INTERNATIONAL STANDARD ISO 22554 > First edition 2007-09-15 # Ships and marine technology — Propeller shaft revolution indicators — Electric type and electronic type Navires et technologie maritime — Indicateurs de vitesse d'arbre du propulseur — Type électrique et type électronique ## PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. # COPYRIGHT PROTECTED DOCUMENT © ISO 2007 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Co | ntents | Page | |------|-------------------------------------------------------|------| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Construction of indicator system | 2 | | 4.1 | Indicator system | 2 | | 4.2 | Transmitters | 3 | | 4.3 | Indicator | 4 | | 5 | Performance requirements | 5 | | 5.1 | General | 5 | | 5.2 | Balance | 5 | | 5.3 | Friction error | 5 | | 5.4 | Calibration accuracy | 5 | | 5.5 | Damping | 5 | | 5.6 | Zero point | 5 | | 5.7 | Output electric signal of a signal converter | 5 | | 5.8 | Output electric signal accuracy of a signal converter | | | 5.9 | Power supply fluctuations | 6 | | 5.10 | Insulation resistance and high voltage | 6 | | 6 | Methods of testing and required test results | 6 | | 6.1 | Test items and sequence | 6 | | 6.2 | Construction | 7 | | 6.3 | Environmental test | 7 | | 6.4 | Balance test | 7 | | 6.5 | Friction test | 7 | | 6.6 | Calibration accuracy test | | | 6.7 | Damping test | | | 6.8 | Zero point test | | | 6.9 | Signal converter output electric signal test | | | 6.10 | | | | 6.11 | Power supply fluctuation test | | | 7 | Interface | 8 | | 8 | Marking | | | 9 | Information | 8 | | _ | iography | 9 | | | ÷ | - | ISO 22554:2007(E) # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 22554 was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 6, *Navigation*. # Ships and marine technology — Propeller shaft revolution indicators — Electric type and electronic type # 1 Scope This International Standard specifies the construction, performance requirements, methods of testing and required test results for electric and electronic propeller shaft revolution indicators (hereinafter referred to as "indicator system") required by clause 2.5.4, Regulation 19, chapter V, SOLAS 1974 (as amended, 2000). This International Standard is associated with IMO Resolution A.694 (17) and IEC 60945. Where a requirement in this International Standard differs from IEC 60945, the requirement in this International Standard takes precedence. NOTE When this indicator system can be used as the tachometer for the engine of a ship, its usage as the tachometer will be accepted. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60945, Maritime navigation and radiocommunication equipment and systems — General requirements — Methods of testing and required test results IEC 61162-1, Maritime navigation and radiocommunication equipment and systems — Digital interfaces — Part 1: Single talker and multiple listeners IEC 61162-2, Maritime navigation and radiocommunication equipment and systems — Digital interfaces — Part 2: Single talker and multiple listeners, high-speed transmission ## 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 ## propeller shaft revolution indicator remote device capable of indicating the number of revolutions per minute only, or the number of revolutions per minute and the direction of the revolution of the shaft on which it is mounted #### 3.2 # electric propeller shaft revolution indicator electric type indicator that employs a generator driven by the propeller shaft via the driving unit that transmits the revolution speed (number of revolutions per minute) and direction of rotation of the propeller shaft # ISO 22554:2007(E) #### 3.3 # electronic propeller shaft revolution indicator electronic type indicator that employs a revolution sensor that detects pulses generated by a gear turning the propeller shaft or a circular disc with a slit and transmits these pulses to a signal converter #### 3.4 #### indicator means by which the state of the equipment or machinery is represented to an observer NOTE An indicator shows both the sense and magnitude of the information it presents. An indicator can be analog or digital. # 3.5 #### analog type indicator indicator that shows the revolution speed in a continuous way, such as by means of an arrow pointer and graduated scale #### 3.6 #### digital type indicator indicator that shows the revolution speed in a discrete, alphanumeric way #### 3.7 #### calibration accuracy difference between the true revolution speed of a propeller shaft and the revolution speed indicated by the indicator # 3.8 # damping efficiency amount by which an indicator initially over-reads in response to