

Reference number
ISO 20242-2:2010(E)

© ISO 2010

INTERNATIONAL
STANDARD

ISO
20242-2

First edition
2010-09-01

Industrial automation systems and
integration — Service interface for testing
applications —
Part 2:
Resource management service interface

Systèmes d'automatisation industrielle et intégration — Interface de
service pour contrôler les applications —

Partie 2: Interface de service pour la gestion de ressource

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2010
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2010 – All rights reserved

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved iii

Contents Page

Foreword ..iv
Introduction...v
1 Scope ..1
2 Normative references..1
3 Terms and definitions ...1
4 Symbols and abbreviated terms ..1
5 Conventions for service definitions and procedures ..2
5.1 General ...2
5.2 Parameters ...2
5.3 Service procedures ...3
5.4 Service primitives and state diagrams..3
6 Resource Management Services ...4
6.1 Overview...4
6.2 List of services ..5
6.3 Management support services...7
6.4 Input/output services ..11
6.5 Extended services ...28
6.6 Operating Support Services...32
6.7 States of RMS state machine ...60
Annex A (informative) Implementation guidelines for RMSI — Mapping of services to C/C++

function calls ...64
Annex B (informative) Cascading of device drivers via RMSI..77
Bibliography..79

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

iv © ISO 2010 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20242-2 was prepared by Technical Committee ISO/TC 184, Automation systems and integration,
Subcommittee SC 5, Architecture, communications and integration frameworks.

ISO 20242 consists of the following parts, under the general title Industrial automation systems and
integration — Service interface for testing applications:

⎯ Part 1: Overview

⎯ Part 2: Resource management service interface

The following parts are planned:

⎯ Part 3: Virtual device service interface

⎯ Part 4: Device capability profile template

⎯ Part 5: Application program service interface

⎯ Part 6: Conformance test methods, criteria and reports

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved v

Introduction

The motivation for ISO 20242 stems from international automotive industries and their suppliers to facilitate
the integration of automation and measurement devices, and other peripheral components for this purpose,
into computer-based applications. It defines rules for the construction of device drivers and their behaviour in
the context of an automation application, or a measurement application, or an automation and measurement
application.

The main goal of ISO 20242 is to provide users with:

⎯ independence from the computer operating system;

⎯ independence from the device connection technology (device interface/network);

⎯ independence from device suppliers;

⎯ the ability to certify device drivers with connected devices and their behaviour in the context of a given
computer platform;

⎯ independence from the technological device development in the future.

ISO 20242 will not force the development of new device families or the use of special interface technologies
(networks). It encapsulates a device and its communication interface to make it compatible with other devices
of that kind for a given application.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 1

Industrial automation systems and integration — Service
interface for testing applications —

Part 2:
Resource management service interface

1 Scope

This part of ISO 20242 defines a service interface that provides a generic service access point for managing
and operating the resources supported by the operating system of a computer and its peripherals, including
special hardware on plug-in boards that are used in computer-assisted testing applications. The resource
management service interface is intended to be implemented in a manner that offers the exposed services of
a computing platform adapter to be generic and independent of the operating system and its communication
interfaces.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 20242-1, Industrial automation systems and integration — Service interface for testing applications —
Part 1: Overview

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 20242-1 and the following apply.

3.1
device driver
software module providing an ISO 20242-specified interface with service functions to call a platform adapter to
access physical devices

3.2
platform adapter
software module providing a resource management service interface as defined in this part of ISO 20242,
which encapsulates the computer platform, including the operating system, the hardware and its peripherals

4 Symbols and abbreviated terms

CNF, Cnf Confirm (service primitive)

IND, Ind Indication (service primitive)

REQ, Req Request (service primitive)

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

2 © ISO 2010 – All rights reserved

RMS Resource Management Services

RMSI Resource Management Service Interface

RSP, Rsp Response (service primitive)

SAP Service Access Point

5 Conventions for service definitions and procedures

5.1 General

This part of ISO 20242 uses the descriptive conventions given in ISO/IEC 10731.

The interface between the user of RMS and the provider of RMS is described by service primitives that
convey parameters. Since data transmission aspects are outside the scope of ISO 20242, only the request
and confirm primitives are used to describe events occurring at the RMS service provider. Indication and
response primitives are used to handle events occurring at the RMS service provider. The service model,
service primitives and sequence diagrams are abstract descriptions; they do not represent a specification for
implementation.

Annex A contains rules for example implementations.

5.2 Parameters

Service primitives, used to represent service user/provider interactions (see ISO/IEC 10731), convey
parameters that indicate information used and exchanged in these interactions.

This part of ISO 20242 uses a tabular format to describe the component parameters of the RMS primitives, as
shown in Table 1. The parameters that apply to each group of RMS primitives are set out in tables throughout
the remainder of this part of ISO 20242. Each table consists of three columns, where the first column contains
the name of the service parameter, the second column contains the input parameters of either the request or
indication primitives, and the third column contains the output parameters of either the confirm or response
primitives.

One parameter (or part of it) is listed in each row of each table. Under the appropriate service primitive
columns, the following codes are used to specify the type of usage of the parameter on the primitive and
parameter direction specified in the column:

a) M: parameter is mandatory for the primitive;

b) C: parameter is conditional upon other parameters or upon RMS capabilities;

c) S: parameter is a selected item;

d) (blank): parameter is not conveyed by the RMS user or the RMS provider.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 3

Table 1 — Tabular format for service primitive parameters

Parameter name REQ or IND CNF or RSP

Argument M

 Parameter 1 M

 Parameter 2 C

Result (+) S

 Parameter 3 M

 Parameter 4 C

Result (-) S

 Parameter 5 M

5.3 Service procedures

5.3.1 RMS confirmed services

An RMS user submits a request primitive to the RMSI. It is implied that the service access point (SAP) exists.
The corresponding service processing entity delivers a confirmation primitive to the user after all necessary
interactions are finished or an error occurred.

5.3.2 RMS event handling

The user creates a service access point (SAP) at RMSI for handling events. An event is signalled with an
indication primitive at this access point. The user of RMSI issues a response primitive after all necessary
interactions are finished or an error occurred (see Figure 1).

Interface
SAP SAP

Service
provider

confirmrequest

local event

indication response

local service
processor

Figure 1 — Handling local events with RMS

5.4 Service primitives and state diagrams

If needed, UML state diagrams are used to describe the behaviour of RMS. In such diagrams, only the service
name is used to describe a state transition where no explicit state between request and confirm primitives is
necessary [see Figure 2 b)]. Otherwise an extra state of processing the service is denoted [see Figure 2 a)].

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

4 © ISO 2010 – All rights reserved

Service Processing
State

service.request service.confirm

RMS State X RMS State Y

service
RMS State U RMS State V

A)

B)

Figure 2 — State transitions caused by services

6 Resource Management Services

6.1 Overview

The RMSI shall provide generic management support services, generic operating support services, and
generic input/output services.

The input/output services access another subjacent layer providing extended services. Extended services are
introduced to describe the structure of loadable resources for different kinds of periphery interfaces (see
Figure 3).

NOTE 1 ISO 20242 does not define the methods for integrating entities with extended services into the RMS provider,
as that will depend on the computer operating system and the programming language used for implementing service
providers. However, the extended services need to be described to enable the extension of input/output services for
different peripheral interfaces without changing the RMS provider. See Annex A for an implementation example.

NOTE 2 There are additional cascading methods described in Annex B for using the RMSI in more complex structures
of device and equipment integration.

Resource Management Service Interface

management support services input/output services

operation support services

extended services

Extended Service Interface

Figure 3 — Service users and providers at the RMSI

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 5

6.2 List of services

6.2.1 Generic management support services

Generic management support services are used for handling the access to other services and for initiating
(and loading, if necessary) extended service providers. Table 2 gives an overview of these services.

Table 2 — Generic management support services

Service Name for
identification

Remarks

Get Service Reference getFuncAddress Get the reference for a service by identifier (name and/or number)
and version number.

Initiate Periphery Interface
Type

io_initiate Get the identifier for a specified interface type and load an extended
service provider for this type (if necessary).

Conclude Periphery
Interface Type

io_conclude Release a type identifier and close the extended service provider for
this type (if existing).

6.2.2 Generic input/output services

Generic input/output services are used for communication with real devices and for configuration and control
of peripheral interfaces. Table 3 gives an overview of these services.

Table 3 — Generic input/output services

Service Name for
identification

Remarks

Open Periphery Interface
Channel

io_open Open a peripheral interface for data transmission and configure the
interface.

Reconfigure Periphery
Interface Channel

io_config Change the configuration of an interface without closing it, e.g.
change transmission parameters.

Read Data io_read Fetch received data at a peripheral interface.

Write Data io_write Deliver data to a peripheral interface for transmitting.

Execute Operation io_execute Execute an operation belonging to a peripheral interface channel.
This is comparable to handling both read and write data with one
service (data exchange).

Cancel Communication io_cancel Cancel a Read Data, Write Data or Execute Operation service and
prepare the interface for new requests.

Get Periphery Interface
Channel Status

io_stat Investigate the status of a peripheral interface.

Clear Read Buffer io_clear Delete the contents of the input buffer of a peripheral interface.

Close Peripheral Interface
Channel

io_close Close a peripheral interface.

Signal Event io_event Indicating a local event and responding to the event source.

Generic input/output services are transferred to corresponding extended services (see Table 4) if an extended
service provider is loaded for the specified type of interface.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

6 © ISO 2010 – All rights reserved

6.2.3 Extended services

Extended services are not visible to the user of the RMSI; they are defined in this part of ISO 20242 to enable
a hierarchical modular structure of RMS implementation by using extended service providers. These extended
services are substantially the same as the generic input/output services of RMS.

Table 4 — Extended services for peripheral interfaces

Service Name for
identification

Remarks

Initiate Extended Interface
Type

ext_initiate Set the identifier for a specified peripheral interface type.

Conclude Extended
Interface Type

ext_conclude Release the type identifier of ext_initiate.

Open Extended Interface ext_open Open a peripheral interface for data transmission and configure the
interface.

Reconfigure Extended
Interface

ext_config Change the configuration of a peripheral interface without closing it,
e.g. change transmission parameters.

Read Extended Interface
Data

ext_read Fetch received data at a peripheral interface.

Write Extended Interface
Data

ext_write Deliver data to a peripheral interface for transmitting.

Execute Extended Interface
Operation

ext_execute Execute an operation belonging to a peripheral interface. This is
comparable to handling read and write data with one service (data
exchange).

Cancel Extended
Communication

ext_cancel Cancel a Read Extended Interface Data, Write Extended Interface
Data or Execute Extended Interface Operation service and prepare
the interface for new requests.

Get Extended Interface
Status

ext_stat Investigate the status of an interface.

Clear Extended Interface
Read Buffer

ext_clear Delete the contents of the input buffer of a peripheral interface.

Close Extended Interface ext_close Close a peripheral interface.

Signal Extended Event ext_event Indicating an extended event and awaiting a response.

6.2.4 Operating support services

Operating support services (see Table 5) provide access to memory, timer control, semaphores and other
resources of the computer operating system.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 7

Table 5 — Operating support services

Service Name for
identification

Remarks

Allocate Memory os_allocate Allocate coherent data space of specified size.

Reallocate Memory os_reallocate Change size of allocated data space.

Free Memory os_free Release allocated data space.

Get Time os_time Investigate the local time.

Get Process Time os_clock Investigate the CPU-time for a process.

Wait os_delay Temporize a specified amount of time.

Create Timer os_settimer Create and start a timer.

Signal Timer Event os_timerEvent Indicating that a timer elapsed and awaiting a response.

Remove Timer os_killtimer Stop and remove a timer.

Create Light Process Timer os_setLPtimer Create and start a light process timer; resolution and accuracy
depend on the light process.

Signal Light Process Timer
Event

os_LPtimerEvent Indicating that a light process timer elapsed and awaiting a response.

Remove Light Process
Timer

os_killLPtimer Stop and delete a light process timer.

Identify Light Process os_getLPnumber Identify the actual light process.

Create Counted Semaphore os_createSem Create a counted semaphore to control multiple concurrent use of
resources.

Wait for Counted
Semaphore

os_waitSem Wait for a free access to a protected resource.

Release Counted
Semaphore

os_releaseSem Release the access to a protected resource.

Delete Counted Semaphore os_deleteSem Delete a counted semaphore.

Create Private Semaphore os_createMutex Create a private semaphore to control access to resources by
different light processes with mutual exclusion.

Wait for Private Semaphore os_waitMutex Wait for a free access to a protected resource.

Release Private Semaphore os_releaseMutex Release the access to a protected resource.

Delete Private Semaphore os_deleteMutex Delete a private semaphore.

Open Debug Log os_openDebug Open a text log for debug messages.

Write Debug Message os_writeDebug Send message to text log.

Close Debug Log os_closeDebug Close a text log.

