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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 20501 was prepared by Technical Committee ISO/TC 206, Fine ceramics. 
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Fine ceramics (advanced ceramics, advanced technical 
ceramics) — Weibull statistics for strength data 

1 Scope 

This International Standard covers the reporting of uniaxial strength data and the estimation of probability 
distribution parameters for advanced ceramics which fail in a brittle fashion. The failure strength of advanced 
ceramics is treated as a continuous random variable. Typically, a number of test specimens with well-defined 
geometry are brought to failure under well-defined isothermal loading conditions. The load at which each 
specimen fails is recorded. The resulting failure stresses are used to obtain parameter estimates associated 
with the underlying population distribution. 

This International Standard is restricted to the assumption that the distribution underlying the failure strengths 
is the two-parameter Weibull distribution with size scaling. Furthermore, this International Standard is 
restricted to test specimens (tensile, flexural, pressurized ring, etc.) that are primarily subjected to uniaxial 
stress states. Subclauses 5.4 and 5.5 outline methods of correcting for bias errors in the estimated Weibull 
parameters, and to calculate confidence bounds on those estimates from data sets where all failures originate 
from a single flaw population (i.e., a single failure mode). In samples where failures originate from multiple 
independent flaw populations (e.g., competing failure modes), the methods outlined in 5.4 and 5.5 for bias 
correction and confidence bounds are not applicable. 

Measurements of the strength at failure are taken for one of two reasons: either for a comparison of the 
relative quality of two materials, or the prediction of the probability of failure (or alternatively the fracture 
strength) for a structure of interest. This International Standard permits estimates of the distribution 
parameters which are needed for either. In addition, this International Standard encourages the integration of 
mechanical property data and fractographic analysis. 

2 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

2.1 Defect populations 

2.1.1 
censored strength data 
strength measurements (i.e., a sample) containing suspended observations such as that produced by multiple 
competing or concurrent flaw populations 

NOTE Consider a sample where fractography clearly established the existence of three concurrent flaw distributions 
(although this discussion is applicable to a sample with any number of concurrent flaw distributions). The three concurrent 
flaw distributions are referred to here as distributions A, B, and C. Based on fractographic analyses, each specimen 
strength is assigned to a flaw distribution that initiated failure. In estimating parameters that characterize the strength 
distribution associated with flaw distribution A, all specimens (and not just those that failed from type-A flaws) must be 
incorporated in the analysis to assure efficiency and accuracy of the resulting parameter estimates. The strength of a 
specimen that failed by a type-B (or type-C) flaw is treated as a right censored observation relative to the A flaw 
distribution. Failure due to a type-B (or type-C) flaw restricts, or censors, the information concerning type-A flaws in a 
specimen by suspending the test before failure occurs by a type-A flaw [2]. The strength from the most severe type-A flaw 
in those specimens that failed from type-B (or type-C) flaws is higher than (and thus to the right of) the observed strength. 
However, no information is provided regarding the magnitude of that difference. Censored data analysis techniques 
incorporated in this International Standard utilize this incomplete information to provide efficient and relatively unbiased 
estimates of the distribution parameters. 
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2.1.2 
competing failure modes 
distinguishably different types of fracture initiation events that result from concurrent (competing) flaw 
distributions 

2.1.3 
compound flaw distributions 
any form of multiple flaw distribution that is neither pure concurrent, nor pure exclusive 

NOTE A simple example is where every specimen contains the flaw distribution A, while some fraction of the 
specimens also contains a second independent flaw distribution B. 

2.1.4 
concurrent flaw distributions 
a type of multiple flaw distribution in a homogeneous material where every specimen of that material contains 
representative flaws from each independent flaw population 

NOTE Within a given specimen, all flaw populations are then present concurrently and are competing with each other 
to cause failure. This term is synonymous with “competing flaw distributions”. 

2.1.5 
exclusive flaw distributions 
a type of multiple flaw distribution created by mixing and randomizing specimens from two or more versions of 
a material where each version contains a different single flaw population 

NOTE Thus, each specimen contains flaws exclusively from a single distribution, but the total data set reflects more 
than one type of strength-controlling flaw. This term is synonymous with “mixture flaw distributions”. 

2.1.6 
extraneous flaws 
strength-controlling flaws observed in some fraction of test specimens that cannot be present in the 
component being designed 

NOTE An example is machining flaws in ground bend specimens that will not be present in as-sintered components 
of the same material. 

2.2 Mechanical testing 

2.2.1 
effective gauge section 
that portion of the test specimen geometry included within the limits of integration (volume, area or edge 
length) of the Weibull distribution function 

NOTE In tensile specimens, the integration may be restricted to the uniformly stressed central gauge section, or it 
may be extended to include transition and shank regions. 

2.2.2 
fractography 
the analysis and characterization of patterns generated on the fracture surface of a test specimen 

NOTE Fractography can be used to determine the nature and location of the critical fracture origin causing 
catastrophic failure in an advanced ceramic test specimen or component. 

2.2.3 
proof testing 
applying a predetermined load to every test specimen (or component) in a batch or a lot over a short period of 
time to ascertain if the specimen fails due to a serious strength limiting defect 

NOTE This procedure, when applied to all specimens in the sample, removes potentially weak specimens and 
modifies the statistical characteristics of the surviving samples. 
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2.3 Statistical terms 

2.3.1 
confidence interval 
interval within which one would expect to find the true population parameter 

NOTE Confidence intervals are functionally dependent on the type of estimator utilized and the sample size. The 
level of expectation is associated with a given confidence level. When confidence bounds are compared to the parameter 
estimate one can quantify the uncertainty associated with a point estimate of a population parameter. 

2.3.2 
confidence level 
probability that the true population parameter falls within a specified confidence interval 

2.3.3 
estimator 
well-defined function that is dependent on the observations in a sample 

NOTE The resulting value for a given sample may be an estimate of a distribution parameter (a point estimate) 
associated with the underlying population. The arithmetic average of a sample is, e.g., an estimator of the distribution 
mean. 

2.3.4 
population 
totality of potential observations about which inferences are made 

2.3.5 
population mean 
the average of all potential measurements in a given population weighted by their relative frequencies in the 
population 

2.3.6 
probability density function 
function f (x) is a probability density function for the continuous random variable X if 

f (x) W 0 (1) 

and 

( ) 1f x dx
∞

−∞
=∫  (2) 

NOTE The probability that the random variable X assumes a value between a and b is given by 

( ) ( )
b

a
Pr a X b f x dx< < = ∫  (3) 

2.3.7 
ranking estimator 
function that estimates the probability of failure to a particular strength measurement within a ranked sample 

2.3.8 
sample 
collection of measurements or observations taken from a specified population 

2.3.9 
skewness 
term relating to the asymmetry of a probability density function 

NOTE The distribution of failure strength for advanced ceramics is not symmetric with respect to the maximum value 
of the distribution function but has one tail longer than the other. 
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2.3.10 
statistical bias 
inherent to most estimates, this is a type of consistent numerical offset in an estimate relative to the true 
underlying value 

NOTE The magnitude of the bias error typically decreases as the sample size increases. 

2.3.11 
unbiased estimator 
estimator that has been corrected for statistical bias error 

2.4 Weibull distributions 

2.4.1 
Weibull distribution 
continuous random variable X has a two-parameter Weibull distribution if the probability density function is 
given by 

( )
1

exp when 0
m m

m x xf x x
β β β

−       = − >          
 (4) 

or 

f (x) = 0 when x u 0 (5) 

and the cumulative distribution function is given by 

( ) 1 exp when 0
m

xF x x
β

   = − − >    
 (6) 

or 

F(x) = 0 when x u 0 (7) 

where 

m is the Weibull modulus (or the shape parameter) (> 0); 

β is the Weibull scale parameter (> 0) 

NOTE 1 The random variable representing uniaxial tensile strength of an advanced ceramic will assume only positive 
values, and the distribution is asymmetrical about the mean. These characteristics rule out the use of the normal 
distribution (as well as others) and point to the use of the Weibull and similar skewed distributions. If the random variable 
representing uniaxial tensile strength of an advanced ceramic is characterized by Equations 4 to 7, then the probability 
that this advanced ceramic will fail under an applied uniaxial tensile stress σ is given by the cumulative distribution function 

f
θ

1 exp when 0
m

P σ σ
σ

   = − − >     

 (8) 

Pf = 0 when σ u 0 (9) 

where 

Pf is the probability of failure; 

σθ is the Weibull characteristic strength. 
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NOTE 2 The Weibull characteristic strength is dependent on the uniaxial test specimen (tensile, flexural, or pressurized 
ring) and will change with specimen geometry. In addition, the Weibull characteristic strength has units of stress, and 
should be reported using units of MPa or GPa. 

