped if enabled (see
CP_TesterPresentHandling).

b) Physical ComParam Lock A lock on the physical ComParams (ComParam ActiveBuffer) will not
terminate any ongoing transmissions. However, calls to PDU_COPT_UPDATEPARAM for physical
ComParams on a 2nd ComLogicalLink will cause an error event for the 2nd CLL
(PDU_ERR_EVT_RSC_LOCKED).

c) Automatic unlocking An automatic unlock occurs during a PDUDestroyComLogicalLink and
PDUDisconnect function calls.

d) Change of lock status When the lock status of a resource changes an information callback
(PDU_IT_INFO) is made to other ComLogicalLinks that are sharing the physical resource, informing them
that a lock status has changed. A client application can then call PDUGetResourceStatus to determine
the current lock state of the physical resource (see Table D.1 — Resource status values (bit encoded)).

9.4.13.4 C/C++ prototype

EXTERNC T_PDU_ERROR PDULockResource(UNUM32 hMod, UNUM32 hCLL, UNUM32 LockMask)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 55

9.4.13.5 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink to be granted exclusive access to its resource.

LockMask Bit encoded mask to request a type of exclusive privilege to a physical resource
(see Table D.2 — Resource lock/unlock values (bit encoded)).

9.4.13.6 Return values

Table 21 —PDULockResource return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_RSC_LOCKED The requested resource is already in the “locked” state.

9.4.14 PDUUnlockResource

9.4.14.1 Purpose

PDUUnlockResource releases the lock type on the resource the ComLogicalLink is connected to as long as
the lock type has previously been locked by the same ComLogicalLink.

If the function call is successful, the lock will be released for the resource.

9.4.14.2 Behaviour

a) Validate all input parameters.

b) Set the status of the ComLogicalLink's resource.

c) When the lock status of a resource changes, an information callback (PDU_IT_INFO) is made to other
ComLogicalLinks that are sharing the physical resource, informing them that a lock status has changed. A
client application can then call PDUGetResourceStatus to determine the current lock state of the physical
resource (see Table D.1 — Resource status values (bit encoded)).

9.4.14.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUUnlockResource(UNUM32 hMod, UNUM32 hCLL, UNUM32 LockMask)

9.4.14.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink unlocking the resource.

LockMask Bit encoded mask to release the type of exclusive privilege to a physical resource (see
Table D.2 — Resource lock/unlock values (bit encoded)).

ISO 22900-2:2009(E)

56 © ISO 2009 – All rights reserved

9.4.14.5 Return values

Table 22— PDUUnlockResource return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_RSC_LOCKED_BY_OTHER_CLL The requested resource is locked by a different ComLogicalLink.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_RSC_NOT_LOCKED The resource is already in the unlocked state.

9.4.15 PDUGetComParam

9.4.15.1 Purpose

PDUGetComParam obtains a communication or bus ComParam out of the working buffer. The values in the
working buffer correspond to the values that would be set in the MVCI protocol module when it has executed
all previous Communication Primitives that currently exist in the ComPrimitive queue and any changes
previously made by this logical link via PDUSetComParam. The sequence diagrams in Figure 19 — Example
for ComParam buffer operation on a PDUConnect (1/5), Figure 20 — Example for ComParam buffer operation
using TempParamUpdate flag (2/5), Figure 21 — Example for ComParam buffer operation using
PDU_COPT_UPDATEPARAM (3/5) and the buffer diagram in Figure 22 — Example Buffer Diagram for
ComParam buffer operation example (4/5), illustrate the relationship between the active buffer, working buffer
and communication primitives.

9.4.15.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Allocate memory for the PDU_PARAM_ITEM result.

c) Fill out the ComParam information from the ComParam working buffer.

9.4.15.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetComParam(UNUM32 hMod, UNUM32 hCLL, UNUM32 ParamId,
PDU_PARAM_ITEM **pParamItem)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 57

9.4.15.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink for which the ComParam is to be requested.

ParamId ID value of the ComParam, which is to be requested. The MVCI protocol module
supplier provides the ComParam ID values in the MDF.

pParamItem Call-by-reference place for storing the Item with the requested ComParam from the
MDF, according to the specified ParamId. The item is allocated by the D-PDU API and
has to be released after use from the application by calling the function
PDUDestroyItem(). Data structure described in 11.1.4.5.

9.4.15.5 Return values

Table 23 — PDUGetComParam return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module Handle or ComLogicalLink handle.

PDU_ERR_INVALID_PARAMETERS Invalid ComParam ID or Invalid NULL pointer for pParamItem.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_COMPARAM_NOT_SUPPORTED ComParam is not supported, e.g. because it is of type PDU_PS_ECU,
PDU_PS_OPTIONAL or PDU_PC_UNIQUE_ID.

9.4.15.6 Example for ComParam Buffer Operation

Table 24 — Example for ComParam Buffer Operation describes example operations of ComParam buffer
control. Diagram representations of the sequence steps are reflected in Figure 19 — Example for ComParam
buffer operation on a PDUConnect (1/5) to Figure 23 — Example Diagram for ComPrimitive Queuing (5/5).

ISO 22900-2:2009(E)

58 © ISO 2009 – All rights reserved

Table 24 — Example for ComParam Buffer Operation

Sequence
(figure)

Action Working
Buffer (P2)

Active
Buffer (P2)

Notes

1
(1/5)

PDUCreateCommLogicalLink Defaults Defaults This will be the state of the ComParams.
(P2 will equal the default value in both
buffers.)

2
(1/5)

PDUGetComParam Defaults Defaults Obtains ComParam out of the Working
Buffer.

3
(1/5)

PDUSetComParam (P2=50 ms) 50 ms Defaults Modifies the ComParam in the Working
Buffer.

4
(1/5)

PDUConnect 50 ms 50 ms This function call copies the ComParams
in the Working Buffer to the Active Buffer.

5
(1/5)

PDUStartCom Primitive1
(PDU_COPT_STARTCOMM)

50 ms 50 ms This Com Primitive is now placed on the
queue with an association to the Active
Buffer settings (P2=50 ms).

6
(2/5)

PDUSetComParam (P2=30 ms) 30 ms 50 ms Modifies the ComParam in the Working
Buffer.

7
(2/5)

PDUStartComPrimitive2
PDU_COPT_SENDRECV) with
TempParamUpdate flag set

30 ms 50 ms This Com Primitive is now placed on the
queue with an association to the Working
Buffer settings (P2=30 ms).

7.1
(2/5)

Return of function call
PDUStartComPrimitive2

50 ms 50 ms This specification requires that the
Working Buffer is restored to Active Buffer
upon the return of the
PDUStartComPrimitive function call with
the TempParamUpdateFlag set to 1.
(Working Buffer P2 is reset to 50 ms.)

8
(2/5)

PDUGetComParam 50 ms 50 ms Gets the ComParam from the Working
Buffer (P2=50 ms).

9
(3/5)

PDUSetComParam (P2=20 ms) 20 ms 50 ms Modifies the ComParam in the Working
Buffer (P2=20 ms).

10
(3/5)

PDUGetComParam 20 ms 50 ms Gets the ComParam from the Working
Buffer (P2=20 ms).

11
(3/5)

PDUStartCom Primitive3
(COPT_SENDRECV)

20 ms 50 ms This Com Primitive is now placed on the
queue with an association to the Active
Buffer settings (P2=50 ms).

12
(3/5)

PDUStartCom Primitive4
(COPT_UPDATEPARAM)

20 ms 20 ms This function call copies the Working
Buffer into the Active Buffer after which it
is placed on the queue. (Active Buffer P2
is set to 20 ms.)

13
(3/5)

PDUSetComParam (P2=40 ms) 40 ms 20 ms Modifies the ComParam in the Working
Buffer (P2=40 ms).

14
(3/5)

PDUGetComParam 40 ms 20 ms Gets the ComParam from the Working
Buffer (P2=40 ms).

15
(3/5)

PDUStartCom Primitive5
(COPT_SENDRECV)

20 ms 20 ms This Com Primitive is now placed on the
queue with an association to the Active
Buffer settings (P2=20 ms).

16
(5/5)

PDUStartCom Primitive6
(COPT_SENDRECV) with
TempParamUpdate flag set

40 ms 20 ms This Com Primitive is now placed on the
queue with an association to the Working
Buffer settings (P2=40 ms).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 59

9.4.15.7 Example for ComParam buffer operation for PDUConnect

Figure 19 — Example for ComParam buffer operation on a PDUConnect (1/5) shows the sequence between a
PDUCreateComLogical function call and a PDUConnect function call. All PDUSetComParam calls store the
ComParam information in the working buffer. The working buffer is copied to the active buffer when a
PDUConnect function is called. In the example, the P2 ComParam was set to its initial default value when the
ComLogicalLink was created. The value was changed by a PDUSetComParam function and moved to the
active buffer on a PDUConnect. The first ComPrimitive (CoP1) gets the active buffer of ComParams attached
to it (i.e. the P2 ComParam value is 50 ms).

Figure 19 — Example for ComParam buffer operation on a PDUConnect (1/5)

9.4.15.8 Example for ComParam buffer operation using TempParamUpdate flag

Figure 20 — Example for ComParam buffer operation using TempParamUpdate flag (2/5) shows the
sequence of operations when the TempParamUpdate flag is set to 1 in PDU_COP_CTRL_DATA for a
ComPrimitive. In the example, the P2 ComParam is set to 50 ms in the active buffer. The working buffer
contains a P2 ComParam value of 30 ms. When the ComPrimitive (CoP2) is started with the
TemParamUpdate flag set to 1, the ComPrimitive gets the working buffer of ComParams attached to it. The
ComPrimitive (CoP2) uses the P2 ComParam value of 30 ms until it is finished (i.e. status is set to
PDU_COPST_FINISHED). But, the working buffer gets restored to the active buffer settings immediately after
the ComPrimitive was placed on the CoP Queue (i.e. any changes made to the working buffer are cleared
immediately after the PDUStartComPrimitive function is called with the TempParamUpdate flag set to 1).

ISO 22900-2:2009(E)

60 © ISO 2009 – All rights reserved

Figure 20 — Example for ComParam buffer operation using TempParamUpdate flag (2/5)

9.4.15.9 Example for ComParam buffer operation using PDU_COPT_UPDATEPARAM

Figure 21 — Example for ComParam buffer operation using PDU_COPT_UPDATEPARAM (3/5) shows the
sequence of operations to permanently move a ComParam from the working buffer to the active buffer, and
how this move does NOT affect other ComPrimitives which are currently executing or already in the CoP
queue. In the example, ComPrimtive (CoP3) is using a set of ComParams with P2 set to 50 ms. The
application wants to change this value for all future ComPrimitives to 20 ms. The working buffer gets set with
P2 ComParam value of 20 ms. When the ComPrimitive (CoP4) is started with the CopType of
PDU_COPT_UPDATEPARAM, the working buffer is moved to the active buffer. This change does not affect
the CoP3 ComPrimitive. The CoP4 ComPrimitive finishes immediately (i.e. status is set to
PDU_COPST_FINISHED). Therefore, when the next ComPrimitive is started (CoP5), it will use a P2
ComParam value of 20 ms.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 61

Figure 21 — Example for ComParam buffer operation using PDU_COPT_UPDATEPARAM (3/5)

9.4.15.10 Example for ComParam buffer attachment to a ComPrimitive

Figure 22 — Example Buffer Diagram for ComParam buffer operation example (4/5) shows that each
ComPrimitive gets its own ComParam buffer set at the time the ComPrimitive is placed in the CoP queue (i.e.
at the time of the PDUStartComPrimitive function call). A ComParam buffer is “tied” to a ComPrimitive of types
PDU_COPT_SENDRECV, PDU_COPT_STARTCOMM, and PDU_COPT_STOPCOMM for the life of the
ComPrimitive (i.e. PDU_COPST_FINISHED or PDU_COPST_CANCELLED). A queued active buffer is
temporarily used for a ComPrimitive of type PDU_COPT_UPDATEPARAM until the ComPrimitive goes to
executing (PDU_COPST_EXECUTING). At the time the ComPrimitive goes to executing the queued active
buffer is permanently moved to the active buffer used by the ComLogicalLink and ComPrimitives.

ISO 22900-2:2009(E)

62 © ISO 2009 – All rights reserved

The physical ComParams are handled uniquely such that all ComLogicalLinks sharing a physical resource will
read the same physical ComParam values. Any ComLogicalLink may modify the physical ComParams unless
a ComLogicalLink has requested exclusive privilege to control the physical ComParams (See
PDULockResource function).

NOTE Physical ComParams cannot be changed using the TempParamUpdate flag in a PDUStartComPrimitive
function call.

Figure 22 — Example Buffer Diagram for ComParam buffer operation example (4/5)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 63

9.4.15.11 Additional example for ComPrimitive queuing

Figure 23 — Example Diagram for ComPrimitive Queuing (5/5) gives an additional example of the order of
ComPrimitive queuing for the above ComPrimitive sequence operation.

Figure 23 — Example Diagram for ComPrimitive Queuing (5/5)

9.4.16 PDUSetComParam

9.4.16.1 Purpose

The PDUSetComParam function transfers a ComParam setting to the D-PDU API for the given
ComLogicalLink. The ComParam will be stored in a working buffer ComParam set. Thus, multiple ComParam
changes can be achieved by multiple sequential calls of the PDUSetComParam function. The working buffer
ComParam set of all ComParam changes will become active for the ComLogicalLink on a PDUConnect or
when a ComPrimitive of type PDU_COPT_UPDATEPARAM is issued. A temporary set of ComParam
changes can also be used for individual ComPrimitives (See PDUStartComPrimitive function).

9.4.16.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Copy the parameter data to the ComParam working buffer.

9.4.16.2.1 Behaviour — Use Cases

a) Use Case: “ComLogicalLink, not connected” The ComParam working buffer will be moved to the
ComParam active buffer after calling the function PDUConnect.

b) Use Case: “ComLogicalLink, connected” Initiating a PDUStartComPrimitive function of type
PDU_COPT_UPDATEPARAM will copy the working buffer to the queued active buffer and queue the
ComPrimitive in the ComLogicalLink's internal ComPrimitive Queue. The ComParam queued active buffer
will be moved to the ComLogicalLinks active buffer when the ComPrimitive starts execution (i.e. the
ComPrimitive PDU_COPST_EXECUTING event occurs).

ISO 22900-2:2009(E)

64 © ISO 2009 – All rights reserved

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester present ComParams will cause the tester present
message to be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time before allowing any transmit. See CP_P3Min,
CP_P3Func, CP_P3Phys.

c) Use Case: “ComLogicalLink, connected” and ComPrimitive (with TempParamUpdate-Flag set
to '1') This ComPrimitive will use the ComParams contained in the working buffer, NOT the active buffer.
These ComParams shall be in effect for the ComPrimitive until it is finished. The ComParams for the
ComPrimitive will not change even if the “Active” or “Working” buffers are modified by any subsequent
calls to PDUSetComParam.

NOTE 1 The ComParam Working Buffer is restored to the Active Buffer when the PDUStartComPrimitive function
call returns.

NOTE 2 Physical ComParams cannot be changed using the TempParamUpdate Flag.

d) Use Case: Physical BusType ComParam Change A ComParam of type ComParamType =
PDU_PC_BUSTYPE is a physical type of ComParam. There is only one set of physical ComParams per
each physical resource (therefore they cannot be changed temporarily using the TempParamUpdate
Flag). The default behaviour is that any ComLogicalLink which shares the physical resource may modify
the physical ComParams. The ComLogicalLink which uses the PDULockResource to lock the physical
ComParams will get exclusive rights to modify the physical ComParams for the resource (see
PDULockResource function). If a “non-owning” ComLogicalLink attempts to modify a physical ComParam,
after a PDU_COPT_UPDATEPARAM, the D-PDU API will generate an error event item
(PDU_ERR_EVT_RSC_LOCKED) indicating the requested change is not possible. If one or more
ComParams cannot be set, PDU_COPT_UPDATEPARAM CoP generates ONE
PDU_ERR_EVT_RSC_LOCKED error event. The other ComParams are set. The CLL generates a
PDU_COPST_FINISHED event, indicating that the CoP completed. The CLL continues with the next
CoPs. (The CoPs already queued at the moment the error occurs are not cancelled.)

e) Use Case: Unique ID Type ComParam Change Changes to any ComParam of type
PDU_PC_UNIQUE_ID are prohibited using PDUSetComParam. A ComParam of type
PDU_PC_UNIQUE_ID is used only by the functions PDUSetUniqueRespIdTable and
PDUGetUniqueRespIdTable.

f) Use Case: Tester Present (PDU_PC_TESTER_PRESENT) Type ComParam Change Changes to any
ComParam of type PDU_PC_TESTER_PRESENT cannot be changed temporarily using the
TempParamUpdate flag in the PDU_COP_CTRL_DATA structure. (See Structure to control a
ComPrimitive's operation (used by PDUStartComPrimitive).) Once tester present handling is enabled the
message is sent immediately, prior to the initial tester present cyclic time (CP_TesterPresentTime). After
initial transmission the periodic tester present interval begins.

9.4.16.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUSetComParam(UNUM32 hMod, UNUM32 hCLL, PDU_PARAM_ITEM
*pParamItem)

9.4.16.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink for which the given ComParam is to be set.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 65

pParamItem ComParam item structure with the ComParam element to be set. The structure can be
allocated from the D-PDU API by calling the function PDUGetComParam(). It has to be
filled with the desired ComParam value by the application before calling this function.
The value information (min value, max value, default value) can be extracted from the
MDF by the application. The data structure is described in 11.1.4.5.

NOTE If the application is using the structure allocated by the D-PDU API from the
PDUGetComParam() function, it is only allowed to alter the value of the data in this structure, and
should not increase or decrease the data length.

9.4.16.5 Return values

Table 25 — PDUSetComParam return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

PDU_ERR_COMPARAM_NOT_SUPPORTED ComParam is not supported, e.g. because it is of type
PDU_PC_UNIQUE_ID.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_PARAMETERS One of the following conditions is invalid:

⎯ Invalid ComParam ID

⎯ Invalid ComParam structure

⎯ NULL pointer for pParamItem

⎯ ComParam value specified cannot be supported by the MVCI
protocol module hardware/software.

9.4.17 PDUStartComPrimitive

9.4.17.1 Purpose

The PDUStartComPrimitive function creates a ComPrimitive (used for sending/receiving data) of a given type,
and initiates its execution. The execution depends on the ComPrimitive type and the protocol implementation.
The D-PDU data to be sent is referenced by pCoPData. The PDU_COP_CTRL_DATA structure provides
additional control over the execution (see 11.1.4.17). The phCoP is a call-by-reference place where the
ComPrimitive handle (assigned by the D-PDU API) will be stored for further API function calls. The
ComPrimitive's status (see Status code values and 11.1.4.11.1 for further descriptions) can be requested via
the API function PDUGetStatus() or can be retrieved as an event item.

NOTE The D-PDU API will destroy a ComPrimitive internally as soon as the ComPrimitive has reached the status
PDU_COPST_FINISHED or PDU_COPST_CANCELLED. Once a ComPrimitive has reached the FINISHED or
CANCELLED state, no more result items will be queued for the ComPrimitive in the ComLogicalLink's event queue. After
internal destruction of a ComPrimitive, no more operations can be executed related to this ComPrimitive. (A PDU ERROR
PDU_ERR_INVALID_HANDLE will be returned for a function call referencing the destroyed ComPrimitive.)

9.4.17.2 Behaviour

a) Validate all input parameters.

NOTE 1 Required pointer parameters cannot be NULL.

ISO 22900-2:2009(E)

66 © ISO 2009 – All rights reserved

b) Check the state of the resource used by the ComLogicalLink and return an error if it is currently
unavailable (i.e. reserved by another ComLogicalLink).

c) Place the ComPrimitive into the CoP Queue and “tie” the correct set of ComParams to the ComPrimitive.

⎯ The ComPrimitive shall use the ComParams from the “Active” buffer if TempParamUpdate is set to 0.

NOTE 2 At the time the ComPrimitive is queued, the set of ComParams “tied” to the ComPrimitive will be a
copy of the queued active buffer. The queued active buffer will be an exact match to the active buffer for the
ComLogicalLink if there is no ComPrimitive previously queued of type PDU_COPT_UPDATEPARAM. This
ensures that the set of active ComParams for a ComPrimitive is deterministic at the time the ComParam buffer
is “tied” to the ComPrimitive. See Figure 23 — Example Diagram for ComPrimitive Queuing (5/5) for example
handling of ComPrimitive queuing.

⎯ The ComPrimitive shall use the ComParams from the “Working” buffer if TempParamUpdate is set to
1 (See PDU_COP_CTRL_DATA structure in 11.1.4.17).

NOTE 3 If TempParamUpdate is set to 1, the ComParam Working Buffer is restored to the Active Buffer when
this PDUStartComPrimitive function call returns.

NOTE 4 Physical ComParams (ComParamType = PDU_PC_BUSTYPE) are not affected by the
TempParamUpdate flag. Only one set of physical ComParams exist for a physical resource and they cannot be
changed temporarily by a ComPrimitive. If the physical ComParams are locked by another ComLogicalLink,
then a PDU_COPT_UPDATEPARAM will generate an error event (PDU_ERR_EVT_RSC_LOCKED) if physical
ComParams are to be modified.

⎯ The set of ComParams “tied” to a ComPrimitive shall be in effect for the ComPrimitive until it is
finished or cancelled. The ComParams for the ComPrimitive will not change even if the “Active” or
“Working” buffer is modified by any subsequent calls to PDUSetComParam or
PDUStartComPrimitive of type PDU_COPT_UPDATEPARAM.

⎯ The ComPrimitive shall use the UniqueRespIdTable from the “Active” table. Temporary
UniqueRespIdTables are not supported. The UniqueRespIdTable shall be in effect for the
ComPrimitive until it is finished. The UniqueRespIdTable for the ComPrimitive will not change even if
the “Active” table is modified by any subsequent calls to PDUSetUniqueRespIdTable or
PDUStartComPrimitive of type PDU_COPT_UPDATEPARAM.

d) Set status of ComPrimitive to PDU_COPST_IDLE as it is placed in the queue.

9.4.17.2.1 Behaviour — Use Cases

a) See 9.2.6 for detailed description on the different ComPrimitive types and how they are used in the
different states of the ComLogicalLink.

b) Use Case: Initial receive handling A transport layer should use the UniqueRespIdentifer table and
ComParams from the currently active SendRecv ComPrimitive for initial receive handling of
frames/messages. If the ComLogicalLink does not have an active SendRecv ComPrimitive, then the
current active ComParam buffer should be used. Once the frame/message is bound to a ComPrimitive,
the set of ComParams attached to the CoP should be used for any further processing (e.g. receive
timing).

c) Use Case: CLL State = PDU_CLLST_OFFLINE This is the initial state of the ComLogicalLink on
creation (PDUCreateComLogicalLink) and when the ComLogicalLink has been disconnected from the
vehicle bus (PDUDisconnect or on loss of communication to a module). No ComPrimitives can be added
to the CLL queue while in this state (result = PDU_ERR_CLL_NOT_CONNECTED). The ComLogicalLink
shall be in the state PDU_CLLST_ONLINE to allow any ComPrimitive queuing (See PDUConnect).

d) Use Case: CLL State Change = (any state -> PDU_CLLST_OFFLINE) The ComLogicalLink transitions
to PDU_CLLST_OFFLINE from any other ComLogicalLink state on a successful function call to
PDUDisconnect or on a loss of communication to a module. All ComPrimitives currently executing (i.e.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 67

periodic) and all ComPrimitives in the CoP queue will be cancelled. A status event item,
PDU_COPST_CANCELLED, is generated for each active CoP for the ComLogicalLink. The orders of
events under the case of losing communications to a module are:
PDU_ERR_EVT_LOST_COMM_TO_VCI, PDU_COPST_CANCELLED, PDU_CLLST_OFFLINE, and
PDU_MODST_NOT_AVAIL.

e) Use Case: CLL State Change = (PDU_CLLST_OFFLINE -> PDU_CLLST_ONLINE) The
ComLogicalLink changes state from PDU_CLLST_OFFLINE to PDU_CLLST_ONLINE after a successful
call to PDUConnect. Some vehicle protocols require an initialization sequence (e.g. ISO 14230).
Therefore, for those protocols, the ComLogicalLink shall be in the state PDU_CLLST_COM_STARTED to
allow for regular transmits on the vehicle bus (i.e. ComPrimitives of type PDU_COPT_SENDRECV with
NumSendCycles != 0 will not be allowed (result = PDU_ERR_CLL_NOT_STARTED)). Receive only
ComPrimitives can be used to monitor the vehicle bus in this ComLogicalLink state (i.e.
PDU_COPT_SENDRECV with NumSendCycles = 0 and NumReceiveCycles != 0).

f) Use Case: CLL State Change = (PDU_CLLST_ONLINE -> PDU_CLLST_COM_STARTED) The
ComLogicalLink changes state from PDU_CLLST_ONLINE to PDU_CLLST_COM_STARTED after
successful execution of the ComPrimitive of type PDU_COPT_STARTCOMM. If tester present handling
is enabled (see CP_TesterPresentHandling), the message is sent immediately, prior to the initial tester
present cyclic time (CP_TesterPresentTime). After initial transmission the tester present periodic interval
is started.

NOTE Tester Present messages are only enabled in the state PDU_CLLST_COM_STARTED.

g) Use Case: CLL State Change = (PDU_CLLST_COM_STARTED -> PDU_CLLST_ONLINE) The
ComLogicalLink changes state from PDU_CLLST_COM_STARTED to PDU_CLLST_ONLINE after
successful execution of the ComPrimitive of type PDU_COPT_STOPCOMM. All ComPrimitives currently
executing (i.e. periodic) and all ComPrimitives in the CoP queue will be cancelled when this ComPrimitive
successfully executes or when the ComLogicalLink transitions to PDU_CLLST_OFFLINE. A status event
item, PDU_COPST_CANCELLED, is generated for each active CoP for the ComLogicalLink.

9.4.17.2.2 Behaviour — ComPrimitive status events

When a ComPrimitive changes status, a status event item is generated (see Status code values). The
following list describes each status change use case.

a) Use Case: CoP State Change (IDLE -> EXECUTING) When a ComPrimitive is removed from the CoP
Queue for execution, the status of the ComPrimitive is set to PDU_COPST_EXECUTING.

⎯ If the CoP is of type PDU_COPT_UPDATEPARAM, copy the queued active buffer to the
ComLogicalLinks active buffer and immediately set the state to PDU_COPST_FINISHED.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester present ComParams will cause the tester present
message to be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time before allowing any transmit. See CP_P3Min,
CP_P3Func, CP_P3Phys.

⎯ If the CoP is of type PDU_COPT_RESTORE_PARAM, copy the active buffer to the working buffer
and immediately set the state to PDU_COPST_FINISHED.

⎯ If the protocol cannot handle the length of a ComPrimitive, an error event,
PDU_ERR_EVT_PROT_ERR, is generated and the ComPrimitive is put into the FINISHED state. A
protocol handler may be defined by ComParams which are used to validate a ComPrimitive size and
therefore could reject a ComPrimitive based on the length of the PDU (e.g. see
CP_HeaderFormatKW).

ISO 22900-2:2009(E)

68 © ISO 2009 – All rights reserved

b) Use Case: CoP State Change (EXECUTING -> WAITING) A periodic send ComPrimitive will transition
to PDU_COPST_WAITING after it has finished each of its periodic cycles.

c) Use Case: CoP State Change (WAITING -> EXECUTING) A periodic send ComPrimitive will transition
to PDU_COPST_EXECUTING when it is time to begin its next transmission cycle.

d) Use Case: CoP State Change (EXECUTING -> FINISHED) A ComPrimitive will transition to
PDU_COPST_FINISHED after it has completed execution. A periodic send ComPrimitive will transition to
FINISHED after its last send cycle (NumSendCycles > 1 but not infinite (-1)). A ComPrimitive will
transition to FINISHED whether it has completed successfully (e.g. all expected responses received) or
unsuccessfully (e.g. receive timeout with no expected responses received).

e) Use Case: CoP State Change (any state -> CANCELLED) A ComPrimitive will transition to
PDU_COPST_CANCELLED on the following conditions:

⎯ A PDUDisconnect was issued for the ComLogicalLink.

⎯ A PDUDestroyComLogicalLink was issued for the ComLogicalLink.

⎯ A PDUCancelComPrimitive was issued for the ComPrimitive.

⎯ A ComPrimitive of type PDU_COPT_STOPCOMM has completed and there were ComPrimitives
currently executing or in the CoP queue.

⎯ Communications were lost to the MVCI protocol module.

9.4.17.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUStartComPrimitive(UNUM32 hMod, UNUM32 hCLL, T_PDU_COPT
CoPType, UNUM32 CoPDataSize, UNUM8 *pCoPData, PDU_COP_CTRL_DATA
*pCopCtrlData, void *pCoPTag, UNUM32 *phCoP)

9.4.17.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of the ComLogicalLink for which the ComPrimitive shall be started.

CoPType Type of the ComPrimitive to be started. See ComPrimitive type values for a list of
ComPrimitive types.

CoPDataSize Size of data for the ComPrimitive; if 0, no data is supplied.

pCoPData Reference of the buffer holding the data; NULL if no data is supplied.

pCoPCtrlData Pointer to the control data structure for the ComPrimitive; NULL if no control data is
supplied. Data structure described in 11.1.4.17.

NOTE The PDU_COP_CTRL_DATA structure is not used for the ComPrimitives of type
PDU_COPT_UPDATEPARAM and PDU_COPT_RESTORE_PARAM

pCoPTag Application-specific tag value providing additional information concerning the event
source (e.g. pointer into application-specific structure for ComLogicalLink). The
PDU API does not interpret this value, it is tied to the ComPrimitive and made available
to the application when event items are taken from the event queue. For more
information, see Annex E.

phCoP Call-by-reference place for storage of ComPrimitive handle. This unique handle is
assigned by the D-PDU API for this new ComPrimitive.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 69

9.4.17.5 Return values

Table 26 — PDUStartComPrimitive return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_CLL_NOT_CONNECTED ComLogicalLink is not connected.

PDU_ERR_TX_QUEUE_FULL The ComLogicalLink's transmit queue is full; the ComPrimitive could not
be queued.

PDU_ERR_RSC_LOCKED_BY_OTHER_CLL The ComLogicalLink's resource is currently locked by another
ComLogicalLink.

PDU_ERR_INVALID_PARAMETERS Invalid NULL pointer for phCoP or pCopData or pCopCtrlData or the
expected response structure for a ComPrimitive with the
NumReceiveCycles != 0 is NULL or has 0 entries.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_TEMPPARAM_NOT_ALLOWED Physical ComParams cannot be changed as a temporary ComParam.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_CLL_NOT_STARTED Communications are not started on the ComLogicalLink yet. A Send
ComPrimitive cannot be accepted in this state.

9.4.18 PDUCancelComPrimitive

9.4.18.1 Purpose

Cancel the current running operation for the given ComPrimitive.

9.4.18.2 Behaviour

a) Validate input parameters.

b) Remove ComPrimitive from the CoP Queue.

c) Set status of ComPrimitive to PDU_COPST_CANCELLED.

d) If the ComPrimitive is already in the PDU_COPST_FINISHED status, this call will return success.

9.4.18.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUCancelComPrimitive(UNUM32 hMod, UNUM32 hCLL, UNUM32 hCoP)

ISO 22900-2:2009(E)

70 © ISO 2009 – All rights reserved

9.4.18.4 Parameters

hMod Handle of MVCI protocol module.

hCLL Handle of ComLogicalLink.

hCoP Handle of the ComPrimitive which is to be cancelled.

9.4.18.5 Return values

Table 27 — PDUCancelComPrimitive return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle or
ComPrimitive handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_CLL_NOT_CONNECTED ComLogicalLink is not connected.

9.4.19 PDUGetEventItem

9.4.19.1 Purpose

Retrieve event item data (PDU_EVENT_ITEM) for given event source. PDUEventItem expects a reference of
an MVCI protocol module or ComLogicalLink as input parameter to identify the event source. After retrieving
the event item, the application can evaluate the type of item and then access the item-specific data.

For definition of PDU_EVENT_ITEM and event types, see 11.1.4.11.

9.4.19.2 Behaviour

a) Validate all input parameters.

NOTE 1 Pointer parameters cannot be NULL.

b) Allocate memory for PDU_EVENT_ITEM.

c) Fill out the event item information for the specified handle (Module or CLL).

d) Remove the event item entry from the queue. Memory for the item remains allocated.

NOTE 2 The event item is allocated and managed by the D-PDU API. It is destroyed by the application after use by
calling the API function PDUDestroyItem() (see 9.4.20).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 71

9.4.19.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetEventItem(UNUM32 hMod, UNUM32 hCLL, PDU_EVENT_ITEM
**pEventItem)

9.4.19.4 Parameters

hMod Handle of the MVCI protocol module for which the event item is to be retrieved.
PDU_HANDLE_UNDEF if an item is for a system event (e.g. PDU API system events
like PDU_IT_INFO).

NOTE If hMod is set to PDU_HANDLE_UNDEF then the hCLL handle is ignored.

hCLL Handle of the ComLogicalLink for which the event item is to be retrieved;
PDU_HANDLE_UNDEF if an item for the given MVCI protocol module is to be retrieved
(e.g. MVCI protocol module events).

pEventItem Call-by-reference place for storing the pointer to the event item corresponding to the
given event, hMod and hCLL. Returns NULL if no result item is available. Data structure
is described in 11.1.4.11.

9.4.19.5 Return values

Table 28 — PDUGetEventItem return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

PDU_ERR_INVALID_PARAMETERS Invalid NULL pointer for pEventItem.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_EVENT_QUEUE_EMPTY No more event items are available.

9.4.20 PDUDestroyItem

9.4.20.1 Purpose

Destroy the given item (works with all created items; item data type has to be casted). See D-PDU API item
type values for the different type of items for the D-PDU API.

9.4.20.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Validate item type to be destroyed (see 11.1.4.2 for the description of item types).

c) Free memory reserved by the D-PDU API.

ISO 22900-2:2009(E)

72 © ISO 2009 – All rights reserved

9.4.20.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUDestroyItem(PDU_ITEM *pItem)

9.4.20.4 Parameters

pItem Pointer to the item to be destroyed. The data structure is described in 11.1.4.2.

9.4.20.5 Return values

Table 29 — PDUDestroyItem return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid item type or the pItem parameter is NULL. See 11.1.4.2 for the
different type of items possible.

9.4.21 PDURegisterEventCallback

9.4.21.1 Purpose

Register or unregister a callback function for event notification. By default, event notification is deactivated.

9.4.21.2 Behaviour

a) Validate input parameter's handles.

NOTE All handles could be PDU_HANDLE_UNDEF, which means that it is an event registration for the System
(i.e. D-PDU API).

b) Determine whether it is a register or un-register request.

c) Either add or remove the callback function pointer to the proper object (System, Module, ComLogicalLink).

d) Figure 24 — Sequence of event handling shows the internal handling of events in the D-PDU API.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 73

Figure 24 — Sequence of event handling

9.4.21.3 C/C++ Prototype

EXTERNC T_PDU_ERROR PDURegisterEventCallback(UNUM32 hMod, UNUM32 hCLL, CALLBACKFNC
EventCallbackFunction)

9.4.21.4 Parameters

hMod Handle of a Module if an event callback function shall be registered for the
Module/System events. If hMod is PDU_HANDLE_UNDEF, the hCLL parameter is
not used, and the callback function is used for System event callbacks (i.e.
DLL/Shared Library error events.)

hCLL Handle of ComLogicalLink if an event callback function shall be registered with
respect to a ComLogicalLink or PDU_HANDLE_UNDEF for registration of
Module/System callback functions.

NOTE If a callback registration to a ComLogicalLink is requested after a
ComLogicalLink has been connected (i.e. PDUConnect), an error will be returned.

EventCallbackFunction Reference of callback function to be used for event notification. Or NULL to
deactivate the callback mechanism. C/C++ qualifier described in 11.1.2.

ISO 22900-2:2009(E)

74 © ISO 2009 – All rights reserved

9.4.21.5 Return values

Table 30 — PDURegisterEventCallback return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See PDUModuleConnect
function.

PDU_ERR_CLL_CONNECTED ComLogicalLink is not in the OFFLINE state and cannot accept the
registration of a new callback.

9.4.22 EventCallback prototype

9.4.22.1 Purpose

The EventCallback prototype needs to be implemented and registered by the application. It is registered and
known to the D-PDU API after a call of function PDURegisterEventCallback() with a reference to the
application's callback function as a parameter. After registration, the application's callback function will be
invoked by the D-PDU API whenever an event occurs. The callback function receives the event type, a handle
of the resource (i.e. MVCI protocol module or ComLogicalLink) causing the event and an application-specific
tag. The application can process the event immediately or pass it to an internal thread, which processes the
events for the specific resource (i.e. MVCI protocol module or ComLogicalLink).

The runtime duration of the event callback function shall be as short as possible in order to avoid any
unnecessary blocking of the D-PDU API software. The callback function will be called on the thread of the
D-PDU API, therefore it is recommended that the application callback function post an event to wake another
thread to do the reading of the event data. If the application shall make a D-PDU API function call in the
callback routine, then PDUGetEventItem is the only permitted call.

NOTE 1 All events (status, error and results) generated by a ComLogicalLink or ComPrimitive will be placed in the
ComLogicalLink's Event Queue. An event callback is either generated when there are events in the queue when the
PDURegisterEventCallback function is called that registers a callback function or the ComLogicalLink's Event Queue
transitions from empty to NOT empty. In other words, multiple events will not generate multiple callbacks even though
each is a separate event item in the Event Queue. The application is responsible for reading ALL events from the
ComLogicalLink's Event Queue before another call back will be generated.

The application shall be careful when registering the same callback function to multiple ComLogicalLinks. In
this case, the callback function should be re-entrant just in case another ComLogicalLink (which may be
running on a separate D-PDU API thread) makes a callback while a previous callback is currently executing.

NOTE 2 If there is NO ComLogicalLink callback registered for a specific ComLogicalLink, and a Module or System
callback is registered the D-PDU API will default to using first the Module callback, and otherwise use the system callback
when events are received for the ComLogicalLink. The application checks the handles of the EventCallback to determine
whether it is from a module, system or ComLogical Link. This is also true if there is no module callback defined; any
module events would use the system callback.

NOTE 3 In a Windows D-PDU API DLL, the callback function will have the same _stdcall calling convention as used for
all other D-PDU API functions exported from the DLL (see 9.7.2).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 75

9.4.22.2 C/C++ prototype

void EventCallback(T_PDU_EVT_DATA eventType, UNUM32 hMod, UNUM32 hCLL, void *pCllTag, void
*pAPITag)

9.4.22.3 Parameters

eventType Type of event which occurred (see D.1.8).

hMod Handle of MVCI protocol module (PDU_HANDLE_UNDEF if not from a module (System
event callback)).

hCLL Handle of ComLogicalLink causing the event (PDU_HANDLE_UNDEF if not from a
ComLogicalLink).

pCllTag Tag value for a ComLogicalLink. This tag should be ignored if the hCLL parameter =
PDU_HANDLE_UNDEF. This is an application-specific tag value providing additional
information concerning the event source (e.g. pointer onto application specific structure for
ComLogicalLink).

pAPITag Tag value for the PDU API. This is an application-specific tag value providing additional
information concerning the event source (e.g. pointer onto application specific structure for
the PDU API Library).

9.4.22.4 Return values

No return values are defined for this function.

9.4.23 PDUGetObjectId

9.4.23.1 Purpose

Retrieve the item id for given item of a given type. PDUGetObjectId expects the item type and the name of the
item as input parameters to identify the item. It then retrieves the id of the given item. The item id can also be
obtained by parsing the MDF file.

9.4.23.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Determine the id of the requested object.

c) Fill out the response parameter pPduObjectId with the information.

9.4.23.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetObjectId(T_PDU_OBJT pduObjectType, CHAR8* pShortname,
UNUM32 *pPduObjectId)

ISO 22900-2:2009(E)

76 © ISO 2009 – All rights reserved

9.4.23.4 Parameters

pduObjectType Enumeration ID of object type. See Object type values.

pShortname Pointer to the shortname of object, e.g. ComParam “CP_P2Max”.

pPduObjectId Call-by-reference place for storing the PDU Object ID for “Shortname” of
“pduObjectType ”. The id will be set to PDU_ID_UNDEF if the PDU API has no valid
Object Id for the requested object type and shortname.

9.4.23.5 Return values

Table 31 — PDUGetObjectId return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

PDU_ERR_MODULE_FW_OUT_OF_DATE The D-PDU API library has a newer version than the MVCI protocol
module firmware. The MVCI protocol module firmware should be
updated to work with the D-PDU API Library.

PDU_ERR_API_SW_OUT_OF_DATE The MVCI protocol module firmware has a newer version than the
D-PDU API Library. The D-PDU API Library should be updated to work
with the MVCI protocol module firmware.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (ObjectType, ShortName), or
the pointer to the pPduObjectId is NULL.

9.4.24 PDUGetModuleIds

9.4.24.1 Purpose

Obtain module type Id, module handle information, vendor specific string information, and module status from
the D-PDU API. All MVCI protocol modules detected by the D-PDU API are assigned a handle (hMod) by the
D-PDU API. Each MVCI protocol module is of a certain module type (ModuleTypeId). The hMod information is
used to access the individual modules in most D-PDU API function calls.

An information callback occurs (see PDU_INFO_MODULE_LIST_CHG: Information event values) when a change
in the list of MVCI protocol modules is detected by the D-PDU API. The client application should call
PDUGetModuleIds again to get the new list of available MVCI protocol modules. The module handles (hMod)
for modules which have already been detected will not be changed. A module which has been connected to
(See PDUModuleConnect) will maintain its handle (hMod) even after communication has been lost to the
module. In this case, the module handle is destroyed only after a PDUModuleDisconnect or PDUDestruct.

Changes to a module connection are observed by a status change (see PDU_IT_STATUS: Structure for
status data D.1.4 Status code values). Change of status occurs during PDUModuleConnect,
PDUModuleDisconnect, and loss of communications with an MVCI protocol module. Change of status does
not generate a PDU_INFO_MODULE_LIST_CHG event item.

9.4.24.2 Behaviour

a) Validate input parameter.

NOTE 1 Pointer parameter cannot be NULL.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 77

b) Allocate PDU_MODULE_ITEM structure and fill the call-by-reference variable pModuleIdList. The
D-PDU API structure (pModuleIdList) has to be freed by calling PDUDestroyItem from the application.

NOTE 2 In the case of no detection of any MVCI protocol modules, the call to PDUGetModuleIds will return a
PDU_MODULE_ITEM with the number of entries set to zero (NumEntries = 0) and the pointer to
PDU_MODULE_DATA set to NULL (pModuleData = NULL).

c) The D-PDU API shall generate a unique handle for each MVCI protocol module interface type supported.

EXAMPLE MVCI protocol module with three interface types. The strings are vendor specific.

Table 32 — Example of unique handles per interface type

 Ethernet Interface Wireless Interface USB Interface

hMod 0x00000001 0x00000002 0x00000003

ModuleTypeId 0x00000001 0x00000001 0x00000001

ModuleStatus PDU_MODST_AVAIL PDU_MODST_AVAIL PDU_MODST_AVAIL

pVendorModuleName “VCI 1” “VCI 1” “VCI 1”

pVendorAdditionalInfo “Interface='Ethernet'” “Interface='Wireless'” “Interface='USB'”

d) If detection of a module or module interface type is lost and the handle was in the state
PDU_MODST_AVAIL, the handle will no longer be valid and will be removed from the list of detected
modules. If the module or module interface type is re-detected a new module handle will be generated by
the D-PDU API for the module. Each time the list of module handles changes, an information event will be
generated to indicate that a new list of MVCI protocol module handles is available (See
PDU_INFO_MODULE_LIST_CHG event).

9.4.24.2.1 Behaviour — Use Cases

When an MVCI protocol module changes status, a status event item is generated (see Status code values).
The following list describes each status change use case.

a) Use Case: Module State = PDU_MODST_AVAIL This is the initial state of a MVCI protocol module
when it is initially detected by the D-PDU API. NO status event item is generated on this initial state. A
module shall be in the state PDU_MODST_READY to allow any API function calls to the module (See
PDUModuleConnect).

b) Use Case: Module State Change = (PDU_MODST_AVAIL -> PDU_MODST_READY) The module
transitions to PDU_MODST_READY after a successful call to PDUModuleConnect. The module is now
ready to begin an API session with the client application. NO status event item can be generated at this
time because the function callback (PDURegisterEventCallback) can only be applied after the module is
in the state PDU_MODST_READY.

c) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_NOT_READY) The
module transitions to PDU_MODST_NOT_READY when a condition occurs on the device which prohibits
execution of any further API calls. This condition may only be momentary while the module recovers from
the not ready state (e.g. PDU_IOCTL_RESET).

d) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_NOT_AVAIL) or
(PDU_MODST_NOT_READY -> PDU_MODST_NOT_AVAIL) The module transitions to
PDU_MODST_NOT_AVAIL on a loss of communication to a module. All ComPrimitives currently
executing (i.e. periodic) and all ComPrimitives in the CoP queue will be cancelled
(PDU_COPST_CANCELLED). All active ComLogicalLinks will go into the offline state
(PDU_CLLST_OFFLINE). The orders of events under the case of losing communications to a module
are: PDU_ERR_EVT_LOST_COMM_TO_VCI, PDU_COPST_CANCELLED, PDU_CLLST_OFFLINE,
and PDU_MODST_NOT_AVAIL.

ISO 22900-2:2009(E)

78 © ISO 2009 – All rights reserved

e) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_AVAIL) The module
transitions to PDU_MODST_AVAIL after a successful call to PDUModuleDisconnect. All resources are
freed for the module. NO status event item is generated since further event items will not be queued for
the module.

9.4.24.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetModuleIds(PDU_MODULE_ITEM **pModuleIdList)

9.4.24.4 Parameters

pModuleIdList Pointer for storing the pointer to Module Type Ids and the Module handles for all
modules that are connected to the D-PDU API. The data structure is described in
11.1.4.6.

9.4.24.5 Return values

Table 33 — PDUGetModuleIds return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_INVALID_PARAMETERS Invalid NULL pointer for pModuleList.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

9.4.25 PDUGetResourceIds

9.4.25.1 Purpose

Obtain a list of resource ids from the D-PDU API for a given module that supports the resource data
information. The resource data information is defined as a protocol, bus type and pin(s). The object Ids for the
resource data information can be obtained by using the PDUGetObjectId function.

The caller supplies a reference to a memory object that is of the type PDU_RSC_DATA. This object contains
resource data information (pResourceIdData) for a single set of resource data information. The D-PDU API
shall generate a PDU_IT_RSC_ID object (pResourceIdList) that has a list of resource Id's that match the
given resource data information. The application shall release the D-PDU API memory by calling
PDUDestroyItem after it has used the resource Id list information.

9.4.25.2 Behaviour

a) Validate input parameters.

NOTE Pointer parameters cannot be NULL.

b) Function takes pResourceIdData structure as allocated by the application.

c) Allocate memory for the pResourceIdList result information.

d) Extracts required information from pResourceIdData structure and determines the correct list of resource
Ids that match the resource data requested.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 79

9.4.25.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetResourceIds(UNUM32 hMod, PDU_RSC_DATA *pResourceIdData,
PDU_RSC_ID_ITEM **pResourceIdList)

9.4.25.4 Parameters

hMod Handle of MVCI protocol module. If set to PDU_HANDLE_UNDEF then all modules
connected to the D-PDU API will return their resource Ids and the module handles
which support the PDU_RSC_DATA elements.

pResourceIdData Call-by-reference place for the resource Id data information for a particular module type.
The data structure is described in 11.1.4.8.

pResourceIdList Call-by-reference place for storing the Resource Id list for the selected resource data.
This item shall be destroyed by the application by calling PDUDestroyItem. The data
structure is described in 11.1.4.7.

9.4.25.5 Return values

Table 34 — PDUGetResourceIds return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_FW_OUT_OF_DATE The D-PDU API library has a newer version than the MVCI protocol
module firmware. The MVCI protocol module firmware should be
updated to work with the D-PDU API Library.

PDU_ERR_API_SW_OUT_OF_DATE The MVCI protocol module firmware has a newer version than the
D-PDU API Library. The D-PDU API Library should be updated to work
with the MVCI protocol module firmware.

PDU_ERR_INVALID_PARAMETERS The reference pointer is invalid (NULL) for pResourceIdData or
pResrouceIdList.

9.4.26 PDUGetConflictingResources

9.4.26.1 Purpose

Provide a list of resources that conflict with, and cannot therefore be selected at the same time, as a specified
resource. The reason for the conflict may be that the resources utilise the same pin or utilise the same
controller. The D-PDU API uses the MDF and CDF to extract the information from all modules and module
types. It is possible to detect conflicting resources in a one-vendor D-PDU API system. When MVCI protocol
modules of more than one vendor are connected by a Y-cable, the system-integrator has to take care of any
conflicting resources. This information would only be addressed to multiple MVCI protocol modules if there is
more than 1 MVCI protocol module connected to a vehicle. It is the responsibility of the application to
determine which group of modules are connected to a single vehicle and to fill out the pInputModuleList
correctly.

ISO 22900-2:2009(E)

80 © ISO 2009 – All rights reserved

9.4.26.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Determine all resource conflicts of ResourceId between the modules listed in pInputModuleList.

c) Allocate memory for the PDU_RSC_CONFLICT_ITEM structure.

d) Fill the call-by-reference variable pOutputConflictList. The D-PDU API structure (pOutputConflictList) has
to be freed by calling PDUDestroyItem from the application.

9.4.26.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetConflictingResources(UNUM32 resourceId, PDU_MODULE_ITEM
*pInputModuleList, PDU_RSC_CONFLICT_ITEM **pOutputConflictList)

9.4.26.4 Parameters

resourceId The resource identifier to check for conflicts. The resource id is available from the
MDF file and PDUGetResourceIds function.

pInputModuleList List of modules to determine conflicts against. The data structure is described in
11.1.4.6.

NOTE Both hMod and ModuleType need to be valid in this structure.

pOutputConflictList Call-by-reference place for storing the information for each conflicted resource. The
data structure is described in 11.1.4.9.

9.4.26.5 Return values

Table 35 — PDUGetConflictingResources return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

PDU_ERR_MODULE_FW_OUT_OF_DATE The D-PDU API library has a newer version than the MVCI protocol
module firmware. The MVCI protocol module firmware should be
updated to work with the D-PDU API Library.

PDU_ERR_API_SW_OUT_OF_DATE The MVCI protocol module firmware has a newer version than the
D-PDU API Library. The D-PDU API Library should be updated to
work with the MVCI protocol module firmware.

PDU_ERR_INVALID_PARAMETERS Invalid resource ID, or one of the reference pointers (pInputModuleList
or pOutputConflictList) are invalid (NULL).

9.4.27 PDUGetUniqueRespIdTable

9.4.27.1 Purpose

Retrieve information of all unique response identifiers configured for the ComLogicalLink. Each unique
response identifier is associated with a list of ComParams that are of type: PDU_PC_UNIQUE_ID.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 81

When this function is called prior to a PDUSetUniqueRespIdTable, the structure returned will contain the
ComParam information for only a single unique response and the UniqueRespIdentifier will be set to
PDU_ID_UNDEF. The ComParam information can then be used to determine the correct set of ComParams
used by the Protocol for unique ECU response identification.

Since the Unique Response ID Table is a structure holding ComParams, PDUGetUniqueRespIdTable uses
the same mechanisms for handling ComParams in an internal working table as described for
PDUGetComParams.

NOTE ComParams that are of type PDU_PC_UNIQUE_ID can only be used with the Unique Response ID Table.
They cannot be used in the functions PDUGetComParam() or PDUSetComParam().

9.4.27.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Allocate PDU_UNIQUE_RESP_ID_TABLE_ITEM structure. If the table has not been previously set by
PDUSetUniqueRespIdTable, then only 1 entry will be allocated and the UniqueRespIdentifier will be
PDU_ID_UNDEF.

c) Fill in the table structure for the ComLogicalLink. The elements in the tables are based on the selected
protocol for the ComLogicalLink. The number of ComParams in the list will be protocol dependent. The
number of entries in the table can be 1 or more.

9.4.27.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetUniqueRespIdTable(UNUM32 hMod, UNUM32 hCLL,
PDU_UNIQUE_RESP_ID_TABLE_ITEM **pUniqueRespIdTable)

9.4.27.4 Parameters

hMod Handle of VCI Module.

hCLL Handle of ComLogicalLink.

pUniqueRespIdTable Call-by-reference place for storing the Unique Response ID Table for the CLL; the
item is allocated by the D-PDU API and has to be released after use from the
application by calling the function PDUDestroyItem(). The data structure is described
in 11.1.4.10.

9.4.27.5 Return values

Table 36 — PDUGetUniqueRespIdTable return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_PARAMETERS The pointer pUniqueRespIdTable is invalid (NULL).

ISO 22900-2:2009(E)

82 © ISO 2009 – All rights reserved

9.4.28 PDUSetUniqueRespIdTable

9.4.28.1 Purpose

Set Unique Response Id Table information for a ComLogicalLink. This function is used to set up a table of
unique response identifiers. Each unique response identifier contains a set of ComParams that uniquely
define any response from a specific ECU (functional or physical responses). The application assigns the
UniqueRespIdentifier. The valid range for Unique Response Identifier values is 0x0 - 0xFFFFFFFF.

The Unique Response Id Table is used for physical responses, as well as for functional responses and
monitored messages. All addressing type modes (functional/physical) are contained in the list of ComParams
so that any message from a specific ECU is tied to a unique ECU identifier. This allows the application to use
the UniqueRespIdentifier to an ECU variant without having to interpret any protocol-specific information (e.g.
CAN Id's and ECU Source Addresses).

Since the Unique Response ID Table is a structure holding ComParams, PDUSetUniqueRespIdTable uses
the same mechanisms for handling ComParams in an internal working Buffer as described for
PDUSetComParams. The new table will only become active upon a PDUStartComPrimitive of type
PDU_COPT_UPDATEPARAM.

9.4.28.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Verify that all ComParam entries in the table are of the type PDU_PC_UNIQUE_ID.

c) Store the table for ECU Response Handling in a working buffer.

9.4.28.2.1 Behaviour — Use Cases

a) Use Case: “ComLogicalLink, not connected” The Unique Response Identifer working table will be
moved to the active table after calling the function PDUConnect.

b) Use Case: “ComLogicalLink, connected” Initiating a PDUStartComPrimitive function of type
PDU_COPT_UPDATEPARAM will queue the ComPrimitive in the ComLogicalLink's internal
ComPrimitive Queue. A copy of the URID Table will be stored in a queued active table when the
ComPrimitive is placed on the ComPrimitive Queue. The queued active table will be used for all
subsequent ComPrimitives being placed on the ComPrimitive queue. The Unique Response Identifier
queued active table will be moved to the ComLogicalLinks active table when the ComPrimitive changes
status to EXECUTING (PDU_COPST_EXECUTING). This functionality is similar to the ComParam use
case described in the Example for ComParam buffer attachment to a ComPrimitive.

9.4.28.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUSetUniqueRespIdTable (UNUM32 hMod, UNUM32 hCLL,
PDU_UNIQUE_RESP_ID_TABLE_ITEM *pUniqueRespIdTable)

9.4.28.4 Parameters

hMod Handle of VCI Module.

hCLL Handle of ComLogicalLink.

pUniqueRespIdTable Call-by-reference place which contains the Unique Response ID Table for the CLL.
The item is allocated by the application. The data structure is described in 11.1.4.10.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 83

9.4.28.5 Return values

Table 37 — PDUSetUniqueRespIdTable return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED PDU API has not been constructed before.

PDU_ERR_COMPARAM_NOT_SUPPORTED One of the ComParams in the list is not of the type
PDU_PC_UNIQUE_ID.

PDU_ERR_INVALID_PARAMETERS The pointer pUniqueRespIdTable is invalid (NULL).

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle or ComLogicalLink handle.

9.4.28.6 Using the Unique Response ID Table (URID Table) for physical and functional addressing

The sequence diagram demonstrates how to use the Unique Response ID Table for functional and physical
addressing.

Figure 25 — Sequence of Unique Response ID Table (URID Table)
for physical and functional addressing

ISO 22900-2:2009(E)

84 © ISO 2009 – All rights reserved

After creating a ComLogicalLink, the application generates the Unique Response ID Table, using the template
from a table entry retrieved by calling PDUGetUniqueRespIdTable(). The application does the following steps
to configure the Unique Response Id Table:

a) Add a table entry for each ECU in the functional group. If doing physical addressing, then only one entry
is needed.

b) Each entry contains a list of ComParams which uniquely identify an ECU response. These ComParams
are of type PDU_PC_UNIQUE_ID.

c) Assign a Unique Response ID value for each table entry (ID range is 0 to 0xFFFFFFFF).

d) With this generated table the application calls PDUSetUniqueRespIdTable().

e) The application also sets other ComParams (PDUSetComParam), e.g. to switch the addressing mode to
functional addressing.

NOTE Some details are left out in the diagram, like necessary calls of PDUDestroyItem.

f) The application calls PDUConnect(), the Unique Response ID Table and other ComParams become valid
for all future ComPrimitives on the ComLogicalLink.

When a ComPrimitive is configured with NumSendCycles set to 1 and NumReceiveCycles set to -2
(IS-MULTIPLE), the MVCI protocol module expects responses from one or more ECUs. Until a specific
timeout expires, the MVCI protocol module receives responses and tries to match the Unique Response ID for
each response (see the following subclauses for details). The Unique Response Id is saved and then returned
in a result item when the payload data is matched to a ComPrimitive expected response. The application
retrieves the result items from the ComLogicalLink's Event Queue (details of event notification are not shown
in the diagram). When processing the result data, the application is able to assign the data to a certain ECU
via the Unique Response ID.

The sequence for physical addressing with single request / single response is very similar. The main
difference is that the Unique Response ID Table contains exactly one entry, and with NumReceiveCycles set
to 1 the ComPrimitive reaches the status PDU_COPST_FINISHED immediately when the only response is
received.

9.4.28.7 Handling of known and unknown responses from an ECU

9.4.28.7.1 Use cases

The following use cases concerning ECU response handling have to be regarded:

a) Use case 1: Only known responses

The application knows the response parameters of each ECU to respond to the functional/physical
request. The application fills the Unique Response ID Table with an entry for each ECU. Then the
D-PDU API uses the response parameters from the Unique Response ID Table entries to set up receive
message acceptance filters. Thus only responses from known ECUs with a corresponding table entry will
be received.

b) Use case 2: Only unknown responses

The application has no knowledge about the response parameters of any ECU to respond to the
functional/physical request. The application uses a Unique Response ID Table with only one entry, with
the UniqueRespIdentifier set to PDU_ID_UNDEF (response parameter values are “don't care” (i.e.
NumParamItems = 0). Then the D-PDU API receives all possible diagnostic messages and filters them
only with the expected response structure, as described below for handling of unknown ECU response
Id's.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 85

c) Use case 3: Known and unknown responses

The application knows the response parameters of some ECUs to respond to the functional request, but
there may be additional unknown ECUs responding, and the application also wants to receive these
responses to detect unknown ECUs. The application fills the Unique Response ID Table with an entry for
each known ECU response, and an additional entry with the UniqueRespIdentifier set to
PDU_ID_UNDEF (response parameter values are “don't care” (i.e. NumParamItems = 0)). Then the
D-PDU API receives all possible diagnostic messages and filters them only with the expected response
structure. Responses with known and unknown response Id's are treated as described below.

NOTE In all cases the receive message acceptance filters automatically configured by the D-PDU API using the
Unique Response ID Table will be overridden by filters set by the application using a
PDU_IOCTL_START_MSG_FILTER command.

9.4.28.7.2 Handling of known ECU response ids

When the D-PDU API receives a message from an ECU the following process steps are applied:

a) Determine if the message passes the acceptance filters (see PDU_IOCTL_START_MSG_FILTER).

b) Match the received message header information to an entry in the table of Unique Response ids. The
matching algorithm is protocol specific (e.g. some protocols will use CAN ids, others will use Target
Addresses, ECU Sources address, etc.).

c) Once a UniqueRespIdentifier is found, the payload data is attempted to be matched to the
ExpectedResponseStructure (see Structure for expected response) of all active ComPrimitives (Starting
with the active SENDRECV ComPrimitive).

d) When a match is found, the UniqueRespIdentifier is returned (along with the data and RxFlag information)
to the application indicating which ECU the message was from (see Structure for result data).

9.4.28.7.3 Handling of unknown ECU response ids

If a known ECU match cannot be found in the Unique Response Id Table and the table has an entry for
unknown handling (i.e. one entry has the UniqueRespIdentifier set to PDU_ID_UNDEF), the following steps
will be followed:

a) Determine if the payload data can be matched to an ExpectedResponseStructure entry of an active
ComPrimitive. (SendRecv or RecvOnly).

b) Set the UniqueRespIdentifier to PDU_ID_UNDEF in the PDU_RESULT_DATA for a PDU_EVENT_ITEM,
indicating a valid message was received, but the ECU does not have a unique identifier in the URID table.

c) Additional message header information can be obtained by setting the ENABLE_EXTRA_INFO bit in the
TxFlag for the ComPrimitive (see TxFlag definition).

NOTE 1 For certain protocols, an unknown ECU response can be incomplete and need additional flow control handling
by the D-PDU API, which can be impossible without a corresponding entry in the Unique Response Id Table. Then the
D-PDU API will drop this incomplete response.