a sudden signal input, as a percentage of the maximum reading # 4 Construction of indicator system # 4.1 Indicator system **4.1.1** An indicator system should show information on the state of the equipment or machinery to which it is connected at locations adjacent to, or remote from, the equipment or machinery. At the equipment or machinery, such systems will generally comprise a sensor and transmitter; at the observer's location, such systems will generally contain an indicator. In general, the system construction shall comply with the following requirements. - **4.1.2** The indicator system enclosures shall be robust and constructed so as to facilitate easy adjustment and maintenance. - **4.1.3** The indicator system with instrument panel lights and the instrument panel light dimmers shall be equipped with a grounding terminal or shall be constructed so that an earth grounding is securely established. In the electronic type case, however, these requirements shall also be applied to the signal converters. - **4.1.4** The indicator system may be self-contained, or it may form part of, or derive information from, any other appropriate equipment. - **4.1.5** An analog type indicator can be used as indicator(s) of the indicator system. It may be additionally provided by a digital type if fitted. #### Kev - 1 indicators - 2 indicator - 3 arrow pointer - 4 electric cable - 5 junction box (as appropriate) / signal converter - 6 transmitter - 7 driving unit / revolution sensor - 8 revolution mechanism - 9 transmitters (term used in the broad sense, including the functions of signal pickup and transmission) - 10 indicator system Figure 1 — Construction of an indicator system #### 4.2 Transmitters #### 4.2.1 General The indicator system shall fulfil the following individual structural requirements. # 4.2.2 Electric type # 4.2.2.1 Driving unit Driving units shall comply with the following requirements. However, an indicator directly connected to a camshaft or another part of the main machine shall not be equipped with a driving unit. - a) The driving unit shall be constructed so that the revolution of a propeller shaft is conveyed to the transmitter smoothly and without slippage. - b) Recommendations call for providing the driving unit with a clutch system so that transmitter can be suspended and driven at any time while the propeller shaft is spinning. - c) A gear mechanism is recommended for imparting drive force from the propeller shaft system. # ISO 22554:2007(E) - d) The drive gear should permit secure, easy mounting on the revolution parts of the propeller shaft. - e) Where the transmitter drive includes pivot connections, such connections shall be designed to resist loosening when subject to vibration. #### 4.2.2.2 Transmitter The transmitter shall comply with the following requirements. - a) Driven by the propeller shaft via the conductor, the transmitter employs an electric generator that transmits the revolution speed (number of revolutions per minute) and direction of propeller shaft rotation. - b) The transmitter shall have sufficient capacity to simultaneously drive all connected indicator(s). Also, additional capacity shall be taken into consideration if the transmitter provides output to automation and measurement devices. The manufacturer should specify the capacity of connected indicators. ## 4.2.2.3 Junction box Junction boxes shall be capable of being connected to the required number of indicators. Junction boxes shall be equipped with a compensating device to prevent indicator errors, regardless of the number of indicators. # 4.2.3 Electronic type # 4.2.3.1 Revolution sensor Revolution sensors shall be constructed so as to correctly detect pulses generated by a propeller shaft's turning gear or circular disc with slit. # 4.2.3.2 Signal converter Signal converters shall be constructed so that each can convert pulses from the propeller shaft into electric signals for output. # 4.3 Indicator **4.3.1** The indicator may consist of a receiving portion and indication portion. A receiving portion is electrically connected with a transmitter and indication portion is so constructed that it indicates the direction of the rotation and the number of revolutions per minute of a propeller shaft. The direction "Ahead" shall be such as identified by the "plus" sign or by the letters "AH" or "AHEAD", while "Astern" shall be identified by the "minus" sign or by the letters "AS" or "ASTERN". - **4.3.2** The letters and graduations on a dial shall be such that the direction of ahead and astern can be clearly distinguished. - **4.3.3** The clockwise direction of a revolution speed panel shall indicate the