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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

In other circumstances, particularly when there is an urgent market requirement for such documents, a 
technical committee may decide to publish other types of normative document: 

⎯ an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in 
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members 
of the parent committee casting a vote; 

⎯ an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical 
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting 
a vote. 

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a 
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is 
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an 
International Standard or be withdrawn. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO/TS 20281 was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 5, 
Biological methods. 
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Introduction 

Ecotoxicity tests are biological experiments performed to examine if either a potentially toxic compound, or an 
environmental sample (e.g. effluent, sediment or soil sample) causes a biologically important response in test 
organisms. If so, the goal is to determine the concentration that produces a given level of effects or produces 
an effect that cannot be distinguished from background variation. 

In a test, organisms are exposed to different concentrations or doses of a test substance or a test substrate 
(e.g. waste water, sludge, or a contaminated soil or sediment), sometimes diluted in a test medium. Typically, 
at least one group of test organisms (the control group) is not exposed to the test substance or substrate, but 
is otherwise treated in the same way as the exposed organisms. 

The endpoint(s) observed or measured in the different batches may be the number of surviving organisms, 
size or growth of organisms, number of eggs or offspring produced or any relevant biochemical or 
physiological variable that can be reliably quantified. Observations are made after one or several predefined 
exposure times. The endpoint’s relationship with the concentration of the tested chemical or substrate is 
examined. The way statistics are applied may have a considerable impact on the results and conclusions from 
ecotoxicity tests, and consequently on the associated policy decisions. Various documents (Williams 1971, 
Piegorsch and Bailer 1997, Tukey et al. 1985, Pack 1993, Chapman et al. 1995, Hoekstra 1993, Kooijman 
and Bedaux 1996, Laskowkj 1995, Chapman 1996, OECD 1998, ASTM 2000) exist on the use of available 
statistical methods, the limitations of these methods and how to cope with specific problematic data. 
Discussions of statistical principles and commonly used techniques are found in general references such as 
Armitage and Berry (1987) [basic information on hypothesis testing and regression, transformations], Finney 
(1978) [analysis of quantal data, especially probit models], Hochberg and Tamhane (1987) [thorough 
treatment of multiple comparison methods], Newman (1994) [information related to biology-based models, 
ECx], and Sparks (2000) [a collection of articles covering field and laboratory experiments, multivariate 
techniques, risk assessment, and environmental monitoring]. 

When problematic data are encountered or critical decisions depend upon inferences from ecotoxicity tests, 
consultation with a qualified statistician is useful. (Statisticians should be consulted before beginning the 
experiment to ensure proper design, sample size, limitations, and to be sure that the study is actually able to 
answer the research question that the experimenter poses. Once bad data have been collected, there is little 
a statistician can do to rectify the problem.) 

Clause 8 contains a table listing all the existing ISO and OECD ecotoxicity standards/guidelines that could be 
analysed using this guidance document. For each standard/guideline, reference is made to the adapted 
clauses of this Technical Specification. 

Clause 4 details the different statistical approaches that can be used for the analysis of ecotoxicity data, 
depending on the aim. In particular, it gives the assumptions made when using hypothesis-testing methods, 
concentration-response modelling methods or biology-based methods and their limitations. It also gives some 
indication on experimental design issues. Some general principles and advice are also given for the process 
of data analysis. 

Clause 5 deals with hypothesis testing, Clause 6 with dose-response modelling and Clause 7 with biology-
based methods. 

There was an ISO resolution (ISO TC 147/SC 5/WG 10 Antalya 3), as well as an OECD workshop 
recommendation (OECD 1998), that the NOEC should be phased out from International Standards. 

However, the NOEC is still required in many regulatory standards from many countries, and in some cases, 
where a detailed determination of an ECx is not relevant and the alteration of the study design is too costly to 
fulfil the requirements for regression models. Therefore guidance is provided on the statistical methods for the 
determination of the NOEC. 
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In the annexes, examples of analyses with the three main methods (hypothesis testing for NOEC estimation, 
dose-response modelling and biology-based modelling) of four different data sets are given. They concern: 

⎯ acute toxicity on Daphnia magna; 

⎯ inhibition of algae growth; 

⎯ reproduction of Daphnia magna; and 

⎯ fish growth. 
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Water quality — Guidance on statistical interpretation of 
ecotoxicity data 

1 Scope 

This Technical Specification offers guidance on statistical methods used for the analysis of data of 
standardized ecotoxicity tests. It focuses on statistical methods for obtaining statistical estimates of 
parameters in current and future use, e.g. ECx (LCx), NOEC, NEC. 

The methods described are intended to cover laboratory ecotoxicity tests (aquatic, sediment and/or terrestrial 
tests), and may also be relevant for other toxicity tests. 

The main objective of this Technical Specification is to provide practical guidance on how to analyse the 
observations from ecotoxicity tests. 

Hypothesis testing, concentration-response modelling and biology-based modelling are discussed for the 
different data types (quantal, continuous and discrete data, corresponding to mortality, growth or reproduction). 

In addition, some guidance on experimental design is given. Although the main focus is on giving assistance 
to the experimentalist, a secondary aim is to help those who are responsible for evaluating toxicity tests. 
Finally, the document may be helpful in developing new toxicity test guidelines by giving information on 
experimental design and statistical analysis issues. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 3534-1: —1), Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

3.1 
accuracy 
measure of how close the estimate is to the “true value” of the parameter (this true value is unknown)  

3.2 
precision 
measure of the amount of variability in the estimate (quantified by the standard error or the confidence interval 
of the estimate)  

                                                      

1) To be published. (Revision of ISO 3534-1:1993) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

2  © ISO 2006 – All rights reserved
 

NOTE Precision may be increased by using larger sample sizes or by reducing the experimental variation. However, 
as Figure 1 illustrates, although an estimate may be precise, this does not imply that it is also accurate. 

 

NOTE The dot represents the true parameter value. The circle represents the confidence interval of the estimate. 
Small circles indicate high precision. Large circles indicate low precision. 

Figure 1 — Conceptual illustration of accuracy and precision  

3.3 
concentration  
amount of test material in the testing environment  

NOTE 1 It is expressed, for example, as milligrams per litre in water, and as milligrams per kilogram in soil and in food. 

NOTE 2 Concentration and dose both refer to the amount of test material to which the test organism is subjected. 
Statistical methods for both types of studies are identical; however, interpretations are different. Although “concentration” 
is used throughout this Technical Specification, all the statistical methods presented here also apply to studies in which a 
dose is used. 

3.4 
dose 
amount of test material administered to a subject  

NOTE 1 It is expressed, e.g.  in milligrams/kilogram-body mass in an avian bolus study.  

NOTE 2 Concentration and dose both refer to the amount of test material to which the test organism is subjected. 
Statistical methods for both types of studies are identical; however, interpretations are different. Although “concentration” 
is used throughout this Technical Specification, all the statistical methods presented here also apply to studies in which a 
dose is used. 

3.5 
confidence interval 
x % confidence interval for a parameter is an interval of values that theoretically covers the true value of the 
estimated parameter with x % confidence  

NOTE 1 Standard confidence intervals are based on the assumption that the underlying mathematical model is correct. 
It does not capture model uncertainty. 

NOTE 2 A more precise definition is the following: interval estimator (T0, T1) for the parameter θ with the statistics T0 
and T1 as interval limits and for which it holds that P[T0 < θ < T1] W 1 − α. [ISO 3534-1,—]. 
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NOTE 3 Associated with this confidence interval is the confidence level 100(1 − α) % where α is generally a small 
number. The confidence level is typically 90 % or 95 %. The inequality P[T0 < θ < T1] W 1 − α holds for any specific but 
unknown population value of θ. 

NOTE 4 A confidence interval does not reflect the probability that the observed interval contains the true value of the 
parameter (it either does or does not contain it). The confidence reflects the proportion of cases that the confidence 
interval would contain the true parameter value in a long series of repeated random samples under identical conditions. 

3.6 Data types 

3.6.1 
quantal/binary data 
data that arise when a particular property is recorded to be present or absent in each individual  

NOTE 1 An individual shows an effect or it does not show an effect. Therefore, these data can exhibit only two states.  

NOTE 2 Typically, quantal data are presented as the number of individuals showing the property (e.g. mortality) out of 
a total number of individuals observed in each experimental unit. Although this can be expressed as a fraction, it should be 
noted that the total number of individuals cannot be omitted. 

3.6.2 
continuous data 
data that can (theoretically) take any value in an open interval, for instance any positive number 

EXAMPLES Measurements of length or body mass. 

NOTE 1 Due to practical reasons, the measured resolution depends on the quality of the measurement device. For 
example, if test units are observed once per day, then “time to hatch” can only be recorded in whole days; however, the 
underlying distribution of “time to hatch” is continuous. 

NOTE 2 Typically, continuous data have a dimension (e.g. grams, moles/litre). 

3.6.3 
discrete data 
data that have a finite or countable number of values 

NOTE There are three classes of discrete data: nominal, ordinal and interval. 

⎯ Nominal data express qualitative attributes that do not form a natural order (e.g. colours). 

⎯ Ordinal data reflect the relative magnitude from low to high (e.g. an individual shows no effect, minimal effect, 
moderate effect or high effect). These data cannot be interpreted with regard to relative scale (i.e. an ordinal variable 
with a value of “4” can be interpreted as being higher then the value of “2”, but not twice as high). Ordinal data can 
often be reduced to quantal data. 

⎯ Interval data (e.g. number of eggs or offspring per parent) allows the ranking of the items that are measured, and the 
differences between individuals and groups can be quantified. Often, interval data can be analysed as if the data 
were continuous. The analyses for interval discrete data are presented in this Technical Specification; analyses of 
nominal and ordinal data are not included but are addressed in a future revision. 

3.7 
effect 
change in the response variable under consideration compared to a control 

NOTE 1 For quantal endpoints, an effect is usually described in terms of a change in the percentage of individuals 
affected. 

NOTE 2 For continuous endpoints, an effect is typically described in terms of a percent change in the mean values of 
the endpoint, but it can also be described in terms of absolute change. 
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3.8 Effect concentrations 

3.8.1 
quantal effective concentration 
quantal ECx  
concentration of test material in water, soil, or sediment that causes x % change in response (e.g. immobility) 
during a specified time interval.  

EXAMPLE An example of a concentration-response relationship and its associated estimates of EC10 and EC50, are 
illustrated in Figure 2. 

NOTE 1 It is expressed, e.g. in milligrams per litre or milligrams per kilogram. 

NOTE 2 The x % change in response corresponds to an effect predicted on x % of the test organisms at a given 
concentration. This parameter is estimated by concentration-response modelling.  

3.8.2 
quantal effective dose 
quantal EDx 
dose of test material that causes x % change in response (e.g. immobility) during a specified time interval 

NOTE 1 It is expressed, e.g. in milligrams per kilogram body mass in an avian bolus study. 

NOTE 2 The x % change in response corresponds to an effect predicted on x % of the test organisms at a given 
concentration. This parameter is estimated by concentration-response modelling.  

3.8.3 
quantal lethal concentration 
quantal LCx  
concentration of test material in water, soil, or sediment that causes x % change in response (i.e. mortality) 
during a specified time interval.  

EXAMPLE An example of a concentration-response relationship and its associated estimates of EC10 and EC50, are 
illustrated in Figure 2. 

NOTE 1 It is expressed, e.g. in milligrams per litre or milligrams per kilogram. 

NOTE 2 The x % change in response corresponds to an effect predicted on x % of the test organisms at a given 
concentration. This parameter is estimated by concentration-response modelling.  

3.8.4 
quantal lethal dose 
quantal LDx 
dose of test material that causes x % change in response (i.e. mortality) during a specified time interval 

NOTE 1 It is expressed, for example, in milligrams per kilogram body mass in an avian bolus study. 