6.3 Management support services

6.3.1 Get Service Reference service

6.3.1.1 Service overview

The Get Service Reference service is used to get a reference for other version-dependent resource
management services. This service is requested by the RMS user for each resource management service that
is needed for an application.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

8 © ISO 2010 – All rights reserved

6.3.1.2 Service parameter structure

The service parameters for the Get Service Reference service are shown in Table 6.

Table 6 — Get Service Reference parameter structure

Parameter name Req Cnf

Argument

 Service identifier (name)

 Proposed version number

Result (+)

 Service reference

Result (-)

M

M

M

S

M

S

6.3.1.3 Service parameters

6.3.1.3.1 Argument

The argument contains the parameters of the service request.

6.3.1.3.2 Service identifier

This parameter identifies the service for which the reference is requested.

6.3.1.3.3 Proposed version number

This parameter specifies the version which the RMS user requests for this service.

6.3.1.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.3.1.3.5 Service reference

This parameter contains a reference to identify the service of the proposed version number.

6.3.1.3.6 Result (-)

This selection type parameter indicates that the service request failed.

6.3.1.4 Service procedure

If a service of the specified name and with the specified version number is available, a reference to it is
created and submitted to the requester.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 9

6.3.2 Initiate Peripheral Interface Type service

6.3.2.1 Service overview

This service requests the availability of an interface with the specified type name. If a name for an extended
service provider is specified with this request, the extended provider will be loaded and the availability of the
specified interface is requested at this provider.

6.3.2.2 Service parameter structure

The service parameters for this service are shown in Table 7.

Table 7 — Initiate Peripheral Interface Type parameter structure

Parameter name Req Cnf

Argument

 Interface type name

 Extended services provider name

Result (+)

 Interface type identifier

Result (-)

 Error

M

M

C

S

M

S

M

6.3.2.3 Service parameters

6.3.2.3.1 Argument

The argument contains the parameters of the service request.

6.3.2.3.2 Interface type name

This parameter contains the name of the interface type.

6.3.2.3.3 Extended services provider name

This conditional parameter, if specified, contains the name of an extended services provider that handles the
input/output services for this type of interface.

6.3.2.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.3.2.3.5 Interface type identifier

This parameter contains a number identifying this interface type for other service requests.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

10 © ISO 2010 – All rights reserved

6.3.2.3.6 Result (-)

This selection type parameter indicates that the service request failed.

6.3.2.3.7 Error

This parameter indicates that one of the following conditions exists:

⎯ unknown or unavailable interface type;

⎯ unknown, unloadable, or unusable extended service provider;

⎯ interface type already initialized;

⎯ memory error occurred while loading the extended service provider;

⎯ hardware error detected.

6.3.2.4 Service procedure

This service checks the availability of an interface with the specified type. If a name for an extended service
provider is given, the applicable provider is loaded, if not present, and checked for the specified type of
interface.

6.3.3 Conclude Peripheral Interface Type service

6.3.3.1 Service overview

This service concludes a peripheral interface which has been initiated before.

6.3.3.2 Service parameter structure

The service parameters for this service are shown in Table 8.

Table 8 — Conclude Peripheral Interface Type parameter structure

Parameter name Req Cnf

Argument

 Interface type identifier

Result (+)

Result (-)

 Error

M

M

S

S

M

6.3.3.3 Service parameters

6.3.3.3.1 Argument

The argument contains the parameters of the service request.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 11

6.3.3.3.2 Interface type identifier

This parameter contains the identifier of the type which was the result of the service Initiate Periphery
Interface Type.

6.3.3.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.3.3.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.3.3.3.5 Error

This parameter indicates one of the following conditions exists:

⎯ unknown or unavailable interface type identifier;

⎯ extended services provider could not be released;

⎯ memory error occurred while releasing the extended service provider;

⎯ hardware error was detected.

6.3.3.4 Service procedure

This service checks if this type of peripheral interface can be released. If this type is served by an associated
extended service provider, the service also checks to see if the associated extended service provider can be
released. An extended service provider can only be released if all contained peripheral interfaces of all types
are released.

6.4 Input/output services

6.4.1 Open Peripheral Interface Channel service

6.4.1.1 Service overview

This service is used to open a communication channel for a peripheral interface of specified type and
configures the channel for the user's needs.

6.4.1.2 Service parameter structure

The service parameters for this service are shown in Table 9.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

12 © ISO 2010 – All rights reserved

Table 9 — Open Peripheral Interface Channel parameter structure

Parameter name Req Cnf

Argument

 Interface type identifier

 Interface channel name

 List of configuration parameters

 Confirmed services access point reference

 Event services access point reference

Result (+)

 Interface channel identifier

Result (-)

 Error

M

M

C

M

M

M

S

M

S

M

6.4.1.3 Service parameters

6.4.1.3.1 Argument

The argument contains the parameters of the service request.

6.4.1.3.2 Interface type identifier

This parameter identifies the type of the peripheral interface.

6.4.1.3.3 Interface channel name

This parameter identifies a communication channel of the specified type. It may be omitted, if channels are
instantiated by RMS and there is no assignment of unique peripheral connectors necessary (e.g. bus
systems).

6.4.1.3.4 List of configuration parameters

The list of configuration parameters, which is outside the scope of ISO 20242, depends on the type of the
selected peripheral interface. A selected peripheral interface specifies the necessary parameters for its
configuration.

If there are configuration parameters valid for all channels of the specified type, only the first use of this
service after initiating the interface type will set these parameters.

6.4.1.3.5 Confirmed services access point reference

This parameter is the reference of a special service access point which is used for all confirmed services
belonging to this channel.

6.4.1.3.6 Event services access point reference

This parameter is the reference of a special service access point which shall be used for all event handling
services belonging to this channel.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 13

6.4.1.3.7 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.1.3.8 Interface channel identifier

This parameter is the identifier for this channel and will be used for channel specific service requests.

6.4.1.3.9 Result (-)

This selection type parameter indicates that the service request failed.

6.4.1.3.10 Error

This parameter indicates one of the following conditions exists:

⎯ interface of that type unavailable;

⎯ channel of that name unavailable;

⎯ channel of that name is already opened;

⎯ missing or invalid channel name;

⎯ missing or invalid reference for confirmed services access point;

⎯ missing or invalid reference for event services access point;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ channel configuration timeout;

⎯ insufficient resources to open this channel;

⎯ unspecified parameter error;

⎯ specified parameter error.

6.4.1.4 Service procedure

This service checks all parameters and, if there is no error, it tries to open the specified communication
channel. If the channel is ready for use, a channel identifier is returned; otherwise an error is returned.

6.4.2 Reconfigure Peripheral Interface Channel service

6.4.2.1 Service overview

This service is used to reconfigure an open communication channel for a peripheral interface.

6.4.2.2 Service parameter structure

The service parameters for this service are shown in Table 10.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

14 © ISO 2010 – All rights reserved

Table 10 — Reconfigure Peripheral Interface Channel parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 List of configuration parameters

 Confirmed services access point reference

 Event services access point reference

Result (+)

 Interface channel identifier

Result (-)

 Error

M

M

M

M

M

S

M

S

M

6.4.2.3 Service parameters

6.4.2.3.1 Argument

The argument contains the parameters of the service request.

6.4.2.3.2 Interface channel identifier

This parameter identifies the channel of the peripheral interface.

6.4.2.3.3 List of configuration parameters

The list of configuration parameters, which is outside the scope of ISO 20242, depends on the type of the
selected peripheral interface. A selected peripheral interface specifies the necessary parameters for its
configuration.

If there are configuration parameters valid for all channels of this type of interface, these parameters will only
be set if the interface channel identifier is that of the first opened channel after initiating the interface type.

6.4.2.3.4 Confirmed services access point reference

This parameter is the reference of a special service access point which shall be used for all confirmed
services belonging to this channel.

6.4.2.3.5 Event services access point reference

This parameter is the reference of a special service access point which shall be used for all event handling
services belonging to this channel.

6.4.2.3.6 Result (+)

This selection type parameter indicates that the service request succeeded.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 15

6.4.2.3.7 Interface channel identifier

This parameter is the identifier for this channel and will be used for channel specific service requests.

6.4.2.3.8 Result (-)

This selection type parameter indicates that the service request failed.

6.4.2.3.9 Error

This parameter indicates that one of the following conditions exists:

⎯ channel unavailable;

⎯ channel busy;

⎯ missing or invalid reference for confirmed services access point;

⎯ missing or invalid reference for event services access point;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ channel configuration timeout;

⎯ insufficient resources to configure the channel;

⎯ unspecified parameter error;

⎯ specified parameter error.

6.4.2.4 Service procedure

This service checks if there is any transmission activity with this channel and produces a Result (-) with a
“channel busy” error in that case. Otherwise, all parameters are checked and, if there is no error, the specified
communication channel will be newly configured. If the channel is ready for use, a Result (+) is delivered;
otherwise, a Result (-) with an error is delivered.

6.4.3 Read Data service

6.4.3.1 Service overview

This service is used to receive data via a peripheral interface channel.

6.4.3.2 Service parameter structure

The service parameters for this service are shown in Table 11.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

16 © ISO 2010 – All rights reserved

Table 11 — Read Data parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 Data receiving process handle

 Maximum length of received data

 Maximum process duration time

Result (+)

 Data receiving process handle

 Received data length

 Received data

Result (-)

 Data receiving process handle

 Received data length

 Received data

 Error

M

M

M

M

M

S

M

M

M

S

M

M

M

M

6.4.3.3 Service parameters

6.4.3.3.1 Argument

The argument contains the parameters of the service request.

6.4.3.3.2 Interface channel identifier

This parameter identifies the channel of the peripheral interface expecting receive data.

6.4.3.3.3 Data receiving process handle

This parameter is a user defined identifier for the data receiving process.

6.4.3.3.4 Maximum length of received data

The maximum length of received data is the maximum number of octets contained in a received protocol data
unit.

6.4.3.3.5 Maximum process duration time

This parameter contains the maximum duration time of data receiving in milliseconds.

6.4.3.3.6 Result (+)

This selection type parameter indicates that the service request succeeded.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 17

6.4.3.3.7 Data receiving process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.3.3.8 Received data length

The number of octets contained in a received protocol data unit.

6.4.3.3.9 Received data

This parameter returns the received protocol data unit consisting of one or more octets. The number of octets
is always less than or equal to the maximum data length specified with the request.

6.4.3.3.10 Result (-)

This selection type parameter indicates that the service request failed.

6.4.3.3.11 Data receiving process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.3.3.12 Received data length

The number of octets received until the error occurred and receiving process stopped.

6.4.3.3.13 Received data

This parameter returns the received data consisting of zero or more octets.

6.4.3.3.14 Error

This parameter indicates that one of the following conditions exists:

⎯ channel unavailable;

⎯ receiving process of this channel is busy;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ allocation of communication buffer failed;

⎯ invalid specified maximum data length;

⎯ data receiving timeout;

⎯ receiving process cancelled by user.

6.4.3.4 Service procedure

If a channel is available and no receiving process is active for it, this service starts a data receiving process
that finishes either when a complete protocol data unit is received, when the maximum data length is reached,
when a timeout occurs, or when an error occurs. In the case of a timeout or an error, the receiver buffer
contains the octets received at that time.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

18 © ISO 2010 – All rights reserved

6.4.4 Write Data service

6.4.4.1 Service overview

This service is used to transmit data via a peripheral interface channel.

6.4.4.2 Service parameter structure

The service parameters for this service are shown in Table 12.

Table 12 — Write Data parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 Data transmission process handle

 Length of data being transmitted

 Data to be transmitted

 Maximum process duration time

Result (+)

 Data transmission process handle

Result (-)

 Data transmission process handle

 Transmitted data length

 Error

M

M

M

M

M

M

S

M

S

M

M

M

6.4.4.3 Service parameters

6.4.4.3.1 Argument

The argument contains the parameters of the service request.

6.4.4.3.2 Interface channel identifier

This parameter identifies the channel of the peripheral interface to transmit data.

6.4.4.3.3 Data transmission process handle

This parameter is a user defined identifier for this data transmission process.

6.4.4.3.4 Length of data being transmitted

This parameter specifies the number of octets which have to be transmitted.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 19

6.4.4.3.5 Data to be transmitted

This parameter contains one or more octets which have to be transmitted.

6.4.4.3.6 Maximum process duration time

This parameter contains the maximum duration time of data transmission in milliseconds.

6.4.4.3.7 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.4.3.8 Data transmission process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.4.3.9 Result (-)

This selection type parameter indicates that the service request failed.

6.4.4.3.10 Data transmission process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.4.3.11 Transmitted data length

The number of octets transmitted until the error occurred and transmission process stopped.

6.4.4.3.12 Error

This parameter indicates one of the following conditions exists:

⎯ channel unavailable;

⎯ transmission process of this channel is busy;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ allocation of communication buffer failed;

⎯ invalid specified maximum data length;

⎯ data transmission timeout;

⎯ transmission process cancelled by user.