forward movement of a ship. It is recommended that the maximum scale value for both forward and backward movements be set to one of 100, 125, 150, 200, 250, 300, 400 or 450 min⁻¹ (rpm). Additional linear range scales may be provided. - **4.3.4** The calibration of zero point of an indicator and its indication shall be capable of being adjusted by appropriate measures. - **4.3.5** An indicator shall be constructed so that it can be read easily and clearly. - **4.3.6** All illumination and lighting of an indicator shall be adjustable down to zero, except the control of the dimmers which shall remain readable. **4.3.7** The illumination and lighting of an indicator shall be arranged in order not to hinder an operator's vision at night and in order to make the scale, pointer and letters as equally visible as possible even in dim light or the dark. # 5 Performance requirements ## 5.1 General Any transmitter shall have the capacity to satisfy the requirements of this clause when all connected indicators are operating simultaneously. #### 5.2 Balance When an indicator without current rotates to either side by 30° from its upright position, the deviation of a pointer from its zero point shall be within \pm 1 % of the combined maximum scale values ahead and astern for an indicator with a visible diameter of nearly 150 mm; and \pm 2 % for an indicator with a visible diameter of less than 150 mm. #### 5.3 Friction error When the power at the electric signal equivalent to the number of revolutions of an indicator is applied to the indicator, to allow the pointer to gradually move forward and backward to the maximum scales to find calibration accuracy at points of 0 %, 25 %, 75 %, and 100 % of the maximum scale value, respectively, the difference between the indication of forward and backward movement shall be within \pm 0,5 % of the combined maximum scale values for ahead and astern movement for an indicator with visible diameter of nearly 150 mm; and \pm 1,0 % for an indicator with visible diameter of less than 150 mm. # 5.4 Calibration accuracy When a revolution sensor and a signal converter are operated using an approved testing machine to determine calibration accuracy at points of 0 %, 25 %, 50 %, 75 %, and 100 % of the maximum scale value of an indicator respectively, the margin of error with respect to the approved testing machine shall be within \pm 0,5 % of the combined maximum scale values ahead and astern for an indicator with visible diameter of nearly 150 mm; and \pm 1,0 % for an indicator with visible diameter of less than 150 mm (using 20 °C as the reference temperature). # 5.5 Damping When a test electric signal equivalent to half of the maximum scale value is suddenly applied to an indicator, the movements of the indicator pointer shall not show a value exceeding two-thirds of the maximum value. # 5.6 Zero point When an electric signal equivalent to an indicator's maximum scale value is applied to an indicator for 30 min, after which power is turned off and the zero position error is immediately corrected by eliminating friction from the moving parts by gently patting the outer casing, any zero point error shall be within \pm 0,25 % of the combined maximum scale values ahead and astern for an indication portion with visible diameter of nearly 150 mm or greater; and \pm 0,5 % for an indication portion with a visible diameter of less than 150 mm. # 5.7 Output electric signal of a signal converter The output electric signal equivalent to the maximum scale value of indicator(s) shall be sufficient to simultaneously operate all connected indicator(s). # Output electric signal accuracy of a signal converter #### 5.8.1 General The accuracy of an output electric signal shall comply with the following requirements. # 5.8.2 Accuracy The accuracy of an output electric signal shall be indicated by a ratio of the output electric signal equivalent to the maximum scale value. This ratio shall not exceed 0,2 %. ## 5.8.3 Response speed When the input pulse of a signal converter is suddenly shifted from the number of pulses per second equivalent to maximum revolution speed, the output electric signal shall reach its maximum equivalent to maximum revolution speed within one second. # 5.9 Power supply fluctuations - 5.9.1 The performance requirements specified under 5.4, 5.7 and 5.8 shall be met when the power supply fluctuations specified 5.9 are applied. - 5.9.2 After repeated makings and breakings, the designated performance shall be demonstrated without carrying out manual adjustments. - 5.9.3 When the rated voltage and frequency are subjected to the combinations of fluctuations specified in Table 1, the