NOTE 3 An alternative expression for the probability of failure is given by 

f
0

1 exp when 0
m

V
P dVσ σ

σ

   = − − >     
∫  (10) 

Pf = 0 when σ u 0 (11) 

The integration in the exponential is performed over all tensile regions of the specimen volume if the strength-controlling 
flaws are randomly distributed through the volume of the material, or over all tensile regions of the specimen area if flaws 
are restricted to the specimen surface. The integration is sometimes carried out over an effective gauge section instead of 
over the total volume or area. In Equation 10, σ0 is the Weibull material scale parameter and can be described as the 
Weibull characteristic strength of a specimen with unit volume or area loaded in uniform uniaxial tension. The Weibull 
material scale parameter has units of stress⋅(volume)1/m, and should be reported using units of MPa⋅m3/m or GPa⋅m3/m if 
the strength-controlling flaws are distributed through the volume of the material. If the strength-controlling flaws are 
restricted to the surface of the specimens in a sample, then the Weibull material scale parameter should be reported using 
units of MPa⋅m2/m or GPa⋅m2/m. For a given specimen geometry, Equations 8 and 10 can be combined, to yield an 
expression relating σ0 and σθ. Further discussion related to this issue can be found in Annex A. 

3 Symbols 

A specimen area 

b gauge section dimension, base of bend test specimen 

d gauge section dimension, depth of bend test specimen 

f (x) probability density function 

F(x) cumulative distribution function 

L likelihood function 

Li length of the inner load span for a bend test specimen 

Lo length of the outer load span for a bend test specimen 

m Weibull modulus 

m̂  estimate of the WeibuII modulus 

Um̂  unbiased estimate of the WeibuII modulus 

N number of specimens in a sample 

Pf probability of failure 

r number of specimens that failed from the flaw population for which the WeibuII estimators are 
being calculated 

t intermediate quantity defined by Equation 15, used in calculation of confidence bounds 

V specimen volume 
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x realization of a random variable X 

X random variable 

β Weibull scale parameter 

σ uniaxial tensile stress 

σ̂  estimate of mean strength 

σj maximum stress in the j th test specimen at failure 

σ0 Weibull material scale parameter (strength relative to unit size) defined in Equation 10 

0σ̂ � estimate of the WeibuII material scale parameter 

σθ Weibull characteristic strength (associated with a test specimen) defined in Equation 8 

θσ̂  estimate of the Weibull characteristic strength 

4 Significance and use 

4.1 This International Standard enables the experimentalist to estimate Weibull distribution parameters from 
failure data. These parameters permit a description of the statistical nature of fracture of fine ceramic 
materials for a variety of purposes, particularly as a measure of reliability as it relates to strength data utilized 
for mechanical design purposes. The observed strength values are dependent on specimen size and 
geometry. Parameter estimates can be computed for a given specimen geometry θˆ ˆ( , ),m σ  but it is suggested 
that the parameter estimates be transformed and reported as material-specific parameters 0ˆ ˆ( , ).m σ  In addition, 
different flaw distributions (e.g., failures due to inclusions or machining damage) may be observed, and each 
will have its own strength distribution parameters. The procedure for transforming parameter estimates for 
typical specimen geometries and flaw distributions is outlined in Annex A. 

4.2 This International Standard provides two approaches, Method A and Method B, which are appropriate 
for different purposes. 

Method A provides a simple analysis for circumstances in which the nature of strength-defining flaws is either 
known or assumed to be from a single population. Fractography to identify and group test items with given 
flaw types is thus not required. This method is suitable for use for simple material screening. 

Method B provides an analysis for the general case in which competing flaw populations exist. This method is 
appropriate for final component design and analysis. The method requires that fractography be undertaken to 
identify the nature of strength-limiting flaws and assign failure data to given flaw population types. 

4.3 In method A, a strength data set can be analysed and values of the Weibull modulus and characteristic 
strength θˆ ˆ( , )m σ  are produced, together with confidence bounds on these parameters. If necessary the 
estimate of the mean strength can be computed. Finally, a graphical representation of the failure data along 
with a test report can be prepared. It should be noted that the confidence bounds are frequently widely spaced, 
which indicates that the results of the analysis should not be used to extrapolate far beyond the existing 
bounds of probability of failure. 
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4.4 In method B, begin by performing a fractographic examination of each failed specimen in order to 
characterize fracture origins. Screen the data associated with each flaw distribution for outliers. If all failures 
originate from a single flaw distribution compute an unbiased estimate of the Weibull modulus, and compute 
confidence bounds for both the estimated Weibull modulus and the estimated Weibull characteristic strength. 
If the failures originate from more than one flaw type, separate the data sets associated with each flaw type, 
and subject these individually to the censored analysis. Finally, prepare a graphical representation of the 
failure data along with a test report. When using the results of the analysis for design purposes it should be 
noted that there is an implicit assumption that the flaw populations in the strength test pieces and the 
components are of the same types. 

5 Method A: maximum likelihood parameter estimators for single flaw populations 

5.1 General 

This International Standard outlines the application of parameter estimation methods based on the maximum 
likelihood technique. This technique has certain advantages. The parameter estimates obtained using the 
maximum likelihood technique are unique (for a two-parameter Weibull distribution), and as the size of the 
sample increases, the estimates statistically approach the true values of the population more efficiently than 
other parameter estimation techniques. 

5.2 Censored data 

The application of the techniques presented in this International Standard can be complicated by the presence 
of test specimens that fail from extraneous flaws, fractures that originate outside the effective gauge section, 
and unidentified fracture origins. If these complications arise, the strength data from these specimens should 
generally not be discarded. Strength data from specimens with fracture origins outside the effective gauge 
section [3] and from specimens with fractures that originate from extraneous flaws should be censored, and 
the maximum likelihood methods presented later in Method B (Clause 6) of this International Standard are 
applicable. It is imperative that the number of unidentified fracture origins, and how they were classified, be 
stated in the test report. A discussion of the appropriateness of each option can be found in 6.2.2. 

5.3 Likelihood functions 

The likelihood function for the two-parameter Weibull distribution of a sample with a single flaw population [4] 
is defined by the expression: 

L
ˆ ˆ1

θ θ θ1

ˆ exp
ˆ ˆ ˆ

m mN
i i

i

m σ σ
σ σ σ

−

=

      = −          
∏  (12) 

NOTE σi is the maximum stress in the i th test specimen at failure and N is the number of test specimens in the 
sample being analysed. The parameter estimates (the Weibull modulus, ˆ,m  and the characteristic strength, θˆ )σ  are 
determined by taking the partial derivatives of the logarithm of the likelihood function with respect to m̂ and θσ̂  and 
equating the resulting expressions to zero. 

The system of equations obtained by differentiating the log likelihood function for a sample with a single flaw 
population [5] is given by 

( ) ( )

( )
( )

ˆ

1

ˆ 1

1

ln
1 1ln 0

ˆ

N
m

i i N
i

iN
m i

i
i

N m

σ σ

σ

σ

=

=

=

− − =
∑

∑
∑

 (13) 
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and 

( )
1

ˆ
ˆ

1

1ˆ
mN

m
i

i N
σ σθ

=

  
  =
    
∑  (14) 

Equation 13 is solved first for m̂ . Subsequently θσ̂  is computed from Equation 14. Obtaining a closed form 
solution of Equation 13 for m̂  is not possible. This expression must be solved numerically. 

Since the characteristic strength also reflects specimen geometry and stress gradients, this International 
Standard suggests reporting the estimated Weibull material scale parameter, 0ˆ .σ  Expressions that relate θσ̂  
to the Weibull material scale parameter 0σ  for typical specimen geometries are given in Annex A. 

5.4 Bias correction 

5.4.1 The procedures described herein, to correct for statistical bias errors and to compute confidence 
bounds, are appropriate only for data sets where all failures originate from a single population (i.e., an 
uncensored sample). Procedures for bias correction and confidence bounds in the presence of multiple active 
flaw populations are not currently well developed. The statistical bias associated with the estimator θσ̂  is 
minimal (< 0,3 % for 20 test specimens, as opposed to ≈ 7 % bias for m̂  with the same number of specimens). 
Therefore, this International Standard allows the assumption that θσ̂  is an unbiased estimator of the true 
population parameter. The parameter estimate of the Weibull modulus, ˆ,m  generally exhibits statistical bias. 
The amount of statistical bias depends on the number of specimens in the sample. An unbiased estimate of 
m̂  shall be obtained by multiplying m̂  by unbiasing factors [6]. This procedure is discussed in 5.4.2. Statistical 
bias associated with the maximum likelihood estimators presented in this International Standard can be 
reduced by increasing the sample size. 