6.4.4.4 Service procedure

If the channel is available and no transmission process is active for it, this service starts a data transmission
process that finishes either when the specified number of octets is transmitted, when a timeout occurs, or
when an error occurs. In the case of a timeout or error, the parameter “transmitted data length” returns the
number of transmitted octets at the time the timeout or error occurred.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

20 © ISO 2010 – All rights reserved

6.4.5 Execute Operation service

6.4.5.1 Service overview

This service is used to execute an operation of this peripheral interface channel.

6.4.5.2 Service parameter structure

The service parameters for this service are shown in Table 13.

Table 13 — Execute Operation parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 Execute operation process handle

 Operation identifier

 List of operation input parameters

 Maximum process duration time

Result (+)

 Execute operation process handle

 List of operation output parameters

Result (-)

 Execute operation process handle

 Error

M

M

M

M

M

M

S

M

M

S

M

M

6.4.5.3 Service parameters

6.4.5.3.1 Argument

The argument contains the parameters of the service request.

6.4.5.3.2 Interface channel identifier

This parameter identifies the channel of the peripheral interface comprising the operation.

6.4.5.3.3 Execute operation process handle

This parameter is a user defined identifier for this execution process.

6.4.5.3.4 Operation identifier

This parameter is the identifier for the operation to be executed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 21

6.4.5.3.5 List of operation input parameters

This parameter list depends on the kind of operation to be executed. Definition of the operations and their
arguments are outside the scope of ISO 20242.

6.4.5.3.6 Maximum process duration time

This parameter contains the maximum duration time of executing the operation in milliseconds.

6.4.5.3.7 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.5.3.8 Execute operation process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.5.3.9 List of operation output parameters

This parameter list depends on the kind of operation to be executed. Defining operations and their arguments
is not within the scope of this part of ISO 20242.

6.4.5.3.10 Result (-)

This selection type parameter indicates that the service request failed.

6.4.5.3.11 Execute operation process handle

This parameter is a copy of the user defined process handle delivered with the service request.

6.4.5.3.12 Error

This parameter indicates that one of the following conditions exists:

⎯ channel unavailable;

⎯ operation not found, identifier not valid;

⎯ execution of operation still in progress;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ input parameter list not valid;

⎯ executing operation timeout;

⎯ execution cancelled by user.

6.4.5.4 Service procedure

If the channel is available and the specified operation is not in progress, the operation will be started. If an
error occurs or if it is cancelled by the RMS user, the operation is stopped.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

22 © ISO 2010 – All rights reserved

6.4.6 Cancel Communication Process service

6.4.6.1 Service overview

This service is used to cancel a pending receiving or transmission process or the execution of an operation.

6.4.6.2 Service parameter structure

The service parameters for this service are shown in Table 14.

Table 14 — Cancel Communication Process parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 Communication process handle

Result (+)

Result (-)

 Error

M

M

M

S

S

M

6.4.6.3 Service parameters

6.4.6.3.1 Argument

The argument contains the parameters of the service request.

6.4.6.3.2 Interface channel identifier

This parameter identifies the communicating channel of the peripheral interface.

6.4.6.3.3 Communication process handle

This parameter is the identifier for the communication process to be cancelled. This identifier was defined by
the user when starting the service which is now to be cancelled.

6.4.6.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.6.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.4.6.3.6 Error

This parameter indicates that one of the following conditions exists:

⎯ channel not found;

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 23

⎯ communication process handle not open;

⎯ cancelling communication not possible;

⎯ memory error occurred;

⎯ hardware error detected.

6.4.6.4 Service procedure

This service is used to cancel a pending communication process. If the service is successful, a new
communication process can be started. A cancelled communication process produces a Result (-) and a
“cancelled by user” error.

6.4.7 Get Periphery Interface Channel Status service

6.4.7.1 Service overview

This service is used to investigate the status of a receiving or transmission process or of the execution of an
operation.

6.4.7.2 Service parameter structure

The service parameters for this service are shown in Table 15.

Table 15 — Get Periphery Interface Channel Status parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

 Communication process handle

Result (+)

 Status

 Progress

Result (-)

 Error

M

M

M

S

M

M

S

M

6.4.7.3 Service parameters

6.4.7.3.1 Argument

The argument contains the parameters of the service request.

6.4.7.3.2 Interface channel identifier

This parameter identifies the communicating channel of the peripheral interface.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

24 © ISO 2010 – All rights reserved

6.4.7.3.3 Communication process handle

This parameter is the identifier for the communication process to be checked. The identifier is defined by the
user when starting the applicable service.

6.4.7.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.7.3.5 Status

This parameter identifies the status of the peripheral interface channel.

6.4.7.3.6 Progress

This parameter describes the progress of the communication process. For data read or write processes it is
the number of actual received or transmitted characters.

6.4.7.3.7 Result (-)

This selection type parameter indicates that the service request failed.

6.4.7.3.8 Error

This parameter indicates that one of the following conditions exists:

⎯ channel not found;

⎯ communication process handle not open;

⎯ memory error occurred;

⎯ hardware error detected.

6.4.7.4 Service procedure

This service checks if the specified communication process is pending and then ascertains its status.

6.4.8 Clear Read Buffer service

6.4.8.1 Service overview

This service is used to clear the read buffer of a peripheral interface channel.

6.4.8.2 Service parameter structure

The service parameters for this service are shown in Table 16.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 25

Table 16 — Clear Read Buffer parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

Result (+)

Result (-)

 Error

M

M

S

S

M

6.4.8.3 Service parameters

6.4.8.3.1 Argument

The argument contains the parameters of the service request.

6.4.8.3.2 Interface channel identifier

This parameter identifies the communicating channel of the peripheral interface.

6.4.8.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.8.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.4.8.3.5 Error

This parameter indicates that one of the following conditions exists:

⎯ channel not found;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ receiving process is busy.

6.4.8.4 Service procedure

This service checks whether there is a receiving process active and, if not, it clears the read buffer.

6.4.9 Close Peripheral Interface Channel service

6.4.9.1 Overview

This service is used to close a peripheral interface channel.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

26 © ISO 2010 – All rights reserved

6.4.9.2 Service parameter structure

The service parameters for this service are shown in Table 17.

Table 17 — Close Peripheral Interface Channel parameter structure

Parameter name Req Cnf

Argument

 Interface channel identifier

Result (+)

Result (-)

 Error

M

M

S

S

M

6.4.9.3 Service parameters

6.4.9.3.1 Argument

The argument contains the parameters of the service request.

6.4.9.3.2 Interface channel identifier

This parameter identifies the communicating channel of the peripheral interface.

6.4.9.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.4.9.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.4.9.3.5 Error

This parameter indicates that one of the following conditions exists:

⎯ channel not found;

⎯ memory error occurred;

⎯ hardware error detected;

⎯ communication process is busy.

6.4.9.4 Service procedure

This service checks whether there is a communication process open and, if not, it closes the peripheral
interface channel.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 27

6.4.10 Signal Event service

6.4.10.1 Service Overview

This service is used to signal local events.

6.4.10.2 Service parameter structure

The service parameters for this service are shown in Table 18.

Table 18 — Signal Event parameter structure

Parameter name Ind Rsp

Argument

 Interface channel identifier

 Event identifier

 Event message

Result (+)

 Status

Result (-)

 Error

M

M

M

M

S

M

S

M

6.4.10.3 Service parameters

6.4.10.3.1 Argument

The argument contains the parameters of the service request.

6.4.10.3.2 Interface channel identifier

This parameter identifies the communicating channel of the peripheral interface. If the value is zero, the event
is not specific for a single channel.

6.4.10.3.3 Event identifier

This parameter is the identifier for the event.

6.4.10.3.4 Event message

This parameter returns an event message, which is an event specific data structure.

NOTE Defining event identifiers or the data events carry is not within the scope of this part of ISO 20242. This will be
application specific.

6.4.10.3.5 Result (+)

This selection type parameter indicates that the service request succeeded.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

28 © ISO 2010 – All rights reserved

6.4.10.3.6 Status

This parameter identifies the status of the event handler among the following choices:

⎯ Event handling finished

⎯ Event handling in progress

6.4.10.3.7 Result (-)

This selection type parameter indicates that the service request failed.

6.4.10.3.8 Error

This parameter shall indicate an error among the following choices:

⎯ Event handling temporarily not possible

⎯ Event with that identifier still in progress

⎯ Handling of the specified event not possible

6.4.10.4 Service procedure

This service first checks if it is possible to handle this event. Then a handler is started accordingly and status
“Event handling in progress” is returned or the handler is called and finishes its task and status “Event
handling finished” is returned. If the event cannot be handled, an error is returned.

6.5 Extended services

6.5.1 Initiate Extended Interface Type

6.5.1.1 Service overview

The service request is forwarded by service Initiate Peripheral Interface Type (see 6.3.2) after installing an
extended service provider.

6.5.1.2 Service parameter structure

The service parameters for this service are shown in Table 19.

Table 19 — Initiate Extended Interface Type parameter structure

Parameter name Req Cnf

Argument

 Interface type name

 Interface type identifier

Result (+)

Result (-)

 Error

M

M

M

S

S

M

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 29

6.5.1.3 Service parameters

6.5.1.3.1 Argument

The argument contains the parameters of the service request.

6.5.1.3.2 Interface type name

This parameter contains the name of the interface type.

6.5.1.3.3 Interface type identifier

This parameter contains a number identifying this interface type for other service requests.

6.5.1.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.5.1.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.5.1.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Unknown or not available interface type

⎯ This interface type is already initialized

⎯ A hardware error was detected

6.5.1.4 Service procedure

This service checks the availability of an interface with the specified type name. If this interface exists, it is
prepared for use.

6.5.2 Conclude Extended Interface Type

Procedure and parameters of this service are identical to service Conclude Peripheral Interface Type as
described in 6.3.3.

6.5.3 Open Extended Interface Channel

6.5.3.1 Service overview

This service is used to open a communication channel for an extended interface of specified type and
configures the channel for the user's needs.

6.5.3.2 Service parameter structure

The service parameters for this service are shown in Table 20.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

30 © ISO 2010 – All rights reserved

Table 20 — Open Extended Interface Channel parameter structure

Parameter name Req Cnf

Argument

 Interface type identifier

 Interface channel identifier

 Interface channel name

 List of configuration parameters

 Confirmed services access point reference

 Event services access point reference

Result (+)

Result (-)

 Error

M

M

M

M

M

M

M

S

S

M

6.5.3.3 Service parameters

6.5.3.3.1 Argument

The argument contains the parameters of the service request.

6.5.3.3.2 Interface type identifier

This parameter identifies the type of the peripheral interface.

6.5.3.3.3 Interface channel identifier

This parameter is an assigned identifier for the channel of the peripheral interface.

6.5.3.3.4 Interface channel name

This parameter identifies a communication channel of the specified type.

6.5.3.3.5 List of configuration parameters

The list of configuration parameters depends on the type of the selected peripheral interface. The specification
of this list is not within the scope of this part of ISO 20242. The necessary parameters may be found at
descriptions for the specified peripheral interfaces.

6.5.3.3.6 Confirmed services access point reference

This parameter is the reference of a special service access point which shall be used for all confirmed
services belonging to this channel.

6.5.3.3.7 Event services access point reference

This parameter is the reference of a special service access point which shall be used for all event handling
services belonging to this channel.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 31

6.5.3.3.8 Result (+)

This selection type parameter indicates that the service request succeeded.

6.5.3.3.9 Result (-)

This selection type parameter indicates that the service request failed.

6.5.3.3.10 Error

This parameter shall indicate an error among the following choices:

⎯ Interface of that type is not available

⎯ Channel of that name is not available

⎯ Channel is already opened

⎯ Missing or invalid channel name

⎯ Missing or invalid reference for confirmed services access point

⎯ Missing or invalid reference for event services access point

⎯ A memory error occurred

⎯ A hardware error was detected

⎯ Timeout for channel configuration

⎯ Not enough resources to open this channel

⎯ Unspecified parameter error

⎯ Specified parameter error

⎯ Any other error

6.5.3.4 Service procedure

This service checks all parameters and, if there is no error, it tries to open the specified communication
channel. If the channel is not ready for use, an error is returned.

6.5.4 Reconfigure Extended Interface Channel

Procedure and parameters of this service are identical to service Reconfigure Peripheral Interface Channel as
described in 6.4.2.

6.5.5 Read Extended Interface Data

Procedure and parameters of this service are identical to service Read Data as described in 6.4.3.

6.5.6 Write Extended Interface Data

Procedure and parameters of this service are identical to service Write Data as described in 6.4.4.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

32 © ISO 2010 – All rights reserved

6.5.7 Execute Extended Interface Operation

Procedure and parameters of this service are identical to service Execute Operation as described in 6.4.5.

6.5.8 Cancel Extended Communication Process

Procedure and parameters of this service are identical to service Cancel Communication Process as
described in 6.4.6.