NOTE 2 The x % change in response corresponds to an effect predicted on x % of the test organisms at a given 
concentration. This parameter is estimated by concentration-response modelling.  

3.8.5 
continuous effective concentration 
continuous ECx 
concentration of test material in water, soil, or sediment that causes x % in the size of the endpoint during a 
specified time interval 

NOTE 1 It is expressed, for example, in milligrams per litre or milligrams per kilogram. 

NOTE 2 This parameter is also estimated by dose-response modelling. 
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3.8.6 
continuous effective dose 
continuous EDx 
dose of test material (e.g. mg/kg-body mass in an avian bolus study) that causes x % in the size of the 
endpoint during a specified time interval 

NOTE 1 It is expressed, for example, in milligrams per kilogram body mass in an avian bolus study. 

NOTE 2 This parameter is also estimated by dose-response modelling. 

3.9 
endpoint  
response variable 
biological parameter observed 

EXAMPLE Survival, number of eggs, size or growth, enzyme level.  

NOTE An ecotoxicological study can have one or many endpoints. 

 

NOTE The order of the parameters given in this figure has been taken at random. 

Figure 2 — Illustration of a concentration-response relationship and of the estimates of the ECx and 
NOEC/LOEC 

3.10 
effective time 
ETx 
time at which an effect of x % is expected at a specified test concentration when the test organisms are 
exposed to a given concentration of material in water or sediment or soil 

NOTE ETx is estimated by modelling a time-response relationship. 

3.11 
lethal time 
LTx 
time at which an effect of x % is expected at a specified test concentration when the test organisms are 
exposed to a given concentration of material in water, sediment or soil, and when the response of interest is 
mortality 
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3.12 
experimental unit 
replicate unit 
smallest unit of experimental material to which a treatment can be allocated independently of all other units  

EXAMPLES Aquariums, beakers, or plant pots. 

NOTE By definition, experimental units shall be able to receive different treatments. Each experimental unit may 
contain multiple sampling units on which measurements are taken. Within each experimental unit, sampling units may not 
be independent. However, in some special case situations, individual organisms (housed in common units) can be treated 
as the experimental units: these special cases require some proof or strong argument of independence of organisms. 

3.13 
sampling unit 
unit for which the measurement is taken 

EXAMPLES Fish, daphnia or plants. 

NOTE The sampling unit is not always identical with the statistical unit. 

3.14 
extrapolation 
prediction of the value of variates outside the range of observations 

NOTE 1 Extrapolation may not lead to a reliable estimate (see e.g. 6.4). 

NOTE 2 When an ECx estimated from a fitted concentration-response function is lower than the lowest nonzero 
concentration tested in the study, or higher than the highest concentration tested in the study, it is obtained by 
extrapolation.  

3.15 
interpolation 
prediction of the value of variates within the range of observations 

NOTE When the ECx is between two consecutive nonzero test concentrations, it is said to be obtained by 
interpolation. 

3.16 
hormesis 
effect where the tested substance is a stimulant in small concentrations, but it is inhibitory in large 
concentrations, resulting in a biphasic (or U-shaped) concentration-response relationship 

NOTE 1 This observed stimulatory effect may be due to the tested substance, but it could also be due to an 
experimental artefact (e.g. solvent effect, non-random allocation of treatments to experimental units, experimental error). 

NOTE 2 Models incorporating hormesis are not detailed in this Technical Specification. Two issues of Critical Reviews 
in Toxicology [2001, 31(4) and 31(5), pp. 351-694] and other journal articles discuss the issues concerning hormesis. 
Some discussion can be found in Environment Canada (2003). 

3.17 
lowest observed effect concentration 
LOEC 
lowest concentration out of the tested concentrations at which a statistically-significant difference from the 
control group is observed  

EXAMPLE An example of LOEC is illustrated in Figure 2. 

NOTE The LOEC is obtained by hypothesis testing. 
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3.18 
no observed effect concentration 
NOEC 
tested concentration just below the LOEC 

EXAMPLE An example of NOEC is illustrated in Figure 2. 

NOTE The NOEC is obtained by hypothesis testing. 

3.19 
monotonic concentration-response 
relationship in which the true, underlying concentration-response relationship exhibits an increase or a 
decrease over the range of concentrations in the study 

NOTE If the concentration-response is monotone and non-increasing, the location parameters (mean or median) 
would exhibit the following relationship: γ0 W γ1 W γ2 W γ3 W. . . W γk, where γ is the location parameter and 0, 1, 2, …, k are 
the concentration groups. If the monotone relationship is non-decreasing, the inequalities are reversed. 

3.20 
non-monotonic concentration-response 
relationship in which the inequalities are not consistent across the concentrations 

3.21 
no effect concentration 
NEC 
parameter, which, when used in concentration-response models, is interpreted as being the highest 
concentration in which the compound does not affect the endpoint, even after very long exposure to the 
compound 

NOTE The NEC equals the EC0 at infinite time. 

3.22 
response 
response corresponds to an observed value of any endpoint 

3.23 
parametric method 
method which assumes that all the properties of the model are specified, except for the values of the 
parameters 

EXAMPLE 1 In classical analysis of variance (ANOVA), the residuals are assumed to follow a normal distribution with 
a mean of zero and some unknown variance. 

EXAMPLE 2 In Poisson regression, the response variable is assumed to follow a Poisson distribution (parameters to 
be estimated in the fitting process). 

3.24 
non-parametric method 
method which contains weaker assumptions2) than the parametric method (3.23) about the shape of the 
distribution of the residuals, and the analysis is often based on ranks of the observations 

NOTE The non-parametric analogue to a two-sample t-test is the Mann-Whitney test. Non-parametric regression is 
often conducted using a variety of smoothing techniques. 

                                                      

2) With fewer constraints. 
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3.25 
parsimony principle 
principle that data should be described with as few parameters as possible 

NOTE A common decision criterion of including more parameters in the model is the observation that such leads to a 
significantly better description of these data. 

3.26 
systematic error 
situation that a single concentration (dose) group differs from the others not only with respect to the intended 
treatment (i.e. the concentration or dose) but also with respect to some unintended experimental factors  

EXAMPLE Containers housing the animals may differ by themselves, and in a design with few or only one container 
per dose group a deviating container may lead to a systematic error in that group. 

NOTE The factor of time may underlie systematic errors in various ways, e.g. time of feeding, time of observation. 
The problem of systematic errors is that they may be wrongly interpreted as an effect of the intended treatment. 

3.27 
statistical significance 
observed deviation from what was expected under the null hypothesis, it is unlikely to be attributable to 
chance variation 

EXAMPLE In hypothesis testing, a result is statistically significant at the chosen level α if the test statistic falls in the 
rejection region.  

NOTE In this Technical Specification, the α-level is 0,05 unless otherwise stated. 

4 General statistical principles 

4.1 Different statistical approaches 

4.1.1 General 

For each of the three analysis methods introduced below, it is necessary to obtain data from a designed 
experiment with replications of controls and concentration groups. All three classes of analysis methods 
(hypothesis testing, concentration-response modelling and biology-based methods) are suitable for data from 
toxicity tests as currently standardized by several OECD and ISO guidelines. However, designs for each of 
these studies can be optimized with respect to cost-effectiveness and the selected analysis approach. The 
number and spacing of the concentrations depend on the study being conducted and the type of data analysis 
to be utilized. 

For each of the three approaches introduced below, the following is provided: 

⎯ a brief description of the use of each method in ecotoxicity tests; 

⎯ a brief outline of specific analysis methods presented in the later clauses of this Technical Specification; 

⎯ a listing of some major assumptions and limitations for each approach. 

4.1.2 Hypothesis-testing methods 

Hypothesis testing is a statistical inference technique used to compare the responses among two or more test 
groups. Hypothesis testing has many uses in ecotoxicology, ranging from detecting whether there is a 
significant difference in the measured response between the control and a given concentration, to establishing 
an LOEC and an NOEC. Discussion in this Technical Specification focuses on use in determining LOECs and 
NOECs, the most frequent use of hypothesis testing in OECD guidelines. 
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Methods discussed in Clause 5 include analyses for quantal data and continuous data. For both types of data, 
parametric approaches (when an underlying distribution e.g.: normal, log-normal is characterised) and 
non-parametric approaches (when weaker assumptions are made regarding the distribution) are presented. In 
Clause 5, assessment is limited to conducting data analysis separately at each time point, though this is not a 
limitation of the method. Three terms often used when discussing hypothesis tests are: Type I errors, Type II 
errors, and power (Table 1). 

⎯ Type I errors (false positives) occur when the null hypothesis is the truth but the hypothesis test results in 
a rejection of the null hypothesis in favour of the alternative hypothesis. The probability of making a Type I 
error is often referred to as α and is usually specified by the data analyst – often at 0,05, or 5 %.  

⎯ Type II errors (false negatives) occur when the alternative hypothesis is true but the test fails to reject the 
null hypothesis (i.e. there is insufficient evidence to support the alternative hypothesis). The probability of 
making a Type II error is often referred to as β (1 – power). 

⎯ Power is the probability of rejecting the null hypothesis (H0) in favour of the alternative hypothesis (HA), 
given that the alternative hypothesis is true. Power of a test varies with sample size, variance of the 
measured response, the size of an effect that it is of interest to detect, and the choice of statistical test. 
Power to detect differences can be increased by increasing the sample size and/or reducing variation in 
the measured responses. Thus, if a test has low power to detect an effect of a given size, this is 
equivalent to saying that the test has a low probability of detecting an effect of that size. 

Table 1 — Probabilities of finding a significant or non-significant test outcome, 
given that the null hypothesis is true or not 

State of the world 
Result of hypothesis test 

H0 true HA true 

not significant 1 − α Type II error 
β 

significant Type I error 
α 1 − β = power 

Several assumptions made when conducting hypothesis tests to determine the NOEC are given below. 

⎯ The concentration-response relationship may or may not be assumed depending on the specific statistical 
tests used. 

⎯ This approach makes only weak assumptions about the mechanisms of the toxicant or the biology of the 
organism. 

Several limitations of using hypothesis testing to determine the NOEC are given below. 

⎯ Since the NOEC (or NOEL) does not estimate a model parameter, a confidence interval cannot be 
assessed. 

⎯ The value of the NOEC is limited to being one of the tested concentrations (i.e. if different values were 
chosen for the tested concentrations, the value of the NOEC would be different). 

⎯ If the power is low (due to high variability in the measured response and/or to small sample size), the 
biologically important differences between the control and treatment groups may not be identified as 
significantly different. If the power is high, it may occur that biologically unimportant differences are found 
to be statistically significantly different. 
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4.1.3 Concentration-response modelling methods 

Regression methods are used to determine the relationship between a set of independent variables and a 
dependent variable. For designed experiments in ecotoxicology, the main independent variable is the 
concentration of the test substance and the dependent variable is the measured response (e.g. percent 
survival, fish length, growth rate). Regression methods fit a concentration-response curve to the data and use 
this curve to estimate an Effective Concentration (ECx) at a given time point. The mathematical model used 
may be any convenient function that is able to describe the data; however, some models are more frequently 
used and accepted within the ecotoxicity testing literature. Several methods are available for model fitting and 
parameter estimation. 

Methods discussed in Clause 6 include analyses for quantal data and continuous data. Parametric 
approaches (when a specific underlying distribution is assumed) are presented. 

Although non-parametric methods have been developed for fitting concentration-response curves and 
estimating an ECx, they are not presented in this Technical Specification. 

⎯ Sources on non-parametric regression include:  

Green and Silverman (1994), Easton and Peto, Fan and Gibjels (1996), Hardle, W. (1991), Azzalini and 
Bowman (1997), Silverman B. (1985), Akritas and Van Keilegom (2001), Carroll et al. (1999) and Smith-
Warner et al. (1998). 