NOTE 2 Depending on the protocol, it might not be possible to clearly distinguish if a response from an unknown ECU
identifier or a non-diagnostic message has been received. Then the D-PDU API might not be able to deliver unexpected
responses reliably.

ISO 22900-2:2009(E)

86 © ISO 2009 – All rights reserved

9.4.28.7.4 ECU Response Handling Flow Chart

Figure 26 — Sequence of unique response identifiers and expected responses

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 87

9.4.29 PDUModuleConnect

9.4.29.1 Purpose

Establish connection to the specified MVCI protocol module and initialize its system-level drivers. Obtain
available resources from the specified MVCI protocol module and create internal structures including a
resource table. The communication state is offline, i.e. no allocation of resources and no communication over
vehicle interface takes place.

9.4.29.2 Behaviour

a) Determine if connection is available to MVCI protocol module. Module shall be in the state
PDU_MODST_AVAIL. If connection is not possible, return error PDU_ERR_FCT_FAILED.

b) Initialize communication with the specific MVCI protocol module.

c) Determine all resources status on the MVCI protocol module.

d) Set the Module Status to PDU_MODST_READY (No event callback is generated since a callback could
not have been registered by the client until after connection).

NOTE 1 Most D-PDU API function calls which require a hMod parameter will return an error
(PDU_ERR_MODULE_NOT_CONNECTED) if the module status is not in the state PDU_MODST_READY. The
following list of D-PDU API functions are allowed to be used prior to a PDUModuleConnect:

⎯ PDUGetResourceIds

⎯ PDUGetObjectId

⎯ PDUGetConflictingResources

⎯ PDUGetStatus

NOTE 2 When the D-PDU API detects a loss of communications to an MVCI protocol module after it has been
connected, the module status is set to PDU_MODST_NOT_AVAIL. It is advisable that a client application calls
PDUModuleDisconnect when communications have been lost to the MVCI protocol module after all items have been
retrieved from the module event queue. (See PDU_ERR_EVT_LOST_COMM_TO_VCI.)

e) Once a module has been connected, the handle (hMod) remains valid until a PDUModuleDisconnect
even after a loss of communication with the module. This behaviour is required in order to maintain the
event queues for the client application retrieval of event items.

9.4.29.2.1 Behaviour — Use Cases

When an MVCI protocol module changes status, a status event item is generated (see Status code values).
The following list describes each status change use case.

a) Use Case: Module State = PDU_MODST_AVAIL This is the initial state of an MVCI protocol module
when it is initially detected by the D-PDU API. NO status event item is generated on this initial state. A
module shall be in the state PDU_MODST_READY to allow any API function calls to the module (See
PDUModuleConnect).

b) Use Case: Module State Change = (PDU_MODST_AVAIL -> PDU_MODST_READY) The module
transitions to PDU_MODST_READY after a successful call to PDUModuleConnect. The module is now
ready to begin an API session with the client application. NO status event item can be generated at this
time because the function callback (PDURegisterEventCallback) can only be applied after the module is
in the state PDU_MODST_READY.

ISO 22900-2:2009(E)

88 © ISO 2009 – All rights reserved

c) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_NOT_READY) The
module transitions to PDU_MODST_NOT_READY when a condition occurs on the device which prohibits
execution of any further API calls. This condition may only be momentary while the module recovers from
the not ready state (e.g. PDU_IOCTL_RESET).

d) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_NOT_AVAIL) or
(PDU_MODST_NOT_READY -> PDU_MODST_NOT_AVAIL) The module transitions to
PDU_MODST_NOT_AVAIL on a loss of communication to a module. All ComPrimitives currently
executing (i.e. periodic) and all ComPrimitives in the CoP queue will be cancelled
(PDU_COPST_CANCELLED). All active ComLogicalLinks will go into the offline state
(PDU_CLLST_OFFLINE). The orders of events under the case of losing communications to a module
are: PDU_ERR_EVT_LOST_COMM_TO_VCI, PDU_COPST_CANCELLED, PDU_CLLST_OFFLINE,
and PDU_MODST_NOT_AVAIL.

e) Use Case: Module State Change = (PDU_MODST_READY -> PDU_MODST_AVAIL) The module
transitions to PDU_MODST_AVAIL after a successful call to PDUModuleDisconnect. All resources are
freed for the module. NO status event item is generated since further event items will not be queued for
the module.

9.4.29.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUModuleConnect (UNUM32 hMod)

9.4.29.4 Parameters

hMod Handle of the MVCI protocol module to be connected. If set to
PDU_HANDLE_UNDEF then the D-PDU API will establish a connection to all
detected MVCI protocol modules. It is up to the MVCI protocol module vendor to
choose which interface type of connection will be made (e.g. a vendor may choose
wireless over USB if applicable).

9.4.29.5 Return values

Table 38 — PDUModuleConnect return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

PDU_ERR_MODULE_FW_OUT_OF_DATE The D-PDU API library has a newer version than the MVCI protocol
module firmware. The MVCI protocol module firmware should be
updated to work with the D-PDU API Library.

PDU_ERR_API_SW_OUT_OF_DATE The MVCI protocol module firmware has a newer version than the
D-PDU API Library. The D-PDU API Library should be updated to
work with the MVCI protocol module firmware.

PDU_ERR_FCT_FAILED Command failed.

9.4.30 PDUModuleDisconnect

9.4.30.1 Purpose

Closes all open communication links and frees communication resources to the specified module. Internal
memory segments shall be freed and system-level drivers disconnected. Execution of PDUModuleDisconnect
does not initiate any communication on the vehicle interfaces. For a given module, after the execution of
PDUModuleDisconnect, PDUModuleConnect may be called again.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 89

9.4.30.2 Behaviour

a) Close any open communication links to the specified VCI module(s).

b) Deinitialize the specified MVCI protocol module(s).

c) Free all internal memory associated with the MVCI protocol module(s).

d) If communications have not been lost to the module, set the Module Status to PDU_MODST_AVAIL. (No
event callback is generated since further event items are not allowed for the module.) The module handle
(hMod) is still valid for further PDUModuleConnect calls.

e) If communications to the module have been lost, then the hMod handle is no longer valid.

NOTE It is advisable that a client application calls PDUModuleDisconnect when communications have been lost to
the MVCI protocol module after all items have been retrieved from the module event queue. (See
PDU_ERR_EVT_LOST_COMM_TO_VCI.)

9.4.30.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUModuleDisconnect(UNUM32 hMod)

9.4.30.4 Parameters

hMod Handle of the MVCI protocol module to be disconnected. If set to PDU_HANDLE_UNDEF
then the D-PDU API will disconnect from all previously connected MVCI protocol modules.

9.4.30.5 Return values

Table 39 — PDUModuleDisconnect return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_FCT_FAILED Command failed.

9.4.31 PDUGetTimestamp

9.4.31.1 Purpose

Function obtains the current time (hardware clock) from an MVCI protocol module. This time is usually derived
directly from the hardware clock of the MVCI protocol module. This time is also used internally to generate the
timestamps returned by PDUGetStatus and has the same unit and resolution.

9.4.31.2 Behaviour

a) Validate all input parameters.

NOTE Pointer parameters cannot be NULL.

b) Get the latest status information for the specified handle (Module) and store the information in the
memory allocated by the client application.

ISO 22900-2:2009(E)

90 © ISO 2009 – All rights reserved

9.4.31.3 C/C++ prototype

EXTERNC T_PDU_ERROR PDUGetTimestamp(UNUM32 hMod, UNUM32 *pTimestamp)

9.4.31.4 Parameters

hMod Handle of MVCI protocol module for which the timestamp is to be requested.

pTimestamp Call-by-reference place for storing timestamp in microseconds.

9.4.31.5 Return values

Table 40 — PDUGetTimestamp return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_FCT_FAILED Function call failed.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API has not been constructed before.

PDU_ERR_INVALID_PARAMETERS Invalid (NULL) pTimestamp.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

9.5 I/O control section

9.5.1 IOCTL API command overview

Table 41 — Overview of PDUIOCTL function — IOCTL commands gives an overview of the standard IOCTL
commands for MVCI protocol modules. The following subclauses describe the details for all Ioctl commands
listed in the table. In the detailed description, the input and output data, as well as the specific possible return
values are specified for each command.

⎯ See 9.4.4 for the complete prototype of the API function.

⎯ See 11.1.4.3 for a description of the PDU_DATA_ITEM structure.

⎯ See Items for IOCTL data transfer (PDUIoctl), for a definition of the Data Item Types used for IOCTLs.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 91

Table 41 — Overview of PDUIOCTL function — IOCTL commands

IOCTL short name

(IoCtlCommandId from
MDF) Ta

rg
et

pInputData

DataItemType

pOutputData

DataItemType
Purpose

IOCTL short name: Short name of the specific IOCTL command from the MDF.

Target: M = command for MVCI protocol modules; L = command for ComLogicalLinks.

pInputData: Description of input data for the command.

pOutputData: Description of output data for the command.

Purpose: Description of the command.

PDU_IOCTL_RESET M — — Reset specific MVCI protocol module.

PDU_IOCTL_CLEAR_TX_
QUEUE

L — — Clear transmit queue of specific
ComLogicalLink.

PDU_IOCTL_SUSPEND_TX
_QUEUE

L — — Suspend transmit queue of specific
ComLogicalLink. The queue processing
will be halted upon this command. This
can be used to fill up a ComLogicalLink's
queue with ComPrimitives to achieve a
steady processing of ComPrimitives after
resuming the queue (e.g. for fast flash
programming operation).

PDU_IOCTL_RESUME_TX_
QUEUE

L — — Resume transmit queue of specific
ComLogicalLink. The queue processing
will be started upon this command.

PDU_IOCTL_CLEAR_RX_
QUEUE

L — — Clear event queue of specific
ComLogicalLink.

PDU_IOCTL_READ_VBATT M — PDU_IT_IO_UNU
M32

Read voltage on pin 16 of MVCI protocol
module.

PDU_IOCTL_SET_PROG_
VOLTAGE

M PDU_IT_IO_PRO
G_VOLTAGE

— Set the programmable voltage on the
specified Pin/Resource of the DLC
connector. The voltage and pin
information are specified in the
PDU_DATA_ITEM, which is passed as
InputData.

PDU_IOCTL_READ_PROG_
VOLTAGE

M — PDU_IT_IO_UNU
M32

Read the feedback of the programmable
voltage.

PDU_IOCTL_GENERIC M PDU_IT_IO_BYTE
ARRAY

— Allows the application to send a generic
message to its drivers. The message in
the Data buffer is sent down to the MVCI
protocol module, intercepting or
interpreting it.

PDU_IOCTL_SET_BUFFER
_SIZE

L PDU_IT_IO_UNU
M32

— Sets the buffer size limit of item Structure
for result. See 11.1.4.11.4.

PDU_IOCTL_START_MSG_
FILTER

L PDU_IT_IO_FILT
ER

— Starts filtering of incoming messages for
the specified ComLogicalLink.

PDU_IOCTL_STOP_MSG_FI
LTER

L PDU_IT_IO_UNU
M32

— Stops the specified filter, based on filter
number.

PDU_IOCTL_CLEAR_MSG_
FILTER

L — — Clears all message filters for the
ComLogicalLink.

ISO 22900-2:2009(E)

92 © ISO 2009 – All rights reserved

Table 41 (continued)

IOCTL short name

(IoCtlCommandId from
MDF) Ta

rg
et

pInputData

DataItemType

pOutputData

DataItemType
Purpose

IOCTL short name: Short name of the specific IOCTL command from the MDF.

Target: M = command for MVCI protocol modules; L = command for ComLogicalLinks.

pInputData: Description of input data for the command.

pOutputData: Description of output data for the command.

Purpose: Description of the command.

PDU_IOCTL_SET_EVENT_
QUEUE_PROPERTIES

L PDU_IT_IO_EVE
NT_QUEUE_PRO
PERTY

— Sets the maximum size of the
ComLogicalLink event queue and the
queue mode.

PDU_IOCTL_GET_CABLE_
ID

M — PDU_IT_IO_UNU
M32

Get the Cable Id of the Cable currently
connected to the MVCI protocol module.

PDU_IOCTL_SEND_BREAK L — — Sends a UART Break Signal on the
ComLogicalLink.

PDU_IOCTL_READ_
IGNITION_SENSE_STATE

M PDU_IT_IO_UNU
M32

PDU_IT_IO_UNU
M32

Read the ignition sense state from the
specified vehicle connector pin.

For manufacturer specific purposes the IOCTL list can be expanded by further commands. These commands
are to be listed in the MDF by their short name, following those that are described above.

9.5.2 PDU_IOCTL_RESET

The Ioctl command PDU_IOCTL_RESET is used to reset the MVCI protocol module with the handle, which is
passed as a parameter to the PDUIoctl() function. The command is executed synchronously (i.e. returns after
completion of the reset procedure).

InputData: NULL

OutputData: NULL

NOTE 1 The reset command will cancel all activities currently being executed by the MVCI protocol module (without
proper termination). All existing ComLogicalLinks will be suspended, and receive and transmit queues will be cleared.
Therefore, all associated ComPrimitives and received data items will be destroyed. All existing ComLogicalLinks will be
destroyed too. All hardware properties of the MVCI protocol module (e.g. programming voltage) will be reset to the default
settings. After the completion of the reset command, the application will need to use the MVCI protocol module as if it
were a new MVCI protocol module.

NOTE 2 The resource table (set up after the start up of the module) won't change because of a PDU_IOCTL_RESET.
Therefore, it is not necessary to call function PDUConstruct again after the reset.

NOTE 3 The timestamp base is reset to zero.

Table 42 — PDU_IOCTL_RESET return values specifies specific return values.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 93

Table 42 — PDU_IOCTL_RESET return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Reset command failed.

9.5.3 PDU_IOCTL_CLEAR_TX_QUEUE

The Ioctl command PDU_IOCTL_CLEAR_TX_QUEUE is used to clear the transmit queue of the
ComLogicalLink with the handle, which is passed as parameter to the PDUIoctl() function. All ComPrimitive
items are destroyed in the D-PDU API internally. Further function calls of the application, which refer to
destroyed ComPrimitive items, will report an error.

InputData: NULL

OutputData: NULL

NOTE To avoid overlapped operation of queue processing and queue clearing it is recommended to execute the
command PDU_IOCTL_SUSPEND_TX_QUEUE before executing PDU_IOCTL_CLEAR_TX_QUEUE.

Table 43 — PDU_IOCTL_CLEAR_TX_QUEUE return values specifies specific return values.

Table 43 — PDU_IOCTL_CLEAR_TX_QUEUE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

9.5.4 PDU_IOCTL_SUSPEND_TX_QUEUE

The Ioctl command PDU_IOCTL_SUSPEND_TX_QUEUE is used to suspend transmit queue's processing for
the ComLogicalLink with the handle being passed as parameter to the PDUIoctl() function.

InputData: NULL

OutputData: NULL

NOTE This command can be used to fill up a ComLogicalLink's queue with ComPrimitives before executing a
PDU_IOCTL_RESUME_TX_QUEUE command. Thus, a steady processing of ComPrimitives can be achieved (e.g. for
fast flash programming operation).

Table 44 — PDU_IOCTL_SUSPEND_TX_QUEUE return values specifies specific return values.

ISO 22900-2:2009(E)

94 © ISO 2009 – All rights reserved

Table 44 — PDU_IOCTL_SUSPEND_TX_QUEUE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

9.5.5 PDU_IOCTL_RESUME_TX_QUEUE

The Ioctl command PDU_IOCTL_RESUME_TX_QUEUE is used to resume the transmit queue's processing
for the ComLogicalLink with the handle being passed as parameter to the PDUIoctl() function.

InputData: NULL

OutputData: NULL

Table 45 — PDU_IOCTL_RESUME_TX_QUEUE return values specifies specific return values.

Table 45 — PDU_IOCTL_RESUME_TX_QUEUE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

9.5.6 PDU_IOCTL_CLEAR_RX_QUEUE

The Ioctl command, PDU_IOCTL_CLEAR_RX_QUEUE, is used to clear the event queue for the appropriate
ComLogicalLink (a handle is passed as an input parameter to the PDUIoctl() function). All event items (i.e.
result data, information about errors or status changes) in the event queue of the ComLogicalLink will be
cleared and automatically destroyed (i.e. the D-PDU API internally performs a PDUDestroyItem call for each
item in the event queue).

InputData: NULL

OutputData: NULL

Table 46 — PDU_IOCTL_CLEAR_RX_QUEUE return values specifies specific return values.

Table 46 — PDU_IOCTL_CLEAR_RX_QUEUE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 95

9.5.7 PDU_IOCTL_READ_VBATT

The Ioctl command PDU_IOCTL_READ_VBATT is used to read the voltage on pin 16 of the MVCI protocol
module's connector. The MVCI protocol module handle is passed as a parameter to the PDUIoctl() function.
The voltage will be written to the UNUM32 value (4 data bytes) of the PDU_DATA_ITEM structure being
passed as OutputData by reference. For a description of PDU_DATA_ITEM, see 11.1.4.3.

InputData: NULL

OutputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_UNUM32

pData UNUM32 Vbat_mv; /* vehicle battery in mV */

Table 47 — PDU_IOCTL_READ_VBATT return values specifies specific return values.

Table 47 — PDU_IOCTL_READ_VBATT return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED Command failed.

9.5.8 PDU_IOCTL_SET_PROG_VOLTAGE

The Ioctl command PDU_IOCTL_SET_PROG_VOLTAGE is used to set the programmable voltage on the
specified Pin of the DLC connector. The MVCI protocol module handle is passed as parameter to the
PDUIoctl() function. The voltage and pin information are specified in the PDU_DATA_ITEM, which is passed
as InputData. For a description of PDU_DATA_ITEM, see 11.1.4.3. Valid values are: 5 000 mV to 20 000 mV
(limited to 100 mA with a resolution of ±100 mV). See also Table 48 — PDU IOCTL programming voltage
description.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_PROG_VOLTAGE

pData pointer PDU_IO_PROG_VOLTAGE_DATA structure (see 11.1.4.3.2)

OutputData: NULL

Table 48 — PDU IOCTL programming voltage description

Coded value of voltage Meaning

0x00001388 – 0x00004E20 5 000 mV – 20 000 mV

0xFFFFFFFE SHORT_TO_GROUND (zero impedance)

0xFFFFFFFF VOLTAGE_OFF (high impedance)

ISO 22900-2:2009(E)

96 © ISO 2009 – All rights reserved

Table 49 — PDU_IOCTL_SET_PROG_VOLTAGE return values specifies specific return values.

Table 49 — PDU_IOCTL_SET_PROG_VOLTAGE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_RESOURCE_BUSY Resource is busy; the application has to execute the command again.

PDU_ERR_FCT_FAILED Command failed.

PDU_ERR_VOLTAGE_NOT_SUPPORTED The voltage is not supported by the MVCI protocol module.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_MUX_RSC_NOT_SUPPORTED The specified pin/Resource are not supported by the MVCI protocol
module.

9.5.9 PDU_IOCTL_READ_PROG_VOLTAGE

The Ioctl command PDU_IOCTL_READ_PROG_VOLTAGE is used to read the feedback of the
programmable voltage from the voltage source, which is set by the command
PDU_IOCTL_SET_PROG_VOLTAGE. The MVCI protocol module handle is passed as parameter to the
PDUIoctl() function. The voltage will be written to the UNUM32 value (4 data bytes) of the PDU_DATA_ITEM
structure being passed as OutputData by reference. For a description of PDU_DATA_ITEM, see 11.1.4.3. See
also Table 48 — PDU IOCTL programming voltage description.

InputData:

OutputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_UNUM32

pData UNUM32 ProgVoltage_mv; /* programming voltage in mV */

Table 50 — PDU_IOCTL_READ_PROG_VOLTAGE return values specifies specific return values.

Table 50 — PDU_IOCTL_READ_PROG_VOLTAGE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid MVCI protocol module or ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED Command failed.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 97

9.5.10 PDU_IOCTL_GENERIC

This command was added due to compatibility reasons for RP1210a. It allows the application to send a
generic message to its drivers. The D-PDU API simply passes the message in the Data buffer down to MVCI
protocol module, if any, associated with the device hardware without intercepting or interpreting it. The generic
command will be written to the element “Data” of the PDU_DATA_ITEM structure as a free form buffer of
bytes. The PDU_DATA_ITEM structure is passed as InputData by reference. For a description of
PDU_DATA_ITEM, see 11.1.4.3.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_BYTEARRAY

pData pointer PDU_IO_BYTEARRAY_DATA structure (see 11.1.4.3.3)

OutputData: NULL

Table 51 — PDU_IOCTL_GENERIC return values specifies specific return values.

Table 51 — PDU_IOCTL_GENERIC return values

Definition Description

PDU_ERR_FCT_FAILED Command failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

9.5.11 PDU_IOCTL_SET_BUFFER_SIZE

This IOCtl command sets the maximum buffer size of the received PDU on a ComLogicalLink. (See
PDU_RESULT_DATA: 11.1.4.11.4 Structure for result data) The buffer size is contained in the UNUM32 value
(4 data bytes) of the PDU_DATA_ITEM structure being passed as InputData by reference. For a description of
PDU_DATA_ITEM, see 11.1.4.3.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_ IO_UNUM32

pData UNUM32 MaxRxBufferSize; /* maximum size of a received PDU for the ComLogicalLink
*/

OutputData: NULL

Table 52 — PDU_IOCTL_SET_BUFFER_SIZE return values specifies specific return values.

Table 52 — PDU_IOCTL_SET_BUFFER_SIZE return values

Definition Description

PDU_ERR_FCT_FAILED Command failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

ISO 22900-2:2009(E)

98 © ISO 2009 – All rights reserved

9.5.12 PDU_IOCTL_GET_CABLE_ID

To let the application know which cable is currently connected to an MVCI protocol module, the following
PDU_IOCTL command can be used:

InputData: NULL

OutputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_ IO_UNUM32

pData UNUM32 CableId; /* Cable Id from CDF */

With the cable ID, the application can retrieve information about the cable from the CDF, like short name,
description and DLCType (connector type).

Table 53 — PDU_IOCTL_GET_CABLE_ID return values specifies specific return values.

Table 53 — PDU_IOCTL_GET_CABLE_ID return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_CABLE_UNKNOWN Cable is unknown.

PDU_ERR_NO_CABLE_DETECTED No cable is detected.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED The MVCI protocol module doesn't support cable detection.

9.5.13 PDU_IOCTL_START_MSG_FILTER

This Ioctl command starts filtering incoming messages for the specified ComLogicalLink. A minimum of 64
filters can be supported per ComLogicalLink. A PDUDestroyComLogicalLink shall delete all its defined
message filters. Filtering will only become active when the ComLogicalLink is in the PDU_CLLST_ONLINE
state (see PDUConnect). If the application does not configure any filters, the D-PDU API will automatically
determine a set of filters by using the PDU_PC_UNIQUE_ID ComParams configured for the ComLogicalLink.
(See PDUSetUniqueRespIdTable.) Any filters set by the application using the IOCTL filter commands will
override any filters internally configured by the D-PDU API.

All Protocols:

⎯ Pass filters and block filters will be applied to all received messages. They shall not be applied to
indications or loopback messages.

⎯ Messages that match a pass filter can still be blocked by a block filter (see Figure 27 — MSG_FILTER
block diagram).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 99

For the ISO 15765 protocol:

⎯ Pass filters and block filters are applied to CAN ID filtering. They shall not be applied to indications or
loopbacks of CAN IDs.

NOTE The UniqueRespIdTable (see 11.1.4.10) is used for USDT/UUDT frame handling plus flow control and
extended address handling.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_FILTER

pData pointer PDU_IO_FILTER_LIST structure (see 11.1.4.3.4)

OutputData: NULL

Table 54 — PDU_IOCTL_START_MSG_FILTER return values specifies specific return values.

Table 54 — PDU_IOCTL_START_MSG_FILTER return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED Command failed.

ISO 22900-2:2009(E)

100 © ISO 2009 – All rights reserved

9.5.13.1 MSG_FILTER block diagram

Figure 27 — MSG_FILTER block diagram

9.5.14 PDU_IOCTL_STOP_MSG_FILTER

The Ioctl command PDU_IOCTL_STOP_MSG_FILTER removes the specified filter from the ComLogicalLink.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_UNUM32

pData UNUM32 FilterNumber; /* Filter Number to stop */

OutputData: NULL

Table 55 — PDU_IOCTL_STOP_MSG_FILTER return values specifies specific return values.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 101

Table 55 — PDU_IOCTL_STOP_MSG_FILTER return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or pOutputData)
or the Filter Number is invalid.

PDU_ERR_FCT_FAILED Command failed.

9.5.15 PDU_IOCTL_CLEAR_MSG_FILTER

The Ioctl command PDU_IOCTL_CLEAR_MSG_FILTER removes all message filters from the
ComLogicalLink.

InputData: NULL

OutputData: NULL

Table 56 — PDU_IOCTL_CLEAR_MSG_FILTER return values specifies specific return values.

Table 56 — PDU_IOCTL_CLEAR_MSG_FILTER return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

9.5.16 PDU_IOCTL_SET_EVENT_QUEUE_PROPERTIES

The Ioctl command PDU_IOCTL_SET_EVENT_QUEUE_PROPERTIES sets the properties of the
ComLogicalLink event queue. There are two properties associated with an event queue: the event queue size,
and the queuing mechanism to be used. The PDU_IOCTL_SET_EVENT_QUEUE_PROPERTIES can only be
used prior to calling the PDUConnect function. If the ComLogicalLink is already connected, the function will
return the PDU_ERR_CLL_CONNECTED error.

The queue mode sets the behaviour of the queuing mechanism in case the ComLogicalLink reaches the
maximum size of the event queue.

Table 57 — Queue modes defines three types of queue modes.

ISO 22900-2:2009(E)

102 © ISO 2009 – All rights reserved

Table 57 — Queue modes

Queue Mode Type Description

Unlimited Mode An attempt is made to allocate memory for every item being placed on the event queue. In
Unlimited Mode, the QueueSize is ignored.
(Default Mode for ComLogicalLink)

Limited Mode When the ComLogicalLink's event queue is full (i.e. maximum size has been reached), no new
items are placed on the event queue. The event items are discarded in this case.

Circular Mode When the ComLogicalLink's event queue is full (i.e. maximum size has been reached), then the
oldest event item in the queue is deleted so that the new event item can then be placed in the
event queue.

When a ComLogicalLink reaches a queue full state, the special PDU_EVT_DATA_LOST event is generated.
No result items will be created (i.e. no PDU_IT_ERROR items will be attempted to be placed on the event
queue). See Event callback data values for event types.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_EVENT_QUEUE_PROPERTY

pData pointer PDU_IO_EVENT_QUEUE_PROPERTY_DATA structure (see 11.1.4.3.6)

OutputData: NULL

Table 58 — PDU__IOCTL_SET_EVENT_QUEUE_PROPERTIES return values specifies specific return
values.

Table 58 — PDU__IOCTL_SET_EVENT_QUEUE_PROPERTIES return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_CLL_CONNECTED CLL is already in the “online” state.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED Command failed.

9.5.17 PDU_IOCTL_SEND_BREAK

The Ioctl command PDU_IOCTL_SEND_BREAK is used to send a break signal on the ComLogicalLink. A
break signal can only be sent on certain physical layers (e.g. SAE J1850 VPW physical links and UART
physical links). If the link does not support the break feature a PDU_ERR_FCT_FAILED will be returned.

UART Break signals are caused by sending continuous (0) values (no Start or Stop bits). The Break signal
shall be of a duration longer than the time it takes to send a complete byte plus Start, Stop and Parity bits.
Most UARTs can distinguish between a Framing Error and a Break, but if the UART cannot do this, the
Framing Error detection can be used to identify Breaks.

SAE J1850 Break signals are determined by observing the timing of the active to passive transition. If the
transition does not occur until after 240 µs, the current signal will be considered a valid Break signal. A Break
signal should be followed by a SOF signal beginning with the next message to be transmitted onto the

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 103

SAE J1850 bus. All nodes on a SAE J1850 bus shall return to normal operating conditions after detecting a
Break signal. Many SAE J1850 hardware components support the Break signal feature (transmit and receive).
There is no specification on the maximum length of a SAE J1850 break signal, but it shall not be excessively
long. Therefore, the maximum length shall be greater than the minimum length of 240 µs.

The ComLogicalLink's handle is passed as a parameter to the PDUIoctl() function.

InputData: NULL

OutputData: NULL

Table 59 — PDU_IOCTL_SEND_BREAK return values specifies specific return values.

Table 59 — PDU_IOCTL_SEND_BREAK return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_INVALID_HANDLE Invalid ComLogicalLink handle.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_FCT_FAILED Command failed.

PDU_ERR_CLL_NOT_STARTED Communications are not started on the ComLogicalLink yet. A Send
ComPrimitive cannot be accepted in this state.

PDU_ERR_MODULE_NOT_CONNECTED MVCI protocol module has not been connected. See
PDUModuleConnect function.

PDU_ERR_CLL_NOT_CONNECTED ComLogicalLink is not connected.

PDU_ERR_RSC_LOCKED_BY_OTHER_CLL The ComLogicalLink's resource is currently locked by another
ComLogicalLink.

9.5.18 PDU_IOCTL_READ_IGNITION_SENSE_STATE

The Ioctl command PDU_IOCTL_READ_IGNITION_SENSE_STATE is used to read the Switched Vehicle
Battery Voltage (Ignition on/off) pin. In accordance with ISO 22900-1, this information is available on pin 24 of
the MVCI module chassis connector. There is no corresponding pin on the legislated ISO 15031-3/SAE J1962
compatible vehicle connectors.

This IOCTL allows for reading of a specified vehicle connector pin to determine the state of the ignition switch.
Since a MVCI protocol module vendor may support a cable type which routes the ignition sense to pin 24 of
the module, a DLC pin number of 0 will indicate that the Switched Vehicle Battery Voltage is to be read from
the MVCI protocol module pin 24 and not from a DLC pin.

The D-PDU API will determine the sense of the ignition by first reading the permanent positive battery voltage
from the vehicle (UBATvehicle (pin 16 on the DLC)) and then reading the specified switched vehicle battery
voltage pin. Ignition ON will be +/- 2 volts of the permanent vehicle battery voltage.

InputData: Value settings for PDU_DATA_ITEM

ItemType PDU_IT_IO_UNUM32

pData UNUM32 DLCPinNumber; /* Pin number of the vehicles data link connector which
contains the vehicle switched battery voltage. If
DLCPinNumber = 0, then the ignition sense is routed to
pin 24 of the MVCI protocol module*/

OutputData: Value settings for PDU_DATA_ITEM

ISO 22900-2:2009(E)

104 © ISO 2009 – All rights reserved

ItemType PDU_IT_IO_UNUM32

pData UNUM32 IgnitionState; /* Evaluated state of switched vehicle battery
voltage.

0 = Ignition OFF

1 = Ignition ON*/

Table 60 — PDU_IOCTL_READ_IGNITION_SENSE_STATE return values specifies specific return values.

Table 60 — PDU_IOCTL_READ_IGNITION_SENSE_STATE return values

Definition Description

PDU_STATUS_NOERROR Function call successful.

PDU_ERR_PDUAPI_NOT_CONSTRUCTED D-PDU API construct has not been called before.

PDU_ERR_COMM_PC_TO_VCI_FAILED Communication between host and MVCI protocol module failed.

PDU_ERR_INVALID_PARAMETERS At least one of the parameters is invalid (pInputData and/or
pOutputData).

PDU_ERR_FCT_FAILED Command failed.

PDU_ERR_PIN_NOT_CONNECTED The requested Pin is not routed by supported cable.

9.6 API functions — error handling

9.6.1 Synchronous error handling

Errors which occur during the execution of a function (i.e. synchronously), will be reported by the function's
return value. The specific return values are documented for each API function in 9.4.

In Clause D.3, reserved return values of the API functions are documented. These reserved values are
supposed to provide a standard mechanism for handling errors between different D-PDU API implementations.

9.6.2 Asynchronous error handling

Asynchronous Errors are reported by event items (i.e. items PDU_EVENT_ITEM with type PDU_IT_ERROR).
They are queued by the D-PDU API using the regular internal queuing mechanisms. The application will get
error items using the same functions as for result items (i.e. PDUGetEventItem). Asynchronous errors can be
related to a MVCI protocol module (e.g. hardware errors), to a ComLogicalLink (e.g. CAN bus error) or to a
specific ComPrimitive (e.g. ECU timeout). This relationship will be expressed by the specific handle, which is
used in the function PDUGetEventItem to get the error item. The error item contains a D-PDU API defined
error code (see Clause D.4), which identifies the error that occurred along with a vendor-specific extra error
code. A text translation of the vendor-specific extra error codes is available in the MDF XML file.

In Clause D.4, reserved error codes for error items are documented. These reserved codes provide a
standard mechanism for handling most asynchronous error events between different D-PDU API
implementations.

9.7 Installation

9.7.1 Generic description

The D-PDU API root description file (RDF) is the central entry point for all applications accessing MVCI
protocol modules in either Windows or Linux. See Clause F.1 D-PDU API root description file for the UML
description of the root description file.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 105

During installation, an MVCI protocol module Tool Integrator (see 9.3.2) adds the vendor-specific information
to the root description file. If the root file has not been previously created, then the installation process shall
create the root description file (and the registry information for Windows) in the specified location (see
subclauses below).

The MVCI protocol module vendor shall ensure that the information to be added to the root description file
does not conflict with another entry. The Tool Integrator will have to ensure uniqueness. The
<MVCI_PDU_API> element contains the following sub-elements to help ensure unique entries:

⎯ SHORT_NAME

⎯ DESCRIPTION

⎯ SUPPLIER_NAME

The following subclauses describe the location of the root description file and the loading process of the
associated libraries.

9.7.2 Windows installation process

9.7.2.1 Locating the Windows D-PDU API DLL

The application will be able to locate all of the D-PDU API implementations installed on the machine by
accessing the D-PDU API root file. The location of the root file is to be identified as follows:

a) The application shall navigate to the registry key HKEY_LOCAL_MACHINE\SOFTWARE \D-PDU API.

b) Under this key, the value-name “Root File” (String) contains the full path to the root file.

EXAMPLE [HKEY_LOCAL_MACHINE\SOFTWARE\D-PDU API]

“Root File”=“C:\Program Files\D-PDU API\pdu_api_root.xml”

NOTE The complete file path to the D-PDU API Root File is stored at the defined location in the registry.

c) Only one Key (D-PDU API) and one Value (Root File) shall be created. The pdu_api_root.xml file
contains all the installed MVCI protocol modules' DLL information from each vendor. The uninstall
program shall remove its information from the pdu_api_root.xml file, but shall not affect the other entries.

9.7.2.2 Loading the Windows D-PDU API DLL

To load the D-PDU API DLL, the application will use native Win32 API functions such as:

⎯ LoadLibrary

⎯ GetProcAddress: When using GetProcAddress, the application shall supply the name of the function
whose address is being requested. To support this method with un-mangled names (when using certain
compilers), the MVCI protocol module vendor shall compile the DLL with an export library definition file.

⎯ FreeLibrary

NOTE 1 See the Win32 API SDK reference for the details of these functions.

NOTE 2 All D-PDU API functions exported from the DLL will have the __stdcall calling convention.

ISO 22900-2:2009(E)

106 © ISO 2009 – All rights reserved

9.7.3 Linux installation process

9.7.3.1 Locating the Linux D-PDU API shared library

The application may locate all the D-PDU API implementations installed on the machine by accessing the
D-PDU API root file. The location of the root file is to be identified as follows:

a) The root file is stored as the file “pdu_api_root.xml” in the directory “/etc”.

b) The pdu_api_root.xml file contains all the installed MVCI protocol modules' Shared Library information
from each vendor. The uninstall program shall remove its information from the pdu_api_root.xml file, but
shall not affect the other entries.

9.7.3.2 Loading the Linux D-PDU API shared library

To load the D-PDU API shared library, the application will use functions like:

⎯ dlopen,

⎯ dlsym: When using the function dlsym, the application shall supply the name of the function whose
address is being requested,

⎯ dlclose.

NOTE See the Linux documentation for the details of these functions.

9.7.4 Selecting MVCI protocol modules

The client application should use the pdu_api_root.xml file to determine the list of available D-PDU API
implementations. Once the application has selected one or more implementations, the pdu_api_root.xml file is
used to retrieve all the information regarding the implementation so that the appropriate DLLs or Shared
Libraries can be loaded for use.

9.8 Application notes

9.8.1 Interaction with the MDF

Both the D-PDU API and the application may read the MDF file to retrieve information.

9.8.2 Accessing additional hardware features for MVCI protocol modules

Additional hardware features (e.g. analogue channels, digital I/O, etc.), which are not covered directly by the
standard D-PDU API functions can be also implemented using standard D-PDU API function calls. The
following points shall serve as a guideline for manufacturer specific implementations of additional hardware
features. However, the manufacturer is free to choose between several implementation approaches, which
are outlined in the following sentences:

⎯ The manufacturer defines a specific “HARDWARE” protocol in the MDF. This is defined the same way as
for diagnostic protocols like ISO 15765.

⎯ The “HARDWARE” protocol has a set of ComParams. These are also described in the MDF.

⎯ To use the additional hardware features a ComLogicalLink with the specific “HARDWARE” protocol is
created by the application. Thereafter, the hardware features can be accessed either by getting and
setting ComParams, or by starting ComPrimitives.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 107

⎯ To control simple hardware features (like setting/reading digital I/O) the ComParam method
(PDUSetComParam) might be sufficient. In this case, the ComParam value will carry the specific
information (e.g. value of digital I/O port).

⎯ To control advanced hardware features, the method using ComPrimitives might be a good approach. In
this case, all standard features of ComPrimitives like periodic send or receive operation can be used (e.g.
periodic reading analogue values). Also, more information can be exchanged between the MVCI protocol
module and the application using the ComPrimitive data and its result data items.

9.8.3 Documentation and information provided by MVCI protocol module vendors

Each MVCI protocol module vendor will provide a different name implementation of the files supplied with the
installation: module description file(s), D-PDU API library, and cable description file(s). Since a number of
D-PDU API implementations could simultaneously reside on the same PC, a MVCI protocol module vendor
shall not name any of its files “PDU_API.dll” nor “PDU_API.so”. The following rules shall be followed for
naming each of the files delivered:

⎯ MDF_<VendorName>[<XXX>].xml

⎯ CDF_<VendorName>[<XXX>].xml

⎯ PDUAPI_<VendorName>[<XXX>].dll

⎯ PDUAPI_<VendorName>[<XXX>].so

where

<VendorName> is the name of the vendor;

<XXX> is an optional string (vendor specific).

EXAMPLE

⎯ MDF_DoctorWho_V_1_0_1.xml

⎯ CDF_Automan_1_0.xml

⎯ PDUAPI_Bob_Ver_2_1_0.dll

The protocol documentation listed below will be provided.

a) A tool manufacturer shall document the protocol behaviour and the ComParams for each protocol
supported by the tool manufacturer.

b) The documentation shall describe the behaviour of the protocol with regard to the specified ComPrimitive
types and status values.

c) All protocol ComParams shall be documented.

d) The tool manufacturer shall provide the protocol-specific entries in the MDF.

The vendor will also supply the OptionStr for PDUConstruct. The string provides a list of attributes and their
values, which are specific to a D-PDU API implementation (see 9.4.2.4 for more information).

9.8.4 Performance Testing

The mechanism for retrieving performance test results and the measurement process shall be MVCI protocol
module vendor specific. See ComParam (CP_EnablePerformanceTest).

ISO 22900-2:2009(E)

108 © ISO 2009 – All rights reserved

10 Using the D-PDU API with existing applications

10.1 SAE J2534-1 and RP1210a existing standards

The standards SAE J2534-1 and RP1210a were defined prior to the D-PDU API, and applications have
already been introduced to the after-sales market. In order to preserve the applications based on
SAE J2534-1 and RP1210a an MVCI-compliant device (i.e. MVCI protocol module) shall be convertible to
SAE J2534-1 or RP1210a with a compatibility layer or wrapper. This library configuration shall enable
SAE J2534-1 and RP1210a applications to run on a MVCI compliant device.

Figure 28 — Adapting MVCI device to SAE J2534-1 and RP1210a API

11 Data structures

11.1 API functions — data structure definitions

11.1.1 Abstract basic data types

For all input/output parameters, the following subset of abstract basic data types shall be used.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 109

Table 61 — Abstract data types

Data type Description

UNUM8 Unsigned numeric 8 bits.

SNUM8 Signed numeric 8 bits.

UNUM16 Unsigned numeric 16 bits.

SNUM16 Signed numeric 16 bits.

UNUM32 Unsigned numeric 32 bits.

SNUM32 Signed numeric 32 bits.

In addition to these data types, the following abstract data types shall be used for string handling.

Table 62 — Abstract data types - string handling

Data type Description

CHAR8 ASCII-coded 8-bit character value (ISO 8859-1 (Latin 1)).

All strings shall be handled as zero-terminated character field of the appropriate character data type. Length
information is calculated without the zero termination character value.

11.1.2 Definitions

The following definitions are used for D-PDU API functions:

Table 63 — Definitions for D-PDU API functions

Definition Description

EXTERNC Extern “C” declaration, required for C++ code.

CALLBACKFNC Callback function type.

These definitions shall be defined according to the requirements of the specific C/C++ compiler.

NOTE In a Windows D-PDU API DLL, all D-PDU API functions will have the _stdcall calling convention in accordance
with 9.7.2.

11.1.3 Bit encoding for UNUM32

Table 64 — Definition of byte and bit position for UNUM32 describes how to set or read a parameter field
which contains a bit encoded field. This table has been added to help with Endian problems between different
hardware platforms.

Table 64 — Definition of byte and bit position for UNUM32

BYTE 3 (MSB) BYTE 2 BYTE 1 BYTE 0 (LSB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISO 22900-2:2009(E)

110 © ISO 2009 – All rights reserved

11.1.4 API data structures

11.1.4.1 General information

The following data structures are required for data transfer of D-PDU API functions. Byte packing of one byte
is adopted from SAE J2534-1. This has to be defined according to the requirements of the specific C/C++
compiler.

11.1.4.2 Generic Item for type evaluation and casting

This is a generic item used for casting to item specific structures. PDU_ITEM is used in the function
PDUDestroyItem.

typedef struct {

T_PDU_IT ItemType; /* Clause D.1.1 D-PDU API item type values */

} PDU_ITEM;

Table 65 — Item types structures for typecasting lists the different type of Item types and their respective
structures.

Table 65 — Item types structures for typecasting

Item types Item type specific structure

PDU_IT_IO_UNUM32 PDU_DATA_ITEM, void *pData contains a single UNUM32 value.

PDU_IT_IO_PROG_VOLTAGE PDU_DATA_ITEM, void *pData contains a pointer to the
PDU_IO_PROG_VOLTAGE_DATA structure.

PDU_IT_IO_BYTEARRAY PDU_DATA_ITEM, void *pData contains a pointer to the
PDU_IO_BYTEARRAY_DATA structure.

PDU_IT_IO_FILTER PDU_DATA_ITEM, void *pData contains a pointer to the
PDU_IO_FILTER_LIST structure.

PDU_IT_IO_EVENT_QUEUE_PROPERTY PDU_DATA_ITEM, void *pData contains a pointer to the
PDU_IO_EVENT_QUEUE_PROPERTY_DATA structure.

PDU_IT_RSC_STATUS PDU_RSC_STATUS_ITEM

PDU_IT_PARAM PDU_PARAM_ITEM

PDU_IT_RESULT PDU_RESULT_DATA

PDU_IT_STATUS PDU_STATUS_DATA

PDU_IT_INFO PDU_INFO_DATA

PDU_IT_ERROR PDU_ERROR_DATA

PDU_IT_RSC_ID PDU_RSC_ID_ITEM

PDU_IT_RSC_CONFLICT PDU_RSC_CONFLICT_ITEM

PDU_IT_MODULE_ID PDU_MODULE_ITEM

PDU_IT_UNIQUE_RESP_ID_TABLE PDU_UNIQUE_RESP_ID_TABLE_ITEM

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 111

11.1.4.3 Items for IOCTL data transfer (PDUIoctl)

11.1.4.3.1 Item for Generic IOCTL data item

This is a generic IOTCL data item used for casting to specific IOCTL type structures. PDU_DATA_ITEM is
used in the function PDUIoctl.

typedef struct {

T_PDU_IT ItemType; /* value= one of the IOCTL constants from D.1.1 */

void *pData; /* pointer to the specific IOCTL data structure */

} PDU_DATA_ITEM;

11.1.4.3.2 IOCTL programming voltage structure (PDU_IT_IO_PROG_VOLTAGE)

typedef struct {

UNUM32 ProgVoltage_mv; /* programming voltage in mV */

UNUM32 PinOnDLC; /* pin number on Data Link Connector */

} PDU_IO_PROG_VOLTAGE_DATA;

11.1.4.3.3 IOCTL byte array structure (PDU_IT_IO_BYTEARRAY)

typedef struct {

UNUM32 DataSize; /* number of bytes in the data array */

UNUM8 *pData; /* pointer to the data array */

} PDU_IO_BYTEARRAY_DATA;

11.1.4.3.4 IOCTL filter list structure (PDU_IT_IO_FILTER)

typedef struct {

UNUM32 NumFilterEntries; /* number of Filter entries in the filter list array */

PDU_IO_FILTER_DATA *pFilterData; /* pointer to an array of filter data */

} PDU_IO_FILTER_LIST;

11.1.4.3.5 IOCTL filter data structure

typedef struct {

T_PDU_FILTER FilterType; /* type of filter being configured. D.1.10 IOCTL filter types values*/

UNUM32 FilterNumber; /* Filter Number. Used to replace filters and stop filters. Range
depends on implementation (see 9.5.13
PDU_IOCTL_START_MSG_FILTER)*/

UNUM32 FilterCompareSize; /* Number of bytes used out of each of the filter messages arrays
Range 1-12. */

UNUM8 FilterMaskMessage[12]; /* (Mask message to be ANDed to each incoming message.)
When using the CAN protocol, setting the first 4 bytes of
FilterMaskMessage to 0xFF makes the filter specific to one CAN
ID. Using other values allows for the reception or blocking of
multiple CAN identifiers.*/

ISO 22900-2:2009(E)

112 © ISO 2009 – All rights reserved

UNUM8 FilterPatternMessage[12]; /* (Pattern message to be compared to the incoming message
after the FilterMaskMessage has been applied). If the result
matches this pattern message and the FilterType is a pass filter,
then the incoming message will be processed for further reception
(otherwise it will be discarded). If the result matches this pattern
message and the FilterType is a block filter, then the incoming
message will be discarded (otherwise it will be processed for
further reception). Message bytes in the received message that
are beyond the FilterCompareSize of the pattern message will
be treated as “don't care”.*/

} PDU_IO_FILTER_DATA;

11.1.4.3.6 IOCTL event queue property structure (PDU_IT_IO_EVENT_QUEUE_PROPERTY)

typedef struct {

UNUM32 QueueSize; /* maximum size of event queue */

T_PDU_QUEUE_MODE QueueMode; /* Queue mode. D.1.11 IOCTL event queue mode type values */

} PDU_IO_EVENT_QUEUE_PROPERTY_DATA;

11.1.4.4 Item for resource status information (used by PDUGetResourceStatus)

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_RSC_STATUS (IN parameter)*/

UNUM32 NumEntries; /* (IN Parameter) = number of entries in pResourceStatusData
array. */

PDU_RSC_STATUS_DATA *pResourceStatusData; /* array to contain resource status (IN Parameter)*/

} PDU_RSC_STATUS_ITEM;

typedef struct {

UNUM32 hMod; /* Handle of a MVCI protocol module (IN parameter) */

UNUM32 ResourceId /* Resource ID (IN parameter) */

UNUM32 ResourceStatus; /* Resource Information Status (OUT Parameter):

 (see D.1.6 for specific values.)*/

} PDU_RSC_STATUS_DATA;

11.1.4.5 Item for ComParam data (used by PDUGetComParam, PDUSetComParam)

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_PARAM */

UNUM32 ComParamId; /* ComParam Id. Value from MDF of MVCI protocol module */

T_PDU_PT ComParamDataType; /* Defines the data type of the ComParam B.3.3 ComParam data type */

T_PDU_PC ComParamClass; /*ComParam Class type. The class type is used by the D-PDU API for
special ComParam handling cases. (BusType (physical ComParams)
and Unique ID ComParams)). B.3.2 */

void *pComParamData; /* pointer to ComParam data of type ComParamDataType */

} PDU_PARAM_ITEM;

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 113

11.1.4.6 Item for module identification (used by PDUGetModuleIds)

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_MODULE_ID */

UNUM32 NumEntries; /* number of entries written to the pModuleData array */

PDU_MODULE_DATA *pModuleData; /* pointer to array containing module types and module handles */

} PDU_MODULE_ITEM;

typedef struct {

UNUM32 ModuleTypeId; /* MVCI protocol moduleTypeId */

UNUM32 hMod; /* handle of MVCI protocol module assigned by D-PDU API */

CHAR8 *pVendorModuleName; /* Vendor specific information string for the unique module
identification, e.g. Module serial number or user friendly name */

CHAR8 *pVendorAdditionalInfo; /* Vendor specific additional information string */

T_PDU_STATUS ModuleStatus; /* Status of MVCI protocol module detected by D-PDU API session.
D.1.4 Status code values*/

} PDU_MODULE_DATA;

pVendorModuleName and pVendorAdditionalInfo String Description:

The pVendorModuleName and pVendorAdditionalInfo strings contain a list of attributes and their values. An
attribute and its corresponding value are to be separated by a >=< sign. The value needs to be put inside two
>'< signs. Between pairs of attribute and value shall be at least one space character. Attributes and values are
specific to a D-PDU API vendor implementation.

When no string information is available, the pVendorxxx strings will be set to NULL.

EXAMPLE String

pVendorModuleName = “VendorName='MVCI Company' MVCI Friendly Name = 'Hugo' ”

pVendorAdditionalInfo = “Connection Type Wireless='xx.xx.xx.xx' ”

The additional information can contain the IP addresses and connection types available:

a) Ethernet

b) Bluetooth

c) Infrared

d) 802.11g/802.11b

e) 802.3

f) RS232

g) USB

h) PCMCIA

i) PCI Express

j) WAN (GPRS, UMTS, …)

ISO 22900-2:2009(E)

114 © ISO 2009 – All rights reserved

11.1.4.7 Items for resource identification (used by PDUGetResourceIds)

typedef struct {

T_PDU_IT ItemType; /* value = PDU_IT_RSC_ID (IN parameter)*/

UNUM32 NumModules; /* number of entries in pResourceIdDataArray. */

PDU_RSC_ID_ITEM_DATA *pResourceIdDataArray; /* pointer to an array of resource Id Item Data */

} PDU_RSC_ID_ITEM;

typedef struct {

UNUM32 hMod; /* MVCI protocol module Handle */

UNUM32 NumIds; /* number of resources that match PDU_RSC_DATA */

UNUM32 *pResourceIdArray; /* pointer to a list of resource ids */

} PDU_RSC_ID_ITEM_DATA;

11.1.4.8 Structure for resource data (used by PDUGetResourceIds and PDUCreateComLogicalLink)

typedef struct {

UNUM32 BusTypeId; /* Bus Type Id (IN parameter) */

UNUM32 ProtocolId; /* Protocol Id (IN parameter) */

UNUM32 NumPinData; /* Number of items in the following array */

PDU_PIN_DATA *pDLCPinData; /* Pointer to array of PDU_PIN_DATA structures*/

} PDU_RSC_DATA;

PDU_PIN_DATA is defined as:

typedef struct {

UNUM32 DLCPinNumber; /* Pin number on DLC */

UNUM32 DLCPinTypeId; /* Pin ID */

} PDU_PIN_DATA;

11.1.4.9 Item for conflicting resources (used by PDUGetConflictingResources)

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_RSC_CONFLICT */

UNUM32 NumEntries; /* number of entries written to pRscConflictData*/

PDU_RSC_CONFLICT_DATA *pRscConflictData; /* pointer to array of PDU_RSC_CONFLICT_DATA*/

} PDU_RSC_CONFLICT_ITEM;

typedef struct {

UNUM32 hMod; /* Handle of the MVCI protocol module with conflict*/

UNUM32 ResourceId; /* Conflicting Resource ID */

} PDU_RSC_CONFLICT_DATA;

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 115

11.1.4.10 Item for unique response identification (used by PDUGetUniqueRespIdTable and
PDUSetUniqueRespIdTable)

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_UNIQUE_RESP_ID_TABLE */

UNUM32 NumEntries; /* number of entries in the table */

PDU_ECU_UNIQUE_RESP_DATA *pUniqueData; /* pointer to array of table entries for each ECU response */

} PDU_UNIQUE_RESP_ID_TABLE_ITEM;

typedef struct {

UNUM32 UniqueRespIdentifier; /* filled out by application */

UNUM32 NumParamItems; /* number of ComParams for the Unique Identifier */

PDU_PARAM_ITEM *pParams; /* pointer to array of ComParam items to uniquely define a
ECU response. The list is protocol specific */

} PDU_ECU_UNIQUE_RESP_DATA;

EXAMPLE Table 66 — Example set of ComParams for an ISO 15765 protocol response address ComParam list
and Table 67 — Example set of ComParams for a SAE J2190 (non-CAN) response structure per ECU are examples for
URID table configurations.

Table 66 — Example set of ComParams for an ISO 15765 protocol response address ComParam list

ComParam Description

CP_CanPhysReqFormat CAN Id format for a physical request. Used for Flow Control Can
transmission as well. First entry in the Unique Response Identifer table is the
default entry for a physical request.

CP_CanPhysReqId CAN Id for physical request. Used for flow Control Can transmission as well.
First entry in the Unique Response Identifer table is the default entry for a
physical request.

CP_CanPhysReqExtAddr Can extended address for physical request. Used for Flow Control Can
transmission as well. First entry in the Unique Response Identifer table is the
default entry for a physical request.

CP_CanRespUSDTFormat CAN Id format for a USDT response. Used for response handling.

CP_CanRespUSDTId CAN Id for a USDT response. Used for response handling. Value set to
0xFFFFFFFF is not used.

CP_CanRespUSDTExtAddr CAN extended address for a USDT response. Used for response handling.

CP_CanRespUUDTFormat CAN Id format for a UUDT response. Used for response handling.

CP_CanRespUUDTExtAddr CAN Id extended address for a UUDT response. Used for response
handling.

CP_CanRespUUDTId CAN Id for a UUDT response. Used for response handling. Value set to
0xFFFFFFFF is not used.

ISO 22900-2:2009(E)

116 © ISO 2009 – All rights reserved

Table 67 — Example set of ComParams for a SAE J2190 (non-CAN) response structure per ECU

ComParam Description

CP_FuncRespFormatPriorityType First byte of received message is the format/priority byte. This is the
expected first byte on a functional response.

CP_FuncRespTargetAddr Second byte of received message for a functional addressed response. The
protocol handler will use either the Tester Source address or this
FuncRespTargetAddr. (e.g. OBD using 0x6B as the Target address instead
of the Tester Address).

CP_PhysRespFormatPriorityType First byte of received message is the format/priority byte. This is the
expected first byte on a physical response.

CP_EcuRespSourceAddress Expected ECU Source Address. This is typically the 3rd byte of the
message.

11.1.4.11 Item for event notification

typedef struct {

T_PDU_IT ItemType; /* value= PDU_IT_RESULT or PDU_IT_STATUS or
PDU_IT_ERROR or PDU_IT_INFO */

UNUM32 hCop; /* If item is from a ComPrimitive then the hCop contains the valid
ComPrimitive handle, else it contains PDU_HANDLE_UNDEF */

void * pCoPTag; /* ComPrimitive Tag. Should be ignored if hCop =
PDU_HANDLE_UNDEF */

UNUM32 Timestamp; /* Timestamp in microseconds */

void *pData; /* points to the data for the specified Item Type. 11.1.4.11.1 to
11.1.4.11.4 */

} PDU_EVENT_ITEM;

Note that a successful call to PDUGetEventItem will automatically remove the item from the top of the event
queue in the D-PDU API. The application shall call PDUDestroyItem to release the memory back to the
D-PDU API.

11.1.4.11.1 Structure for status data

Asynchronous status change notification for PDU_IT_STATUS Item.

T_PDU_STATUS PDU_STATUS_DATA; /* Status code information. D.1.4 Status code values */

11.1.4.11.2 Asynchronous event information notification for PDU_IT_INFO Item.

typedef struct {

T_PDU_INFO InfoCode; /* Information code. D.1.5 Information event values */

UNUM32 ExtraInfoData; /* Optional additional information */

} PDU_INFO_DATA;

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 117

11.1.4.11.3 Asynchronous error notification structure for the PDU_IT_ERROR Item

typedef struct {

T_PDU_ERR_EVT ErrorCodeId; /* error code, binary information. */

UNUM32 ExtraErrorInfoId; /* Optional additional error information, text translation via MDF file.
Binary Information, 0 indicates no additional error information.
Clause D.4 Event error codes */

} PDU_ERROR_DATA;

11.1.4.11.4 Structure for result data

Asynchronous result notification structure (received data) for the PDU_IT_RESULT Item.

typedef struct {

PDU_FLAG_DATA RxFlag; /* Receive message status. Clause D.2.2 RxFlag definition.*/

UNUM32 UniqueRespIdentifier; /* ECU response unique identifier */

UNUM32 AcceptanceId; /* Acceptance Id value from ComPrimitive Expected Response
Structure. If multiple expected response entries match the response
payload data, then the first matching expected response id found in
the array of expected responses is used. (I.e. acceptance filtering is
carried out in the sequence of the expected responses as they
appear in the array of expected responses. Thus, an expected
response with the lowest array index has the highest priority.)*/

PDU_FLAG_DATA TimestampFlags; /* Bitoriented Timestamp Indicator flag (See Structure for flag data
and TimestampFlag definition). If the flag data is 0, then the following
timestamp information is not valid.*/

UNUM32 TxMsgDoneTimestamp; /* Transmit Message done Timestamp in microseconds */

UNUM32 StartMsgTimestamp; /* Start Message Timestamp in microseconds */

PDU_EXTRA_INFO *pExtraInfo; /* If NULL, no extra information is attached to the response structure.
This feature is enabled by setting the ENABLE_EXTRA_INFO bit in
the TxFlag for the ComPrimitive (See TxFlag definition)*/

UNUM32 NumDataBytes; /* Data size in bytes, if RawMode then the data includes header bytes,
checksum, message data bytes (pDataBytes), and extra data, if
any.*/

UNUM8 *pDataBytes; /* Reference pointer to D-PDU API memory that contains PDU
Payload data. In non-Raw mode this data contains no header bytes,
CAN Ids, or checksum information. In RawMode, this data will
contain the exact data received from the ECU. For ISO 15765,
ISO 11898 and SAE J1939, the first 4 bytes are the CAN ID (11 bit or
29 bit) followed by a possible extended address byte (Table D.4 —
TxFlag) */

} PDU_RESULT_DATA;

11.1.4.12 Structure for extra result data information

typedef struct {

UNUM32 NumHeaderBytes; /* Number of header bytes contained in pHeaderBytes array. */

UNUM32 NumFooterBytes; /* Number of footer bytes contained in pFooterBytes array.
(SAE J1850 PWM) Start position of extra data in received message
(for example, IFR or ISO 14230 checksum.) When no extra data
bytes are present in the message, NumFooterBytes shall be set to
zero. */

ISO 22900-2:2009(E)

118 © ISO 2009 – All rights reserved

UNUM8 *pHeaderBytes; /* Reference pointer to Response PDU Header bytes, NULL if
NumHeaderBytes = 0 */

UNUM8 *pFooterBytes; /* Reference pointer to Response PDU Footer bytes, NULL if
NumFooterBytes = 0 */

} PDU_EXTRA_INFO;

11.1.4.13 Structure for flag data

typedef struct {

UNUM32 NumFlagBytes; /* number of bytes in pFlagData array*/

UNUM8 *pFlagData; /* Pointer to flag bytes used for TxFlag, RxFlag, and CllCreateFlag.
Clause D.2 Flag definitions) */

} PDU_FLAG_DATA;

11.1.4.14 Structure for version information (used by PDUGetVersion)

typedef struct {

UNUM32 MVCI_Part1StandardVersion; /* Release version of supported MVCI Part 1 standard (see Coding of
version numbers)*/

UNUM32 MVCI_Part2StandardVersion; /* Release version of supported MVCI Part 2 standard (see Coding of
version numbers)*/

UNUM32 HwSerialNumber; /* Unique Serial number of MVCI HW module from a vendor */

CHAR8 HwName[64]; /* Name of MVCI HW module; zero terminated */

UNUM32 HwVersion; /* Version number of MVCI HW module (see Coding of version
numbers)*/

UNUM32 HwDate; /* Manufacturing date of MVCI HW module (see Coding of dates)*/

UNUM32 HwInterface; /* Type of MVCI HW module; zero terminated */

CHAR8 FwName[64]; /* Name of the firmware available in the MVCI HW module */

UNUM32 FwVersion; /* Version number of the firmware in the MVCI HW module (see Coding
of version numbers)*/

UNUM32 FwDate; /* Manufacturing date of the firmware in the MVCI HW module (see
Coding of dates)*/

CHAR8 VendorName[64]; /* Name of vendor; zero terminated */

CHAR8 PDUApiSwName[64]; /* Name of the D-PDU API software; zero terminated */

UNUM32 PDUApiSwVersion; /* Version number of D-PDU API software (see Coding of version
numbers)*/

UNUM32 PDUApiSwDate; /* Manufacturing date of the D-PDU API software (see Coding of
dates)*/

} PDU_VERSION_DATA;

11.1.4.15 Coding of version numbers

Version numbers from PDU_VERSION_DATA are coded as shown below.