5.4.2 An unbiased estimator produces nearly zero statistical bias between the value of the true parameter 
and the point estimate. The amount of deviation can be quantified either as a percent difference or with 
unbiasing factors. In keeping with the accepted practice in the open literature, this International Standard 
quantifies statistical bias through the use of unbiasing factors, denoted here as UF. Depending on the number 
of specimens in a given sample, the point estimate of the Weibull modulus,  ˆ,m  may exhibit significant 
statistical bias. An unbiased estimate of the Weibull modulus (denoted as Uˆ )m  is obtained by multiplying the 
biased estimate with an appropriate unbiasing factor. Unbiasing factors for m̂  are listed in Table 1. An 
example in Annex B demonstrates the use of Table 1 in correcting a biased estimate of the Weibull modulus. 
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Table 1 — Unbiasing factor for the maximum likelihood estimate of the Weibull modulus 

Number of 
specimens, N 

Unbiasing factor,  
UF 

Number of  
specimens, N 

Unbiasing factor,  
UF 

5 0,700 42 0,968 
6 0,752 44 0,970 
7 0,792 46 0,971 
8 0,820 48 0,972 
9 0,842 50 0,973 

10 0,859 52 0,974 
11 0,872 54 0,975 
12 0,883 56 0,976 
13 0,893 58 0,977 
14 0,901 60 0,978 
15 0,908 62 0,979 
16 0,914 64 0,980 
18 0,923 66 0,980 
20 0,931 68 0,981 
22 0,938 70 0,981 
24 0,943 72 0,982 
26 0,947 74 0,982 
28 0,951 76 0,983 
30 0,955 78 0,983 
32 0,958 80 0,984 
34 0,960 85 0,985 
36 0,962 90 0,986 
38 0,964 100 0,987 
40 0,966 120 0,990 

 

5.5 Confidence intervals 

5.5.1 Confidence bounds quantify the uncertainty associated with a point estimate of a population 
parameter. The size of the confidence bounds for maximum likelihood estimates of both Weibull parameters 
will diminish with increasing sample size. The values used to construct confidence bounds are based on 
percentile distributions obtained by Monte Carlo simulation; e.g., the 90 % confidence bound on the Weibull 
modulus is obtained from the 5 and 95 percentile distributions of the ratio of m̂  to the true population value m. 
For a point estimate of the Weibull modulus, the normalized values ˆ( / )m m  necessary to construct the 90 % 
confidence bounds are listed in Table 2. The example in Annex B demonstrates the use of Table 2 in 
constructing the upper and lower bounds. Note that the statistically biased estimate of the Weibull modulus 
shall be used here. Again, this procedure is not appropriate for censored statistics. 

5.5.2 Confidence bounds can be constructed for the estimated Weibull characteristic strength. However, the 
percentile distributions needed to construct the bounds do not involve the same normalized ratios or the same 
tables as those used for the Weibull modulus. Define the function: 

θ
θ

ˆˆ lnt m σ
σ

 =  
 

 (15) 

The 90 % confidence bound on the characteristic strength is obtained from the 5 and 95 percentile 
distributions of t. For the point estimate of the characteristic strength, these percentile distributions are listed in 
Table 3. An example in Annex B demonstrates the use of Table 3 in constructing upper and lower bounds on 
θˆ .σ  Note that the biased estimate of the Weibull modulus shall be used here. Again, this procedure is not 

appropriate for censored statistics. Note that Equation 15 is not applicable for developing confidence bounds 
on 0ˆ ,σ  therefore the confidence bounds on θσ̂  should not be converted through the use of Equations 8 
and 10. 
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Table 2 — Normalized upper and lower bounds on the maximum likelihood estimate 
of the Weibull modulus — 90 % confidence interval 

Number of  
specimens, N 

q0,05 q0,95 Number of  
specimens, N 

q0,05 q0,95 

5 0,683 2,779 42 0,842 1,265 
6 0,697 2,436 44 0,845 1,256 
7 0,709 2,183 46 0,847 1,249 
8 0,720 2,015 48 0,850 1,242 
9 0,729 1,896 50 0,852 1,235 

10 0,738 1,807 52 0,854 1,229 
11 0,745 1,738 54 0,857 1,224 
12 0,752 1,682 56 0,859 1,218 
13 0,759 1,636 58 0,861 1,213 
14 0,764 1,597 60 0,863 1,208 
15 0,770 1,564 62 0,864 1,204 
16 0,775 1,535 64 0,866 1,200 
17 0,779 1,510 66 0,868 1,196 
18 0,784 1,487 68 0,869 1,192 
19 0,788 1,467 70 0,871 1,188 
20 0,791 1,449 72 0,872 1,185 
22 0,798 1,418 74 0,874 1,182 
24 0,805 1,392 76 0,875 1,179 
26 0,810 1,370 78 0,876 1,176 
28 0,815 1,351 80 0,878 1,173 
30 0,820 1,334 85 0,881 1,166 
32 0,824 1,319 90 0,883 1,160 
34 0,828 1,306 95 0,886 1,155 
36 0,832 1,294 100 0,888 1,150 
38 0,835 1,283 110 0,893 1,141 
40 0,839 1,273 120 0,897 1,133 
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Table 3 — Normalized upper and lower bounds on the function t — 90 % confidence interval 

Number of  
specimens, N 

t0,05 t0,95 Number of  
specimens, N 

t0,05 t0,95 

5 − 1,247 1,107 42 − 0,280 0,278 
6 − 1,007 0,939 44 − 0,273 0,271 
7 − 0,874 0,829 46 − 0,266 0,264 
8 − 0,784 0,751 48 − 0,260 0,258 
9 − 0,717 0,691 50 − 0,254 0,253 

10 − 0,665 0,644 52 − 0,249 0,247 
11 − 0,622 0,605 54 − 0,244 0,243 
12 − 0,587 0,572 56 − 0,239 0,238 
13 − 0,557 0,544 58 − 0,234 0,233 
14 − 0,532 0,520 60 − 0,230 0,229 
15 − 0,509 0,499 62 − 0,226 0,225 
16 − 0,489 0,480 64 − 0,222 0,221 
17 − 0,471 0,463 66 − 0,218 0,218 
18 − 0,455 0,447 68 − 0,215 0,214 
19 − 0,441 0,433 70 − 0,211 0,211 
20 − 0,428 0,421 72 − 0,208 0,208 
22 − 0,404 0,398 74 − 0,205 0,205 
24 − 0,384 0,379 76 − 0,202 0,202 
26 − 0,367 0,362 78 − 0,199 0,199 
28 − 0,352 0,347 80 − 0,197 0,197 
30 − 0,338 0,334 85 − 0,190 0,190 
32 − 0,326 0,323 90 − 0,184 0,185 
34 − 0,315 0,312 95 − 0,179 0,179 
36 − 0,305 0,302 100 − 0,174 0,175 
38 − 0,296 0,293 110 − 0,165 0,166 
40 − 0,288 0,285 120 − 0,158 0,159 

 

6 Method B: maximum likelihood parameter estimators for competing flaw 
populations 

6.1 General 

This International Standard outlines the application of parameter estimation methods based on the maximum 
likelihood technique. This technique has certain advantages, especially when parameters must be determined 
from censored failure populations. When a sample of test specimens yields two or more distinct flaw 
distributions, the sample is said to contain censored data, and the associated methods for censored data must 
be used. The methods described in this International Standard include censoring techniques that apply to 
multiple concurrent flaw distributions. However, the techniques for parameter estimation presented in this 
International Standard are not directly applicable to data sets that contain exclusive or compound multiple flaw 
distributions [7]. 

The estimation techniques for censored data presented herein require positive confirmation of multiple flaw 
distributions, which necessitates fractographic examination in order to characterize the fracture origin in each 
specimen. Multiple flaw distributions may be further evidenced by deviation from the linearity of the data from 
a single Weibull distribution. However, since there are many exceptions, observations of approximately linear 
behaviour should not be considered sufficient reason to conclude that only a single flaw distribution is active. 

For data sets with multiple active flaw distributions where one flaw distribution (identified by fractographic 
analysis) occurs in a small number of specimens, it is sufficient to report the existence of this flaw distribution 
(and the number of occurrences), but it is not necessary to estimate Weibull parameters. Estimates of the 
Weibull parameters for this flaw distribution would be potentially biased with wide confidence bounds (neither 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 20501:2003(E) 

12 © ISO 2003 — All rights reserved
 

of which could be quantified). However, special note should be made in the report if the occurrences of this 
flaw distribution take place in the upper or lower tail of the sample strength distribution. 

6.2 Censored data 

6.2.1 The application of the censoring techniques presented in this International Standard can be 
complicated by the presence of test specimens that fail from extraneous flaws, fractures that originate outside 
the effective gauge section, and unidentified fracture origins. If these complications arise, the strength data 
from these specimens should generally not be discarded. Strength data from specimens with fracture origins 
outside the effective gauge section [3] as well as from specimens with fractures that originate from extraneous 
flaws should be censored, and the maximum likelihood methods presented in this International Standard are 
applicable. 

6.2.2 This International Standard recognizes four options the experimentalist can pursue when unidentified 
fracture origins are encountered during fractographic examinations. Specimens with unidentified fracture 
origins can be: 

a) assigned a previously identified flaw distribution using inferences based on all available fractographic 
information; 

b) assigned the same flaw distribution as that of the specimen closest in strength; 

c) assigned a new and as yet unspecified flaw distribution; 

d) be removed from the sample. 

6.2.3 It is imperative that the number of unidentified fracture origins, and how they were classified, be stated 
in the test report. A discussion of the appropriateness of each option appears in Annex C. If the strength data 
and the resulting parameter estimates are used for component design, the engineer must consult with the 
fractographer before and after performing the fractographic examination. Considerable judgement may be 
needed to identify the correct option. Whenever partial fractographic information is available option a) is 
strongly recommended, especially if the data are used for component design. Conversely, option d) is not 
recommended by this International Standard unless there is overwhelming justification. 