⎯ Software for non-parametric regression can be found. 

The effect of exposure time is considered in Clause 6. 

Although power is typically only discussed when hypothesis tests are conducted, both sample size and 
variation in the response variable within groups affect the inferences of concentration-response models as 
well. Small sample sizes and high variability in the response within groups increase the width of the 
confidence interval of the parameters of interest (e.g. ECx), and the fitted model may not reflect the true 
concentration-response relationship. To increase the level of confidence in the parameter estimate, the 
number of replicates can be increased and measures to minimize unexplained variability could be taken. The 
width of the confidence interval also depends on the experimental design (i.e. the location and number of 
concentrations chosen). Finally, in addition to precision, accuracy of the estimated parameter is just as 
important. To enhance accuracy, concentrations should be chosen such that various different response levels 
are observed. 

These specific properties of the experimental design, the number and spacing of doses and the number of 
replicates, are related to the value of x of interest in the particular experiment. Different designs may be 
employed to estimate an EC50, as opposed to an EC05. Further guidance for the design of experiments of this 
type is discussed in Clause 6. 

Several assumptions of concentration-response modelling are: 

⎯ the models discussed in this Technical Specification assume the responses have a monotonic 
concentration-response relationship; 

⎯ the fitted curve is close to the true concentration-response relationship; 

⎯ this is an empirical model and does not make strong assumptions about the mechanisms of the toxicant 
or the biology of the organism. 

Several limitations of concentration-response modelling are: 

⎯ estimation of ECx values outside the concentration range introduces a great deal of uncertainty (i.e. 
extrapolation outside the range of the data); 
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⎯ once the experiment has been performed, the resulting concentration-response data may not be suitable 
for the estimation of parameters of a concentration-response model. In particular, when the gaps between 
consecutive response levels are so large that many different concentration-response models would fit 
equally well to the observed data, interpolation would not be warranted. 

4.1.4 Biology-based methods 

The biology-based methods presented in this Technical Specification provide models for exploring the effect 
of the test chemical over time as well as incorporating a toxico-kinetic model for the behaviour of the chemical. 
By modelling concentration and exposure time simultaneously, these methods fit response surfaces to 
response data to estimate an ECx as a function of exposure time, rather than fitting separate response curves 
at each time point. 

Methods discussed in Clause 7 include analyses for quantal data and continuous data for several aquatic 
toxicity tests (acute and chronic tests on survival/immobility for daphnia and fish, fish growth test, daphnia 
reproduction test, and alga growth inhibition test). The models presented in this Technical Specification utilize 
dynamic energy budget theory (see Clause 7 for details and associated references). This theory provides a 
quantitative description for the processes of feeding, digestion, storage, maintenance, growth, development, 
reproduction and ageing and their interrelationships. As with concentration-response modelling, the level of 
confidence in the parameter estimates (as evidenced by the width of the confidence interval) is a function of 
sample size and inherent variation in the response. 

Because of additional assumptions regarding the toxico-kinetic behaviour of the chemical and the biological 
behaviour of the organism in the system, it is sometimes possible to carry out additional extrapolation from the 
toxicity test. The assumptions are endpoint-specific; therefore, for each type of test, these assumptions need 
to be defined. The definition of these assumptions usually involves eco-physiological background-research 
prior to the specification of the test. However, if these additional assumptions can be made, examples of 
additional outcomes of this method can predict, e.g. chronic responses from acute responses, responses to 
time-varying concentrations using responses to constant concentrations, and responses by a species using 
responses to a con-specific or physiologically-related species of a different body size for a given test 
compound. 

Several general assumptions made when using biology-based methods are the following. 

⎯ The models discussed in this Technical Specification assume the response has a monotonic 
concentration-response relationship. 

⎯ This analysis method incorporates mechanistic models for toxico-kinetics and physiology. 

Several limitations of biology-based methods are the following. 

⎯ Estimation of parameter values (e.g. ECx and NEC) outside the concentration range introduces a great 
deal of uncertainty (i.e. extrapolation outside the range of the data). 

⎯ When the gaps between consecutive response levels are so large that different biology-based models 
would fit equally well to the observed data, NEC estimations would not be warranted, if they differ 
substantially between the models. 

⎯ To date, models have been developed for some of the common aquatic toxicity tests (acute and chronic 
tests on survival/immobility for daphnia and fish, fish growth test, daphnia reproduction test, and alga 
growth inhibition test). Nevertheless, these models can be applied to any test species. 

4.2 Experimental design issues 

4.2.1 General 

The usual factors (independent variables) studied in ecotoxicity tests are the concentration of the tested 
substance and the duration of exposure. For the estimation of the effect at a given condition, it is necessary to 
replicate these conditions, to control experimental variation (see 4.2.3). 
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The experimental design, amongst others, specifies the tested concentrations of the substance, the number of 
replicates and the number of containers per tested concentration, as well as the times of observation. 

4.2.2 NOEC or ECx: Implications for design 

The estimation of an ECx puts different demands on the study design than does the assessment of an NOEC. 

⎯ When the aim is to assess an NOEC, an important demand is that the study warrants sufficient statistical 
power. To that end, the concentration (dose) groups need a sufficient number of replicates (possibly at 
the expense of the number of dose groups). Many test guidelines are based on this principle.  

⎯ When the aim is, however, to provide an estimate of an ECx, the primary demand on the study design is 
to have a sufficient number of concentration (dose) groups. This may be at the expense of the number of 
replicates per group (e.g. keeping the total size of the experiment the same), since the precision of the 
estimated ECx depends more on the number and spacing of concentrations than on the sample size per 
concentration or dose group.  

⎯ The demands for study designs aimed at estimating an NOEC or an ECx are further discussed in 5.1.7 
and 6.5, respectively. 

Therefore, the choice between assessing an NOEC and estimating an ECx should actually be made before 
designing the study. If one wishes (or is required) to assess both, a compromise between the two opposing 
demands shall be made, i.e. a design with both a sufficient number of dose groups and a sufficient number of 
replicates in each group. 

⎯ The number of replications per group needed for assessing an NOEC depends on the desired power of 
the statistical test involved (see 4.1.1). 

⎯ For assessing an ECx, three concentration groups, next to the control group, is an absolute (theoretical) 
minimum. However, when just one dose group appeared to have been unluckily chosen, the assessment 
of an ECx would probably fail, and more concentration groups are therefore required in practice. 

Design recommendations for experiments using a biology-based model include those for ECx. Additional 
recommendations are discussed in 7.8.3. 

4.2.3 Randomization 

Variability is inherent in any biological data set. This variability is directly visible in continuous and discrete 
data. Although the following discussion holds for any type of data, it is easiest to use continuous data as an 
example. In analysing concentration-response data by statistical methods, the observed scatter is sometimes 
called noise or variation, but when designing experiments and interpreting results it is good to understand the 
reasons for the noise. The following factors may play a role: 

a) the variation between the individual animals, due to genetic differences; 

b) the differences in the conditions under which the animals grew up prior to the experiment, resulting in 
epigenetic differences between animals; 

c) the heterogeneity of the experimental conditions among the animals during the experiment; 

d) variation within subjects (i.e. fluctuations in time, such as female hormones, which may be substantial for 
some endpoints); and 

e) measurement errors. 

Randomization processes are used in designed experiments to eliminate bias in estimates of treatment effects, 
and to ensure independence of error terms in statistical models. Ideally, randomization should be used at 
every stage of the experimental process, from selection of experimental material and application of treatments, 
to measurement of responses.  
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To minimize the effects of the first two factors, animals need to be randomly distributed into concentration 
groups. To minimize the effects of the third factor (both intended and unintended, such as location in the 
room), application of treatments should be randomized as much as possible. To minimize the effects of the 
fourth factor, the measurement of responses should be randomized in time (e.g. although all responses are 
recorded at 24 h, the order in which the experimental units are measured should be randomized). With good 
scientific methods, measurement errors can be minimized. 

In some circumstances, it may be difficult, or expensive, to randomize at every stage in an experiment. If any 
experimental processes are carried out in a non-random way, then statistical analysis of the experimental data 
should include a phase in which the potential effect of not randomizing on the experimental results is 
examined. 

4.2.4 Replication 

As discussed above, noise cannot be avoided, and therefore it is necessary to assign a certain number of 
replicates (experimental units) to each treatment group and control group. The number of replicates influences 
the power in hypothesis testing and the confidence limits of parameter estimates. A standard assumption of all 
methods is that replicates are independent. Treating observations as independent replicates, whereas in fact 
they are not, represents an error called pseudo-replication (Hurlbert, 1984). This issue becomes important 
when animals are housed together, as in a tank or beaker.  

There are two types of housing effects: 

⎯ containers may differ from each other in some (usually unknown) sense; 

⎯ the organisms within a container affect each other’s responses. 

Both effects result in non-independence (or pseudoreplication) of the individual organism’s responses.  

The first effect may result in different mean responses between containers (at a given concentration). This 
type of non-independence can be addressed by taking the variation between containers into account in the 
statistical model. For instance, with continuous data this may be done using a nested ANOVA, where the 
individual observations are nested within the container.  

The second effect might distort the distribution of the observations related to the individual organisms. For 
instance, with quantal data, the assumption of binomial distribution may not hold. In an example with 
continuous data, when there is competition among individuals in the same container, the responses of the 
individual organisms may appear bimodal. See Clause 5 and Clause 6 for more detailed discussions. 

4.2.5 Multiple controls included in the experimental design 

It is common in aquatic and certain other types of experiments that the chemical under investigation cannot be 
administered successfully without the addition of a solvent or vehicle. In such experiments, it is customary to 
include two control groups. One of these control groups receives only what is in the natural laboratory 
environment (e.g. dilution water), while the other group receives the dilution water with added solvent but no 
test chemical. In ecotoxicity experiments, these are often termed negative or dilution water (non-solvent) and 
solvent controls.  

OECD recommends limiting the use of solvents (OECD 2000); however, appropriate use of solvents should 
be evaluated on a case-by-case basis. Details regarding the use of solvents (e.g. recommended chemicals, 
maximum concentrations) are discussed in the relevant guideline documents for a specific ecotoxicity test. In 
addition, regulatory guidelines shall be followed by both controls with regard to the range of acceptable values 
(e.g. minimum acceptable percent survival or mean oyster shell deposition rate). Multiple control groups can 
be utilized regardless of whether the experiment was intended for hypothesis testing (i.e. determination of an 
NOEC), regression analysis (i.e. determination of an ECx), or biology-based methods. The focus of this 
subclause is to present a data analysis methodology for experiments in which a solvent is used. 

Data from the two control groups are analysed to determine if the solvent had a statistically significant effect 
on the measured response. If there is a statistically significant difference between the negative and solvent 
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control groups, any conclusions and inferences based on this study could be impacted due to the presence of 
a solvent effect. If there are no significant differences in the means (or proportions for quantal data or medians 
for non-parametric data) between the negative and the solvent controls, then it is concluded that there is 
insufficient evidence to detect a difference between the controls. 

The solvent control group is the appropriate control group for comparisons with treated groups. Each group 
shall have the same solvent concentration as the control. For a toxicity test in which a solvent is used in 
conjunction with the test chemical, the assumptions are that the solvent had no effect on the responses of 
interest and there was no interaction between the test chemical and the solvent. With the addition of a 
negative control (as is required in all experiments using a solvent), the assumption regarding a solvent effect 
can be tested. However, unless the chemical is also tested in absence of a solvent, the assumption of no 
interaction between the solvent and the test chemical cannot be evaluated. 