Table 68 — Coding of version numbers: UNUM32

MSB LSB

Major (0..255) Minor (0..255) Revision (0..255) 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 119

11.1.4.16 Coding of dates

Date numbers from PDU_VERSION_DATA are coded as shown below.

Table 69 — Coding of dates: UNUM32

MSB LSB

Year since 1970 (0..255) Month (1..12) Day (1..31) Week (1..52, 0 if not used)

11.1.4.17 Structure to control a ComPrimitive's operation (used by PDUStartComPrimitive)

PDU_COP_CTRL_DATA is not applicable to ComPrimitives types: PDU_COPT_UPDATEPARAM and
PDU_COPT_RESTORE_PARAM.

typedef struct {

UNUM32 Time; /* Cycle time in ms for cyclic send operation or delay time for
PDU_COPT_DELAY ComPrimitive. If cyclic time is set to 0, then the
ComPrimitive is put on the transmit queue after each completion cycle,
but is at a lower priority than other ComPrimitives and Tester Present
Messages. */

SNUM32 NumSendCycles; /* # of send cycles to be performed; -1 for infinite cyclic send operation */

SNUM32 NumReceiveCycles; /* # of receive cycles to be performed; -1 (IS-CYCLIC) for infinite receive
operation, -2 (IS-MULTIPLE) for multiple expected responses from 1 or
more ECUs */

UNUM32 TempParamUpdate; /* Temporary ComParam settings for the ComPrimitive:

0 = Do not use temporary ComParams for this ComPrimitive. The
ComPrimitive shall attach the “Active” ComParam buffer to the
ComPrimitive. This buffer shall be in effect for the ComPrimitive until it is
finished. The ComParams for the ComPrimitive will not change even if
the “Active” buffer is modified by a subsequent ComPrimitive type of
PDU_COPT_UPDATEPARAM.

1 = Use temporary ComParams for this ComPrimitive; The
ComPrimitive shall attach the ComParam “Working” buffer to the
ComPrimitive. This buffer shall be in effect for the ComPrimitive until it is
finished. The ComParams for the ComPrimitive will not change even if
the “Active” or “Working” buffers are modified by any subsequent calls to
PDUSetComParam.

NOTE 1 If TempParamUpdate is set to 1, the ComParam Working
Buffer is restored to the Active Buffer when this PDUStartComPrimitive
function call returns.

NOTE 2 Physical ComParams cannot be changed using the
TempParamUpdate flag */

PDU_FLAG_DATA TxFlag; /* Transmit Flag used to indicate protocol specific
elements for the ComPrimitive's execution. (D.2.1
TxFlag definition.)*/

UNUM32 NumPossibleExpectedResponses; /* number of entries in pExpectedResponseArray
*/

PDU_EXP_RESP_DATA *pExpectedResponseArray; /* pointer to an array of expected responses
(11.1.4.18 Structure for expected response) */

} PDU_COP_CTRL_DATA;

ISO 22900-2:2009(E)

120 © ISO 2009 – All rights reserved

11.1.4.18 Structure for expected response

typedef struct {

UNUM32 ResponseType; /* 0 = positive response; 1 = negative response */

UNUM32 AcceptanceId; /* ID assigned by application to be returned in PDU_RESULT_DATA,
which indicates which expected response matched */

UNUM32 NumMaskPatternBytes; /* number of bytes in the Mask Data and Pattern Data*/

UNUM8 *pMaskData; /* Pointer to Mask Data. Bits set to a ‘1' are care bits, ‘0' are don't care
bits. */

UNUM8 *pPatternData; /* Pointer to Pattern Data. Bytes to compare after the mask is applied */

UNUM32 NumUniqueRespIds; /* number of items in the following array of unique response identifiers. If
the number is set to 0, then responses with any unique response
identifier are considered, when trying to match them to this expected
response. */

UNUM32 *pUniqueRespIds; /* Array containing unique response identifiers. Only responses with a
unique response identifier found in this array are considered, when
trying to match them to this expected response. */

} PDU_EXP_RESP_DATA;

11.1.4.18.1 Expected response type

a) Positive Response Type (ResponseType = 0) The D-PDU API uses a matched positive response entry
to indicate no further processing needs to be done on the complete received message (i.e. negative
response handling is not checked). A complete received message from an ECU contains all frames (for
protocols that use a transport/network layer (e.g. ISO 15765)) or all messages (for protocols that have
CP_EnableConcatenation on). The received message will be sent to the client application with the
associated “Acceptance Id”.

NOTE 1 The positive receive message can be discarded for ISO 14229-1 if the SuppressPositiveResponse bit is
set and a positive response has been sent after a negative response.

b) Negative Response Type (ResponseType = 1) The D-PDU API uses a matched negative response
entry to indicate that the received message may need negative response processing (see ComParams
CP_RCxxHandling). If negative response handling is not enabled for the 0x7F response code, then the
message will be sent to the client application with the associated “Acceptance Id”. In this case, it is the
responsibility of the client application to handle the negative response message.

NOTE 2 For ISO 15765 protocols, only USDT single frames can be matched to a negative response entry,
negative responses are never transmitted in UUDT frames.

c) “Generic” negative response handling The D-PDU API uses a special case for negative response
handling if no match is found in the expected response structure. If negative response handling is
enabled (CP_RCxxHandling is not 0), the D-PDU API follows these steps:

1) Does the ComLogicalLink have an active SendRecv ComPrimitive? If not discard the message.

2) If the protocol is of the type ISO 15765, is the CAN ID USDT? If not discard the frame.

3) Is the first byte of the message = 0x7F? If not discard the message.

4) Is the second byte of the message = to the Service Id (SID) of the active ComPrimitive? If not discard
the message.

5) Retrieve the negative response code from the message (See CP_RCByteOffset). Does it match one
of the types enabled (See CP_RCxxHandling)? If not, discard the message.

6) Process negative response message as if there were a match in the expected response structure.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 121

11.1.4.18.2 Array of unique response ids (pUniqueRespIds)

The array of unique response identifiers may be used, if an expected response only appears for specific
unique response identifiers. This situation may occur in the case of functional addressing, where the possible
responses are not common to all ECUs.

The number of unique response identifiers may be 0. In this case the array pUniqueRespIds is not used and
all responses with any unique response identifier are considered when trying to match actual response data to
the expected response data.

11.1.4.18.3 Expected response matching rules

If multiple expected response entries match the response payload data, then the first matching expected
response id found in the array of expected responses is used. (I.e. acceptance filtering is carried out in the
sequence of the expected responses as they appear in the array of expected responses. Thus, an expected
response with the lowest array index has the highest priority.)

For acceptance filtering, the D-PDU API tries to match the data bytes of a received response to the pattern
bytes of an expected response (always regarding the mask bytes.) The number of data bytes in the received
response may differ from the number of mask and pattern bytes (NumMaskPatternbytes) in the expected
response. Acceptance filtering uses the following rules:

a) If the number of received data bytes is less than NumMaskPatternBytes, the response does not match
the expected response.

b) If the number of received data bytes equals NumMaskPatternBytes, all data bytes are compared to the
pattern data bytes.

c) If the number of received data bytes exceeds NumMaskPatternBytes, only the initial data bytes of the
received response are compared to all pattern data bytes of the expected response. Any following data
bytes in the received response are “don't care”.

This expected response structure can be used to mask for ranges of expected responses. For example, a
single request to an ECU could generate a 0x7F response, a positive response, an On-Event response, a
repetitive response, etc.

The NumberOfPossibleExpectedResponses could contain two entries if 0x7F responses are possible for the
requested service.

11.1.4.18.4 Expected response example

Example array of expected responses:

[0] Acceptance ID: 0 MaskData: 0xFF 0xFF PatternData: 0x5A 0x90

[1] Acceptance ID: 1 MaskData: 0xFF PatternData: 0x5A

[2] Acceptance ID: 2 MaskData: 0xFF 0xFF PatternData: 0x7F 0x1A

Example response matching:

Received response (a): 0x5A 0x90 ---> AcceptanceId = 0

Received response (b): 0x5A 0x90 0x31 ---> AcceptanceId = 0

Received response (c): 0x5A ---> AcceptanceId = 1

Received response (d): 0x5A 0x91 ---> AcceptanceId = 1

ISO 22900-2:2009(E)

122 © ISO 2009 – All rights reserved

Received response (e): 0x5B ---> AcceptanceId = unexpected response (discarded)

Received response (f): 0x7F 0x1A ---> AcceptanceId = 2

Received response (g): 0x7F 0x5A ---> AcceptanceId = unexpected response (discarded)

11.1.4.18.5 Expected response structure (RawMode/NonRawMode)

In NonRawMode, no header bytes are returned to the application. Therefore, the expected response structure
contains expected message payload data only.

In RawMode, the expected response shall include the header bytes of the expected message. For ISO 15765,
ISO_11898_RAW and SAE J1939, the first 4 bytes will always contain the CAN ID. If extended addressing is
expected from the responding ECU, then the first byte after the CAN ID contains the extended address. After
any header bytes or CAN IDs, the expected message payload data can be masked for.

The following table describes how the PDU_EXP_RESP_DATA is handled in RawMode per protocol.

Table 70 — Raw Mode expected response format per protocol

Protocol RawMode — Expected Response Handling Description

ISO 15765 The first 4 bytes of the expected data is reserved for the Can ID (11 or 29 bit). If extended
addressing, then the 5th byte of the expected data contains the expected extended address.

SAE J1850_VPW,

SAE J1850_PWM,

ISO 9141

Expected data contains header bytes (1-3) followed by the payload data bytes.

ISO 14230 The number of ECU response header bytes can vary from 1 to 4 followed by the payload data
bytes. It is up to the application to determine the expected number of header bytes.

ISO 11898,

SAE J1939

The first 4 bytes of the expected data is reserved for the Can ID (11 or 29 bit).

SAE J2610 Expected message data from the vehicle serial bus. Expected response data does not include any
echoed bytes when the protocol is in half-duplex mode.

SAE J1708 Expected data contains MID (byte 1) followed by any number of expected payload data bytes.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 123

Annex A
(normative)

D-PDU API compatibility mappings

A.1 Overview of D-PDU API, SAE J2534-1, and RP1210a function mapping

A.1.1 Mapping of D-PDU, SAE J2534-1 and RP1210a API functions

Table A.1 — Mapping of D-PDU, SAE J2534-1 and RP1210a API functions shows how functions could be
mapped between the D-PDU API, SAE J2534-1 API and RP1210a API. The table is split into functional
groups.

Table A.1 — Mapping of D-PDU, SAE J2534-1 and RP1210a API functions

Functional group SAE J2534-1 functions RP1210a functions D-PDU API

Startup PassThruOpen RP1210_ClientConnect PDUConstruct

Connection PassThruConnect RP1210_ClientConnect PDUCreateComLogicalLink

PDUConnect

Disconnect PassThruDisconnect RP1210_ClientDisconnect PDUDisconnect

PDUDestroyComLogicalLink

Shutdown PassThruClose RP1210_ClientDisconnect PDUDestruct

Control Services PassThruIoctl RP1210_SendCommand PDUIoctl

PassThruReadMsgs RP1210_ReadMessage PDUGetStatus (optional)

PDUGetEventItem

Send/Receive
(single)

PassThruWriteMsgs RP1210_SendMessage PDUStartComPrimitive

PassThruStartPeriodicMsg PDUStartComPrimitive Send/Receive (cyclic)

PassThruStopPeriodicMsg PDUCancelComPrimitive

Protocol ComParam
Configuration

PassThruIoctl
(Set_Config/Get_Config)

 PDUGetComParam

PDUSetComParam

Update ComParam via
ComPrimitive

Filtering PassThruStartMsgFilter

PassThruStopMsgFIlter

 PDUIoctl

PDUIoCtl

HW control PassThruSetProgramming-
Voltage

 PDUIoctl

PassThruReadVersion RP1210_ReadVersion PDUGetVersion Information

 RP1210_GetHardwareStatus PDUGetStatus

ErrorHandling PassThruGetLastError RP1210_GetErrorMsg PDUGetLastError

ISO 22900-2:2009(E)

124 © ISO 2009 – All rights reserved

Besides normal API functions, SAE J2534-1 and RP1210a define I/O controls. The I/O controls basically
represent sub-functions or ComParam settings. In order to map easily these existing standards onto the
D-PDU API, all of these I/O controls shall have an equivalent within the D-PDU API or at least be handled by a
D-PDU API function other than PDUIoCtl. Table A.2 — Comparison of device control functions lists all I/O
controls of SAE J2534-1 and RP1210a and maps them onto the corresponding I/O control or API function
within the D-PDU API.

Table A.2 — Comparison of device control functions

Functional
group SAE J2534-1 function Ioctl RP1210a function

RP1210_SendCommand

D-PDU API IoctlCommandId
(alternative: separate function if

available in brackets)

Reset

Reset Reset Device PDU_IOCTL_RESET

Start Filter

Start Filter (PassThruStartMsgFilter) Set All Filter States to Pass PDU_IOCTL_START_MSG_FILTER

 Set Message Filtering for
SAE J1939

PDU_IOCTL_START_MSG_FILTER

 Set Message Filtering for CAN PDU_IOCTL_START_MSG_FILTER

 Set Message Filtering for
SAE J1708

PDU_IOCTL_START_MSG_FILTER

Stop Filter

StopFilter (PassThruStopMsgFilter) PDU_IOCTL_STOP_MSG_FILTER

Clear Filters

ClearFilters CLEAR_MSG_FILTERS Set All Filter States to Discard PDU_IOCTL_CLEAR_MSG_FILTER

General

General Generic Driver Command: Pass
the raw command data to the
driver

PDU_IOCTL_GENERIC

 SET_CONFIG (loopback) Set Echo Transmitted
Messages: Echo on/off

(implicit via SendTimestamp information
of each ComPrimitive;

explicit loopback mode via
PDUSetComParam for each
ComLogicalLink)

 Set Message Receive:
Enable/disable receive from the
specified client

(PDUConnect)

(PDUDisconnect)

 GET_CONFIG (PDUGetComParam)

 SET_CONFIG (PDUSetComParam)

 CLEAR_TX_BUFFER PDU_IOCTL_CLEAR_TX_QUEUE

 CLEAR_RX_BUFFER PDU_IOCTL_CLEAR_RX_QUEUE

 CLEAR_PERIODIC_MSGS (PDUCancelComPrimitive)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 125

Table A.2 (continued)

Functional
group SAE J2534-1 function Ioctl RP1210a function

RP1210_SendCommand

D-PDU API IoctlCommandId
(alternative: separate function if

available in brackets)

Protocol

Protocol Set SAE J1708 Mode:

Enable/disable raw mode for
SAE J1708

(PDUSetComParam)

 Protect SAE J1939 address (PDUSetComParam)

 FIVE_BAUD_INIT (PDUSetComParam)

(PDUStartComPrimitive:PDU_COPT_
STARTCOMM)

 FAST_INIT (PDUSetComParam)

(PDUStartComPrimitive:PDU_COPT_
STARTCOMM)

 CLEAR_FUNCT_MSG_
LOOKUP_TABLE

 (PDUSetComParam)

 DELETE_FROM_FUNCT_
MSG_LOOKUP_TABLE

 (PDUSetComParam)

 ADD_TO_FUNCT_MSG_
LOOKUP_TABLE

 (PDUSetComParam)

Hardware

HW READ_VBATT PDU_IOCTL_READ_VBATT

 READ_PROG_VOLTAGE PDU_IOCTL_READ_PROG_VOLTAGE

Additional notes concerning SAE J2534-1 and RP1210a compatibility:

⎯ The elements RxStatus and TxFlags of the PASSTHRU_MSG structure in SAE J2534-1 are mapped to
appropriate elements in ComParams and the RxFlag and TxFlag structures.

⎯ SAE J2534-1 I/O control functions, which are related to diagnostic protocol or bustype settings are
mapped to protocol and bustype ComParams. In the table above this is indicated by (PDUSetComParam)
and (PDUGetComParam) in the table's “D-PDU API IoCtlCommandId” column. All protocol and bustype
ComParams are defined within the MVCI module description file (see MVCI module description file).

⎯ ComParams, which are get or set via the IoCtl function GET_CONFIG and SET_CONFIG in
SAE J2534-1, are also mapped to protocol or bustype ComParams. All protocol and bustype ComParams
are defined within the MVCI module description file (see MVCI module description file).

⎯ The information returned by the RP1210a function RP1210_GetHardwareStatus() will be assembled by
the RP1210a compatibility layer, because it consists of status information available for the MVCI protocol
module and the several ComLogicalLinks being used with that MVCI protocol module.

ISO 22900-2:2009(E)

126 © ISO 2009 – All rights reserved

A.1.2 Mapping of D-PDU API ComParams with SAE J2534-1 ComParams

Table A.3 — Mapping of D-PDU API ComParams to SAE J2534-1

D-PDU API COMPARAM SAE J2534 IOCTL
Get/Set ComParams

SAE J2534
Connect Flags

SAE J2534
IOCTL

commands
Comments

CP_Loopback LOOPBACK

CP_P3Min P3_MIN

CP_5BaudMode FIVE_BAUD_MOD

CP_BlockSize ISO15765_BS

CP_BlockSizeOverride BS_TX

CP_CanMaxNumWait-
Frames

ISO15765_WFT_MAX

CP_FuncRespTargetAddr CLEAR_FUNC
_MSG_LOOKU
P_TABLE

ADD_TO_FUN
C_MSG_LOOK
UP_TABLE

DELETE_FRO
M_FUNC_
MSG_LOOKUP
_TABLE

This response
COMPARAM is used for
a table of possible ECU
response. This table is
also used to help
configure the
SAE J1850_PWM
hardware to support
functional addressing
responses ECU on the
bus.

CP_InitializationSettings FIVE_BAUD_
INIT and
FAST_INIT

CP_P1Max P1_MAX

CP_P4Min P4_MIN

CP_TesterSourceAddress NODE_ADDRESS

CP_Stmin ISO15765_STMIN

CP_StMinOverride STMIN_TX

CP_T1Max T1_MAX

CP_T2Max T2_MAX

CP_T3Max T3_MAX

CP_T4Max T4_MAX

CP_T5Max T5_MAX

CP_TIdle W0 and TIDLE and W5 Combined into a single
ComParam. Idle time
used before either
starting a fast init or
transmitting the 5 baud
address byte.

CP_TInil TINIL

CP_TWup TWUP

CP_W1Max W1

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 127

Table A.3 (continued)

D-PDU API COMPARAM SAE J2534 IOCTL
Get/Set ComParams

SAE J2534
Connect Flags

SAE J2534
IOCTL

commands
Comments

CP_W2Max W2

CP_W3Max W3

CP_W4Min W4

CP_Baudrate DATARATE

CP_BitSamplePoint BIT_SAMPLE_POINT

CP_NetworkLine NETWORK_LINE

CP_ChangeSpeedRate SWCAN_HS_DATA_
RATE

CP_ChangeSpeedCtrl SWCAN_SPEEDCHAN
GE_ENABLE

CP_ChangeSpeedResCtrl SWCAN_RES_SWITCH

CP_SyncJumpWidth SYNC_JUMP_WIDTH

CP_UARTConfig PARITY and
DATA_BITS

 Configure the parity,
data bit size and stop
bits of a Uart protocol.

CP_K_L_LineInit ISO9141_K_LINE_
ONLY

A.1.3 Mapping of D-PDU API ComParams with RP1210a ComParams

Table A.4 — Mapping of D-PDU API ComParams to RP1210a

D-PDU API COMPARAM
RP1210a
Get/Set

ComParams

RP1210a
Connect

Flags
RP1210a commands Comments

CP_BlockSize

CP_Stmin

 RP1210_Set_ISO15765_
Flow_Control

This function sets these
ComParams in addition to setting
up a FLOW_CONTROL filter.

CP_Cs RP1210_Set_J1939_
Interpacket_Time

This is the time between bytes for
BAM and RTS/CTS messages
sent by the VCI.

CP_Baudrate RP1210_Set_J1708_
Baud

CP_J1939PreferredAddress RP1210_Protect_J1939_
Address

To fully implement this function, a
Com Primitive would also have to
be called.

CP_Loopback RP1210_Echo_
Transmitted_Messages

ISO 22900-2:2009(E)

128 © ISO 2009 – All rights reserved

A.1.4 Mapping of D-PDU API function error codes with SAE J2534-1 error codes

Table A.5 — Mapping of D-PDU API error codes with SAE J2534-1 error codes

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruOpen

PassThruOpen STATUS_NOERROR PDUConstruct PDU_STATUS_NOERROR

PassThruOpen ERR_DEVICE_NOT_
CONNECTED

PDUGetModuleIds If PDU_STATUS_NOERROR
and NumEntries = 0 in the
returned PDU_MODULE_ITEM
structure

PassThruOpen ERR_DEVICE_IN_USE PDUConstruct PDU_ERR_SHARING_
VIOLATION

PassThruOpen ERR_NULL_PARAMETER PDUConstruct PDU_ERR_INVALID_
PARAMETERS

PassThruOpen ERR_FAILED PDUConstruct PDU_ERR_PARAMETER_NOT_
SUPPORTED

PassThruOpen ERR_FAILED PDUConstruct PDU_ERR_VALUE_NOT_
SUPPORTED:

PassThruOpen ERR_FAILED PDUConstruct PDU_ERR_FCT_FAIILED

PassThruClose

PassThruClose STATUS_NOERROR PDUDestruct PDU_STATUS_NOERROR

PassThruClose ERR_DEVICE_NOT_
CONNECTED PDUDestruct

PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruClose ERR_INVALID_DEVICE_ID N/R

PassThruClose ERR_FAILED PDUDestruct PDU_ERR_FCT_FAILED

PassThruConnect

PassThruConnect STATUS_NOERROR PDUGetResourceIds PDU_STATUS_NOERROR

PassThruConnect STATUS_NOERROR PDUCreateComLogical-
Link

PDU_STATUS_NOERROR

PassThruConnect STATUS_NOERROR PDUConnect PDU_STATUS_NOERROR

PassThruConnect STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruConnect STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUGetResourceIds PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUCreateComLogical-
Link

PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUCreateComLogical-
Link

PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUConnect PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUConnect PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 129

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

PassThruConnect ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruConnect ERR_NOT_SUPPORTED N/A

PassThruConnect ERR_INVALID_DEVICE_ID PDUCreateComLogical-
Link

PDU_ERR_INVALID_HANDLE

PassThruConnect ERR_INVALID_DEVICE_ID PDUConnect PDU_ERR_INVALID_HANDLE

PassThruConnect ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruConnect ERR_INVALID_PROTOCOL_
ID

PDUGetResourceIds PDU_ERR_INVALID_
PARAMETERS

PassThruConnect ERR_NULL_PARAMETER PDUCreateComLogical-
Link

PDU_ERR_INVALID_
PARAMETERS

PassThruConnect ERR_NULL_PARAMETER PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruConnect ERR_INVALID_FLAGS PDUCreateComLogical-
Link

PDU_ERR_INVALID_
PARAMETERS

PassThruConnect ERR_INVALID_BAUDRATE PDUSetComParam PDU_ERR_INVALID_
PARAMETERS

PassThruConnect ERR_FAILED PDUConnect PDU_ERR_FCT_FAILED

PassThruConnect ERR_CHANNEL_IN_USE PDUCreateComLogical-
Link

PDU_ERR_RESOURCE_BUSY

PassThruConnect ERR_CHANNEL_IN_USE PDUConnect PDU_ERR_CLL_CONNECTED

PassThruConnect No Error Is Returned PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruDisconnect

PassThruDisconnect STATUS_NOERROR PDUDisconnect PDU_STATUS_NOERROR

PassThruDisconnect STATUS_NOERROR PDUDestroyComLogical-
Link

PDU_STATUS_NOERROR

PassThruDisconnect STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruDisconnect STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDestroyComLogical-
Link

PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_CLL_NOT_
CONNECTED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDestroyComLogical-
Link

PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

ISO 22900-2:2009(E)

130 © ISO 2009 – All rights reserved

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruDisconnect ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruDisconnect ERR_INVALID_DEVICE_ID PDUDestroyComLogical
Link

PDU_ERR_INVALID_HANDLE

PassThruDisconnect ERR_INVALID_DEVICE_ID PDUDisconnect PDU_ERR_INVALID_HANDLE

PassThruDisconnect ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruDisconnect ERR_FAILED PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruDisconnect ERR_INVALID_CHANNEL_ID PDUDestroyComLogical-
Link

PDU_ERR_INVALID_HANDLE

PassThruDisconnect ERR_INVALID_CHANNEL_ID PDUDisconnect PDU_ERR_INVALID_HANDLE

PassThruDisconnect No Error Is Returned PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruReadMsgs

PassThruReadMsgs STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruReadMsgs STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruReadMsgs ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruReadMsgs ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

PassThruReadMsgs ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruReadMsgs ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruReadMsgs ERR_INVALID_CHANNEL_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruReadMsgs ERR_NULL_PARAMETER PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruReadMsgs ERR_TIMEOUT N/R

PassThruReadMsgs ERR_BUFFER_EMPTY PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruReadMsgs ERR_NO_FLOW_CONTROL N/R

PassThruReadMsgs ERR_FAILED N/R

PassThruReadMsgs ERR_BUFFER_OVERFLOW N/R

PassThruWriteMsgs

PassThruWriteMsgs STATUS_NOERROR PDUStartComPrimitive PDU_STATUS_NOERROR

PassThruWriteMsgs STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruWriteMsgs STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_CLL_NOT_
CONNECTED

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 131

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

PassThruWriteMsgs ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruWriteMsgs ERR_INVALID_DEVICE_ID PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruWriteMsgs ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruWriteMsgs ERR_NOT_SUPPORTED N/R

PassThruWriteMsgs ERR_INVALID_CHANNEL_ID PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruWriteMsgs ERR_INVALID_CHANNEL_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruWriteMsgs ERR_INVALID_MSG N/R

PassThruWriteMsgs ERR_NULL_PARAMETER PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruWriteMsgs ERR_NULL_PARAMETER PDUStartComPrimitive PDU_ERR_INVALID_
PARAMETERS

PassThruWriteMsgs ERR_FAILED N/R

PassThruWriteMsgs ERR_TIMEOUT N/R

PassThruWriteMsgs ERR_MSG_PROTOCOL_ID N/R

PassThruWriteMsgs ERR_NO_FLOW_CONTROL N/R

PassThruWriteMsgs ERR_BUFFER_FULL PDUStartComPrimitive PDU_ERR_TX_QUEUE_FULL

PassThruWriteMsgs Wait for not empty PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruStartPeriodicMsg

PassThruStartPeriodic
Msg

STATUS_NOERROR PDUStartComPrimitive PDU_STATUS_NOERROR

PassThruStartPeriodic
Msg

STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruStartPeriodic
Msg

STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_CLL_NOT_
CONNECTED

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

PassThruStartPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStartPeriodic
Msg

ERR_INVALID_DEVICE_ID PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruStartPeriodic
Msg

ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

ISO 22900-2:2009(E)

132 © ISO 2009 – All rights reserved

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruStartPeriodic
Msg

ERR_NOT_SUPPORTED N/R

PassThruStartPeriodic
Msg

ERR_INVALID_CHANNEL_ID PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruStartPeriodic
Msg

ERR_INVALID_CHANNEL_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruStartPeriodic
Msg

ERR_INVALID_MSG N/R

PassThruStartPeriodic
Msg

ERR_NULL_PARAMETER PDUStartComPrimitive PDU_ERR_INVALID_
PARAMETERS

PassThruStartPeriodic
Msg

ERR_NULL_PARAMETER PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruStartPeriodic
Msg

ERR_INVALID_TIME_
INTERVAL

N/R

PassThruStartPeriodic
Msg

ERR_FAILED N/R

PassThruStartPeriodic
Msg

ERR_MSG_PROTOCOL_ID N/R

PassThruStartPeriodic
Msg

ERR_EXCEEDED_LIMIT PDUStartComPrimitive PDU_ERR_TX_QUEUE_FULL

PassThruStartPeriodic
Msg

Wait for not empty PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruStopPeriodicMsg

PassThruStopPeriodic
Msg

STATUS_NOERROR PDUCancelComPrimitive PDU_STATUS_NOERROR

PassThruStopPeriodic
Msg

STATUS_NOERROR PDUGetEventItem PDU_STATUS_NOERROR

PassThruStopPeriodic
Msg

STATUS_NOERROR PDUDestroyItem PDU_STATUS_NOERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUCancelComPrimitive PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUCancelComPrimitive PDU_ERR_CLL_NOT_
CONNECTED

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUGetEventItem PDU_ERR_CLL_NOT_
CONNECTED

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_
CONNECTED

PDUDestroyItem PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStopPeriodic
Msg

ERR_INVALID_DEVICE_ID PDUCancelComPrimitive PDU_ERR_INVALID_HANDLE

PassThruStopPeriodic
Msg

ERR_INVALID_DEVICE_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruStopPeriodic
Msg

ERR_INVALID_CHANNEL_ID PDUCancelComPrimitive PDU_ERR_INVALID_HANDLE

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 133

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruStopPeriodic
Msg

ERR_INVALID_CHANNEL_ID PDUGetEventItem PDU_ERR_INVALID_HANDLE

PassThruStopPeriodic
Msg

ERR_FAILED PDUCancelComPrimitive PDU_ERR_FCT_FAILED

PassThruStopPeriodic
Msg

ERR_FAILED PDUDestroyItem PDU_ERR_INVALID_
PARAMETERS

PassThruStopPeriodic
Msg

ERR_INVALID_MSG_ID N/R

PassThruStopPeriodic
Msg

Wait for not empty PDUGetEventItem PDU_ERR_QUEUE_EMPTY

PassThruStartMsgFilter

PassThruStartMsgFilter STATUS_NOERROR PDUIoCtl PDU_STATUS_NOERROR

PassThruStartMsgFilter ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStartMsgFilter ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruStartMsgFilter ERR_INVALID_FILTER_ID PDUIoCtl PDU_ERR_ID_NOT_
SUPPORTED

PassThruStartMsgFilter ERR_INVALID_DEVICE_ID PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruStartMsgFilter ERR_INVALID_CHANNEL_ID PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruStartMsgFilter ERR_FAILED PDUIoCtl PDU_ERR_FCT_FAILED

PassThruStartMsgFilter ERR_INVALID_MSG N/R

PassThruStartMsgFilter ERR_NULL_PARAMETER N/R

PassThruStartMsgFilter ERR_NOT_UNIQUE N/R

PassThruStartMsgFilter ERR_EXCEEDED_LIMIT N/R

PassThruStartMsgFilter ERR_MSG_PROTOCOL_ID N/R

PassThruStopMsgFilter

PassThruStopMsgFilter STATUS_NOERROR PDUIoCtl PDU_STATUS_NOERROR

PassThruStopMsgFilter ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruStopMsgFilter ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruStopMsgFilter ERR_INVALID_FILTER_ID PDUIoCtl PDU_ERR_ID_NOT_
SUPPORTED

PassThruStopMsgFilter ERR_INVALID_DEVICE_ID PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruStopMsgFilter ERR_INVALID_CHANNEL_
ID

PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruStopMsgFilter ERR_FAILED PDUIoCtl PDU_ERR_FCT_FAILED

ISO 22900-2:2009(E)

134 © ISO 2009 – All rights reserved

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruSetProgrammingVoltage

PassThruSetProgram-
mingVoltage

STATUS_NOERROR PDUIoCtl PDU_STATUS_NOERROR

PassThruSetProgram-
mingVoltage

ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruSetProgram-
mingVoltage

ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruSetProgram-
mingVoltage

ERR_NOT_SUPPORTED PDUIoCtl PDU_ERR_ID_NOT_
SUPPORTED

PassThruSetProgram-
mingVoltage

ERR_INVALID_DEVICE_ID PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruSetProgram-
mingVoltage

ERR_FAILED PDUIoCtl PDU_ERR_FCT_FAILED

PassThruSetProgram-
mingVoltage

ERR_PIN_INVALID N/R

PassThruReadVersion

PassThruReadVersion STATUS_NOERROR PDUGetVersion PDU_STATUS_NOERROR

PassThruReadVersion ERR_DEVICE_NOT_
CONNECTED

PDUGetVersion PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruReadVersion ERR_DEVICE_NOT_
CONNECTED

PDUGetVersion PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruReadVersion ERR_FAILED N/R

PassThruReadVersion ERR_INVALID_DEVICE_ID PDUGetVersion PDU_ERR_INVALID_HANDLE

PassThruReadVersion ERR_NULL_PARAMETER PDUGetVersion PDU_ERR_INVALID_
PARAMETERS

PassThruGetLastError

PassThruGetLastError STATUS_NOERROR PDUGetLastError PDU_STATUS_NOERROR

PassThruGetLastError STATUS_NOERROR PDUGetLastError PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruGetLastError STATUS_NOERROR PDUGetLastError PDU_ERR_INVALID_HANDLE

PassThruGetLastError STATUS_NOERROR PDUGetLastError PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruGetLastError ERR_NULL_PARAMETER PDUGetLastError PDU_ERR_INVALID_
PARAMETERS

PassThruIoctl

PassThruIoctl STATUS_NOERROR PDUIoCtl PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUSetComParam PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUGetComParam PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUStartComPrimitive PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUConnect PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUDisconnect PDU_STATUS_NOERROR

PassThruIoctl STATUS_NOERROR PDUCancelComPrimitive PDU_STATUS_NOERROR

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 135

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUIoCtl PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUSetComParam PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUGetComParam PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_CLL_NOT_
CONNECTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUStartComPrimitive PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUConnect PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUConnect PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_CLL_NOT_
CONNECTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUDisconnect PDU_ERR_COMM_PC_TO_
VCI_FAILED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUCancelComPrimitive PDU_ERR_PDUAPI_NOT_
CONSTRUCTED

PassThruIoctl ERR_DEVICE_NOT_
CONNECTED

PDUCancelComPrimitive PDU_ERR_CLL_NOT_
CONNECTED

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUSetComParam PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUGetComParam PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUDisconnect PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_CHANNEL_
ID

PDUCancelComPrimitive PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_IOCTL_ID PDUIoCtl PDU_ERR_ID_NOT_
SUPPORTED

PassThruIoctl ERR_NULL_PARAMETER PDUStartComPrimitive PDU_ERR_INVALID_PARAMETE
RS

PassThruIoctl ERR_NOT_SUPPORTED PDUSetComParam PDU_ERR_COMPARAM_NOT_
SUPPORTED

ISO 22900-2:2009(E)

136 © ISO 2009 – All rights reserved

Table A.5 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Call D-PDU API Return Value

PassThruIoctl ERR_NOT_SUPPORTED PDUGetComParam PDU_ERR_COMPARAM_NOT_
SUPPORTED

PassThruIoctl ERR_FAILED PDUIoCtl PDU_ERR_FCT_FAILED

PassThruIoctl ERR_FAILED PDUSetComParam PDU_ERR_FCT_FAILED

PassThruIoctl ERR_FAILED PDUSetComParam PDU_ERR_COMPARAM_FIXED

PassThruIoctl ERR_FAILED PDUSetComParam PDU_ERR_COMPARAM_NOT_
SUPPORTED

PassThruIoctl ERR_FAILED PDUConnect PDU_ERR_CLL_CONNECTED

PassThruIoctl ERR_FAILED PDUCancelComPrimitive PDU_ERR_FCT_FAILED

PassThruIoctl ERR_INVALID_MSG N/R

PassThruIoctl ERR_INVALID_DEVICE_ID PDUIoCtl PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUSetComParam PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUGetComParam PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUStartComPrimitive PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUConnect PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUDisconnect PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_DEVICE_ID PDUCancelComPrimitive PDU_ERR_INVALID_HANDLE

PassThruIoctl ERR_INVALID_IOCTL_
VALUE

PDUSetComParam PDU_ERR_INVALID_
PARAMETERS

PassThruIoctl ERR_INVALID_IOCTL_
VALUE

PDUGetComParam PDU_ERR_INVALID_
PARAMETERS

PassThruIoctl ERR_EXCEEDED_LIMIT N/R

A.1.5 Mapping of D-PDU API event error codes with SAE J2534-1 error codes

Table A.6 — Mapping of D-PDU API event error codes with SAE J2534-1 error codes

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Standard Error Codes

PassThruConnect

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_INIT_ERROR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_FRAME_STRUCT

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_TX_ERROR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_TESTER_PRESENT_ERROR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_RX_TIMEOUT

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_RX_ERROR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_PROT_ERR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_LOST_COMM_TO_VCI

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_VCI_HARDWARE_FAULT

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_INIT_ERROR

PassThruConnect PDU_ERR_COMM_PC_TO_VCI_FAILED PDU_ERR_EVT_RX_TIMEOUT

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 137

Table A.6 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Standard Error Codes

PassThruDisconnect

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_FRAME_STRUCT

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TX_ERROR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TESTER_PRESENT_ERROR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_ERROR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_PROT_ERR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_LOST_COMM_TO_VCI

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_VCI_HARDWARE_FAULT

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruDisconnect ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

PassThruReadMsgs

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_FRAME_STRUCT

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TX_ERROR

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TESTER_PRESENT_ERROR

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_ERROR

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_PROT_ERR

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_LOST_COMM_TO_VCI

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_VCI_HARDWARE_FAULT

PassThruReadMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruReadMsgs ERR_TIMEOUT PDU_ERR_EVT_RX_TIMEOUT

PassThruWriteMsgs

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_FRAME_STRUCT

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TX_ERROR

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TESTER_PRESENT_ERROR

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_ERROR

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_PROT_ERR

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_LOST_COMM_TO_VCI

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_VCI_HARDWARE_FAULT

PassThruWriteMsgs ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruWriteMsgs ERR_TIMEOUT PDU_ERR_EVT_RX_TIMEOUT

ISO 22900-2:2009(E)

138 © ISO 2009 – All rights reserved

Table A.6 (continued)

SAE J2534 API Call SAE J2534 API Return Value D-PDU API Standard Error Codes

PassThruWriteMsgs

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_FRAME_STRUCT

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TX_ERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_TESTER_PRESENT_ERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_ERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_PROT_ERR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_LOST_COMM_TO_VCI

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_VCI_HARDWARE_FAULT

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_INIT_ERROR

PassThruStopPeriodic
Msg

ERR_DEVICE_NOT_CONNECTED PDU_ERR_EVT_RX_TIMEOUT

A.1.6 Mapping of D-PDU API event error codes with RP1210a error codes

Table A.7 — Mapping of D-PDU API event error codes with RP1210a error codes

RP1210A Error D-PDU API Error

ERR_DLL_NOT_INITIALIZED PDU_ERR_PDUAPI_NOT_CONSTRUCTED

ERR_CLIENT_ALREADY_CONNECTED PDU_ERR_CLL_CONNECTED

ERR_CLIENT_AREA_FULL PDU_ERR_RESOURCE_ERROR

ERR_NOT_ENOUGH_MEMORY PDU_ERR_RESOURCE_ERROR

ERR_INVALID_DEVICE PDU_ERR_INVALID_HANDLE

ERR_DEVICE_IN_USE PDU_ERR_RESOURCE_BUSY

ERR_INVALID_PROTOCOL PDU_ERR_INVALID_PARAMETERS

ERR_CONNECT_NOT_ALLOWED PDU_ERR_SHARING_VIOLATION

ERR_INVALID_CLIENT_ID PDU_ERR_INVALID_HANDLE

ERR_FREE_MEMORY PDU_ERR_RESOURCE_ERROR

ERR_TX_QUEUE_FULL PDU_ERR_TX_QUEUE_FULL

ERR_TX_QUEUE_CORRUPT PDU_ERR_EVT_VCI_HARDWARE_FAULT

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 139

Table A.7 (continued)

RP1210A Error D-PDU API Error

ERR_MESSAGE_TOO_LONG PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_MESSAGE_TOO_LONG

ERR_HARDWARE_NOT_RESPONDING PDU_ERR_COMM_PC_TO_VCI_FAILED

ERR_CLIENT_DISCONNECTED PDU_ERR_CLL_NOT_CONNECTED

ERR_ADDRESS_LOST PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_CLAIM_ADDRESS_LOST

ERR_BLOCK_NOT_ALLOWED (Provided by RP1210A wrapper functions)

ERR_ADDRESS_NEVER_CLAIMED PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_ADDRESS_NEVER_CLAIMED

ERR_WINDOW_HANDLE_REQUIRED (Provided by RP1210A wrapper functions)

ERR_MESSAGE_NOT_SENT PDU_ERR_EVT_TX_ERROR

ERR_MAX_NOTIFY_EXCEEDED (Provided by RP1210A wrapper functions)

ERR_RX_QUEUE_FULL PDU_EVT_DATA_LOST

ERR_RX_QUEUE_CORRUPT PDU_ERR_EVT_VCI_HARDWARE_FAULT

ERR_MULTIPLE_CLIENTS_CONNECTED PDU_ERR_FCT_FAILED

This error code is used for multiple failures. Wrapper
functions will have to translate this from the response from
the PDU_IOCTL_RESET or generate the RP1210 error
based on the RP1210 definition.

ERR_CHANGE_MODE_FAILED PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_CHANGE_MODE_FAILED

ERR_INVALID_COMMAND PDU_ERR_INVALID_PARAMETERS

ERR_COMMAND_NOT_SUPPORTED PDU_ERR_ID_NOT_SUPPORTED

ERR_BUS_OFF PDU_ERR_EVT_RX_ERROR

ERR_COULD_NOT_TX_ADDRESS_CLAIMED PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_COULD_NOT_TX_ADDRESS_CLAIME
D

ERR_ADDRESS_CLAIM_FAILED PDU_ERR_EVT_PROT_ERROR

Recommended additional error:
PDU_XTRA_ERR_ADDRESS_CLAIM_FAILED

ERR_CODE_NOT_FOUND PDU_ERR_FCT_FAILED

ISO 22900-2:2009(E)

140 © ISO 2009 – All rights reserved

A.2 Mapping of D-PDU API and D-Server API

Table A.8 — Mapping of D-PDU API send/receive cycles and D-Server API

Runtime Mode Repetition Mode NumSendCycles NumReceiveCycles

eNONCYCLIC eSINGLE 1 1

eNONCYCLIC eREPEATED 1 1

eCYCLIC eSINGLE 1 -1

A.3 Mapping of D-PDU API and ODX

Table A.9 — Mapping of D-PDU API send/receive cycles and ODX

ODX NumSendCycles NumReceiveCycles

IS-CYCLIC 1 -1

IS-MULTIPLE 1 -2

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 141

Annex B
(normative)

D-PDU API standard ComParams and protocols

B.1 Standardized protocols - support and naming conventions

B.1.1 General overview

The D-PDU API is not restricted to specific diagnostic protocols. Since the supported protocols and its
ComParams are described in the MDF, the protocol support of an MVCI protocol module using the
D-PDU API can be extended easily. The only important requirement is that the designation of the protocols
(e.g. protocol names) is unique. To assure this requirement, see B.1.4.

B.1.2 SAE J2534 and RP1210a standard protocol names

Table B.1 — SAE J2534-1 and RP1210a Standard protocol names

Protocol name Description

ISO_11898_RAW Raw CAN protocol (layer 2); behaviour identical to protocol ID CAN in SAE J2534-1 or protocol
string CAN in RP1210a.

ISO_15765_2 ISO 15765 protocol with ISO 15765-2 flow control enabled; behaviour identical to protocol ID
ISO 15765 in SAE J2534-1.

ISO_15765_3 ISO 15765 protocol with automatic flow control handling, Tester Present handling and enhanced
support of the ComLogicalLink concept. All address information (CAN identifiers) for physical
and functional addressing is defined as ComParams for the ComLogicalLink. The application
only needs to care for the ServiceID and data during communication.

SAE_J1850_VPW GM/DaimlerChrysler CLASS2; behaviour identical to protocol ID SAE J1850_VPW in
SAE J2534-1 or protocol string SAE J1850 in RP1210a (using a SAE J1850_VPW MVCI
protocol module).

SAE_J1850_PWM Ford SCP; behaviour identical to protocol ID SAE J1850_PWM in SAE J2534-1 or protocol string
SAE J1850 in RP1210a (using a SAE J1850_PWM MVCI protocol module).

SAE_J1939_21 SAE J1939 network protocol; behaviour identical to protocol string SAE J1939 in RP1210a.

SAE_J1708 SAE J1708 network protocol; behaviour identical to protocol string SAE J1708 in RP1210a.

SAE_J2610_SCI SAE J2610 protocol (DaimlerChrysler SCI); four configurations are defined in protocol:
configuration A for engine, (ID: SCI_A_ENGINE) configuration A for transmission (ID:
SCI_A_TRANS), configuration B for engine (ID: SCI_B_ENGINE), configuration B for
transmission (ID: SCI_B_TRANS).

ISO_14230_4 ISO 14230-4 (Keyword protocol 2000); behaviour identical to protocol ID ISO 14230 in
SAE J2534-1.

ISO_9141_2 Raw ISO 9141 or ISO 9141-2 protocol; behaviour identical to protocol ID ISO 9141 in
SAE J2534-1.

NOTE A specific MVCI protocol module is not required to support a minimum set of protocols. The protocols
supported by the specific MVCI protocol module can be evaluated by the application using the MDF and the function call
PDUGetResourceStatus().

ISO 22900-2:2009(E)

142 © ISO 2009 – All rights reserved

B.1.3 Protocol names – combination list

Some protocols consist of several protocol layers which may be combined. All combinations shall be treated
as a protocol definition itself, as it is not transparent to the application that is implemented in the D-PDU API.
Table B.2 — Standard protocol combination list indicates the necessary layering of some standard protocols.

Table B.2 — Standard protocol combination list

Protocol Full Name Application Layer
Transport Layer
(CAN), DataLink
Layer (K-Line)

Physical Layer(s)

KWP2000 on K Line ISO_14230_3 ISO_14230_2 ISO_14230_1_UART

KWP2000 on CAN ISO_14230_3 ISO_15765_2 ISO_11898_2_DWCAN,
ISO_11898_3_DWFTCAN,
SAE_J2411_SWCAN

ISO UDS on CAN ISO_15765_3

(ISO_14229_1)

ISO_15765_2 ISO_11898_2_DWCAN,
ISO_11898_3_DWFTCAN,
SAE_J2411_SWCAN

Enhanced Diagnostics on ISO 14230
K-Line

SAE_J2190 ISO_14230_2 ISO_14230_1_UART

Enhanced Diagnostics on ISO 9141
K-Line

SAE_J2190 ISO_9141_2 ISO_9141_2_UART

Enhanced Diagnostics on CAN SAE_J2190 ISO_15765_2 ISO_11898_2_DWCAN,
ISO_11898_3_DWFTCAN,
SAE_J2411_SWCAN

Enhanced Diagnostics on
SAE J1850_VPW

SAE_J2190 SAE_J1850_VPW SAE_J1850_VPW

Enhanced Diagnostics on
SAE J1850_PWM

SAE_J2190 SAE_J1850_PWM SAE_J1850_PWM

ISO OBD on K-Line ISO_15031_5 ISO_9141_2
ISO_14230_4

ISO_9141_2_UART
ISO_14230_1_UART

ISO OBD on SAE J1850 ISO_15031_5 SAE_J1850_VPW
SAE_J1850_PWM

SAE_J1850_VPW
SAE_J1850_PWM

ISO OBD on CAN ISO_15031_5 ISO_15765_4 ISO_11898_2_DWCAN

ISO RAW CAN ISO_11898_RAW N/A ISO_11898_2_DWCAN,
ISO_11898_3_DWFTCAN,
SAE_J2411_SWCAN

Truck and Bus on CAN SAE_J1939_73 SAE_J1939_21 SAE_J1939_11_DWCAN

Truck and Bus on UART SAE_J1587 SAE_J1708 SAE_J1708_UART

Chrysler SCI SAE_J2610 SAE_J2610_SCI SAE_J2610_UART

B.1.4 Standard protocol naming guidelines

The following naming guidelines apply:

⎯ If the protocol is specified as a standard, the designation of the standard shall be used and the
standardization organization shall be included in the name as a prefix (e.g. ISO_99999, SAE_J8888). If
the protocol is specified as part of a standard, the part number shall be included in the name as postfix
(e.g. ISO_15765_2).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 143

⎯ The standard protocol short names which are used in the MDF file for the PROTOCOL element are a
concatenation of the application Layer specification name, plus the transport layer specification layer
name, connected by the additional string “_on_”, as shown in Table B.3 — Standard protocol short names
in ODX and Table B.4 — OBD protocol shortnames.

⎯ The physical layer name as shown in Table B.2 — Standard protocol combination list is used in the MDF
file as short name for the BUSTYPE element.

B.1.5 Standard protocol short names

Table B.3 — Standard protocol short names in ODX

Short name Protocol Description

ISO_14230_3_on_ISO_14230_2 KWP2000 on K-Line

ISO_14230_3_on_ISO_15765_2 KWP2000 on CAN

ISO_15765_3_on_ISO_15765_2 ISO UDS on CAN

SAE_J2190_on_ISO_14230_2 Enhanced Diagnostics on KWP2000 K-Line

SAE_J2190_on_ISO_9141_2 Enhanced Diagnostics on 9141 K-Line

SAE_J2190_on_ISO_15765_2 Enhanced Diagnostics on CAN

SAE_J2190_on_SAE_J1850_VPW Enhanced Diagnostics on SAE J1850_VPW

SAE_J2190_on_SAE_J1850_PWM Enhanced Diagnostics on SAE J1850_PWM

ISO_15031_5_on_ISO_9141_2 ISO OBD on 9141-2 K-Line

ISO_15031_5_on_SAE_J1850_VPW ISO OBD on SAE J1850 VPW

ISO_15031_5_on_ISO_15765_4 ISO OBD on CAN

ISO_15031_5_on_SAE_J1850_PWM ISO OBD on SAE J1850 PWM

ISO_15031_5_on_ISO_14230_4 ISO OBD on KWP2000 K-Line

ISO_15031_5_on_SAE_J1939_73 ISO OBD on Truck and Bus CAN

SAE_J1939_73_on_SAE_J1939_21 Truck and Bus on CAN

SAE_J1587_on_SAE_J1708 Truck and Bus on UART

SAE_J2610_on_SAE_J2610_SCI Chrysler SCI

ISO_11898_RAW ISO RAW CAN

B.1.6 D-PDU API optional OBD protocol short names

These OBD protocols will allow an OBD application to perform a quick OBD Initialization. Many features of an
OBD initialization are supported internally by the D-PDU API when the below protocols are supported. See
Annex J OBD Initialization for more information regarding OBD Initialization supported by the D-PDU API.

Table B.4 — OBD protocol shortnames

Short name Protocol Description

ISO_OBD_on_K_Line ISO OBD on 9141-2 K-Line and KWP2000 K-Line

ISO_OBD_on_SAE_J1850 ISO OBD on SAE J1850 VPW and SAE J1850 PWM

ISO_OBD_on_ISO_15765_4 ISO OBD on CAN

ISO_OBD_on_SAE_J1939_73 ISO OBD on Truck and Bus CAN

ISO 22900-2:2009(E)

144 © ISO 2009 – All rights reserved

B.2 Standard protocol pin types and short names

The MVCI protocol module communicates to a vehicle serial bus using one or more vehicle connector pins.
These pins types can be referenced by their ODX compliant short-names in Table B.5 — Pin type short
names.

Table B.5 — Pin type short names

Short name Pin Type Description (example protocol usage)

HI Differential Line - High (e.g. DW_CAN High)

LOW Differential Line - Low (e.g. DW_CAN Low)

K UART K-Line (e.g. KWP2000)

L UART L-Line (e.g. ISO 9141-2)

TX UART uni-directional transmit (e.g. SAE J2190)

RX UART uni-directional receive (e.g. SAE J2190)

PLUS SAE J1850 Plus (e.g. SAE J1850 VPW and SAE J1850 PWM)

MINUS SAE J1850 Minus (e.g. SAE J1850 PWM)

SINGLE Single wire [e.g. SW_CAN, and UART bi-directional transmit/receive (e.g.
SAE J2740)]

PROGV Pin to set the programmable voltage on DLC

IGNITION-CLAMP Pin to read the ignition sense state from DLC

B.3 Standard protocol communication parameters (ComParams)

B.3.1 Protocol ComParam description method

ISO 22901-1 (ODX specification) already defines mechanisms for the description of ComParams for a
protocol. The D-PDU API can be used in combination with ODX data files. Therefore, the description
mechanisms from the ODX specification are used to define ComParams in the MDF (for details see the ODX
specification).

For each protocol that the MVCI protocol module supports, the MDF shall assign the reference between the
ComParams and the unique protocol id. For each protocol, the MDF includes the following elements:

⎯ ProtocolName

⎯ Short name and unique ID for each protocol ComParam

The format for each standard protocol ComParam short name shall be CP_yyyy, where yyyy is the parameter
name. An example of a standard protocol ComParam short name would be CP_Baudrate.

NOTE For protocol ComParams, only parameter data types supported by the D-PDU API are used.

Figure B.1 — Example for ComParam configuration illustrates the relationship between the various definition
files.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 145

Key
A ShortName=CP_Baudrate, LongName=Baudrate for CAN bus, DataType=PDU_PT_UNUM32, Min=500000,

Max=500000, Default=500000.
B File: ISO15765.ODX, describes ISO 15765 protocol capabilities.
C ComParams, protocol and bus type must match between B and D.
D Protocol=ISO15765, ShortName=CP_Baudrate, ID=0x1234.

Figure B.1 — Example for ComParam configuration

The application (in this case the MVCI D-Server) uses the ECU ODX file for a specific ECU, which uses
protocol ISO 15765. This file contains the protocol ComParams, which are required for the specific ECU. For
example, the CAN bus baud rate for the specific ECU is specified by the short name Cp_Baudrate. The MDF
contains entries for all protocol ComParams of each protocol supported by the MVCI protocol module.
Therefore, it contains the entry Cp_Baudrate for protocol ISO 15765 together with the assigned ID value of
0x1234. The ID value has been assigned by the MVCI protocol module supplier and it is documented in the
MDF. The ID value can now be used in D-PDU API function calls.

The MDF contains the following information about a ComParam:

⎯ Short name

⎯ Long name

⎯ ComParam Class

⎯ Layer Info

⎯ ComParam data type

⎯ Minimum value

⎯ Maximum value

ISO 22900-2:2009(E)

146 © ISO 2009 – All rights reserved

⎯ Default value (per protocol)

To avoid the usage of different short names for the same ComParams with MVCI protocol modules from
different suppliers, see Table B.1 — SAE J2534-1 and RP1210a Standard protocol names and Table B.3 —
Standard protocol short names in ODX. In most cases, the ComParam names are similar or even identical to
those used in SAE J2534-1 and RP1210a specifications (see these specifications for details). For different
protocols, it is recommended to use the same designations for protocol ComParams in the corresponding
protocol specifications. It is not required that a MVCI protocol module support all listed protocol ComParams.
However, if a MVCI protocol module supports a protocol ComParam listed below, it is mandatory that the
listed protocol ComParam short name is used in the MDF.

The ID value for each protocol ComParam can be freely assigned by the MVCI supplier, because the ID value
is used only within the supplier-specific PDU API.

B.3.2 ComParam class

Each ComParam belongs to an ODX PARAM-CLASS. Table B.6 includes a list of the relevant ODX
PARAM-CLASS.

typedef enum E_PDU_PC
{
 PDU_PC_TIMING = 1,
 PDU_PC_INIT = 2,
 PDU_PC_COM = 3,
 PDU_PC_ERRHDL = 4,
 PDU_PC_BUSTYPE = 5,
 PDU_PC_UNIQUE_ID = 6,
 PDU_PC_TESTER_PRESENT = 7,
} T_PDU_PC;

Table B.6 — Definition of the ODX ComParam classes

D-PDU API ComParam Class ODX PARAM-CLASS Class Description

PDU_PC_TIMING TIMING Message flow timing ComParams, e.g. inter-byte time or time
between request and response.

PDU_PC_INIT INIT ComParams for initiation of communication e.g. trigger
address or wakeup pattern.

PDU_PC_COM COM General communication ComParam.
PDU_PC_ERRHDL ERRHDL ComParam defining the behaviour of the runtime system in

case an error occurred, e.g. runtime system could either
continue communication after a timeout was detected, or stop
and reactivate.

PDU_PC_BUSTYPE BUSTYPE This is used to define a bustype specific ComParam (e.g. baud
rate). Most of these ComParams affect the physical hardware.
These ComParams can only be modified by the first Com
Logical Link that acquired the physical resource
(PDUCreateComLogicalLink()). When a second Com Logical
Link is created for the same resource, these ComParams that
were previously set by the initial Com Logical Link will be
active for the new Com Logical Link.

PDU_PC_UNIQUE_ID UNIQUE_ID This type of ComParam is used to indicate to both the
ComLogicalLink and the application that the information is
used for protocol response handling from a physical or
functional group of ECUs to uniquely define an ECU response.

PDU_PC_TESTER_PRESENT TESTER_PRESENT This type of ComParam is used for tester present type of
ComParams (CP_TesterPresentxxx). Tester Present
ComParams cannot be changed temporarily using the
TempParamUpdate flag like other ComParams. Using this type
of ComParam class enables an application and database to
properly configure and use Tester Present ComParams.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 147

B.3.3 ComParam data type

Each ComParam has a data type which describes the possible data types for ComParams

typedef enum E_PDU_PT
{

PDU_PT_UNUM8 = 0x00000101, /* Unsigned byte */
PDU_PT_SNUM8 = 0x00000102, /* Signed byte */
PDU_PT_UNUM16 = 0x00000103, /* Unsigned two bytes */
PDU_PT_SNUM16 = 0x00000104, /* Signed two bytes */
PDU_PT_UNUM32 = 0x00000105, /* Unsigned four bytes */
PDU_PT_SNUM32 = 0x00000106, /* Signed four bytes */
PDU_PT_BYTEFIELD = 0x00000107, /* Structure contains an array of UNUM8 bytes with a maximum length

and actual length fields. See ComParam BYTEFIELD data type for
the definition. */

PDU_PT_STRUCTFIELD = 0x00000108, /* Structure contains a void * pointer to an array of structures. The
ComParamStructType item determines the type of structure to be
typecasted onto the void * pointer. This structure contains a field for
maximum number of struct entries and the actual number of struct
entries. See ComParam STRUCTFIELD data type for the definition.
*/

PDU_PT_LONGFIELD = 0x00000109, /* Structure contains an array of UNUM32 entries with a maximum
length and actual length fields. See ComParam LONGFIELD Data
Type for the definition. */

} T_PDU_PT;

B.3.3.1 ComParam BYTEFIELD data type

typedef struct {

UNUM32 ParamMaxLen; /* Contains the maximum number of UNUM8 bytes the ComParam can contain in
pDataArray. This is also the amount of memory the D-PDU API allocates prior to
a call of PDUGetComParam. The value of ParamMaxLen is given in the MDF file
as part of the DEFAULT_VALUE entry of the corresponding COMPARAM_REF
or COMPARAM (F.2.2 ComParam String Format). */

NOTE 1 A MAX_VALUE entry does not appear at the corresponding
COMPARAM_REF or COMPARAM for this type of ComParam.

UNUM32 ParamActLen; /* Contains the actual number of UNUM8 bytes in pDataArray. The value of
ParamActLen is given in the MDF file as part of the DEFAULT_VALUE entry of
the corresponding COMPARAM_REF or COMPARAM (F.2.2 ComParam String
Format). */

NOTE 2 A MIN_VALUE entry does not appear at the corresponding
COMPARAM_REF or COMPARAM for this type of ComParam.

UNUM8 *pDataArray; /* Pointer to an array of UNUM8 values */

} PDU_PARAM_BYTEFIELD_DATA;

NOTE 3 In the MDF (see MVCI module description file (MDF)) the elements MIN_VALUE, MAX_VALUE and
DEFAULT_VALUE are optional at the COMPARAM_REF and COMPARAM, except that only DEFAULT_VALUE is
mandatory at COMPARAM. This is to ensure that ParamMaxlen is always retrievable from the MDF.

ISO 22900-2:2009(E)

148 © ISO 2009 – All rights reserved

B.3.3.2 ComParam STRUCTFIELD data type

typedef struct {

T_PDU_CPST ComParamStructType; /* type of ComParam Structure being used. See
ComParamStructType typedef*/

UNUM32 ParamMaxEntries; /* Contains the maximum number of struct entries the
ComParam can contain in pStructArray. The D-PDU API
allocates this amount of memory based on the size of the
structure type prior to a call of PDUGetComParam. The value
of ParamMaxLen is given in the MDF file as part of the
DEFAULT_VALUE entry of the corresponding
COMPARAM_REF or COMPARAM (F.2.2 ComParam String
Format). */

NOTE 1 A MAX_VALUE entry does not appear at the
corresponding COMPARAM_REF or COMPARAM for this
type of ComParam.