6.3 Likelihood functions 

The likelihood function for the two-parameter Weibull distribution of a censored sample is defined by 
equation [4]: 

L
ˆˆ ˆ1

θ θ θ θ1 1

ˆ exp exp
ˆ ˆ ˆ ˆ

mm mr N
ji i

i j r

m σσ σ
σ σ σ σ

−

= = +

               = − −                       
∏ ∏  (16) 

This expression is applied to a sample where two or more active concurrent flaw distributions have been 
identified from fractographic inspection. For the purpose of the discussion here, the different distributions are 
identified as flaw types A, B, C, etc. When Equation 16 is used to estimate the parameters associated with the 
“A” flaw distribution, then r is the number of specimens where type-A flaws were found at the fracture origin, 
and i is the associated index in the first product. The second product is carried out for all other specimens not 
failing from type-A flaws (i.e., type-B flaws, type-C flaws, etc.). Therefore the product is carried out from 
( j = r + 1) to N (the total number of specimens) where j is the index in the second product. Accordingly, σi and 
σj are the maximum stress in the ith and jth test specimen at failure. The parameter estimates (the Weibull 
modulus,  ˆ,m and the characteristic strength,  θ )σ  are determined by taking the partial derivatives of the 
logarithm of the likelihood function with respect to m̂  and θσ̂  and equating the resulting expressions to zero. 
Note that θσ̂  is a function of specimen geometry and the estimate of the Weibull modulus ˆ.m  Expressions 
that relate θσ̂  to the Weibull material scale parameter 0σ  for typical specimen geometries are given in 
Annex A. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 20501:2003(E) 

© ISO 2003 — All rights reserved 13
 

The system of equations obtained by differentiating the log likelihood function for a censored sample [5] is 
given by: 

( ) ( )

( )
( )

ˆ

1

ˆ 1

1

ln
1 1ln 0

ˆ

N
m

i i r
i

iN
m i

i
i

r m

σ σ

σ

σ

=

=

=

− − =
∑

∑
∑

 (17) 

and 

( )
1

ˆ
ˆ

θ
1

1ˆ
mN

m
i

i r
σ σ

=

  
  =
    
∑  (18) 

where r is the number of failed specimens from a particular group of a censored sample. 

Equation 17 is solved first for ˆ.m  Subsequently θσ̂  is computed from Equation 18. Obtaining a closed form 
solution of Equation 17 for m̂  is not possible. This expression must be solved numerically. 

7 Procedure 

7.1 Outlying observations 

Before computing the parameter estimates, the data should be screened for outlying observations (outliers). 
An outlying observation is one that deviates significantly from other observations in the sample. It should be 
understood that an apparent outlying observation may be an extreme manifestation of the variability of the 
strength of an advanced ceramic. If this is the case, the data point should be retained and treated as any other 
observation in the failure sample. However, the outlying observation may be the result of a gross deviation 
from prescribed experimental procedure or an error in calculating or recording the numerical value of the data 
point in question. When the experimentalist is clearly aware that a gross deviation from the prescribed 
experimental procedure has occurred, the outlying observation may be discarded, unless the observation can 
be corrected in a rational manner. 

7.2 Fractography 

7.2.1 Fractographic examination of each failed specimen is highly recommended in order to characterize 
the fracture origins. The strength of advanced ceramics is often limited by discrete fracture origins which may 
be intrinsic or extrinsic to the material. Porosity, agglomerates, inclusions, and atypical large grains are 
considered intrinsic fracture origins. Extrinsic fracture origins are typically on the surface of the specimen and 
are the result of contact stresses, impact events or adverse environment. When the means are available to 
the experimentalist, fractographic methods should be used to locate, identify, and classify the strength-limiting 
fracture origin causing catastrophic failure in an advanced ceramic test specimen. Moreover, for the purpose 
of parameter estimation, each classification of fracture origin must be identified as a surface fracture origin or 
a volume fracture origin in order to use the expressions given in Annex A. Thus, there may exist several 
classifications of fracture origins within the volume (or surface area) of the test specimens in a sample. It 
should be clearly indicated on the test report if a fractographic analysis is not performed. 

7.2.2 Perform a fractographic analysis and label each datum with a symbol identifying the type of fracture 
origin. This may be a word, an abbreviation, or a different symbol for each type of fracture origin. 

7.3 Graphical representation 

7.3.1 An objective of this International Standard is the consistent representation of strength data. To this 
end, the following procedure is the recommended graphical representation of strength data. Begin by ranking 
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the strength data obtained from laboratory testing in ascending order, and assign to each a ranked probability 
of failure Pf according to the estimator 

( )f
0,5

i
iP
N

σ −
=  (19a) 

or 

( )f
0,3
0,4i

iP
N

σ −
=

+
 (19b) 

where 

N is the number of specimens; 

i is the ith datum. 

Compute the natural logarithm of the ith failure stress, and the natural logarithm of the natural logarithm of 
[1/(1 − Pf)] (i.e., the double logarithm of the quantity in square brackets), where Pf is associated with the ith 
failure stress. 

7.3.2 Create a graph representing the data as shown in Figure 1. Plot ln{ln[1/(1 − Pf)]} as the ordinate, and 
ln(s) as the abscissa. A typical ordinate scale assumes values from + 2 to − 6. This approximately corresponds 
to a range in probability of failure from 0,25 % to 99,9 %. The ordinate axis must be labelled as probability of 
failure Pf, as depicted in Figure 1. Similarly, the abscissa must be labelled as failure stress (flexural, tensile, 
etc.), preferably using units of MPa or GPa. 

7.3.3 Included on the plot should be a line whose position is fixed by the estimates of the Weibull 
parameters. The line is defined by the following mathematical expression: 

ˆ

f
θ

1 exp
ˆ

m

P σ
σ

   = − −    
 (20) 

The slope of the line, which is the estimate of the Weibull modulus ˆ,m  should be identified, as shown in 
Figure 1. The estimate of the characteristic strength θσ̂  should also be identified. This corresponds to a Pf of 
63,2 %, or a value of zero for ln{ln[1/(1 − Pf)]}. 

7.3.4 This International Standard does not provide a definitive criterion in order to judge the relative fit of the 
individual data points to a linear two-parameter Weibull curve estimated from the data. Theoretical bounds on 
the reliability curve are complex and outside the scope of this International Standard. Confidence bounds on 
the estimate of the Weibull modulus and the Weibull characteristic strength can be used to construct 
confidence bands in a Weibull plot (see Figure 1). The bands to the left of the estimated two-parameter 
Weibull curve are constructed using the lower confidence bound on the Weibull characteristic strength and the 
upper confidence bound on the Weibull modulus for probability of failures above 63,2 %. Probability of failures 
below 63,2 % correspond to the lower confidence bound on the Weibull modulus. The bands to the right of the 
estimated two-parameter Weibull curve are constructed using the upper confidence bound on the Weibull 
characteristic strength along with the lower confidence bound on the Weibull modulus for probability of failures 
above 63,2 %. Probabilities of failure below 63,2 % correspond to the upper confidence bound on the Weibull 
modulus. 
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 Failure stresses, MPa 
 411 516 
 429 518 
 431 524 
 434 527 
 435 532 
 445 543 
 452 552 
 472 553 
 474 553 
 477 554 
 495 568 
 496 572 
Key 497 585 
X Failure stress 504 588 
Y Probability of failure, % 510 614 

NOTE Estimated m = 10,24; σθ = 532 MPa. 

Figure 1 — Weibull Plot 
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8 Test report 

The test report shall contain the following information: 

a) type of material characterized; 

b) test procedure (preferably designating an appropriate standard); 

c) number of failed specimens; 

d) flaw type; 

e) maximum likelihood estimates of the Weibull parameters; 

f) unbiasing factor; 

g) information that allows the construction of 90 % confidence bounds (accompanying the graph in order to 
provide a complete representation of the failure data). 

Insert a column on the graph (in any convenient location), or alternatively provide a separate table that 
identifies the individual strength values in ascending order. This will permit other users to perform alternative 
analyses. In addition, the experimentalist should include a separate sketch of the specimen geometry that 
includes all pertinent dimensions. An estimate of mean strength can also be depicted in the graph. The 
estimate of mean strength is calculated by using the arithmetic mean as the estimator: 

1

1ˆ
N

i
i N

µ σ
=

   =     
∑  (21) 

NOTE This estimate of the mean strength is not appropriate for samples with multiple failure populations. 
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Annex A 
(informative) 

 
Converting to material-specific strength distribution parameters 

A.1 The following equation defines the relationship between the parameters for tensile specimens: 

( ) ( ) ( ) ( )1
0ˆ ˆVm
V VV θσ σ=

�
 (A.1) 

where V is the volume of the uniform gauge section of the tensile specimen, and the fracture origins are 
spatially distributed strictly within this volume. 