Some practitioners consider combining the data into one “pooled control” for comparison to the treated groups 
when no statistically significant differences between the solvent and negative control were identified. However, 
this does not take into account the fact that the differences between the two controls might not have been 
detected with a statistical test because the sample sizes are too small (i.e. low power) or that it combines two 
sources of variability. 

The methods used for statistical comparison of negative and solvent controls vary depending on the type of 
data and the assumptions regarding distribution of the data. Methods and mathematical details for carrying out 
these tests are found in Clause 5 and its associated annexes. 

4.3 Process of data analysis 

4.3.1 General 

A typical data analysis more or less follows a general pattern, usually constituting the following steps. First, 
the data are plotted and visually inspected. Then, a suitable type of analysis is chosen, based on particular 
assumptions that appear reasonable for the data at hand. After the analysis, the underlying assumptions are 
checked. If necessary, an adjusted analysis is performed. And finally, the results are reported by making plots 
and/or tables. 

4.3.2 Data inspection and outliers 

A useful first step in analysing dose-response data is to visually inspect the data. For continuous data, the 
individual responses (together with the group means) may be plotted as a function of dose. For quantal data, 
one may plot the observed frequencies of response as a function of dose. These plots are useful to assess 
whether the data show a dose-response relationship. Further, these plots may indicate any peculiarities in the 
data. In particular, the observed data may show outliers, i.e. data points far away from intuitive expectation, or 
from the general pattern shown by the data. In continuous data, one may detect both outliers that relate to the 
individual organism (or, more generally, the biological system serving as the experimental unit), and outliers 
that relate to a whole treatment group. In quantal data, outliers always relate to a treatment group, since a 
deviating individual cannot be detected based on a “yes” or “no” response. 

Outliers that relate to a whole treatment group may arise due to the fact that a treatment group differed 
systematically from the other groups by some (usually unknown) experimental factor(s). For instance, the 
organisms in the various dose groups were held in different aquaria, and one of them contained an infection. 
Or, the organisms in the different dose groups were treated in a specific order (with respect to feeding, time of 
observation, etc.). Detection of this type of outliers typically cannot be enforced by any formal statistical 
method, and one has to rely on visual inspection, judgement and experience. 

Obviously, treatment group outliers are highly undesirable, since they directly interfere with the effect that one 
wishes to measure, thereby increasing the probability of both false positive and false negative results. For 
example, an NOEC may be assessed at a level where substantial effects do occur, or an LOEC may be 
assessed at a level without real effects (i.e. from the chemical). The only way to prevent outliers at the group 
level is a design that is perfectly randomized with respect to all experimental actions that may potentially 
influence the (observed response of) the biological system. In practical biological studies, however, perfect 
randomization is hard to realise, and it is not feasible to reduce the probability of getting group outliers to nil. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  15

Therefore, it is paramount to make the study design relatively insensitive to potential outliers, i.e. by 
randomized replicated dose groups, and/or by increasing the number of different doses (followed by dose-
response modelling, see Clause 6). 

Outliers at the individual level can only be detected in continuous data. When a particular distribution is 
assumed for the scatter in the data, the judgement of outliers may be based on a specific, small probability 
that any single data point could occur. This implies that the judgement of outliers can depend quite strongly on 
the assumed distribution. For example, values that appear to be extremely high when assuming a normal 
distribution may be judged as non-extreme when assuming a log-normal distribution. Vice versa, low values 
may be judged as extremes when assuming a log-normal distribution, but not so when a normal distribution is 
assumed. 

The statistical analysis of the data is sensitive to individual outliers, although less dramatically than to group 
outliers. On the one hand, individual outliers may result in biased estimates of the effect (either too small or 
too large). On the other hand, the estimate of the residual variance (the “noise”) is increased, implying that 
statistical tests tend to be less powerful, and estimated parameters (e.g. ECx) less precise. Therefore, if 
reasons can be found explaining the outliers, it is favourable to delete them from the analysis. 

Although non-detectable, individual outliers can also occur in quantal data and affect the analysis. For 
example, when just one of the individuals in the controls shows a response, but is in fact an outlier, this outlier 
may have quite an impact on the statistical analysis. Being non-detectable, individual outliers are a larger 
problem in quantal data than in continuous data. 

In conclusion, outliers can have dramatic effects on the statistical analysis and the conclusions drawn. 
Therefore, it is very important to reduce their impact by using designs that are relatively insensitive to them, i.e. 
by utilizing replicated dose groups and/or multiple dose groups. More information can be found in 
Atkinson (1985), Belsey et al. (1980) and Cook and Weisberg (1982). 

4.3.3 Data inspection and assumptions 

4.3.3.1 Scatter 

Visual inspection may be used to explore the general pattern of the scatter around (continuous) data. Thus, 
one may find out if the scatter around the mean response appears to be symmetrical or skewed, and if the 
scatter is more or less homogenous. Heterogeneity of variance (scatter) may have a biological basis, i.e. the 
individual organisms (units) respond differently to the chemical. However, an apparent increase or decrease in 
the scatter may also be related to the statistical distribution of the data, e.g. the scatter increases with the 
mean response. This distinction is important, both for the analysis and for the interpretation of results. Further 
clarification is given below. 

4.3.3.2 Heterogeneous variances and distribution 

When the plotted data show scatter that is correlated with the mean response, such a pattern may be related 
to the underlying distribution of the data. Some examples illustrate this. 

In log-normally distributed data, it may be theoretically expected that the standard deviation increases 
proportionally with the mean (or, equivalently, the Coefficient of Variation, CV, is homogenous). Also, for the 
gamma distribution, the CV is expected to be homogenous. When a particular dataset (such as masses, 
concentrations) shows scatter that increases with the mean, one may plot such data on the log-scale, which 
usually makes the scatter independent from the means. In addition, when the scatter is relatively large (say, 
with a CV larger than 20 %), the scatter may be skewed on the original scale, but not on the log-scale. The 
latter would confirm that the pattern in the scatter is a result of the underlying distribution. 

As another example, counts may follow a Poisson distribution. Here, the variances are expected to be equal 
to the means (or proportional to them). Such a pattern should vanish when the data are plotted on square root 
scale. 

Finally, in quantal data with replicated dose groups, it can be also be expected a priori that the scatter 
between the replicates depends on the mean response (this follows directly from the properties of 
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frequencies). Here, one may plot the frequencies after the transformation arcsin(√p), where p is the observed 
frequency (fraction). This transformation is able to remove the (theoretical) relationship between the variance 
and the mean frequency (assuming a binomial distribution). 

4.3.3.3 Heterogeneous variances and true variation in response 

Heterogeneity in the scatter might also be caused by the treatment (the applied chemical) itself, i.e. some 
individuals respond stronger to the chemical than others. This could happen when genetically heterogeneous 
organisms are used, e.g. subject to genetic polymorphism. In many toxicity tests, however, the organisms 
used are genetically homogenous, and real (biological) heterogeneity in response to the chemical is, in those 
cases, not very likely. 

4.3.3.4 Consequences for the analysis 

Heterogeneity of variances may be a matter of scaling that can be removed by the right transformation. 
Usually such a transformation also tends to make the data more normally distributed. Thus, one may apply 
standard methods based on normality (e.g. t-test, ANOVA, linear regression) to the transformed data. Another 
approach is to omit the transformation, and use methods that are directly based on the assumed distribution 
(i.e. generalized linear models). When a particular transformation is found that results in homogenous 
variances, only one variance parameter needs to be estimated. Thus, all the data contribute in the variance 
estimate, which is in statistical terms reflected by a larger number of degrees of freedom 3). 

However, when the heterogeneity of variances appears to be due to real biological heterogeneity in responses 
among individual organisms, one should carefully consider if further analysis is meaningful. For example, 
when the organisms (or experimental units) consist of two distinct subpopulations, one responding, the other 
not, any estimated change in mean response has no useful meaning. When such two subpopulations can be 
distinguished from observable features (e.g. sex), the appropriate way to proceed is to analyse both 
subpopulations separately, or by using the observable feature as a covariate (see, e.g. 6.3.3, and Figure 14). 

4.3.4 Transformation of data 

Many standard parametric methods (e.g. ANOVA, t-tests, linear regression analysis) assume normally 
distributed data and homogenous variances. In practice, the data often deviate from these assumptions, and if 
so, the inferences resulting from these standard methods may be disturbed. A variance-stabilizing 
transformation is often applied to the data, and then the statistical analysis is performed on the transformed 
data. Examination of residual plots (plot of the residuals vs. the predicted values) and tests of heterogeneity of 
variance (e.g. Levene, Bartlett, Hartley’s F-max, or Cochran’s Q) can help to identify instances when the 
variances among the concentration groups are unequal. References on this topic include Box and Cox (1964), 
Box and Hill (1974), Box and Tidwell (1962), Draper and Cox (1969). 

For a variance-stabilizing transformation to exist, there shall be a relationship between the population means 
and variances. In many cases, the theoretical distribution of the response variable can guide the choice of a 
transformation. Examples are given below.  

⎯ If the underlying distribution is assumed to be Poisson, the square root transformation,  

yi′ = (yi
1/2) or yi′ = [(y + 1)1/2], is used. 

⎯ If the underlying data are log-normal, the log-transformation, yi′ = log(yi), is often used.  

⎯ For proportions with binomial distributions, the arc-sin square-root [yi′ = arcsin(yi
1/2)] and  

 Freeman-Tukey [yi′ = (yi + 1)1/2  + (yi
1/2)] transformations are often used. 

                                                      

3) In general, it is favourable to include as few parameters (that need to be estimated from the data) as possible in the 
analysis, and yet describe the data accurately. Too few parameters probably result in biased estimates; too many 
parameters tend to result in too wide confidence intervals. This is also referred to as the parsimony principle. 
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⎯ If the underlying theoretical distribution is unknown, a data-based procedure (Box-Cox transformation) 
can be used (Box and Cox,1964). 

The use of transformations often simplifies the data analysis, in that the more familiar and traditional data 
analysis methods can be used, but care shall be taken in interpreting the results of this data analysis. Several 
aspects are discussed below. 

If a transformation is used, it is also necessary to back-transform the means and confidence intervals to the 
original scale, when reporting results. It is not correct to back-transform the standard errors. It is important to 
understand that the back-transformed means differ from the arithmetic means of the original data. These 
back-transformed means should be interpreted as estimates of the median of the underlying data distribution, 
if the transformed data are normally (or at least symmetrically) distributed. In the special case of a 
log-transformation, the back-transformed mean is the geometric mean of the original data, and this value 
estimates the median of the underlying log-normal distribution. 

When a transformation is not used in the data analysis, the difference in the means is a logical measure for 
the size of an effect. This difference is interpreted as an absolute change in the original units (e.g. a decrease 
of 1,2 g). The back-transformed difference in means (of the transformed data) however has another, usually 
more difficult, interpretation. In the special case of a log-transformation, the difference between the back-
transformed means does allow a simple interpretation: it estimates the ratio (or percent change) of the median 
responses. 

In addition, transformations may not maintain additivity of effects (interactions among factors, e.g. test 
substance, sex and age in the experiment). Other possible consequences of using transformations are that 
they change the interpretation of outliers and that they affect the value of R (Pearson correlation coefficient) 
and R2 (coefficient of determination). Not all data problems can be fixed by transformation of the response. For 
example, if a large percentage of the responses have the same measured value (ties), no transformation 
addresses that issue. 

4.3.5 Parametric and non-parametric methods 

4.3.5.1 General  

A visual inspection of the data may have indicated that the scatter is more or less symmetric and 
homogeneous, possibly after a particular transformation. In that case, one may analyse the data by the 
standard parametric methods based on normality. Or, one may choose to analyse the data based on a 
particular distribution other than the normal. Here, some basic aspects of parametric and non-parametric 
methods are discussed. 