UNUM32 ParamActEntries; /* Contains the actual number of struct entries in pStructArray.
The value of ParamActLen is given in the MDF file as part of
the DEFAULT_VALUE entry of the corresponding
COMPARAM_REF or COMPARAM (F.2.2 ComParam String
Format). */

NOTE 2 A MIN_VALUE entry does not appear at the
corresponding COMPARAM_REF or COMPARAM for this
type of ComParam.

void *pStructArray; /* Pointer to an array of structs (typecasted to the
ComParamStructType) */

} PDU_PARAM_STRUCTFIELD_DATA;

NOTE 3 STRUCTFIELD type structures (i.e. structures pointed to by pStructArray) are on even byte boundaries.

NOTE 4 In the MDF (see MVCI module description file (MDF)) the elements MIN_VALUE, MAX_VALUE and
DEFAULT_VALUE are optional at the COMPARAM_REF and COMPARAM, except that only DEFAULT_VALUE is
mandatory at COMPARAM. This is to ensure that ParamMaxlen is always retrievable from the MDF.

B.3.3.2.1 ComParamStructType typedef

Each ComParam of type PDU_PT_STRUCTFIELD has a type (ComParamStructType) which describes the
structure expected in the ComParam. The typedef T_PDU_CPST is used in this structure.

typedef enum E_PDU_CPST
{

PDU_CPST_SESSION_TIMING = 0x00000001, /* See ComParam struct type
PDU_PARAM_STRUCT_SESS_TIMING */

PDU_CPST_ACCESS_TIMING = 0x00000002, /* See ComParam struct type
PDU_PARAM_STRUCT_ACCESS_TIMING */

} T_PDU_CPST;

B.3.3.2.2 ComParam STRUCTFIELD = Session timing

Structure used for a STRUCTFIELD ComParam of ComParamStructType = PDU_CPST_SESSION_TIMING

typedef struct {

UNUM16 session; /* Session Number, for the diagnostic session of ISO 15765-3 */

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 149

UNUM8 P2Max_high; /* 1 ms resolution, Default P2Can_Server_max timing supported by the server for the
activated diagnostic session. Used for ComParam CP_P2Max. */

UNUM8 P2Max_low; /* 1 ms resolution. Used for ComParam CP_P2Min. */

UNUM8 P2Star_high; /* 10 ms resolution. Enhanced (NRC 78 hex) P2Can_Server_max supported by the
server for the activated diagnostic session. Used for ComParam CP_P2Star */

UNUM8 P2Star_low; /* 10 ms resolution. Used for internal ECU use only. */

} PDU_PARAM_STRUCT_SESS_TIMING;

B.3.3.2.3 ComParam STRUCTFIELD = Access timing

Structure used for a STRUCTFIELD ComParam of ComParamStructType = PDU_CPST_ACCESS_TIMING.
This structure is used for both ECU ComParams and Tester ComParams (See CP_AccessTiming_Ecu and
CP_AccessTimingOverride)

typedef struct {

UNUM8 P2Min; /* 0,5 ms resolution. Minimum time between tester request and ECU response(s). Used
for ComParam CP_P2Min */

UNUM8 P2Max; /* Resolution see ISO 14230-2, Table 5. Maximum time between tester request and
ECU response(s). Used for ComParam CP_P2Max. */

UNUM8 P3Min; /* 0,5 ms resolution. Minimum time between end of ECU responses and start of new
tester request. Used for ComParam CP_P3Min. */

UNUM8 P3Max; /* 250 ms resolution. Maximum time between ECU responses and start of new tester
request Used for ComParam CP_P3Max_Ecu or CP_P2Star for the Tester*/

UNUM8 P4Min; /* 0,5 ms resolution. Minimum inter byte time for tester request. Used for ComParam
CP_P4Min. */

UNUM8 TimingSet; /* Set number allowing multiple sets of timing parameters

1 = default timing set used by ECU on a TPI 1 request from the Tester. (Values also
returned by the ECU on a TPI 2.)

2 = override timing values received by ECU (Tester does not use values returned by
ECU, but instead uses values in this structure. (Used during a positive TPI 2 response))

3 = override timing values set by Tester (ECU does not use values set by Tester, but
instead uses values in this structure. (Used during a request of TPI 3.))

4 = normal timing values used by the ECU after initialization.

0xFF = extended timing (values in this structure are used after a keyword initialization
(if extended timing is supported by the KeyBytes). Timing is used by both tester and
ECU)) */

} PDU_PARAM_STRUCT_ACCESS_TIMING;

B.3.3.3 ComParam LONGFIELD Data Type

typedef struct {

UNUM32 ParamMaxLen; /* Contains the maximum number of UNUM32 entries the ComParam can contain in
pDataArray. The D-PDU API allocates this amount of UNUM32 memory prior to a call
of PDUGetComParam. The value of ParamMaxLen is given in the MDF file as part of
the DEFAULT_VALUE entry of the corresponding COMPARAM_REF or COMPARAM
(F.2.2 ComParam String Format). */

NOTE 1 A MAX_VALUE entry does not appear at the corresponding
COMPARAM_REF or COMPARAM for this type of ComParam.

ISO 22900-2:2009(E)

150 © ISO 2009 – All rights reserved

UNUM32 ParamActLen; /* Contains the actual number of UNUM32 entries in pDataArray. The value of
ParamActLen is given in the MDF file as part of the DEFAULT_VALUE entry of the
corresponding COMPARAM_REF or COMPARAM (F.2.2 ComParam String Format). */

NOTE 2 A MIN_VALUE entry does not appear at the corresponding
COMPARAM_REF or COMPARAM for this type of ComParam.

UNUM32 *pDataArray; /* Pointer to an array of UNUM32 values */

} PDU_PARAM_LONGFIELD_DATA;

NOTE 3 In the MDF (see MVCI module description file (MDF)) the elements MIN_VALUE, MAX_VALUE and
DEFAULT_VALUE are optional at the COMPARAM_REF and COMPARAM, except that only DEFAULT_VALUE is
mandatory at COMPARAM. This is to ensure that ParamMaxlen is always retrievable from the MDF.

B.3.4 ComParam support

Each ComParam may or may not be supported by a MVCI protocol module. If a MVCI protocol module
supports a protocol, then only the ComParams that are considered “standard” shall be supported by the MVCI
protocol module. OEM-specific ComParams may be defined but will not be part of the standard.

ECU specific ComParams will not be interpreted by the D-PDU API. In case an ECU specific ComParam is
passed to the D-PDU API, the API will return an error code.

Table B.7 — Definition of the ODX ComParam support types

ComParam Support Acronym Type Description

PDU_PS_STANDARD S The ComParam belonging to a standardized protocol has to be
supported by the D-PDU API system to be compliant with this
standard for every protocol supported by the D-PDU API. These
ComParams apply to both the tester and the ECU unless
CPUSAGE (see B.3.5) is specified.

PDU_PS_OPTIONAL O This ComParam does not have to be supported by the D-PDU API.

B.3.5 ComParam usage

In the PDU API ComParam tables the optional ComParam usage acronyms “T” and “E” are used to indicate
whether a ComParam is relevant only for a Tester/MVCI protocol module (“T”) or whether it is only relevant for
ECU software generation or configuration (“E”). If a ComParam is relevant for both tester and ECU, none of
the acronyms “T” or “E” are used.

In ODX for each COMPARAM the attribute CPUSAGE shall be set to one of the possible values: “TESTER”,
“ECU-SOFTWARE”, “ECU-COMM” or “APPLICATION”. The relation between the CPUSAGE attribute used in
ODX and the optional ComParam usage acronyms “T” and “E” used in the PDU API ComParam tables is
shown in Table B.8 — Definition of the ODX ComParam usage.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 151

Table B.8 — Definition of the ODX ComParam usage

ODX CPUSAGE
attribute

ComParam usage
acronym used in

PDU API
ComParam tables

Description

TESTER T The ComParam is specific to the tester (VCI) and is neither supported nor
implemented by the ECU.

ECU-SOFTWARE E The ComParam is specific to the ECU and is neither supported nor
implemented by the tester (VCI).

ECU-COMM — The ComParam is needed for communication between tester and ECU and
shall be supported by both tester and ECU (e.g. addresses).

APPLICATION N/A The ComParam is only evaluated by the application. It is never passed
down to the D-PDU API by an MCD 3D/MVCI Diagnostic Server. The
ComParam is not specified within the D-PDU API standard.

B.3.6 ComParam OSI layer reference

Each ComParam is applicable to a specific OSI Layer.

Table B.9 — Definition of the O.S.I. layer

Layer Info Acronym Layer Description

PDU_PL_APPLICATION APP ComParams in this layer apply to timing and error handling elements that
are referenced in the application layer specifications.

PDU_PL_TRANSPORT TRANS ComParams in this layer apply to timing and configuration elements that
are referenced in the Transport/Network layer specifications. These
ComParams are used to configure header bytes, develop CAN ids,
framing information, checksums, etc.

PDU_PL_PHYSICAL PHYS ComParams in this layer apply to elements that are referenced in the
datalink/physical layer specifications. These ComParams affect the
physical characteristics of bus configuration.

B.4 ComParam summary tables

B.4.1 Application layer

Table B.10 — Application layer ComParam summary table lists the ComParams applicable to the application
Layer. If a ComParam is used by a particular protocol, the appropriate acronyms for the ODX ComParameter
type (S, O), and the ODX ComParameter usage (T, E) are included.

ISO 22900-2:2009(E)

152 © ISO 2009 – All rights reserved

Table B.10 — Application layer ComParam summary table

ISO 15031_5

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

IS
O

_1
42

30
_3

IS
O

_1
57

65
_3

IS
O

_1
18

98
_R

A
W

SA
E_

J1
93

9_
73

SA
E_

J1
58

7

SA
E_

J2
19

0

SA
E_

J2
61

0

PA
R

A
M

-C
LA

SS

CP_CanTransmissionTime O,T O,T TIMING

CP_ChangeSpeedCtrl O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_ChangeSpeedMessage O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_ChangeSpeedRate O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_ChangeSpeedResCtrl O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_ChangeSpeedTxDelay O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T TIMING

CP_CyclicRespTimeout S,T S,T S,T S,T S,T S,T S,T S,T S,T S,T S,T S,T TIMING

CP_EnablePerformanceTest O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_Loopback O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

CP_MessageIndicationRate S,T TIMING

CP_ModifyTiming O,T O,T O,T TIMING

CP_P2Max S,T S,T S,T S,T S,T S,T S,T S,T S,T S,T S,T TIMING

CP_P2Max_Ecu S,E S,E S,E S,E S,E TIMING

CP_P2Min O,T O,T O,T O,T O,T O,T O,T O,T O,T TIMING

CP_P2Star S,T S,T S,T S,T S,T S,T S,T TIMING

CP_P2Star_Ecu S,E S,E TIMING

CP_P3Func S,T S,T O,T TIMING

CP_P3Max_Ecu S,E S,E S,E TIMING

CP_P3Min S S S TIMING

CP_P3Phys S,T S,T O,T TIMING

CP_RC21CompletionTimeout S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RC21Handling S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RC21RequestTime S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RC23CompletionTimeout O,T S,T S,T S,T O,T S,T ERRHDL

CP_RC23Handling O,T S,T S,T S,T O,T S,T ERRHDL

CP_RC23RequestTime O,T S,T S,T S,T O,T S,T ERRHDL

CP_RC78CompletionTimeout S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RC78Handling S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RCByteOffset S,T S,T S,T S,T S,T S,T S,T S,T ERRHDL

CP_RepeatReqCountApp O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T ERRHDL

CP_SessionTiming_Ecu S,E TIMING

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 153

Table B.10 (continued)

ISO 15031_5

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

IS
O

_1
42

30
_3

IS
O

_1
57

65
_3

IS
O

_1
18

98
_R

A
W

SA
E_

J1
93

9_
73

SA
E_

J1
58

7

SA
E_

J2
19

0

SA
E_

J2
61

0

PA
R

A
M

-C
LA

SS

CP_SessionTimingOverride O,T TIMING

CP_StartMsgIndEnable S,T S,T S,T S,T S,T S,T S,T COM

CP_SuspendQueueOnError O,T O,T O,T O,T O,T O,T O,T O,T O,T ERRHDL

CP_SwCan_HighVoltage S,T S,T S,T S,T COM

CP_TesterPresentAddrMode S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentExpPos
Resp

S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentExpNeg
Resp

S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentHandling S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentMessage S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentReqRsp S,T S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentSendType S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentTime S,T S,T S,T S,T S,T S,T S,T TESTER_
PRESENT

CP_TesterPresentTime_Ecu S,E S,E S,E S,E S,E S,E S,E TESTER_
PRESENT

CP_TransmitIndEnable O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T COM

B.4.2 Transport layer

Table B.11 — Transport layer ComParam summary table lists the ComParams applicable to the transport
layer. If a ComParam is used by a particular protocol, the appropriate acronyms for the ODX ComParameter
type (S, O), and the ODX ComParameter usage (T, E) are included.

ISO 22900-2:2009(E)

154 © ISO 2009 – All rights reserved

Table B.11 — Transport layer ComParam summary table

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

IS
O

_1
57

65
_2

IS
O

_1
42

30
_2

SA
E_

J1
93

9_
21

SA
E_

J1
70

8

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

26
10

_S
C

I

IS
O

_1
18

98
_R

A
W

PA
R

A
M

-C
LA

SS

CP_5BaudAddressFunc S S S COM

CP_5BaudAddressPhys S S COM

CP_5BaudMode S,T S,T INIT

CP_AccessTiming_Ecu S,E S,E TIMING

CP_AccessTimingOverride O,T O,T TIMING

CP_Ar S,T S,T TIMING

CP_Ar_Ecu S,E S,E TIMING

CP_As S,T S,T TIMING

CP_As_Ecu S,E S,E TIMING

CP_BlockSize S,T S,T S,T S,T COM

CP_BlockSize_Ecu S,E S,E S,E S,E COM

CP_BlockSizeOverride O,T O,T O,T O,T COM

CP_Br O,T O,T S S TIMING

CP_Br_Ecu S,E S,E S,E S,E TIMING

CP_Bs S,T S,T S S TIMING

CP_Bs_Ecu S,E S,E S,E S,E TIMING

CP_CanDataSizeOffset O,T O,T COM

CP_CanFillerByte S S S S COM

CP_CanFillerByteHandling S S S S COM

CP_CanFirstConsecutive-
FrameValue

O,T O,T COM

CP_CanFuncReqExtAddr S S COM

CP_CanFuncReqFormat S S COM

CP_CanFuncReqId S S COM

CP_CanMaxNumWaitFrames S S S COM

CP_CanPhysReqExtAddr S S S UNIQUE_ID

CP_CanPhysReqFormat S S S UNIQUE_ID

CP_CanPhysReqId S S S UNIQUE_ID

CP_CanRespUSDTExtAddr S S UNIQUE_ID

CP_CanRespUSDTFormat S S UNIQUE_ID

CP_CanRespUSDTId S S UNIQUE_ID

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 155

Table B.11 (continued)

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

IS
O

_1
57

65
_2

IS
O

_1
42

30
_2

SA
E_

J1
93

9_
21

SA
E_

J1
70

8

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

26
10

_S
C

I

IS
O

_1
18

98
_R

A
W

PA
R

A
M

-C
LA

SS

CP_CanRespUUDTExtAddr S S S UNIQUE_ID

CP_CanRespUUDTFormat S S S UNIQUE_ID

CP_CanRespUUDTId S S S UNIQUE_ID

CP_Cr S,T S,T S S TIMING

CP_Cr_Ecu S,E S,E S,E S,E TIMING

CP_Cs O,T O,T S S TIMING

CP_Cs_Ecu S,E S,E S,E S,E TIMING

CP_EcuRespSourceAddress S S S S S UNIQUE_ID

CP_EnableConcatenation S,T S,T S,T S,T S,T COM

CP_ExtendedTiming S S TIMING

CP_FillerByte S S S S S COM

CP_FillerByteHandling S S S S S COM

CP_FillerByteLength S S S S S COM

CP_FuncReqFormatPriority-
Type

 S,T S,T S,T S,T S,T COM

CP_FuncReqTargetAddr S,T S,T S,T S,T S,T COM

CP_FuncRespFormatPriority-
Type

 S S S S S UNIQUE_ID

CP_FuncRespTargetAddr S S S S S UNIQUE_ID

CP_HeaderFormatJ1850 S,T S,T COM

CP_HeaderFormatKW S,T S,T COM

CP_InitializationSettings S S S INIT

CP_J1939AddrClaimTimeout S TIMING

CP_J1939AddressNegotiation
Rule

 S COM

CP_J1939DataPage S COM

CP_J1939MaxPacketTx S COM

CP_J1939Name S,T INIT

CP_J1939Name_Ecu S,E INIT

CP_J1939PDUFormat S COM

CP_J1939PDUSpecific S COM

CP_J1939PreferredAddress S,T INIT

CP_J1939PreferredAddress_
Ecu

 S,E INIT

ISO 22900-2:2009(E)

156 © ISO 2009 – All rights reserved

Table B.11 (continued)

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

IS
O

_1
57

65
_2

IS
O

_1
42

30
_2

SA
E_

J1
93

9_
21

SA
E_

J1
70

8

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

26
10

_S
C

I

IS
O

_1
18

98
_R

A
W

PA
R

A
M

-C
LA

SS

CP_J1939SourceAddress S,T UNIQUE_ID

CP_J1939SourceName S,T UNIQUE_ID

CP_J1939TargetAddress S COM

CP_J1939TargetName S COM

CP_MessagePriority S S COM

CP_MidReqId S COM

CP_MidRespId S UNIQUE_ID

CP_P1Max S S S TIMING

CP_P1Min O O O TIMING

CP_P4Max O O O TIMING

CP_P4Min S S S TIMING

CP_PhysReqFormatPriority-
Type

 S,T S,T S,T S,T S,T COM

CP_PhysReqTargetAddr S S S S S COM

CP_PhysRespFormatPriority-
Type

 S S S S S UNIQUE_ID

CP_RepeatReqCountTrans O,T O,T O,T O,T O,T O,T O,T O,T O,T O,T ERRHDL

CP_RequestAddrMode S,T S,T S,T S,T S,T S,T S,T COM

CP_SCITransmitMode S INIT

CP_SendRemoteFrame S S S S COM

CP_StMin S,T S,T TIMING

CP_StMin_Ecu S,E S,E TIMING

CP_StMinOverride O,T O,T TIMING

CP_T1Max S TIMING

CP_T2Max S TIMING

CP_T3Max S S TIMING

CP_T4Max S S TIMING

CP_T5Max S S TIMING

CP_TesterSourceAddress S,T S,T S,T S,T S,T COM

CP_TIdle S S S INIT

CP_TInil S S S INIT

CP_TPConnection-
Management

 S,T COM

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 157

Table B.11 (continued)

Parameter
Short Name

IS
O

_1
57

65
_4

IS
O

_1
42

30
_4

IS
O

_9
14

1_
2

IS
O

_1
57

65
_2

IS
O

_1
42

30
_2

SA
E_

J1
93

9_
21

SA
E_

J1
70

8

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

26
10

_S
C

I

IS
O

_1
18

98
_R

A
W

PA
R

A
M

-C
LA

SS

CP_TWup S S S INIT

CP_W1Max S S S INIT

CP_W1Min O O O INIT

CP_W2Max S S S INIT

CP_W2Min O O O INIT

CP_W3Max S S S INIT

CP_W3Min O O O INIT

CP_W4Max S S S INIT

CP_W4Min S S S INIT

B.4.3 Physical layer

Table B.12 — Physical layer ComParam summary table lists the ComParams applicable to the Physical Layer.
If a ComParam is used by a particular protocol, the appropriate acronyms for the ODX ComParameter type (S,
O), and the ODX ComParameter usage (T, E) are included.

Table B.12 — Physical layer ComParam summary table

Parameter
Short Name

IS
O

_1
18

98
_2

_D
W

C
A

N

IS
O

_1
18

98
_3

_D
W

FT
C

A
N

IS
O

_1
19

92
_1

_D
W

C
A

N

IS
O

_9
14

1_
2_

U
A

R
T

IS
O

_1
42

30
_1

_U
A

R
T

SA
E_

J2
61

0_
U

A
R

T

SA
E_

J1
70

8_
U

A
R

T

SA
E_

J1
93

9_
11

_D
W

C
A

N

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

J2
41

1_
SW

C
A

N

PA
R

A
M

-C
LA

SS

CP_Baudrate S S S S S S S S S S S BUSTYPE

CP_BitSamplePoint S,T S,T S,T S,T S,T BUSTYPE

CP_BitSamplePoint_Ecu S,E S,E S,E S,E S,E BUSTYPE

CP_CanBaudrateRecord O,T O,T O,T O,T BUSTYPE

CP_K_L_LineInit O O BUSTYPE

CP_K_LinePullup O O BUSTYPE

CP_ListenOnly O O O O O BUSTYPE

CP_NetworkLine S BUSTYPE

ISO 22900-2:2009(E)

158 © ISO 2009 – All rights reserved

Table B.12 (continued)

Parameter
Short Name

IS
O

_1
18

98
_2

_D
W

C
A

N

IS
O

_1
18

98
_3

_D
W

FT
C

A
N

IS
O

_1
19

92
_1

_D
W

C
A

N

IS
O

_9
14

1_
2_

U
A

R
T

IS
O

_1
42

30
_1

_U
A

R
T

SA
E_

J2
61

0_
U

A
R

T

SA
E_

J1
70

8_
U

A
R

T

SA
E_

J1
93

9_
11

_D
W

C
A

N

SA
E_

J1
85

0_
VP

W

SA
E_

J1
85

0_
PW

M

SA
E_

J2
41

1_
SW

C
A

N

PA
R

A
M

-C
LA

SS

CP_SamplesPerBit S,T S,T S,T S,T S,T BUSTYPE

CP_SamplesPerBit_Ecu S,E S,E S,E S,E S,E BUSTYPE

CP_SyncJumpWidth S,T S,T S,T S,T S,T BUSTYPE

CP_SyncJumpWidth_Ecu S,E S,E S,E S,E S,E BUSTYPE

CP_TerminationType O,T O,T O,T BUSTYPE

CP_TerminationType_Ecu O,E BUSTYPE

CP_UartConfig S S S S BUSTYPE

B.4.4 CAN identifier format for ISO 15765 and ISO 11898 protocols

The protocols transport layer uses the CAN identifier format information to properly format CAN frames, and to
construct the correct CAN ID. For received frames, the information is used to handle expected CAN frames,
and to help in receive format processing.

Table B.13 — CAN ID format (UNUM32) for ISO_15765 and ISO_11898

Bit
Position Name Description

5,4 Padding Overwrite 00 = Use CP_CanFillerByteHandling for padding control

01 = Reserved

10 = Padding explicitly disabled for this CAN Id (overwrite
CP_CanFillerByteHandling)

11 = Padding explicitly enabled for this CAN Id (overwrite
CP_CanFillerByteHandling)

NOTE These bits only apply to the CAN Ids transmitted by the MVCI,
meaning that it only applies to the ComParams CP_CanPhysReqFormat
and CP_CanFuncReqFormat.

3 Addressing Scheme 0 = Normal addressing

1 = Extended addressing (Byte 1 of CAN Frame will contain
N_AE/N_TA)

2 Data Transfer Handling 0 = UUDT Message (No PCI Bytes)

1 = USDT Message (Segmented frames)

1 CAN Id Size 0 = 11-bit

1 = 29-bit

0 Flow Control 0 = Flow Control frames are disabled

1 = Flow Control frames are enabled

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 159

Table B.14 — Coded values for CAN ID format provides a summary of all possible coded values for the CAN
ID format ComParams.

Table B.14 — Coded values for CAN ID format

Coded
Value

Bit 5,4:
Padding

Overwrite

Bit 3:
Addressin
g Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control
Description

0x00 normal normal unsegmented 11-bit w/o FC normal unsegmented 11-bit
CP_CanFillerByteHandling for
padding control

0x01 normal normal unsegmented 11-bit with FC n/a

0x02 normal normal unsegmented 29-bit w/o FC normal unsegmented 29-bit
CP_CanFillerByteHandling for
padding control

0x03 normal normal unsegmented 29-bit with FC n/a

0x04 normal normal segmented 11-bit w/o FC normal segmented 11-bit w/o
FC
CP_CanFillerByteHandling for
padding control

0x05 normal normal segmented 11-bit with FC normal segmented 11-bit with
FC
CP_CanFillerByteHandling for
padding control

0x06 normal normal segmented 29-bit w/o FC normal segmented 29-bit w/o
FC
CP_CanFillerByteHandling for
padding control

0x07 normal normal segmented 29-bit with FC normal segmented 29-bit with
FC
CP_CanFillerByteHandling for
padding control

0x08 normal extended unsegmented 11-bit w/o FC extended unsegmented 11-bit
CP_CanFillerByteHandling for
padding control

0x09 normal extended unsegmented 11-bit with FC n/a

0x0A normal extended unsegmented 29-bit w/o FC extended unsegmented 29-bit
CP_CanFillerByteHandling for
padding control

0x0B normal extended unsegmented 29-bit with FC n/a

0x0C normal extended segmented 11-bit w/o FC extended segmented 11-bit w/o
FC
CP_CanFillerByteHandling for
padding control

0x0D normal extended segmented 11-bit with FC extended segmented 11-bit
with FC
CP_CanFillerByteHandling for
padding control

0x0E normal extended segmented 29-bit w/o FC extended segmented 29-bit w/o
FC
CP_CanFillerByteHandling for
padding control

ISO 22900-2:2009(E)

160 © ISO 2009 – All rights reserved

Table B.14 (continued)

Coded
Value

Bit 5,4:
Padding

Overwrite

Bit 3:
Addressin
g Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control
Description

0x0F normal extended segmented 29-bit with FC extended segmented 29-bit
with FC
CP_CanFillerByteHandling for
padding control

0x10-
0x1F

 Reserved

0x20 Disable padding normal unsegmented 11-bit w/o FC normal unsegmented 11-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x21 Disable padding normal unsegmented 11-bit with FC n/a

0x22 Disable padding normal unsegmented 29-bit w/o FC normal unsegmented 29-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x23 Disable padding normal unsegmented 29-bit with FC n/a

0x24 Disable padding normal segmented 11-bit w/o FC normal segmented 11-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x25 Disable padding normal segmented 11-bit with FC normal segmented 11-bit with
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x26 Disable padding normal segmented 29-bit w/o FC normal segmented 29-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x27 Disable padding normal segmented 29-bit with FC normal segmented 29-bit with
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x28 Disable padding extended unsegmented 11-bit w/o FC extended unsegmented 11-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x29 Disable padding extended unsegmented 11-bit with FC n/a

0x2A Disable padding extended unsegmented 29-bit w/o FC extended unsegmented 29-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x2B Disable padding extended unsegmented 29-bit with FC n/a

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 161

Table B.14 (continued)

Coded
Value

Bit 5,4:
Padding

Overwrite

Bit 3:
Addressin
g Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control
Description

0x2C Disable padding extended segmented 11-bit w/o FC extended segmented 11-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x2D Disable padding extended segmented 11-bit with FC extended segmented 11-bit
with FC
Do not use
CP_CanFillerByteHandling for
padding control

0x2E Disable padding extended segmented 29-bit w/o FC extended segmented 29-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x2F Disable padding extended segmented 29-bit with FC extended segmented 29-bit
with FC
Do not use
CP_CanFillerByteHandling for
padding control

0x30 Enable padding normal unsegmented 11-bit w/o FC normal unsegmented 11-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x31 Enable padding normal unsegmented 11-bit with FC n/a

0x32 Enable padding normal unsegmented 29-bit w/o FC normal unsegmented 29-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x33 Enable padding normal unsegmented 29-bit with FC n/a

0x34 Enable padding normal segmented 11-bit w/o FC normal segmented 11-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x35 Enable padding normal segmented 11-bit with FC normal segmented 11-bit with
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x36 Enable padding normal segmented 29-bit w/o FC normal segmented 29-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x37 Enable padding normal segmented 29-bit with FC normal segmented 29-bit with
FC
Do not use
CP_CanFillerByteHandling for
padding control

ISO 22900-2:2009(E)

162 © ISO 2009 – All rights reserved

Table B.14 (continued)

Coded
Value

Bit 5,4:
Padding

Overwrite

Bit 3:
Addressin
g Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control
Description

0x38 Enable padding extended unsegmented 11-bit w/o FC extended unsegmented 11-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x39 Enable padding extended unsegmented 11-bit with FC n/a

0x3A Enable padding extended unsegmented 29-bit w/o FC extended unsegmented 29-bit
Do not use
CP_CanFillerByteHandling for
padding control

0x3B Enable padding extended unsegmented 29-bit with FC n/a

0x3C Enable padding extended segmented 11-bit w/o FC extended segmented 11-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x3D Enable padding extended segmented 11-bit with FC extended segmented 11-bit
with FC
Do not use
CP_CanFillerByteHandling for
padding control

0x3E Enable padding extended segmented 29-bit w/o FC extended segmented 29-bit w/o
FC
Do not use
CP_CanFillerByteHandling for
padding control

0x3F Enable padding extended segmented 29-bit with FC extended segmented 29-bit
with FC
Do not use
CP_CanFillerByteHandling for
padding control

Table B.15 — Coded values for CP_CanPhysReqFormat and CP_CanFuncReqFormat provides a list of the
coded values for CP_CanPhysReqFormat and CP_CanFuncReqFormat CAN ID format ComParams. This list
includes the applicable subset of coded values defined in Table B.14 — Coded values for CAN ID format.

Table B.15 — Coded values for CP_CanPhysReqFormat and CP_CanFuncReqFormat

Coded
Value

Bit 3:
Addressing

Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control

Description for
CP_CanPhysReqFormat and

CP_CanFuncReqFormat

0x00 normal unsegmented 11-bit w/o FC Normal addressing for Source (Tester), UUDT
Message Transmit (No PCI Bytes), 11-bit CAN ID Size,
No Flow Control frames are expected from Target
(ECU)

0x01 normal unsegmented 11-bit with FC n/a

0x02 normal unsegmented 29-bit w/o FC Normal addressing for Source (Tester), UUDT
Message Transmit (No PCI Bytes), 29-bit CAN ID Size,
No Flow Control frames are expected from Target
(ECU)

0x03 normal unsegmented 29-bit with FC n/a

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 163

Table B.15 (continued)

Coded
Value

Bit 3:
Addressing

Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control

Description for
CP_CanPhysReqFormat and

CP_CanFuncReqFormat

0x04 normal segmented 11-bit w/o FC Normal addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 11-bit CAN
ID Size, No Flow Control frames are expected from
Target (ECU)

0x05 normal segmented 11-bit with FC Normal addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 11-bit CAN
ID Size, Flow Control frames are expected from Target
(ECU)

0x06 normal segmented 29-bit w/o FC Normal addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 29-bit CAN
ID Size, No Flow Control frames are expected from
Target (ECU)

0x07 normal segmented 29-bit with FC Normal addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 29-bit CAN
ID Size, Flow Control frames are expected from Target
(ECU)

0x08 extended unsegmented 11-bit w/o FC Extended addressing for Source (Tester), UUDT
Message Transmit (No PCI Bytes), 11-bit CAN ID Size,
No Flow Control frames are expected from Target
(ECU)

0x09 extended unsegmented 11-bit with FC n/a

0x0A extended unsegmented 29-bit w/o FC Extended addressing for Source (Tester), UUDT
Message Transmit (No PCI Bytes), 29-bit CAN ID Size,
No Flow Control frames are expected from Target
(ECU)

0x0B extended unsegmented 29-bit with FC n/a

0x0C extended segmented 11-bit w/o FC Extended addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 11-bit CAN
ID Size, No Flow Control frames are expected from
Target (ECU)

0x0D extended segmented 11-bit with FC Extended addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 11-bit CAN
ID Size, Flow Control frames are expected from Target
(ECU)

0x0E extended segmented 29-bit w/o FC Extended addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 29-bit CAN
ID Size, No Flow Control frames are expected from
Target (ECU)

0x0F extended segmented 29-bit with FC Extended addressing for Source (Tester), USDT
Message Transmit (Segmented transmits), 29-bit CAN
ID Size, Flow Control frames are expected from Target
(ECU)

NOTE Table B.15 — Coded values for CP_CanPhysReqFormat and CP_CanFuncReqFormat does not explicitly
consider the PaddingOverwrite bits (bits 4 and 5), but can be enhanced accordingly.

Table B.16 — Coded values for CP_CanRespUSDTFormat provides a list of the coded values for
CP_CanRespUSDTFormat CAN ID format ComParam. This list includes the applicable subset of coded
values defined in Table B.14 — Coded values for CAN ID format.

ISO 22900-2:2009(E)

164 © ISO 2009 – All rights reserved

Table B.16 — Coded values for CP_CanRespUSDTFormat

Coded
Value

Bit 3:
Addressing

Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control

Description for
CP_CanRespUSDTFormat

0x0 normal unsegmented 11-bit w/o FC n/a

0x1 normal unsegmented 11-bit with FC n/a

0x2 normal unsegmented 29-bit w/o FC n/a

0x3 normal unsegmented 29-bit with FC n/a

0x4 normal segmented 11-bit w/o FC Normal addressing for Target (ECU), USDT Message
Receive (Segmented receives), 11-bit CAN ID Size, No
Flow Control is sent when a First Frame is received

0x5 normal segmented 11-bit with FC Normal addressing for Target (ECU), USDT Message
Receive (Segmented receives), 11-bit CAN ID Size,
Flow Control is sent when a First Frame is received

0x6 normal segmented 29-bit w/o FC Normal addressing for Target (ECU), USDT Message
Receive (Segmented receives), 29-bit CAN ID Size, No
Flow Control is sent when a First Frame is received

0x7 normal segmented 29-bit with FC Normal addressing for Target (ECU), USDT Message
Receive (Segmented receives), 29-bit CAN ID Size,
Flow Control is sent when a First Frame is received

0x8 extended unsegmented 11-bit w/o FC n/a

0x9 extended unsegmented 11-bit with FC n/a

0xA extended unsegmented 29-bit w/o FC n/a

0xB extended unsegmented 29-bit with FC n/a

0xC extended segmented 11-bit w/o FC Extended addressing for Target (ECU), USDT Message
Receive (Segmented receives), 11-bit CAN ID Size, No
Flow Control is sent when a First Frame is received

0xD extended segmented 11-bit with FC Extended addressing for Target (ECU), USDT Message
Receive (Segmented receives), 11-bit CAN ID Size,
Flow Control is sent when a First Frame is received

0xE extended segmented 29-bit w/o FC Extended addressing for Target (ECU), USDT Message
Receive (Segmented receives), 29-bit CAN ID Size, No
Flow Control is sent when a First Frame is received

0xF extended segmented 29-bit with FC Extended addressing for Target (ECU), USDT Message
Receive (Segmented receives), 29-bit CAN ID Size,
Flow Control is sent when a First Frame is received

NOTE The PaddingOverwrite bits (bits 4 and 5) do not apply to the ComParam CP_CanRespUSDTFormat.

Table B.17 — Coded values for CP_CanRespUUDTFormat provides a list of the coded values for
CP_CanRespUUDTFormat CAN ID format ComParam. This list includes the applicable subset of coded
values defined in Table B.14 — Coded values for CAN ID format.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 165

Table B.17 — Coded values for CP_CanRespUUDTFormat

Coded
Value

Bit 3:
Addressing

Scheme

Bit 2:
Data Transfer

Handling

Bit 1:
CAN ID

Size

Bit 0:
Flow

Control

Description for
CP_CanRespUUDTFormat

0x0 normal unsegmented 11-bit w/o FC Normal addressing for Target (ECU), UUDT Message
Receive (No PCI Bytes), 11-bit CAN ID Size, UUDT
Message Receive (No Flow Control)

0x1 normal unsegmented 11-bit with FC n/a

0x2 normal unsegmented 29-bit w/o FC Normal addressing for Target (ECU), UUDT Message
Receive (No PCI Bytes), 29-bit CAN ID Size, UUDT
Message Receive (No Flow Control)

0x3 normal unsegmented 29-bit with FC n/a

0x4 normal segmented 11-bit w/o FC n/a

0x5 normal segmented 11-bit with FC n/a

0x6 normal segmented 29-bit w/o FC n/a

0x7 normal segmented 29-bit with FC n/a

0x8 extended unsegmented 11-bit w/o FC Extended addressing for Target (ECU), UUDT Message
Receive (No PCI Bytes), 11-bit CAN ID Size, UUDT
Message Receive (No Flow Control)

0x9 extended unsegmented 11-bit with FC n/a

0xA extended unsegmented 29-bit w/o FC Extended addressing for Target (ECU), UUDT Message
Receive (No PCI Bytes), 29-bit CAN ID Size, UUDT
Message Receive (No Flow Control)

0xB extended unsegmented 29-bit with FC n/a

0xC extended segmented 11-bit w/o FC n/a

0xD extended segmented 11-bit with FC n/a

0xE extended segmented 29-bit w/o FC n/a

0xF extended segmented 29-bit with FC n/a

NOTE The PaddingOverwrite bits (bits 4 and 5) do not apply to the ComParam CP_CanRespUUDTFormat.

ISO 22900-2:2009(E)

166 © ISO 2009 – All rights reserved

B.4.4.1 CAN identifier format example

Figure B.2 — Example #1 CAN Id format configurations

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 167

B.4.4.2 CAN frame example

Figure B.3 — Example #2 CAN Id format configurations

ISO 22900-2:2009(E)

168 © ISO 2009 – All rights reserved

B.4.5 Non-CAN ComParam examples

Figure B.4 — Example #1 Non-CAN functional addressing

Figure B.5 — Example #2 Non-CAN physical addressing

B.4.6 29-bit CAN Identifier data page bits

The Extended Data Page and Data Page bits determine which format of the 29 bit CAN identifier shall be
used for the SAE J1939 and ISO 15765-3 protocols.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 169

Table B.18 — Definition of Extended Data Page and Data Page field

Extended
Data Page

Bit 25
Data Page Bit 24 Description

0 0 Page 0 PGNs

SAE J1939 defined or manufacturer-defined

“Normal Communication Message” strategy if SAE J1939 is not implemented

0 1 Page 1 PGNs

SAE J1939 defined or manufacturer-defined

“Normal Communication Message” strategy if SAE J1939 is not implemented

1 0 Reserved

SAE J1939-reserved or manufacturer-defined

“Normal Communication Message” strategy if SAE J1939 is not implemented

1 1 ISO 15765-3-defined

B.5 ComParam detailed descriptions

B.5.1 ComParam definitions for application layer

Table B.19 — Application layer ComParam definition table

Short Name Detailed Description Default (By Protocol)

Description: If the timeout values are used which have
been received by the ECU via session control response
(0x50), the Can transmission time has to be added to the
timeout values.

P2 = received P2 + CanTransmissionTime (contains
delay for both transmission directions).

CP_CanTransmissionTime

Type: PDU_PT_UNUM32

Range: 0x0000-0xFFFFFFFF

Resolution: 1 µs

ISO_15765_4 = 100000

ISO_15765_3 = 100000

CP_ChangeSpeedCtrl Description Control the behaviour of the MVCI protocol
module in processing speed change messages. When
this ComParam is enabled, the speed rate change will
be activated on a successful Send or SendRecv
ComPrimitive when the transmitted or received message
matches the CP_ChangeSpeedMessage (baud rate as
specified in CP_ChangeSpeedRate and termination
resistor as specified in CP_ChangeSpeedResCtrl). In
the case of monitoring mode, when a receive PDU is
bound to a Receive Only ComPrimitive, and this
ComParam is enabled, the speed rate change will also
be activated and the corresponding ComParams will be
interpreted accordingly See use case example
Table I.1 — Example vehicle bus baud rate changing
scenario.

All = 0 (disabled)

ISO 22900-2:2009(E)

170 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

 Type: PDU_PT_UNUM32

Value: [0; 1]

0 = NO_SPDCHANGE – No speed change

1 = ENABLE_SPDCHANGE – Change Speed rate
is enabled

Description: Switch Speed Message. The message is
monitored for transmit and receive. When this message
is detected on the vehicle bus, the
CP_ChangeSpeedRate and CP_ChangeSpeedResCtrl
ComParams are processed.

NOTE CP_ChangeSpeedCtrl is enabled for this ComParam
to be active.

CP_ChangeSpeedMessage

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 12

ParamActLen = 0 to 12

pDataArray=ChangeSpdMessage[12]

Range: Each byte = [0; 0xFF]

All Protocols: ParamActLen
= 0 (not enabled)

Description: The data rate to be used when switching
speed rates. When changed, this value is copied to
CP_Baudrate ComParam.

CP_ChangeSpeedRate

Type: PDU_PT_UNUM32

Range: [0; 0xFFFFFFFF]

Resolution: 1 bps

All = 0

Description: This ComParam is used in conjunction with
CP_ChangeSpeedCtrl. This ComParam is used to
control automatic loading or unloading of the physical
resource resistor when a change speed message has
been transmitted or received.

CP_ChangeSpeedResCtrl

Type: PDU_PT_UNUM32

Value: [0; 0xFF]

0=Not used (DISABLE_AUTO_RESISTOR)

1=AC load resistor (AUTO_LOAD_AC_RESISTOR)

2=60 Ohm load resistor
(AUTO_LOAD_60OHM_RESISTOR)

3=120 Ohm load resistor
(AUTO_LOAD_120OHM_RESISTOR)

4=SWCAN load resistor
(AUTO_LOAD_SWCAN_RESISTOR)

0x80=Unload resistor
(AUTO_UNLOAD_RESISTOR).

NOTE For AUTO_UNLOAD_RESISTOR, it is intended that
CP_TerminationType be set to the initial value configured at the
time of a PDUConnect.

All = 0 (DISABLE_AUTO_
RESISTOR)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 171

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Minimum amount of time to wait before
allowing the next transmit message on the Vehicle Bus
after the successful transmission of a baud rate change
message.

CP_ChangeSpeedTxDelay

Type: PDU_PT_UNUM32

Range: [0; 0xFFFFFFFF]

Resolution: 1 µs

All = 0

Description: This ComParam is used for ComPrimitives
that have a NumRecvCycles set to IS-CYCLIC (-1,
infinite). The timer is enabled after the first positive
response is received from an ECU. If
CP_CyclicRespTimeout = 0, there is no receive timing
enabled for the infinite receive ComPrimitive.

CP_CyclicRespTimeout

Type: PDU_PT_UNUM32

Range: 0x0000-0xFFFFFFFF

Resolution: 1 µs

All protocols = 0

Description: This ComParam (when enabled) will place
the tester into a performance measurement mode.
Measurements will be collected during a normal
ComPrimitive communications session. ComParams
such as P1Min, P2Min, Br, Cs will be tested in this
mode. Once the testing is disabled, results of the testing
will be returned to the client application.

CP_EnablePerformanceTest

Type: PDU_PT_UNUM32

Value [0;1]

0 = Disabled

1 = Enabled

All protocols = 0

Description: Echo Transmitted messages in the receive
queue, including periodic messages. Loopback
messages shall only be sent after successful
transmission of a message. Loopback frames are not
subject to message filtering.

CP_Loopback

Type: PDU_PT_UNUM32
Value: [0; 1]

0 = OFF

1 = ON

All Protocols=0

CP_MessageIndicationRate Description: The maximum rate for which the D-PDU API
will generate PDU_EVENT_ITEM of PDU_IT_RESULT
type for a receive only ComPrimitive. The D-PDU API
will generate PDU_IT_RESULT events at time intervals
greater than or equal to the value defined by this
ComParam even if the ECU is sending the data at a
faster rate. The function of this parameter is to prevent a
broadcast PGN from an ECU that is sent at a high
frequency from flooding the client with data.

SAE_J1939_73=0

 Type: PDU_PT_UNUM32

Range: 0x00000000 disabled

0x00000001 - 0xFFFFFFFF

Resolution: 1 µs

ISO 22900-2:2009(E)

172 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This parameter signals the D-PDU API to
automatically modify timing parameters based on a
response from the ECU. For ISO 14230-2 this would
apply to service 0x83/0xC3 with TPI of 1, 2 or 3. For
ISO 15765-3 this would apply to service 0x10/0x50. For
functional addressing mode, the worst case timing
parameter returned by the responding ECUs shall be
used.

Based on the protocol, the following parameters are
modified when a positive ECU response is received:

⎯ CP_P2Max
⎯ CP_P2Min
⎯ CP_P2Star
⎯ CP_P3Min
⎯ CP_P4Min

NOTE The values returned by an ECU are in a different
time resolution than the ComParams to be automatically
modified. The values will be reinterpreted from the protocol
specified time resolution to the 1us resolution specified in the
D-PDU API.

CP_ModifyTiming

Type: PDU_PT_UNUM32

Value: [0;1]

0 = Disabled

1 = Enabled

ISO15765_3 = 0

ISO14230_4 = 0

ISO14230_3 = 0

Description: Timeout in receiving an expected frame
after a successful transmit complete. Also used for
multiple ECU responses.

CP_P2Max

Type: PDU_PT_UNUM32

Range: [0; 125000000]

Resolution: 1 µs

ISO_15765_4=140000

ISO_14230_4=50000

ISO_9141_2 =50000

SAE_J1850_VPW=100000

SAE_J1850_PWM=100000

ISO_14230_3=50000

ISO_15765_3=150000

ISO_11898_RAW = 50000

SAE_J1587= 60000000

SAE_J1939_73 = 200000

SAE_J2190=50000

Description: Performance requirement for the server to
start with the response message after the reception of a
request message (indicated via N_USData.ind). This is a
performance requirement ComParam.

(CP_P2Max_ECU <
CP_P2Max - CP_CanTransmissionTime)
NOTE CP_P2Max_Ecu < CP_P2Max -
CP_CanTransmissionTime

CP_P2Max_Ecu

Type: PDU_PT_UNUM32

Range: [0; 100000000]

Resolution: 1 µs

ISO_15765_4 = 40000

ISO_14230_4 = 50000

ISO_9141_2 = 50000

ISO_14230_3 = 50000

ISO_15765_3 = 50000

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 173

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This sets the minimum time between tester
request and ECU responses, or two ECU responses.
After the request, the interface shall be capable of
handling an immediate response (P2_min=0). For
subsequent responses, a byte received after P1_MAX
shall be considered as the start of the subsequent
response. This is a performance requirement
ComParam.

CP_P2Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_15765_4=0

ISO_14230_4=25000

ISO_9141_2 =25000

SAE_J1850_VPW = 0

SAE_J1850_PWM = 0

ISO_14230_3 = 25000

ISO_15765_3 = 0

ISO_11898 = 0

SAE_J2190 = 0

Description: Timeout for the client to expect the start of
the response message after the reception of a negative
response message (indicated via N_USData.ind) with
response code 0x78 (enhanced response timing). See
CP_RC78Handling for details describing 0x78 0x7F
handling. This parameter is used for all protocols that
support the negative response code 0x78. For some
protocols it is used instead of the recommended P3Max
parameter.

CP_P2Star

Type: PDU_PT_UNUM32

Range: [0; 655350000]

Resolution: 1 µs

ISO_15765_3=5050000

ISO_15765_4=5050000

(see ISO 15765-3 for
delta P2)

ISO_J1850_
VPW = 5000000

ISO_J1850_
PWM = 5000000

ISO_14230_3 = 5000000

ISO_14230_4 = 5000000

SAE_J2190=5000000

Description: Performance requirement for the server to
start with the response message after the transmission
of a negative response message (indicated via
N_USData.con) with response code 0x78 (enhanced
response timing). This is a performance requirement
ComParam.

NOTE CP_P2Star_Ecu < CP_P2Star – 0.5 *
CP_CanTransmissionTime

CP_P2Star_Ecu

Type: PDU_PT_UNUM32

Range: [0; 100000000]

Resolution: 1 µs

ISO_15765_4=5000000

ISO_15765_3=5000000

Description: Minimum time for the client to wait after the
successful transmission of a functionally addressed
request message (indicated via N_USData.con), before
it can transmit the next functionally addressed request
message, in case no response is required, or the
requested data is only supported by a subset of the
functionally addressed servers.

CP_P3Func

Type: PDU_PT_UNUM32

Range: [0; 125000000]

Resolution: 1 µs

ISO_15765_4 = 50000

ISO_15765_3 = 50000

ISO_11898_RAW = 0

ISO 22900-2:2009(E)

174 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Time between end of ECU responses and
start of new tester request.

CP_P3Max_Ecu

Type: PDU_PT_UNUM32

Range: [0; 100000000]

Resolution: 1 µs

ISO_14230_4=5000000

ISO_14230_3=5000000

ISO_9141_2 = 5000000

Description: Minimum time between end of non-negative
ECU responses and start of new request. The interface
will accept all responses up to CP_P3Min time. The
interface will allow transmission of a request any time
after CP_P3Min. (See CP_RC21RequestTime for
minimum time between end of ECU negative responses
and start of new requests.)

CP_P3Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2=55000

ISO_14230_4 = 55000

ISO_14230_3 = 55000

Description: Minimum time for the client to wait after the
successful transmission of a physically addressed
request message (indicated via N_USData.con) with no
response required before it can transmit the next
physically-addressed request message.

CP_P3Phys

Type: PDU_PT_UNUM32

Range: [0; 125000000]

Resolution: 1 µs

ISO_15765_4 = 50000

ISO_15765_3 = 50000

ISO_11898_RAW = 0

Description: Time period the tester accepts repeated
negative responses with response code 0x21 and
repeats the same request. Timer is started after
reception of first negative response.

CP_RC21CompletionTimeout

Type: PDU_PT_UNUM32

Range: [0; max] (max is protocol specific)

Resolution: 1 µs

ISO_15765_4 = 1300000

ISO_14230_4=1300000

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=1300000

ISO_15765_3 = 1300000

SAE_J2190=0

Description: Repetition mode in case of response code
0x7F XX 0x21.

CP_RC21Handling

Type: PDU_PT_UNUM32

Value: [0; 2]

0 = Disabled

1 = Continue handling negative responses until
CP_RC21CompletionTimeout

2 = Continue handling unlimited (until disabled)

ISO_15765_4=2

ISO_14230_4=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=0

SAE_J2190=0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 175

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Time between negative response with
response code 0x21 and the retransmission of the same
request. If CP_P3Min is greater than
CP_RC21RequestTime, the time delay prior to the
retransmission of the same request will be CP_P3Min.

CP_RC21RequestTime

Type: PDU_PT_UNUM32

Range: [0; 100000000]

Resolution: 1 µs

ISO_15765_4= 200000

ISO_14230_4=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=10000

SAE_J2190 =0

Description: Time period the tester accepts repeated
negative responses with response code 0x23 and
repeats the same request.

CP_RC23CompletionTimeout

Type: PDU_PT_UNUM32

Range: [0; max] (max is protocol specific)

Resolution: 1 µs

ISO_15765_4=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=0

SAE_J2190=0

Description: Repetition mode in case of response code
0x7F XX 0x23.

CP_RC23Handling

Type: PDU_PT_UNUM32

Value: [0; 2]

0 = Disabled

1 = Continue handling negative responses until
CP_RC23CompletionTimeout

2 = Continue handling unlimited (until disabled)

ISO_15765_4=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=0

SAE_J2190=0

Description: The time the D-PDU API waits to re-request
the message when receiving a negative response code
0x23. For some protocols (SAE_J1850_VPW) it is
possible to get a positive response after receiving a
negative response code 0x23, so the D-PDU API uses
this ComParam as the time to receive a possible positive
response before making the re-request. On a positive
response within this time, the re-request is cancelled.
The D-PDU API postpones the re-request until the
timeout of CP_RC23RequestTime (or a CP_P3Min
timeout, in case CP_P3Min is greater than
CP_RC23RequestTime). For ISO 14230-3, there will be
no positive response following a RC23 therefore the
D-PDU API is expected to always make a re-request if
enabled (CP_RC23Handling != 0).

The cycle of receiving negative response code 0x23 and
retransmitting the request continues until
CP_RC23CompletionTimeout expires (applicable only if
CP_RC23Handling is set to 1).

CP_RC23RequestTime

Type: PDU_PT_UNUM32

Range: [0; 100000000]

Resolution: 1 µs

ISO_15765_4=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=0

SAE_J2190=0

ISO 22900-2:2009(E)

176 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Time period the tester accepts repeated
negative responses with response code 0x78 and waits
for a positive response further on.

CP_RC78CompletionTimeout

Type: PDU_PT_UNUM32

Range: [0; max] (max is protocol specific)

Resolution: 1 µs

ISO_15765_4=30000000

ISO_14230_4=30000000

SAE_J1850_VPW=
25000000

SAE_J1850_PWM=
25000000

ISO_14230_3=25000000

ISO_15765_3=25000000

SAE_J2190=25000000

Description: Handling of 0x7F XX 0x78
ResponseTimeout and 0x78 Repetitions. The receive
timeout value will be CP_P2Star. This timer will be reset
on each consecutive reception of the 0x7F 0x78
response.

CP_RC78Handling

Type: PDU_PT_UNUM32

Value: [0; 2]

0 = Disabled

1 = Continue handling negative responses until
CP_RC78CompletionTimeout

2 = Continue handling unlimited (until disabled)

ISO_15765_4=2

ISO_14230_4=2

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=2

SAE_J2190=0

Description: This parameter is used by the MVCI
Protocol Handlers to offset into the received negative
response message (0x7F) to retrieve the response code
byte. Most protocols as a default place the response
code as the last byte of the message. There are some
protocols which place the response code after the
Service Id (offset = 1). A range is provided to allow for
different negative response configurations.

CP_RCByteOffset

Type: PDU_PT_UNUM32

Value: [1;0xFFFFFFFF]:

0 = invalid value

1 = first byte after the Service Id byte (0x7F)

0xFFFFFFFF = last byte in message (not including
checksum bytes)

All protocols =
0xFFFFFFFF (last byte in
message)

Description: This ComParam contains a counter to
enable a re-transmission of the last request when either
a transmit, receive error, or timeout with no response is
detected. This only applies to the application layer.

CP_RepeatReqCountApp

Type: PDU_PT_UNUM32

Range: [0; 127500]

Resolution: 1 count

All protocols = 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 177

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Timing parameters to be used by different
sessions for the ECU protocol application layer
ISO15765_3 in response to a service 0x10 (Set
Diagnostic Session). The ECU returns the session timing
information on a positive response to the service. If
CP_ModifyTiming is enabled, the MVCI protocol module
will interpret the positive response from the ECU and set
the appropriate timing ComParams.

CP_SessionTiming_Ecu

Type: PDU_PT_STRUCTFIELD

STRUCTFIELD Format:

ComParamStructType=
PDU_CPST_SESSION_TIMING

ParamMaxEntries = 255

ParamActEntries = 0 to 255

pStructArray=PDU_PARAM_STRUCT_SESS_
TIMING

ISO15765_3:
ParamActEntries = 0
(not enabled)

CP_SessionTimingOverride Description: This parameter signals the D-PDU API to
override the response from any ECUs to a Session
Timing request (See CP_SessionTiming_Ecu and
CP_ModifyTiming). The timing parameters are to be
used for the ECU protocol application layer ISO15765_3
in response to a service 0x10 (Set Diagnostic Session).
The ECU returns the session timing information on a
positive response to the service. If CP_ModifyTiming is
enabled and CP_SessionTimingOverride is not empty
(ParamActEntries != 0), then the MVCI protocol module
will use data in this ComParam instead of the data
returned in a positive reponse from the ECUs.

ISO15765_3:
ParamActEntries = 0
(not enabled)

 Type: PDU_PT_STRUCTFIELD

STRUCTFIELD Format:

ComParamStructType=
PDU_CPST_SESSION_TIMING

ParamMaxEntries = 255

ParamActEntries = 0 to 255

pStructArray=PDU_PARAM_STRUCT_SESS_
TIMING

Description: Start Message Indication Enable. Upon
receiving a first frame of a multi-frame message
(ISO 15765), or upon receiving a first byte of a UART
message, an indication will be set in the RX result item.
No data bytes will accompany the result item.

CP_StartMsgIndEnable

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Start Message Indication Disabled

1 = Start Message Indication Enabled

ISO_15765_4=0

ISO_15765_3=0

ISO_14230_4=0

ISO_14230_3=0

ISO_9141_2=0

SAE_J1939=0

SAE_J1708=0

ISO 22900-2:2009(E)

178 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This ComParam is used as a temporary
ComParam for services that require a positive response
before any further Com Primitives can be executed.

CP_SuspendQueueOnError

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Do not suspend ComPrimitive Transmit Queue

1 = Suspend ComPrimitive Transmit Queue on a
Timeout Error or on a non-handled 0x7F error (not
an enabled protocol ComParam)

ISO_15765_4=0

ISO_14230_4=0

ISO_9141_2=0

ISO_14230_3=0

ISO_15765_3=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

SAE_J2190=0

SAE_J1939_73=0

Description: Indicates that the Single Wire CAN
message should be transmitted as a High-Voltage
Message. Simultaneously transmitting in high voltage
and high speed mode will result in undefined behaviour.
This ComParam is only applicable when the Bus Type
selected is SAE_J2411_SWCAN.

CP_SwCan_HighVoltage

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Normal Message

1 = High-Voltage Message

ISO_15765_4=0

ISO_15765_3=0

ISO_14230_3=0

ISO_11898_RAW=0

Description: Addressing Mode to be used for periodic
Tester Present messages.

Uses the PhysReqxxx or FuncReqxxx ComParams.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentAddrMode

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Use Physical Addressing for the Tester Present
message.

1 = Use Functional Addressing for the Tester
Present message.

ISO_15765_4=0

ISO_14230_4=0

ISO_9141_2=0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=0

ISO_15765_3=1

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 179

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Define the expected ECU positive response
to a Tester Present Message. This is only applicable if
CP_TesterPresentReqRsp is set to 1 (ECU responses
are expected on a Tester Present Message). No header
bytes or checksum bytes are included. Only the
ParamActLen bytes in the array will be compared to the
received ECU data.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentExpPosResp

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 12

ParamActLen = 0 to 12

pDataArray=TesterPresentExpPosResp[12]

Range: Each byte = [0; 0xFF]

ISO_15765_4:
ParamActLen = 0
(not enabled)

ISO_14230_4:
ParamActLen = 1,
pDataArray = {0x7E}

ISO_9141_2: ParamActLen
= 2, pDataArray = {0x41,
0x00}

SAE_J1850_VPW:
ParamActLen = 0
(not enabled)

SAE_J1850_PWM:
ParamActLen = 0
(not enabled)

ISO_14230_3:
ParamActLen = 1,
pDataArray = {0x7E}

ISO_15765_3:
ParamActLen = 0
(not enabled)

Description: Define the expected ECU negative
response to a Tester Present Message. This is only
applicable if CP_TesterPresentReqRsp is set to 1 (ECU
responses are expected on a Tester Present Message).
No header bytes or checksum bytes are included.

When a negative response is received to a tester
present message, which cannot be handled by the MVCI
Protocol module (See RC 21, RC 23 and RC 78), the
MVCI protocol module should report a Tester Present
Error, but continue sending Tester Present Messages.

(See PDU_ERR_EVT_TESTER_PRESENT_ERROR)

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentExpNegResp

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 12

ParamActLen = 0 to 12

pDataArray=TesterPresentExpNegResp[12]

Range: Each byte = [0; 0xFF]

ISO_15765_4:
ParamActLen = 0
(not enabled)

ISO_14230_4:
ParamActLen = 2,
pDataArray = {0x7F, 0x3E}

ISO_9141_2: ParamActLen
= 0 (not enabled)

SAE_J1850_VPW:
ParamActLen = 0
(not enabled)

SAE_J1850_PWM:
ParamActLen = 0
(not enabled)

ISO_14230_3:
ParamActLen = 2,
pDataArray = {0x7F, 0x3E}

ISO_15765_3:
ParamActLen = 0
(not enabled)

ISO 22900-2:2009(E)

180 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Define Tester Present message generation
settings. The ComLogicaLink shall be in the state
PDU_CLLST_COMM_STARTED to enable tester
present message handling. (See
PDU_COPT_STARTCOMM ComPrimitive.)

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled any changes to
one of the tester present ComParams will cause the tester
present message to be sent immediately, prior to the initial
tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentHandling

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Do not generate Tester Present messages

1 = Generate Tester Present messages

ISO_15765_4=0

ISO_14230_4=1

ISO_9141_2=1

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=1

ISO_15765_3=1

Description: Define the Tester Present Message. This
message data does not include any header bytes or
checksum information.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentMessage

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 12

ParamActLen = 0 to 12

pDataArray=TesterPresentMessage[12]

Range: Each byte = [0; 0xFF]

ISO_15765_4:
ParamActLen = 0

ISO_14230_4:
ParamActLen = 1,
pDataArray = {0x3E}

ISO_9141_2: ParamActLen
= 2, pDataArray = {0x01,
0x00}

SAE_J1850_VPW:
ParamActLen = 0
(not enabled)

SAE_J1850_PWM:
ParamActLen = 0
(not enabled)

ISO_14230_3:
ParamActLen = 1,
pDataArray = {0x3E}

ISO_15765_3:
ParamActLen = 2,
pDataArray = {0x3E, 0x80}

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 181

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Define settings for handling Tester Present
ECU responses.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentReqRsp

Type: PDU_PT_UNUM32

Value: [0; 1]

0=No response returned by an ECU on a Tester
Present message.

1=An ECU response is expected from a Tester
Present message. The response message will be
discarded by the MVCI protocol module. See
ComParams (CP_TesterPresentExpPosResp and
CP_TesterPresentExpNegResp) for proper
response handling.

ISO_15765_4=0

ISO_14230_4=1

ISO_9141_2=1

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=1

ISO_15765_3=0

Description: Define settings for the type of tester present
transmits.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentSendType

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Send on periodic interval defined by
CP_TesterPresentTime

1 = Send when bus has been idle for
CP_TesterPresentTime

ISO_15765_4=0

ISO_14230_4=1

ISO_9141_2=1

SAE_J1850_VPW=0

SAE_J1850_PWM=0

ISO_14230_3=1

ISO_15765_3=0

Description: Time between Tester Present messages, or
Time bus shall be idle before transmitting a Tester
Present Message.