The gauge section of a tensile specimen is defined herein as the central region of the test specimen with the 
smallest constant cross-sectional area. However, the experimentalist may include transition regions and the 
shank regions of the specimen if the volume (or area) integration defined by Equation 10 is analysed properly. 
This procedure is discussed in Clause A.3. For a tensile specimen in which fracture origins are spatially 
distributed strictly at the surface of the specimens tested, 

( ) ( ) ( ) ( )1
0ˆ ˆAm
A AA θσ σ=

�
 (A.2) 

where A is the surface area of the uniform gauge section. 

 

Figure A.1 — Typical bend specimen geometry 

A.2 For flexural specimen geometries, the relationships become more complex [8]. The following 
relationship is based on the geometry of the flexural specimen shown in Figure A.1. For fracture origins 
spatially distributed strictly within both the volume of a flexural specimen and the outer load span: 

( ) ( )
( )

( )

( )
1
ˆi

o
0 θ 2

ˆ 1
ˆ ˆ

ˆ2 1

Vm

V

V V
V

LV m
L

m
σ σ

   
+   

    =  
  +  
 

 (A.3) 

where 
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V is the volume of the gauge section defined by the expression 

V = bdLo (A.4) 

(b and d are dimensions identified in Figure A.1) 

Li is the length of the inner load span; 

Lo is the length of the outer load span. 

For fracture origins spatially distributed strictly at the surface of a flexural specimen and within the outer load 
span: 

( ) ( )
( )

( ) ( )

( )
1
ˆ

i
0 o

o

1ˆ ˆ ˆ 1
ˆ 1ˆ 1

Am

A A A
AA

LdL b m
L mm

σ σ θ

        = + +        +   +           

 (A.5) 

A.3 Test specimens other than tensile and flexural specimens may be utilized. Relationships between the 
estimate of the Weibull characteristic strength and the Weibull material scale parameter for any specimen 
configuration can be derived by equating the expressions defined by Equations 8 and 10 with the 
modifications that follow. Begin by replacing σ (an applied uniaxial tensile stress) in Equation 8 with σmax, 
which is defined as the maximum tensile stress within the test specimen of interest, then: 

max
f

θ
1 exp

m

P σ
σ

   = − −    
 (A.6) 

Also perform the integration given in Equation 10 such that: 

max
f

0
1 exp

m

P kV σ
σ

   = − −     
 (A.7) 

where k is a dimensionless constant that accounts for specimen geometry and stress gradients. 

Note that, in general, k is a function of the estimated Weibull modulus m̂ , and is always less than or equal to 
unity. The product kV is often referred to as the effective volume (with the designation VE). The effective 
volume can be interpreted as the size of an equivalent uniaxial tensile specimen that has the same risk of 
rupture as the test specimen or component. As the term implies, the product represents the volume of material 
subject to a uniform uniaxial tensile stress [9]. Setting Equations A.6 and A.7 equal to one another yields the 
following expression: 

( ) ( ) ( ) ( )ˆ1
0 θˆ ˆVm
V VkVσ σ=  (A.8) 

Thus for an arbitrary test specimen, the experimentalist evaluates the integral identified in Equation 10 for the 
effective volume, kV, and utilizes Equation A.8 to obtain the estimated Weibull material scale parameter 0ˆ .σ  A 
similar procedure can be adopted when fracture origins are spatially distributed at the surface of the test 
specimen. 
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Annex B 
(informative) 

 
Illustrative examples 

B.1 For the first example, consider the failure data in Table B.1. The data represent four-point (1/4 point) 
flexural specimens fabricated from HIP'ed (hot isostatically pressed) silicon carbide [11]. The solution of 
Equation 13 requires an iterative numerical scheme and for this data set yields a biased parameter estimate of 
m̂  = 6,48. Subsequent solution of Equation 14 yields a value of θσ̂  = 556 MPa. These values for the Weibull 
parameters were generated by assuming a unimodal failure sample with no censoring (i.e., r = N). Figure B.1 
depicts the individual failure data and a curve based on the estimated values of the parameters. Next, 
assuming that the failure origins were surface-distributed and then inserting the estimated value of m̂  and θσ̂  
in Equation A.5 along with the specimen geometry (i.e., Lo = 40 mm, Li = 20 mm, d = 3,5 mm, and b = 4,5 mm) 
yields 0ˆ( ) Aσ  = 360 MPa⋅(m)0,309. Note that 0ˆ( ) Aσ  has units of stress⋅(area) 1/m� ; thus, 0,309 = (2/6,48). 
Alternatively, if one were to assume that the failure origins were volume distributed, then the solution of 
Equation A.3 yields 0ˆ( )Vσ  = 37,0 MPa⋅(m)0,463. Note that 0ˆ( )Vσ  has units of stress⋅(volume) 1/ ;m

�
 thus, 

0,463 = (3/6,48). The different values obtained from assuming surface and volume fracture origins underscore 
the necessity of conducting a fractographic analysis. 
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Table B.1 — Unimodal failure stress data for HIP'ed (hot isostatically pressed) 
silicon carbide — Example 1 

Specimen 
number 

Strength, σf 
MPa 

Specimen 
number 

Strength, σf 
MPa 

1 281 41 516 
2 291 42 520 
3 358 43 528 
4 385 44 531 
5 389 45 531 
6 391 46 546 
7 392 47 549 
8 403 48 553 
9 412 49 560 

10 413 50 562 
11 414 51 563 
12 418 52 566 
13 418 53 566 
14 427 54 570 
15 438 55 573 
16 440 56 575 
17 441 57 576 
18 442 58 580 
19 444 59 583 
20 445 60 588 
21 446 61 589 
22 452 62 591 
23 452 63 591 
24 453 64 593 
25 470 65 599 
26 474 66 600 
27 476 67 610 
28 476 68 613 
29 479 69 620 
30 484 70 620 
31 485 71 622 
32 486 72 622 
33 489 73 640 
34 492 74 649 
35 493 75 657 
36 496 76 660 
37 506 77 664 
38 512 78 674 
39 512 79 674 
40 514 80 725 
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a Unbiased 

Key 

X Failure stress, σ, MPa 
Y Probability of failure, Pf 

Figure B.1 — Failure data in Clause B.1 

B.2 Next, consider a sample that exhibits multiple active flaw distributions (see Table B.2). Here, each 
flexural test specimen was subjected to fractographic analysis. The failure origin was identified as either a 
volume or a surface fracture origin, and parameter estimates were obtained by using Equations 17 and 18. 
For the analysis with volume fracture origins, r = 13, and the calculations yielded values of ( m̂ )V = 6,79 and 

θˆ( )Vσ  = 876 MPa. For the analysis with surface fracture origins, r = 66, and the calculations yielded values of 
ˆ( ) Am  = 21,0 and θˆ( ) Aσ  = 693 MPa. For the most part, the data as plotted in Figure B.2 fall near the solid 

curve, which represents the combined probability of failure [7]: 

( ) ( )f f f1 1 1A VP P P  = − − −     (B.1) 
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where (Pf)V is calculated by using 

( ) ( )

( )ˆ

f
θ

1 exp
Vm

V
V

P σ
σ

    = − − 
    

�  (B.2) 

and (Pf)A is calculated by using 

( ) ( )

( )ˆ

f
θ

1 exp
Am

A
A

P σ
σ

   = − −   
    

�  (B.3) 

The curve obtained from Equation (B.1) asymptotically approaches the intersecting straight lines that are 
defined by the estimated parameters and calculated from Equations (B.2) and (B.3). Inserting the estimated 
Weibull parameters (obtained from the analysis for volume fracture origins) into Equation (A.3) along with the 
specimen geometry (Lo = 40 mm, Li = 20 mm, d = 3,5 mm and b = 4,5 mm) yields 0ˆ( )Vσ  = 65,6 MPa⋅(m)0,442. 
Inserting the estimated Weibull parameters (obtained from the analysis for surface fracture origins) into 
Equation (A.5) yields 0ˆ( ) Aσ  = 446 MPa⋅(m)0,95. 
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Table B.2 — Bimodal failure stress data — Example 2 

Specimen 
number, N 

Strength, σf 
MPa 

Fracture 
origin type a 

Specimen 
number, N 

Strength, σf 
MPa 

Fracture 
origin type a 

1 416 V 41 671 S 
2 458 S 42 672 S 
3 520 V 43 672 S 
4 527 V 44 674 S 
5 546 S 45 677 S 
6 561 V 46 677 S 
7 572 S 47 678 S 
8 595 V 48 680 S 
9 604 S 49 683 S 

10 604 S 50 684 S 
11 609 V 51 686 S 
12 612 S 52 687 S 
13 614 S 53 687 S 
14 621 V 54 691 S 
15 622 S 55 694 S 
16 622 S 56 695 S 
17 622 V 57 700 S 
18 622 S 58 703 S 
19 625 S 59 703 S 
20 626 V 60 703 S 
21 631 S 61 703 S 
22 640 S 62 704 S 
23 643 V 63 704 S 
24 649 S 64 706 S 
25 650 S 65 710 S 
26 652 V 66 713 S 
27 655 S 67 716 S 
28 657 S 68 716 S 
29 657 V 69 716 S 
30 660 S 70 716 S 
31 660 S 71 716 S 
32 662 V 72 717 S 
33 662 S 73 725 S 
34 662 S 74 725 S 
35 664 S 75 725 S 
36 664 S 76 726 S 
37 664 S 77 727 S 
38 666 S 78 729 S 
39 669 S 79 732 S 
40 671 S    

a Volume fracture origin, V; surface flaw origin, S. 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,`,-`-`,,`,,`,`,,`---



ISO 20501:2003(E) 

24 © ISO 2003 — All rights reserved
 

B.3 It should be noted in this example that fractography apparently indicated that all volume failures were 
initiated from a single distribution of volume flaws, and that all surface failures were initiated from a single 
distribution of surface flaws. Often, fractography will indicate more complex situations such as two 
independent distributions of volume flaws (e.g., inclusions of foreign material and large voids) in addition to a 
distribution of surface flaws. Analysis of this type of sample would be very similar to the analysis discussed 
above, except that Equations 17 and 18 would be used three times instead of twice, and the resulting figure 
would include three straight lines labelled accordingly. 