4.3.5.2 Parametric methods 

When the data are assumed to follow a particular statistical distribution, they can be summarized by the 
parameters of that distribution. For example, data that are normally distributed can be summarized by just two 
parameters, the mean and the variance. Therefore, methods that are based on an assumed distribution are 
called “parametric methods”. Obviously, these methods intend to estimate the parameters of the (assumed) 
distribution, such as the mean and the variance, or any derived parameters, such as the ECx. 

If one is interested in the value of some entity (such as the ECx), rather than a “categorical” answer (significant 
or nonsignificant), parametric methods are the natural approach of analysis. In addition, in hypothesis testing, 
parametric methods such as ANOVA are also widely used. 

Whatever distribution is assumed, parametric methods are based on the general principle of fitting the data to 
the model. In hypothesis testing, this may be the ANOVA model; in dose-response modelling, this may be a 
particular dose-response model. 

⎯ In applying parametric hypothesis tests, one shall examine the data for outliers, deviations from normality 
and homogeneity, assessment of monotonicity of the dose response (for some approaches), and do a 
general assessment of whether the proposed model adequately describes the data. These points are 
discussed in depth in 5.1, 5.1.4, 5.1.6, 5.2.2.3, 5.2.2.5, 5.3.1, 5.3.1.3, 5.3.1.4, 5.3.1.6, and 5.3.1.7. 
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⎯ In dose-response modelling, the process of model fitting is eminent and indeed the focus of the analysis. 
Therefore, in any dose-response analysis (as discussed in Clauses 5, 6 and 7) the user should 
understand the general principles of model fitting. These are discussed in 4.3.6, 5.1.4, 5.2.2, 5.3.1, and 
6.7. 

4.3.5.3 Generalized linear models (GLMs) 

Generalized linear models are an alternative approach to use parametric methods when the normality 
assumption is violated. In this approach, the analysis of the (untransformed) data is based on another (than 
normal) distribution, for example, a Poisson distribution (for counts), or a binomial distribution for frequencies. 
GLMs are not discussed in this Technical Specification, and the reader is referred to the literature (Mc Cullagh 
and Nelder, 1983; Kerr and Meador, 1996). 

4.3.5.4 Non-parametric methods 

Non-parametric methods have been developed for those cases where one is not willing to assume any 
distribution at all. These methods can be used to test the null hypothesis that the observations in two (or 
more) treatment groups do not differ (i.e. they stem from the same, but unknown distribution). These methods 
are based on the rank order of the observations. Therefore, significantly different treatment groups are 
supposed to differ in the medians (since the median can be defined in terms of rank order). To prevent 
misunderstanding, the medians should always be reported when non-parametric methods were used. 
(Differences between means may not be consistent with differences between medians, i.e. means are more 
sensitive to outliers than medians are). 

4.3.5.5 How to choose? 

Parametric analyses have various advantages over non-parametric methods. 

⎯ They are typically simpler to conduct (wide availability of software). 

⎯ The methods have been developed for a wider array of designs (e.g. designs with replicated dose 
groups). 

⎯ The confidence intervals are more easily computed.  

⎯ The methods are more universally used. 

⎯ Interpretation of results is often easier.  

Non-parametric methods have the following advantages.  

⎯ They are based on very weak assumptions.  

⎯ Further, since non-parametric analyses are based on the rank order of the data, they are less sensitive to 
outliers than parametric analyses. 

When the data appear to comply with the assumptions (after a visual inspection) of a particular parametric 
analysis, parametric is the obvious method to choose. The assumptions can be further checked as part of the 
analysis (e.g. by examining the residuals, see below). It may be noted that parametric analysis based on 
normal assumptions is reasonably robust to mild violations against the assumptions. When a data 
transformation results in a (better) compliance with the normality assumptions, one should be reminded that 
transformations other than the log-transformation may impair the interpretation of the results. This is because 
the log-transformation is naturally linked to the intuitive notion that biological effects are proportional (or 
multiplicative) rather than additive (compare definition of ECx). Thus, when omitting or applying a log-
transformation does not make a large difference for complying with the assumptions, one might choose to 
apply it for reasons of interpretation. 
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In situations where specific distributions are natural candidates for the data type at hand, one may consider 
the use of GLMs.  

When no regular distributions can be assumed, as e.g. in the case of tied observations4), one may resort to 
non-parametric analysis. 

4.3.6 Pre-treatment of data 

In general, pre-treatment of data (other than data transformation) is not a favourable strategy for data analysis. 
A few practical examples are discussed. 

Some methods (e.g. the probit and logit models for quantal dose-response analysis) use a log-transformation 
for concentration. It is not appropriate to add a small positive constant to the zero-concentration (or to all 
concentrations) to avoid taking the log of zero (see Clause 6 for more details). The shape of the 
concentration-response curve is very sensitive to the constant and a biological basis for choosing one 
constant over another is very unlikely to ever exist. 

A current habit in analysing continuous data is to divide the observed responses by the (mean) observed 
response in the controls. These corrected observations then reflect the percent change compared to the 
controls, which is usually the entity of interest. However, such a pre-treatment of the data is improper. Among 
other problems, it assumes that the (mean) response in the controls is known without error, which is not the 
case. Therefore, this should be avoided, and instead the background response should be estimated from the 
data by fitting the model to the untreated data. Thus, the estimation error in the controls is treated in the same 
way as the estimation errors in the other concentration groups. (see e.g. 6.2.3 and 6.3.3). 

4.3.7 Model fitting 

All parametric methods employ the general principle of model fitting. The particular assumptions that they are 
based on can be regarded as a particular model. The model contains specific parameters, and the goal of the 
data analysis is to estimate these parameters. The parameters are estimated by fitting the model to the data. 

EXAMPLE As a very simple example, consider a single sample of data. If it is assumed that these data follow a 
normal distribution, then the model is simply the normal distribution. The model contains two parameters, the mean and 
the variance. Depending on which values are chosen for the parameters, the agreement between the distribution and the 
data is better or worse. The question now is “what parameter values give the best agreement between the model and the 
data, i.e. give the best fit of the model to the data?”. 

To be able to answer the latter question, we have to define a measure for the “distance” between the data and 
the model, to be used as the fit criteria. A very general criterion is the likelihood. This measure directly follows 
from the assumed distribution, and is applicable to whatever distribution is assumed. The likelihood criteria 
should be maximized, and when this is achieved, the associated parameter values are called maximum 
likelihood estimates. 

Another much used fit criterion is the residual Sum of Squares (SS). This measure is defined as the sum of 
the squared residuals, i.e. the differences of each separate observed response with its associated expected 
response (according to the model). The best fit is found by minimizing the SS. In the simple example of fitting 
a normal distribution to a single dataset, the residuals are simply the differences of the observations to the 
mean. By changing the value of the mean, the SS varies. 

The value of the mean resulting in the best fit, is exactly the value of the (arithmetic) sample mean. Put 
another way, the sample mean is the estimate of the mean of a normal distribution that results in the best fit 
according to the SS criteria. In the special case of a normal distribution, the sample mean is at the same time 
the maximum likelihood estimate. In other distributions however, the maximum likelihood or minimizing the SS 
results in different estimates of the parameters. For instance, for quantal dose-response data, the sum of 
squares is not appropriate, and the likelihood is the usual fit criteria. 
                                                      

4) Tied data are two or more observations of the same value. Parametric methods do exist for tied data, but these are 
beyond the scope of this Technical Specification. 
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The same principle of model fitting holds for more complicated models than a single dataset. For example, by 
replacing the mean of the normal distribution by a function of the dose, we obtain a dose-response model. 
Here, fitting the model by minimizing the SS or by maximizing the likelihood results in the same fit (because of 
the normality assumption). 

A general method of finding the best fit is by trial and error, i.e. in an iterative search one tries to improve the 
likelihood by changing the parameter values, until an improvement can no longer be found. General 
algorithms exist that can perform such an iterative search in an efficient way. In particular models (“linear” 
models), the maximum likelihood estimates can be derived from explicit formulae and search algorithms are 
not required (for that reason linear models used to be popular before the availability of computers). In non-
linear models, search algorithms can hardly be avoided. Although the user need not worry about the 
calculations underlying these algorithms, fitting non-linear models does require some basic understanding of 
the general principles of search algorithms (see 6.7). 

4.3.8 Model checking 

4.3.8.1 Analysis of residuals 

After a model has been fitted to the data, a final check for the appropriateness of the fitted model may be 
performed. Do the data indeed comply with the model assumptions?  

For instance,  

⎯ Do the data comply with the assumed distribution (in parametric analyses)?  

⎯ Are the variances homogenous (e.g. in ANOVA)? 

⎯ Is the dose-response model suitable for the dose-response data at hand (in dose-response analysis)? 

A general approach for checking such assumptions is the analysis of residuals: the differences between the 
observations and the value predicted by model. For instance, in ANOVA the predicted value is the associated 
group mean, while in dose-response modelling, it is the value of the model at the relevant dose. 

To check the distribution, the residuals can be taken together and be plotted in a single histogram, or in a 
(distribution-specific) QQ-plot5). Visual inspection of such plots may reveal deviations from the assumed 
distribution, in particular when inspecting a QQ-plot, which should be linear if the data comply with the 
assumed distribution. Formal tests exist as well (see Clause 5), but it should be noted that a mild violation of 
the assumptions is no reason for concern, and tests do not measure the degree of violation. 

Various other plots of the residuals can be made, e.g. 

⎯ against the predicted value (i.e. the group means, usually), to check if the variances are homogenous (if 
such were assumed); 

⎯ against the model prediction, to check for systematic deviations from the fitted model; 

⎯ against other experimental factors, if relevant, for instance the order in time by which the observations 
were made. Such a plot may show if the pertinent factor influenced the response systematically. 

Finally, one may perform a formal goodness-of-fit test. This test is sensitive for all the assumptions 
simultaneously. A significant overall test of goodness-of-fit may indicate that one of the assumptions is not met, 
but this does not necessarily imply that the model is not useful for the particular purpose of the analysis. Here, 
one should judge the nature of the violated assumption and its potential impact on the results one is interested 
in. On the other hand, a nonsignificant goodness-of-fit test does not imply that the model used may be 
regarded as reliable. The test is more easily passed when the data contain relatively little information, and, as 

                                                      

5) The QQ-plot corresponds to a plot of observed quantiles versus expected quantiles. 
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a result, various models may pass the goodness-of-fit test, but lead to different conclusions. In other words, 
not only the model, but also the data should be “validated”, by asking the question of whether or not they 
contain the information needed for answering the question of interest. The evaluation of a dose-response 
model for describing a particular dataset is more fully discussed in 6.4. 

4.3.8.2 Validation of fitted dose-response model 

In dose-response modelling, it may happen that the data appear to be unsuitable for that approach. This 
would happen if the dose-response information is too weak to have faith in any fitted dose-response model 
(see 6.4). For example, there may be large gaps between response levels or too few dose levels in areas 
where the response changes rapidly. Therefore, the estimation of an ECx is only warranted if the dose-
response data contain sufficient information on the shape of the dose-response relationship. 

4.3.9 Reporting the results 

The final step in a statistical analysis is reporting the results. Basically, two types of information should be 
given: the results of the analysis, and the justification of the methods (assumptions) used. 

The results of the analysis typically consist of summarizing statistics. In current practice, these are usually the 
means and standard deviations (or standard errors) per dose group. This may not generally be the best way 
of reporting results, however.  

When a parametric analysis assuming homogenous variances is applied, it is more informative to report the 
estimate of the common variance (residual Mean Square), together with a justification of the homogeneity 
assumption (e.g. a plot of the individual data or of the residuals against dose).  

When a log-transformation is applied before the analysis, it is more adequate to report the geometric means, 
and the (possible common) geometric standard deviation (GSD) or Coefficient of Variation (CV). 