6.5.9 Get Extended Interface Channel Status

Procedure and parameters of this service are identical to service Get Periphery Interface Channel Status as
described in 6.4.7.

6.5.10 Clear Extended Interface Read Buffer

Procedure and parameters of this service are identical to service Clear Read Buffer as described in 6.4.8.

6.5.11 Close Extended Interface Channel

Procedure and parameters of this service are identical to service Close Peripheral Interface Buffer as
described in 6.4.9.

6.5.12 Signal Extended Event

Procedure and parameters of this service are identical to service Signal Event as described in 6.4.10.

6.6 Operating Support Services

6.6.1 Allocate Memory

6.6.1.1 Service overview

This service is used to get a reference for coherent data space of specified size.

6.6.1.2 Service parameter structure

The service parameters for this service are shown in Table 21.

Table 21 — Allocate Memory parameter structure

Parameter name Req Cnf

Argument

 Number of octets in data space

Result (+)

 Allocated data space reference

Result (-)

M

M

S

M

S

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 33

6.6.1.3 Service parameters

6.6.1.3.1 Argument

The argument contains the parameters of the service request.

6.6.1.3.2 Number of octets in data space

This parameter specifies the size of the requested data space in octets (unit of eight bits).

6.6.1.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.1.3.4 Allocated data space reference

This parameter contains a reference to identify the requested data space.

6.6.1.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.1.4 Service procedure

If a coherent data area of the specified size is available, a reference to it is created. Otherwise the request
fails.

6.6.2 Reallocate Memory

6.6.2.1 Service overview

This service is used to change the size of a previously allocated data space.

6.6.2.2 Service parameter structure

The service parameters for this service are shown in Table 22.

Table 22 — Reallocate Memory parameter structure

Parameter name Req Cnf

Argument

 Reference to allocated data space

 Number of octets in reallocated data space

Result (+)

 Reallocated data space reference

Result (-)

M

M

M

S

M

S

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

34 © ISO 2010 – All rights reserved

6.6.2.3 Service parameters

6.6.2.3.1 Argument

The argument contains the parameters of the service request.

6.6.2.3.2 Reference to allocated data space

This parameter is the reference to the data space whose size has to be changed. It shall be the result of either
an Allocate Memory or Reallocate Memory service.

6.6.2.3.3 Number of octets in reallocated data space

This parameter specifies the new size of the requested data space in octets (unit of eight bits).

6.6.2.3.4 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.2.3.5 Service reference

This parameter contains a reference to identify the requested data space.

6.6.2.3.6 Result (-)

This selection type parameter indicates that the service request failed.

6.6.2.4 Service procedure

If data space is available to change the specified data space, a reference to the new data space is created.
The contents of the data space shall be unchanged up to the shorter of the old and new sizes. If it is not
possible to change the size of the data space, the request fails and the old data space stays valid.

6.6.3 Free Memory

6.6.3.1 Service overview

This service is used to get a reference for coherent data space of specified size.

6.6.3.2 Service parameter structure

The service parameters for this service are shown in Table 23.

Table 23 — Free Memory parameter structure

Parameter name Req Cnf

Argument

 Reference to allocated data space

Result (+)

Result (-)

 Error

M

M

S

S

M

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 35

6.6.3.3 Service parameters

6.6.3.3.1 Argument

The argument contains the parameters of the service request.

6.6.3.3.2 Reference to allocated data space

This parameter is the reference to the data space which has to be released. It has to be the result of either an
Allocate Memory or Reallocate Memory service.

6.6.3.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.3.3.4 Service reference

This parameter contains a reference to identify the requested data space.

6.6.3.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.3.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Invalid reference to allocated data space

⎯ Any other error

6.6.3.4 Service procedure

If the specified reference is valid for an allocated data space, the space is released and will be free for any
other allocation. Otherwise the old data space stays valid and an error is returned.

6.6.4 Get Time

6.6.4.1 Service overview

This service is used to investigate the time in different formats with respect to Universal Coordinated Time
(UTC).

6.6.4.2 Service parameter structure

The service parameters for this service are shown in Table 24.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

36 © ISO 2010 – All rights reserved

Table 24 — Get Time parameter structure

Parameter name Req Cnf

Argument

 Required time format

Result (+)

 List of time describing elements

Result (-)

 Error

M

M

S

M

S

M

6.6.4.3 Service parameters

6.6.4.3.1 Argument

The argument contains the parameters of the service request.

6.6.4.3.2 Required time format

This parameter specifies the required time format among the following choices:

⎯ UNIX time: the number of seconds since January 1, 1970, 00:00 o'clock UTC, units for seconds and
microseconds since the last second;

⎯ Absolute time: the Universal Coordinated Time units for year, month, day of month, hour, minute, second,
millisecond, microsecond and nanosecond with an additional element containing the difference to the
local time in seconds.

6.6.4.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.4.3.4 List of time describing elements

This parameter contains the elements of a time structure according to the required time format.

6.6.4.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.4.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Time could not be investigated

⎯ Any other error

6.6.4.4 Service procedure

The Universal Coordinated Time is verified by means of RMS. If that is not possible, an error is returned.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 37

6.6.5 Get Process Time

6.6.5.1 Service overview

This service tells the value of a microseconds counter in RMS. The start time of the counter is not determined.

6.6.5.2 Service parameter structure

The service parameters for this service are shown in Table 25.

Table 25 — Get Process Time parameter structure

Parameter name Req Cnf

Result (+)

 Local Process Time

Result (-)

 Error

 S

M

S

M

6.6.5.3 Service parameters

6.6.5.3.1 Argument

This service has no parameters.

6.6.5.3.2 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.5.3.3 Local Process Time

This parameter contains the value of a microseconds counter in RMS.

6.6.5.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.5.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Local Process Time could not be investigated

⎯ Any other error

6.6.5.4 Service procedure

RMS shall contain a microseconds counter. This counter is started with the availability of RMS, but the start
value of the counter is not determined. This service investigates the actual value of the counter.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

38 © ISO 2010 – All rights reserved

6.6.6 Wait

6.6.6.1 Service overview

This service creates a delay for a specified amount of time.

6.6.6.2 Service parameter structure

The service parameters for this service are shown in Table 26.

Table 26 — Wait parameter structure

Parameter name Req Cnf

Argument

 Waiting time

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.6.3 Service parameters

6.6.6.3.1 Argument

The argument contains the parameters of the service request.

6.6.6.3.2 Waiting time

This parameter specifies the amount of delay time in milliseconds.

6.6.6.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.6.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.6.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Temporizing failed, service finished immediately

⎯ Any other error

6.6.6.4 Service procedure

If resources to determine time are available, this service waits a specified amount of time. Otherwise an error
is returned.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 39

6.6.7 Create Timer

6.6.7.1 Service overview

This service creates and starts a timer in RMS and installs a service access point to handle the timer event.

6.6.7.2 Service parameter structure

The service parameters for this service are shown in Table 27.

Table 27 — Create Timer parameter structure

Parameter name Req Cnf

Argument

 Timer access point reference

 Timer process handle

 Duration time

 Number of events

Result (+)

 Timer identifier

Result (-)

 Error

M

M

M

M

M

S

M

S

M

6.6.7.3 Service parameters

6.6.7.3.1 Argument

The argument contains the parameters of the service request.

6.6.7.3.2 Timer access point reference

This parameter is the reference of a special service access point which shall be used to handle events
belonging to this timer.

6.6.7.3.3 Timer process handle

This parameter is a handle defined by the user to identify events of this timer. The event carries this handle.

6.6.7.3.4 Duration time

This parameter is the time elapsing until a timer event is signalled.

6.6.7.3.5 Number of events

Timers may work repetitively. This parameter assigns the number of repetitions. The value zero denotes a
repetitive timer which only stops if the timer is removed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

40 © ISO 2010 – All rights reserved

6.6.7.3.6 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.7.3.7 Timer identifier

This parameter is the identification for the created timer. The identifier is needed to remove the timer.

6.6.7.3.8 Result (-)

This selection type parameter indicates that the service request failed.

6.6.7.3.9 Error

This parameter shall indicate an error among the following choices:

⎯ Resources for timers exhausted

⎯ Any other error

6.6.7.4 Service procedure

If corresponding resources are available, a timer is created and started. After the given duration time is
exhausted, a timer event is signalled. If the specified number of events is greater than one, the timer is started
again. If the number of signalled events matches the specified number of events, the timer is removed and
timer resources are available for another timer. If the specified number of events is zero, the timer runs
repetitively and may only be stopped by Remove Timer service.

The accuracy of the timer depends on the resources of RMS and should be the best possible.

6.6.8 Signal Timer Event

6.6.8.1 Service overview

This service signals the end of a timing period and issues an indication primitive.

6.6.8.2 Service parameter structure

The service parameters for this service are shown in Table 28.

Table 28 — Signal Timer Event parameter structure

Parameter name Ind Rsp

Argument

 Timer process handle

 Timer status

Result (+)

Result (-)

 Error code

M

M

M

S

S

C

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 41

6.6.8.3 Service parameters

6.6.8.3.1 Argument

The argument contains the parameters of the service request.

6.6.8.3.2 Timer process handle

This parameter is a handle defined by the user to identify the timer which signals this event. This handle is a
parameter of service Create Timer.

6.6.8.3.3 Timer status

This parameter denotes if a former event of this timer is still pending. An event is pending until a response
primitive is received.

6.6.8.3.4 Result (+)

This parameter indicates that the service indication succeeded and the event is no longer pending.

6.6.8.3.5 Result (-)

This parameter indicates that the service indication cannot be received or processed and the event is not
expected.

6.6.8.3.6 Error code

This parameter denotes the reason for the error condition.

6.6.8.4 Service procedure

If the duration time of a timer is exhausted, an event is signalled to the user with an indication primitive. It is
checked, if a former event is still pending and status of timer is defined accordingly.

6.6.9 Remove Timer

6.6.9.1 Service overview

This service stops a running timer in RMS, removes it and frees all linked resources.

6.6.9.2 Service parameter structure

The service parameters for this service are shown in Table 29.

Table 29 — Remove Timer parameter structure

Parameter name Req Cnf

Argument
 Timer identifier

Result (+)

Result (-)
 Error

M
M

S

S
M

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

42 © ISO 2010 – All rights reserved

6.6.9.3 Service parameters

6.6.9.3.1 Argument

The argument contains the parameters of the service request.

6.6.9.3.2 Timer identifier

This parameter is an identifier for the timer returned by service Create Timer.

6.6.9.3.3 Result (+)

This parameter indicates that the service request succeeded and the timer is removed.

6.6.9.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.9.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Timer identifier not valid

⎯ Operation failed, timer event busy

⎯ Any other error

6.6.9.4 Service procedure

If no event of the addressed timer is pending, the timer is stopped and removed. Otherwise an error is
returned.

6.6.10 Create Light Process Timer

6.6.10.1 Service overview

This service creates and starts a light process timer in RMS and installs a service access point to handle the
timer event.

6.6.10.2 Service parameter structure

The service parameters for this service are shown in Table 30.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 43

Table 30 — Create Light Process Timer parameter structure

Parameter name Req Cnf

Argument

 Timer access point reference

 Timer process handle

 Duration time

 Number of events

Result (+)

 Timer identifier

Result (-)

 Error

M

M

M

M

M

S

M

S

M

6.6.10.3 Service parameters

6.6.10.3.1 Argument

The argument contains the parameters of the service request.

6.6.10.3.2 Timer access point reference

This parameter is the reference of a special service access point which shall be used to handle events
belonging to this timer.

6.6.10.3.3 Timer process handle

This parameter is a handle defined by the user to identify events of this timer. The event carries this handle.

6.6.10.3.4 Duration time

This parameter is the time elapsing until a timer event is signalled.

6.6.10.3.5 Number of events

Timers may work repetitively. This parameter assigns the number of repetitions. The value zero denotes a
repetitive timer which only stops if the timer is removed.

6.6.10.3.6 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.10.3.7 Timer identifier

This parameter is the identification for the created timer. The identifier is needed to remove the timer.

6.6.10.3.8 Result (-)

This selection type parameter indicates that the service request failed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

44 © ISO 2010 – All rights reserved

6.6.10.3.9 Error

This parameter shall indicate an error among the following choices:

⎯ Resources for light processes exhausted

⎯ Any other error

6.6.10.4 Service procedure

If corresponding resources are available, a new light process is created and an associated timer is started.
After the given duration time is exhausted, a timer event is signalled. If the specified number of events is
greater than one, the timer is started again. If the number of signalled events matches the specified number of
events, the timer is removed and the light process is closed. If the specified number of events is zero, the
timer runs repetitively and may only be stopped by a Remove Timer service.

The accuracy of the timer depends on the scheduling of the light process.

6.6.11 Signal Light Process Timer Event

6.6.11.1 Service overview

The timing period is exhausted and the light process associated with this timer issues an indication primitive.

6.6.11.2 Service parameter structure

The service parameters for this service are shown in Table 31.