 

Key 

X Failure stress, σ, MPa 
Y Probability of failure, Pf 

Figure B.2 — Failure data from Clause B.2 
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B.4 As an example of computing unbiased estimates of the Weibull modulus, and bounds on both the 
Weibull modulus and the Weibull characteristic strength, consider the unimodal failure sample presented in 
Clause B.1. The sample contained 80 specimens and the biased estimate of the Weibull modulus was 
determined to be ˆ 6,48.m =  The unbiasing factor corresponding to this sample size is UF = 0,984, which is 
obtained from Table 1 (see 5.5.2). Thus, the unbiased estimate of the Weibull modulus is given as 

ˆ ˆ UFUm m= ×  (B.4) 

= 6,48 × 0,984 

= 6,38 

The upper bound  for this example is 

upper 0,05ˆ ˆ /m m q=  (B.5) 

= 6,48/0,878 

= 7,38 

where q0,05 is obtained from Table 2 for a sample size of 80 failed specimens. The lower bound is 

lower 0,95ˆ ˆ /m m q=  (B.6) 

= 6,48/1,173 

= 5,52 

where q0,95 is also obtained from Table 2. 

Similarly, the upper bound on θσ̂  is 

( ) ( ) ( )0,05θ θupper expˆ ˆ ˆ/t mσ σ=  (B.7) 

= (556)exp(0,197/6,48) 

= 573 MPa 

where t0,05 is obtained from Table 3 for a sample size of 80 failed specimens. The lower bound on θσ̂  is 

( ) ( ) ( )0,95θ θlower expˆ ˆ ˆ/t mσ σ −=  (B.8) 

= (556)exp(−0,197/6,48) 

= 539 MPa 

where t0,95 is also obtained from Table 3. 
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Annex C 
(informative) 

 
Test specimens with unidentified fracture origin 

C.1 The four options 

C.1.1 General 

Clause 6.2.2 described four options, a) to d), that the experimentalist can utilize when unidentified fracture 
origins are encountered during fractographic examination. C.1.2 to C.1.5 further define the four options, and 
use examples to illustrate appropriate and inappropriate situations for their use. 

C.1.2 Option a) 

Option a) involves using all available fractographic information to subjectively assign a specimen with an 
unidentified origin to a previously identified fracture origin classification. Many specimens with unidentified 
fracture origins have some fractographic information that was judged to be insufficient for positive 
identification and classification. (It should be noted that the degree of certainty required for "positive 
identification" of a fracture-initiating flaw varies from one fractographer to another.) In such cases, option a) 
permits the experimentalist the use of the incomplete fractographic information to assign the unidentified 
fracture origin to a previously identified flaw classification. This option is preferred when partial fractographic 
information is available. As an example, consider a tensile specimen where fractography was inconclusive. 
Fractographic markings may have indicated that the origin was located at or very near the specimen surface, 
but the fracture-initiating flaw could not be positively identified. Other specimens from the sample were 
positively identified as failing from machining flaws. It is recognized that machining damage is often difficult to 
discern therefore, in this case, it would be appropriate to use option a) and infer that the origin is machining 
damage. The test report should clearly indicate each specimen where this (or any other) option is used for 
classifying unidentified specimens. The conclusion of machining damage in this example, however, could be 
erroneous; e.g., the fracture initiating flaw may have been a "mainstream microstructural feature" [3], [12] 
(which is also typically difficult to resolve and identify) that happened to be located near the specimen surface. 
The possibility of erroneous classifications such as this are unavoidable in the absence of positive 
identification of fracture origins. 

C.1.3 Option b) 

Option b) involves assigning the unidentified fracture origin to that fracture origin classification of the test 
specimen closest in strength. The specimen closest in strength must have a positively identified fracture origin 
[not one assigned using options a) to d)]. As an example of use of this option, consider a tensile specimen that 
shattered upon failure such that the fracture origin was damaged and lost, but fracture was clearly initiated 
from an internal flaw. Other specimens from the sample included positive identification of inclusions and large 
pores as two active volume-distributed fracture origin classifications. When the fracture strengths from the 
total data set were ordered, the specimen closest in strength to the specimen with the unidentified fracture 
origin was the specimen that failed due to an inclusion. Use of option b) for this test specimen would then 
allow the unidentified origin to be classified as an inclusion. Justification for option b) arises from the tendency 
of concurrent (competing) flaw distributions to group together specimens with the same origin classification 
when the test specimens are listed in order of fracture strength. Therefore, the most likely fracture origin 
classification of a random unidentified specimen is the classification of the specimen closest in strength. The 
above example can be modified slightly to illustrate a situation where option b) would be inappropriate. If, the 
fracture origin classification of the specimen closest in strength was a machining flaw, then option b) would 
lead to a conclusion inconsistent with the fractographic observation that failure occurred from an internal flaw. 
Fractographic evidence should always supersede conclusions from option b). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 20501:2003(E) 

© ISO 2003 — All rights reserved 27
 

C.1.4 Option c) 

Option c) assumes that the unidentified fracture origins belong to a new, unclassified flaw type and treats 
these fracture origins as a separate flaw distribution in the censored data analysis. This may occur when the 
fractographer cannot recognize the flaw type because features of the flaw are particularly subtle and difficult to 
resolve. In such cases, the fractographer may consistently fail to locate and classify the fracture origin. 
Examples of flaw types that are difficult to identify include machining damage, zones of atypically high 
microporosity, and mainstream microstructural features. Option c) may be appropriate if a set of specimens 
with unidentified fracture origins have similar and apparently related features. Unfortunately there are many 
situations where option c) is incorrect and where use of this option could result in substantial errors in 
parameter estimates; e.g., consider the case where several unidentified specimens are concentrated in the 
upper tail (high strength) of the strength distribution. These fracture origins may belong to a classification that 
has been previously identified, but the smaller flaws at the origins were harder to locate, or possibly the origins 
were lost due to the greater fragmentation associated with high strength specimens. Use of option c) to treat 
these high strength specimens as a new flaw classification would create a bias error of unknown magnitude in 
the parameter estimates of the proper flaw classification. 

C.1.5 Option d) 

Option d) involves the removal of test specimens with unidentified fracture origins from the sample (i.e., the 
strengths are removed from the list of observed strengths). This option is rarely appropriate, and is not 
recommended by this International Standard unless there is clear justification. Option d) is only valid when test 
specimens with unidentified fracture origins are randomly distributed through the full range of strengths and 
flaw classifications. There are few plausible physical processes that create such a random selection. An 
example where option d) is justified is a data set of 50 specimens where the first 10 fractured specimens (in 
order of testing) were misplaced or destroyed after testing but prior to fractography. The unidentified 
specimens were therefore created by a process that is random. That is, the 10 strengths are expected to be 
randomly distributed through the strength distribution of the remaining 40, and the 10 origin classifications are 
expected to be randomly distributed through the origin types of the remaining 40. (In this example, option b) 
could also be considered.) Option d) is not appropriate where unidentified fracture origins are a consequence 
of high-strength test specimens shattering virulently such that the fragment with the origin is lost. This situation 
occurs with more frequency in the upper tail (high strength) of the strength distribution, and thus the 
unidentified fracture origins would not occur at random strengths. 

C.2 Proper use and implementation of the four options 

C.2.1 When partial fractographic information is available, option a) is preferred and should be used to 
incorporate the information as completely as possible into the assignment of fracture origin classification. 
Option d) should be used only in unusual situations where a random process for creation of unidentified 
origins can be justified. 

C.2.2 Situations may arise where more than one option will be used within a single data set; e.g., of five 
specimens with unidentified origins, three might be classified based on partial fractographic information 
[option a)], while the remaining two, which have no fractographic hints, might then be classified using option b). 

C.2.3 When specimens with unidentified fracture origins are contained within a data set, the test report 
(see Clause 8) should include a full description of which specimens were unidentified, and which option or 
options were used to classify the specimens. 