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED
state and tester present handling is enabled (see
CP_TesterPresentHandling) any changes to one of the tester
present ComParams will cause the tester present message to
be sent immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time
before allowing any transmit. See CP_P3Min, CP_P3Func,
CP_P3Phys.

CP_TesterPresentTime

Type: PDU_PT_UNUM32

Range: [0; 30000000]

Resolution: 1 µs

ISO_15765_4=3000000

ISO_14230_4=3000000

SAE_J1850_
VPW=3000000

SAE_J1850_
PWM=3000000

ISO_14230_3=3000000

ISO_15765_3=2000000

SAE_J2190=3000000

ISO 22900-2:2009(E)

182 © ISO 2009 – All rights reserved

Table B.19 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Time for the server to keep a diagnostic
session (other than the default session) active while not
receiving any diagnostic request message.

CP_TesterPresentTime_Ecu

Type: PDU_PT_UNUM32

Range: [0; 30000000]

Resolution: 1 µs

ISO_15765_4=5000000

ISO_14230_4=5000000

SAE_J1850_
VPW=5000000

SAE_J1850_
PWM=5000000

ISO_14230_3=5000000

ISO_15765_3=5000000

SAE_J2190=5000000

Description: Transmit Indication Enable. On completion
of a transmit message by the protocol, an indication will
be set in the RX_FLAG result item. No data bytes will
accompany the result item.

CP_TransmitIndEnable

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Transmit Indication Disabled

1 = Transmit Indication Enabled

All Protocols = 0

B.5.2 ComParam definitions for transport layer

Table B.20 — Transport layer detailed ComParam table

Short Name Detailed Description Default (By Protocol)

Description: Value of 5Baud Address in case of functional-
addressed communication.

The correct baud rate address type (functional/physical) is
selected during execution of a Start Communication Com
Primitive based on the setting of the CP_RequestAddrMode
ComParam.

CP_5BaudAddressFunc

Type: PDU_PT_UNUM32

Value: [0; 0xFF]

ISO_9141_2=0x33

ISO_14230_2=0x33

ISO_14230_4=0x33

Ecu Variant Specific

Description: Value of 5Baud Address in case of physical-
addressed communication.

The correct baud rate address type (functional/physical) is
selected during execution of a Start Communication Com
Primitive based on the setting of the CP_RequestAddrMode
ComParam.

CP_5BaudAddressPhys

Type: PDU_PT_UNUM32

Value: [0; 0xFF]

ISO_9141_2=0x01

ISO_14230_2=0x01

Ecu Variant Specific

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 183

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Type of 5 Baud initialization. This ComParam
allows either ISO 9141 initialization sequence,
ISO 9141-2/ISO 14230 initialization sequence, or hybrid
versions, which include only one of the extra bytes defined
for ISO 9141-2 and ISO 14230.

(Initialization for ISO 9141-2 and ISO 14230 include the init
sequence as defined in ISO 9141 plus inverted key byte 2
sent from the interface to the ECU and the inverted address
sent from the ECU to the interface.)

CP_5BaudMode

Type: PDU_PT_UNUM32

Value[0;3]:

0 = Init as defined in ISO 9141-2 and ISO 14230-4

1 = ISO 9141 init followed by interface sending
inverted key byte 2, no inverted address

2 = ISO 9141 init followed by ECU sending inverted
address, no inverted key byte 2

3 = Init as defined in ISO 9141, no inverted key byte 2
nor inverted address

ISO_9141_2=0

ISO_14230_2=0

Description: Timing parameters to be sent/used in response
to a Service Id 0x83 (Access Timing Service) with TPI 1, 2
or 3. For a TPI of 1 (set default values), the ECU will set the
timing parameters to the default values specified by
ISO 14230-2. For a TPI of 2 (read active values), the ECU
will return the active timing parameters in the response
message. For a TPI of 3 (set parameters) the MVCI
protocol module will set the timing parameters to the values
to be used by the ECU. This ComParam allows the ECU to
define sets of timing parameters to be used for normal and
extended timing, as well as override timing values defined
by a Tester.

CP_AccessTiming_Ecu

Type: PDU_PT_STRUCTFIELD

STRUCTFIELD Format:

ComParamStructType=
PDU_CPST_ACCESS_TIMING

ParamMaxEntries = 8

ParamActEntries = 0 to 8

pStructArray=PDU_PARAM_STRUCT_ACCESS_
TIMING

ISO14230_2:
ParamActEntries = 0
(not enabled)

ISO14230_4:
ParamActEntries = 0
(not enabled)

ISO 22900-2:2009(E)

184 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This ComParam along with CP_ModifyTiming
ComParam signals the D-PDU API to override the response
from any ECUs to an Access Timing request. The timing
parameters are to be used in response to a Service Id 0x83
(Access Timing Service) with TPI 1, 2 or 3. For a TPI of 1
(set default values) The ECU will set the timing parameters
to the default values specified by ISO 14230-2. For a TPI of
2 (read active values), the ECU will return the timing
parameters in the response message. For a TPI of 3 (set
parameters) the MVCI protocol module will set the timing
parameters to the values to be used by the ECU. If
CP_ModifyTiming is enabled and
CP_AccessTimingOverride is not empty
(ParamActEntries != 0), then the MVCI protocol module will
use data in this ComParam instead of the data returned in a
positive reponse from the ECU for TPI of 2.

ISO14230_2:
ParamActEntries = 0
(not enabled)

ISO14230_4:
ParamActEntries = 0
(not enabled)

CP_AccessTimingOverride

Type: PDU_PT_STRUCTFIELD

STRUCTFIELD Format:

ComParamStructType= PDU_CPST_ACCESS_
TIMING

ParamMaxEntries = 8

ParamActEntries = 0 to 8

pStructArray=PDU_PARAM_STRUCT_ACCESS_
TIMING

Description: Time for transmission of the CAN frame (any
N_PDU) on the receiver side.

CP_Ar

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=25000

Description: Time for transmission of the CAN frame (any
N_PDU) on the receiver side.

CP_Ar_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=25000

Description: Time for transmission of the CAN frame (any
N_PDU) on the sender side.

CP_As

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=25000

Description: Time for transmission of the CAN frame (any
N_PDU) on the sender side.

CP_As_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=25000

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 185

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This sets the block size that the interface
should report to the vehicle for receiving segmented
transfers in a Transmit Flow Control Message.

CP_BlockSize

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

Resolution: 1 Block

ISO_15765_2=0

ISO_15765_4=0

SAE_J1939_21=0xFF

SAE_J1708=0xFF

Description: This sets the block size that the ECU should
report to the tester for receiving segmented transfers in a
Transmit Flow Control Message.

CP_BlockSize_Ecu

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

Resolution: 1 Block

ISO_15765_2=0

ISO_15765_4=0

SAE_J1939_21=0xFF

SAE_J1708=0xFF

Description: This sets the block size that the interface
should use to send segmented messages to the vehicle.
The flow control value reported by the vehicle should be
ignored.

CP_BlockSizeOverride

Type: PDU_PT_UNUM32

Value: [0; 0xFFFF]

0 – 0xFFFE = Block size

0xFFFF = Use the value reported by the vehicle

Resolution: 1 Block

ISO_15765_2=0xFFFF

ISO_15765_4=0xFFFF

SAE_J1939_21=0xFFFF

SAE_J1708=0xFFFF

Description: Time until transmission of the next
FlowControl. This is equivalent to Th in J1939-21.

For ISO 15765-2 and ISO 15765-4, this value is a
performance requirement ComParam and should not be
used as a timeout value by the tester.

CP_Br

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=10000

ISO_15765_4=10000

SAE_J1939_21=500000

SAE_J1708=500000

Description: Time until transmission of the next
FlowControl. This is a performance requirement
ComParam.

CP_Br_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=10000

ISO_15765_4=10000

SAE_J1939_21=500000

SAE_J1708=500000

Description: Timeout until reception of the next FlowControl.
This is equivalent to T4 in J1939-21.

CP_Bs

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=75000

SAE_J1939_21=1050000

SAE_J1708=60000000

ISO 22900-2:2009(E)

186 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Timeout until reception of the next FlowControl.CP_Bs_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=75000

SAEJ1939_21=1050000

SAE_J1708=60000000

Description: Offset subtracted from the total number of
expected bytes received/transmitted in a first frame
message.

CP_CanDataSizeOffset

Type: PDU_PT_UNUM32

Range: [0; 8]

Resolution: 1 Byte

ISO_15765_2=0

ISO_15765_4=0

Description: Padding data byte to be used to pad all USDT
type transmits frames (SF, FC, and last CF).

CP_CanFillerByte

Type: PDU_PT_UNUM32

Range: [0; 0xFF]
NOTE The padding data byte value is typically 0x00, 0x55,
or 0xAA.

ISO_15765_2=0x55

ISO_15765_4=0x00

ISO_J1939_21=0x00

ISO_11898_RAW=0x00

Description: Enable Padding, forcing the DLC of a CAN
frame to always be 8.

CP_CanFillerByteHandling

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Padding Disabled

1 = Padding Enabled

ISO_15765_2=1

ISO_15765_4=1

ISO_J1939_21=0

ISO_11898_RAW=0

Description: First consecutive frame number to be
transmitted/received on a multi-segment transfer. Used to
override the normal first consecutive frame value of 1.

CP_CanFirstConsecutiveFrame
Value

Type: PDU_PT_UNUM32

Range: [0; 0x0F]

ISO_15765_2=1

ISO_15765_4=1

Description: Address extension for enhanced diagnostics.
The first byte of the requested CAN frame data contains the
N_AE/N_TA byte followed by the correct number of PCI
bytes. This ComParam is used for all transmitted CAN
Frames that have the “Can Address Extension” bit set in the
CanIdFormat.

CP_CanFuncReqExtAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_15765_2=0

ISO_15765_4=0

Description: CAN Format used for a functional address
transmit.

CP_CanFuncReqFormat

Type: PDU_PT_UNUM32

Range: [0; 0x3F]

See Table B.15 — Coded values for
CP_CanPhysReqFormat and CP_CanFuncReqFormat

ISO_15765_2=0x05

ISO_15765_4=0x05

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 187

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: CAN ID used for a functional address transmit. CP_CanFuncReqId

Type: PDU_PT_UNUM32

Range: [0; 0x1FFFFFFF]

ISO_15765_2=0x7DF

ISO_15765_4=0x7DF

Description: The maximum number of WAIT flow control
frames allowed during a multi-segment transfer. For
SAE J1939, this is the maximum number of allowed CTS
frames.

CP_CanMaxNumWaitFrames

Type: PDU_PT_UNUM32

Range: [0; 1027]

ISO_15765_2=255

ISO_15765_4=0

SAE_J1939_21=255

Description: Address extension for enhanced diagnostics.
The first byte of the requested CAN frame data contains the
N_AE/N_TA byte followed by the correct number of PCI
bytes. This ComParam is used for all transmitted CAN
Frames that have the “Can Address Extension” bit set in the
CanIdFormat.

CP_CanPhysReqExtAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_15765_2=0x00

ISO_15765_4=0x00

Description: CAN Format used for a physical address
transmit.

CP_CanPhysReqFormat

Type: PDU_PT_UNUM32

Range: [0; 0x3F]

See Table B.15 — Coded values for
CP_CanPhysReqFormat and CP_CanFuncReqFormat

ISO_15765_2=0x05

ISO_15765_4=0x05

Description: CAN ID used for a physical address transmit. CP_CanPhysReqId

Type: PDU_PT_UNUM32

Range: [0; 0x1FFFFFFF]

ISO_15765_2=0x7E0

ISO_15765_4 = 0x7E0

Description: Extended Address used for a USDT response
from an ECU if the CAN Format indicates address
extension.

CP_CanRespUSDTExtAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_15765_2=0

ISO_15765_4=0

Description: CAN Format for the USDT CAN ID received
from an ECU (Segment type Bit must = 1).

CP_CanRespUSDTFormat

Type: PDU_PT_UNUM32

Range: [0; 0xF]

See Table B.16 — Coded values for
CP_CanRespUSDTFormat

ISO_15765_2=0x05

ISO_15765_4=0x05

Description: Received USDT CAN ID from an ECU. CP_CanRespUSDTId

Type: PDU_PT_UNUM32

Range: [0; 0x1FFFFFFF, 0xFFFFFFFF]

NOTE 0xFFFFFFFF indicates that the ComParam is not used.
This ComParam is used in the Unique Response Identifier Table
for CAN protocols.

ISO_15765_2=0x7E8

ISO_15765_4=0x7E8

ISO 22900-2:2009(E)

188 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Extended Address used for UUDT response if
the CAN Format indicates address extension.

CP_CanRespUUDTExtAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_15765_2=0

ISO_15765_4=0

ISO_11898_RAW=0x00

Description: Received CAN Format for CAN ID without
segmentation (Segment Type Bit must = 0).

CP_CanRespUUDTFormat

Type: PDU_PT_UNUM32

Range: [0; 0xF]

See Table B.17 — Coded values for
CP_CanRespUUDTFormat

ISO_15765_2=0x00

ISO_15765_4=0x00

ISO_11898_RAW=0x00

Description: Received UUDT CAN ID from an ECU. CP_CanRespUUDTId

Type: PDU_PT_UNUM32

Range: [0; 0x1FFFFFFF, 0xFFFFFFFF]

NOTE 0xFFFFFFFF indicates that the ComParam is not used.
This ComParam is used in the Unique Response Identifier Table
for CAN protocols.

ISO_15765_2=0x
FFFFFFFF

ISO_15765_4=0x
FFFFFFFF

ISO_11898_RAW=0x
FFFFFFFF

Description: Timeout for reception of the next
ConsecutiveFrame. For SAE J1939-21, this is equivalent to
T1.

CP_Cr

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=150000

SAE_J1939_21=750000

SAE_J1708=1000000

Description: Timeout for reception of the next
ConsecutiveFrame.

CP_Cr_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=1000000

ISO_15765_4=150000

SAE_J1939_21=750000

SAE_J1708=1000000

Description: Time until transmission of the next Consecutive
Frame. (This is used if FC is not enabled or if the STmin
value in the FC=0 and STminOverride=0xFFFF.) See
ISO 15765-2. For ISO 15765-2 and ISO 15765-4, this is a
performance requirement ComParam and should not be
used as a timeout value by the tester.

For SAE J1939, this is equivalent to the time between
sending packets in a multi-packet broadcast and a
multi-packet destination-specific message. From text in
SAE J1939-21:2006, 5.12.3.

CP_Cs

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=10000

ISO_15765_4=10000

SAE_J1939_21=50000

SAE_J1708=1000000

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 189

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Time until transmission of the next Consecutive
Frame. (This is used if FC is not enabled or if the STmin
value in the FC=0 and STminOverride=0xFFFF.) See
ISO 15765-2. This is a performance requirement
ComParam.

CP_Cs_Ecu

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

ISO_15765_2=10000

ISO_15765_4=10000

SAE_J1939_21=200000

SAE_J1708=1000000

Description: ECU Source Address response of a non-CAN
message. This ComParam is used for response handling
only. It is a URID ComParam and is used whether
addressing is functional or physical. The protocol handler
extracts the ECU address from the response message and
uses this information along with other URID ComParams to
find a match in the URID table to retrieve the Unique
Response Id for the ECU. For physical addressing it is
possible that CP_EcuRespSourceAddress equals
CP_PhysReqTargetAddr.

CP_EcuRespSourceAddress

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x10

ISO_14230_2=0x10

ISO_14230_4 = 0x10

SAE_J1850_VPW = 0x10

SAE_J1850_PWM =
0x10

Description: This ComParam instructs the application layer
to automatically detect multiple responses from a single
ECU and construct a single ECU response to the client
application. Only the SID (1st byte of the message data) is
used to indicate a segmented response to a service request
is being sent by the ECU. The application layer will wait for
a receive timeout before determining that all responses
have been received.

e.g. ECU response 1: SID 0x11 0x22

ECU response 2: SID 0x33 0x44

Response to Client application: SID 0x11 0x22 0x33
0x44

CP_EnableConcatenation

Type: PDU_PT_UNUM32

Value: [0;1]

0 = Disabled

1 = Enabled

ISO_14230_2 = 0

ISO_14230_4 = 0

ISO_9141_2 = 0

SAE_J1850_VPW = 0

SAE_J1850_PWM = 0

ISO 22900-2:2009(E)

190 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This ComParam is used to define extended
timing values for K-Line protocols. The values are used
after the key bytes are received from the ECU during the
initialization sequence. If CP_ExtendedTiming is not empty
(ParamActEntries != 0), then the MVCI protocol module will
use data in this ComParam otherwise the MVCI protocol
module will use the default extended values defined in
ISO 14230-2. For normal timing the MVCI protocol module
uses timing defined in the ComParams: CP_P2Max,
CP_P3Min, etc.

CP_ExtendedTiming

Type: PDU_PT_STRUCTFIELD

STRUCTFIELD Format:

ComParamStructType=
PDU_CPST_ACCESS_TIMING

ParamMaxEntries = 1

ParamActEntries = 0 to 1

pStructArray=PDU_PARAM_STRUCT_ACCESS_TIMING

ISO_14230_2:
ParamActLen = 0
(not enabled)

ISO_14230_4:
ParamActLen = 0
(not enabled)

Description: Padding data byte to be used to pad all
SAE J1850, ISO 9141-2 and ISO 14230-4 messages to the
full length.

CP_FillerByte

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

NOTE The padding data byte value is typically 0x00, 0x55, or
0xAA.

ISO_9141_2 = 0

ISO_14230_4 = 0

ISO_14230_2 = 0

SAE_J1850_VPW = 0

SAE_J1850_PWM = 0

Description: Enable Padding for SAE J1850, ISO 9141-2
and ISO 14230-4 messages (see CP_FillerByte).

CP_FillerByteHandling

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Padding Disabled

1 = Padding Enabled

ISO_9141_2 = 0

ISO_14230_4 = 0

ISO_14230_2 = 0

SAE_J1850_VPW=0

SAE_J1850_PWM=0

Description: Length to pad the data portion of the message
for SAE J1850, ISO 9141-2 and ISO 14230-4 (See
CP_FillerByteHandling and CP_FillerByte).

CP_FillerByteLength

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

EXAMPLE If the data payload for the ComPrimitive is 0x21,
0x01 and CP_FillerLength is set to five and CP_FillerByte is set to
0xFF, the data portion of the message would be:

0x21 0x01 0xFF 0xFF 0xFF

ISO_9141_2 = 0

ISO_14230_4 = 0

ISO_14230_2 = 0

SAE_J1850_VPW = 0

SAE_J1850_PWM = 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 191

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: First Header Byte of a non-CAN message for a
functional address transmit. This ComParam is used for
proper request message header construction in non-Raw
mode.

CP_FuncReqFormatPriority-
Type

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x68

ISO_14230_2=0xC0+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

SAE_J1850_VPW = 0x68

SAE_J1850_PWM =
0x61

ISO_14230_4=0xC0+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

Description: Second Header Byte of a non-CAN message
for a functional address transmit. This ComParam is used
for proper request message header construction in non-
Raw mode.

CP_FuncReqTargetAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x6A

ISO_14230_2 = 0x33

ISO_14230_4 = 0x33

SAE_J1850_VPW =
0x6A

SAE_J1850_PWM= 0x6A

Description: First Header Byte of a non-CAN message
received from the ECU for functional addressing. This
ComParam is used for response handling only. It is a URID
ComParam and is used for functional addressing only. The
protocol handler extracts the format/priority byte from the
response message and uses this information along with
other URID ComParams to find a match in the URID table
to retrieve the Unique Response Id for the ECU.

CP_FuncRespFormatPriority-
Type

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x48

ISO_14230_2 = 0xC0+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

SAE_J1850_VPW = 0x48

SAE_J1850_PWM =
0x41

ISO_14230_4=0xC0+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

Description: Second Header Byte of a non-CAN message
received from the ECU for functional addressing. This
ComParam is used for response handling only. It is a URID
ComParam and is used for functional addressing only. The
protocol handler extracts the Target address from the
response message and uses this information along with
other URID ComParams to find a match in the URID table
to retrieve the Unique Response Id for the ECU.

This information is also used to fill out the functional lookup
table for SAE J1850_PWM.

CP_FuncRespTargetAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x6B

ISO_14230_2 = 0xF1

ISO_14230_4=0xF1

SAE_J1850_VPW =
0x6B

SAE_J1850_PWM =
0x6B

ISO 22900-2:2009(E)

192 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Header Byte configuration to be used for
SAE J1850 communication.

This setting is used to properly construct the message
header bytes to complete the PDU.

This ComParam is not used if the ComLogicalLink is in
RawMode.

Header bytes are constructed following the rules of the
protocol specification.

CP_HeaderFormatJ1850

Type: PDU_PT_UNUM32

Value: [0; 3]

0 = No Header Bytes

1 = 1 Byte Header

2 = 2 byte Header

3 = 3 byte Header

SAE_J1850_VPW=3-
byte-Header

SAE_J1850_PWM=2-
byte-Header

CP_HeaderFormatKW Description: Header Byte configuration for K-Line protocols
(Keyword).

This setting is used to properly construct the message
header bytes to complete the PDU.

This ComParam is not used if the ComLogicalLink is in
RawMode.

Header bytes are constructed following the rules of the
protocol specification. This ComParam can be used to
override any keybyte values received from the ECU during
initialization.

If the protocol cannot handle the length of a ComPrimitive
based on the settings of this ComParam, then an error
event, PDU_ERR_EVT_PROT_ERR, is generated and the
ComPrimitive is FINISHED.

ISO_14230_2= 0

ISO_14230_4= 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 193

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

 Type: PDU_PT_UNUM32

Value: [0; 8]

0 = Use the header byte format specified by the ECU
key bytes

1 = 1 Byte Only (max size = 0x3F)

2 = 2 Bytes (dependent on length)

if 1st byte <= 0x3F

1st byte = size

2nd byte = not used

else (1st byte > 0x3F)

1st byte does not contain size

2nd byte = size up to 0xFF

endif

3 = 2 Bytes always

1st byte never contains size information

2nd byte = size up to 0xFF

4 =3 Bytes Only

1st byte = format with size up to 0x3F

2nd byte = target address

3rd byte = source address

5 = 4 Bytes (dependent on length)

if 1st byte <= 0x3F

1st byte = size

2nd byte = target address

3rd byte = source address

4th byte not used.

else (1st byte > 0x3F)

1st byte does not contain size

2nd byte = target address

3rd byte = source address

4th byte = size up to 0xFF

endif

6 = 4 Bytes always

1st byte never contains size

2nd byte = target address

3rd byte = source address

4th byte = size up to 0xFF

7 = OEM-9141 Header Format (ms nibble of first byte
= byte count)

8 = No header bytes

ISO 22900-2:2009(E)

194 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Set Initialization method. CP_InitializationSettings

Type: PDU_PT_UNUM32

Value: [1; 3]

1 = 5 Baud Init sequence

2 = Fast Init sequence

3 = No Init sequence

ISO_9141_2 = 1

ISO_14230_2= 2

ISO_14230_4 =2

Description: Time after sending a Request for Address
Claimed before the Tester should send its own Address
Claimed message. While waiting for this timeout, (and at all
times), the tester should be handling Address Claimed
messages from all ECUs on the bus.

CP_J1939AddrClaimTimeout

Type: PDU_PT_UNUM32

Range: [0; 20000000]

Resolution: 1 µs

SAE_J1939_21
= 1250000

Description: This ComParam will specify whether the
interface should issue a Request for Address Claim upon
receiving a STARTCOMM ComPrimitive, and under what
conditions the interface should send out its own Address
Claim.

CP_J1939AddressNegotiation-
Rule

Type: PDU_PT_UNUM32

Value: [0; 7]

Bit Encoded:

Bit 0:

0 = Issue Request for Address Claim upon
receiving a STARTCOMM ComPrimitive from
client app;

1 = Do not issue Request for Address Claim upon
receiving a STARTCOMM ComPrimitive from
client app;

Bit 1:

0 = Make own Address Claim upon receiving a
STARTCOMM ComPrimitive from client app.

1 = Do not make own Address Claim upon
receiving a STARTCOMM ComPrimitive from
client app.

Bit 2:

0= Respond to a Request for Address Claim
message or a challenging Address Claim
message from the vehicle bus with own Address
Claim.

1 = Do not respond to a Request for Address
Claim message or a challenging Address Claim
message from the vehicle bus with own Address
Claim.

SAE_J1939 = 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 195

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: The data page used to form the data page of a
SAE J1939 CAN ID for request messages from the tester to
the ECU. This ComParam is used to set bits 24 and 25 of
the SAE J1939 CAN ID.

CP_J1939DataPage

Type: PDU_PT_UNUM32

Value: [1; 3]

0 = SAE J1939 Page 0 PGNs

1 = SAE J1939 Page 1 PGNs

2= reserved

3= ISO 15765-3 Addressing Format

See Table B.18 — Definition of Extended Data Page and
Data Page field

SAE_J1939_21 = 0

Description: Number of frames the tester should request to
send at once when sending a RTS. Tester shall be capable
of re-sending any block re-requested by the ECU.

CP_J1939MaxPacketTx

Type: PDU_PT_UNUM32

Range: [0; 255]

SAE_J1939_21 = 0xFF

Description: Name field from SAE J1939 document. This
ComParam will contain the NAME of the Tester. The tester
will require this to make an address claim (see SAE J1939-
81:2003, 4.1.1 for further details).

NOTE If CP_J1939AddressNegotiationRule has Bit 1 and/or
Bit 2 set to 0, (protecting an address), a change to this parameter
will not take effect until a StartComm CoP is received.

CP_J1939Name

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 8

ParamActLen = 0 to 8

pDataArray = name[8]

Range: Each byte = 0x00-0xFF

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

Description: Name field from SAE J1939 document. This
ComParam will contain an ECU NAME.

CP_J1939Name_Ecu

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 8

ParamActLen = 0 to 8

pDataArray = name[8]

Range: Each byte = 0x00-0xFF

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

ISO 22900-2:2009(E)

196 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This ComParam is used to set the PF field
(bits 16 to 23) of the SAE J1939 CAN ID for request
messages sent from the tester to the ECU.

CP_J1939PDUFormat

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

SAE_J1939_21 = 0

Description: This ComParam is used to set the PS field
(bits 8 to 15) of the SAE J1939 CAN ID. This field is only
used if CP_J1939PDUFormat is greater than or equal to
240 (PDU2 format messages). If CP_J1939PDUFormat is
less than 240, then the PS field shall be filled with the
source address of the ECU that the tester is sending the
request to. (Use the source ECU address associated with
CP_J1939TargetName.)

CP_J1939PDUSpecific

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

SAE_J1939_21 = 0

Description: List of preferred addresses for the Tester. This
ComParam is a list of source addresses for the MVCI
protocol module. The first source address claimed by the
MVCI Protocol Module remains claimed unless a higher-
priority node on the bus requests the same address, at
which time the tester will have to try to claim the next
address in the list. An address remains claimed until the
end of the ComLogicalLink communication. A
PDU_COPT_STARTCOMM ComPrimitive will try to claim
one of the source addresses in this byte field. Since the
MVCI Protocol module might not be able to claim the first
address requested, a list of tester addresses are supplied
(see SAE J1939-81:2003, 4.1.1 for further details).

NOTE If CP_J1939AddressNegotiationRule has Bit 1 and/or
Bit 2 set to 0, (protecting an address), a change to this parameter
will not take effect until a StartComm CoP is received.

CP_J1939PreferredAddress

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 8

ParamActLen = 0 to 8

pDataArray = address[8]

Range: Each byte = 0x00-0xFF

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 197

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: List of preferred addresses for the ECU. This
ComParam is a list of source addresses that the ECU
would like to acquire on the SAE J1939 bus (see
SAE J1939-81:2003, 4.1.1 for further details).

CP_J1939PreferredAddress_
Ecu

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 2

ParamActLen = 0 to 2

pDataArray=preferredAddrList[2]

Range: Each byte = [0; 0xFF]

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

Description: ECU Source Address from a J1939 response
message. This ComParam is used for response handling
only. It is a URID ComParam. The protocol handler extracts
the ECU source address from the response message and
uses this information to find a match in the URID table to
retrieve the Unique Response Id for the ECU. NOTE: this
UNIQUE_ID ComParam can also be used to assign a
Unique Response Id for a standard, 11-bit Can Id appearing
on the vehicle bus.

CP_J1939SourceAddress

Type: PDU_PT_UNUM32

Range: [0; 0xFFFF]

SAE_J1939 = 0x00

Description: Name field as described in the J1939
document. This ComParam is used for response handling
only. It is the Name of an ECU. The protocol handler will
extract the source address from a J1939 response
message. By keeping a list of Names and Addresses of all
ECUs on the bus (Network Management), the tester will
find the Name of the ECU corresponding to the source
address extracted from the message, and use the Name to
find a match in the URID table to retrieve the Unique
Response Id for the ECU.

CP_J1939SourceName

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 8

ParamActLen = 0 to 8

pDataArray = name[8]

Range: Each byte = 0x00-0xFE

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

ISO 22900-2:2009(E)

198 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This ComParam is used instead of
CP_J1939TargetName in the following 3 cases:

1) the ParmActLen for CP_J1939TargetName = 0, or

2) the NAME in CP_J1939TargetName is not found in the
list of Names and Addresses of the ECUs that have sent
out an Address Claim, or

3) the Address listed for the NAME is invalid (0xFE).

CP_J1939TargetAddress

Type: PDU_PT_UNUM32

Range: [0; 0xFFFF]

NOTE 1 If this Parameter = 0xFFFF, the interface will
return a failure on the StartComPrimitive. This will serve to
inform the client application in case the ECU named in
CP_J1939TargetName has not claimed an address, or has
lost its address to another claimant on the vehicle bus.

NOTE 2 If this Parameter = 0xFF, and message length
> 8, use BAM, else use RTS/CTS.

SAE_J1939_21=0xFFFF

Description: Name field from SAE J1939 document. This is
the name of the target ECU for a destination-specific
outgoing message. Used when CP_J1939PDUFormat
< 240; also used in transport protocol when
CP_J1939PDUFormat >= 240 and message length > 8. By
keeping a list of Names and Addresses of all ECUs on the
bus (Network Management), the tester will find the ECU
Address of the ECU with this name, and use it to form the
CAN ID. If this ECU has not made an Address Claim on the
bus, or if the ParamActLen for this ComParam = 0, the
tester will use CP_J1939TargetAddress as the destination
address (see SAE J1939-81:2003, 4.1.1 for further details).

CP_J1939TargetName

Type: PDU_PT_BYTEFIELD

BYTEFIELD Format:

ParamMaxLen = 8

ParamActLen = 0 to 8

pDataArray = name[8]

Range: Each byte = 0x00-0xFF

SAE_J1939_21 =
ParamActLen = 0
(not enabled)

Description: Message Priority

SAE J1939 protocol uses the 3 least significant bits that
become part of the CAN ID. This is used only for request
messages sent by the tester to the ECU. This parameter is
used in bits 26 to 28 of the CAN ID for the SAE J1939
message.

SAE J1708: The message priority goes into calculating the
required idle bus time before transmitting the message.

CP_MessagePriority

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

SAE_J1939_21 = 6

SAE_J1708 = 8

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 199

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Request Message Identifier used in building a
transmit message to an ECU for a SAE J1708 protocol
only.

CP_MidReqId

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

SAE_J1708 = 0

Description: Response Message Identifier received from an
ECU for a SAE J1708 protocol only.

CP_MidRespId

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

SAE_J1708 = 0

Description: Maximum inter-byte time for ECU Responses.
Interface shall be capable of handling a P1_MIN time of
0 ms.

After the request, the interface shall be capable of handling
an immediate response (P2_MIN=0). For subsequent
responses, a byte received after P1_MAX shall be
considered as the start of the subsequent response.

CP_P1Max

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 20000

ISO_14230_2 = 20000

ISO_14230_4 = 20000

Description: This sets the minimum inter-byte time for the
ECU responses. Application shall not get or set this value.
Interface shall be capable of handling P1_MIN=0. This is a
performance requirement ComParam.

CP_P1Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 0

ISO_14230_2 = 0

ISO_14230_4=0

Description: Maximum inter-byte time for a tester request. CP_P4Max

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 20000

ISO_14230_2 = 20000

ISO_14230_4=20000

Description: Minimum inter-byte time for tester transmits. CP_P4Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 5000

ISO_14230_2 = 5000

ISO_14230_4=5000

ISO 22900-2:2009(E)

200 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: First Header Byte of a non-CAN message for
physical address transmit. This ComParam is used for
proper request message header construction in non-Raw
mode.

CP_PhysReqFormatPriority-
Type

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0x6C

ISO_14230_2=0x80+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

ISO_14230_4=0x80+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

SAE_J1850_VPW =
0x6C

SAE_J1850_PWM =
0xC4

Description: Physical Target Addressing Information used
for correct Message Header Construction. This ComParam
is used for proper request message header construction in
non-Raw mode. It is possible that CP_PhysReqTargetAddr
matches CP_EcuRespSourceAddress in one of the URID
table entries.

CP_PhysReqTargetAddr

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2=0x10

ISO_14230_2=0x10

ISO_14230_4=0x10

SAE_J1850_VPW=0x10

SAE_J1850_PWM=0x10

(ECU Variant Specific)

Description: First Header Byte of a non-CAN message
received from the ECU for physical addressing. This
ComParam is used for response handling only. It is a URID
ComParam and is used for physical addressing only. The
protocol handler extracts the format/priority byte from the
response message and uses this information along with
other URID ComParams to find a match in the URID table
to retrieve the Unique Response Id for the ECU.

CP_PhysRespFormatPriority-
Type

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2=0x6C

ISO_14230_2=0x80+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

ISO_14230_4=0x80+n,
where n < 64 is
generated by the protocol
based on the addressing
scheme.

SAE_J1850_VPW=0x2C

SAE_J1850_PWM=0xC4

Description: This ComParam contains a counter to enable a
re-transmission of the last request when either a transmit, a
receive error, or transport layer timeout is detected. This
applies to the transport layer only.

CP_RepeatReqCountTrans

Type: PDU_PT_UNUM32

Range: [0; 255]

Resolution: 1 count

All protocols = 0

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 201

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Addressing Mode to be used for the Com
Primitive.

CP_RequestAddrMode

Type: PDU_PT_UNUM32

Value: [1; 2]

1 = Use Physical Addressing for the request

2 = Use Functional Addressing for the request

ISO_9141_2 = 2

ISO_15765_2 = 1

ISO_14230_2 = 1

SAE_J1850_VPW=2

SAE_J1850_PWM=2

ISO_15765_4 = 2

ISO_14230_4 = 2

Description: SCI transmit mode. CP_SCITransmitMode

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Transmit using SCI Full duplex mode

1 = Transmit using SCI Half duplex mode

SAE_J2610_SCI = 0

Description: This ComParam is used for CAN remote frame
handling. (No data bytes are transmitted. Just the CAN ID.
The first byte of the PDU Data shall contain the Data
Length Code.)

CP_SendRemoteFrame

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = No Remote Frame Transmit

1 = Transmit a Remote Frame using the DLC in the
PDU Data

ISO_15765_2 = 0

ISO_15765_4 = 0

SAE_J1939_21 = 0

ISO_11898 = 0

Description: This sets the separation time the interface
should report to the vehicle for receiving segmented
transfers in a Transmit Flow Control Message.

CP_StMin

Type: PDU_PT_UNUM32

Range1: [0x0; 0x7F]

Resolution1: 1 ms

Range2: [0xF1; 0xF9]

Resolution2: 100 µs

ISO_15765_2=0

ISO_15765_4=0

Description: The minimum time the sender shall wait
between the transmissions of two ConsecutiveFrame
N_PDUs.

CP_StMin_Ecu

Type: PDU_PT_UNUM32

Range1: [0x0; 0x7F]

Resolution1: 1 ms

Range2: [0xF1; 0xF9]

Resolution2: 100 µs

ISO_15765_2=0

ISO_15765_4=0

ISO 22900-2:2009(E)

202 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: This sets the separation time the interface
should use to transmit segmented messages to the vehicle.
The flow control value reported by the vehicle should be
ignored.

CP_StMinOverride

Type: PDU_PT_UNUM32

Value: [0;0xFFFFFFFF]

Resolution: 1 µs

0xFFFFFFFF: Use the value reported by the vehicle

ISO_15765_2=
0xFFFFFFFF

ISO_15765_4=
0xFFFFFFFF

Description: This sets the maximum inter-frame response
delay.

CP_T1Max

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

SAE_2610_SCI=20000

Description: This sets the maximum inter-frame request
delay.

CP_T2Max

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

SAE_2610_SCI=100000

Description: This sets the maximum response delay from
the ECU after processing a valid request message from the
interface. For SAE J1939-21, this is equivalent to Tr.

CP_T3Max

Type: PDU_PT_UNUM32

Range: [0; 2500000]

Resolution: 1 µs

SAE_J2610_SCI=50000

SAE_J1939_21=200000

Description: This sets the maximum inter-message
response delay.

For SAE J1939, this is equivalent to T3, the maximum time
allowed for the Originator to receive a CTS or an ACK after
sending a packet.

CP_T4Max

Type: PDU_PT_UNUM32

Range: [0; 2500000]

Resolution: 1 µs

SAE_J2610_SCI=20000
SAE_J1939_21=1250000

Description: This sets the maximum inter-message request
delay.

For SAE J1939, this is equivalent to T2, the maximum time
allowed for the Originator to send a packet after receiving a
CTS from the Responder.

CP_T5Max

Type: PDU_PT_UNUM32

Range: [0; 2500000]

Resolution: 1 µs

SAE_J2610_SCI=100000

SAE_J1939_21=1250000

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 203

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Source address of transmitted message for
non-CAN messages. This ComParam is used for proper
request message header construction in non-Raw mode.

This ComParam will also contain the claimed Tester
Address for SAE J1939 (see ComParam
CP_J1939PreferredAddress), which can be read by the
client application after a successful address claim
determined during a PDU_COPT_STARTCOMM
ComPrimitive.

CP_TesterSourceAddress

Type: PDU_PT_UNUM32

Range: [0; 0xFF]

ISO_9141_2 = 0xF1

ISO_14230_2 = 0xF1

ISO_14230_4 = 0xF1

SAE_J1850_VPW =
0xF1

SAE_J1850_PWM =
0xF1

Description: Minimum bus idle time before tester starts the
address byte sequence or the fast init sequence.

(TIdle replaces W0 and W5.)

CP_TIdle

Type: PDU_PT_UNUM32

Range: [0; 10000000]

Resolution: 1 µs

ISO_9141_2 = 300000

ISO_14230_2 = 300000

ISO_14230_4 = 300000

Description: Sets the duration for the low pulse in a fast
initialization sequence.

CP_TInil

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 25000

ISO_14230_2 = 25000

ISO_14230_4 = 25000

Description: When transmitting a message longer than 21
bytes, this tells whether to use a Broadcast message, or an
RTS/CTS protocol.

CP_TPConnectionManagement

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = send the data bytes through broadcast (PID = 192)

1 = send the data bytes using connection mode data
transfer (PIDs 197 and 198)

SAE_J1708=0

Description: Sets total duration of the wakeup pulse
(TWUP-TINIL)=high pulse before start communication
message.

CP_TWup

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 50000

ISO_14230_2 = 50000

ISO_14230_4 = 50000

Description: Maximum time from the end of address byte to
start of the synchronization pattern from the ECU.

CP_W1Max

Type: PDU_PT_UNUM32

Range: [0; 1000000]

Resolution: 1 µs

ISO_9141_2 = 300000

ISO_14230_2 = 300000

ISO_14230_4 = 300000

ISO 22900-2:2009(E)

204 © ISO 2009 – All rights reserved

Table B.20 (continued)

Short Name Detailed Description Default (By Protocol)

Description: Minimum time from the end of address byte to
start of the synchronization pattern from the ECU.

CP_W1Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 60000

ISO_14230_2 = 60000

ISO_14230_4 = 60000

Description: Maximum time from the end of the
synchronization pattern to the start of key byte 1.

CP_W2Max

Type: PDU_PT_UNUM32

Range: [0; 1000000]

Resolution: 1 µs

ISO_9141_2 = 20000

ISO_14230_2 = 20000

ISO_14230_4 = 20000

Description: Minimum time from the end of the
synchronization pattern to the start of key byte 1.

CP_W2Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 5000

ISO_14230_2 = 5000

ISO_14230_4 = 5000

Description: Maximum time between key byte 1 and key
byte 2.

CP_W3Max

Type: PDU_PT_UNUM32

Range: [0; 1000000]

Resolution: 1 µs

ISO_9141_2 = 20000

ISO_14230_2 = 20000

ISO_14230_4 =20000

Description: Minimum time between key byte 1 and key
byte 2.

CP_W3Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 0

ISO_14230_2 = 0

ISO_14230_4 = 0

Description: Maximum time between receiving key byte 2
from the vehicle and the inversion being returned by the
interface. Same is true for the inverted key byte 2 sent by
the tester and the received inverted address from the
vehicle.

CP_W4Max

Type: PDU_PT_UNUM32

Range: [0; 1000000]

Resolution: 1 µs

ISO_9141_2 = 50000

ISO_14230_2 = 50000

ISO_14230_4 = 50000

Description: Minimum time between receiving key byte 2
from the vehicle and the inversion being returned by the
interface. Same is true for the inverted key byte 2 sent by
the tester and the received inverted address from the
vehicle.

CP_W4Min

Type: PDU_PT_UNUM32

Range: [0; 250000]

Resolution: 1 µs

ISO_9141_2 = 25000

ISO_14230_2 = 25000

ISO_14230_4 = 25000

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 205

B.5.3 ComParam definitions for physical layer

Table B.21 — Physical layer detailed ComParam table

Short Name Description Structure,
resolution

Range
(by Protocol) Type Default (By Protocol)

Description: Represents the desired baud rate. If the
desired baud rate cannot be achieved within the
tolerance of the protocol, the interface will remain at
the previous baud rate.

CP_Baudrate

Type: PDU_PT_UNUM32

Range: [0x0; 0xFFFFFFFF]

Resolution: 1 bps

ISO_11898_2_DWCAN=500k

ISO_11898_3_DWFTCAN=125k

ISO_11992_1_DWCAN=125k

ISO_9141_2_UART = 10400

ISO_14230_1_UART = 10400

SAE_J2610_UART = 7812

SAE_J1708_UART = 9600

SAE_J1939_11_DWCAN=250k

SAE_J1850_VPW = 10400

SAE_J1850_PWM = 41600

SAE_J2411_SWCAN = 33333

Description: This sets the desired bit sample point as
a percentage of the bit time.

CP_BitSamplePoint

Type: PDU_PT_UNUM32

Range: [0; 100]

Resolution: 1%

ISO_11898_2_DWCAN=80%

ISO_11898_3_DWFTCAN=80%

ISO_11992_1_DWCAN=80%

SAE_J1939_11_DWCAN=80%

SAE_J2411_SWCAN=87%

Description: This sets the desired bit sample point as
a percentage of the bit time.

CP_BitSamplePoint_Ecu

Type: PDU_PT_UNUM32

Range: [0; 100]

Resolution: 1%

ISO_11898_2_DWCAN = 80%

ISO_11898_3_DWFTCAN=80%

ISO_11992_1_DWCAN=80%

SAE_J1939_11_DWCAN=80%

SAE_J2411_SWCAN=87%

Description: List of baud rates to use during an OBD
CAN initialization sequence.

CP_CanBaudrateRecord

Type: PDU_PT_LONGFIELD

LONGFIELD Format:

ParamMaxLen = 12

ParamActLen = 0 to 12

pDataArray=BaudrateList[12]

Range: Each entry = [0x00000000; 0xFFFFFFFF]

ISO_11898_2_DWCAN:
ParamActLen = 2, pDataArray =
{500000, 250000}

SAE_J1939_11_DWCAN:
ParamActLen = 1, pDataArray =
{250000}

Description: K and L line usage for ISO 9141 and
ISO 14230 initialization address.

CP_K_L_LineInit

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Use L-line and K-line for initialization
address

1 = Use K-line only for initialization address

ISO_9141_2_UART = 0

ISO_14230_1_UART = 0

ISO 22900-2:2009(E)

206 © ISO 2009 – All rights reserved

Table B.21 (continued)

Short Name Description Structure,
resolution

Range
(by Protocol) Type Default (By Protocol)

Description: Control the K-Line voltage to either 12V
or 24V.

CP_K_LinePullup

Type: PDU_PT_UNUM32

Value: [0; 2]

0 = No pull-up

1 = 12V

2 = 24V

ISO_9141_2_UART = 0

ISO_14230_1_UART = 0

Description: Enable a Listen Only mode on the Com
Logical Link. This will cause the link to no longer
acknowledge received frames on the CAN Network.

CP_ListenOnly

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = Listen Only Mode Disabled

1 = Listen Only Mode Enabled

ISO_11898_2_DWCAN=0

ISO_11898_3_DWFTCAN=0

ISO_11992_1_DWCAN=0

SAE_J1939_11_DWCAN=0

SAE_J2411_SWCAN=0

Description: This sets the network line(s) that are
active during communication (for cases where the
physical layer allows this).

CP_NetworkLine

Type: PDU_PT_UNUM32

Value: [0; 2]

0 = BUS_NORMAL

1 = BUS_PLUS

2 = BUS_MINUS

SAE_J1850_PWM = 0

Description: Number of samples per bit. CP_SamplesPerBit

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = 1sample per bit

1 = 3 samples per bit

ISO_11898_2_DWCAN=0

ISO_11898_3_DWFTCAN=0

ISO_11992_1_DWCAN=0

SAE_J1939_11_DWCAN=0

SAE_J2411_SWCAN=0

Description: Number of samples per bit for the ECU. CP_SamplesPerBit_Ecu

Type: PDU_PT_UNUM32

Value: [0; 1]

0 = 1sample per bit

1 = 3 samples per bit

ISO_11898_2_DWCAN=0

ISO_11898_3_DWFTCAN=0

ISO_11992_1_DWCAN=0

SAE_J1939_11_DWCAN=0

SAE_J2411_SWCAN = 0

Description: This sets the desired synchronization
jump width as a percentage of the bit time.

CP_SyncJumpWidth

Type: PDU_PT_UNUM32

Range: [0; 100]

Resolution: 1%

ISO_11898_2_DWCAN=15%

ISO_11898_3_DWFTCAN=15%

ISO_11992_1_DWCAN=15%

SAE_J1939_11_DWCAN=15%

SAE_J2411_SWCAN=15%

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 207

Table B.21 (continued)

Short Name Description Structure,
resolution

Range
(by Protocol) Type Default (By Protocol)

Description: This sets the desired synchronization
jump width as a percentage of the bit time.

CP_SyncJumpWidth_Ecu

Type: PDU_PT_UNUM32

Range: [0; 100]

Resolution: 1%

ISO_11898_2_DWCAN = 15%

ISO_11898_3_DWFTCAN = 15%

ISO_11992_1_DWCAN = 15%

SAE_J1939_11_DWCAN = 15%

SAE_J2411_SWCAN = 15%

Description: CAN termination settings. This
ComParam can be used to manually change the
termination being used on the vehicle bus line.

CP_TerminationType

Type: PDU_PT_UNUM32

Value: [0; 4]

0 = No termination

1 = AC termination

2 = 60 Ohm termination

3 = 120 Ohm termination

4 = SWCAN termination

ISO_11898_2_DWCAN = 0

ISO_11898_3_DWFTCAN = 0

ISO_11992_1_DWCAN = 0

SAE_J1939_11_DWCAN = 0

SAE_J2411_SWCAN = 0

Description: CAN termination settings for SWCAN
ECU emulation.

CP_TerminationType_Ecu

Type: PDU_PT_UNUM32

Value: [0, 5; 6]

0 = No termination

5 = SWCAN Unit Load termination
(See SAE J2411)

6 = SWCAN Primary Load termination

SAE_J2411_SWCAN = 0

Description: Configure the parity, data bit size and
stop bits of a Uart protocol.

CP_UartConfig

Type: PDU_PT_UNUM32

Value: [0; 17]

00 = 7N1
01 = 7O1
02 = 7E1
03 = 7N2
04 = 7O2
05 = 7E2
06 = 8N1
07 = 8O1
08 = 8E1
09 = 8N2
10 = 8O2
11 = 8E2
12 = 9N1
13 = 9O1
14 = 9E1
15 = 9N2
16 = 9O2
17 = 9E2

ISO_9141_2_UART = 06

ISO_14230_1_UART = 06

SAE_J2610_UART = 06

SAE_J1708_UART = 06

ISO 22900-2:2009(E)

208 © ISO 2009 – All rights reserved

B.5.4 Access to standardized COMPARAM-SPEC files

Standardized ComParams and protocols are documented in the D-PDU API specification. The standardized
protocol and ComParams are publicly available on the ISO Livelink public area.

Use the following Link to download the standardized COMPARAM-SPEC files for configuration of the MVCI
and ODX based Diagnostic System.

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=962012&objAction=browse&sort=name

Select <Public Available Files> and then <Modular VCI and ODX ComParam Files>.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 209

Annex C
(informative)

D-PDU API manufacturer specific ComParams and protocols

C.1 Manufacturer specific protocols - support and naming conventions

C.1.1 General overview

The D-PDU API is not restricted to specific diagnostic protocols. Since the supported protocols and its
ComParams are described in the MDF, the protocol support of an MVCI protocol module using the
D-PDU API can be extended easily. The only important requirement is that the designation of the protocols
(e.g. protocol names) is unique. For standard ComParam and protocol naming guidelines, see Annex B.

C.1.2 Manufacturer protocol naming guidelines

The following naming guidelines apply:

⎯ Customer or manufacturer-specific protocols shall be named with the prefix MSP_ (i.e. short name for
manufacturer-specific protocol) followed by a protocol name, which can be freely defined by the
manufacturer (e.g. MSP_KWP9999_on_ISO14230_1_UART).

⎯ The protocol short names which are used in the MDF file for the PROTOCOL element, are a
concatenation of the application Layer specification name, plus the transport layer specification layer
name, connected by the additional string “_on_”, as shown in Table B.3 — Standard protocol short names
in ODX.

⎯ The physical layer name as shown in Table B.2 — Standard protocol combination list is used in the MDF
file as short name for the BUSTYPE element.

⎯ When possible a customer or manufacturer-specific protocol should try and reuse a layer either from
another customer specified protocol or from one of the standardized protocols.

C.1.3 Manufacturer protocol communication parameters (ComParams)

ISO 22901-1 (ODX specification) already defines mechanisms for the description of ComParams for a
protocol. The D-PDU API can be used in combination with ODX data files. Therefore, the description
mechanisms from the ODX specification are used to define ComParams in the MDF (for details see the ODX
specification).

For each protocol that the MVCI protocol module supports, the MDF shall assign the reference between the
ComParams and the unique protocol id. For each protocol, the MDF includes the following elements:

⎯ ProtocolName

⎯ Short name and unique ID for each protocol ComParam

The format for a manufacturer specific ComParam shall be CPM_xxxx_yyyy, where xxxx is the manufacturer's
acronym, and yyyy is the parameter name.

NOTE For protocol ComParams, only parameter data types supported by the D-PDU API are used. See B.3.3
ComParam data type.

ISO 22900-2:2009(E)

210 © ISO 2009 – All rights reserved

For manufacturer specific protocols, it is recommended to reuse any of the standard protocol ComParams as
are applicable and only add new ComParams that are needed to support the unique features of the
manufacturer specific protocol.

The ID value for each protocol ComParam can be freely assigned by the MVCI supplier, because the ID value
is used only within the supplier-specific PDU API.

The MDF contains the following information about a ComParam:

⎯ Short name

⎯ Long name

⎯ ComParam Class

⎯ Layer Info

⎯ ComParam data type

⎯ Minimum value

⎯ Maximum value

⎯ Default value (per protocol)

C.1.4 Access to manufacturer specific COMPARAM-SPEC files

Manufacturer specific ComParams and protocols are not documented in the D-PDU API specification. It is
recommended that any new protocol and ComParams be made publicly available on the ISO Livelink public
area.

Use the following Link to download the manufacturer specific COMPARAM-SPEC files for configuration of the
MVCI and ODX based Diagnostic System:

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=962012&objAction=browse&sort=name

Select <Public Available Files> and then <Modular VCI and ODX ComParam Files>.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 211

Annex D
(normative)

D-PDU API constants

D.1 Constants

D.1.1 D-PDU API item type values

typedef enum E_PDU_IT
{

PDU_IT_IO_UNUM32 = 0x1000, /* IOCTL UNUM32 item. */
PDU_IT_IO_PROG_VOLTAGE = 0x1001, /* IOCTL Program Voltage item. */
PDU_IT_IO_BYTEARRAY = 0x1002, /* IOCTL Byte Array item. */
PDU_IT_IO_FILTER = 0x1003, /* IOCTL Filter item. */
PDU_IT_IO_EVENT_QUEUE_PROPERTY = 0x1004, /* IOCTL Event Queue Property item. */
PDU_IT_RSC_STATUS = 0x1100, /* Resource Status item */
PDU_IT_PARAM = 0x1200, /* ComParam item */
PDU_IT_RESULT = 0x1300, /* Result item */
PDU_IT_STATUS = 0x1301, /* Status notification item */
PDU_IT_ERROR = 0x1302, /* Error notification item */
PDU_IT_INFO = 0x1303, /* Information notification item */
PDU_IT_RSC_ID = 0x1400, /* Resource ID item */
PDU_IT_RSC_CONFLICT = 0x1500, /* Resource Conflict Item */
PDU_IT_MODULE_ID = 0x1600, /* Module ID item */
PDU_IT_UNIQUE_RESP_ID_TABLE = 0x1700 /* Unique Response Id Table Item */

} T_PDU_IT;

D.1.2 ComPrimitive type values

typedef enum E_PDU_COPT
{
PDU_COPT_STARTCOMM = 0x8001, /* Start communication with ECU by sending an optional request. The

detailed behaviour is protocol dependent. For certain protocols (.e.g.
ISO 14230), this ComPrimitive is required as the first ComPrimitive. This
ComPrimitive is also required to put the ComLogicalLink into the state
PDU_CLLST_COMM_STARTED which allows for tester present
messages to be enabled (see CP_TesterPresentHandling). Once tester
present handling is enabled the message is sent immediately, prior to the
initial tester present cyclic time (CP_TesterPresentTime) */

PDU_COPT_STOPCOMM = 0x8002, /* Stop communication with ECU by sending an optional request. The
detailed behaviour is protocol dependent. After successful completion of
this ComPrimitive type, the ComLogicalLink is placed into
PDU_CLLST_ONLINE state and no further tester presents will be sent. A
PDU_COPT_STARTCOMM ComPrimitive might be required by some
protocols (e.g. ISO 14230) to begin communications again.*/

PDU_COPT_UPDATEPARAM = 0x8003, /* Copies ComParams related to a ComLogicalLink from the working
buffer to the active buffer. Prior to update, the values need to be passed to
the D-PDU API by calling PDUSetComParam, which modifies the
ComParams in the working buffer. If the physical ComParams are locked
by another ComLogicalLink, then a PDU_COPT_UPDATEPARAM will
generate an error event (PDU_ERR_EVT_RSC_LOCKED) if physical
ComParams are to be modified.

ISO 22900-2:2009(E)

212 © ISO 2009 – All rights reserved

NOTE 1 If the CLL is in the PDU_CLLST_COMM_STARTED state and tester
present handling is enabled (see CP_TesterPresentHandling) any changes to one
of the tester present ComParams will cause the tester present message to be sent
immediately, prior to the initial tester present cyclic time.

NOTE 2 Protocol handler always waits the proper P3Min time before allowing any
transmit. See CP_P3Min, CP_P3Func, CP_P3Phys.*/

PDU_COPT_SENDRECV = 0x8004, /* Send request data and/or receive corresponding response data (single
or multiple responses). 11.1.4.17 for detailed settings of the
PDU_COP_CTRL_DATA structure.*/

PDU_COPT_DELAY = 0x8005, /* Wait the given time span before executing the next ComPrimitive.*/

PDU_COPT_RESTORE_PARAM = 0x8006, /* Copies ComParams related to a ComLogicalLink from active buffer to
working buffer. (Converse functionality of
PDU_COPT_UPDATEPARAM.)*/

} T_PDU_COPT;

D.1.3 Object type values

See PDUGetObjectId function

typedef enum E_PDU_OBJT
{
 PDU_OBJT_PROTOCOL = 0x8021, /* Object type for object PROTOCOL of MDF.*/
 PDU_OBJT_BUSTYPE = 0x8022, /* Object type for object BUSTYPE of MDF.*/
 PDU_OBJT_IO_CTRL = 0x8023, /* Object type for object IO_CTRL of MDF.*/
 PDU_OBJT_COMPARAM = 0x8024, /* Object type for object COMPARAM of MDF.*/
 PDU_OBJT_PINTYPE = 0x8025, /* Object type for object PINTYPE of MDF.*/

PDU_OBJT_RESOURCE = 0x8026, /* Object type for object RESOURCE of MDF. Note that the caller of
this function with this object type would need to know the vendor
specific short-name of the resource.*/

} T_PDU_OBJT;

D.1.4 Status code values

Status events are returned in an event item type PDU_IT_STATUS.

typedef enum E_PDU_STATUS
{
 /* ComPrimitive status */

PDU_COPST_IDLE = 0x8010, /* ComPrimitive is in the CommLogicalLink's ComPrimitive Queue and
has not been acted upon. */

PDU_COPST_EXECUTING = 0x8011, /* ComPrimitive has been pulled from the CommLogicalLink's
ComPrimitive Queue and is in an active running state. */

PDU_COPST_FINISHED = 0x8012, /* ComPrimitive is finished. * No further event items will be generated
for this ComPrimitive. */

PDU_COPST_CANCELLED = 0x8013, /* ComPrimitive was cancelled by a PDUCancelComPrimitive request.
No further event items will be generated for this ComPrimitive. */

PDU_COPST_WAITING = 0x8014, /* A periodic send ComPrimitive (NumSendCycles > 1) has finished its
periodic cycle and is waiting for its next cyclic time for transmission. */

 /* ComLogicalLink status */
PDU_CLLST_OFFLINE = 0x8050, /* ComLogicalLink is in communication state “offline”. Refer to

description of PDUConnect, PDUDisconnect. */

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 213

PDU_CLLST_ONLINE = 0x8051, /* ComLogicalLink is in communication state “online”. A
PDU_COPT_STARTCOMM ComPrimitive has not been commanded.
Refer to description of PDUConnect, PDUDisconnect */

PDU_CLLST_COMM_STARTED = 0x8052, /* ComLogicalLink is in communication state “communication started”.
A PDU_COPT_STARTCOMM ComPrimitive has been commanded.
The ComLogicalLink is in a transmit/receive state. */

/* Module status */
PDU_MODST_READY = 0x8060, /* The MVCI protocol module is ready for communication. The MVCI

protocol module has been connected by this D-PDU API Session (see
PDUModuleConnect)*/

PDU_MODST_NOT_READY = 0x8061, /* The MVCI protocol module is not ready for communication.
Additional information about the cause may be provided via an
additional vendor specific status code returned in pExtraInfo. Refer to
description of PDUGetStatus.
EXAMPLE After running a PDU_IOCTL_RESET command on the module,
it may take some time for the module until it becomes ready. Module is
connected by this D-PDU API Session, but it is not ready for communication. */

PDU_MODST_NOT_AVAIL = 0x8062, /* The MVCI protocol module is unavailable for connection.
EXAMPLE Communication was lost after previously being in a
PDU_MODST_READY state.*/

PDU_MODST_AVAIL = 0x8063, /* The MVCI protocol module is available for connection (i.e. not yet
connected by a D-PDU API session). (See PDUModuleConnect and
PDUModuleDisconnect.) */

} T_PDU_STATUS;

D.1.5 Information event values

Information events are returned in an event item type PDU_IT_INFO.

typedef enum E_PDU_INFO
{

PDU_INFO_MODULE_LIST_CHG = 0x8070, /* New MVCI protocol module list is available. Client application
should call PDUGetModuleIds to get a list of the new set of
modules and status. This event item is not generated when the
status of a module changes. Related to the System Callback. */

PDU_INFO_RSC_LOCK_CHG = 0x8071, /* There has been a change in the lock status on a shared
physical resource. Call PDUGetResourceStatus to get a
description of the new lock status. Only applicable to a resource
shared by multiple ComLogicalLinks. Related to the
ComLogicalLink Callback. */

PDU_INFO_PHYS_COMPARAM_CHG = 0x8072 /* There has been a change to the physical ComParams by
another ComLogicalLink sharing the resource. Related to the
ComLogicalLink Callback. */

} T_PDU_INFO;

ISO 22900-2:2009(E)

214 © ISO 2009 – All rights reserved

D.1.6 Resource status values

Used for element “PDUResourceStatus” of structure PDU_RSC_STATUS_DATA (see 11.1.4.4). See Bit
encoding for UNUM32 for interface definition.

Table D.1 — Resource status values (bit encoded)

Bit Position Name Description

0 Usage Status 0 = Resource not in use (default)
1 = Resource in use

1 Availability Status 0 = Resource available (default)
1 = Resource not available

2 Transmit Queue Lock
Status

0 = Transmit Queue is not locked (default)
1 = Transmit Queue is locked by a CLL. No other CLL except the
one which holds the lock is allowed to transmit on the physical
resource.