Table 31 — Signal Light Process Timer Event parameter structure

Parameter name Ind Rsp

Argument

 Timer process handle

 Timer status

Result (+)

M

M

C

M

6.6.11.3 Service parameters

6.6.11.3.1 Argument

The argument contains the parameters of the service request.

6.6.11.3.2 Timer process handle

This parameter is a handle defined by the user to identify the timer which signals this event. This handle is a
parameter of Create Light Process Timer service.

6.6.11.3.3 Timer status

If the light process is able to control absolute timing, this parameter is present and denotes if processing of a
former event of this timer exceeded specified timer duration.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 45

6.6.11.3.4 Result (+)

This parameter indicates that the service indication succeeded and the event is no longer pending.

6.6.11.4 Service procedure

If the duration time of a timer is exhausted, an event is signalled to the user with an indication primitive. If
possible, it is checked whether a former event handling exceeded the specified timer period.

6.6.12 Remove Light Process Timer

6.6.12.1 Service overview

This service stops the light process service parameter which is associated with this timer and frees all linked
resources.

6.6.12.2 Service parameter structure

The service parameters for this service are shown in Table 32.

Table 32 — Remove Light Process Timer table

Parameter name Req Cnf

Argument

 Timer identifier

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.12.3 Service parameters

6.6.12.3.1 Argument

The argument contains the parameters of the service request.

6.6.12.3.2 Timer identifier

This parameter is an identifier for the timer returned by Create Timer service.

6.6.12.3.3 Result (+)

This parameter indicates that the service request succeeded and the timer is removed.

6.6.12.3.4 Result (-)

This selection type parameter indicates that the service request failed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

46 © ISO 2010 – All rights reserved

6.6.12.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Timer identifier not valid

⎯ Operation failed, timer event busy

⎯ Any other error

6.6.12.4 Service procedure

If no event of the addressed timer is pending, the light process is stopped and linked resources are freed.
Otherwise an error is returned.

6.6.13 Identify Light Process

6.6.13.1 Service overview

This service identifies the light process of the requesting entity.

6.6.13.2 Service parameter structure

The service parameters for this service are shown in Table 33.

Table 33 — Identify Light Process parameter structure

Parameter name Req Cnf

Result (+)

 Light process identifier

Result (-)

 Error

 S

M

S

M

6.6.13.3 Service parameters

6.6.13.3.1 Argument

This service request has no parameters.

6.6.13.3.2 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.13.3.3 Light process identifier

This parameter contains a unique identifier for the light process.

6.6.13.3.4 Result (-)

This selection type parameter indicates that the service request failed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 47

6.6.13.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Light process could not be identified

⎯ Any other error

6.6.13.4 Service procedure

This service investigates the identifier of the actual light process of the service requesting user. If this is not
possible an error is returned.

6.6.14 Create Counted Semaphore

6.6.14.1 Service overview

This service creates a control handle for resources which may be used only a limited number at the same time.
How often a resource may be used at the same time is specified with the service request.

6.6.14.2 Service parameter structure

The service parameters for this service are shown in Table 34.

Table 34 — Create Counted Semaphore parameter structure

Parameter name Req Cnf

Argument

 Number of concurrent usages

Result (+)

 Semaphore handle

Result (-)

 Error

M

M

S

M

S

M

6.6.14.3 Service parameters

6.6.14.3.1 Argument

The argument contains the parameters of the service request.

6.6.14.3.2 Number of concurrent usages

This parameter specifies how many users are allowed to access the resource concurrently.

6.6.14.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

48 © ISO 2010 – All rights reserved

6.6.14.3.4 Semaphore handle

This is the handle for controlling the access to the protected resource.

6.6.14.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.14.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Number of concurrent users not valid

⎯ No more semaphore control available

⎯ Any other error

6.6.14.4 Service procedure

It is checked if the number of concurrent users is valid and if resources for access control are available. Then
a control object is created, an associated counter is loaded with the number of maximum concurrent users
and a handle is returned. Otherwise an error is returned.

6.6.15 Wait for Counted Semaphore

6.6.15.1 Service overview

With this service the access to a resource is requested which is protected by the specified semaphore. If the
access is not allowed, access is deferred until a specified time interval.

6.6.15.2 Service parameter structure

The service parameters for this service are shown in Table 35.

Table 35 — Wait for Counted Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

 Maximum waiting time

Result (+)

Result (-)

 Error

M

M

M

S

S

M

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 49

6.6.15.3 Service parameters

6.6.15.3.1 Argument

The argument contains the parameters of the service request.

6.6.15.3.2 Semaphore handle

This parameter is the handle of the counted semaphore protecting the resource. The handle was returned by
Create Counted Semaphore service.

6.6.15.3.3 Maximum waiting time

This is the maximum time for deferring access to the protected resource.

6.6.15.3.4 Result (+)

This selection type parameter indicates that the service request succeeded and the protected resource may
be accessed.

6.6.15.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.15.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ Maximum waiting time exceeded

⎯ Any other error

6.6.15.4 Service procedure

If the semaphore handle is valid and the associated counter is greater than zero, the counter is decremented
by one and access to the protected resource is granted. Otherwise access is deferred until the counter is
greater than zero or the specified waiting time is exceeded. If the waiting time is exceeded, an error is
returned.

6.6.16 Release Counted Semaphore

6.6.16.1 Service overview

With this service the access to a resource protected by the specified semaphore is released.

6.6.16.2 Service parameter structure

The service parameters for this service are shown in Table 36.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

50 © ISO 2010 – All rights reserved

Table 36 — Release Counted Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.16.3 Service parameters

6.6.16.3.1 Argument

The argument contains the parameters of the service request.

6.6.16.3.2 Semaphore handle

This parameter is the handle of the counted semaphore protecting the resource. The handle was returned by
a Create Counted Semaphore service.

6.6.16.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the release of the protected
resource is notified.

6.6.16.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.16.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ No more release possible

⎯ Any other error

6.6.16.4 Service procedure

If the semaphore handle is valid and the associated counter is less than the initial value, the counter is
incremented by one. Otherwise an error is returned.

6.6.17 Delete Counted Semaphore

6.6.17.1 Service overview

This service deletes a counted semaphore and frees all resources which had been allocated for it.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 51

6.6.17.2 Service parameter structure

The service parameters for this service are shown in Table 37.

Table 37 — Delete Counted Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.17.3 Service parameters

6.6.17.3.1 Argument

The argument contains the parameters of the service request.

6.6.17.3.2 Semaphore handle

This parameter is the handle of the counted semaphore protecting the resource. The handle was returned by
a Create Counted Semaphore service.

6.6.17.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the semaphore is deleted.

6.6.17.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.17.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ Protected resource still accessed

⎯ Any other error

6.6.17.4 Service procedure

If the semaphore handle is valid and the protected resource is no more accessed, the semaphore is deleted.
Otherwise an error is returned.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

52 © ISO 2010 – All rights reserved

6.6.18 Create Private Semaphore

6.6.18.1 Service overview

This service creates a control handle for resources which may be used in an unlimited manner by the owning
light process. A light process owns the resource when it gets access to it. No other light process may access
the resource until it is completely released by the owning light process.

6.6.18.2 Service parameter structure

The service parameters for this service are shown in Table 38.

Table 38 — Create Private Semaphore parameter structure

Parameter name Req Cnf

Result (+)

 Semaphore handle

Result (-)

 Error

 S

M

S

M

6.6.18.3 Service parameters

6.6.18.3.1 Argument

This service request has no parameters.

6.6.18.3.2 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.18.3.3 Semaphore handle

This is the handle for controlling the access to the protected resource.

6.6.18.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.18.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ No more semaphore control available

⎯ Any other error

6.6.18.4 Service procedure

If resources for access control are available, a control object is created and a handle is returned. Otherwise an
error is returned.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 53

6.6.19 Wait for Private Semaphore

6.6.19.1 Service overview

With this service the access to a resource is requested which is protected by the specified semaphore. The
access is always allowed for the owning light process. If another light process requests access, access to the
resource is deferred until a specified time is exceeded or the owning process releases the resource.

6.6.19.2 Service parameter structure

The service parameters for this service are shown in Table 39.

Table 39 — Wait for Private Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

 Maximum waiting time

Result (+)

Result (-)

 Error

M

M

M

S

S

M

6.6.19.3 Service parameters

6.6.19.3.1 Argument

The argument contains the parameters of the service request.

6.6.19.3.2 Semaphore handle

This parameter is the handle of the private semaphore protecting the resource. The handle was returned by a
Create Private Semaphore service.

6.6.19.3.3 Maximum waiting time

This is the maximum time for deferring access to the protected resource.

6.6.19.3.4 Result (+)

This selection type parameter indicates that the service request succeeded and the protected resource may
be accessed.

6.6.19.3.5 Result (-)

This selection type parameter indicates that the service request failed.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

54 © ISO 2010 – All rights reserved

6.6.19.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ Maximum waiting time exceeded

⎯ Any other error

6.6.19.4 Service procedure

If the semaphore handle is valid and the resource is owned by this light process or the resource is not owned
by any light process, access to the protected resource is granted. If the resource is owned by another light
process, access to the resource is deferred until the resource is completely released or the specified waiting
time is exceeded. If the waiting time is exceeded, an error is returned.

If this is the first access of this light process, it becomes the owner of the resource.

6.6.20 Release Private Semaphore

6.6.20.1 Service overview

With this service the access to a resource protected by the specified semaphore is released. The ownership of
the resource by a light process expires if the number of releases by this service is equal to the number of
unreleased accesses by a Wait for Private Semaphore service.

6.6.20.2 Service parameter structure

The service parameters for this service are shown in Table 40.

Table 40 — Release Private Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.20.3 Service parameters

6.6.20.3.1 Argument

The argument contains the parameters of the service request.

6.6.20.3.2 Semaphore handle

This parameter is the handle of the counted semaphore protecting the resource. The handle was returned by
a Create Private Semaphore service.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 55

6.6.20.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the release of the protected
resource is notified.

6.6.20.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.20.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ No more release possible

⎯ Any other error

6.6.20.4 Service procedure

If the semaphore handle is valid, the release of the semaphore is notified. Otherwise an error is returned.

The matching of services Waiting for Private Semaphore and Release Private Semaphore is controlled. The
protected resource may be accessed by another light process if the numbers of both requests are equal.

6.6.21 Delete Private Semaphore

6.6.21.1 Service overview

This service deletes a private semaphore and frees all resources which had been allocated for it.

6.6.21.2 Service parameter structure

The service parameters for this service are shown in Table 41.

Table 41 — Semaphore parameter structure

Parameter name Req Cnf

Argument

 Semaphore handle

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.21.3 Service parameters

6.6.21.3.1 Argument

The argument contains the parameters of the service request.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

56 © ISO 2010 – All rights reserved

6.6.21.3.2 Semaphore handle

This parameter is the handle of the private semaphore protecting the resource. The handle was returned by a
Create Private Semaphore service.

6.6.21.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the semaphore is deleted.

6.6.21.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.21.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Semaphore handle not valid

⎯ Protected resource still owned

⎯ Any other error

6.6.21.4 Service procedure

If the semaphore handle is valid and the protected resource is not owned by a light process, the semaphore is
deleted. Otherwise an error is returned.

6.6.22 Open Debug Log

6.6.22.1 Service overview

This service opens a logging channel for debug messages.

6.6.22.2 Service parameter structure

The service parameters for this service are shown in Table 42.

Table 42 — Open Debug Log parameter structure

Parameter name Req Cnf

Argument

 Debug channel identifier

Result (+)

 Log handle

Result (-)

 Error

M

M

S

M

S

M

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 57

6.6.22.3 Service parameters

6.6.22.3.1 Argument

The argument contains the parameters of the service request.

6.6.22.3.2 Debug channel identifier

This parameter identifies a debug channel. It is defined by an RMS user and debug channel resources are
assigned by the RMS provider.

6.6.22.3.3 Result (+)

This selection type parameter indicates that the service request succeeded.

6.6.22.3.4 Log handle

This is the handle for the further access to the debug channel.

6.6.22.3.5 Result (-)

This selection type parameter indicates that the service request failed.

6.6.22.3.6 Error

This parameter shall indicate an error among the following choices:

⎯ No more debug channel available

⎯ Identifier not valid

⎯ Any other error

6.6.22.4 Service procedure

If a debug channel is available and the identifier is valid or no identifier is given, a new debug channel is
created for streaming text messages. Otherwise an error is returned.

6.6.23 Write Debug Message

6.6.23.1 Service overview

This service writes a message to a debug channel.

6.6.23.2 Service parameter structure

The service parameters for this service are shown in Table 43.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

58 © ISO 2010 – All rights reserved

Table 43 — Write Debug Message parameter structure

Parameter name Req Cnf

Argument

 Log handle

 Debug message

Result (+)

Result (-)

 Error

M

M

M

S

S

M

6.6.23.3 Service parameters

6.6.23.3.1 Argument

The argument contains the parameters of the service request.