When an NOEC is assessed, the associated test used should be reported, along with the test outcomes. 

In the case where an ECx is assessed, the fitted model should be reported, as well as the justification that the 
model was acceptable for assessing the ECx (see 6.4). 

More specific guidance for reporting results is given at the end of Clauses 4, 5 and 6. 

5 Hypothesis testing 

5.1 Introduction 

5.1.1 General 

This clause provides an overview of both hypothesis testing and methodological issues specific to determining 
NOECs under various experimental scenarios. It is divided into three major parts.  

The first part includes flow-charts summarizing possible schemes for analysing quantal (Figure 3) and 
continuous data (Figures 4 and 5), along with some basic concepts that are important to the understanding of 
hypothesis testing and its use in the determination of NOECs. Special attention is given to the choice of the 
hypothesis to be tested, as this choice may vary depending on whether or not a simple dose-response trend is 
expected, and on whether increases, or decreases (or both) in response are of concern.  

The remainder of the clause is divided into two major subclauses that discuss statistical issues related to the 
determination of NOECs for quantal and continuous data (4.2 and 4.3 respectively) and provide further details 
on the methods listed in Figures 3 and 4.  

This division reflects the fact that different statistical methods are required for each type of data, and that 
problems arise that are unique to the analysis of each type of data. An attempt has been made to mention the 
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most widely used statistical methods, but to focus on a set of methods that combine desirable statistical 
properties with reasonable simplicity. For a given set of circumstances, more than one statistical approach 
may be acceptable. In such cases, the methods are described, the limitations and advantages of each are 
given, and the choice is left to the reader.  

The flow-charts in Figures 3 and 4 indicate a possible choice of methods. Examples of the application of many 
of these methods, mathematical details and properties of the methods are presented in E.1. 

The most commonly used methods for determining the NOEC are not necessarily the best. Relatively modest 
changes in current procedures for determining NOECs (e.g. selection of more powerful or biologically more 
plausible statistical methods) can improve the scientific basis for conclusions, and result in conclusions that 
are more protective of both the environment and business interests. Thus, some of the methods 
recommended may be unfamiliar to some readers, but all of the recommended methods should be compatible 
with current ISO and OECD guidelines that require the determination of NOECs. 

A basic principle in selecting statistical methods is to attempt to use underlying statistical models that are 
consistent with the actual experimental design and underlying biology. This principle has historically been 
tempered by widely adopted conventions. For example, it is traditional in ecotoxicological studies to analyse 
the same response measured at different time points separately by time point, although in many cases unified 
analysis methods may be available. It is not the purpose of this subclause to explore this issue. Instead, 
discussion is restricted to the most appropriate analysis of a response at a single time point and, usually, for a 
single sex. 

NOECs, as defined and discussed in this Technical Specification, are based on a concept sometimes called 
“proof of hazard”. In essence, the test substance is presumed to be non-toxic unless the data present 
sufficient evidence to conclude toxicity.  

Alternative approaches to assessing toxicity through hypothesis testing exist. For example, Tamhane et al. 
(2001) and Hothorn and Hauschke (2000) developed an approach based on proof of non-hazard. Specifically, 
if an acceptable threshold of effect is specified, such as a 20 % decrease in mean, then the maximum safe 
dose (MAXSD in Tamhane et al., 2001) is the highest concentration for which there is significant evidence that 
the mean effect is less than 20 %. These are relatively new approaches that have not been thoroughly tested 
in a practical setting, and for few endpoints is there agreement on what level of effect is biologically important 
to detect. All current guidelines regarding NOEC are based on the proof of hazard concept. For these reasons, 
this alternative approach is not presented in this clause, though it does hold some promise for the future. The 
only common exception to this is in regard to limit tests, where in addition to determining whether there is a 
statistically-significant effect in the single test concentration, one also tests for whether the effect in the test 
concentration is less than 50 %. A simple t-test can be used for that purpose. 

It should also be realized that statistics and statistical significance cannot be solely viewed as representative 
of biological significance. There can be no argument that statistical significance (or lack thereof) depends on 
many factors in addition to the magnitude of effect at a given concentration. Statistics is a tool that is used to 
aid in the determination of what is biologically significant. If an observed effect is not statistically significant, 
the basis for deciding that it is nonetheless biologically significant is, obviously, not statistical. Lack of 
statistical significance may be because of a low power test. On the other hand, a judgment of biological 
significance without sufficient data to back it up is questionable. 

The flow-charts and methodology presented indicate preliminary assessment of data to help guide the 
analysis. For example, assessments of normality, variance homogeneity, and dose-response monotonicity are 
advocated routinely. Such preliminary assessments do affect the power characteristics of the subsequent 
tests. The alternative to making these assessments is to ignore the characteristics of the data to be analysed. 
Such an approach can be motivated on the perceived general characteristics of each endpoint. However, this 
does not avoid the penalty of sometimes using a low power or inappropriate method when the data do not 
conform to expectation. A bias of this clause is to examine the data to be analysed and use this examination 
to guide the selection of the formal test to be applied. The preliminary assessment can be through formal tests 
or informed by expert judgment or some combination of the two. Certainly expert judgment should be 
employed whenever feasible, and when used, is invaluable to sound statistical analysis. These charts provide 
guidance, but sound statistical judgment sometimes leads to departures from the flow-charts. 
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The flow-charts (Figures 3 and 4) are intended to include experiments which contain only two concentrations 
(control and one test concentration). Such experiments are generally referred to as limit tests and the methods 
described are applicable to these tests. 

It should be noted that tests of hypotheses might also be required for various special-case assessments of 
study results (e.g. use of a contingency table to assess the significance of male-female differences in 
frequency of responses at some dose). These types of analyses are beyond the scope of this Technical 
Specification. 

The terms “dose” and “concentration” are used interchangeably in this clause and the control is a zero dose or 
zero concentration group. Consistent with this, the terms “doses” and “concentrations” include the control, so 
that, for example, an experiment with only two concentrations has one control group and one positive 
concentration group. 

The tests discussed in this clause, with the exception of the Tamhane-Dunnett and Dunn tests, are all 
available in commercial software. For example, they are available in SAS version 8 and higher6). The two-
sided Tamhane-Dunnett test (though not called as such) is available in SAS through the studentized 
maximum modulus distribution provided by the probmc function. Where these tests are discussed, alternatives 
are provided, so that the reader can follow the general guidance of this clause without being forced to develop 
special programs. 

It is observed that there is no special flow-chart for the exact Jonckheere-Terpstra and exact Wilcoxon tests. 
One of the appealing features of these two tests is that there are both asymptotic and exact versions and the 
same logic applies to both. 

 

NOTE Note that the dose count in ‘> 2’ includes the control. 

Figure 3 — Analysis of quantal data: Methods for determining the NOEC  

                                                      

6) SAS version 8 is an example of a suitable product available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of this product. 
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Figure 4 — Analysis of continuous data: Methods for determining the NOEC 

 

Figure 5 — Analysis of continuous data: Methods for determining the NOEC (continued) 
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5.1.2 NOEC: What it is, and what it is not 

The NOEC (3.18) is defined as the test concentration below the lowest concentration that resulted in a 
significant effect in the specific experiment, i.e. the NOEC is the tested concentration just below the LOEC. 

A significant effect is generally meant to be a statistically significant effect, as resulting from a hypothesis test. 
Obviously, no claim can be made that the condition of organisms exposed to toxicants at the NOEC is the 
same as the condition of organisms in the control group, or that the NOEC is an estimate of the threshold of 
toxicity (if such exists). Rather, no effect could be detected in this particular experiment. The detectability of an 
effect depends on the quality and the size of the experiment and the statistical procedure used. Of course, 
zero effects are never detectable. The relationship between the detectability of effects and the quality of the 
experiment can be quantified by the concept of statistical power. For a given null and alternative hypothesis, 
sample size and variance, statistical power is the probability that a particular magnitude of effect results in a 
significant test outcome. In large experiments (i.e. many replicates), smaller sized effects are detectable as 
compared to small experiments. Thus, one may consider the detectable effect size of a particular experiment 
as an analogue of the detection limit of a particular chemical analysis. The detectable effect size can be 
increased not only by using larger sample sizes, but also by taking measures to make the experimental 
(residual) error smaller and by selecting more powerful statistical tests. 

Power calculations are useful for the purpose of designing experiments in such a way that effect sizes that are 
considered relevant are likely to be (statistically) detected. Care shall be taken when using information on the 
power for interpreting an NOEC. If the test was designed to detect a difference of x %, and an observed 
treatment effect is not found to be statistically significant, this does not allow one to conclude with a specified 
level of confidence that the true effect in the population is less than x %. 

Meaningful confidence intervals for the effect size at a given concentration are sometimes possible. An 
application of this is discussed in 4.1.4 and methods for doing this are developed in E.3. For some techniques, 
obtaining meaningful confidence intervals is very difficult and this is discussed in greater detail in that annex. 

5.1.3 Hypothesis used to determine NOEC 

5.1.3.1 Understanding the question to be answered 

The hypothesis that is tested in determining the NOEC for a toxicological experiment reflects the risk 
assessment question and the assumptions that are made concerning the underlying characteristics, or 
statistical model, of the responses being analysed (e.g. does the response increase in an orderly, i.e. 
monotone way with increasing toxicant concentration?). 

The statistical test that is used depends on  

⎯ the hypothesis tested (e.g. are responses in all the groups equal?),  

⎯ the associated statistical model, and  

⎯ the distribution of the values (e.g. are data normally distributed?).  

Thus, it is necessary to understand the question to be answered and to translate this question into appropriate 
null and alternative hypotheses before selecting the test procedure. 

The need to select a statistical model for assessing the results of toxicity tests is not unique to the hypothesis 
testing approach. All methods of assessment assume a statistical model. The hypothesis testing approach to 
the evaluation of toxicity data is based, in part, on keeping to a reasonable number the untestable or difficult-
to-test assumptions, particularly those regarding the statistical model that is used in reaching conclusions. The 
models used in regression and biology-based methods use stronger assumptions than the models used in the 
hypothesis-testing approach. 

The simplest statistical model generally used in hypothesis testing assumes only that the distributions of 
responses within these populations are identical except for a location parameter (e.g. the mean or median of 
the distribution of values from each group).  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

26  © ISO 2006 – All rights reserved
 

Another statistical model that is often used assumes that there is a trend in the response that is associated 
with increasing exposure.  

Each of these models suggests a set of hypotheses that can be tested to determine whether the model is 
consistent with the data. These two types of hypotheses can further be expressed as one-sided or two-sided. 
The discussion below is developed in terms of population means, but applies equally to hypotheses 
concerning population medians.  

5.1.3.2 One-sided hypothesis 

The most basic hypothesis (in one-sided form) can be stated as follows: 

H0 : µ0 = µ1 = µ2 =…= µk versus H1 : µ0 > µi for at least one i,  (Model 1) 

where 

µi, i = 0, 1, 2, 3, …, k denote the means of the control and test populations, respectively. 

Thus, one tests the null hypothesis of no differences among the population means against the alternative that 
at least one population mean is smaller than the control mean. There is no investigation of differences among 
the treatment means, only whether treatment means differ from the control mean. The one-sided hypothesis is 
appropriate when an effect in only one direction is a concern. The direction of the inequality in the above 
alternative hypothesis (i.e. in H1 : µ0 > µi) would be appropriate if a decrease in the endpoint was a concern, 
but an increase was not (for instance, if an exposure was expected to induce infertility and reduce the number 
of offspring). If an increase in the endpoint was the only concern, then the direction of the inequality would be 
reversed. 

5.1.3.3 Two-sided trend test 

In the two-sided form of the hypothesis, the alternative hypothesis is: 

H1 : µ0 ≠ µi for at least one i. 