3 Physical ComParam Lock
Status

0 = Physical ComParams are not locked (default)
1 = Physical ComParams are locked by a CLL. No other CLL
except the one which holds the lock is allowed to change the
physical ComParams for the resource.

D.1.7 Resource lock values

Used for API functions “PDULockResource” and “PDUUnlockResource”. See Bit encoding for UNUM32 for
interface definition.

Table D.2 — Resource lock/unlock values (bit encoded)

Bit Position Name Description

0 Lock Physical ComParams A ComLogicalLink requests exclusive privilege to modify physical
ComParams for a physical resource. No other ComLogicalLink that
is sharing the physical resource may attempt to modify the physical
ComParams.

1 Lock Physical Transmit Queue A ComLogicalLink requests exclusive privilege to transmit on a
physical resource. No other ComLogicalLink that is sharing the
physical resource may transmit any ComPrimitives on the physical
resource. Only monitoring of the vehicle bus may be done by other
ComLogicalLinks (receive only ComPrimitives).

D.1.8 Event callback data values

See EventCallback prototype.

typedef enum E_PDU_EVT_DATA
{

PDU_EVT_DATA_AVAILABLE = 0x0801, /* This event indicates that there is event data available to be read by
the application. The data could be an error, status, or result item. The
application must call PDUGetEventItem to retrieve the item. */

PDU_EVT_DATA_LOST = 0x0802 /* This event indicates that the Com Logical Link has lost data due to a
buffer (queue) overrun. No event data is stored in the event queue.
This is for information only. */

} T_PDU_EVT_DATA.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 215

D.1.9 Reserved ID and handle values

Table D.3 — Reserved ID and handle values

Constant name Constant value Description

PDU_ID_UNDEF 0xFFFFFFFE Undefined ID value. Used to indicate an ID value is undefined.

PDU_HANDLE_UNDEF 0xFFFFFFFF Undefined handle value. Used to indicate a Handle value is
undefined.

D.1.10 IOCTL filter types values

typedef enum E_PDU_FILTER
{

PDU_FLT_PASS = 0x00000001, /* Allows matching messages into the receive event queue. For all
protocols. */

PDU_FLT_BLOCK = 0x00000002, /* Keeps matching messages out of the event queue. For all protocols.*/

PDU_FLT_PASS_UUDT = 0x00000011, /* Allows matching messages into the receive event queue which are of
a UUDT type only. For ISO 15765 only.*/

PDU_FLT_BLOCK_UUDT = 0x00000012 /* Keeps matching messages out of the event queue which are of a
UUDT type only. For ISO 15765 only.*/

} T_PDU_FILTER;

D.1.11 IOCTL event queue mode type values

typedef enum E_PDU_QUEUE_MODE
{

PDU_QUE_UNLIMITED = 0x00000000, /* An attempt is made to allocate memory for every item being placed
on the event queue. In Unlimited Mode, the QueueSize is ignored
(Default Mode for a ComLogicalLink).*/

PDU_QUE_LIMITED = 0x00000001, /* When the ComLogicalLink's event queue is full (i.e. maximum size
has been reached), no new items are placed on the event queue. The
event items are discarded in this case. */

PDU_QUE_CIRCULAR = 0x00000002 /* When the ComLogicalLink's event queue is full (i.e. maximum size
has been reached), then the oldest event item in the queue is deleted
so that the new event item can then be placed in the event queue. */

} T_PDU_QUEUE_MODE;

ISO 22900-2:2009(E)

216 © ISO 2009 – All rights reserved

D.2 Flag definitions

D.2.1 TxFlag definition

The TxFlag information is used in the PDU_COP_CTRL_DATA structure (see 11.1.4.17) as part of the
function PDUStartComPrimitive function.

Default Number of Bytes: 4

Table D.4 — TxFlag

Byte
Pos

Bit
Pos Definition Description Value

0 7 Unused

0 6 SUPPRESS_POS_RESP ISO 14229-1/ISO 15765-3

Suppress Positive Response

0 = Not Enabled

1 = Enabled

0 5 ENABLE_EXTRA_INFO Enable adding header and footer information into
the result data (See Structure for result data).
Extra information can be used for ECU response
debugging.

0 = Not Enabled

1 = Enabled

0 4-0 Unused

1 7-0 Reserved

2 7-3 Reserved

2 2 Unused

2 1 WAIT_P3_MIN_ONLY RAW_MODE Only

Modified message timing for ISO 14230. Used to
decrease programming time if application knows
only one response will be received.

Does not affect timing on responses to functional
requests.

0 = Interface message
timing as specified in
ISO 14230

1 = After a response is
received for a physical
request, the wait time
shall be reduced to
P3_MIN.

2 0 CAN_29BIT_ID RAW_MODE Only

CAN ID type for ISO 11898, SAE J1939, and
ISO 15765.

CAN ID is contained in the first 4 bytes of the PDU
Data.

0 = 11-bit

1 = 29-bit

3 7 ISO15765_ADDR_TYPE RAW_MODE Only

ISO 15765-2 Addressing Method

CAN Extended Address is contained in the byte
following the CAN ID in the PDU Data.

0 = no extended address

1 = extended addressing
is used

3 6 ISO15765_FRAME_PAD RAW_MODE Only

ISO 15765-2 Frame Padding

0 = no padding

1 = pad all messages to
a full CAN frame using
the value in the
ComParam
CP_CanFillerByte

3 5-0 Reserved

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 217

D.2.2 RxFlag definition

The RxFlag information is used in the PDU_RESULT_DATA structure (see 11.1.4.11.4), which is used in a
PDU_IT_RESULT event item.

Default Number of Bytes: 4

Table D.5 — RxFlag

Byte
Pos

Bit
Pos Definition Description Value

0 7 REMOTE_FRAME CAN remote frame detected. No data bytes are
received. The first byte of the D-DPU will contain
the data length code.

0 = No Remote Frame
Received

1 = Received a Remote
Frame

0 6-0 Unused

1 7-3 Reserved

1 2 SPD_CHG_EVENT Indicates that the serial bus has transitioned to a
new speed. All communication after this event
will occur at the new speed. The message data in
this message may contain the monitored Change
Speed message received on the serial bus.

0 = No Event

1 = Transitioned to new
speed rate

1 1 ECU_TIMING_CHANGE The timing ComParams values have been
modified for the Com Logical Link. The MVCI
protocol module has received a positive timing
change message by an ECU in response to a
timing change request message (protocol
specific). This flag will only be set if the
CP_ModifyTiming ComParam is set to Enable.

0 = No Timing Change

1 = Timing ComParams
have been modified

1 0 SW_CAN_HV_RX3) Indicates that the Single Wire CAN message
received was a High-Voltage Message.

0 = Normal Message

1 = High-Voltage
Message

2 7-1 Reserved

2 0 CAN_29BIT_ID RAW_MODE ONLY

CAN ID type for ISO 11898, SAE J1939, and
ISO 15765

CAN ID is contained in the first 4 bytes of the
PDU Data.

0 = 11-bit

1 = 29-bit

3 7 ISO15765_ADDR_TYPE RAW_MODE ONLY

ISO 15765-2 Addressing Method

CAN Extended Address byte is contained in the
bytes following the CAN ID in the PDU Data.

0 = no extended address

1 = extended addressing
is used

3) A SW-CAN transceiver does not provide the capability to determine a high voltage reception during normal mode of
operation and to tie this information to an ongoing reception. A SW-CAN transceiver only provides the capability to
indicate a wake-up on the RxD pin during sleep mode operation without being able to receive the CAN frame that forced
the wake-up, because only the voltage level over a period of time is used to determine a high voltage signal during this
mode of operation. In order to determine a high voltage reception during normal mode of operation (when CAN messages
are received) the voltage level of the bus pin has to be measured in parallel to the CAN message reception and this
information has to be tied together according to the SAE J2411. Since the information of receiving a high voltage message
is of secondary kind when the MVCI works as a tester device and a separate hardware is required to determine the
voltage level, the handling of this flag is optional. In case an MVCI does not have the hardware to measure the SW-CAN
bus pin voltage level this flag shall always be set to '0' = normal message.

ISO 22900-2:2009(E)

218 © ISO 2009 – All rights reserved

Table D.5 (continued)

Byte
Pos

Bit
Pos Definition Description Value

3 6 CAN_SEGMENTATION RAW_MODE ONLY

ISO 15765-2 Can Segmentation handling

Received message was either handled as a
segmented or unsegmented message.

(If Segmented, then the segment information was
removed from the PDU Data.)

0 = no segmentation

1 = segmented

3 5 Reserved

3 4 ISO15765_
PADDING_ERROR

RAW_MODE ONLY

For Protocol ISO 15765, a CAN frame was
received with less than 8 data bytes.

0 = No Error

1 = Padding Error

3 3 TX_INDICATION TxDone indication 0= No TxDone

1= TxDone

3 2 RX_BREAK SAE J2610 and SAE J1850 VPW only

Break indication received

0 = No break received

1 = Break received

3 1 START_OF_MESSAGE Indicates the reception of the first byte of an
ISO 9141 or ISO 14230 message, or first frame
of an ISO 15765 multiframe message.

0 = Not a start of
message indication

1 = First byte or frame
received

3 0 TX_MSG_TYPE Receive Indication/Transmit

Loopback

0 = received (i.e. this
message was transmitted
on the bus by another
node)

1 = transmitted (i.e. this
is the echo of the
message transmitted by
the device)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 219

D.2.3 CllCreateFlag definition

The CllCreateFlag information is used in the PDUCreateComLogicalLink function.

Default Number of Bytes: 4

Table D.6 — CllCreateFlag

Byte
Pos

Bit
Pos Definition Description Value

Enables the ability to pass through entire
received messages, unchanged, through the
datalink (transmitted and received). This feature
is protocol specific.

RawMode=OFF:

When transmitting a message, RawMode OFF
indicates that the D-PDU API will add the header
bytes and checksums to the pCopData of the
ComPrimitive before transmission. When
receiving a message, RawMode OFF indicates
that the D-PDU API will strip the header bytes
and checksums before returning the Result Item
(the TxFlag ENABLE_EXTRA_INFO can be used
to obtain additional message header/footer
information).

0 = OFF

(If a protocol is configured
to generate header byte
information, header bytes
will be appended before
transmission and stripped
after receipt.)

0 7 RawMode

RawMode=ON:

When transmitting a message, RawMode ON
indicates that the header bytes and checksums
were in the pCopData when
PDUStartComPrimitive() was called. When
receiving a message, RawMode ON indicates
that the header bytes and checksums will be left
in the Result Item that is returned.

The default value of the flag is RawMode=OFF
(equal '0'), which means headers and checksums
will not be appended to the message.

1 = ON

(Interface will pass
through the received PDU
data. No header bytes will
be generated or checked.
Only the network layer,
such as ISO 15765, will
still be enabled.)

For protocols that use checksums, the
D-PDU API can create and append the
checksum to transmit messages based on this
flag.

ChecksumMode=OFF

This flag is ignored for protocols that do not use
Checksums.

This flag is ignored if RawMode is set to OFF.

The default value of the flag is
ChecksumMode=OFF (equal '0'), which means a
checksum will not be appended to the message.

0 = OFF

The D-PDU API will not
append a checksum to
the transmitted PDU data
nor will it validate and
remove the received
checksum.

0 6 ChecksumMode

ChecksumMode=ON 1 = ON

For the UART protocols
using checksums, the
D-PDU API will append a
checksum to the
transmitted PDU data and
it will validate and remove
the received checksum.

ISO 22900-2:2009(E)

220 © ISO 2009 – All rights reserved

Table D.6 (continued)

Byte
Pos

Bit
Pos Definition Description Value

0 5-0 Unused

1 7-0 Unused

2 7-0 Unused

3 7-0 Unused

D.2.4 TimestampFlag definition

The TimestampFlag information is used in the PDU_RESULT_DATA structure (see Structure for result data)
as part of the data information returned in a PDU_IT_RESULT item.

Default Number of Bytes: 4

Table D.7 — TimestampFlag

Byte
Pos

Bit
Pos Definition Description Value

0 7 TxMsgDoneTimestamp-
Indicator

Transmit Done Timestamp Indicator. Indication
that the Transmit Done Timestamp value in the
PDU_RESULT_DATA structure is valid.

0 = Not Valid

1 = Valid

0 6 StartMsgTimestamp-
Indicator

Start Message Timestamp Indicator. Indication.
Indication that the Start Message Timestamp value
in the PDU_RESULT_DATA structure is valid.

0 = Not Valid

1 = Valid

0 5-0 Unused

1 7-0 Unused

2 7-0 Unused

3 7-0 Unused

D.3 Function return values

The standard return values cover all return values described in 9.4. For each value, the symbolic definition is
provided.

typedef enum E_PDU_ERROR
{

PDU_STATUS_NOERROR = 0x00000000, /* No error for the function call */

PDU_ERR_FCT_FAILED = 0x00000001, /* Function call failed (generic failure)*/

PDU_ERR_RESERVED_1 = 0x00000010, /* Reserved by ISO 22900-2 */

PDU_ERR_COMM_PC_TO_VCI_FAILED = 0x00000011, /* Communication between host and MVCI
protocol module failed */

PDU_ERR_PDUAPI_NOT_CONSTRUCTED = 0x00000020, /*The D-PDU API has not yet been constructed */

PDU_ERR_SHARING_VIOLATION = 0x00000021, /* A PDUDestruct was not called before another
PDUConstruct */

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 221

PDU_ERR_RESOURCE_BUSY = 0x00000030, /* the requested resource is already in use.*/

PDU_ERR_RESOURCE_TABLE_CHANGED = 0x00000031, /* Not used by the D-PDU API */

PDU_ERR_RESOURCE_ERROR = 0x00000032, /* Not used by the D-PDU API */

PDU_ERR_CLL_NOT_CONNECTED = 0x00000040, /* The ComLogicalLink cannot be in the
PDU_CLLST_OFFLINE state to perform the
requested operation.*/

PDU_ERR_CLL_NOT_STARTED = 0x00000041, /* The ComLogicalLink must be in the
PDU_CLLST_COMM_STARTED state to perform
the requested operation. */

PDU_ERR_INVALID_PARAMETERS = 0x00000050, /* One or more of the parameters supplied in the
function are invalid. */

PDU_ERR_INVALID_HANDLE = 0x00000060, /* One or more of the handles supplied in the
function are invalid. */

PDU_ERR_VALUE_NOT_SUPPORTED = 0x00000061, /* One of the option values in PDUConstruct is
invalid. */

PDU_ERR_ID_NOT_SUPPORTED = 0x00000062, /* IOCTL command id not supported by the
implementation of the D-PDU API*/

PDU_ERR_COMPARAM_NOT_SUPPORTED = 0x00000063, /* ComParam id not supported by the
implementation of the D-PDU API */

PDU_ERR_COMPARAM_LOCKED = 0x00000064, /* Physical ComParam cannot be changed
because it is locked by another ComLogicalLink. */

PDU_ERR_TX_QUEUE_FULL = 0x00000070, /* The ComLogicalLink's transmit queue is full; the
ComPrimitive could not be queued. */

PDU_ERR_EVENT_QUEUE_EMPTY = 0x00000071, /* No more event items are available to be read
from the requested queue. */

PDU_ERR_VOLTAGE_NOT_SUPPORTED = 0x00000080, /* The voltage value supplied in the IOCTL call is
not supported by the MVCI protocol module. */

PDU_ERR_MUX_RSC_NOT_SUPPORTED = 0x00000081, /* The specified pin / resource are not supported
by the MVCI protocol module for the IOCTL call. */

PDU_ERR_CABLE_UNKNOWN = 0x00000082, /* The cable attached to the MVCI protocol module
is of an unknown type. */

PDU_ERR_NO_CABLE_DETECTED = 0x00000083, /* No cable is detected by the MVCI protocol
module */

PDU_ERR_CLL_CONNECTED = 0x00000084, /*The ComLogicalLink is already in the
PDU_CLLST_ONLINE state. */

PDU_ERR_TEMPPARAM_NOT_ALLOWED = 0x00000090, /* Physical ComParams cannot be changed as a
temporary ComParam. */

PDU_ERR_RSC_LOCKED = 0x000000A0, /* The resource is already locked.*/

PDU_ERR_RSC_LOCKED_BY_OTHER_CLL = 0x000000A1, /* The ComLogicalLink's resource is currently
locked by another ComLogicalLink. */

PDU_ERR_RSC_NOT_LOCKED = 0x000000A2, /* The resource is already in the unlocked state. */

ISO 22900-2:2009(E)

222 © ISO 2009 – All rights reserved

PDU_ERR_MODULE_NOT_CONNECTED = 0x000000A3, /*The module is not in the PDU_MODST_READY
state. */

PDU_ERR_API_SW_OUT_OF_DATE = 0x000000A4, /*The API software is older than the MVCI protocol
module Software*/

PDU_ERR_MODULE_FW_OUT_OF_DATE = 0x000000A5, /* The MVCI protocol module software is older than
the API software. */

PDU_ERR_PIN_NOT_CONNECTED = 0x000000A6 /*The requested Pin is not routed by supported
cable*/

} T_PDU_ERROR;

D.4 Event error codes

D.4.1 Error event code returned in PDU_IT_ERROR

The standard error codes cover asynchronous error situations, which occur with typical MVCI protocol
modules and protocols. Error event codes are returned in an event item type PDU_IT_ERROR.

typedef enum E_PDU_ERR_EVT
{

PDU_ERR_EVT_NOERROR = 0x00000000, /* No Error. Event type only returned on a
PDUGetLastError if there were no previous
errors for the requested handle */

PDU_ERR_EVT_FRAME_STRUCT = 0x00000100, /* CLL/CoP Error: The structure of the received
protocol frame is incorrect (e.g. wrong frame
number, missing FC …). */

PDU_ERR_EVT_TX_ERROR = 0x00000101, /* CLL/CoP Error: Error encountered during
transmit of a ComPrimitive PDU. */

PDU_ERR_EVT_TESTER_PRESENT_ERROR = 0x00000102, /* CLL/CoP Error: Error encountered in
transmitting a Tester Present message or in
receiving an expected response to a Tester
Present message. */

PDU_ERR_EVT_RSC_LOCKED = 0x00000109, /* CLL Error: A physical ComParam was not set
because of a physical ComParam lock. */

PDU_ERR_EVT_RX_TIMEOUT = 0x00000103, /* CLL/CoP Error: Receive timer (e.g. P2Max)
expired with no expected responses received
from the vehicle.*/

PDU_ERR_EVT_RX_ERROR = 0x00000104, /* CLL/CoP Error: Error encountered in receiving
a message from the vehicle bus (e.g. checksum
error …). */

PDU_ERR_EVT_PROT_ERR = 0x00000105, /* CLL/CoP Error: Protocol error encountered
during handling of a ComPrimitive (e.g. if the
protocol cannot handle the length of a
ComPrimitive).*/

PDU_ERR_EVT_LOST_COMM_TO_VCI = 0x00000106, /* Module Error: Communication to a MVCI
protocol module has been lost.*/

PDU_ERR_EVT_VCI_HARDWARE_FAULT = 0x00000107, /* Module Error: The MVCI protocol module has
detected a hardware error.*/

PDU_ERR_EVT_INIT_ERROR = 0x00000108, /* CLL/CoP Error: A failure occurred during a
protocol initialization sequence. */

} T_PDU_ERR_EVT;

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 223

D.4.2 Additional error code returned in PDU_IT_ERROR

The D-PDU API allows for vendor defined additional error codes to be returned in an error event item. All
additional error codes and their text translations shall be provided in the MDF.

Table D.8 — Event error and examples for additional error codes

Standard Event Error Codes Examples for additional error codes
for a MDF

PDU_ERR_EVT_FRAME_STRUCT

PDU_ERR_EVT_FRAME_STRUCT PDU_XTRA_ERR_ISO15765_PADDING

 PDU_XTRA_ERR_ISO15765_FRAME_NUM

 PDU_XTRA_ERR_1850_FRAME_STRUCT

PDU_ERR_EVT_TX_ERROR

PDU_ERR_EVT_TX_ERROR PDU_XTRA_ERR_TX_LOST_ARB

 PDU_XTRA_ERR_TX_NETWORK_FAULT

 PDU_XTRA_ERR_1850_CRC

 PDU_XTRA_ERR_1850_TX_ERR

 PDU_XTRA_ERR_1850_TX_LOST_ARB

 PDU_XTRA_ERR_MAX_WAIT_FRAME

PDU_ERR_EVT_TESTER_PRESENT_ERROR

PDU_ERR_EVT_TESTER_PRESENT_ERROR PDU_XTRA_ERR_TP_TX

 PDU_XTRA_ERR_TP_RX

PDU_ERR_EVT_RX_TIMEOUT

PDU_ERR_EVT_RX_TIMEOUT PDU_XTRA_ERR_ISO15765_CF_TIMEOUT

 PDU_XTRA_ERR_ISO15765_FC_TIMEOUT

 PDU_XTRA_ERR_RX_TIMEOUT_NO_RSP

PDU_ERR_EVT_RX_ERROR

PDU_ERR_EVT_RX_ERROR PDU_XTRA_ERR_CAN_BUS_OFF

 PDU_XTRA_ERR_CAN_BUS_ERROR_ACTIVE

 PDU_XTRA_ERR_CAN_BUS_ERROR_PASSIVE

 PDU_XTRA_ERR_RX_ERRORFRAME

 PDU_XTRA_ERR_CAN_NO_ACK

 PDU_XTRA_ERR_CAN_CRC

 PDU_XTRA_ERR_CAN_BIT_STUFF

 PDU_XTRA_ERR_CAN_BUS_FAULT

 PDU_XTRA_ERR_RX_CHECKSUM_BAD

 PDU_XTRA_ERR_RX_FRAMING

 PDU_XTRA_ERR_RX_NETWORK_FAULT

 PDU_XTRA_ERR_1850_CRC

 PDU_XTRA_ERR_1850_NO_IFR

 PDU_XTRA_ERR_1850_BIT_TIMING

ISO 22900-2:2009(E)

224 © ISO 2009 – All rights reserved

Table D.8 (continued)

Standard Event Error Codes Examples for additional error codes
for a MDF

PDU_ERR_EVT_PROT_ERR

PDU_ERR_EVT_PROT_ERR PDU_XTRA_ERR_LOST_MASTER

 PDU_XTRA_ERR_NO_POLLING_MSG

 PDU_XTRA_ERR_UNEXP_RESPONSE

PDU_ERR_EVT_LOST_COMM_TO_VCI

PDU_ERR_EVT_LOST_COMM_TO_VCI PDU_XTRA_ERR_NO_RESP

 PDU_XTRA_ERR_WLAN_LOST

 PDU_XTRA_ERR_USB_DISCONNECT

PDU_ERR_EVT_VCI_HARDWARE_FAULT

PDU_ERR_EVT_VCI_HARDWARE_FAULT PDU_XTRA_ERR_RAM

 PDU_XTRA_ERR_FLASH

 PDU_XTRA_ERR_FILE_SYS

PDU_ERR_EVT_INIT_ERROR

PDU_ERR_EVT_INIT_ERROR PDU_XTRA_ERR_ISO_INVALID_KEYWORD

 PDU_XTRA_ERR_ISO_INIT_SEQ_ERROR

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 225

Annex E
(normative)

Application defined tags

In order to facilitate usage of callback routines and to provide best performance possible, the D-PDU API
makes use of an application defined void * pointer (in the following called 'tag'). Even though the application is
free to use the tag or not, and what to store with the tag, the tag's general intended function is as follows:

Usually, an application dealing with an API handle has to store additional data in conjunction with the handle.
For example, the application could combine a ComPrimitive handle, retrieved from the D-PDU API, with a list
of corresponding service qualifiers, into a single internal data structure. The application can now internally
refer to the whole information set by using a single pointer to that structure. When the D-PDU API
implementation executes the event callback function provided by the application, it returns a ComPrimitive
handle. Unfortunately, if no additional information is provided, the application has to iterate through a list of
structures, in order to find the internal data structure with the corresponding service qualifiers (because that
qualifier is not being referenced within the ComPrimitive handle).

This shortcoming has been eliminated, as the D-PDU API allows for storing a void * pointer within a
ComPrimitive, it returns the tag when executing the callback function. The application passes the pointer to
the internal data structure as tag value to PDUStartComPrimitive. When the application's event callback
function is executed, the application can now directly fetch the corresponding service qualifier without iterating
through a list of structures.

The client application MAY use the tag pointer as received from the D-PDU API, always assuming that it can
rely on the value returned by the PDU API in a callback function or a result item. If the client application does
not trust the D-PDU API, it may instead use its own list of mapped pointers to avoid the possibility of the tag
values being unexpectedly modified. Tag values are not necessary since the callback function and result item
always contain the corresponding handles.

Reference document:

⎯ Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects Douglas C.
Schmidt, Michael Stal

⎯ See also http://www.cs.wustl.edu/~schmidt/PDF/ACT.pdf

Tags are available for the following functionality:

⎯ pAPITag: D-PDU API Library (default system level callback)

⎯ pCllTag: ComLogicalLink Tag (ComLogical link callback)

⎯ pCoPTag: ComPrimitive Tag (returned in the PDU_RESULT_DATA for a ComLogicalLink callback)

ISO 22900-2:2009(E)

226 © ISO 2009 – All rights reserved

Annex F
(normative)

Description files

F.1 D-PDU API root description file (RDF)

F.1.1 General overview

The D-PDU API root description file (RDF) is the central entry point for all applications accessing MVCI
protocol modules. The location of this file, its structure, and the procedure to get access to it, is defined for
Windows and Linux platforms (see 9.7). Taking this as a basis, applications can automatically determine the
available resources without any prior knowledge about which MVCI protocol modules and D-PDU API
implementations are installed. Due to a standardized XML Schema structure, the application may even offer a
generic user dialog to configure and operate all MVCI protocol modules, their protocols and bus types.

F.1.2 UML diagram of RDF

Figure F.1 —UML class diagram of D-PDU API root description file shows the UML class diagram of the RDF.
Every D-PDU API implementation shall add an “MVCI_PDU_API” element to the “MVCI_PDU_API_ROOT”
element. As a minimum, the “MVCI_PDU_API” element contains a symbolic name identifying the
implementation (“SHORT_NAME” element), a full file path onto its software library (“LIBRARY_FILE” element),
its MVCI module description file (“MODULE_DESCRIPTION_PATH” element) and the cable description file
(“CABLE_DESCRIPTION_FILE” element). Optionally, this element may also include a short description, and
the supplier name related to the respective implementation.

NOTE Each DLL/library used at runtime belongs to one MVCI_PDU_API entry which exactly refers to one MDF and
one CDF. The client application decides which MVCI_PDU_API entry or entries to use.

Figure F.1 —UML class diagram of D-PDU API root description file (RDF)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 227

F.2 MVCI module description file (MDF)

F.2.1 General overview

The MVCI module description file (MDF) describes all ComParams, I/O controls, bus types, protocols and
resources supported by a specific MVCI protocol module. In addition, if the D-PDU API implementation
supports more than one type of MVCI protocol module, the MDF may list and describe all supported modules.
All definitions of ComParams, bus types, protocols, etc., inside the configuration description files may be
shared among the module definition in the same file.

Each element in the MDF contains a symbolic name, and its corresponding numeric ID. An application could
provide a user interface showing the symbolic names, e.g. for a list of ComParams. When the application
needs to get or set the ComParams at the API level, it would map the symbolic names onto the corresponding
IDs.

The application may also operate the D-PDU API without extracting the symbolic names and IDs at runtime. If
the use case excludes frequent changes to the MDFs, simple applications may also hard-code all necessary
IDs, and operate the D-PDU API without parsing any MDF at runtime.

Optionally, each element in this type of the MDF may have a short description.

F.2.2 ComParam String Format

F.2.2.1 General

ComParam default values, min values and max values are stored as strings in the MDF file. The strings are
written as a sequence of numbers separated by spaces. The numbers themselves are to be interpreted as
follows.

If the first character is 0 and the second character is not 'x' or 'X', the number is interpreted as an octal integer;
otherwise, it is interpreted as a decimal number. If the first character is '0' and the second character is 'x' or
'X', the number is interpreted as a hexadecimal integer. If the first character is '1' through '9', the number is
interpreted as a decimal integer. Any number may be preceded by a + or – sign to indicate sign.

F.2.2.2 String format for numeric values (data type PDU_PT_UNUMx or PDU_PT_SNUMx)

Most ComParams values are in a simple single number format like PDU_PT_UNUM32. The default value, min
value and max value in the MDF just contain a single number for these simple types.

EXAMPLE 1 Contents for baud rate: ComParam = CP_Baudrate: 10400.

 <COMPARAM EID=“ID1014”>
 <ID>14</ID>
 <SHORT_NAME>CP_Baudrate</SHORT_NAME>
 <DESCRIPTION> Define the baud rate used for the physical vehicle bus</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10400 </DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>

EXAMPLE 2 Same as EXAMPLE 1 with hexadecimal number.

 <COMPARAM EID=“ID1014”>
 <ID>14</ID>
 <SHORT_NAME>CP_Baudrate</SHORT_NAME>
 <DESCRIPTION> Define the baud rate used for the physical vehicle bus</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0x28A0</DEFAULT_VALUE>

ISO 22900-2:2009(E)

228 © ISO 2009 – All rights reserved

 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>

F.2.2.3 String format for bytefield values (data type PDU_PT_BYTEFIELD)

A bytefield structure essentially contains an array of bytes. The structure includes a maximum number of
bytes, actual number of bytes, and the array of bytes (see ComParam BYTEFIELD data type).

EXAMPLE 1 Byte field contents for tester present message: ComParam = CP_TesterPresentMessage: max
bytes = 12, actual bytes = 2, data = 0x3E, 0x01.

 <COMPARAM EID=“ID1015”>
 <ID>15</ID>
 <SHORT_NAME>CP_TesterPresentMessages</SHORT_NAME>
 <DESCRIPTION> Define the Tester Present Message used to keep a diagnostic session active on a vehicle serial bus.
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>0x0C 0x02 0x3E 0x01</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>

EXAMPLE 2 Same as EXAMPLE 1 with a mixture of hexadecimal and decimal numbers.

 <COMPARAM EID=“ID1015”>
 <ID>15</ID>
 <SHORT_NAME>CP_TesterPresentMessages</SHORT_NAME>
 <DESCRIPTION> Define the Tester Present Message used to keep a diagnostic session active on a vehicle serial bus.
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>12 2 0x3E 1</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>

F.2.2.4 String format for long field structures (data type PDU_PT_LONGFIELD)

A longfield structure essentially contains an array of longs. The structure includes a maximum number of
longs, actual number of longs, and the array of longs (see ComParam LONGFIELD Data Type).

EXAMPLE 1 Longfield contents for Can Baudrate Record: ComParam = CP_CanBaudrateRecord: max longs = 12,
actual longs = 3, data = 500000, 250000, 125000.

 <COMPARAM EID=“ID1016”>
 <ID>16</ID>
 <SHORT_NAME>CP_CanBaudrateRecord</SHORT_NAME>
 <DESCRIPTION> List of baud rates to use during an OBD CAN initialization sequence. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_LONGFIELD</DATA_TYPE>
 <DEFAULT_VALUE>12 3 500000 250000 125000</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>

EXAMPLE 2 Same as EXAMPLE 1 with a mixture of hexadecimal and decimal numbers.

 <COMPARAM EID=“ID1016”>
 <ID>16</ID>
 <SHORT_NAME>CP_CanBaudrateRecord</SHORT_NAME>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 229

 <DESCRIPTION> List of baud rates to use during an OBD CAN initialization sequence. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_LONGFIELD</DATA_TYPE>
 <DEFAULT_VALUE>0x0C 3 500000 250000 0x1e848</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>

F.2.2.5 String format for complex structures (data type PDU_PT_STRUCTFIELD)

A structfield structure essentially contains an array of specific types of structures. Each structure in the array is
separated by a space similar to PDU_PT_BYTEFIELD and PDU_PT_LONGFIELD ComParam types. The
structure includes a structure type, maximum number of structures, actual number of structures, and the array
of specific structures (see ComParam STRUCTFIELD data type).

EXAMPLE 1 Structfield contents for Can Session Timing override: ComParam = CP_SessionTimingOverride:
Structure Type = PDU_CPST_SESSION_TIMING = 1, max num structures = 255, actual num structures = 2,

data = structure (1)

UNUM16 session = 1

UNUM8 P2Max_high = 60

UNUM8 P2Max_low = 25

UNUM8 P2Star_high = 250

UNUM8 P2Star_low = 50

data = structure (2)

UNUM16 session = 2

UNUM8 P2Max_high = 65

UNUM8 P2Max_low = 20

UNUM8 P2Star_high = 255

UNUM8 P2Star_low = 55

</COMPARAM>
 <COMPARAM EID=“ID1017”>
 <ID>17</ID>
 <SHORT_NAME>CP_SessionTimingOverride</SHORT_NAME>
 <DESCRIPTION> Override the ECU response to a set session timing command. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_STRUCTFIELD</DATA_TYPE>
 <DEFAULT_VALUE>1 255 2 1 60 25 250 50 2 65 20 255 55 </DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>

EXAMPLE 2 Same as EXAMPLE 1 with a mixture of hexadecimal and decimal numbers.

</COMPARAM>
 <COMPARAM EID=“ID1017”>
 <ID>17</ID>
 <SHORT_NAME>CP_SessionTimingOverride</SHORT_NAME>
 <DESCRIPTION> Override the ECU response to a set session timing command. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_STRUCTFIELD</DATA_TYPE>
 <DEFAULT_VALUE>1 0xFF 2 1 60 25 250 50 0x02 65 20 0xFF 55 </DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>

ISO 22900-2:2009(E)

230 © ISO 2009 – All rights reserved

F.2.3 ComParam resolution tag

The MDF file contains an additional string value that specifies the resolution and unit of the ComParam. This
is only used for informational purposes. The resolution means that the ComParams set via
PDUSetComParam and received via PDUGetComParam will be in the defined resolution units.

EXAMPLE If the CP_P2Star has a resolution of 0,5 ms, then the client should send 4 000 to set the ComParam to
2 s.

F.2.4 UML diagram of MDF

Figure F.2 — UML class diagram of MVCI module description file shows the structure of the MVCI module
description file. All elements attached to the “MVCI_MODULE_DESCRIPTION” element may exist multiple
times, referring to different contents.

Within the configuration, bus types are clearly separated from protocols, because multiple protocols may run
on the same bus type. The bus types are defined with the “BUSTYPE” element. Besides name, ID and
description, this element has a list of ComParams. The referenced ComParams need to be defined in the
same file.

Protocols are defined with the “PROTOCOL” element, and contain exactly the same sub-elements as the bus
type element.

Figure F.2 — UML class diagram of MVCI module description file (MDF)

F.2.5 UML diagram of MDF elements COMPARAM

ComParams are defined with the “COMPARAM” element and contain mandatory entries for a symbolic name
(“SHORT_NAME” element), an ID (“ID” element), and the ComParam type (“COMPARAM_TYPE” element)
(see B.3.3).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 231

Figure F.3 — UML class diagram of element COMPARAM

F.2.6 UML diagram of MDF element RESOURCE

Resources consist of a bus type, and one protocol supported on that bus type, and are defined by the
“RESOURCE” element. Besides name, ID and description, this element has a bus type, a protocol, and a list
of pin numbers as sub-elements. Bus types and protocols are referenced by an ID/IDREF mechanism and
shall be defined within the same file. The list of pin numbers contains all pins this resource occupies on the
vehicles DLC interface. For example, for SAE J1850 VPW, the list would include one pin, whereas for CAN, it
would include two pins, one for CAN High and one for CAN Low.

Figure F.4 — UML class diagram of element RESOURCE

F.2.7 UML diagram of MDF element MODULETYPE

As the last element in the logical chain, the modules are defined by the “MODULETYPE” element and have
lists of I/O controls and resources, besides name, ID, and description. I/O controls are specified using the
“IO_CTRL” element. The elements are defined by name, ID and description. A detailed view on I/O controls is
depicted in I/O control section.

ISO 22900-2:2009(E)

232 © ISO 2009 – All rights reserved

Figure F.5 — UML class diagram of element MODULETYPE, RESOURCE and IO_CTRL

F.3 Cable description file (CDF)

F.3.1 General overview

The cable description file (depicted in Figure F.6 — UML class diagram of cable description file (CDF)) closes
the gap between the cable's pin assignment and the vendor-specific pin assignment on the MVCI protocol
module's DLC interface.

F.3.2 UML diagram of CDF

Each cable has its own “CABLE” element and the mandatory sub-elements “SHORT_NAME”, “DLC_TYPE”
and “ID”. The sub-element “DESCRIPTION” is again optional. Besides those sub-elements, there are two
additional mandatory sub-elements: a “MAPPING” sub-element for each resource mapped, and one
“CABLE_IDENTIFICATION” sub-element.

The “MAPPING” sub-element includes two mandatory sub-elements. The “PIN_ON_DLC” sub-element
defines the pin number on the DLC, while the “PIN_ON_VCI” sub-element defines the corresponding pin
number on the MVCI protocol module.

The “CABLE_IDENTIFICATION” sub-element contains the “CABLE_ID” sub-element, and optionally the
“CABLE_ID_PIN” sub-element, which contains a resistance value and a pin number for automatic cable
identification.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 233

Figure F.6 — UML class diagram of cable description file (CDF)

F.4 XML schema

XML schema for the D-PDU API Description Files.

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <xsd:complexType name=“BUSTYPE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“COMPARAM_REF” minOccurs=“0” maxOccurs=“unbounded”
type=“COMPARAM_REF”/>
 </xsd:sequence>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“CABLE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“CABLE_IDENTIFICATION” minOccurs=“1” maxOccurs=“1”
type=“CABLE_IDENTIFICATION”/>
 <xsd:element name=“MAPPING” minOccurs=“1” maxOccurs=“unbounded” type=“MAPPING”/>
 <xsd:element name=“DLCTYPE” minOccurs=“1” maxOccurs=“1”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“CABLE_DESCRIPTION_FILE”>
 <xsd:attribute name=“URI” use=“required” type=“xsd:anyURI”/>
 </xsd:complexType>
 <xsd:complexType name=“CABLE_ID_PIN”>
 <xsd:sequence>
 <xsd:element name=“PIN_ON_MODULE” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 <xsd:element name=“RESISTANCE_TO_GROUND” minOccurs=“1” maxOccurs=“1”

ISO 22900-2:2009(E)

234 © ISO 2009 – All rights reserved

type=“xsd:unsignedInt”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“CABLE_IDENTIFICATION”>
 <xsd:sequence>
 <xsd:element name=“CABLE_ID” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 <xsd:element name=“CABLE_ID_PIN” minOccurs=“0” maxOccurs=“unbounded”
type=“CABLE_ID_PIN”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“COMPARAM”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“DATA_TYPE” minOccurs=“1” maxOccurs=“1”
type=“ComParamDataType”/>
 <xsd:element name=“DEFAULT_VALUE” minOccurs=“1” maxOccurs=“1”
type=“xsd:string”/>
 <xsd:element name=“CLASS” minOccurs=“1” maxOccurs=“1” type=“ComParamClassType”/>
 <xsd:element name=“LAYER” minOccurs=“1” maxOccurs=“1” type=“LayerType”/>
 <xsd:element name=“RESOLUTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“MIN_VALUE” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“MAX_VALUE” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“COMPARAM_REF”>
 <xsd:sequence>
 <xsd:element name=“DEFAULT_VALUE” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“MIN_VALUE” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“MAX_VALUE” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“COMPARAM” minOccurs=“1” maxOccurs=“1”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name=“ComParamClassType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:enumeration value=“undefined”/>
 <xsd:enumeration value=“TIMING”/>
 <xsd:enumeration value=“INIT”/>
 <xsd:enumeration value=“COM”/>
 <xsd:enumeration value=“ERRHDL”/>
 <xsd:enumeration value=“BUSTYPE”/>
 <xsd:enumeration value=“UNIQUE_ID”/>
 <xsd:enumeration value=“TESTER_PRESENT”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name=“ComParamDataType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:enumeration value=“undefined”/>
 <xsd:enumeration value=“PDU_PT_UNUM8”/>
 <xsd:enumeration value=“PDU_PT_SNUM8”/>
 <xsd:enumeration value=“PDU_PT_UNUM16”/>
 <xsd:enumeration value=“PDU_PT_SNUM16”/>
 <xsd:enumeration value=“PDU_PT_UNUM32”/>
 <xsd:enumeration value=“PDU_PT_SNUM32”/>
 <xsd:enumeration value=“PDU_PT_BYTEFIELD”/>
 <xsd:enumeration value=“PDU_PT_STRUCTFIELD”/>
 <xsd:enumeration value=“PDU_PT_LONGFIELD”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name=“DLCTYPE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“ERROR_CODE”>
 <xsd:sequence>
 <xsd:element name=“ID” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 235

 <xsd:element name=“SHORT_NAME” minOccurs=“1” maxOccurs=“1” type=“NameType”/>
 <xsd:element name=“DESCRIPTION” minOccurs=“1” maxOccurs=“1” type=“xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“IO_CTRL”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:simpleType name=“LayerType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:enumeration value=“undefined”/>
 <xsd:enumeration value=“PHYSICAL”/>
 <xsd:enumeration value=“TRANSPORT”/>
 <xsd:enumeration value=“APPLICATION”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name=“LIBRARY_FILE”>
 <xsd:attribute name=“URI” use=“required” type=“xsd:anyURI”/>
 </xsd:complexType>
 <xsd:complexType name=“MAPPING”>
 <xsd:sequence>
 <xsd:element name=“PIN_ON_DLC” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 <xsd:element name=“PIN_ON_MODULE” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“MODULE_DESCRIPTION_FILE”>
 <xsd:attribute name=“URI” use=“required” type=“xsd:anyURI”/>
 </xsd:complexType>
 <xsd:complexType name=“MODULETYPE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“RESOURCE_CONFLICT_GROUP” minOccurs=“0” maxOccurs=“unbounded”
type=“RESOURCE_CONFLICT_GROUP”/>
 <xsd:element name=“IO_CTRL” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“RESOURCE” minOccurs=“1” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“MVCI_CABLE_DESCRIPTION”>
 <xsd:sequence>
 <xsd:element name=“DESCRIPTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“SUPPLIER_NAME” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“DLCTYPE” minOccurs=“1” maxOccurs=“unbounded” type=“DLCTYPE”/>
 <xsd:element name=“CABLE” minOccurs=“1” maxOccurs=“unbounded” type=“CABLE”/>
 </xsd:sequence>
 <xsd:attribute name=“MVCI_PART2_STANDARD_VERSION” use=“required” type=“xsd:string”
fixed=“2.2.0”/>
 <xsd:attribute name=“FILE_VERSION” use=“required” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:element name=“MVCI_CABLE_DESCRIPTION” type=“MVCI_CABLE_DESCRIPTION”/>
 <xsd:complexType name=“MVCI_MODULE_DESCRIPTION”>
 <xsd:sequence>
 <xsd:element name=“DESCRIPTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“SUPPLIER_NAME” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“PINTYPE” minOccurs=“0” maxOccurs=“unbounded” type=“PINTYPE”/>
 <xsd:element name=“MODULETYPE” minOccurs=“0” maxOccurs=“unbounded” type=“MODULETYPE”/>
 <xsd:element name=“RESOURCE” minOccurs=“0” maxOccurs=“unbounded” type=“RESOURCE”/>
 <xsd:element name=“PROTOCOL” minOccurs=“0” maxOccurs=“unbounded” type=“PROTOCOL”/>
 <xsd:element name=“BUSTYPE” minOccurs=“0” maxOccurs=“unbounded” type=“BUSTYPE”/>
 <xsd:element name=“IO_CTRL” minOccurs=“0” maxOccurs=“unbounded” type=“IO_CTRL”/>
 <xsd:element name=“COMPARAM” minOccurs=“0” maxOccurs=“unbounded” type=“COMPARAM”/>
 <xsd:element name=“ERROR_CODE” minOccurs=“0” maxOccurs=“unbounded” type=“ERROR_CODE”/>
 </xsd:sequence>

ISO 22900-2:2009(E)

236 © ISO 2009 – All rights reserved

 <xsd:attribute name=“MVCI_PART2_STANDARD_VERSION” use=“required” type=“xsd:string”
fixed=“2.2.0”/>
 <xsd:attribute name=“FILE_VERSION” use=“required” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:element name=“MVCI_MODULE_DESCRIPTION” type=“MVCI_MODULE_DESCRIPTION”/>
 <xsd:complexType name=“MVCI_PDU_API”>
 <xsd:sequence>
 <xsd:element name=“SHORT_NAME” minOccurs=“1” maxOccurs=“1” type=“NameType”/>
 <xsd:element name=“DESCRIPTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“SUPPLIER_NAME” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“LIBRARY_FILE” minOccurs=“1” maxOccurs=“1” type=“LIBRARY_FILE”/>
 <xsd:element name=“MODULE_DESCRIPTION_FILE” minOccurs=“1” maxOccurs=“1”
type=“MODULE_DESCRIPTION_FILE”/>
 <xsd:element name=“CABLE_DESCRIPTION_FILE” minOccurs=“1” maxOccurs=“1”
type=“CABLE_DESCRIPTION_FILE”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“MVCI_PDU_API_ROOT”>
 <xsd:sequence>
 <xsd:element name=“MVCI_PDU_API” minOccurs=“0” maxOccurs=“unbounded”
type=“MVCI_PDU_API”/>
 </xsd:sequence>
 <xsd:attribute name=“MVCI_PART2_STANDARD_VERSION” use=“required” type=“xsd:string”
fixed=“2.2.0”/>
 </xsd:complexType>
 <xsd:element name=“MVCI_PDU_API_ROOT” type=“MVCI_PDU_API_ROOT”/>
 <xsd:simpleType name=“NameType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:pattern value=“[0-9a-zA-Z_]*”/>
 <xsd:maxLength value=“128”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“ID” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 <xsd:element name=“SHORT_NAME” minOccurs=“1” maxOccurs=“1” type=“NameType”/>
 <xsd:element name=“DESCRIPTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“PIN_ON_MODULE”>
 <xsd:sequence>
 <xsd:element name=“PIN_ON_MODULE” minOccurs=“1” maxOccurs=“1” type=“xsd:unsignedInt”/>
 <xsd:element name=“PINTYPE” minOccurs=“1” maxOccurs=“1”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=“PINTYPE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“PROTOCOL”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“COMPARAM_REF” minOccurs=“0” maxOccurs=“unbounded”
type=“COMPARAM_REF”/>
 </xsd:sequence>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“RESOURCE”>
 <xsd:complexContent>
 <xsd:extension base=“PDU_OBJECT”>
 <xsd:sequence>
 <xsd:element name=“PIN_ON_MODULE” minOccurs=“1” maxOccurs=“unbounded”
type=“PIN_ON_MODULE”/>
 <xsd:element name=“BUSTYPE” minOccurs=“1” maxOccurs=“1”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 237

 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“PROTOCOL” minOccurs=“1” maxOccurs=“1”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“EID” use=“required” type=“xsd:ID”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name=“RESOURCE_CONFLICT_GROUP”>
 <xsd:sequence>
 <xsd:element name=“DESCRIPTION” minOccurs=“0” maxOccurs=“1” type=“xsd:string”/>
 <xsd:element name=“RESOURCE” minOccurs=“1” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“IDREF” type=“xsd:IDREF” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

F.5 Description file examples

F.5.1 Example MVCI protocol module

This subclause will demonstrate how a D-PDU API's and MVCI protocol module's capabilities have to be
described according to the D-PDU API XML schema. The capabilities of an example MVCI protocol module
are shown in Figure F.7 — Example MVCI protocol module. The example is considering different data link
controllers, physical link transceivers, and diagnostic connectors. Also, multiplexing and shared pin resources
are considered. All combinations of protocols, data link layers and physical link layers supported by this
example are listed below the figure. The pin numbers listed, refer to the pin assignment on the cable, not on
the example MVCI protocol module.

Figure F.7 — Example MVCI protocol module

ISO 22900-2:2009(E)

238 © ISO 2009 – All rights reserved

The example in Figure 7 — Example: CLLs sharing physical bus with message serialization supports the
following resources:

⎯ Dual-Wire CAN on Pins 3 and 11 (Protocols: ISO 11898, ISO 15765, SAE J1939)

⎯ Dual-Wire CAN on Pins 6 and 14 (Protocols: ISO 11898, ISO 15765, SAE J1939)

⎯ Single-Wire CAN on Pin 1 (Protocols: ISO 11898, ISO 15765)

⎯ ISO K-Line on Pin 7 (Protocol: KWP2000, ISO 9141-2)

⎯ ISO K-Line on Pin 9 (Protocol: KWP2000, ISO 9141-2)

⎯ ISO K-Line on Pin 12 (Protocol: KWP2000, ISO 9141-2)

⎯ ISO K-Line on Pin 15 (Protocol: KWP2000, ISO 9141-2)

⎯ SCI_B_ENGINE - Tx on Pin 12 and Rx on Pin 7 (Protocol: SAE J2610)

⎯ SCI_B_TRANS - Tx on Pin 9 and Rx on Pin 15 (Protocol: SAE J2610)

F.5.2 Example root description file

According to the MVCI protocol module setup (see example root description file), there shall be at least two
D-PDU API entries in the root description file. The XML entry MVCI_PDU_API “D_PDU_API_1” is the
implementation supporting this example MVCI protocol module. Using XML entry LIBRARY_FILE (contains
filename including full path), the application will find the D-PDU API implementation's dynamic library at
“C:\tmp1\D-PDU API Example.dll”. Similarly, the application may locate the PDU API implementation's MDF
and CDF file by reading the XML entry MODULE_DESCRIPTION_FILE and CABLE_DESCRIPTION_FILE
(both contain filename including full path).

EXAMPLE Root description file (RDF file).

<?xml version=“1.0” encoding=“UTF-8”?>
<!-- D-PDU-API root file -->
<MVCI_PDU_API_ROOT xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“C:\Data\Dev\eclipse\workspace\PduApi\pdu.xsd” MVCI_PART2_STANDARD_VERSION=“2.2.0”>
 <MVCI_PDU_API>
 <SHORT_NAME>D_PDU_API_1</SHORT_NAME>
 <DESCRIPTION>D-PDU-API Implementation used for MVCI of vendor #1</DESCRIPTION>
 <SUPPLIER_NAME>Vehicle Doctor Ltd.</SUPPLIER_NAME>
 <LIBRARY_FILE URI=“file:/c:/tmp1/PDUAPI_VEHICLEDOCTOR_2.2.0.dll”/>
 <MODULE_DESCRIPTION_FILE URI=“file:/c:/tmp1/MDF_VEHICLEDOCTOR_VCI1_2.2.0.xml”/>
 <CABLE_DESCRIPTION_FILE URI=“file:/c:/tmp1/CDF_VEHICLEDOCTOR_VCI1_2.2.0.xml”/>
 </MVCI_PDU_API>
 <MVCI_PDU_API>
 <SHORT_NAME>D_PDU_API_2</SHORT_NAME>
 <DESCRIPTION>D-PDU-API Implementation used for MVCI of vendor #2</DESCRIPTION>
 <SUPPLIER_NAME>OBD Bob Ltd.</SUPPLIER_NAME>
 <LIBRARY_FILE URI=“file:/c:/tmp2/PDUAPI_OBDBOB_2.2.0.dll”/>
 <MODULE_DESCRIPTION_FILE URI=“file:/c:/tmp2/MDF_OBDBOB_ VCIx_2.2.0.xml”/>
 <CABLE_DESCRIPTION_FILE URI=“file:/c:/tmp2/CDF_OBDBOB_ VCIx _2.2.0.xml”/>
 </MVCI_PDU_API>
</MVCI_PDU_API_ROOT>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 239

F.5.3 Example module description file

The module description file (see example module description file) describes the example MVCI protocol
module's capabilities in detail up to the pins seen on the MVCI protocol module itself. It does not include any
mapping onto pins on a diagnostic link connector (DLC).

EXAMPLE Module Description file (MDF file). This is only an example and not a template based on the latest
ComParam definitions.

<?xml version=“1.0” encoding=“UTF-8”?>
<!-- D-PDU-API module description file -->
<MVCI_MODULE_DESCRIPTION xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“C:\Data\Dev\eclipse\workspace\PduApi\pdu.xsd” FILE_VERSION=“0.0.1”
MVCI_PART2_STANDARD_VERSION=“2.2.0”>
 <DESCRIPTION>This is an example for a module description file</DESCRIPTION>
 <SUPPLIER_NAME>Vehicle Doctor Ltd.</SUPPLIER_NAME>
 <PINTYPE EID=“ID2297”>
 <ID>2000</ID>
 <SHORT_NAME>HI</SHORT_NAME>
 <DESCRIPTION>High signal</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2298”>
 <ID>2001</ID>
 <SHORT_NAME>LO</SHORT_NAME>
 <DESCRIPTION>Low signal</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2299”>
 <ID>2002</ID>
 <SHORT_NAME>K</SHORT_NAME>
 <DESCRIPTION>K line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2300”>
 <ID>2003</ID>
 <SHORT_NAME>L</SHORT_NAME>
 <DESCRIPTION>L line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2301”>
 <ID>2004</ID>
 <SHORT_NAME>TX</SHORT_NAME>
 <DESCRIPTION>TX line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2302”>
 <ID>2005</ID>
 <SHORT_NAME>RX</SHORT_NAME>
 <DESCRIPTION>RX line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2303”>
 <ID>2006</ID>
 <SHORT_NAME>PLUS</SHORT_NAME>
 <DESCRIPTION>Plus line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2304”>
 <ID>2007</ID>
 <SHORT_NAME>MINUS</SHORT_NAME>
 <DESCRIPTION>Minus line</DESCRIPTION>
 </PINTYPE>
 <PINTYPE EID=“ID2305”>
 <ID>2008</ID>
 <SHORT_NAME>SINGLE</SHORT_NAME>
 <DESCRIPTION>Single line</DESCRIPTION>
 </PINTYPE>
<PINTYPE EID=“ID2306”>
 <ID>2009</ID>
 <SHORT_NAME>IGN</SHORT_NAME>
 <DESCRIPTION>Pin for detection of Ignition Sense State</DESCRIPTION>
 </PINTYPE>
<PINTYPE EID=“ID2307”>
 <ID>2010</ID>
 <SHORT_NAME>PROGV</SHORT_NAME>
 <DESCRIPTION> Pin for Reading and Setting the Programable Voltage </DESCRIPTION>
 </PINTYPE>
<MODULETYPE>

ISO 22900-2:2009(E)

240 © ISO 2009 – All rights reserved

 <ID>500</ID>
 <SHORT_NAME>Example_VCI_1</SHORT_NAME>
 <DESCRIPTION>Example MVCI #1 of vendor #1</DESCRIPTION>
 <RESOURCE-CONFLICT-GROUP>
 <DESCRIPTION>Conflicts with CAN controller</DESCRIPTION>
 <RESOURCE IDREF=“ID11”/>
 <RESOURCE IDREF=“ID12”/>
 <RESOURCE IDREF=“ID13”/>
 <RESOURCE IDREF=“ID14”/>
 <RESOURCE IDREF=“ID15”/>
 <RESOURCE IDREF=“ID16”/>
 <RESOURCE IDREF=“ID17”/>
 <RESOURCE IDREF=“ID18”/>
 </RESOURCE-CONFLICT-GROUP>
 <RESOURCE-CONFLICT-GROUP>
 <DESCRIPTION>Conflicts with UART</DESCRIPTION>
 <RESOURCE IDREF=“ID19”/>
 <RESOURCE IDREF=“ID20”/>
 <RESOURCE IDREF=“ID21”/>
 <RESOURCE IDREF=“ID22”/>
 <RESOURCE IDREF=“ID23”/>
 <RESOURCE IDREF=“ID24”/>
 </RESOURCE-CONFLICT-GROUP>
 <IO_CTRL IDREF=“ID2199”/>
 <IO_CTRL IDREF=“ID2200”/>
 <RESOURCE IDREF=“ID11”/>
 <RESOURCE IDREF=“ID12”/>
 <RESOURCE IDREF=“ID13”/>
 <RESOURCE IDREF=“ID14”/>
 <RESOURCE IDREF=“ID15”/>
 <RESOURCE IDREF=“ID16”/>
 <RESOURCE IDREF=“ID17”/>
 <RESOURCE IDREF=“ID18”/>
 <RESOURCE IDREF=“ID19”/>
 <RESOURCE IDREF=“ID20”/>
 <RESOURCE IDREF=“ID21”/>
 <RESOURCE IDREF=“ID22”/>
 <RESOURCE IDREF=“ID23”/>
 <RESOURCE IDREF=“ID24”/>
 </MODULETYPE>
 <MODULETYPE>
 <ID>501</ID>
 <SHORT_NAME>Example_VCI_2</SHORT_NAME>
 <DESCRIPTION>Example MVCI #2 of vendor #1</DESCRIPTION>
 <RESOURCE IDREF=“ID23”/>
 </MODULETYPE>
 <RESOURCE EID=“ID11”>
 <ID>400</ID>
 <SHORT_NAME>DW_CAN_1</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 2 and 3 for protocol #1</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>2</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>3</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID52”/>
 </RESOURCE>
 <RESOURCE EID=“ID12”>
 <ID>401</ID>
 <SHORT_NAME>DW_CAN_2</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 2 and 3 for protocol #2</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>2</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>3</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID53”/>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 241

 </RESOURCE>
 <RESOURCE EID=“ID13”>
 <ID>402</ID>
 <SHORT_NAME>DW_CAN_3</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 2 and 3 for protocol #3</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>2</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>3</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID54”/>
 </RESOURCE>
 <RESOURCE EID=“ID14”>
 <ID>403</ID>
 <SHORT_NAME>DW_CAN_4</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 4 and 5 for protocol #1</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>4</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>5</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID52”/>
 </RESOURCE>
 <RESOURCE EID=“ID15”>
 <ID>404</ID>
 <SHORT_NAME>DW_CAN_5</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 4 and 5 for protocol #2</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>4</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>5</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID53”/>
 </RESOURCE>
 <RESOURCE EID=“ID16”>
 <ID>405</ID>
 <SHORT_NAME>DW_CAN_6</SHORT_NAME>
 <DESCRIPTION>Dual Wire CAN on pins 4 and 5 for protocol #3</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>4</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2297”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>5</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2298”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID4”/>
 <PROTOCOL IDREF=“ID54”/>
 </RESOURCE>
 <RESOURCE EID=“ID17”>
 <ID>406</ID>
 <SHORT_NAME>SW_CAN_1</SHORT_NAME>
 <DESCRIPTION>Single Wire CAN on pin 2 for protocol #1</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>1</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2305”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID5”/>
 <PROTOCOL IDREF=“ID52”/>
 </RESOURCE>
 <RESOURCE EID=“ID18”>
 <ID>407</ID>
 <SHORT_NAME>SW_CAN_2</SHORT_NAME>

ISO 22900-2:2009(E)

242 © ISO 2009 – All rights reserved

 <DESCRIPTION>Single Wire CAN on pin 2 for protocol #2</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>1</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2305”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID5”/>
 <PROTOCOL IDREF=“ID53”/>
 </RESOURCE>
 <RESOURCE EID=“ID19”>
 <ID>408</ID>
 <SHORT_NAME>K_LINE_1</SHORT_NAME>
 <DESCRIPTION>K-Line on pin 6</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>6</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2299”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID3”/>
 <PROTOCOL IDREF=“ID50”/>
 </RESOURCE>
 <RESOURCE EID=“ID20”>
 <ID>409</ID>
 <SHORT_NAME>K_LINE_2</SHORT_NAME>
 <DESCRIPTION>K-Line on pin 7</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>7</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2299”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID3”/>
 <PROTOCOL IDREF=“ID50”/>
 </RESOURCE>
 <RESOURCE EID=“ID21”>
 <ID>410</ID>
 <SHORT_NAME>K_LINE_3</SHORT_NAME>
 <DESCRIPTION>K-Line on pin 8</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>8</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2299”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID3”/>
 <PROTOCOL IDREF=“ID50”/>
 </RESOURCE>
 <RESOURCE EID=“ID22”>
 <ID>411</ID>
 <SHORT_NAME>K_LINE_4</SHORT_NAME>
 <DESCRIPTION>K-Line on pin 9</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>9</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2299”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID3”/>
 <PROTOCOL IDREF=“ID50”/>
 </RESOURCE>
 <RESOURCE EID=“ID23”>
 <ID>412</ID>
 <SHORT_NAME>SCI_1</SHORT_NAME>
 <DESCRIPTION>SCI on pins 6 and 8</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>6</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2302”/>
 </PIN_ON_MODULE>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>8</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2301”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID6”/>
 <PROTOCOL IDREF=“ID51”/>
 </RESOURCE>
 <RESOURCE EID=“ID24”>
 <ID>413</ID>
 <SHORT_NAME>SCI_2</SHORT_NAME>
 <DESCRIPTION>SCI on pins 7 and 9</DESCRIPTION>
 <PIN_ON_MODULE>
 <PIN_ON_MODULE>9</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2302”/>
 </PIN_ON_MODULE>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 243

 <PIN_ON_MODULE>
 <PIN_ON_MODULE>8</PIN_ON_MODULE>
 <PINTYPE IDREF=“ID2301”/>
 </PIN_ON_MODULE>
 <BUSTYPE IDREF=“ID6”/>
 <PROTOCOL IDREF=“ID51”/>
 </RESOURCE>
 <PROTOCOL EID=“ID50”>
 <ID>300</ID>
 <SHORT_NAME>ISO_14230_3_on_ISO_14230_2</SHORT_NAME>
 <DESCRIPTION>Keyword protocol 2000 on K-Line (ISO 14230)</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1002”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1005”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1006”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1008”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>110</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1013”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1016”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1017”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1018”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1019”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1020”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1021”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>50000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1022”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1023”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1024”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1025”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>