C.2.4 If the unidentified fracture origins occur frequently in the lower tail of the strength distribution, then 
caution and extra attention is warranted. Strength analyses are typically extrapolated to lower strengths and 
lower probabilities of failure than those observed in the data set. Proper statistical evaluation and assignment 
of fracture origin classifications near the lower strength tail is therefore particularly important because the low 
strength distribution typically dominates extrapolations of this type. 

C.2.5 When only a few fracture origins are unidentified, effects of incorrect classification are minimal. When 
more than 5 % or 10 % of the origins are unidentified, substantial statistical bias in estimates of parameters 
can result. When used for design applications, proper choice of options from C.1.2 to C.1.5 is critical and 
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should be carefully justified in the test report. In such design applications, it may be prudent to carry out the 
analysis for more than one option to determine the sensitivity to choice of an improper option; e.g., in a group 
of 50 specimens with 10 unidentified origins (no partial fractographic information), the analysis could be 
conducted first using option b) then again using option c). The results from the two analyses could then be 
used individually to estimate the behaviour of the designed component. If a conservative prediction of 
component behaviour is warranted, the more conservative result of the two analyses should be used. 

C.2.6 Finally, if most or all of the test specimens within a sample contain unidentified fracture origins, then 
censored data analysis in accordance with this International Standard is not possible. The strengths should be 
plotted on Weibull probability axes and, if the data reveal a pronounced bend (concave upwards) which is 
characteristic of two or more concurrent flaw distributions, then the methods described in this International 
Standard cannot be used without further refinements. 
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Annex D 
(informative) 

 
Fortran program 

D.1 Using maximum likelihood estimators to compute estimates of the Weibull parameters requires solving 
Equations 17 and 18 for m̂  and θˆ ,σ  respectively. The solution of Equation 18 is straightforward once the 
estimate of the Weibull modulus m̂  is obtained from Equation 17. Obtaining the root of Equation 17 requires 
an iterative numerical solution. In this annex the theoretical approach is presented for the numerical solution of 
these equations, along with the details of a computer algorithm (optional) that can be used to solve Equations 
17 and 18. 

D.2 The algorithm employs a Newton-Raphson technique to find the root of Equation 17. The root of 
Equation 17 represents a biased estimate of the Weibull modulus. Solution of Equation 18, which depends on 
the biased value of ˆ,m  is effectively an unbiased estimate of the characteristic strength. The reader is 
cautioned not to correct m̂  for bias prior to computing the characteristic strength. This would yield an incorrect 
value of θˆ .σ  This approach expands Equation 17 in a Taylor series about 0m̂ : 

( ) ( ) ( ) ( ) ( ) ( )
2

0' ''
0 0 0 0

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

2
m m

f m f m m m f m f m
 −   = + − + +   
 

…  (D.1) 

where f ( m̂ ) represents the right-hand side of Equation 17, and 0m̂  is not a root of f ( m̂ ) but is reasonably 
close. Taking: 

0ˆ ˆ ˆm m m∆ = −  (D.2) 

and setting Equation (D.1) equal to zero, then: 

( ) ( ) ( ) ( ) ( )
2

' ''
0 0 0

ˆ
ˆ ˆ ˆ ˆ0

2
m

f m m f m f m
 ∆   = + ∆ + +   
 

…  (D.3) 

If the Taylor series expansion is truncated after the first three terms, the resulting expression is quadratic in 
m̂∆ . The roots of the quadratic form of Equation (D.3) are: 

( )
( )

( )
( )

( )
( )

1
2 2' '

, '' '' ''
ˆ ˆ ˆ

ˆ 2
ˆ ˆ ˆ

A b
f m f m f m

m
f m f m f m

           ∆ = − ± −            

 (D.4) 

After obtaining ,ˆ a bm∆  and knowing 0ˆ ,m  Equation (D.2) is then solved for two values that represent improved 
(better than 0m̂ ) estimates of the roots of f ( m̂ ), thus: 

0ˆ ˆ ˆA Am m m= + ∆  (D.5) 

0ˆ ˆ ˆb bm m m= + ∆  (D.6) 

Equation 17 is evaluated with both values of m̂  and the quantity that yields a smaller functional value is 
accepted as the updated estimate. This updated value of m̂  replaces 0m̂  in Equation (D.4), and the next 
iteration is performed. The iterative procedure is terminated when the functional evaluation of Equation 17 
becomes less than some predetermined tolerance. 
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D.3 The following variable name list is provided as a convenience for interpreting the source code of the 
algorithm: 

DF, DDF first and second derivatives with respect to m̂  of Equation 17 

EPS predetermined convergence criterion 

F function defined in Equation 17 

NLIM Maximum numbers of iterations allowed in determining the root  

NSUSP number of suspended (or censored) data (< NT) 

NT number of failure stresses 

ST failure stress; an argument passed to MAXL as input 

STNORM the largest failure stress; used to normalize all failure stresses to prevent computational 
overflows 

MO updated value of m̂  

MA, MB values of the roots ˆ Am  and ˆ bm  

WCS estimated Weibull characteristic strength 

WMT maximum likelihood estimate of the Weibull modulus 

D.4 The following is a listing of the FORTRAN source code for the algorithm discussed above. 

C                                                                        
C   ******************************************************************** 
C   *                                                                  * 
C   *                                                                  * 
C   *       THIS PROGRAM CALCULATES TWO PARAMETER MAXIMUM              * 
C   *       LIKELIHOOD ESTIMATES FROM FAILURE DATA WITH AN             * 
C   *       ASSUMED UNDERLYING WEIBULL DISTRIBUTION.  THE              * 
C   *       ALGORITHM USES A NONLINEAR NEWTON-RAPHSON METHOD,          * 
C   *       AND ACCOMODATES CENSORED DATA.                             * 
C   *                                                                  * 
C   *       REFERENCES:  "ADVANCED CALCULUS FOR APPLICATIONS"          * 
C   *                     by HILDEBRAND                                * 
C   *                     PRENTICE-HALL, INC.; 1962                    * 
C   *                                                                  * 
C   *                    "APPLIED LIFE DATA ANALYSIS"                  * 
C   *                     by NELSON                                    * 
C   *                     WILEY & SONS INC.; 1982                      * 
C   *                                                                  * 
C   ******************************************************************** 
C                                       
      IMPLICIT REAL *8(A-H,O-Z) 
      DOUBLE PRECISION ST(1000),ST1(1000)  
      DOUBLE PRECISION M0, MA, MB, M1  
      COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE  
      ZERO = 0.D0  
      ONE = 1.D0  
      TWO = 2.D0  
      EPS = 5.0D-10  
      NLIM = 500  
      M0 = 10.0  
C  
C   --- READ THE FAILURE DATA USING FREE FORMATS;  
C        FILE CONTAINING FAILURE DATA IS ALLOCATED TO UNIT 8   
C  
      DO 10 I = 1,1000  
        ST(I) = ZERO  
        ST1(I) = ZERO  
  10  CONTINUE  
      STNORM = ZERO  
      READ(8,*) NT  
      READ(8,*) NSUSP  
      NFAIL = NT - NSUSP  
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      DO 20 I = 1,NT  
        READ(8,*) ST(I)  
        STNORM = DMAX1(STNORM,ST(I))  
  20  CONTINUE  
C  
C   --- NORMALIZE FAILURE DATA WITH LARGEST VALUE  
C  
      DO 30 I = 1,NT  
        ST(I) = ST(I)/STNORM  
  30  CONTINUE  
C                                         
      SUM1 = ZERO  
      DO 40 I = 1,NFAIL          
        READ(8,*) ST1(I)  
        ST1(I) = ST1(I)/STNORM  
        SUM1 = SUM1 + DLOG(ST1(I))  
  40  CONTINUE                                                            
C                                                                         
C   --- THE FUNCTION F IS DEFINED BY EQ 14 OF ASTM STANDARD C 1239   
C  
C   --- EVALUATE F(M0) AND THE ASSOCIATED SUMS WHICH ARE USED TO CALCULATE  
C        THE DERIVATIVES OF F WITH RESPECT TO M  
C              
      CALL SUM (M0, SUM2, SUM3, F)  
C  
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC  
C   **********************************************************************    
C   *                  NEWTON-RAPHSON ROOT SOLVER                        *  
C   **********************************************************************      
C                                                                             
C   --- USE TAYLOR SERIES EXPANSION (INCLUDING SECOND DERIVATIVES)     
C       FOUND ON PAGE 362 OF "ADVANCED CALCULUS FOR APPLICATIONS BY           
C       HILDEBRAND (FIRST EDITION, FIFTH PRINTING) TO DETERMINE THE ROOTS     
C       OF THE FOLLOWING EQUATION, WHICH IS QUADRATIC IN DELTA M.             
C                                                                             
C          F(M0+DELTA M) = 0  
C                        = F(M0) + DELTA M * F'(M0)                           
C                            + (DELTA M)**2 * F''(M0)/2                       
C                                                                             
C       HERE M0 IS THE CURRENT ESTIMATE OF M.                                 
C       THE FORMULA YIELDS TWO ROOTS, DELTA MA AND DELTA MB.                  
C       MA AND MB ARE THE UPDATED VALUES OF M, WHERE                          
C                                                                             
C                  M(A,B) = M0 + DELTA M(A,B)                                 
C                                                                             
C       F(MA) AND F(MB) ARE BOTH EVALUATED.  THE ESTIMATE THAT PRODUCES THE    
C       SMALLEST ABSOLUTE VALUE OF F IS CHOSEN FOR THE NEXT ITERATION.        
C    
C       IF THE QUADRATIC EQUATION DOES NOT HAVE REAL ROOTS, AN                
C       APPROXIMATE SOLUTION FOUND ON PAGE 363 OF HILDEBRAND IS USED, I.E.,   
C                                                                             
C            DELTA M = - (F(M0)/F'(M0)) *                                     
C                        (1 + (DELTA M **2) * (F''(M0)/2*F(M0)))              
C  
C        WHERE ON THE RIGHT-HAND-SIDE OF THE EQN, DELTA M IS TAKEN AS THE   
C        FIRST ORDER APPROXIMATION, DELTA M = -F(M0)/F'(M0)  
C                                                                            
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC  
      DO 60 K = 1,NLIM                                        
C  
C  --- CALCULATE THE FIRST AND SECOND DERIVATIVES OF THE FUNCTION F  
C  
        DSUM3 = ZERO                                                          
        DDSUM3 = ZERO                                                         
        DO 50 I = 1,NT                                                        
          DSUM3 = DSUM3+DLOG(ST(I))*(ST(I))**M0*DLOG(ST(I))  
          DDSUM3 = DDSUM3 + (DLOG(ST(I)))**3*(ST(I))**M0                  
  50    CONTINUE                                                            
        DSUM2 = SUM3                                                          
        DDSUM2 = DSUM3  
        DF = (SUM2 * DSUM3 - SUM3 * DSUM2)/(SUM2**2) + ONE/(M0**2)            
C   
        DDF = ((SUM2 * DDSUM3 - SUM3 * DDSUM2)/SUM2**2)  
     $ - (TWO * DSUM2 * (SUM2 * DSUM3 - SUM3 * DSUM2)/SUM2**3)  
     $ - TWO/M0**3          
 