5.1.3.4 Trend or pair-wise test 

If no assumption is made about the relationships among the treatment groups and control (e.g. no trend is 
assumed), the test statistics are based on comparing each treatment to the control, independent of the other 
treatments. Many tests have been developed for this approach, some of which are discussed below. Most 
such tests were developed for experiments in which treatments are qualitatively different, as, for example, in 
comparing various new therapies or drug formulations to a standard. 

In toxicology, the treatment groups generally differ only in the exposure concentration (or dose) of a single 
chemical. It is further often true that biology suggests that if the chemical is toxic, then as the level of exposure 
is increased, the magnitude effect tends to increase. Depending on what response is measured, the effect of 
increasing exposure may show up as an increase or as a decrease in the measured response, but not both.  

The statistical model underlying this biological expectation is what is called a trend model or a model 
assuming monotonicity of the population means: 

µ0 W µ1 W µ2 W µ3 W. . . W µk (or with inequalities reversed) (Model 2) 
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The null and alternative hypotheses can then be stated as 

H02 : µ0 = µ1 = µ2 =…= µk    versus    H12 : µ0 W µ1 W µ2 W µ3 W. . . W µk , with µ0 > µk . 

Note that µ0 > µk is equivalent, under the alternative, to µ0> µi for at least one i. If this monotone model is 
accepted as representing the true responses of test organisms to exposure to toxicants, it is not possible for, 
say, µ3 to be smaller than µ0 , and µ6 not to be smaller. 

Under the trend model and tests designed for that model, if tests of hypotheses H02 vs. H12 reveal that µ3 is 
different from µ0, but µ2 is not, the NOEC has been determined (i.e. it is the test concentration associated with 
µ2), and there is no need to test whether µ1 differs from µ0. Also, finding that µ3 differs from µ0 implies that a 
significant trend exists across the span of doses including µ0 and µ3, the span including µ0 and µ4, and so on.  

For the majority of toxicological studies, a test of the trend hypothesis based on Model 2 is consistent with the 
basic expectations for a model for dose response. In addition, statistical tests for trend tend to be more 
powerful than alternative non-trend tests, and should be the preferred tests if they are applicable. Thus, a 
necessary early step in the analysis of results from a study is to consider each endpoint, decide whether a 
trend model is appropriate, and then choose the initial statistical test based on that decision. Only after it is 
concluded that trend is not appropriate, do specific pair-wise comparisons make sense to illuminate sources of 
variability. 

Toxicologists sometimes do not know whether a compound causes measurements of continuous variables 
such as growth or mass to increase or decrease, but they are confident it acts in only one direction. For such 
endpoints, the two-sided trend test is appropriate, described in 4.1.7. One difference between implementing 
step-down procedures for quantal data and continuous data is that two-sided tests are much more likely to be 
of interest for continuous variables. Such a model is rarely appropriate for quantal data, as only increased 
incidence rate above background (control) incidence are of interest in toxicology. 

The two-sided version of the step-down procedure is based on the underlying model: 

µ0 W µ1 W µ2 W µ3 W  . . .  W µk 

or 

µ0 u µ1 u µ2 u µ3 u . . . u µk. 

Under this model, in testing the hypothesis that all population means are equal against the alternative (that at 
least one inequality is strict), one first tests separately each one-sided alternative at the 0,025-level of 
significance with all doses present. 

⎯ If neither of these tests is significant, the NOEC is higher than the highest concentration. If both of these 
tests are significant, a trend-based procedure should not be used, as the direction of the trend is unclear. 

⎯ If exactly one of these tests with all the data is significant, then the direction of all further tests is in the 
direction of the significant test with all groups. 

Thereafter, the procedure is as in the one-sided test, except all tests are at the 0,025 significance level to 
maintain the overall 0,05 false positive rate. 

Where it is biologically sensible, it is preferable to test the one-sided hypothesis, because random variation in 
one direction can be ignored, and as a result, statistical tests of the one-sided hypothesis are more powerful 
than tests of the two-sided hypothesis. 

Note that a hypothesis test based on Model 2 assumes only a monotone dose response rather than a precise 
mathematical form, such as is required for regression methods (Clause 6) or the biology-based models 
(Clause 7). 
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5.1.4 Comparisons of single-step (pair-wise comparisons) or step-down trend tests to determine 
the NOEC 

5.1.4.1 General discussion 

In general, determining the NOEC for a study involves multiple tests of hypotheses (i.e. a family of hypotheses 
is tested), and either pair-wise comparisons of treatment groups, or a sequence of tests of the significance of 
trend. For these reasons, statisticians have developed tests to control the family-wise error rate, FWE (the 
probability that one or more of the null hypotheses in the family are rejected incorrectly), in the multiple 
comparisons performed to identify the NOEC.  

EXAMPLE For example, suppose one compares each of ten treatments to a common control using a simple t-test 
with a false positive error rate of 5 % for each comparison. Suppose further that none of the treatments has an effect, i.e. 
all of the treatment and control population means are equal. For each comparison, there is a 5 % chance of finding a 
significant difference between that sample treatment mean and the control. The chance that at least one of the ten 
comparisons is wrongly declared significant is much higher, possibly as high as 1 − 0,9510 = 0,4 or 40 %.  

The method of controlling the family-wise error rate has important implications for the power of the test. There 
are two approaches that are discussed: single-step procedures and step-down procedures. There are 
numerous variations within each of these two classes of procedures that are suited for specific data types, 
experimental designs and data distributions. 

A factor that shall be considered in selecting the methods for analysing the results from a study is whether the 
study is a dose-response experiment. In this context, a dose-response experiment is one in which treatments 
consist of a series of increasing doses of the same test material. Monotone responses from a dose-response 
experiment are best analysed using step-down procedures based on trend tests (e.g. the Cochran-Armitage, 
Williams, or Jonckheere-Terpstra trend test), whereas non-monotone responses shall be analysed by pair-
wise comparisons to the control (e.g. Fisher’s Exact test or Dunnett’s test). This subclause discusses when to 
use each of these two approaches. 

5.1.4.2 Single-step procedures 

Single-step procedures amount to performing all possible comparisons of treatment groups to the control. 
Multiple comparisons to the control may be made, but there is no ordered set of hypotheses to test, and no 
use of the sequence of outcomes in deciding which comparisons to make. Examples of the single-step 
approach include the use of the Fisher’s Exact test, the Mann-Whitney, Dunnett and Dunn tests. Since many 
comparisons to the control are made, some adjustment shall be made for the number of such comparisons to 
keep the family-wise error (FWE) rate at a fixed level, generally 0,05. With tests that are inherently single 
comparison tests, such as Fisher’s exact and Mann-Whitney, a Bonferroni adjustment can be made: a study 
with k treatment levels would be analysed by performing the pair-wise comparisons of each of the treatment 
groups to the control group, each performed at a significance level of α/k instead of α. (This is the Bonferroni 
adjustment.) Equivalently, the calculated p-value ignoring multiplicities is multiplied by k. That is, pb

i = k*pi. The 
Bonferroni adjustment is generally overly conservative, especially for large k. Modifications reduce the 
conservatism while preserving the FWE at 0,05 or less. 

For the Holm modification of the Bonferroni adjustment, arrange the k unadjusted p-values for all comparisons 
of treatments to control in rank order, i.e. p(1) u p(2) u p(3) u … u p(k) . Beginning with p(1), compare p(i) with 
α/(k − I + 1), stopping at the first non-significant comparison. If the smallest i for which p(i) exceeds α/(k − I + 1) 
is I = j, then all comparisons with I > j are judged non-significant without further comparisons. It is helpful 
(Wright, 1992) to report adjusted p-values rather than the above comparisons. Thus, report 
p*(1) = p(1)*(k − I + 1) and then compare each adjusted p-value to α. Table 2 illustrates the advantage of the 
Bonferroni-Holm method. In this hypothetical example, only the comparison of Treatment 4 with the control 
would be significant if the Bonferroni adjustment is used, whereas all comparisons except the comparison of 
the Control with Treatment 1 would be significant if the Bonferroni-Holm adjustment is used. 
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Table 2 — Comparison of adjusted and unadjusted p-values 

Comparison Unadjusted p 
value 

Bonferroni-Holm 
Adjusted p value 

p*(i) 

Bonferroni Adjusted p-
values 

Pb
 i 

Control – Treatment 4 p(1) = 0,002 0,002*4 = 0,008 0,002*4 = 0,008 

Control – Treatment 2 p(2) = 0,013 0,013*3 = 0,039 0,013*4 = 0,052 

Control – Treatment 3 p(3) = 0,020 0,020*2 = 0,040 0,02*4 = 0,08 

Control – Treatment 1 p(4) = 0,310 0,310*1 = 0,310 0,310*4 = 1 

Alternatives based on the Sidak inequality [each comparison at level 1 − (1 − α)k] are also available. The 
Bonferroni and Bonferroni-Holm adjustment guarantee that the family-wise error rate is less than α, but they 
are conservative. Other tests, such as Dunnett’s, have a “built-in” adjustment for the number of comparisons 
made and are less conservative (hence, more powerful). For completeness, it should be understood that if 
only one comparison is made, the Bonferroni and Bonferroni-Holm adjustments leave the p-value unchanged. 
Of course, there is no need to refer to an adjustment in this simple case, but the discussion becomes 
needlessly complicated if special reference is always made to the case of only one comparison. 

5.1.4.3 Step-down procedures 

Step-down procedures are generally preferred where they are applicable. All step-down procedures discussed 
are based on a sequential process consisting of testing an ordered set of hypotheses concerning means, 
ranks, or trend. A step-down procedure based on trend (for example) works as follows. 

⎯ First, the hypothesis that there is no trend in response with increasing dose is tested when the control and 
all dose groups are included in the test.  

⎯ Then, if the test for trend is significant, the high dose group is dropped from the data set, and the 
hypothesis that there is no trend in the reduced data set is tested.  

This process of dropping treatment groups and testing is continued until the first time the trend test is non-
significant. The highest dose in the reduced data set at that stage is then declared to be the NOEC. 
Distinguishing features of step-down procedures are that the tests of hypothesis shall be performed in a given 
order, and that the outcome of each hypothesis test is evaluated before deciding whether to test the next 
hypothesis in the ordered sequence of hypotheses. It is these two aspects of these procedures that account 
for controlling the family-wise error (FWE) rate. 

A step-down method typically uses a critical level larger than that used in single-step procedures, and seeks 
to limit the number of comparisons that need to be made. Indeed, the special class of “fixed-sequence” tests 
described below fix the critical level at 0,05 for each comparison but bound the FWE rate at 0,05. Thus, step-
down methods are generally preferable to the single-step methods as long as the response means are 
monotonic. 

Tests based on trend are logically consistent with the anticipated monotone pattern of responses in toxicity 
tests. Step-down procedures make use of this ordered alternative by ordering the tests of hypotheses. This 
minimizes the number of comparisons that need to be made, and in all the methods discussed here, a trend 
model is explicitly assumed (and tested) as a part of the procedure. 

Procedures that employ step-down trend tests have more power than procedures that rely on multiple pair-
wise comparisons when there is a monotone dose response because they make more use of the biology and 
experimental design being analysed. When there is a monotone dose response, procedures that compare 
single treatment means or medians against the control, independent of the results in other treatments (i.e. 
single-step procedures), ignore important and relevant information, and suffer power loss as a result. 

The trend models used in the step-down procedures do not assume a particular precise mathematical 
relationship between dose and response, but rather use only monotonicity of the dose-response relationship. 
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The underlying statistical model assumes a monotone dose response in the population means, not the 
observed means. 