6.6.23.3.2 Log handle

This parameter is the handle for the debug channel. It was returned by an Open Debug Log service.

6.6.23.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the message is accepted.

6.6.23.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.23.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Log handle not valid

⎯ Debug channel temporarily not available

⎯ Debug channel exhausted

⎯ Any other error

6.6.23.4 Service procedure

If the log handle is valid and the debug channel is ready to accept a message, the message is written to the
debug log. Otherwise an error is returned.

6.6.24 Close Debug Log

6.6.24.1 Service overview

This service closes a debug channel.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 59

6.6.24.2 Service parameter structure

The service parameters for this service are shown in Table 44.

Table 44 — Close Debug Log parameter structure

Parameter name Req Cnf

Argument

 Log handle

Result (+)

Result (-)

 Error

M

M

S

S

M

6.6.24.3 Service parameters

6.6.24.3.1 Argument

The argument contains the parameters of the service request.

6.6.24.3.2 Log handle

This parameter is the handle for the debug channel. It was returned by an Open Debug Log service.

6.6.24.3.3 Result (+)

This selection type parameter indicates that the service request succeeded and the debug channel is closed.

6.6.24.3.4 Result (-)

This selection type parameter indicates that the service request failed.

6.6.24.3.5 Error

This parameter shall indicate an error among the following choices:

⎯ Log handle not valid

⎯ Debug channel busy

⎯ Any other error

6.6.24.4 Service procedure

If the log handle is valid and the debug channel is not busy, the channel is closed. Otherwise an error is
returned.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

60 © ISO 2010 – All rights reserved

6.7 States of RMS state machine

6.7.1 State transitions

Transitions from one status to the next are carried out by services, timeouts and finishing of tasks. Service
errors always inhibit a state transition and are excluded in the state diagrams.

6.7.2 State diagram overview

The RMSI may hold similar services of different versions. Before a service is used, it has to be selected with
the required version number. Users may only select those services that they need for their application, which
may only be a part of all RMS (see Figure 4).

io_initiate
io_conclude

RMS_Accessable

SelectNeededResourcesGetFuncAddress

AllNeededResourcesSelected

InterfaceTypeSelected

Use
Channel

io_open

io_close

Use
Channel

io_open

io_close

io_initiate
io_conclude

InterfaceTypeSelected

Use
Channel

io_open

io_close

Use
Channel

io_open

io_close

Figure 4 — RMS overview state diagram with multiple peripheral interfaces

The RMSI may support any number of different types of peripheral interfaces which may have any number of
communication channels. An io_initiate service creates an object for an interface type and an io_open service
creates an object for a communication channel. Therefore different interface type objects may be in different
states as different channel objects of one interface type may be in different states. Figure 4 shows this with an
example of two different regions out of any number for interface type objects and channel objects.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 61

6.7.3 Channel state diagram

For the data exchange with peripheral interfaces or the execution of procedures dealing with peripheral
components, processing time has to be considered and timeout may be specified or the process may be
cancelled. The UML state diagram in Figure 5 shows details for these procedures.

io_write.confirm

io_open.request

io_cancel or
WriteTimeOut or
WriteFinished

ChannelWorking

WriteIdle

Writing

WriteEnd

io_open.confirm or io_config.confirm

io_write.request

io_execute.confirm
io_cancel or
ExecuteTimeOut or
ExecuteFinished

ExecuteIdle

Executing

ExecuteEnd

io_execute.request

io_read.confirm io_cancel or
ReadTimeOut or
ReadFinished

Reading

ReadEnd

io_read.request

[WriteIdle and ExecuteIdle and ReadIdle]
io_config.request

[WriteIdle and ExecuteIdle and ReadIdle]

io_close

io_clear

ReadIdle

io_stat io_stat

ChannelConfiguration

Figure 5 — RMS channel state diagram with input/output services

Input/output services and their matching extended services lead to special states of corresponding procedures
in RMS. As input/output services are directly linked to extended services, state transitions are described with
input/output services only.

6.7.4 RMSI states

6.7.4.1 SelectNeededResources state

This is the initial RMSI state, where only the GetFuncAddress service is available. This service is used for
selecting the other needed services by service name and version number. After selection, the service is
accessible by an RMS user.

6.7.4.2 RMS_Accessible state

This state is entered by the RMSI user if he or she has selected all needed resources. The state transition
happens with the first access of a service other than GetFuncAddress.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

62 © ISO 2010 – All rights reserved

6.7.4.3 InterfaceTypeSelected state

This state is entered with an io_initiate service. A specified type of peripheral interface or component is
selected and may be used. The number of different types is not limited. Any number of TypeSelected states
may exist concurrently for different types.

6.7.4.4 ChannelConfiguration state

This state belongs to a single channel of a selected interface type and is entered via an io_open.request
service from the TypeSelected state or via an io_config.request service from the ChannelWorking state. If the
configuration of the peripheral interface or component with an io_open service fails, the InterfaceTypeSelected
state is assumed again. If a reconfiguration with an io_config service fails, the ChannelWorking state is
assumed again with the old configuration.

6.7.4.5 ChannelWorking state

This state is entered if a configuration of a peripheral interface channel or component is successfully
completed. Otherwise it is entered again if a reconfiguration fails and the old configuration stays valid.

6.7.4.6 WriteIdle state

A channel is ready to transmit data and waits for an io_write.request order. If the read and execute regions of
this channel are in the ReadIdle or ExecuteIdle state, respectively, then the ChannelWorking state may be left
by an io_close service.

6.7.4.7 Writing state

A channel is transmitting data. The transmission may be aborted with an io_cancel service. A transition from
this state occurs if the transmission is finished or it takes longer than a specified time. With an io_stat service
the actual number of transmitted bytes may be ascertained.

6.7.4.8 WriteEnd state

Writing is finished or aborted and a confirmation is created to enter the WriteIdle state again.

6.7.4.9 ReadIdle state

A channel is ready to receive data and waits for an io_read.request order. If the write and execute regions of
this channel are in the WriteIdle state and ExecuteIdle state, respectively, then the ChannelWorking state may
be left by an io_close service.

6.7.4.10 Reading state

A channel is receiving data and waits for peripheral input. The receiving activity may be aborted with an
io_cancel service. The state is abandoned if the receiving activity is finished or it takes longer than a specified
time. With an io_stat service the actual number of received bytes may be ascertained.

6.7.4.11 ReadEnd state

Reading is finished or aborted and a confirmation is created to enter the ReadIdle state again.

6.7.4.12 ExecuteIdle state

A channel is ready to execute a peripheral process and waits for an io_execute.request. If the read and write
regions of this channel are in the ReadIdle state and WriteIdle state, the ChannelWorking state may be
abandoned by an io_close service.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 63

6.7.4.13 Executing state

A peripheral process is executing. The execution may be aborted with an io_cancel service. A transition from
this state occurs if the execution is finished or it takes longer than a specified time.

6.7.4.14 ExecuteEnd state

Executing is finished or aborted and a confirmation is created to enter the ExecuteIdle state again.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

64 © ISO 2010 – All rights reserved

Annex A
(informative)

Implementation guidelines for RMSI — Mapping of services to C/C++

function calls

A.1 Matters of conformance

Using this implementation guide will tend to ensure that implementations of the RMSI for the same operating
system are compatible with respect to their interfaces and service procedures. Furthermore, they will be
compatible with implementations of so-called platform adapters of ASAM GDI Version 4.3[6].

A.2 Using these mapping rules

These mapping rules are not sufficient for creating a valid implementation of RMSI. The service descriptions
of Clause 6 shall be considered as well.

A.3 C and C++ standards

The C programming language is standardized in ISO/IEC 9899. The C++ programming language is
standardized in ISO/IEC 14882.

A.4 Conventions for simple data types

If not otherwise specified, the C/C++ simple data types used in this annex reflect to the 32 bit environment and
thus are in most cases operating system independent. If other environments are used (e.g. 64 bit), some
simple data types may be operating system dependent. For these cases, the implementation has to be
documented with respect to the corresponding specifications of ASAM GDI.

Strings are fields of 8 bit values (octets) without the value 0. The value 0 marks the end of a string.

A.5 Special simple data types

A.5.1 Operating system independent types

For the service primitive parameters, the operating system independent definitions of special simple data
types shall be used as shown in Table A.1.

Table A.1 — OS independent parameter data types

Data type C/C++ definition Remarks

APICHAR signed char range −128 to 127

APIBYTE unsigned char range 0 to 2exp8

APIRET signed short range −65536 to 65535

APIHND unsigned long range 0 to 2exp32

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 65

A.5.2 Operating system dependent types

For the service primitive parameters, the operating system dependent definitions of special simple data types
shall be used as shown in Table A.2.

Table A.2 — OS dependent function calls

Data type Win32 C definition Linux C definition

PA_CALL __stdcall no special function type

PA_CB __cdecl no special function type

A.6 Special complex data types

A.6.1 Compiling conventions

Complex data types shall be compiled with an alignment of 8 bytes.

A.6.2 C data structures

For some service primitive parameters, the operating system independent data structures shall be used as
shown in Table A.3.

Table A.3 — OS independent data structures

Data type C/C++ definition Remarks

IO_STAT struct
{
short errorCode;
unsigned long nrChrs;
};

errorCode:
status (error) of a peripheral interface channel

nrChr:
number of received or transmitted characters

IO_CONFDAT struct
{
char *name;
short typeId;
void *paramPtr;
PA_CB * completePtr;
PA_CB * eventPtr;
};

name:
Name of a peripheral interface channel

typeId:
identifier for the type of interface

paramPtr:
address of a data structure for the channel specific configuration
data

completePtr:
address of a function which shall be called, when an
asynchronous communication is completed

eventPtr:
address of a function which shall be called, if an event occurs
inside the RMS provider or an extended provider

OS_UCT struct
{
long seconds;
unsigned long microSec;
};

seconds:
number of seconds since January 1, 1970, 00:00 o’clock (UTC
time)

microSec:
number of microseconds since the last full second

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

66 © ISO 2010 – All rights reserved

Table A.3 (continued)

Data type C/C++ definition Remarks

A_TIME struct
{
short year;
char month;
char mday;
char hour;
char minute;
char second;
short milliSec;
short microSec;
short nanoSec;
long timeZoneDiff;
};

year:
the actual year as number (e.g. 2007)

month:
the actual month as number (1-12) since January

mday:
the actual day as number (1-31) since first day of month

hour:
the number of hours since midnight (0-23)

minute:
the number of minutes after the hour (0-59)

second:
the number of seconds after the minute (0-59)

milliSec:
the number of milliseconds after the second (0-999)

microSec:
the number of microseconds after the millisecond (0-999)

nanoSec:
the number of nanoseconds after the microsecond (0-999)

timeZoneDiff:
the difference between UTC and local time in seconds

A.7 Conventions for predefined constants

If constants are used by name, they have to be defined in header files. The names of header files are
specified for ASAM GDI in the relevant specifications. Because the contents of the header files may be
extended by future implementations and the combination of device drivers of different versions and platform
adapters of different versions is also handled inside header files, they are not described in this part of
ISO 20242.

Predefined constants used in this annex are described in Table A.4.

Table A.4 — Predefined constants

Name Value Description

IOEXT_GETFUNCID 0 Identifier for a special operation to get the identifiers of other
operations by name

A.8 Conventions for function prototypes

Function prototypes will be described as

returnType callType functionName (list of argument types).

In the following descriptions the returned value of type returnType is called return. Arguments are called arg
and numbered beginning with 1 as arg1, arg2, etc.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 67

A.9 Return values

The enumerations shown in Table A.5 are used for return values of several functions.

Table A.5 — Return value enumerations

Enumerator Name Description

0 COM_FIN A function was completed successfully in synchronous
operation mode

1 COM_BUSY A function has been started in asynchronous operation mode

If a pointer or a handle is an expected return value, this will be zero only in case of errors, expressed with the
name NULL.

A.10 Error numbers

Most functions return negative values in case of errors. Their meaning is explained in Table A.6.

Table A.6 — Error numbers

Error
number

Description

-1 Unknown or not opened interface type

-2 Extended services provider not available or not bounded or not to be released

-3 The interface type is already initialized

-4 Memory error

-5 Hardware fault

-6 Access temporarily not possible, process busy

-7 ... -9 Reserved for future use

-10 Unknown or not opened channel (channel name not found)

-11 The channel is already opened

-12 Missing channel name in argument list

-13 Missing callback address for asynchronous communication

-14 Missing callback address for event handling

-15 Protocol address is invalid or was not found

-16 Port address is invalid or was not found

-17 Transmission speed is not adjustable

-18 Transmission data length is not adjustable

-19 Character length is not valid

-20 Transmission buffer error, allocation or deallocation failed

-21 ... -24 Reserved for future use

-25 Function not supported via extended services

-26 Data sending process is busy

-27 Data receiving process is busy

-28, -29 Reserved for future use

-30 Service handle is unknown or already used for this device ID

-31 ... -34 Reserved for future use

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

68 © ISO 2010 – All rights reserved

Table A.6 (continued)

Error
number

Description

-35 Communication cannot be cancelled

-36 ... -39 Reserved for future use

-40 Communication or operation timed out

-41 Resources not available

-42 Communication cancelled inside the process or by user

-43 Queue for sending data is congested

-44 Queue for receiving data is congested

-45 ... -49 Reserved for future use

-50 Unknown function name

-51 Unknown function identifier

-52 ... -89 Reserved for future use

-90 Unknown operation identifier

-91 Operation failed

-92 ... -99 Reserved for future use

-100 Unspecified parameter error or missing parameter structure

< -100 Specified parameter error
The absolute value minus 100 is the index of the first wrong parameter in the parameter structure with
structure elements numbered from one upwards

A.11 Management support service functions

The functions for the management support services are described in Table A.7.