        RADICAL = (DF/DDF)**2 - TWO*F/DDF                                      
        IF (RADICAL .GE. ZERO) THEN                                           
C  
C  --- CALCULATE THE ROOTS OF THE QUADRATIC EQUATION  
C  
          RADICAL = DSQRT(RADICAL)                                                
          MA = M0 - (DF/DDF) + RADICAL   
          MB = M0 - (DF/DDF) - RADICAL                                    
C                                                                         
C   --- CALCULATE F(MA), F(MB), AND THE ASSOCIATED SUMS  
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C  
          CALL SUM (MA, SUM2A, SUM3A, FA)  
          CALL SUM (MB, SUM2B, SUM3B, FB)  
C                                                                         
C   --- SELECT THE BETTER ROOT BY COMPARING THE ABSOLUTE  
C          VALUE OF THE FUNCTION F  
C                                                                         
          IF (DABS(FA) .LE. DABS(FB)) THEN                              
            M0 = MA                                
            F = FA                                                      
            SUM2 = SUM2A                                                      
            SUM3 = SUM3A                                                      
          ELSE                                                              
            M0 = MB                                                   
            F = FB                                                      
            SUM2 = SUM2B                                                      
            SUM3 = SUM3B                                                      
          END IF                                                            

        ELSE                                                                
C                                                                         
C   --- IF THE ROOTS ARE COMPLEX, USE THE APPROXIMATE SOLUTION  
C                                                                         
          M1 = M0 - (F/DF)*(ONE+F*DDF/(TWO*DF**2))                    
C                                                                         
C   --- CALCULATE F(M1) AND ITS ASSOCIATED SUMS  
C                                                                         
          CALL SUM (M1, SUM2, SUM3, F)  
          M0 = M1                                                     
        END IF  
C  
C   --- CONVERGENCE CRITERION:  
C          COMPARE THE ABSOLUTE VALUE OF THE FUNCTION F  
C          WITH A PRESELECTED TOLERANCE  
C                                                                         
        IF (DABS(F) .LE. EPS) GO TO 70  
   60 CONTINUE                                                            
C  
C   --- MAXIMUM NO. OF ITERATIONS REACHED BEFORE SATISFACTORY VALUE OF M FOUND  
C  
      WRITE(6,100) NLIM  
      GO TO 999  
C  
C   --- SATISFACTORY ESTIMATE OF WEIBULL MODULUS ATTAINED  
C                                                           
   70 WMT = M0                                                          
C                                                                         
C   --- COMPUTE THE ESTIMATE OF THE WEIBULL CHARACTERISTIC STRENGTH (WCS)  
C                                                                         
      RWMT = 1.0/WMT  
      WCS = ((SUM2/NFAIL)**RWMT)*STNORM  
      WRITE(6,110) WMT  
      WRITE(6,120) WCS  
  100 FORMAT(/,2X,'NO SOLUTION FOUND AFTER ',I4,' ITERATIONS OF THE        
NEWTON-RAPHSON METHOD',/)  
  110 FORMAT(/,2X,' THE ESTIMATED WEIBULL MODULUS = ',F8.3,/)  
  120 FORMAT(/,2X,' THE ESTIMATED CHARACTERISTIC STRENGTH = ',F8.3,/)  
  999 CONTINUE  
      STOP                                                              
      END                                                                 
  
      SUBROUTINE SUM (M, SUM2, SUM3, F)  
      IMPLICIT REAL*8 (A-H, O-Z)  
      DOUBLE PRECISION ST(1000), M  
      COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE  
      SUM2 = ZERO  
      SUM3 = ZERO                                                           
      DO 10 I = 1,NT                                                        
        SUM2 = SUM2 + ((ST(I))**M)  
        SUM3 = SUM3 + (DLOG(ST(I)) * ((ST(I))**M))  
  10  CONTINUE                                                            
      F = (SUM3/SUM2) - (SUM1/NFAIL) - (ONE/M)  
      RETURN  
      END 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 20501:2003(E) 

© ISO 2003 — All rights reserved 33
 

Bibliography 

[1] MANN, N. R., SCHAFER, R. E. and SINGPURWALLA, N. D., Methods for Statistical Analysis of Reliability 
and Life Data, John Wiley & Sons, New York, NY, 1974 

[2] NELSON, W., Applied Life Data Analysis, John Wiley & Sons, New York, NY, 1982, pp. 7-9 

[3] JENKINS, M. G., FERBER, M. K., MARTIN, R. L., JENKINS, V. T. and TENNERY V. J., Study and Analysis of 
the Stress State in a Ceramic, Button-Head, Tensile Specimen, ORNL TM-11767, Oak Ridge National 
Laboratory, 1 991 

[4] NELSON, W., Applied Life Data Analysis, John Wiley & Sons, New York, NY, 1982, p. 340 

[5] NELSON, W., Applied Life Data Analysis, John Wiley & Sons, New York, NY, 1982, p. 341 

[6] THOMAN, D. R., BAIN, L. J. and ANTLE, C. E., Inferences on the Parameters of the Weibull Distribution, 
Technometrics, Vol 11, No. 3, August 1969, pp. 445-460 

[7] JOHNSON, C. A., Fracture Statistics of Multiple Flaw Distributions, Fracture Mechanics of Ceramics, 
Vol 5, 1983, pp. 365-386 

[8] WEIL, N. A. and DANIEL, I. M., Analysis of Fracture Probabilities in Nonuniformly Stressed Brittle 
Materials, Journal of the American Ceramic Society, Vol 47, No. 6, June 1964, pp. 268-274 

[9] JOHNSON, C. A., and TUCKER, W. T., Advanced Statistical Concepts of Fracture in Brittle Materials, 
Ceramics and Glasses, Engineered Materials Handbook, Vol 4, 1991, pp. 709-715 

[10] RICE, R. W., Failure in Ceramics: Challenges to NDE and Processing, Ceramic Developments, 
Vols 34-36, C. C. Sorrell and B Ben-Nissan Eds., pp. 1057-1064 

[11] NEMETH, N. N., MANDERSCHEID, J. M. and GYEKENYESI, J. P., Ceramic Analysis and Reliability 
Evaluation of Structures (CARES) Users and Programmers Manual, NASA TP-29 16 National 
Aeronautics and Space Administration, 1990 

[12] ASTM C 1239-00, Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull 
Distribution Parameters for Advanced Ceramics 

[13] JIS R 1625:1996, Weibull Statistics of Strength Data for Fine Ceramics 

[14] ENV 843-5:1997, Advanced technical ceramics — Monolithic ceramics — Mechanical tests at room 
temperature — Part 5: Statistical analysis 

[15] ISO 14704:2000, Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method 
for flexural strength of monolithic ceramics at room temperature 

[16] ISO 15490:2000, Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method 
for tensile strength of monolithic ceramics at room temperature 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 20501:2003(E) 

ICS  81.060.30 
Price based on 33 pages 

© ISO 2003 — All rights reserved 
 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-