designated performance shall be demonstrated. Table 1 — Fluctuation rate of the rated voltage and frequency | Settled condition | Voltage fluctuation | \pm 10 % | Fluctuating | |---------------------|-----------------------|------------|---------------| | | Frequency fluctuation | ± 5 % | period: 600 s | | Transient condition | Voltage fluctuation | \pm 20 % | Fluctuating | | | Frequency fluctuation | \pm 10 % | period: 3 s | **5.9.4** In the case of a battery powered indicator, its design performance shall be demonstrated when the rate voltage fluctuates within the range of \pm 20 %. ## 5.10 Insulation resistance and high voltage When insulation resistance and high voltage tests are to be carried out, IEC 60092-504 may be applied. # Methods of testing and required test results # 6.1 Test items and sequence The tests on indicator system are carried out using the same unit with regard to the following items and in the following sequence: - a) construction; - b) balance test; - c) friction test; - d) calibration accuracy test; - e) damping test; - f) zero point test; - g) signal converter output electric signal test (excluding electric type); - h) signal converter output electric signal accuracy test (excluding electric type); - i) power supply fluctuation test. Tests c) to f) shall be performed on an appropriately mounted indicator. ## 6.2 Construction The construction of the indicator system shall comply with the requirements specified in Clause 4. #### 6.3 Environmental test Unless otherwise stated in this International Standard, all the tests shall be carried out according to the requirement of IEC 60945. The manufacturer shall determine which components of the indicator system will be protected or exposed, as defined in IEC 60945. ## 6.4 Balance test The balance test shall be carried out in accordance with 5.2 and shall satisfy the requirements specified therein. ## 6.5 Friction test The friction test shall be carried out in accordance with 5.3 and shall satisfy the requirements specified therein. ## 6.6 Calibration accuracy test The calibration accuracy test shall be carried out in accordance with 5.4 and shall satisfy the requirements specified therein. # 6.7 Damping test The damping test shall be carried out in accordance with 5.5 and shall satisfy the requirements specified therein. # 6.8 Zero point test The zero point test shall be carried out in accordance with 5.6 and shall satisfy the requirements specified therein. # 6.9 Signal converter output electric signal test The output electric signal test on a signal converter shall be carried out in accordance with 5.7 and shall satisfy the requirements specified therein. # 6.10 Signal converter output electric signal accuracy test The signal converter output electric signal accuracy test shall be carried out in accordance with 5.8 and shall satisfy the requirements specified therein. # 6.11 Power supply fluctuation test The power supply fluctuation test shall be carried out in accordance with 5.9 and shall satisfy the requirements specified therein. # 7 Interface When the indicator system provides interface facilities, they shall meet the requirements of the appropriate international marine interface standards IEC 61162-1 and IEC 61162-2. # Marking - **8.1** Each unit of an indication system shall be marked with the following: - identification of the manufacturer; - equipment type number or model identification number under which it was type tested; - serial number of the unit; - revolution speed, voltage and current of a generator (excepting electronic type systems). - 8.2 The voltage, current and rotational speed (number of revolutions per minute) of its generator shall signify the maximum scale of a system's indicator. - 8.3 Each unit shall be marked with the minimum safe distance from a magnetic compass at which it may be mounted (for bridge installation). The safe distance shall be measured in accordance with IEC 60945. # Information The manufacturer shall provide adequate equipment documentation to enable competent members of a ship's crew to operate and maintain the equipment efficiently. # **Bibliography** - [1] ISO 8468, Ships and marine technology Ship's bridge layout and associated equipment Requirements and guidelines - [2] IEC 60092-504, Electrical installations in ships Part 504: Special features Control and instrumentation - [3] International Convention for the Safety of Life at Sea (SOLAS), 1974 (amended) - [4] IMO Resolution A.694 (17), General requirements for shipborne radio equipment forming part of the global maritime distress and safety system (GMDSS) and for electronic navigational aids ICS 47.020.70 Price based on 9 pages