ISO 22900-2:2009(E)

244 © ISO 2009 – All rights reserved

 <COMPARAM IDREF=“ID1026”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1027”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1028”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1031”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>51</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1100”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1101”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1102”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>16</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1135”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1136”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1137”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>51</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1138”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>241</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1139”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>4</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1141”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1142”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1146”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1147”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1148”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>10</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1149”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1150”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1151”/>
 </COMPARAM_REF>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 245

 <COMPARAM_REF>
 <DEFAULT_VALUE>16</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1152”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1153”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1154”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>241</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1163”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>600</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1164”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1165”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1166”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>600</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1167”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>120</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1168”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1169”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>10</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1170”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1171”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1172”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1173”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1174”/>
 </COMPARAM_REF>
 </PROTOCOL>
 <PROTOCOL EID=“ID53”>
 <ID>304</ID>
 <SHORT_NAME>ISO_15765_3_on_ISO_15765_2</SHORT_NAME>
 <DESCRIPTION>UDS on CAN</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1002”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1001”/>
 </COMPARAM_REF>
 <COMPARAM_REF>

ISO 22900-2:2009(E)

246 © ISO 2009 – All rights reserved

 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1005”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1006”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1008”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1009”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1011”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1014”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>240</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1016”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1017”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>10</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1018”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1019”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1020”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1021”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>50000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1022”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1023”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1024”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1025”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1026”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1027”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1028”/>
 </COMPARAM_REF>
 <COMPARAM_REF>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 247

 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1031”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1034”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1103”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1105”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1107”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>65535</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1109”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1110”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1112”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1114”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>85</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1115”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1116”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1117”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>255</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1121”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1118”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>4</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1119”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2015</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1120”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1125”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>4</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1126”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2024</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1127”/>
 </COMPARAM_REF>

ISO 22900-2:2009(E)

248 © ISO 2009 – All rights reserved

 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1129”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1128”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1512</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1130”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1131”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1133”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1153”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1154”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1155”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>65535</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1157”/>
 </COMPARAM_REF>
 </PROTOCOL>
 <PROTOCOL EID=“ID52”>
 <ID>302</ID>
 <SHORT_NAME>ISO_11898_RAW</SHORT_NAME>
 <DESCRIPTION>CAN raw</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1002”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1024”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1005”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1006”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1129”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>4</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1128”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1512</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1130”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1153”/>
 </COMPARAM_REF>
 </PROTOCOL>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 249

 <PROTOCOL EID=“ID54”>
 <ID>304</ID>
 <SHORT_NAME>SAE_J1939_73_on_SAE_J1939_21</SHORT_NAME>
 <DESCRIPTION>SAE J1939 protocol</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1002”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1003”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <MIN_VALUE></MIN_VALUE>
 <COMPARAM IDREF=“ID1035”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1005”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1024”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1026”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1015”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1110”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1112”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>1500</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1131”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>400</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1133”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>255</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1121”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1143”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1153”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>400</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1160”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2500</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1161”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2500</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1162”/>
 </COMPARAM_REF>
 </PROTOCOL>
 <PROTOCOL EID=“ID51”>
 <ID>301</ID>
 <SHORT_NAME>SAE_J2610_on_SAE_J2610_SCI</SHORT_NAME>

ISO 22900-2:2009(E)

250 © ISO 2009 – All rights reserved

 <DESCRIPTION>SCI Protocol (SAE J2610)</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1002”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1005”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1024”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1153”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1158”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1159”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1160”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1161”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1162”/>
 </COMPARAM_REF>
 </PROTOCOL>
 <BUSTYPE EID=“ID3”>
 <ID>200</ID>
 <SHORT_NAME>ISO_9141_2_UART</SHORT_NAME>
 <DESCRIPTION>K-Line interface as defined in ISO 9141</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>10400</DEFAULT_VALUE>
 <MAX_VALUE></MAX_VALUE>
 <COMPARAM IDREF=“ID1400”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1403”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1404”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>6</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1415”/>
 </COMPARAM_REF>
 </BUSTYPE>
 <BUSTYPE EID=“ID4”>
 <ID>201</ID>
 <SHORT_NAME>ISO_11898_2_DWCAN</SHORT_NAME>
 <DESCRIPTION>CAN according to ISO 11898</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>500000</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1400”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>80</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1401”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 251

 <COMPARAM IDREF=“ID1405”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1407”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>15</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1412”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1414”/>
 </COMPARAM_REF>
 </BUSTYPE>
 <BUSTYPE EID=“ID5”>
 <ID>201</ID>
 <SHORT_NAME>SAE_J2411_SWCAN</SHORT_NAME>
 <DESCRIPTION>CAN according to ISO SAE J2411</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>33333</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1400”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>87</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1401”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1405”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1407”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>83333</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1409”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1410”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>2</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1411”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>15</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1412”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1414”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <COMPARAM IDREF=“ID1416”/>
 </COMPARAM_REF>
 </BUSTYPE>
 <BUSTYPE EID=“ID6”>
 <ID>203</ID>
 <SHORT_NAME>SCI_J2610_UART</SHORT_NAME>
 <DESCRIPTION>SCI J2610 interface</DESCRIPTION>
 <COMPARAM_REF>
 <DEFAULT_VALUE>7812</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1400”/>
 </COMPARAM_REF>
 <COMPARAM_REF>
 <DEFAULT_VALUE>6</DEFAULT_VALUE>
 <COMPARAM IDREF=“ID1415”/>
 </COMPARAM_REF>
 </BUSTYPE>
 <IO_CTRL EID=“ID2199”>
 <ID>800</ID>
 <SHORT_NAME>PDU_IOCTL_READ_PROG_VOLTAGE</SHORT_NAME>

ISO 22900-2:2009(E)

252 © ISO 2009 – All rights reserved

 <DESCRIPTION>Read Programming Voltage</DESCRIPTION>
 </IO_CTRL>
 <IO_CTRL EID=“ID2200”>
 <ID>801</ID>
 <SHORT_NAME>PDU_IOCTL_SET_PROG_VOLTAGE</SHORT_NAME>
 <DESCRIPTION>Set Programming Voltage</DESCRIPTION>
 </IO_CTRL>
 <COMPARAM EID=“ID1001”>
 <ID>1</ID>
 <SHORT_NAME>CP_CanTransmissionTime</SHORT_NAME>
 <DESCRIPTION>If the timeout values are used which have been received by the ECU via session control response (0x50), the Can transmission
time has to be added to the timeout values: P2 = received P2 + CanTransmissionTime (contains delay for both transmission
directions)</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1002”>
 <ID>2</ID>
 <SHORT_NAME>CP_EnablePerformanceTest</SHORT_NAME>
 <DESCRIPTION>This parameter will place the tester into a performance measurement mode. Parameters such as P1Min, P2Min, Br, Cs will be
tested in this mode.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1003”>
 <ID>3</ID>
 <SHORT_NAME>CP_J1939Name_Ecu</SHORT_NAME>
 <DESCRIPTION>Name field from J1939 document. This parameter will contain the NAME of the ECU</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>SAE_J1939</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1004”>
 <ID>4</ID>
 <SHORT_NAME>CP_J1939PreferredAddress_Ecu</SHORT_NAME>
 <DESCRIPTION>List of preferred addresses for the ECU</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>SAE J1939</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER> TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1005”>
 <ID>5</ID>
 <SHORT_NAME>CP_Loopback</SHORT_NAME>
 <DESCRIPTION>Echo Transmitted messages in the receive queue. Including periodic messages. Loopback messages must only be sent after
successful transmission of a message. Loopback frames are not subject to message filtering.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1006”>
 <ID>6</ID>
 <SHORT_NAME>CP_P2Max</SHORT_NAME>
 <DESCRIPTION>Timeout in receiving an expected frame after a successful transmit complete. Also used for multiple ECU responses.
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 <RESOLUTION>0.5ms</RESOLUTION>
 </COMPARAM>
 <COMPARAM EID=“ID1007”>
 <ID>7</ID>
 <SHORT_NAME>CP_P2Max_Ecu</SHORT_NAME>
 <DESCRIPTION>Performance requirement for the server to start with the response message after the reception of a request message (indicated via
N_USData.ind). This is a performance requirement parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 253

 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1008”>
 <ID>8</ID>
 <SHORT_NAME>CP_P2Min</SHORT_NAME>
 <DESCRIPTION>This sets the minimum time between tester request and ECU responses or two ECU responses. After the request, the interface shall
be capable of handling an immediate response (P2_min=0). For subsequent responses, a byte received after P1_MAX shall be considered as the start of
the subsequent response. This is a performance requirement parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1009”>
 <ID>9</ID>
 <SHORT_NAME>CP_P2Star</SHORT_NAME>
 <DESCRIPTION>Performance requirement for the client to expect the start of the response message after the reception of a negative response
message (indicated via N_USData.ind) with response code 78 hex (enhanced response timing).</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>12000</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1010”>
 <ID>10</ID>
 <SHORT_NAME>CP_P2Star_Ecu</SHORT_NAME>
 <DESCRIPTION>Performance requirement for the server to start with the response message after the transmission of a negative response message
(indicated via N_USData.con) with response code 78 hex (enhanced response timing). This is a performance requirement
parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10000</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1011”>
 <ID>11</ID>
 <SHORT_NAME>CP_P3Func</SHORT_NAME>
 <DESCRIPTION>Minimum time for the client to wait after the successful transmission of a functionally addressed request message (indicated via
N_USData.con) before it can transmit the next functionally addressed request message in case no response is required or the requested data is only
supported by a subset of the functionally addressed servers.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1012”>
 <ID>12</ID>
 <SHORT_NAME>CP_P3Max_Ecu</SHORT_NAME>
 <DESCRIPTION>Time between end of ECU responses and start of new tester request</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10000</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1013”>
 <ID>13</ID>
 <SHORT_NAME>CP_P3Min</SHORT_NAME>
 <DESCRIPTION>Minimum time between end of ECU responses and start of new request. The interface will accept all responses up to P3_MIN
time. The interface will allow transmission of a request any time after P3_MIN.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>110</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1014”>
 <ID>14</ID>
 <SHORT_NAME>CP_P3Phys</SHORT_NAME>
 <DESCRIPTION>Minimum time for the client to wait after the successful transmission of a physically addressed request message (indicated via
N_USData.con) with no response required before it can transmit the next physically addressed request message</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1015”>

ISO 22900-2:2009(E)

254 © ISO 2009 – All rights reserved

 <ID>15</ID>
 <SHORT_NAME>CP_J1939PreferredAddress</SHORT_NAME>
 <DESCRIPTION>Claim and protect a SAE J1939 address on the vehicle network. Reference RP1210a. This will be used by the VCI to claim an
address on the J1939 bus</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>SAE_J1939</DEFAULT_VALUE>
 <CLASS> INIT</CLASS>
 <LAYER> TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1016”>
 <ID>16</ID>
 <SHORT_NAME>CP_RC21CompletionTimeout</SHORT_NAME>
 <DESCRIPTION>Time period the tester accepts repeated negative responses with response code 0x21 and repeats the same request.
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>240</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1017”>
 <ID>17</ID>
 <SHORT_NAME>CP_RC21Handling</SHORT_NAME>
 <DESCRIPTION>Repetition mode in case of response code 0x7F XX 0x21.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1018”>
 <ID>18</ID>
 <SHORT_NAME>CP_RC21RequestTime</SHORT_NAME>
 <DESCRIPTION>Time between negative response with response code 0x21 and the retransmission of the same request.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1019”>
 <ID>19</ID>
 <SHORT_NAME>CP_RC23CompletionTimeout</SHORT_NAME>
 <DESCRIPTION>Time period the tester accepts repeated negative responses with response code 0x23 and repeats the same request
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1020”>
 <ID>20</ID>
 <SHORT_NAME>CP_RC23Handling</SHORT_NAME>
 <DESCRIPTION>Repetition mode in case of response code 0x7F XX 0x23. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1021”>
 <ID>21</ID>
 <SHORT_NAME>CP_RC23RequestTime</SHORT_NAME>
 <DESCRIPTION>Time between negative response with response code 0x23 and the retransmission of the same request.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1022”>
 <ID>22</ID>
 <SHORT_NAME>CP_RC78CompletionTimeout</SHORT_NAME>
 <DESCRIPTION>Time period the tester accepts repeated negative responses with response code 0x78 and waits for a positive response further on.
</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50000</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 255

 <COMPARAM EID=“ID1023”>
 <ID>23</ID>
 <SHORT_NAME>CP_RC78Handling</SHORT_NAME>
 <DESCRIPTION>Handling of 0x7F XX 0x78ResponseTimeout and 0x78Repetitions</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1024”>
 <ID>24</ID>
 <SHORT_NAME>CP_RepeatReqCountApp</SHORT_NAME>
 <DESCRIPTION>This parameter contains a counter to enable a re-transmission of the last request when either a transmit, receive error, or timeout
with no response is detected. This only applies to the application layer.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1025”>
 <ID>25</ID>
 <SHORT_NAME>CP_StartMsgIndEnable</SHORT_NAME>
 <DESCRIPTION>Start Message Indication Enable. Upon receiving a first frame of a multi-frame message (ISO15765) or upon receiving a first byte
of a UART message and indication will be set in the RX result item. No data bytes will accompany the result item.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1026”>
 <ID>26</ID>
 <SHORT_NAME>CP_SuspendQueueOnError</SHORT_NAME>
 <DESCRIPTION>This parameter is to be used as a temporary parameter for services that require a positive response before any further Com
Primitives can be executed.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1027”>
 <ID>27</ID>
 <SHORT_NAME>CP_TesterPresentAddrMode</SHORT_NAME>
 <DESCRIPTION>Addressing Mode to be used for Tester Present. Uses the PhysicalReqxxx or FuncReqxxx information from the address parameter
table.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1028”>
 <ID>28</ID>
 <SHORT_NAME>CP_TesterPresentHandling</SHORT_NAME>
 <DESCRIPTION>Define tester present message generation settings </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1031”>
 <ID>31</ID>
 <SHORT_NAME>CP_TesterPresentSendType</SHORT_NAME>
 <DESCRIPTION>Define settings for the type of tester present transmits.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1033”>
 <ID>33</ID>
 <SHORT_NAME>CP_TesterPresentTime_Ecu</SHORT_NAME>
 <DESCRIPTION>Time for the server to keep a diagnostic session other than the default session active while not receiving any diagnostic request
message</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10000</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>

ISO 22900-2:2009(E)

256 © ISO 2009 – All rights reserved

 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1034”>
 <ID>34</ID>
 <SHORT_NAME>CP_TransmitIndEnable</SHORT_NAME>
 <DESCRIPTION>Transmit Indication Enable. On completion of a transmit message by the protocol an indication will be set in the RX_FLAG result
item. No data bytes will accompany the result item.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1035”>
 <ID>35</ID>
 <SHORT_NAME>CP_J1939Name</SHORT_NAME>
 <DESCRIPTION>Name field from J1939 document. This ComParam will contain the NAME of the Tester.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_BYTEFIELD</DATA_TYPE>
 <DEFAULT_VALUE>SAE_J1939</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>APPLICATION</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1100”>
 <ID>100</ID>
 <SHORT_NAME>CP_5BaudAddressFunc</SHORT_NAME>
 <DESCRIPTION>Value of 5Baud Address in case of functional addressed communication. The correct baud rate address type (functional/physical)
is selected during execution of a Start Communication Com Primitive based on the setting of the CP_RequestAddrMode parameter</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>51</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1101”>
 <ID>101</ID>
 <SHORT_NAME>CP_5BaudAddressPhys</SHORT_NAME>
 <DESCRIPTION>Value of 5Baud Address in case of physical addressed communication. The correct baud rate address type (functional/physical) is
selected during execution of a Start Communication Com Primitive based on the setting of the CP_RequestAddrMode parameter</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>01</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1102”>
 <ID>102</ID>
 <SHORT_NAME>CP_5BaudMode</SHORT_NAME>
 <DESCRIPTION>Type of 5 Baud initialization. This parameter allows either ISO9141 initialization sequence, ISO9141-2/ISO14230 initialization
sequence, or hybrid versions which include only one of the extra bytes defined for ISO9141-2 and ISO14230 </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1103”>
 <ID>103</ID>
 <SHORT_NAME>CP_Ar</SHORT_NAME>
 <DESCRIPTION>Time for transmission of the CAN frame (any N_PDU) on the receiver side</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1104”>
 <ID>104</ID>
 <SHORT_NAME>CP_Ar_Ecu</SHORT_NAME>
 <DESCRIPTION>Time for transmission of the CAN frame (any N_PDU) on the receiver side</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1105”>
 <ID>105</ID>
 <SHORT_NAME>CP_As</SHORT_NAME>
 <DESCRIPTION>Time for transmission of the CAN frame (any N_PDU) on the sender side</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 257

 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1106”>
 <ID>106</ID>
 <SHORT_NAME>CP_As_Ecu</SHORT_NAME>
 <DESCRIPTION>Time for transmission of the CAN frame (any N_PDU) on the sender side</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1107”>
 <ID>107</ID>
 <SHORT_NAME>CP_BlockSize</SHORT_NAME>
 <DESCRIPTION>This sets the block size the interface should report to the vehicle for receiving segmented transfers in a Transmit Flow Control
Message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1108”>
 <ID>108</ID>
 <SHORT_NAME>CP_BlockSize_Ecu</SHORT_NAME>
 <DESCRIPTION>This sets the block size the ECU should report to the tester for receiving segmented transfers in a Transmit Flow Control
Message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1109”>
 <ID>109</ID>
 <SHORT_NAME>CP_BlockSizeOverride</SHORT_NAME>
 <DESCRIPTION>This sets the block size the interface should use to send segmented messages to the vehicle. The flow control value reported by the
vehicle should be ignored. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>65535</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1110”>
 <ID>110</ID>
 <SHORT_NAME>CP_Br</SHORT_NAME>
 <DESCRIPTION>Time until transmission of the next FlowControl. This is equivalent to Th in J1939-21. For ISO 15765-2 and 15765-4, this value is
a performance requirement parameter and should not be used as a timeout value by the tester.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1111”>
 <ID>111</ID>
 <SHORT_NAME>CP_Br_Ecu</SHORT_NAME>
 <DESCRIPTION>Time until transmission of the next FlowControl. This is a performance requirement parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1112”>
 <ID>112</ID>
 <SHORT_NAME>CP_Bs</SHORT_NAME>
 <DESCRIPTION>Timeout until reception of the next FlowControl. This is equivalent to T4 in J1939-21.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>150</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1113”>
 <ID>113</ID>
 <SHORT_NAME>CP_Bs_Ecu</SHORT_NAME>
 <DESCRIPTION>Timeout until reception of the next FlowControl</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>

ISO 22900-2:2009(E)

258 © ISO 2009 – All rights reserved

 <DEFAULT_VALUE>150</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1114”>
 <ID>114</ID>
 <SHORT_NAME>CP_CanDataSizeOffset</SHORT_NAME>
 <DESCRIPTION>Offset subtracted from the total number of expected bytes received/transmitted in a first frame message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1115”>
 <ID>115</ID>
 <SHORT_NAME>CP_CanFillerByte</SHORT_NAME>
 <DESCRIPTION>Padding data byte to be used to pad all USDT type transmits frames (SF, FC, and last CF).</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>00</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1116”>
 <ID>116</ID>
 <SHORT_NAME>CP_CanFillerByteHandling</SHORT_NAME>
 <DESCRIPTION>Enable Padding forcing the DLC of a CAN frame to always be 8.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1117”>
 <ID>117</ID>
 <SHORT_NAME>CP_CanFirstFrameValue</SHORT_NAME>
 <DESCRIPTION>First Frame number to be transmitted/received on a multi-segment transfer. Used to override the normal First Frame value of
1</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1118”>
 <ID>118</ID>
 <SHORT_NAME>CP_CanFuncReqExtAddr</SHORT_NAME>
 <DESCRIPTION>Address extension for enhanced diagnostics. The first byte of the requested CAN frame data contains the N_AE/N_TA byte
followed by the correct number of PCI bytes. This parameters is used for all transmitted CAN Frames that have the “Can Address Extension' Arial bit
set in the CanIdFormat</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1119”>
 <ID>119</ID>
 <SHORT_NAME>CP_CanFuncReqFormat</SHORT_NAME>
 <DESCRIPTION>CAN Format used for a functional address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>05</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1120”>
 <ID>120</ID>
 <SHORT_NAME>CP_CanFuncReqId</SHORT_NAME>
 <DESCRIPTION>CAN ID used for a functional address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>2015</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1121”>
 <ID>121</ID>
 <SHORT_NAME>CP_CanMaxNumWaitFrames</SHORT_NAME>
 <DESCRIPTION>The maximum number of WAIT flow control frames allowed during a multi-segment transfer. For J1939, this is the maximum
number of allowed CTS frames.</DESCRIPTION>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 259

 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>255</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1122”>
 <ID>122</ID>
 <SHORT_NAME>CP_CanPhysReqExtAddr</SHORT_NAME>
 <DESCRIPTION>Address extension for enhanced diagnostics. The first byte of the requested CAN frame data contains the N_AE/N_TA byte
followed by the correct number of PCI bytes. This parameters is used for all transmitted CAN Frames that have the “Can Address Extension' bit set in
the CanIdFormat</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>00</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1123”>
 <ID>123</ID>
 <SHORT_NAME>CP_CanPhysReqFormat</SHORT_NAME>
 <DESCRIPTION>CAN Format used for a physical address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>05</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1124”>
 <ID>124</ID>
 <SHORT_NAME>CP_CanPhysReqId</SHORT_NAME>
 <DESCRIPTION>CAN ID used for a physical address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>2016</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1125”>
 <ID>125</ID>
 <SHORT_NAME>CP_CanRespUSDTExtAddr</SHORT_NAME>
 <DESCRIPTION>Extended Address used for a USDT response from an ECU if the CAN Format indicates address extension</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1126”>
 <ID>126</ID>
 <SHORT_NAME>CP_CanRespUSDTFormat</SHORT_NAME>
 <DESCRIPTION>CAN Format for the USDT CAN ID received from an ECU (Segment type Bit must = 1)</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>05</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1127”>
 <ID>127</ID>
 <SHORT_NAME>CP_CanRespUSDTId</SHORT_NAME>
 <DESCRIPTION>Received USDT CAN ID from an ECU</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>2024</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1128”>
 <ID>128</ID>
 <SHORT_NAME>CP_CanRespUUDTFormat</SHORT_NAME>
 <DESCRIPTION>Received CAN Format for CAN ID without segmentation (Segment Type Bit must = 0)</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1129”>
 <ID>129</ID>
 <SHORT_NAME>CP_CanRespUUDTExtAddr</SHORT_NAME>
 <DESCRIPTION>Extended Address used for UUDT response if the CAN Format indicates address extension</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>

ISO 22900-2:2009(E)

260 © ISO 2009 – All rights reserved

 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1130”>
 <ID>130</ID>
 <SHORT_NAME>CP_CanRespUUDTId</SHORT_NAME>
 <DESCRIPTION>Received UUDT CAN ID from an ECU</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>1512</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1131”>
 <ID>131</ID>
 <SHORT_NAME>CP_Cr</SHORT_NAME>
 <DESCRIPTION>Timeout for reception of the next ConsecutiveFrame. For J1939-21, this is equivalent to T1.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>300</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1132”>
 <ID>132</ID>
 <SHORT_NAME>CP_Cr_Ecu</SHORT_NAME>
 <DESCRIPTION>Timeout for reception of the next ConsecutiveFrame</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>300</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1133”>
 <ID>133</ID>
 <SHORT_NAME>CP_Cs</SHORT_NAME>
 <DESCRIPTION>Time until transmission of the next Consecutive Frame (This is used if FC is not enabled or if the STmin value in the FC=0 and
STminOverride=0xFFFF). See ISO 15765-2. For ISO 15765-2 and 15765-4, this is a performance requirement parameter and should not be used as a
timeout value by the tester. For J1939, this is equivalent to the maximum time between sending packets in a multi-packet broadcast and multi-packet
destination specific message. From text in J1939-21 section 5.12.3. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1134”>
 <ID>134</ID>
 <SHORT_NAME>CP_Cs_Ecu</SHORT_NAME>
 <DESCRIPTION>Time until transmission of the next Consecutive Frame (This is used if FC is not enabled or if the STmin value in the FC=0 and
STminOverride=0xFFFF). See ISO 15765-2. This is a performance requirement parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>20</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1135”>
 <ID>135</ID>
 <SHORT_NAME>CP_EcuRespSourceAddress</SHORT_NAME>
 <DESCRIPTION>ECU Source Address response of a non-CAN message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>16</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1136”>
 <ID>136</ID>
 <SHORT_NAME>CP_FuncReqFormatPriorityType</SHORT_NAME>
 <DESCRIPTION>First Header Byte of a non-CAN message for a functional address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>104</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1137”>
 <ID>137</ID>
 <SHORT_NAME>CP_FuncRespFormatPriorityType</SHORT_NAME>
 <DESCRIPTION>First Header Byte of a non-CAN message received from the ECU for functional addressing</DESCRIPTION>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 261

 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>72</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1138”>
 <ID>138</ID>
 <SHORT_NAME>CP_FuncReqTargetAddr</SHORT_NAME>
 <DESCRIPTION>Second Header Byte of a non-CAN message for a functional address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>106</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1139”>
 <ID>139</ID>
 <SHORT_NAME>CP_FuncRespTargetAddr</SHORT_NAME>
 <DESCRIPTION>Second Header Byte of a non-CAN message received from the ECU for functional addressing. This information is also used to fill
out the functional lookup table for J1850_PWM.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>107</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1140”>
 <ID>140</ID>
 <SHORT_NAME>CP_HeaderFormatJ1850</SHORT_NAME>
 <DESCRIPTION>Header Byte configuration to be used for J1850 communication. This setting is used to properly construct the message header
bytes to complete the PDU. This parameter is not used if the protocol parameter RawMode is set. Header bytes are constructed following the rules of
the protocol specification </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>3</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1141”>
 <ID>141</ID>
 <SHORT_NAME>CP_HeaderFormatKW</SHORT_NAME>
 <DESCRIPTION>Header Byte configuration for K-Line protocol (Keyword). This setting is used to properly construct the message header bytes to
complete the PDU. This parameter is not used if the protocol parameter RawMode is set. Header bytes are constructed following the rules of the
protocol specification. This parameter overrides any keybyte values received from the ECU during initialization, which could be used for automatic
header byte construction.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>4</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1142”>
 <ID>142</ID>
 <SHORT_NAME>CP_InitializationSettings</SHORT_NAME>
 <DESCRIPTION>Set Initialization method. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>1</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1143”>
 <ID>143</ID>
 <SHORT_NAME>CP_MessagePriority</SHORT_NAME>
 <DESCRIPTION>Message Priority. J1939 protocol uses the 3 least significant bits that become part of the CAN ID. J1708 uses 8 bits to define the
first byte of the transmit message</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1144”>
 <ID>144</ID>
 <SHORT_NAME>CP_MidReqId</SHORT_NAME>
 <DESCRIPTION>Request Message Identifier used in building a transmit message to an ECU for a J1708 protocol only</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>

ISO 22900-2:2009(E)

262 © ISO 2009 – All rights reserved

 <COMPARAM EID=“ID1145”>
 <ID>145</ID>
 <SHORT_NAME>CP_MidRespId</SHORT_NAME>
 <DESCRIPTION>Response Message Identifier received from an ECU for a J1708 protocol only.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1146”>
 <ID>146</ID>
 <SHORT_NAME>CP_P1Max</SHORT_NAME>
 <DESCRIPTION>Maximum inter-byte time for ECU Responses. Interface must be capable of handling a P1_MIN time of 0 ms. After the request,
the interface shall be capable of handling an immediate response (P2_MIN=0). For subsequent responses, a byte received after P1_MAX shall be
considered as the start of the subsequent response.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1147”>
 <ID>147</ID>
 <SHORT_NAME>CP_P1Min</SHORT_NAME>
 <DESCRIPTION>This sets the minimum inter-byte time for the ECU responses. Application shall not get or set this value. Interface must be
capable of handling P1_MIN=0. This is a performance requirement parameter.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1148”>
 <ID>148</ID>
 <SHORT_NAME>CP_P4Max</SHORT_NAME>
 <DESCRIPTION>Maximum inter-byte time for a tester request.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1149”>
 <ID>149</ID>
 <SHORT_NAME>CP_P4Min</SHORT_NAME>
 <DESCRIPTION>Minimum inter-byte time for tester transmits.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1150”>
 <ID>145</ID>
 <SHORT_NAME>CP_PhysReqFormatPriorityType</SHORT_NAME>
 <DESCRIPTION>First Header Byte of a non-CAN message for physical address transmit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>108</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1151”>
 <ID>151</ID>
 <SHORT_NAME>CP_PhysRespFormatPriorityType</SHORT_NAME>
 <DESCRIPTION>First Header Byte of a non-CAN message received from the ECU for physical addressing</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>104</DEFAULT_VALUE>
 <CLASS>UNIQUE_ID</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1152”>
 <ID>152</ID>
 <SHORT_NAME>CP_PhysReqTargetAddr</SHORT_NAME>
 <DESCRIPTION>Physical Target Addressing Information used for correct Message Header Construction </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>16</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 263

 <COMPARAM EID=“ID1153”>
 <ID>153</ID>
 <SHORT_NAME>CP_RepeatReqCountTrans</SHORT_NAME>
 <DESCRIPTION>This parameter contains a counter to enable a re-transmission of the last request when either a transmit, a receive error, or transport
layer timeout is detected. This applies to the transport layer only.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>ERRHDL</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1154”>
 <ID>154</ID>
 <SHORT_NAME>CP_RequestAddrMode</SHORT_NAME>
 <DESCRIPTION>Addressing Mode to be used for the Com Primitive</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>2</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1155”>
 <ID>155</ID>
 <SHORT_NAME>CP_StMin</SHORT_NAME>
 <DESCRIPTION>This sets the separation time the interface should report to the vehicle for receiving segmented transfers in a Transmit Flow
Control Message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1156”>
 <ID>156</ID>
 <SHORT_NAME>CP_StMin_Ecu</SHORT_NAME>
 <DESCRIPTION>The minimum time the sender shall wait between the transmissions of two ConsecutiveFrame N_PDUs</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1157”>
 <ID>157</ID>
 <SHORT_NAME>CP_StMinOverride</SHORT_NAME>
 <DESCRIPTION>This sets the separation time the interface should use to transmit segmented messages to the vehicle. The flow control value
reported by the vehicle should be ignored</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>65535</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1158”>
 <ID>158</ID>
 <SHORT_NAME>CP_T1Max</SHORT_NAME>
 <DESCRIPTION>This sets the maximum inter-frame response delay.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1159”>
 <ID>159</ID>
 <SHORT_NAME>CP_T2Max</SHORT_NAME>
 <DESCRIPTION>This sets the maximum inter-frame request delay.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1160”>
 <ID>160</ID>
 <SHORT_NAME>CP_T3Max</SHORT_NAME>
 <DESCRIPTION>This sets the maximum response delay from the ECU after processing a valid request message from the interface. For J1939-21,
this is equivalent to Tr.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>

ISO 22900-2:2009(E)

264 © ISO 2009 – All rights reserved

 </COMPARAM>
 <COMPARAM EID=“ID1161”>
 <ID>161</ID>
 <SHORT_NAME>CP_T4Max</SHORT_NAME>
 <DESCRIPTION>This sets the maximum inter-message response delay. For J1939, this is equivalent to T3, the maximum time allowed for the
Originator to receive a CTS or an ACK after sending a packet. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1162”>
 <ID>162</ID>
 <SHORT_NAME>CP_T5Max</SHORT_NAME>
 <DESCRIPTION>This sets the maximum inter-message request delay. For J1939, this is equivalent to T2, the maximum time allowed for the
Originator to send a packet after receiving a CTS from the Responder. </DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>200</DEFAULT_VALUE>
 <CLASS>TIMING</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1163”>
 <ID>163</ID>
 <SHORT_NAME>CP_TesterSourceAddress</SHORT_NAME>
 <DESCRIPTION>Source address of transmitted message for non-CAN messages</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>241</DEFAULT_VALUE>
 <CLASS>COM</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1164”>
 <ID>164</ID>
 <SHORT_NAME>CP_TIdle</SHORT_NAME>
 <DESCRIPTION>Minimum bus idle time before tester starts the address byte sequence or the fast init sequence. (TIDLE replaces W0 and
W5).</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>600</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1165”>
 <ID>165</ID>
 <SHORT_NAME>CP_TInil</SHORT_NAME>
 <DESCRIPTION>Sets the duration for the low pulse in a fast initialization sequence.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1166”>
 <ID>166</ID>
 <SHORT_NAME>CP_TWup</SHORT_NAME>
 <DESCRIPTION>Sets total duration of the wakeup pulse (TWUP-TINIL)=high pulse before start communication message.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1167”>
 <ID>167</ID>
 <SHORT_NAME>CP_W1Max</SHORT_NAME>
 <DESCRIPTION>Maximum time from the end of address byte to start of the synchronization pattern from the ECU.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>600</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1168”>
 <ID>168</ID>
 <SHORT_NAME>CP_W1Min</SHORT_NAME>
 <DESCRIPTION>Minimum time from the end of address byte to start of the synchronization pattern from the ECU.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>120</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 265

 </COMPARAM>
 <COMPARAM EID=“ID1169”>
 <ID>169</ID>
 <SHORT_NAME>CP_W2Max</SHORT_NAME>
 <DESCRIPTION>Maximum time from the end of the synchronization pattern to the start of key byte 1.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1170”>
 <ID>170</ID>
 <SHORT_NAME>CP_W2Min</SHORT_NAME>
 <DESCRIPTION>Minimum time from the end of the synchronization pattern to the start of key byte 1.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>10</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1171”>
 <ID>171</ID>
 <SHORT_NAME>CP_W3Max</SHORT_NAME>
 <DESCRIPTION>Maximum time between key byte 1 and key byte 2.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>40</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1172”>
 <ID>172</ID>
 <SHORT_NAME>CP_W3Min</SHORT_NAME>
 <DESCRIPTION>Minimum time between key byte 1 and key byte 2.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1173”>
 <ID>173</ID>
 <SHORT_NAME>CP_W4Max</SHORT_NAME>
 <DESCRIPTION>Maximum time between receiving key byte 2 from the vehicle and the inversion being returned by the
interface.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>100</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1174”>
 <ID>174</ID>
 <SHORT_NAME>CP_W4Min</SHORT_NAME>
 <DESCRIPTION>Minimum time between receiving key byte 2 from the vehicle and the inversion being returned by the
interface.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>50</DEFAULT_VALUE>
 <CLASS>INIT</CLASS>
 <LAYER>TRANSPORT</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1400”>
 <ID>400</ID>
 <SHORT_NAME>CP_Baudrate</SHORT_NAME>
 <DESCRIPTION>Represents the desired baud rate. If the desired baud rate cannot be achieved within the tolerance of the protocol, the interface will
remain at the previous baud rate.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>500000</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1401”>
 <ID>401</ID>
 <SHORT_NAME>CP_BitSamplePoint</SHORT_NAME>
 <DESCRIPTION>This sets the desired bit sample point as a percentage of the bit time.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>80</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>

ISO 22900-2:2009(E)

266 © ISO 2009 – All rights reserved

 </COMPARAM>
 <COMPARAM EID=“ID1402”>
 <ID>402</ID>
 <SHORT_NAME>CP_BitSamplePoint_Ecu</SHORT_NAME>
 <DESCRIPTION>This sets the desired bit sample point as a percentage of the bit time.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE> 80</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1403”>
 <ID>403</ID>
 <SHORT_NAME>CP_K_L_LineInit</SHORT_NAME>
 <DESCRIPTION>K & L line usage for ISO9141 and ISO14230 initialization address</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1404”>
 <ID>404</ID>
 <SHORT_NAME>CP_K_LinePullup</SHORT_NAME>
 <DESCRIPTION>Control the K-Line voltage to either 12V or 24V</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1405”>
 <ID>405</ID>
 <SHORT_NAME>CP_ListenOnly</SHORT_NAME>
 <DESCRIPTION>Enable a Listen Only mode on the Com Logical Link. This will cause the link to no longer acknowledge received frames on the
CAN Network</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1406”>
 <ID>406</ID>
 <SHORT_NAME>CP_NetworkLine</SHORT_NAME>
 <DESCRIPTION>This sets the network line(s) that are active during communication (for cases where the physical layer allows
this)</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1407”>
 <ID>407</ID>
 <SHORT_NAME>CP_SamplesPerBit</SHORT_NAME>
 <DESCRIPTION>Number of samples per bit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1408”>
 <ID>408</ID>
 <SHORT_NAME>CP_SamplesPerBit_Ecu</SHORT_NAME>
 <DESCRIPTION>Number of samples per bit</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
<COMPARAM EID=“ID1412”>
 <ID>412</ID>
 <SHORT_NAME>CP_SyncJumpWidth</SHORT_NAME>
 <DESCRIPTION>This sets the desired synchronization jump width as a percentage of the bit time.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>15</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 267

 <COMPARAM EID=“ID1413”>
 <ID>413</ID>
 <SHORT_NAME>CP_SyncJumpWidth_Ecu</SHORT_NAME>
 <DESCRIPTION>This sets the desired synchronization jump width as a percentage of the bit time.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>15</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1414”>
 <ID>414</ID>
 <SHORT_NAME>CP_TerminationType</SHORT_NAME>
 <DESCRIPTION>CAN termination settings.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>0</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <COMPARAM EID=“ID1415”>
 <ID>415</ID>
 <SHORT_NAME>CP_UartConfig</SHORT_NAME>
 <DESCRIPTION>Configure the parity, data bit size and stop bits of a Uart protocol.</DESCRIPTION>
 <DATA_TYPE>PDU_PT_UNUM32</DATA_TYPE>
 <DEFAULT_VALUE>06</DEFAULT_VALUE>
 <CLASS>BUSTYPE</CLASS>
 <LAYER>PHYSICAL</LAYER>
 </COMPARAM>
 <ERROR_CODE>
 <ID>3000</ID>
 <SHORT_NAME>AN_ERR_CODE</SHORT_NAME>
 <DESCRIPTION>This is an error code description</DESCRIPTION>
 </ERROR_CODE>
</MVCI_MODULE_DESCRIPTION>

F.5.4 Example cable description file

Since the external connector on the MVCI protocol module may differ from the DLC on the vehicle or ECU
setup, there is a need to describe how the cable maps the pins on the MVCI protocol module
(PIN_ON_MODULE) onto the pins on the DLC (PIN_ON_DLC). The cable description file (see example Cable
Description File) shows the mapping for two example cables that this MVCI protocol module is supposed to
support. Also, if of interest for the application, the cable description file optionally defines which pins of the
MVCI protocol module are used for cable identification, and what resistor values are expected for a specific
cable (see also ISO 22900-1 about cable coding). However, the example only shows the first of both cables.

EXAMPLE Cable description file (CDF file).

<?xml version=“1.0” encoding=“UTF-8”?>
<!-- D-PDU-API cable description file -->
<MVCI_CABLE_DESCRIPTION xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“C:\Data\Dev\eclipse\workspace\PduApi\pdu.xsd” FILE_VERSION=“0.0.1”
MVCI_PART2_STANDARD_VERSION=“2.2.0”>
 <DESCRIPTION>This is an example for a cable description file (CDF)</DESCRIPTION>
 <SUPPLIER_NAME>Vehicle Doctor Ltd.</SUPPLIER_NAME>
 <DLCTYPE EID=“ID1”>
 <ID>1</ID>
 <SHORT_NAME>ISO_15031_3</SHORT_NAME>
 <DESCRIPTION>ISO 15031-3 OBD Connector</DESCRIPTION>
 </DLCTYPE>
 <CABLE>
 <ID>100</ID>
 <SHORT_NAME>SomeCableName</SHORT_NAME>
 <DESCRIPTION>Standard cable 5m</DESCRIPTION>
 <CABLE_IDENTIFICATION>
 <CABLE_ID>1002</CABLE_ID>
 <CABLE_ID_PIN>
 <PIN_ON_MODULE>17</PIN_ON_MODULE>
 <RESISTANCE_TO_GROUND>250</RESISTANCE_TO_GROUND>
 </CABLE_ID_PIN>
 <CABLE_ID_PIN>
 <PIN_ON_MODULE>18</PIN_ON_MODULE>

ISO 22900-2:2009(E)

268 © ISO 2009 – All rights reserved

 <RESISTANCE_TO_GROUND>49999</RESISTANCE_TO_GROUND>
 </CABLE_ID_PIN>
 </CABLE_IDENTIFICATION>
 <MAPPING>
 <PIN_ON_DLC>13</PIN_ON_DLC>
 <PIN_ON_MODULE>5</PIN_ON_MODULE>
 </MAPPING>
 <MAPPING>
 <PIN_ON_DLC>16</PIN_ON_DLC>
 <PIN_ON_MODULE>6</PIN_ON_MODULE>
 </MAPPING>
 <MAPPING>
 <PIN_ON_DLC>15</PIN_ON_DLC>
 <PIN_ON_MODULE>8</PIN_ON_MODULE>
 </MAPPING>
 <DLCTYPE IDREF=“ID1”/>
 </CABLE>
 <CABLE>
 <ID>101</ID>
 <SHORT_NAME>SomeOtherCableName</SHORT_NAME>
 <DESCRIPTION>Standard cable 5m</DESCRIPTION>
 <CABLE_IDENTIFICATION>
 <CABLE_ID>1002</CABLE_ID>
 <CABLE_ID_PIN>
 <PIN_ON_MODULE>17</PIN_ON_MODULE>
 <RESISTANCE_TO_GROUND>250</RESISTANCE_TO_GROUND>
 </CABLE_ID_PIN>
 <CABLE_ID_PIN>
 <PIN_ON_MODULE>18</PIN_ON_MODULE>
 <RESISTANCE_TO_GROUND>4294967295</RESISTANCE_TO_GROUND>
 </CABLE_ID_PIN>
 </CABLE_IDENTIFICATION>
 <MAPPING>
 <PIN_ON_DLC>13</PIN_ON_DLC>
 <PIN_ON_MODULE>5</PIN_ON_MODULE>
 </MAPPING>
 <MAPPING>
 <PIN_ON_DLC>16</PIN_ON_DLC>
 <PIN_ON_MODULE>6</PIN_ON_MODULE>
 </MAPPING>
 <MAPPING>
 <PIN_ON_DLC>15</PIN_ON_DLC>
 <PIN_ON_MODULE>9</PIN_ON_MODULE>
 </MAPPING>
 <DLCTYPE IDREF=“ID1”/>
 </CABLE>
</MVCI_CABLE_DESCRIPTION>

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 269

Annex G
(informative)

Resource handling scenarios

G.1 Resource handling at the API level

G.1.1 Obtaining resource and object ids

G.1.1.1 General

A client application can use an XML parser to parse the CDF and MDF files to obtain object ids and resource
ids. It is also possible to obtain the object ids by using the D-PDU API function PDUGetObjectIds using the
standard short-names of the object. For a client application to retrieve a resource id using PDUGetObjectIds,
the client application would need to know the vendor specific short-name of the resource.

Once a client application obtains the list of ids supported by the specific D-PDU API implementation, all
D-PDU API functions can be used. Without the list of ids, many D-PDU API functions cannot be used.

EXAMPLE D-PDU API functions requiring object and or resource ids:

⎯ PDUCreateComLogicalLink

⎯ PDUSetComParam

⎯ PDUGetResourceStatus

⎯ PDUGetConflictingResources

⎯ PDUSetUniqueRespIdTable

G.1.1.2 Using a XML Parser

Figure G.1 — Sequence for retrieving ids using an XML Parser illustrates via a sequence diagram how a client
application can use a XML Parser for the MDF and CDF files to retrieve resource and object ids. D-PDU API
functions still need to be called to retrieve the status of a resource and any conflicts on a resource.

ISO 22900-2:2009(E)

270 © ISO 2009 – All rights reserved

Figure G.1 — Sequence for retrieving ids using an XML Parser

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 271

G.1.1.3 Using D-PDU API Functions for resource information

Figure G.2 — Using D-PDU API functions to retrieve resource information and status illustrates how the
D-PDU API functions are used to retrieve resource and object ids without parsing the XML MDF/CDF files.
The functions (represented by circles) are expected to be called in the order indicated by the numbers in the
circle.

Figure G.2 — Using D-PDU API functions to retrieve resource information and status

ISO 22900-2:2009(E)

272 © ISO 2009 – All rights reserved

G.1.1.4 Retrieving conflicting resources

Figure G.3 — Conflicting resources illustrates how the D-PDU API supports the client application in
determining shared conflicts on a resource.

Figure G.3 — Conflicting resources

G.1.2 Example MVCI protocol module resource selection

Figure G.4 — Example MVCI protocol module and cable shows an example MVCI protocol module and cable
for the purposes of demonstrating the logic employed by an application selecting resources.

In the example, the MVCI protocol module includes two general-purpose CAN controllers. The first may be
used for either Single-wire or Dual-wire High Speed CAN. The second may be used for either Fault Tolerant
or Dual Wire High Speed CAN. The resources functions allow an application to ensure that predictable results
are always obtained each time it executes. For example, it's possible that an application could first request a
Dual Wire High Speed CAN bus type and be allocated the first CAN controller, and then request a Single Wire
CAN bus type. The second request could not be fulfilled due to pre-selection of the only CAN controller that
could support Single Wire CAN. If the bus types had been requested in the reverse order, the required
resources could have been satisfied.

Figure G.4 — Example MVCI protocol module and cable

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 273

Figure G.5 — Available routes and selection logic shows the four possible combinations of resources
supported by this combination of MVCI protocol module and cable. These combinations are known as Routes
and are represented in the D-PDU API by ResourceIds. The application example requires two routes, one
Single Wire and one Dual Wire. It uses the GetModuleIDs, GetObjectID, and GetResourceIDs to obtain
ResourceIds (each representing a Route) that support the requirements of each connection. For this MVCI
protocol module, there is one route that supports Single Wire CAN (Route 1), and two that support Dual Wire
CAN (Route 2 and Route 3). After confirming that all three routes are available using GetResourceStatus, the
application has to make a choice between the two possible routes supporting High Speed CAN. It makes this
decision by checking for conflicts between the three routes.

GetConflictingResources is called once for each of the three routes.

For Route 1: Route 2 is indicated as conflicting (due to the common CAN Controller).

For Route 2: Routes 1 and Route 3 are indicated as conflicting (Route 1 due to the common CAN controller,
Route 3 due to common pins).

For Route 3: Route 2 and Route 4 are conflicting (Route 2 due to common pins and Route 4 due to the
common CAN controller).

Since there is only one route (Route 1) that supports Single Wire CAN, the application checks for the Dual
Wire Route that does not conflict with Route 1. Hence, Route 2 is discounted due to the indicated conflict, and
Route 3 is selected.

The application proceeds to call PDUCreateComLogicalLink once using the ResourceId provided for Route 1,
and once using the ResourceId provided for Route 3.

Figure G.5 — Available routes and selection logic

ISO 22900-2:2009(E)

274 © ISO 2009 – All rights reserved

Annex H
(informative)

D-PDU API partitioning

H.1 Functional partitioning of a D-PDU API

H.1.1 ODX data base

Provides data describing the vehicle under test, including connector information, protocol information, vehicle
network topology, ECU information, and vehicle data service information.

H.1.2 MVCI D-Server

H.1.2.1 Com Primitive Creator/Handler

Requests by an MVCI D-Server Job or application for data retrieval from an ECU. No information about the
protocol or ECU is necessary for the requestor. All information about how to generate a D-PDU, check for
valid results, extract the data, and finally convert the data into correct units is done by the Com Primitive
Creator/Handler.

H.1.2.2 Rx Logical Data Request

API for requesting logical data from an ECU.

H.1.2.3 D-PDU Builder

Builds a PDU message to be requested from the ECU. The information is data only (header bytes and
formatting is accomplished by the D-PDU API/VCI protocol module).

H.1.2.4 D-PDU Checker

Checks the validity of PDU data returned by the MVCI protocol module.

H.1.2.5 Data Extractor

Extracts the desired information from the PDU data, converts the data to appropriate units and passes the
information along to the application.

H.1.3 VCI protocol module

H.1.3.1 D-PDU API

The D-PDU API processor provides the link between the MVCI protocol module and the MVCI D-Server (or
application). It processes all of the function calls received from the D-Server and distributes them to the
appropriate processing module. It is also responsible for passing the appropriate responses back to the
D-Server.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 275

H.1.3.2 D-PDU scheduler

The D-PDU Scheduler controls when Send ComPrimitives are queued up for transmission via the
ComLogicalLink. For cyclic Send ComPrimitives, the Scheduler is responsible for restarting a timer after the
transmission has been queued, and for keeping track of the number of send cycles that have been completed.

Figure H.1 — Modular VCI protocol module functional partitioning diagram

H.1.3.3 Logical link parameter/filter configuration

Handles configuring a ComLogicalLink and all associated resources assigned to the Logical Link.

ISO 22900-2:2009(E)

276 © ISO 2009 – All rights reserved

H.1.3.4 Tester present scheduler

This scheduler controls the transmission of a Tester Present message for protocols that require this
functionality. This scheduler controls what is transmitted on the vehicle bus and when it is transmitted.

H.1.3.5 Resource manager

Manages the resources on the physical module.

H.1.3.6 Protocol driver

Protocol specific driver. (There are 9 currently defined for the D-PDU API.) Handle specific timing and
formatting requirements for a protocol implementation.

H.1.3.7 Hardware driver

Provides the firmware interface to the MVCI protocol module's hardware devices (e.g. UARTs and CAN
controllers).

H.1.3.8 Hardware filters

Some types of controllers (e.g. CAN controllers and the PWM version of the SAE J1850 interface) have filter
capability built into them. Other protocols require that filtering be handled by the MVCI protocol module's
firmware (see H.1.3.9).

H.1.3.9 Software filters

H.1.3.9.1 Block filter

Messages that are accepted by this filter are discarded.

H.1.3.9.2 PASS filter

Messages that are accepted by this filter are passed on.

H.1.3.10 ISO 15765 USDT/UUDT Frames

Each USDT CAN Frame for ISO_15765 protocol shall have a matching entry in the UniqueRespIdTable to be
handled in the transport layer. If the frame is USDT and a first frame, then this table is used to send out the
correct Flow Control frame. If the CAN ID is a UUDT type of frame or is not in the table, then the message is
accepted without any further format checking. The frame data is then checked against the
ExpectedResponseStructure to bind the frame to a ComPrimitive.

H.1.3.11 Negative response Code 0x7F filter handler

If Negative Response Handling is enabled, each valid Message/Frame received is checked for a negative
response service ID (0x7F), and a known response code (0x21, 0x23, 0x78). If there is a match to the
response code, then the proper re-transmission or new receive time handling is started.

H.1.3.12 Unique response binding

Match the received message header information to an entry in the table of Unique Response Ids. The
matching algorithm is protocol specific (e.g. some protocols will use CAN Ids, others will use Target
Addresses, ECU Sources address, etc.).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 277

H.1.3.13 ComPrimitive binding

Once a UniqueRespIdentifier is found, the payload data is attempted to be matched to the
ExpectedResponseStructure (see 11.1.4.18) of all active ComPrimitives (starting with the active SENDRECV
ComPrimitive).

H.1.4 Vehicle bus network

The MVCI protocol module interfaces to the vehicle's ECUs via the vehicle bus network. The MVCI protocol
module accesses this network via the Data Link Connector (DLC) as described in the ODX Data Base.

ISO 22900-2:2009(E)

278 © ISO 2009 – All rights reserved

Annex I
(informative)

Use case scenarios

I.1 Negative response handling scenarios

I.1.1 General

This annex covers the special handling of the Negative Response Codes 0x21, 0x23, and 0x78 for diagnostic
protocols such as ISO_14230_4 or ISO_15765_3.

NOTE Not all of the Negative Response Codes are defined for each protocol.

The processing of handling Negative Response Codes is mainly determined by the CP_RCxxHandling
ComParams.

If Negative Response Codes are received in other cases than specified here, they are simply reported to the
application as a ResponseItem. The same applies if any of the Negative Response Codes 0x21, 0x23, or
0x78 are received even though the respective handling ComParam CP_RCxxHandling does not allow usage
of the response code.

In the given figures, the handling of the Negative Response Codes 0x21 and 0x23 is identical. Therefore, only
the handling of NRC 0x21 is presented.

In cases where an errorItem (PDU_ERR_EVT_RX_TIMEOUT) is sent back to the client application, an
additional PDU_XTRA_ERR_... error code may be supplied to give detailed information about the nature of
the timeout event.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 279

I.1.2 Physical addressing

Figure I.1 — Response handling for RC21/RC23, CP_RCXXHandling = 0 shows the processing performed
when Negative Error Code 0x21 or 0x23 or 0x78 is received with CP_RCXXHandling = 0 (disabled). It is up to
the client application to handle the negative responses from an ECU. For a negative response RC78, the
client application would have to have specified a receive only ComPrimitive to bind the eventual positive
response from the ECU.

Figure I.1 — Response handling for RC21/RC23, CP_RCXXHandling = 0

ISO 22900-2:2009(E)

280 © ISO 2009 – All rights reserved

The Figure I.2 — Response handling for RC21/RC23, CP_RCXXHandling = 1 shows the processing
performed when Negative Error Code 0x21 or 0x23 is received with CP_RCXXHandling = 1 (continue
handling negative responses until RCXX_CompletionTimeout). The ECU is too busy to perform the request,
and the request is not started. Re-requests are continued until the timeout occurs or until a positive response
is received.

Figure I.2 — Response handling for RC21/RC23, CP_RCXXHandling = 1

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 281

Figure I.3 — Response handling for RC21/RC23, CP_RCXXHandling = 2 shows the processing performed
when Negative Error Code 0x21 or 0x23 is received with CP_RCXXHandling = 2 (repeat unlimited). The ECU
is too busy to perform the request. The request message is resent until a timeout occurs or a non-error
response is received.

Figure I.3 — Response handling for RC21/RC23, CP_RCXXHandling = 2

ISO 22900-2:2009(E)

282 © ISO 2009 – All rights reserved

Figure I.4 — Response handling for RC78, CP_RC78Handling = 1 shows the processing performed when
Negative Error Code 0x78 is received with CP_RC78Handling = 1 (continue handling negative responses until
CP_RC78CompletionTimeout). Negative responses are received until either a timeout occurs or a
non-negative response is received.

Figure I.4 — Response handling for RC78, CP_RC78Handling = 1

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 283

Figure I.5 — Response handling for RC78, CP_RC78Handling = 2 shows the processing performed when
Negative Error Code 0x78 is received with CP_RC78Handling = 2 (continue handling unlimited). Negative
responses are received until either a timeout occurs or a non-negative response is received.

Figure I.5 — Response handling for RC78, CP_RC78Handling = 2

ISO 22900-2:2009(E)

284 © ISO 2009 – All rights reserved

I.1.3 Functional addressing

Figure I.6 — Response handling for RC21/RC23, CP_RCXXHandling = 1 (Functional addressing) shows the
processing performed when Negative Error Code 0x21 or 0x23 is received with CP_RCXXHandling = 1
(continue handling negative responses until RCXX_CompletionTimeout) with functional addressing. The
ECU(s) is too busy to perform the request. The request is resent until all ECUs have responded positively, or
a timeout occurs. The D-PDU API will ensure that each ECU with a positive response(s) does not send
duplicate PDU_IT_RESULT items back to the client application, even though one or more functional
re-requests were made on the vehicle bus.

Figure I.6 — Response handling for RC21/RC23, CP_RCXXHandling = 1 (Functional addressing)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 285

Figure I.7 — Response handling for RC78, CP_RC78Handling = 1 (Functional addressing) shows the
processing performed when Negative Error Code 0x78 is received with CP_RC78Handling = 1 (continue
handling negative responses until RC78_CompletionTimeout) with functional addressing. The ECU(s) is too
busy to perform the request. The request is resent until all ECUs have responded positively, or a timeout
occurs.

Figure I.7 — Response handling for RC78, CP_RC78Handling = 1 (Functional addressing)

ISO 22900-2:2009(E)

286 © ISO 2009 – All rights reserved

I.1.4 Additional RC23/RC21 handling description for SAE J1850 VPW and ISO 14230
protocols

I.1.4.1 General

Additional handling description for RC23 and RC21 shall be explained to handle differences between
protocols.

I.1.4.2 Setup assumptions

There is an active SendRecv CoP with at least 1 expected response filter set for a 0x7F 0xSID.

Assume CP_RC23Handling is != 0.

I.1.4.3 Steps

a) When the Protocol Handler receives a RC23 to an active CoP, it sets the message receive timer to
CP_RC23RequestTime to wait for a positive response from the ECU.

⎯ In the case for SAE J1850 VPW the CP_RC23RequestTime = 1 second.

⎯ In the case for ISO 14230-3 the CP_RC23RequestTime = 0. There will not be a “final” response from
the ECU. The tester has to re-request the service after a negative response with RC23 to obtain a
positive response. The tester waits CP_P3Min before re-transmitting the request.

b) If the negative response handling flag (CP_RC23Handling) is set to 1 (Continue handling negative
responses until CP_RC23CompletionTimeout), the Protocol Handler keeps a timestamp of this first
negative response.

⎯ If there are no positive responses (even after numerous re-requests) within
CP_RC23CompletionTimeout, then the Protocol Handler gives up on this CoP and will send an Error
Event indicating that the ComPrimitive has a receive timeout.

⎯ The CP_RC23CompletionTimeout shall be > CP_RC23RequestTime.

⎯ The greater value between CP_RC23RequestTime and CP_P3Min is used.

c) If the message receive timer times-out without a positive response from the ECU, then a re-request is
made to the ECU.

⎯ For ISO 14230-3, there is no expected response after receiving the RC23. The re-request is made
when CP_P3Min has expired. On a re-request, the ECU will respond with a Negative Response code
of 0x21 if the ECU is still busy processing the previous request.

⎯ It is assumed that a SAE J1850 VPW ECU will respond with either a positive response on the
re-request or another negative response code of 0x23. Response code 0x21 is NOT supported by
most SAE J1850 VPW protocol implementations.

d) Physical addressing: If a positive response (NumReceiveCycles = 1) is received before the message
receive timer times out (CP_P2Max or CP_RC23RequestTime), then the CoP is set to finished
(PDU_COPST_FINISHED).

e) Functional addressing:

⎯ Each ECU which responds with a negative 0x23 response is placed in a negative response list. The
first ECU gets the timer for CP_RC23RequestTime. Each of the other ECU's gets a timestamp value.

⎯ Once an ECU which had previously responded with RC 0x23, now responds with a positive response,
it is then removed from the negative response list.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 287

⎯ If there are no other ECUs in the negative response list, the receive timer is then set to CP_P2Max
for other ECU responses.

⎯ If there is another ECU in the negative response list, the receive timer is set to
CP_RC23RequestTime – (current_time – initial_time) (whatever remaining time to resend the
request)

⎯ Only when there is a CP_P2Max timeout and no ECUs are in the negative response list will the CoP
then be set to finished.

⎯ Each ECU that gives one or more positive responses is placed in a functional positive response List.
Therefore, on a re-request ONLY the ECU's which had not previously responded with a positive
response will have their messages passed up to the client application. This supports the requirement
that the D-PDU API does not pass duplicate ECU responses to the client application during
functional addressing. Ignore negative response from ECU's which already responded with a positive
response.

I.2 ISO 14229-1 UDS

I.2.1 Suppress positive response scenarios

The UDS protocol implements a suppress positive response feature for some services. When this bit is set in
the payload data (set by the client application using the D-PDU API), the ECU will not respond to the request.
The D-PDU API needs to be informed by the client application when this feature has been selected so that a
receive timeout will not generate an error item, and handling of negative responses/followed by positive
responses are handled correctly. The client application sets the SUPPRESS_POS_RESP bit in the TxFlag
parameter used in PDUStartComPrimitive function (see D.2.1).

Figure I.8 — ISO 14229-1 UDS, suppress positive response (normal execution) shows the processing
performed when the Suppress Positive Response Bit is set for the normal case. No errors are indicated to the
client application.

Figure I.8 — ISO 14229-1 UDS, suppress positive response (normal execution)

Figure I.9 — UDS — Suppress positive response (negative response (0x78)) shows the processing performed
when the Suppress Positive Response Bit is set and the ECU responds with 0x78. For this case, the ECU will
respond to the request (after more time), and the PDU API shall suppress the response. No errors are
indicated to the client application.

ISO 22900-2:2009(E)

288 © ISO 2009 – All rights reserved

Figure I.9 — UDS — Suppress positive response (negative response (0x78))

Figure I.10 — UDS — Suppress positive response (negative response (not 0x78, 0x21, 0x23)) shows the
processing performed when the Suppress Positive Response Bit is set and the ECU responds with a negative
response other than 0x78, 0x21 0x23. For this case, the negative response will be sent to the client as a
Result Item, but no error will be indicated to the client application.

Figure I.10 — UDS — Suppress positive response (negative response (not 0x78, 0x21, 0x23))

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 289

Figure I.11 — UDS — Suppress positive response (unexpected positive response) shows the processing
performed when the Suppress Positive Response Bit is set and the ECU responds with a positive response.
For this case, an error (unexpected positive response) will be indicated to the client application.