Table A.7 — Management support function description

Service Function prototype Relation to service parameters

Get Service
Reference

void * PA_CALL
getFuncAddress
(short, APICHAR *)

arg1: version number (see below)
arg2: the service identifier, which is the name of the service

used for identification as string
return: address of the relevant function or NULL, if the function

is not found

Initiate Peripheral
Interface Type

short PA_CALL io_initiate
(APICHAR * , APICHAR *)

arg1: a string containing the name of the extended services
provider or an empty string, if an extended services
provider is not expected.

arg2: a string containing the type name for the connected
interface

return: a number greater than zero to identify the type of the
connected interface or a negative value indicating an
error (Table A.6)

Conclude Peripheral
Interface Type

short PA_CALL io_conclude
(short)

arg1: the type identifier returned by io_initiate
return: value COM_FIN if the interface was closed correctly,

otherwise a negative value indicating an error
(Table A.6)

The version number for the requested service via getFuncAddress is coded in two numbers in higher byte and
lower byte of arg1.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 69

For the list of possible errors returned by a function see the relevant error parameter of the service
descriptions in 6.3.

A.12 Input/output service functions

A.12.1 Functions related to service descriptions in 6.4

The functions for the input/output services are described in Table A.8.

Table A.8 — Generic input/output function description

Service Function prototype Relation to service parameters

Open Peripheral
Interface Channel

short PA_CALL io_open
(IO_CONFDAT *)

arg1: see Table A.3 for the data structure
return: a number greater than zero to identify the opened

channel for further access or a negative value indicating
an error (see Table A.6)

Reconfigure
Peripheral Interface
Channel

short PA_CALL io_config
(short, IO_CONFDAT *)

arg1: the identifier of the open channel
arg2: see Table A.3 for the data structure
return: value COM_FIN if the channel was reconfigured

correctly or a negative value indicating an error (see
Table A.6)

Read Data short PA_CALL io_read
(short, APIBYTE *, unsigned
long, IO_STAT *, APIHND,
unsigned long)

arg1: the identifier of the open channel
arg2: address of a user provided memory to hold received

data
arg3: maximum number of bytes to be received
arg4: see Table A.3 for the data structure
arg5: communication process identifier greater than zero

provided by RMS user and handed back by RMS
provider with calling io_complete; the value zero
indicates a synchronous communication

arg6: maximum time for this communication process in
milliseconds

return: value COM_FIN if synchronous communication was
requested and the process completed correctly or
COM_BUSY when the process was started to receive
data asynchronously or a negative value indicating an
error (see Table A.6)

Write Data short PA_CALL io_write
(short, APIBYTE *, unsigned
long, IO_STAT *, APIHND,
unsigned long)

arg1: the identifier of the open channel
arg2: address of a user provided memory to hold data for

being transmitted
arg3: number of bytes to be transmitted
arg4: see Table A.3 for the data structure
arg5: communication process identifier greater than zero

provided by RMS user and handed back by RMS
provider with calling io_complete; the value zero
indicates a synchronous communication

arg6: maximum time for this transmission process in
milliseconds

return: value COM_FIN if synchronous communication was
requested and the process completed correctly or
COM_BUSY when the process was started to transmit
data asynchronously or a negative value indicating an
error (see Table A.6)

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

70 © ISO 2010 – All rights reserved

Table A.8 (continued)

Service Function prototype Relation to service parameters

Execute Operation short PA_CALL io_execute
(short, APIHND, void *, void *,
void *, APIHND, unsigned long)

arg1: the identifier of the open channel

arg2: the identifier for the operation

arg3: address of a user provided memory to hold data for
operation input

arg4: address of a user provided memory to hold data for
operation output

arg5: address of a user provided memory to hold data for
operation return value

arg6: communication process identifier greater than zero
provided by RMS user and handed back by RMS
provider with calling io_complete; the value zero
indicates a synchronous communication

arg7: maximum time for this execution process in
milliseconds

return: value COM_FIN if synchronous communication was
requested and the process completed correctly or
COM_BUSY when the process was started to execute
asynchronously or a negative value indicating an error
(see Table A.6)

Cancel
Communication

short PA_CALL io_cancel
(short, APIHND)

arg1: the identifier of the open channel

arg2: the communication process identifier which was handed
over by starting the now pending service

return: value COM_FIN if the specified communication process
was cancelled, otherwise a negative value indicating an
error (see Table A.6)

Get Peripheral
Interface Channel
Status

short PA_CALL io_stat
(short, APIHND, IO_STAT *)

arg1: the identifier of the open channel

arg2: the communication process identifier which was handed
over by starting the service now being checked

arg3: see Table A.3 for the data structure

return: value COM_FIN if the status of the specified
communication process is ascertained, otherwise a
negative value indicating an error (see Table A.6)

Clear Read Buffer short PA_CALL io_clear
(short)

arg1: the identifier of the open channel

return: value COM_FIN if the read buffer of the specified
channel is cleared, otherwise a negative value
indicating an error (see Table A.6)

Close Peripheral
Interface Channel

short PA_CALL io_close
(short)

arg1: the identifier of the open channel

return: value COM_FIN if the specified channel is closed,
otherwise a negative value indicating an error (see
Table A.6)

Signal Event short PA_CB io_event
(short, APIHND, void *)

arg1: the identifier of the channel where the event belongs to
or zero if this event is not channel specific or concerns
all channels (broadcast)

arg2: event identifier

arg3: pointer to an event specific data structure

return: value COM_FIN if the event was handled, value
COM_BUSY if handling is started and continues, a
negative value indicating an error and event is not
handled

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 71

The function io_execute may also be used to get an operation identifier by delivering the name of the
operation. For this, an operation with the predefined identifier IOEXT_GETFUNCID is called with the name of
the required operation as input parameter. The output parameter is the required operation identifier.

The function io_event has to be provided by the user of RMSI to be called by the RMS provider in case of
local events. The implementation in C/C++ shall use callback functions to handle these events. The address
of this function is presented at the RMS provider with calling io_open and may be changed with io_config.

A.12.2 Extra function to handle asynchronous communication

The description of Resource Management Services in Clause 6 is neutral to special communication scenarios
like synchronous and asynchronous communication. The implementation in C/C++ shall use callback
functions to handle asynchronous communication.

The user of RMSI provides a function as described in Table A.9 to be called by the RMS provider in case of
completing a communication process started with io_read, io_write or io_execute. The address of this function
is presented at the RMS provider with calling io_open and may be changed with io_config.

Table A.9 — Extra function for asynchronous communication

Service Function prototype Relation to service parameters

no explicit service specified
for handling asynchronous
communication

short PA_CB io_complete
(APIHND, IO_STAT *)

arg1: communication process identifier provided
by RMS user with calling io_read, io_write
or io_execute and handed back by RMS
provider with calling io_complete

arg2: see Table A.3 for the data structure

return: COM_FIN

A.13 Extended service functions

A.13.1 Functions related to service descriptions in 6.5

The functions for the extended services are described in Table A.10.

Table A.10 — Extended service functions

Service Function prototype Relation to service parameters

Initiate Extended Interface
Type

short PA_CALL ext_initiate
(APICHAR *, short)

arg1: name of the interface as given with
io_initiate

arg2: identifier for interface type defined by RMS
internally

return: COM_FIN if interface may be used,
otherwise an error (see Table A.6)

Conclude Extended
Interface Type

short PA_CALL ext_conclude
(short)

see io_conclude in Table A.3

Open Extended Interface short PA_CALL ext_open
(IO_CONFDAT *, short)

arg1: see Table A.3 for the data structure

arg2: identifier for the interface channel defined
by RMS internally

return: COM_FIN if channel is available for further
access or a negative value indicating an
error (Table A.6)

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

72 © ISO 2010 – All rights reserved

Table A.10 (continued)

Service Function prototype Relation to service parameters

Reconfigure Extended
Interface

short PA_CALL ext_config
(short, IO_CONFDAT *)

see io_config in Table A.8

Read Extended Interface
Data

short PA_CALL ext_read
(short, APIBYTE *, unsigned long,
IO_STAT *, APIHND, unsigned long)

see io_read in Table A.8

Write Extended Interface
Data

short PA_CALL ext_write
(short, APIBYTE *, unsigned long,
IO_STAT *, APIHND, unsigned long)

see io_write in Table A.8

Execute Extended Interface
Operation

short PA_CALL ext_execute
(short, APIHND, void *, void *, void *,
APIHND, unsigned long)

see io_execute in Table A.8

Cancel Extended
Communication

short PA_CALL ext_cancel
(short, APIHND)

see io_cancel in Table A.8

Get Extended Interface
Status

short PA_CALL ext_stat
(short, APIHND, IO_STAT *)

see io_stat in Table A.8

Clear Extended Interface
Read Buffer

short PA_CALL ext_clear
(short)

see io_clear in Table A.8

Close Extended Interface short PA_CALL ext_close
(short)

see io_close in Table A.8

Signal Extended Event short PA_CB ext_event
(short, APIHND, void *)

see io_event in Table A.8

The function ext_event has to be provided by RMS to be called by the extended services provider in case of
local events. The implementation in C/C++ shall use callback functions to handle these events. The address
of this function is presented at the extended services provider with calling ext_open and may be changed with
ext_config.

A.13.2 Extra function to handle asynchronous communication

The description of Resource Management Services in Clause 6 is neutral to special communication scenarios
like synchronous and asynchronous communication. The implementation in C/C++ shall use callback
functions to handle asynchronous communication.

The RMS provides a function as described in Table A.11 to be called by the extended services provider in
case of completing a communication process started with ext_read, ext_write or ext_execute. The address of
this function is presented at the extended services provider with calling ext_open and may be changed with
ext_config.

Table A.11 — Extra function for asynchronous communication

Service Function prototype Relation to service parameters

no explicit service specified
for handling asynchronous
communication

short PA_CB ext_complete
(APIHND, IO_STAT *)

arg1: communication process identifier provided
by RMS with calling ext_read, ext_write or
ext_execute and handed back by
extended services provider with calling
io_complete

arg2: see Table A.3 for the data structure

return: COM_FIN

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 73

A.14 Operating support service functions

A.14.1 Functions related to service descriptions in 6.6

The functions for the extended services are described in Table A.12.

Table A.12 — Operating support service functions

Service Function prototype Relation to service parameters

Allocate Memory APIBYTE * PA_CALL os_allocate
(unsigned long)

arg1: number of elements of type APIBYTE in
coherent data memory

return: pointer to the allocated memory, NULL if
the allocation failed

Reallocate Memory APIBYTE * PA_CALL os_reallocate
(APIBYTE *, unsigned long)

arg1: pointer to allocated memory which shall be
resized

arg2: number of elements of type APIBYTE in
coherent data memory

return: pointer to the reallocated memory, NULL if
the reallocation failed

Free Memory short PA_CALL os_free
(APIBYTE *)

arg1: pointer to allocated memory which shall be
released

return: value COM_FIN if the memory has been
released or a negative value indicating an
error (see Table A.6)

Get Time

Version for time presented
with A_TIME structure

void PA_CALL os_time_a
(A_TIME *)

arg1: pointer to a structure for result A_TIME

return: no return value

Get Time

Version for time presented
with OS_UCT structure

void PA_CALL os_time
(OS_UCT *)

arg1: pointer to a structure for result OS_UCT

return: no return value

Get Process Time unsigned long PA_CALL os_clock
(void)

return: CPU-time in microseconds

Wait void PA_CALL os_delay
(unsigned long)

arg1: waiting time in milliseconds

return: no return value

Create Timer APIHND PA_CALL os_settimer
(pTimerCB, unsigned long, APIHND,
unsigned long)

arg1: pointer to a callback function which is
called when the timer expires
see A.14.2 for more details

arg2: requested time duration until timer expires

arg3: handle to identify this timer, will be an
argument of the callback function

arg4: number of repetitions this timer is running,
the value 0 defines a periodically running
timer which has to be stopped by
os_killtimer

return: identifier for this timer
0: timer could not be created

Signal Timer Event For this service, a callback pointer to
a function is installed
See arg1 of prototype os_settimer

See A.14.2 for more details.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

74 © ISO 2010 – All rights reserved

Table A.12 (continued)

Service Function prototype Relation to service parameters

Remove Timer short PA_CALL os_killtimer
(APIHND)

arg1: identifier for the timer to be stopped and/or
removed
this is a return value of os_settimer

return: value COM_FIN if the timer has been
removed or a negative value indicating an
error (see Table A.6)

Create Light Process Timer APIHND PA_CALL os_setLPTimer
(pTimerCB, unsigned long, APIHND,
unsigned long)

arg1: pointer to a callback function which is
called when the timer expires
see A.14.2 for more details

arg2: requested time duration until timer expires

arg3: handle to identify this timer, will be an
argument of the callback function

arg4: number of repetitions this timer is running,
the value 0 defines a periodically running
timer which has to be stopped by
os_killtimer

return: identifier for this timer
0: timer could not be created

Signal Light Process Timer
Event

For this service, a callback pointer to
a function is installed
See arg1 of prototype os_setLPtimer

See A.14.2 for more details.