Figure I.11 — UDS — Suppress positive response (unexpected positive response)

Figure I.12 — UDS — Suppress positive response OFF (no response) shows the processing performed when
the Suppress Positive Response Bit is not set and the ECU does not respond. For this case, an error (RX
timeout) will be indicated to the client application.

Figure I.12 — UDS — Suppress positive response OFF (no response)

ISO 22900-2:2009(E)

290 © ISO 2009 – All rights reserved

I.2.2 Service 0x2A use case scenario

I.2.2.1 General

For service 0x2A there exists a problem in identifying the proper response. Service 0x2A allows for two types
of responses per single ECU, either data is retrieved using USDT responses or UUDT responses only.
Furthermore there is an initial positive USDT response.

I.2.2.2 Overview

The problem exists for the periodic identifier 0x6A. The request/response messages would look as follows:

Request
USDT
CAN Id 0x2A mode 0x6A

Initial positive response
USDT
CAN Id 0x6A

Response type #1
USDT
CAN Id 0x6A 0x6A data data …

Response type #2
UUDT
CAN Id 0x6A data data data ...

⎯ The MVCI PDU API performs a filtering of incoming messages on a hierarchical order, first looking at the
address information and then evaluating the payload data.

⎯ On the ComLogicalLink level the filtering is done on address base by the use of the
UniqueResponseIdTable. This filtering takes into account only the CAN Id portion of the incoming
message and a potential extended address (for the example given no extended address is used).

⎯ On the ComPrimitive level the filtering is done on payload data content by the use of ExpectedResponse
structures. This filtering takes into account the payload of the messages that have passed the
UniqueResponseIdTable based filtering.

I.2.2.3 Response type #1

In case of response type #1 the ExpectedResponse structures are set up as follows.

⎯ Only 1 ComPrimitive is needed and is configured to receive infinite responses (NumReceiveCycles = -1).

⎯ First entry in the expected response list is the periodic response. It shall be the first entry so that the
MVCI does not match the first positive response to a periodic response.

⎯ For the initial positive response only a 0x6A (Service id) is configured, marked as a positive response.

⎯ In case of response type #1 another ExpectedResponse structure is configured for 0x6A 0x6A (service Id
and periodic identifier), also marked as a positive response.

Request
USDT
CAN Id 0x2A mode 0x6A

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 291

Periodic responses
USDT
CAN Id 0x6A 0x6A data data …

Expected response structure #1 0x6A 0x6A

ResponseType=positive

Initial negative response
USDT
CAN Id 0x7F 0x2A RC

Expected response structure #2 0x7F 0x2A

ResponseType=negative

Initial positive response
USDT
CAN Id 0x6A

Expected response structure #3 0x6A

ResponseType=positive

I.2.2.4 Response type #2

In case of response type #2 the ExpectedResponse structures are set up as follows.

⎯ Two ComPrimitives are needed.

⎯ The first ComPrimitive is used to receive the initial positive response or initial negative response. Once
this information is received from the ECU, the ComPrimitive is finished (PDU-COPST_FINISHED).

⎯ The second ComPrimitive is a receive only ComPrimitive (NumSendCycles = 0, NumReceiveCycles = −1).
This ComPrimitive is used to receive the periodic UUDT responses.

CoP 1(SendRecv)

Request
USDT
CAN Id 0x2A mode 0x6A

Initial negative response
USDT
CAN Id 0x7F 0x2A RC

Expected response structure #1 0x7F 0x2A

ResponseType=negative

Initial positive response
USDT
CAN Id 0x6A

Expected response structure #2 0x6A

ResponseType=positive

ISO 22900-2:2009(E)

292 © ISO 2009 – All rights reserved

CoP 2(Recv Only)

UUDT
CAN Id 0x6A 0x6A data data …

Periodic responses

Expected response structure #1

ResponseType=positive 0x6A 0x6A

I.2.2.5 Negative response handling any periodic identifier set to 7F

There exists similar issues with the periodic identifier 0x7F in conjunction with a negative response message
0x7F, but this can be solved within the PDU API by the use of a ComParam that indicates whether the
negative response is USDT, UUDT or don't care.

EXAMPLE In the case of a USDT reception and the ComParam set in a way that it indicates that USDT messages
are negative response messages, then the PDU API will check the ExpectedResponse structures with ResponseType set
to “negative”. In case of a UUDT receive for that scenario only the ExpectedResponse structures with ResponseType set
to “positive” will be checked.

Request
USDT
CAN Id 0x2A mode 0x7F 0x6A

CoP 1 (Send/Recv)

⎯ Expected initial positive response and suppress positive response types.

Initial negative response
USDT
CAN Id 0x7F 0x2A RC

Expected response structure #1 0x7F 0x2A

ResponseType=negative

⎯ This is necessary to handle a positive response after a RC78 negative response.

⎯ If the TXFlag is set to SUPPRESS_POS_RESP, then this entry is not used until a previous 0x7F 0x78
response was received for this CoP.

Initial positive response
USDT
CAN Id 0x6A

Expected response structure #2 0x6A

ResponseType=positive

CoP 2 (Recv Only) (Setup different based on UUDT or USDT responses)

Periodic responses
UUDT
CAN Id 0x7F data data data ...

Expected response structure #1 0x7F

ResponseType=positive

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 293

Periodic responses
USDT
CAN Id 0x6A 0x7F data data ...

Expected response structure #2 0x6A 0x7F

ResponseType=positive

I.3 Service shop use case scenario

The service shop uses modular VCI-compliant hardware and software. They are also equipped with a PC
connected to the Internet/Intranet.

When a vehicle needs to be diagnosed, the technician connects the MVCI to the vehicle's diagnostic
connector.

The Display Unit provides a menu with a “Vehicle Identification” selection. The MVCI establishes a
“hands-free” OBD protocol initialization in order to read the VIN (Vehicle Identification Number) from the
emissions-related system(s).

The VIN is used to further identify the vehicle with regard to:

⎯ OEM

⎯ Model Year

⎯ Vehicle Model

This information is used to automatically connect to the OEM's Web Server (or PC with OEM specific CD
ROM), which has stored all ODX (Open Diagnostic Data Exchange) compliant XML files. The “Vehicle ODX”
file contains references to all ECU ODX filenames. All relevant ODX files are downloaded to the PC and
stored on the HDD. Now the technician selects from the menu those systems he wants to test from the
Display Unit of the MVCI. The selected system files are now downloaded to the MVCI D-Server application. If
additional MVCI-specific protocol software needs to be downloaded into the MVCI, this will also happen at this
time.

The MVCI system is now ready to communicate to the vehicle. The technician can now diagnose the vehicle
system(s).

Figure I.13 — Example of service shop diagnostic tool support

ISO 22900-2:2009(E)

294 © ISO 2009 – All rights reserved

I.4 Vehicle bus baud rate changing scenario

I.4.1 General overview

Some vehicle protocols (and their hardware) allow the Vehicle Bus' baud rate to be changed via a vehicle
communication message. The process is rather complex and requires setting up ComParams and
ComPrimitives. The Table I.1 — Example vehicle bus baud rate changing scenario provides an example of
the steps that could be taken in order to change a vehicle bus' baud rate from low speed to high speed and
back to low speed.

It is possible to configure the MVCI protocol module to act as an ECU emulator. In an emulator mode, the
application would configure the CP_xxx_Ecu (xxx represents all ComParams with suffix _Ecu) ComParams
and use receive only type of ComPrimitives to handle the automatic request.

It is important that any MVCI protocol module developer which supports multiple ComLogicalLinks with
multiple physical resources on the same physical bus enforce correct hardware configuration of all resources
that use the shared bus. Therefore, if the baud rate changes on one resource, it shall also be changed on the
other resources sharing the physical bus.

I.4.2 Device use

a) Tester:

⎯ Configure a message that is used as a trigger for a baud rate transition. The trigger point is the
determination of the successful transmission of this message.

⎯ Trigger action: Enable a configured baud rate, i.e. it shall be possible to specify a baud rate.

⎯ Optionally enable a pull-down resistor (e.g. required for a SAE J2411 SW-CAN physical layer) when
the trigger occurs.

⎯ Delay any transmission for a certain time in order to give the network time to settle the baud rate.

b) ECU:

⎯ Configure a message that is used as a trigger for a baud rate transition. The trigger point is the
determination of the successful reception of this message.

⎯ Trigger action: Enable a configured baud rate, i.e. it shall be possible to specify a baud rate.

c) Monitor mode:

⎯ The requirements for a network monitor are identical to the ECU requirements in regard to what
needs to be able to be configured: trigger message, baud rate. The trigger point is also the
successful reception of the configured message.

⎯ The monitoring unit does NOT enable a special pull-up resistor. The special pull-up resistor is only
required for the tester in accordance with SAE J2411 (SW-CAN) when transitioning to 83,33 kBit/s.

I.4.3 Example scenarios

Table I.1 — Example vehicle bus baud rate changing scenario describes an example scenario for changing
the baud rate using the applicable ComParams.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 295

Table I.1 — Example vehicle bus baud rate changing scenario

Seq Action ComParams/RxFlag Info Description

1 Application determines if the
ECU supports a Baud Rate
Change for the ECU.

 ComPrimitive Messages are sent to an ECU.
The application determines if the ECU supports
the Change Baud Rate Action.

2 Application pre-configures
the Speed Change
ComParams for the
Protocol.

CP_ChangeSpeedRate = 88,33K

CP_ChangeSpeedResCtrl =
AUTO_LOAD_SWCAN_
RESISTOR

CP_ChangeSpeedCtrl = 0
(NO_SPDCHANGE)

NOTE Change Speed is OFF.

CP_ChangeSpeedTxDelay =
30 ms

CP_ChangeSpeedMessage =
0xA5 0x03

The application uses PDUSetComParam to
modify the working buffer of ComParams
followed by a PDUStartComPrimitive of type
PDU_COPT_UPDATEPARAM to set the
ComParam values in the active MVCI protocol
module buffer.

3 Application configures the
Speed Change ComParam
to be used as
TempComParam for a
ComPrimitive

CP_ChangeSpeedCtrl = 1
(ENABLE_SPDCHANGE)

The application uses PDUSetComParam to
modify the working buffer of ComParams.

4 Application creates the
ComPrimitive which
contains the message for
the ECU to change to high
speed (0xA5 0x03), which
shall match the
CP_ChangeSpeedMessag.
This ComPrimitive would
normally use the
TempParamUpdate Flag
feature.

MVCI protocol module changes
the Baud rate ComParam after
successful completion of the
ComPrimitive. The MVCI protocol
module will also enable the
resistor when changing to the
new baud rate (Auto Resistor
Switching is enabled). The
Temporary ComParam is
restored to its previous state.

CP_Baudrate = 83,33K

CP_ChangeSpeedCrl = 0
(NO_SPDCHANGE) set to 0 due
to it being a temporary
ComParam for this ComPrimitive.

Result data:

RxFlag: SPD_CHG_EVENT set.
No data bytes

The MVCI protocol module monitors the bus on
a transmit and a receive for a match to the
CP_ChangeSpeedMessage.

SendOnly: MVCI protocol module waits for the
transmit to be complete. Sets ALL physical
resources sharing the same physical bus to
CP_ChangeSpeedRate and enables the resistor
(Auto Resistor Switching is enabled).

SendRecv: MVCI protocol module waits for a
positive response. When a positive response is
received within the wait time (P2Max), the MVCI
protocol module sets ALL physical resources
sharing the same physical bus to
CP_ChangeSpeedRate and enables the resistor
(Auto Resistor Switching is enabled).

RecvOnly: The MVCI protocol module binds a
received PDU to the ComPrimitive (via the
Expected Response Structure). The MVCI
protocol module sets ALL physical resources
sharing the same physical bus to
CP_ChangeSpeedRate and enables the resistor
(Auto Resistor Switching is enabled).

5 Wait before transmitting any
messages on the vehicle
bus.

Wait CP_ChangeSpeedTxDelay The MVCI protocol module delays
CP_ChangeSpeedTxDelay time before allowing
another transmit on the physical bus (via any
ComLogicalLink sharing the physical bus).

6 All further communications
to the ECU will be at the
higher speed rate.

 High Speed Communication between MVCI
protocol module and ECUs on the serial bus.

ISO 22900-2:2009(E)

296 © ISO 2009 – All rights reserved

Table I.1 (continued)

Seq Action ComParams/RxFlag Info Description

7 Application configures the
Speed Change ComParams
for return to normal mode.

CP_ChangeSpeedRate = 33,33K

CP_ChangeSpeedResCtrl =
(AUTO_UNLOAD_RESISTOR)

CP_ChangeSpeedMessage =
0x20

CP_ChangeSpeedTxDelay =
1 000 ms

The application uses PDUSetComParam to
modify the working buffer of ComParams
followed by a PDUStartComPrimitive of type
PDU_COPT_UPDATEPARAM to set the
ComParam values in the active MVCI protocol
module Buffer.

8 Application configures the
Speed Change ComParam
to be used as
TempComParam for a
ComPrimitive.

CP_ChangeSpeedCtrl = 1
(ENABLE_SPDCHANGE)

The application uses PDUSetComParam to
modify the working buffer of ComParams.

9 Application creates the
ComPrimitive which
contains the message for
the ECU to change to
normal speed (0x20), which
shall match the
CP_ChangeSpeedMessag.
This ComPrimitive would
normally use the
TempParamUpdate Flag
feature.

MVCI protocol module changes
the Baud rate ComParam after
successful completion of
ComPrimitive. The MVCI protocol
module also disables the
termination resistor when
changing to the new baud rate.
The Temporary ComParam is
restored to its previous state.

CP_Baudrate = 33,33K.

CP_ChangeSpeedCtrl = 0
(NO_SPDCHANGE) set to 0 due
to it being a temporary
ComParam for this ComPrimitive.

Result data:

RxFlag: SPD_CHG_EVENT set.
No data bytes.

Send Only: MVCI protocol module waits for the
transmit to complete. Sets ALL physical
resources sharing the same physical bus to
CP_ChangeSpeedRate and disables the
resistor.

SendRecv: MVCI protocol module waits for a
positive response. When a positive response is
received within the wait time, the MVCI protocol
module sets ALL physical resources sharing the
same physical bus to CP_ChangeSpeedRate
and disables the resistor.

RecvOnly: The MVCI protocol module binds a
received PDU to the ComPrimitive (via the
Expected Response Structure). The MVCI
protocol module sets ALL physical resources
sharing the same physical bus to
CP_ChangeSpeedRate and enables the
resistor.

10 Wait before transmitting any
messages on the vehicle
bus.

Wait CP_ChangeSpeedTxDelay The MVCI protocol module delays
CP_ChangeSpeedTxDelay time before allowing
another transmit on the physical bus (via any
ComLogicalLink sharing the physical bus).

11 All further communications
to the ECU will be at the
lower speed rate.

 Low/Normal Speed Communication between
MVCI protocol module and ECUs on the serial
bus.

I.5 SAE J1939 Use Cases

I.5.1 SAE J1939 CAN ID Formation

Table I.2 — Example SAE J1939 CAN ID formation describes an example of CAN ID formation based on
ComParams and PGN from ComPrimitive data.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 297

Table I.2 — Example SAE J1939 CAN ID formation

ComParam PGN:59904
(0xEA00)

PGN : 58112
(0xE300)

PGN: 55040
(0xD700) (DM16)

(multipacket)

PGN:65226
(0xFECA)

(DM1)

CP_J1939DataPage 0 0 0 0

CP_J1939PDUSpecific 0 0 0x00 0xCA

CP_J1939PDUFormat 0xEA 0xE3 0xD7 0xFE

CP_TesterSourceAddress (address
claimed by tester, based on Preferred
address list in
CP_J1939PreferredAddress)

0x81 0x81 0x81 0x81

CP_MessagePriority 0x06 0x06 0x06 0x06

CP_J1939TargetAddress 0x01 0x01 0xFF (irrespective of
whether PF >=239. If
multipacket, use this
parameter)

Don't care

CAN ID of tester 0x18EA0181 0x18E30181 For BAM:

0x1CECFF81

(The PGN 0xD700
would be part of
BAM data bytes.)

For TP.DT:

0x1CEBFF81

(in accordance with
SAE J1939-21:2006,
5.10.3).

For this case the
tester does not
send a request.

The CAN ID from
the ECU is
0x18FECA01.

I.5.2 Setting up ComParams for a SAE J1939 ComLogicalLink

Below is a theoretical set of ComParams and data used to receive and send some common SAE J1939
commands for the PDU1 and PDU2 format style messages.

⎯ CP_J1939Name = 0x31 0x32 0x33 0x34

NOTE 1 This is not a valid NAME.

⎯ CP_J1939TargetName = 0x34 0x35 0x36

NOTE 2 This is not a valid NAME.

⎯ CP_J1939PreferredAddress = 0x81, 0x82 (the two source IDs that the tester will try to claim)

⎯ CP_CanMaxNumWaitFrames = default

⎯ CP_Cr = default

⎯ CP_Cs = default

⎯ CP_MessagePriority = 0x06

ISO 22900-2:2009(E)

298 © ISO 2009 – All rights reserved

⎯ CP_T3Max = default

⎯ CP_T4Max = default

⎯ CP_T5Max = default

⎯ CP_MessageIndicationRate = default

⎯ CP_J1939DataPage = 0x00

⎯ CP_J1939PDUFormat = 0xEA

⎯ CP_J1939PDUSpecific = NOT APPLICABLE SINCE CP_J1939PDUFormat is less than 240

⎯ CP_J1939TargetAddress = 0x01

⎯ CP_J1939SourceAddress = 0x01 (Set via PDUSetUniqueRespIdTable; alternatively, if the ECU Name is
known, CP_J1939SourceName could be set via PDUSetUniqueRespIdTable

I.5.3 Case 1: Receiving active DTC from DM1 PGN 65226 (0xFECA)

a) This would be a receive only ComPrimitive with expected response filters set as below:

⎯ 0xFF 0xFF 0x01 (mask)

⎯ 0xCA 0xFE 0x00 (pattern)

b) Where the expected response filter bytes are defined as below

⎯ Byte 0 = PDU Specific field (PS)

⎯ Byte 1 = PDU Format field (PF)

⎯ Byte 2 = Data Page field (DP)

⎯ Byte 3 = first byte of CAN data

c) Since the UNIQUE_ID ComParams (CP_J1939SourceAddress and/or CP_J1939SourceName) contain
the source address for the ECU (possibly derived from a NAME claim) this ComPrimitive will receive only
the DM1 messages from the engine ECU.

d) The data in PDU_RESULT_DATA will be sent to the application in the following format:

*pDataBytes = 0xCA, 0xFE, 0x00, followed by 8 bytes of data (if only one DTC was received). See
J1939-73 description for PGN 65226.

*pExtraInfo->pHeaderBytes = 0x18 0xFE 0xCA 0x01 which is the CAN ID of the active DTC message.

I.5.4 Case 2 Receive PGN 65264 (0xfef0) – ECU Data

This use case describes how to receive ECU data such as Engine PTO Accelerate Switch

a) This would be a receive only ComPrimitive with expected response filters set as below:

⎯ 0xFF 0xFF 0xFF (mask)

⎯ 0xF0 0xFE 0x00 (pattern)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 299

b) Where the expected response filter bytes are defined as below

⎯ Byte 0 = PDU Specific field (PS)

⎯ Byte 1 = PDU Format field (PF)

⎯ Byte 2 = Data Page field

⎯ Byte 3 = first byte of CAN data

c) Since the UNIQUE_ID ComParams (CP_J1939SourceAddress and/or CP_J1939SourceName) contain
the source address for the ECU (possibly derived from a NAME claim) this ComPrimitive will receive only
the PGN 65264 messages from the engine ECU.

d) The data in PDU_RESULT_DATA will be sent to the application in the following format:

*pDataBytes = 0xF0 0xFE 0x00 followed by 8 bytes of data. See J1939-71 description for PGN 65264

I.5.5 Case 3 Request previously active DTC PGN 65227 (0xFECB)

a) This would be a send/receive ComPrimitive with the following data payload sent via PGN 59904 which is
set up in the ComParams via CP_J1939PDUFormat:

⎯ PDUStartComPrimitive payload data = 0xCB 0xFE 0x00 (three bytes)

b) The message on the CAN bus would be as shown below:

⎯ DM2: CAN ID is 0x18EA0181, data is 0xCB 0xFE 0x00

NOTE The PS field of the CAN ID would contain the source address of the ECU (either derived from a NAME claim,
using CP_J1939TargetName, or from CP_J1939TargetAddress) that the command is being sent to. In this case it is 0x01,
but it could be a different value for another ECU.

c) The expected response filters will be set as shown below:

⎯ 0xFF 0xFF 0x01 (mask) -> (for positive response)

⎯ 0xCB 0xFE 0x00 (pattern)

⎯ 0xFF 0xFF 0x00 (mask) -> (ACK PGN 59392 used for a negative response)

⎯ 0x00 0xE8 0x00 (pattern)

d) Where the expected response filter bytes are defined as below

⎯ Byte 0 = PDU Specific field (PS)

⎯ Byte 1 = PDU Format field (PF)

⎯ Byte 2 = Data Page field

⎯ Byte 3 = first byte of CAN data

e) On the CAN bus a positive response would be as shown below:

⎯ CAN ID = 0x18FECB01 with 8 bytes of inactive DTC information (1 DTC for simplicity)

⎯ *pDataBytes = 0xCB 0xFE 0x00 followed by 8 bytes of DTC information. See J1939-73 for
description of PGN 65227.

ISO 22900-2:2009(E)

300 © ISO 2009 – All rights reserved

f) On the CAN bus the negative response would be as shown below:

⎯ ECU Negative RESPONSE: (this uses ACK PGN 59392)

⎯ CAN ID = 0x18E8FF01 CAN data is 0x01 0xFF 0xFF 0xFF 0xFF 0xCB 0xFE 0x00

⎯ *pDataBytes = 0x00 0xE8 0x00 followed by the 8 bytes of negative response information 0x01 0xFF
0xFF 0xFF 0xCB 0xFE 0x00

I.5.6 Case 4 Read VIN PGN 65260 (0xFEEC)

a) This would be a send/receive ComPrimitive with the following data payload sent via PGN 59904 which is
set up in the ComParams via CP_J1939PDUFormat and:

⎯ PDUStartComPrimitive payload data = 0xEC 0xFE 0x00 (three bytes)

b) The message on the CAN bus would be as shown below:

⎯ CAN ID is 0x18EA0181 data is 0xEC 0xFE 0x00

NOTE The PS field of the CAN ID would contain the source address of the ECU (either derived from a NAME claim,
using CP_J1939TargetName, or from CP_J1939TargetAddress) that the command is being sent to. In this case it is 0x01,
but could be a different value for another ECU.

c) The expected response filters will be set as shown below.

⎯ 0xFF 0xFF 0x00 (mask) -> (for positive response)

⎯ 0xEC 0xFE 0x00 (pattern)

⎯ 0xFF 0xFF 0x00 (mask) -> (ACK PGN 59392 used for a negative response)

⎯ 0x00 0xE8 0x00 (pattern)

d) On the CAN bus a positive response would be as shown below. This response will be sent using either
BAM or RTS/CTS since the response will have more than 8 bytes of data.

⎯ ECU positive RESPONSE:

⎯ For the first frame of the multi-packet message, theCAN ID = 0x18EC8101 and the CAN data is 0x10,
0x00, 0x11, 0x03, 0xFF, 0xEC, 0xFE, 0x00 where the last three bytes are the PGN of the
multi-packed response. The VIN data will follow in subsequent frames per J1939-21.

⎯ *pDataBytes = 0xEC 0xFE 0x00 V1 V2 … V17, where V1 thru V17 are the VIN digits recorded in the
ECU.

⎯ *pExtraInfo->pHeaderBytes = 0x18 0xEC 0x81 0x01 which is the CAN ID of the connection mode
request to send (TP.CM_RTS). See J1939-21 for a detailed description of the RTS/CTS transfer
process.

e) On the CAN bus the negative response would be as shown below:

⎯ ECU Negative RESPONSE: (this uses ACK PGN 59392)

⎯ CAN ID = 0x18E8FF01 CAN data is 0x01 0xFF 0xFF 0xFF 0xFF 0xEC 0xFE 0x00

⎯ *pDataBytes = 0x00 0xE8 0x00 followed by the 8 bytes of negative response information 0x01 0xFF
0xFF 0xFF 0xEC 0xFE 0x00

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 301

I.5.7 Case 5 Clear specific DTC (DM22) PGN 49920 (0xC300)

a) This would be a send/receive ComPrimitive that is NOT sent via PGN 59904. For this case a separate
CLL is required or CP_J1939PDUFormat must be modified to 0xc3. The data payload would be as
defined in J1939-73 section 5.7.22.

b) The message on the CAN bus would be as shown below:

⎯ DM22: CAN ID is 0x18C30181 data is 0x01 0xFF 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

NOTE The PS field of the CAN ID would contain the source address of the ECU (either derived from a NAME claim,
using CP_J1939TargetName, or from CP_J1939TargetAddress) that the command is being sent to. In this case it is 0x01,
but could be a different value for another ECU.

c) The expected response filters will be set as shown below. Note that in this case the first byte of the data
payload is being used to discriminate between the positive and negative response. In this case, the PS
field of the CAN Id in the response will be set to the ECU ID of the requesting device (the tester) which in
this case is equal to 0x81. However, the PGN returned in the pDataBytes is the DM22 PGN, which is
0xC300.

⎯ 0xFF 0xFF 0x00 0xFF (mask) -> (for positive response)

⎯ 0x00 0xC3 0x00 0x02 (pattern)

⎯ 0xFF 0xFF 0x00 0xFF (mask) -> (for a negative response)

⎯ 0x00 0xC3 0x00 0x03 (pattern)

d) On the CAN bus a positive response would be as shown below:

⎯ CAN ID = 0x18C38101 CAN data is 0x02 0xFF 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

⎯ *pDataBytes = 0x00 0xC3 0x00 0x02 followed by the remaining 7 bytes of information from PGN
49920. See J1939-73 for more information on the data format.

e) On the CAN bus the negative response would be as shown below:

⎯ CAN ID = 0x18C38101 CAN data is 0x03 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

⎯ *pDataBytes = 0x00 0xC3 0x00 0x03 followed by the remaining 7 bytes of information from the DM22
PGN 49920. See J1939-73 for more information on the data format.

I.5.8 Case 6 Read VIN in raw mode PGN 65260 (0xFEEC)

a) This would be a send/receive ComPrimitive with the following data payload sent via PGN 59904 which is
set up entirely in the payload data of PduStartComPrimitive. In addition, the result data in *pDataBytes
will now contain the CAN ID in bytes 0 thru 3. The PGN of the message will be in bytes 4 thru 6 for all
received messages regardless of data size. This will provide the application with a consistent point to filter
on the received PGN. The PDU API will be responsible for the segmentation and reassembly of
messages with data greater than 8 bytes.

⎯ PDUStartComPrimitive payload data = 0x18 0xEA 0x01 0x81 0xEC 0xFE 0x00 (seven bytes)

b) The message on the CAN bus would be as shown below:

⎯ CAN ID is 0x18EA0181 data is 0xEC 0xFE 0x00

ISO 22900-2:2009(E)

302 © ISO 2009 – All rights reserved

c) The expected response filters will be set as shown below.

⎯ 0x00 0x00 0x00 0x00 0xFF 0xFF 0x00 (mask) -> (for positive response)

⎯ 0x00 0x00 0x00 0x00 0xEC 0xFE 0x00 (pattern)

⎯ 0x00 0x00 0x00 0x00 0xFF 0xFF 0x00 (mask) -> (ACK PGN 59392 used for a negative response)

⎯ 0x00 0x00 0x00 0x00 0x00 0xE8 0x00 (pattern)

d) On the CAN bus a positive response would be as shown below. This response will be sent using either
BAM or RTS/CTS since the response will have more than 8 bytes of data.

⎯ ECU positive RESPONSE:

⎯ For the first frame of the multi-packet message, if sent via RTS/CTS, the CAN ID = 0x18EC8101 and
the CAN data is 0x10, 0x11, 0x00, 0x03, 0xFF, 0xEC, 0xFE, 0x00 where the last three bytes are the
PGN of the multi-packed response. The VIN data will follow in subsequent frames per J1939-21. The
CAN ID of the first frame will be placed in *pDataBytes.

⎯ *pDataBytes = 0x18 0xEC 0x81 0x01 0xEC 0xFE 0x00 V1 V2 … V17, where V1 thru V17 are the
VIN digits recorded in the ECU.

NOTE The PF field of (second byte) of the CAN ID is 0xEC which is part of PGN 60416, the connection
management PGN. The PS field of PGN 65260 (0xFEEC) is coincidentally also 0xEC. These fields should not be
confused.

e) On the CAN bus the negative response would be as shown below:

⎯ ECU Negative RESPONSE: (this uses ACK PGN 59392)

⎯ CAN ID = 0x18E8FF01 CAN data is 0x01 0xFF 0xFF 0xFF 0xFF 0xEC 0xFE 0x00

⎯ *pDataBytes = 0x18 0xE8 0xFF 0x01 0x00, 0xE8, 0x00 followed by the 8 bytes of negative response
information 0x01, 0xFF, 0xFF, 0xFF, 0xEC, 0xFE, 0x00

I.5.9 Case 7 Data Security in raw mode (DM18) PGN 54272 (0xD400)

a) This would be a send/receive ComPrimitive with the following data payload sent via PGN 54272. In this
case, the data in PduStartComPrimitive would contain the CAN ID and the payload data, but since the
data length is greater than 8 bytes the Protocol Handler transport layer will transform the message into
BAM or RTS/CTS format based on CP_J1939TargetAddress. For this case, CP_J1939TargetAddress
= 0x01 and the transport mode is RTS/CTS.

⎯ PDUStartComPrimitive payload data = 0x18 0xD4 0x01 0x81 0x08 0x01 0x11 0x22 0x33 0x44 0x55
0x66 0x77 0x88 (four bytes for CAN ID and ten data bytes)

b) The first message on the CAN bus would be as shown below:

⎯ CAN ID is 0x18EC0181 data is 0x10 0x0A 0x00 0x02 0xFF 0x00 0xD4 0x00 (The connection mode
request to send message, TP.CM.RTS)

This would be followed by the ECU sending the clear to send (TP.CM.RTS), the diagnostic tester sending
the two data transfer messages (TP.DT), and finally by the ECU sending the acknowledge
(TP.CM_EndOfMsgACK)

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 303

c) The expected response filters will be set as shown below.

⎯ 0x00 0x00 0x00 0x00 0x00 0xFF 0x00 0x00 0x0E (mask) -> (Memory Access Response PGN
55296 used for positive response, status = proceed)

⎯ 0x00 0x00 0x00 0x00 0x00 0xD8 0x00 0x00 0x00 (pattern)

⎯ 0x00 0x00 0x00 0x00 0x00 0xFF 0x00 0x00 0x0E (mask) -> (Memory Access Response PGN
55296 used for a negative response, status = operation failed)

⎯ 0x00 0x00 0x00 0x00 0x00 0xD8 0x00 0x00 0x0A(pattern)

d) The result data for both the positive and negative responses would be as shown below.

⎯ *pDataBytes = 0x18 0xD8 0x81 0x01 0x00 0xD8 0x00 followed by the eight bytes of memory access
response data.

I.6 Multiple clients use cases

I.6.1 Definition

The D-PDU API is “multiple clients capable”, meaning that the D-PDU API enables multiple independent
clients to communicate at the same time, with different ECUs, through the same MVCI protocol module.

NOTE “Independent” clients are those that do not coordinate themselves.

ISO 22900-2:2009(E)

304 © ISO 2009 – All rights reserved

Figure I.14 — Sharing a MVCI by multiple clients

The ability of the MVCI protocol module to support multiple clients is vendor specific.

I.6.2 Multiple clients configurations

I.6.2.1 General

This subclause presents three possible multiple clients use cases:

a) MVCI used by two processes in two separate hosts,

b) MVCI used by two processes in a single host,

c) MVCI used by two independent threads in a single process.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 305

I.6.2.2 Case #1: MVCI used by two processes in two separate hosts

It is the case where two applications physically located in two different hosts use the same MVCI to
communicate.

Figure I.15 — MVCI used by two processes in two separate hosts

ISO 22900-2:2009(E)

306 © ISO 2009 – All rights reserved

I.6.2.3 Case #2: MVCI used by two processes in a single host

It is the case where two applications located in the same host use the same MVCI to communicate.

The API is loaded two times in memory (two instances of the DLL).

Figure I.16 — MVCI used by two processes in a single host

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 307

I.6.2.4 Case #3: MVCI used by two independent threads in a single process

It is the case where one application creates two independent tasks that use the same MVCI to communicate.

The API is loaded only one time in memory.

Figure I.17 — MVCI used by two independent threads in a single process

For case #3, the following restrictions have to be taken into account:

a) Only one PDUConstruct call can be made to the D-PDU API instance,

b) Only one PDUDestruct call can be made to the D-PDU API instance,

c) Only one callback can be registered per object (System, Modules and CLLs).

Then, Procedures X and Y cannot be completely independent.

ISO 22900-2:2009(E)

308 © ISO 2009 – All rights reserved

I.6.3 Example scenarios

EXAMPLE 1 The MVCI protocol module supports two communication sessions.

Figure I.18 — MVCI protocol module supporting two communication sessions

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 309

EXAMPLE 2 The MVCI protocol module accepts only one communication session.

Figure I.19 — MVCI protocol module accepting only one communication session

ISO 22900-2:2009(E)

310 © ISO 2009 – All rights reserved

Annex J
(normative)

OBD protocol initialization

J.1 OBD application

J.1.1 OBD concept

An OBD application is responsible for performing an automatic hands-off determination of the communication
interface used to provide OBD services on the vehicle. The following list of protocols is supported by an OBD
application:

⎯ ISO 9141-2

⎯ SAE J1850 41,6 kbps PWM (pulse width modulation)

⎯ SAE J1850 10,4 kbps VPW (variable pulse width)

⎯ ISO 14230-4 (Keyword protocol 2000)

⎯ ISO 15765-4 (CAN)

⎯ SAE J1939-73 (CAN)

J.1.2 Automatic OBD protocol determination

J.1.2.1 OBD protocol determination concept

The OBD application shall have an “automatic hands-off determination of the communication interface” built-in
to determine the communication protocol used on a given vehicle.

The tests to determine the communication interface and protocol may be performed in any order and, where
possible, may be performed simultaneously (i.e. automatic protocol determination can use multiple
ComLogicalLinks).

The MVCI protocol module shall not cause bus failures such as CAN bus off.

J.1.2.2 OBD protocol determination using the D-PDU API

a) The OBD application carries out the initialization by opening the predefined com logical links to scan the
communication interface and protocol in a convenient sequence, or simultaneously where possible. The
application tries to start communication on each logical link and checks for success.

b) Certain parts of the initialization sequence are internally supported by the D-PDU API.

⎯ Automatic determination of ISO 14230-4 or ISO 9141-2 protocol during a 5-Baud Initialization.

⎯ CAN baud rate detection.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 311

⎯ SAE_J1850 determination. Either a SAE J1850 PWM or a SAE J1850 VPW link can be supported on
a vehicle. The D-PDU API supports an internal algorithm to determine which SAE J1850 protocol is
being used on a vehicle.

c) If the MVCI protocol module is not fully OBD-compliant, the initialization procedure will receive an error
when trying to open a com logical link on a resource which is unknown to the D-PDU API, and therefore
not contained in the MDF file. So the OBD application is able to inform the user about the incomplete
OBD-compliance.

J.1.3 Simultaneous protocol scan sequence using the D-PDU API

J.1.3.1 General

To achieve the best performance, the OBD application may run three scan sequences in parallel:

⎯ Scan Sequence on SAE J1850 (PWM and VPW)

⎯ Scan Sequence on K-Line (ISO 9141-2 and ISO 14230)

⎯ Scan Sequence on CAN (ISO 15765 and SAE J1939)

The following applies:

a) In each sequence one or more com logical links are opened for scanning (PDUCreateComLogicalLink).

b) The Unique Response Identifier table is configured for all possible OBD responses
(PDUSetUniqueRespIdTable).

c) Send a Start Comm Message for each com logical link (usually a mode 0x01 PID 0x00)
(PDUStartComPrimitive of type PDU_COPT_STARTCOMM).

d) If scanning succeeded on one of the com logical links, the OBD application uses this com logical link for
all future OBD diagnostic procedures.

e) The OBD application can then close the other com logical links that did not succeed
(PDUDestroyComLogicalLink).

f) The details of each scan sequence are described in the following subclauses.

J.1.3.2 OBD SAE J1850 protocol determination

J.1.3.2.1 General D-PDU API information on OBD SAE J1850 protocol

There are 2 possible bus types for the D-PDU API protocol “ISO OBD on SAE J1850”. Table J.1 —
SAE J1850 OBD protocol defaults describes the default differences between the protocols.

ISO 22900-2:2009(E)

312 © ISO 2009 – All rights reserved

Table J.1 — SAE J1850 OBD protocol defaults

SAE J1850 PWM

(Pulse Width Modulation)

SAE J1850 VPW

(Variable Pulse Width)

BusType SAE_J1850_PWM SAE_J1850_VPW

Default ComParams

CP_Baudrate 41600 10400

CP_Networkline 0 (BUS_NORMAL) n/a

CP_RequestAddrMode 2 (Functional) 2 (Functional)

CP_HeaderFormatJ1850 3 (3 byte header) 3 (3 byte header)

CP_FuncReqFormatPriorityType 0x61 0x68

CP_FuncReqTargetAddr 0x6A 0x6A

CP_TesterSourceAddress 0xF1 0xF1

Default URID Table (id set to PDU_ID_UNDEF)

CP_EcuRespSourceAddress Variable per ECU on the bus (initial
= 0xFF (invalid id))

Variable per ECU on the bus (initial = 0xFF
(invalid id))

CP_FuncRespFormatPriorityType 0x41 0x48

CP_FuncRespTargetAddr 0x6B 0x6B

CP_PhysReqFormatPriorityType n/a n/a

CP_PhysReqTargetAddr n/a n/a

CP_PhysRespFormatPriorityType n/a n/a

The D-PDU API supports the protocol “ISO OBD on SAE J1850” which has combined both the SAE J1850
VPW and SAE J1850 PWM protocols into a single protocol id. The reason for this is that the SAE J1850
protocols share a common pin and cannot be tested for simultaneously on two different ComLogicalLinks. The
application shall run a two-step scan sequence to determine the bus type (PWM or VPW), using two
ComLogicalLinks differing by bus type.

J.1.3.2.2 OBD SAE J1850 VPW scan sequence

Scan for protocol SAE J1850 VPW OBD support on the vehicle:

a) Open a ComLogicalLink for protocol “ISO_OBD_on_SAE_J1850”, and bus type “SAE_J1850_VPW”. Pins
selected should be DLC pin 2 (PDUCreateComLogicalLink and PDUConnect).

b) Set ComParams:

⎯ CP_Baudrate = 10400,

⎯ CP_FuncReqFormatPriorityType = 0x68,

⎯ CP_FuncRespFormatPriorityType = 0x48.

c) Prepare and execute a start communication primitive.

⎯ Set the PDU data to service 0x01 PID 0x00. (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

⎯ Set the expected response for any ECU responding with a pattern 0x41 0x00.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 313

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the initialization service.

d) A positive response indicates successful initialization. Each response will contain the URID of
PDU_ID_UNDEF until the application configures the URID Table.

J.1.3.2.3 OBD SAE J1850 PWM scan sequence

Scan for protocol SAE J1850 PWM OBD support on the vehicle:

a) Open a ComLogicalLink for protocol “ISO_OBD_on_SAE_J1850” and bus type “SAE_J1850_PWM”. Pins
selected should be DLC pins 2 and 10 (PDUCreateComLogicalLink and PDUConnect).

b) Set ComParams:

⎯ CP_Baudrate = 41600,

⎯ CP_FuncReqFormatPriorityType = 0x61,

⎯ CP_FuncRespFormatPriorityType = 0x41.

c) Prepare and execute a start communication primitive.

⎯ Set the PDU data to service 0x01 PID 0x00. (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

⎯ Set the expected response for any ECU responding with a pattern 0x41 0x00.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the initialization service.

d) A positive response indicates successful initialization. Each response will contain the URID of
PDU_ID_UNDEF until the application configures the URID Table.

J.1.3.3 OBD ISO K-Line protocol determination

J.1.3.3.1 General D-PDU API information on OBD ISO K-Line protocol

There are two logical links for protocol “ISO OBD on K-Line”. These logical links are used to scan with either
fast initialization or with 5 baud initialization.

During a 5 baud initialization sequence the keybytes of the protocol are returned to the tester. From these
keybytes, the tester can determine whether the vehicle supports the ISO 9141-2 protocol or the ISO 14230-4
protocol.

Table J.2 — K-Line OBD protocol defaults describes the default differences between the protocols:

ISO 22900-2:2009(E)

314 © ISO 2009 – All rights reserved

Table J.2 — K-Line OBD protocol defaults

 ISO 9141-2 ISO 14230-4

BusType ISO_9141_2_UART ISO_14230_1_UART

Default ComParams

CP_Baudrate 10400 10400

CP_5BaudAddressFunc 0x33 0x33

CP_5BaudMode 0 (OBD Init) 0 (OBD Init)

CP_InitializationSettings 1 (5 Baud Init) First -> 2 (fast init)

Second -> 1 (5 Baud init)

CP_RequestAddrMode 2 (Functional) 2 (Functional)

CP_HeaderFormatKW 4 (3 byte header always) 4 (3 byte header always)

CP_FuncReqFormatPriorityType 0x68 0xC0

CP_FuncReqTargetAddr 0x6A 0x33

CP_TesterSourceAddress 0xF1 0xF1

Default URID Table (id set to PDU_ID_UNDEF)

CP_EcuRespSourceAddress Variable per ECU on the bus
(initial = 0xFF (invalid id))

Variable per ECU on the bus
(initial = 0xFF (invalid id))

CP_FuncRespFormatPriorityType 0x48 0x80

CP_FuncRespTargetAddr 0x6B n/a = TesterSourceAddress

CP_PhysReqFormatPriorityType n/a n/a

CP_PhysReqTargetAddr n/a n/a

CP_PhysRespFormatPriorityType n/a n/a

The D-PDU API supports the protocol “ISO OBD on K Line” which has combined both the ISO 9141-2 and
ISO 14230-4 protocols into a single protocol id. The reason for this is that the protocols are on a common pin
and cannot be tested for simultaneously on two different ComLogicalLinks. It is more efficient for the
D-PDU API to determine the correct K-Line protocol being supported by the vehicle by doing the test in
sequence.

The OBD application should first attempt a fast initialization on the K-Line followed by a 5 baud initialization.

During a 5 baud initialization, the D-PDU API will internally determine the correct protocol supported by the
vehicle, by examining the keybytes returned.

Keybytes specified by OBD:

⎯ 0x08, 0x08 /* ISO 9141-2

⎯ 0x94, 0x94 /* ISO 9141-2

⎯ 0x8F, 0xE9 /* ISO 14230-4

⎯ 0x8F, 0x6B /* ISO 14230-4

⎯ 0x8F, 0x6D /* ISO 14230-4

⎯ 0x8F, 0xEF /* ISO 14230-4

NOTE ComParam CP_P2max is set to 25 000 (25 ms) for fast init, and to 0 (0 ms) for 5 Baud Init.

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 315

J.1.3.3.2 OBD ISO K-Line scan sequence (fast init)

a) Open a ComLogicalLink for protocol “ISO_OBD_on_K_Line”. Pins selected should be DLC pins 7 (K-line)
and 15 (L-line) (PDUCreateComLogicalLink and PDUConnect).

b) Set ComParam CP_InitializationSettings to 2 (fast init).

c) Start Communications. Set the PDU data to service 0x81. (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

⎯ Set a positive expected response for any ECU responding with a pattern 0xC1.

⎯ Set a negative expected response for any ECU responding with a pattern 0x7F 0x81.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the initialization service.

d) A positive response indicates successful initialization. Each response will contain the URID of
PDU_ID_UNDEF until the application configures the URID Table.

e) Set the URID table for all ECU's which have responded. (PDUGetUniqueRespIdTable and
PDUSetUniqueRespIdTable). Note: it is possible for the application to determine which protocol is being
supported on the vehicle by reading the CP_FuncRespFormatPriorityType byte in the URID table
(i.e. ISO 9141-2= 0x48 and ISO 14230-4 = 0x80).

J.1.3.3.3 ISO 14230-4 protocol defined key bytes

Table J.3 — ISO 14230-4 key bytes specifies the key bytes to be supported by the external test equipment for
the ISO 14230-4 protocol.

Table J.3 — ISO 14230-4 key bytes

Key byte #2
High Byte

Key byte #1
Low Byte Description Normal timing

0x8F 0xE9 Key byte = 202510: 3 byte header including target and source
address

0x8F 0x6B Key byte = 202710: 3 byte header including target and source
address, with or without additional length byte

0x8F 0x6D Key byte = 202910: 1 byte header or 3 byte header including
target and source address

0x8F 0xEF Key byte = 203110: 1 byte header or 3 byte header including
target and source address, with or without additional length byte

P1 = 0 – 20 ms

P2 = 25 – 50 ms

P3 = 55 – 5 000 ms

P4 = 0 – 20 ms

J.1.3.3.4 OBD K-line protocol fast initialization flow chart

Figure J.1 — K-Line fast initialization sequence shows the fast initialization flow chart to be used for an OBD
Init for ISO 14230-4 protocol.

ISO 22900-2:2009(E)

316 © ISO 2009 – All rights reserved

Key
A start fast initialization
B protocol is not ISO 14230-4 with fast initialization support
C protocol is ISO 14230-4 with fast initialization support

Figure J.1 — K-Line fast initialization sequence

J.1.3.3.5 OBD ISO K-Line scan sequence (5 baud init)

a) Open a ComLogicalLink for protocol “ISO_OBD_on_K_Line”. Pins selected should be DLC pins 7 (K-line)
and 15 (L-line) (PDUCreateComLogicalLink and PDUConnect).

b) Set ComParam CP_InitializationSettings to 1 (5 baud init).

c) Start Communications with 5 baud initialization (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 317

⎯ Set a positive expected response for any ECU responding with a pattern 0x41, 0x00.

⎯ Set a negative expected response for any ECU responding with a pattern 0x7F 0x01.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the service.

⎯ Each response will contain the URID of PDU_ID_UNDEF until the application configures the URID
Table

d) When a positive init sequence has been completed, D-PDU API Protocol handler will determine the
correct transport layer based on the key bytes returned by the ECU (i.e. a KWP2000 TP layer or an
ISO 9141 TP layer).

e) Start PDUStartComPrimitive of type PDU COPT SENDRECV. Set the PDU data to service 0x01 PID
0x00 (supported PIDs request):

⎯ Set a positive expected response for any ECU responding with a pattern 0x41, 0x00.

⎯ Set a negative expected response for any ECU responding with a pattern 0x7F 0x01.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the service.

⎯ Each response will contain the URID of PDU_ID_UNDEF until the application configures the URID
Table.

f) Set the URID table for all ECU's which have responded (PDUGetUniqueRespIdTable and
PDUSetUniqueRespIdTable).

NOTE It is possible for the application to determine which protocol is being supported on the vehicle by reading the
CP_FuncRespFormatPriorityType byte in the URID table (i.e. ISO 9141-2 = 0x48 and ISO 14230-4 = 0x80).

J.1.3.3.6 ISO 9141-2 protocol defined key bytes

Table J.4 — ISO 9141-2 key bytes specifies the key bytes to be supported by the external test equipment.

Table J.4 — ISO 9141-2 key bytes

Key byte #2
High Byte

Key byte #1
Low Byte Description Timing parameter

0x08 0x08 Key byte = 103210: this key byte informs the external test
equipment that the server(s)/ECU(s) shall wait at least
P2min = 25 ms when sending a response message

P1 = 0 – 20 ms
P2 = 25 – 50 ms
P3 = 55 – 5 000 ms
P4 = 0 – 20 ms

0x94 0x94 Key byte = 258010: this key byte informs the external test
equipment that the server(s)/ECU(s) may send the response
message immediately (P2min = 0 ms) after receiving a request
message

P1 = 0 – 20 ms
P2 = 0 – 50 ms
P3 = 55 – 5 000 ms
P4 = 0 – 20 ms

J.1.3.3.7 OBD ISO K-Line protocol 5 baud initialization flow chart

Figure J.2 — K-Line 5 baud initialization sequence shows the initialization flow chart to be used for a 5 baud
OBD Init for K-Line protocols.

ISO 22900-2:2009(E)

318 © ISO 2009 – All rights reserved

Key
A start 5 Baud initialization with 0x33 address
B protocol is NOT ISO 14230-4 with 5 Baud initialization support
C protocol is ISO 9141-2 initialized with 5 Baud
D protocol is ISO 14230-4 initialized with 5 Baud

Figure J.2 — K-Line 5 baud initialization sequence

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 319

J.1.3.4 OBD CAN protocol determination

J.1.3.4.1 General D-PDU API information on OBD CAN protocol

There are 2 possible CAN ID size configurations for protocol “ISO OBD on CAN” (11-bit and 29-bit). The
D-PDU API protocol handler may optionally first “listen” to the bus (i.e. if the CAN controller hardware supports
the feature and the vehicle bus is active) to determine the correct baud rate and bit configuration prior to
transmitting the start communication message.

The parameter CP_CanBaudrateRecord shall be used to specify the type of initialization to be performed. If
the CP_CanBaudrateRecord parameter contains a single baud rate, then a single baud rate initialization
sequence shall be performed using the specified single baud rate (e.g. 500 kBit/s). If the
CP_CanBaudrateRecord parameter contains multiple baud rates, then a multiple baud rate initialization
sequence including a baud rate detection procedure shall be performed using the specified multiple baud
rates (e.g. 250 kBit/s and 500 kBit/s).

NOTE If CP_CanBaudrateRecord has no entries, then the CP_Baudrate parameter will be used. Table J.5 — Default
ComParams for OBD on CAN describes the default setup for an ISO_OBD_on_ISO15765_4 for different CAN Id sizes.

Table J.5 — Default ComParams for OBD on CAN

 11–bit CAN Id size 29-bit Can id Size

BusType ISO_11898_2_DWCAN ISO_11898_2_DWCAN

Default ComParams

CP_Baudrate 0 Set to known baud rate from 11-bit initialization
sequence

CP_CanBaudrateRecord 500 000 bps,

250 000 bps

0

CP_RequestAddrMode 2 (Functional) 2 (Functional)

CP_CanFuncReqFormat 0x05 0x07

CP_CanFuncReqExtAddr n/a n/a

CP_CanFuncReqId 0x7DF 0x18DB33F1

Default URID Table 1 entry per valid OBD CAN Id (URID value set to PDU_ID_UNDEF)

CP_CanPhysReqFormat 0x05 0x07

CP_CanPhysReqId 0x7E0 0x18DA10F1

CP_CanPhysReqExtAddr n/a n/a

CP_CanRespUSDTFormat 0x05 0x07

CP_CanRespUSDTId 0x7E8 0x18DAF110

CP_CanRespUSDTExtAddr n/a n/a

CP_CanRespUUDTFormat n/a n/a

CP_CanRespUUDTExtAddr n/a n/a

CP_CanRespUUDTId n/a n/a

ISO 22900-2:2009(E)

320 © ISO 2009 – All rights reserved

Table J.6 — 11 bit legislated-OBD CAN identifiers

CAN identifier Description

0x7DF CAN identifier for functionally addressed request messages sent by external test equipment

0x7E0 Physical request CAN identifier from external test equipment to ECU #1

0x7E8 Physical response CAN identifier from ECU #1 to external test equipment

0x7E1 Physical request CAN identifier from external test equipment to ECU #2

0x7E9 Physical response CAN identifier from ECU #2 to external test equipment

0x7E2 Physical request CAN identifier from external test equipment to ECU #3

0x7EA Physical response CAN identifier from ECU #3 to external test equipment

0x7E3 Physical request CAN identifier from external test equipment to ECU #4

0x7EB Physical response CAN identifier ECU #4 to the external test equipment

0x7E4 Physical request CAN identifier from external test equipment to ECU #5

0x7EC Physical response CAN identifier from ECU #5 to external test equipment

0x7E5 Physical request CAN identifier from external test equipment to ECU #6

0x7ED Physical response CAN identifier from ECU #6 to external test equipment

0x7E6 Physical request CAN identifier from external test equipment to ECU #7

0x7EE Physical response CAN identifier from ECU #7 to external test equipment

0x7E7 Physical request CAN identifier from external test equipment to ECU #8

0x7EF Physical response CAN identifier from ECU #8 to external test equipment

While not required for current implementations, it is strongly recommended (and may be required by applicable
legislation) that for future implementations the following 11-bit CAN identifier assignments be used:

⎯ 0x7E0/0x7E8 for ECM (engine control module);

⎯ 0x7E1/0x7E9 for TCM (transmission control module).

Table J.7 — 29 bit legislated-OBD CAN identifiers

CAN identifier Description

0x18 DB 33 F1 CAN identifier for functionally addressed request messages sent by external test equipment.

0x18 DA xx F1 Physical request CAN identifier from external test equipment to ECU #xx.

0x18 DA F1 xx Physical response CAN identifier from ECU #xx to external test equipment.

The maximum number of legislated-OBD ECUs in a legislated-OBD-compliant vehicle shall not exceed eight
(8). The physical ECU diagnostic address of an ECU (“xx” hex) embedded in the physical CAN identifiers shall
be unique for a legislated-OBD ECU in a given vehicle.

J.1.3.4.2 OBD ISO CAN scan sequence

J.1.3.4.2.1 General

Open a ComLogicalLink for protocol “ISO_OBD_on_ISO_15765_4”. Pins selected should be DLC pins 6 and
14. (PDUCreateComLogicalLink and PDUConnect).

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 321

J.1.3.4.2.2 11-bit CAN ID

a) Set ComParams and Unique Response Identifier Table to 11-bit CAN Id settings. Setup BaudrateRecord
ComParam for auto detection of the baud rate on the vehicle bus.

b) Set CP_TransmitIndEnable to enabled (1). This will allow a successful transmit on the CAN bus to
generate a result item to the application indicating a correct baud rate has been detected. This baud rate
value will be copied to CP_baudrate (see J.1.3.4.3).

c) Start Communications. Set the PDU data to service 0x01, 0x00 (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

⎯ Set a positive expected response for any ECU responding with a pattern 0x41.

⎯ Set a negative expected response for any ECU responding with a pattern 0x7F 0x01.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the initialization service.

d) A result item containing the Rx_Flag bit TX_INDICATION, indicates that the transmit completed
successfully and therefore a correct baud rate has been detected.

e) A positive ECU response indicates not only a successful baud rate detection but also a successful CAN
Id detection (11-bit). Each response will contain the URID of PDU_ID_UNDEF until the application
configures the URID Table.

f) Set the URID table for all ECU's which have responded (PDUGetUniqueRespIdTable and
PDUSetUniqueRespIdTable).

g) If no positive ECU responses were received, continue with a 29-bit Can ID. The correct baud rate should
already have been determined. Verify CP_Baudrate is non-zero.

J.1.3.4.2.3 29-bit CAN Id (ISO 15765-4)

a) 29-bit CAN Id is tried after an 11-bit Baud rate detection (see Figure J.3 — CAN baud rate detection flow
chart (11-bit)).

b) Set ComParams and Unique Response Identifier Table to 29-bit CAN Id settings for ISO 15765-4.

c) Start Communications. Set the PDU data to service 0x01, 0x00 (PDUStartComPrimitive of type
PDU_COPT_STARTCOMM).

⎯ Set a positive expected response for any ECU responding with a pattern 0x41.

⎯ Set a negative expected response for any ECU responding with a pattern 0x7F 0x01.

⎯ Enable the TxFlag ENABLE_EXTRA_INFO. Extra header byte information will be returned which can
be used to determine all ECU source addresses which respond to the initialization service.

d) A positive response indicates successful initialization. Each response will contain the URID of
PDU_ID_UNDEF until the application configures the URID Table.

e) Set the URID table for all ECU's which have responded (PDUGetUniqueRespIdTable and
PDUSetUniqueRespIdTable).

ISO 22900-2:2009(E)

322 © ISO 2009 – All rights reserved

J.1.3.4.3 OBD CAN baud rate detection

The transmit procedure given as follows shall guarantee that in all cases the external test equipment will
detect that it uses the wrong baud rate for the transmission of the request message and will stop disturbing
the CAN bus immediately. Under normal in-vehicle conditions (i.e. no error frames during in-vehicle
communication when the external test equipment is disconnected), the external test equipment will disable its
CAN interface prior to the situation where the internal error counters of the OBD ECU(s) reach critical values.

To achieve this, the external test equipment shall support the following features:

⎯ Possibility to stop sending immediately during transmission of any CAN frame. The CAN interface should
be disconnected within 12 µs from reception of a bus error signal. The maximum time for the
disconnection is 100 µs. With the CAN interface disconnected, the external test equipment shall not be
able to transmit dominant bits on the CAN bus.

⎯ Possibility to immediately detect any error on the CAN bus.

Figure J.3 — CAN baud rate detection flow chart (11-bit) shows the baud rate detection flow chart to be used
for an ISO OBD CAN Init.

a) The external test equipment shall set up its CAN interface using the first baud rate contained in the
CP_CanBaudrateRecord. It shall use the CAN bit timing parameter values defined for this baud rate.

b) Following the CAN interface set-up, the external test equipment shall connect to the CAN bus and
transmit a functionally addressed service 0x01 PID 0x00 request message (read-supported PIDs) using
the legislated-OBD 11 bit functional request CAN identifier.

c) The external test equipment shall check for any CAN error. If the request message is transmitted onto the
CAN bus, it shall indicate a successful transmission. See RxFlag bit TX_INDICATION, which indicates a
successful transmission in the PDU_RESULT_DATA structure.

d) If an acknowledge check error is detected, then the external test equipment shall continue to retry the
transmission of the request message until a 25 ms (N_As) timeout is reached.

e) If any other CAN error occurred, or an acknowledge check error occurred after the 25 ms timeout was
reached, then the external test equipment shall disconnect its CAN interface from the CAN bus. With a
disconnected CAN interface, the external test equipment shall not be able to transmit dominant bits on
the CAN bus. It shall check whether more baud rates are contained in the CP_CanBaudrateRecord. If no
further baud rate is contained in the CP_CanBaudrateRecord, it shall indicate that the request was not
transmitted successfully.

f) If the end of the CP_CanBaudrateRecord is not reached, the external test equipment shall set up its CAN
interface using the next baud rate in the CP_CanBaudrateRecord. Following the CAN interface set-up,
the external test equipment shall connect to the CAN bus and transmit the request message once again
[continue from b)].

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 323

Key
A start an 11-bit baud rate detection
B baudrate detected (no Bus errors). If a response is received then the CAN Id is 11-bit.
F no baud rates in the baud rate record are valid

Figure J.3 — CAN baud rate detection flow chart (11-bit)

ISO 22900-2:2009(E)

324 © ISO 2009 – All rights reserved

Key
C baudrate is known, but the 11-bit CAN ID request returned no responses. Try 29-bit Ids.
D if a response is received then the CAN ID is 29-bit
F incorrect baud rate being used

Figure J.4 — CAN 29-bit Id detection

ISO 22900-2:2009(E)

© ISO 2009 – All rights reserved 325

Bibliography

[1] ISO 7637-2, Road vehicles — Electrical disturbances from conduction and coupling — Part 2:
Electrical transient conduction along supply lines only

[2] ISO/IEC 8859-2, Information technology — 8-bit single-byte coded graphic character sets — Part 2:
Latin alphabet No. 2

[3] ISO 11898 (all parts), Road vehicles — Controller area network (CAN)

[4] ISO 15031-3, Road vehicles — Communication between vehicle and external equipment for
emissions-related diagnostics — Part 3: Diagnostic connector and related electrical circuits,
specification and use

[5] ISO 15031-4, Road vehicles — Communication between vehicle and external equipment for
emissions-related diagnostics — Part 4: External test equipment

[6] ISO 16750-2, Road vehicles — Environmental conditions and testing for electrical and electronic
equipment — Part 2: Electrical loads

[7] ISO/PAS 27145 (all parts), Road vehicles — Implementation of WWH-OBD communication
requirements

[8] SAE J1587, Electronic data interchange between microcomputer systems in heavy-duty vehicle
applications

[9] SAE J1708, Serial data communications between microcomputer systems in heavy-duty vehicle
applications

[10] SAE J1850, Class B data communications network interface

[11] SAE J1939, Recommended practice for a serial control and communications vehicle network

[12] SAE J1939-21:2006, Data link layer

[13] SAE J1939-73:2006, Application Layer — Diagnostics

[14] SAE J1939-81:2003, Network management

[15] SAE J1962, Diagnostic connector equivalent to ISO/DIS 15031-3

[16] SAE J1979, E/E diagnostic test modes

[17] SAE J2190, Enhanced E/E diagnostic test modes

[18] SAE J2411, Single wire CAN network for vehicle applications

[19] SAE J2534-1, Recommended practice for pass-thru vehicle programming

[20] SAE J2610, Serial data communication interface

[21] SAE J2740, General Motors UART serial data communications

[22] ASAM AE MCD 2, Abstract — Datatypes

[23] ASAM AE MCD 2, Harmonized data objects - draft

ISO 22900-2:2009(E)

ICS 43.040.15
Price based on 325 pages

© ISO 2009 – All rights reserved