Remove Light Process
Timer

short PA_CALL os_killLPTimer
(APIHND)

arg1: identifier for the timer to be stopped and/or
removed
this is a return value of os_setLPTimer

return: value COM_FIN if the timer has been
removed or a negative value indicating an
error (see Table A.6)

Identify Light Process APIHND PA_CALL os_getLPnumber
(void)

return: identifier for the current light process of the
caller of this function
0: current light process is unknown

Create Counted Semaphore APIHND PA_CALL os_createSem
(unsigned long)

arg1: semaphore counter, number of concurrent
usages of the resource

return: semaphore handle

Wait for Counted
Semaphore

short PA_CALL os_waitSem
(APIHND, unsigned long)

arg1: semaphore handle,
returned by os_createSem

arg2: maximum time in milliseconds to wait for
gaining access to the resource

return: value COM_FIN if access is granted or a
negative value indicating an error (see
Table A.6)

Release Counted
Semaphore

short PA_CALL os_releaseSem
(APIHND)

arg1: semaphore handle,
returned by os_createSem

return: value COM_FIN if semaphore is released
or a negative value indicating an error (see
Table A.6)

Delete Counted Semaphore short PA_CALL os_deleteSem
(APIHND)

arg1: semaphore handle,
returned by os_createSem

return: value COM_FIN if semaphore is deleted or
a negative value indicating an error (see
Table A.6)

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 75

Table A.12 (continued)

Service Function prototype Relation to service parameters

Create Private Semaphore APIHND PA_CALL os_createMutex
(void)

return: semaphore handle

Wait for Private Semaphore short PA_CALL os_waitMutex
(APIHND, unsigned long)

arg1: semaphore handle,
returned by os_createMutex

arg2: maximum time in milliseconds to wait for
gaining access to the resource

return: value COM_FIN if access is granted or a
negative value indicating an error (see
Table A.6)

Release Private Semaphore short PA_CALL os_releaseMutex
(APIHND)

arg1: semaphore handle,
returned by os_createMutex

return: value COM_FIN if semaphore is released
or a negative value indicating an error (see
Table A.6)

Delete Private Semaphore short PA_CALL os_deleteMutex
(APIHND)

arg1: semaphore handle,
returned by os_createMutex

return: value COM_FIN if semaphore is deleted or
a negative value indicating an error (see
Table A.6)

Open Debug Log APIHND PA_CALL os_openDebug
(APICHAR *)

arg1: name of the debug channel as string

return: handle for further access to this debug
channel, NULL if debug channel was not
opened

Write Debug Message short PA_CALL os_writeDebug
(APIHND, APICHAR *)

arg1: handle of debug channel,
returned by os_openDebug

arg2: pointer to string to be written to debug
channel

return: value COM_FIN if message is written or
negative value indicating an error (see
Table A.6)

Close Debug Log short PA_CALL os_closeDebug
(APIHND)

arg1: handle of debug channel,
returned by os_openDebug

return: value COM_FIN if debug channel is closed
or negative value indicating an error (see
Table A.6)

A.14.2 Signalling timer events

For signalling timer events, callback functions have to be provided by the user of RMSI to be called by the
RMS provider when timers expire. The address of these functions is presented at the RMS provider with
creating timers by os_settimer and os_setLPTimer. The prototype of these callback functions is defined in
C/C++ as described in Table A.13.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 20242-2:2010(E)

76 © ISO 2010 – All rights reserved

Table A.13 — Type of callback function for timer events

Type definition of function prototype Relation to service parameters

typedef short (PA_CB *pTimerCB)
(APIHND, IO_STAT *)

arg1: communication process identifier provided by RMS user with
calling os_settimer or os_setLPTimer and handed back by the
expired timer

arg2: see Table A.3 for the data structure

return: COM_FIN

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 77

Annex B
(informative)

Cascading of device drivers via RMSI

B.1 Principle of cascading

In ISO 20242-1:2005, Annex C, cascading is described as the situation when device drivers directly use the
Virtual Device Service Interface (VDSI) of other device drivers instead of the RMSI of a platform adapter. If
cascading is needed for standard device drivers, an RMSI is necessary to cover the device driver of the
underlying system.

An underlying system may be a full ISO 20242 stack consisting of coordinator, device driver and platform
adapter, or only another device driver. Because only one platform adapter may exist in one ISO 20242 context,
it has to be prepared for cascading.

B.2 Cascading by using an Application Program Service Interface (APSI)

If driver cascading is done via an APSI, a platform adapter extension is necessary to map input/output
services of the RMSI via extended services to services of the APSI. The particular coordinator then accesses
the lower device driver as defined in ISO 20242-5 (dotted white arrows in Figure B.1).

B.3 Cascading without an APSI

If no coordinator is used for cascading, a platform adapter extension is necessary to map input/output services
of the RMSI via extended services to services of the VDSI. This directly accesses the lower device driver
(dotted hatched arrows in Figure B.1).

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

78 © ISO 2010 – All rights reserved

Application Program Service Interface (APSI)

Coordinator

Resource Management Service Interface (RMSI)

Platform Adapter
Extension for Cascading

with Coordinator

Virtual Device Service Interface (VDSI)

Lower Device Driver (Cascading Server)

Virtual Device Service Interface (VDSI)

Upper Device Driver (Cascading Client)

Extension for Cascading
without Coordinator

Figure B.1 — Driver cascading via the RMSI

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

© ISO 2010 – All rights reserved 79

Bibliography

[1] ISO 20242-1:2005, Industrial automation systems and integration — Service interface for testing
applications — Part 1: Overview

[2] ISO 20242-5 1), Industrial automation systems and integration — Service interface for testing
applications — Part 5: Application program service interface

[3] ISO/IEC 9899, Programming languages — C

[4] ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

[5] ISO/IEC 14882, Programming languages — C++

[6] Association for Standardization of Automation and Measuring Systems (ASAM) — Generic Device
Interface Version 4.3.1

1) Under preparation.

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 20242-2:2010(E)

ICS 25.040.40
Price based on 79 pages

© ISO 2010 – All rights reserved

Provided by IHS
Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

	Scope
	Normative references
	Terms and definitions
	Symbols and abbreviated terms
	Conventions for service definitions and procedures
	General
	Parameters
	Service procedures
	RMS confirmed services
	RMS event handling

	Service primitives and state diagrams

	Resource Management Services
	Overview
	List of services
	Generic management support services
	Generic input/output services
	Extended services
	Operating support services

	Management support services
	Get Service Reference service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Service identifier
	Proposed version number
	Result (+)
	Service reference
	Result (-)

	Service procedure

	Initiate Peripheral Interface Type service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface type name
	Extended services provider name
	Result (+)
	Interface type identifier
	Result (-)
	Error

	Service procedure

	Conclude Peripheral Interface Type service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface type identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Input/output services
	Open Peripheral Interface Channel service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface type identifier
	Interface channel name
	List of configuration parameters
	Confirmed services access point reference
	Event services access point reference
	Result (+)
	Interface channel identifier
	Result (-)
	Error

	Service procedure

	Reconfigure Peripheral Interface Channel service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	List of configuration parameters
	Confirmed services access point reference
	Event services access point reference
	Result (+)
	Interface channel identifier
	Result (-)
	Error

	Service procedure

	Read Data service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Data receiving process handle
	Maximum length of received data
	Maximum process duration time
	Result (+)
	Data receiving process handle
	Received data length
	Received data
	Result (-)
	Data receiving process handle
	Received data length
	Received data
	Error

	Service procedure

	Write Data service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Data transmission process handle
	Length of data being transmitted
	Data to be transmitted
	Maximum process duration time
	Result (+)
	Data transmission process handle
	Result (-)
	Data transmission process handle
	Transmitted data length
	Error

	Service procedure

	Execute Operation service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Execute operation process handle
	Operation identifier
	List of operation input parameters
	Maximum process duration time
	Result (+)
	Execute operation process handle
	List of operation output parameters
	Result (-)
	Execute operation process handle
	Error

	Service procedure

	Cancel Communication Process service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Communication process handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Get Periphery Interface Channel Status service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Communication process handle
	Result (+)
	Status
	Progress
	Result (-)
	Error

	Service procedure

	Clear Read Buffer service
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Close Peripheral Interface Channel service
	Overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Signal Event service
	Service Overview
	Service parameter structure
	Service parameters
	Argument
	Interface channel identifier
	Event identifier
	Event message
	Result (+)
	Status
	Result (-)
	Error

	Service procedure

	Extended services
	Initiate Extended Interface Type
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface type name
	Interface type identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Conclude Extended Interface Type
	Open Extended Interface Channel
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Interface type identifier
	Interface channel identifier
	Interface channel name
	List of configuration parameters
	Confirmed services access point reference
	Event services access point reference
	Result (+)
	Result (-)
	Error

	Service procedure

	Reconfigure Extended Interface Channel
	Read Extended Interface Data
	Write Extended Interface Data
	Execute Extended Interface Operation
	Cancel Extended Communication Process
	Get Extended Interface Channel Status
	Clear Extended Interface Read Buffer
	Close Extended Interface Channel
	Signal Extended Event

	Operating Support Services
	Allocate Memory
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Number of octets in data space
	Result (+)
	Allocated data space reference
	Result (-)

	Service procedure

	Reallocate Memory
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Reference to allocated data space
	Number of octets in reallocated data space
	Result (+)
	Service reference
	Result (-)

	Service procedure

	Free Memory
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Reference to allocated data space
	Result (+)
	Service reference
	Result (-)
	Error

	Service procedure

	Get Time
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Required time format
	Result (+)
	List of time describing elements
	Result (-)
	Error

	Service procedure

	Get Process Time
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Result (+)
	Local Process Time
	Result (-)
	Error

	Service procedure

	Wait
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Waiting time
	Result (+)
	Result (-)
	Error

	Service procedure

	Create Timer
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer access point reference
	Timer process handle
	Duration time
	Number of events
	Result (+)
	Timer identifier
	Result (-)
	Error

	Service procedure

	Signal Timer Event
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer process handle
	Timer status
	Result (+)
	Result (-)
	Error code

	Service procedure

	Remove Timer
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Create Light Process Timer
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer access point reference
	Timer process handle
	Duration time
	Number of events
	Result (+)
	Timer identifier
	Result (-)
	Error

	Service procedure

	Signal Light Process Timer Event
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer process handle
	Timer status
	Result (+)

	Service procedure

	Remove Light Process Timer
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Timer identifier
	Result (+)
	Result (-)
	Error

	Service procedure

	Identify Light Process
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Result (+)
	Light process identifier
	Result (-)
	Error

	Service procedure

	Create Counted Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Number of concurrent usages
	Result (+)
	Semaphore handle
	Result (-)
	Error

	Service procedure

	Wait for Counted Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Maximum waiting time
	Result (+)
	Result (-)
	Error

	Service procedure

	Release Counted Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Delete Counted Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Create Private Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Result (+)
	Semaphore handle
	Result (-)
	Error

	Service procedure

	Wait for Private Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Maximum waiting time
	Result (+)
	Result (-)
	Error

	Service procedure

	Release Private Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Delete Private Semaphore
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Semaphore handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Open Debug Log
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Debug channel identifier
	Result (+)
	Log handle
	Result (-)
	Error

	Service procedure

	Write Debug Message
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Log handle
	Result (+)
	Result (-)
	Error

	Service procedure

	Close Debug Log
	Service overview
	Service parameter structure
	Service parameters
	Argument
	Log handle
	Result (+)
	Result (-)
	Error

	Service procedure

	States of RMS state machine
	State transitions
	State diagram overview
	Channel state diagram
	RMSI states
	SelectNeededResources state
	RMS_Accessible state
	InterfaceTypeSelected state
	ChannelConfiguration state
	ChannelWorking state
	WriteIdle state
	Writing state
	WriteEnd state
	ReadIdle state
	Reading state
	ReadEnd state
	ExecuteIdle state
	Executing state
	ExecuteEnd state