Rejection of the null hypothesis (i.e. rejecting the hypothesis that all group means, or medians, or distributions 
are equal) in favour of the stated alternative implies that the high dose is significantly different from the control. 
The same logic applies at each stage in the step-down application of the test to imply, whenever the test is 
significant, that the high dose remaining at that stage is significantly different from the control. These tests are 
all applied in a one-sided manner with the direction of the alternative hypothesis always the same. Moreover, 
this methodology is general, and applies to any legitimate test of the stated hypotheses under the stated 
model. That is, one can use this fixed-sequence approach with the Cochran-Armitage test on quantal data, 
and the Jonckheere-Terpstra or Williams or Brown-Forsythe tests of trend on continuous data. Other tests of 
trend can also be used in this manner. 

5.1.4.4 Deciding between the two approaches  

Bauer (1997) has shown that certain tests based on a monotone dose response can have poor power 
properties or error rates when the monotone assumption is wrong. For example, departures from monotonicity 
in non-target plant data are common, where they arise from low dose stimulation. Davis and Svendsgaard 
(1990) suggest that departures from monotonicity may be more common than previously thought. These 
results suggest that a need for caution exists. There are two testing philosophies used to determine whether a 
monotone dose response is appropriate. Some recommend assessing in a general way for an endpoint or 
class of endpoints, whether a monotone dose response is to be expected biologically. If a monotone trend is 
expected, then trend methods are used. This procedure should be augmented, at a minimum, by adding that, 
if a cursory examination of the data shows strong evidence of departure from monotonicity (i.e. large, 
consistent departures), then pair-wise methods should be used instead. 

A second philosophy recommends formal tests to determine if there is significant monotonicity or significant 
departure from monotonicity. With continuous data, one can use either  

a) a positive test for monotonicity (such as Bartholomew’s test) and proceed only if there is evidence of 
monotonicity, or  

b) use a “negative” test for departure from monotonicity (such as sets of orthogonal contrasts for continuous 
responses and a decomposition of the Chi-squared test of independence for quantal responses) and 
proceed unless there is evidence of non-monotonicity.  

Details on these procedures are given in E.1 and E.3. Either philosophy is acceptable. The second approach 
is grounded in the idea that monotonicity is the rule, and that it should take strong evidence to depart from this 
rule. Both approaches reduce the likelihood of having to explain a significant effect at a low or intermediate 
concentration when higher concentrations show no such effect. The “negative” testing approach is more 
consistent with the way tests for normality and variance homogeneity are used and is more likely to result in a 
trend test than a method that requires a significant trend test to proceed. This is what is shown in the flow 
diagrams presented below. 

Formal tests for monotonicity are especially desirable in a highly automated test environment.  

One simple procedure that can be used in this situation for continuous responses is to construct linear and 
quadratic contrasts of normalized rank statistics (to avoid the complications that can arise from non-normal or 
heterogeneous data). If the linear contrast is not significant and the quadratic contrast is significant, there is 
evidence of possible non-monotonicity that calls for closer examination of the data or pair-wise comparison 
methods. Otherwise, a trend-based analysis is used.  

A less simple, but more elegant procedure would be to construct simultaneous confidence intervals for the 
mean responses assuming monotonicity (i.e. isotonic estimators based on maximum likelihood criteria; 
see E.3) and use a trend approach unless one or more sample (i.e. non-isotonic) means fall outside the 
associated confidence interval. For quantal data using the Cochran-Armitage test, there is a built-in test for 
lack of monotonicity. 
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Where expert judgement is used, formal tests for monotonicity or its lack may be replaced by visual inspection 
of the data, especially of the mean or median responses. The same concept applies to assessing normality 
and variance homogeneity. 

5.1.5 Dose metric in trend tests 

Various authors have evaluated the influence on trend tests of the different ways of expressing dose (i.e. dose 
metrics), including actual dose-values, log(dose), and equally-spaced scores (i.e. rank-order of doses). 
Lagakos and Lewis (1985) discuss various dose metrics and prefer the rank-order as a general rule. Weller 
and Ryan (1998) likewise prefer rank ordering of doses for some trend tests. 

When dose values are approximately equally spaced on a log scale, there is little difference between using 
log(dose) and rank-order, but use of actual dose values can have the unintended effect of turning a trend test 
into a comparison of high dose to control, eliminating the value of the trend approach and compromising its 
power properties. This is not an issue with some tests, such as the Jonckheere-Terpstra test discussed below, 
since rank-order of treatment groups is built into the procedure. With others, such as the Cochran-Armitage 
and contrast-based tests, it is an important consideration. 

Extensive computer simulations have been done (J.W. Green, in preparation) to compare the use of rank-
order to dose-value in the Cochran-Armitage test. One simulation study involved over 88 000 sets of dose-
response scenarios for 4- and 5-dose experiments found 12 % to 17 % of the experiments where the rank-
order scoring found lower NOEC than dose-value did, and only 1 % of the experiments where dose-value 
scores led to a lower NOEC than when the rank-order scores were used. In the remaining cases, the two 
methods established the same NOEC. While these simulations results do not, by themselves, justify the use 
of rank-order over actual dose levels or their logarithms, they do suggest that use of rank-order does not 
lessen the power of statistical tests. All trend-based tests discussed in this Technical Specification, including 
contrast tests for monotonicity, are based on rank ordering of doses. 

5.1.6 Role of power in toxicity experiments 

The adequacy of an experimental design and the statistical test used to analyse study results are often 
evaluated in terms of the power of the statistical test. Power is defined as the probability that a false null 
hypothesis is rejected by the statistical test in favour of a true alternative. That power depends on the 
alternative hypothesis. In the context of toxicology, the larger the effect, the higher the power to detect that 
effect. So, if a toxicant has had some effect on the organisms in a toxicity test, power is the probability that a 
difference between treatment groups and the control is detected. The power of a test can be calculated if we 
know the size of the effect to be detected, the variability of the endpoint measured, the number of treatment 
groups, and the number of replicates in each treatment group. (Detailed discussions are given in 5.2 and 5.3 
and E.1 and E.3). 

It should be understood that the goal of selecting a method for determining an NOEC is not to find the most 
powerful method. Rather, the focus should be on selecting methods most appropriate for the data and end 
result. Power is certainly an ingredient in this selection process. As discussed below, power can be used in 
designing experiments and selecting statistical tests to reduce animal use without loss of statistical power. 
This can be accomplished by selecting an inherently more powerful test applied to fewer animals, so that the 
result is to retain the power of more traditional tests but use fewer animals. 

The primary use of power analysis in toxicity studies is in the design stage. By demonstrating that a study 
design and test method have adequate power to detect effects that are large enough to be deemed important, 
if we then find that, at a given dose, there is no statistically significant effect, we can have some confidence 
that there is no effect of concern at that dose. However, power does not quantify this confidence. Failure to 
adequately design or control an experiment so that statistical tests have adequate power can result in large 
effects being found to be statistically insignificant. On the other hand, it is also true that a test can be so 
powerful that it finds statistically significant effects of little importance. 

Deciding on what effect size should be considered to be large enough to be important is difficult, and may 
depend on both biological and regulatory factors. In some cases, the effect size may be selected by regulatory 
agencies or specified in guidelines. 
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A requirement to demonstrate an adequate power to detect effects of importance removes any perceived 
reward for poor experimental design or technique, as poor experimental design is shown to have low power to 
detect important effects, and leads to the selection of more powerful statistical tests and better designs. The 
latter is preferable to the alternative of increasing sample sizes. Indeed, it is sometimes possible to find 
statistical procedures with greater power to detect important differences or provide improved estimates and 
simultaneously decrease sample sizes. 

For design purposes, the background variance can be taken to be the pooled within-experiment variance from 
a moving frame of reference from a sufficiently long period of historical control data with the same species and 
experimental conditions. The time-window covered by the moving frame of reference should be long enough 
to average out noise without being so long that undetected experimental drift is reflected in the current 
average. If available, a three-to-five year moving frame of reference might be appropriate. When experiments 
shall be designed using more limited information on variance, it may be prudent to assume a slightly higher 
value than what has been observed. Power calculations used in designs for quantal endpoints shall take the 
expected background incidence rate into account for the given endpoint, as both the Fisher Exact and 
Cochran-Armitage tests are sensitive to this background rate, with highest power achieved for a zero 
background incidence rate. The background incidence rate can be taken to be the incidence rate in the same 
moving frame of reference already mentioned. 

While at the design stage, power shall, of necessity, be based on historical control data for initial variance 
estimates, it may also be worthwhile to do a post-hoc power analysis as well to determine whether the actual 
experiment is consistent with the criteria used at the design stage. Care shall be taken in evaluating post-hoc 
power against design power. Experiment-to-experiment variation is expected and variance estimates are more 
variable than means. The power determination based on historical control data for the species and endpoint 
being studied should be reported. 

Alternatively, for experimental designs constructed to give an acceptable power based on an assumed 
variance rather than on historical control data, a post-hoc test can be done to compare the observed variance 
to the variance used in designing the experiment. If this test finds significantly higher observed variance (e.g. 
based on a Chi-squared or F-test) than that used in planning, then the assumptions made at design time may 
need to be reassessed. 

5.1.7 Experimental design 

Factors that shall be considered when developing experimental designs include the number and spacing of 
doses or exposure levels, the number of subjects per dose group, and the nature and number of subgroups 
within dose groups. Decisions concerning these factors are made so as to provide adequate power to detect 
effects that are of a magnitude deemed biologically important. 

The choice of test substance concentrations is one aspect of experimental design that shall be evaluated for 
each individual study. The goal is to bracket the NOEC with concentrations that are as closely spaced as 
practical. If limited information on the toxicity of a test material is available, test concentrations or doses can 
be selected to cover a range somewhat greater than the range of exposure levels expected to be encountered 
in the field and should include at least one concentration expected not to have a biologically important effect. If 
more information is available this range may be reduced, so that doses can be more closely spaced. Where 
effects are expected to increase approximately in proportion to the log of concentration, concentrations should 
be approximately equally spaced on a log scale. Three to seven concentrations plus concomitant controls are 
suggested, with the smaller experiment size typical for acute tests and larger experiment sizes most 
appropriate when preliminary dose finding information is skimpy. 

The trade-off between number of subjects per subgroup and number of subgroups per group should be based 
on power calculations using historical control data to estimate the relative magnitude of within- and among- 
subgroup variation and correlation. If there are no subgroups, then there is no way to distinguish housing 
effects from concentration effects and neither between- and within-group variances nor correlations can be 
estimated, nor is it possible to apply any of the statistical tests described for continuous responses to 
subgroup means other than the Jonckheere-Terpstra test. Thus, a minimum of two subgroups per 
concentration is recommended; three subgroups are much better than two; four subgroups are better than 
three. The improvement in modelling falls off substantially as the number of subgroups increases beyond four. 
(This can be understood on the following grounds. The modelling is improved if we get better estimates of 
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both among- and within-subgroup variances. The quality of a variance estimate improves as the number of 
observations on which it is based increases. Either sample variance has, at least approximately, a Chi-
squared distribution. The quality of a variance estimate can be measured by the width of its confidence 
interval and a look at a Chi-squared table verifies the statements made.) The precise needs for a given 
experiment depend on factors such as the relative and absolute size of the between- and within-replicate 
variances. Examples 1 and 2 in Annex E.3 illustrate the trade-offs between replicates per concentration and 
subjects per replicate. 

In any event, the number of subgroups per concentration and subjects per subgroup should be chosen to 
provide adequate power to detect an effect of magnitude judged important to detect. This power determination 
should be based on historical control data for the species and endpoint being studied. 

Since the control group is used in every comparison of treatment to control, consideration should be given to 
allocating more subjects to the control group than to the treatment groups in order to optimize power for a 
given total number of subjects. The optimum allocation depends on the statistical test to be used. A widely 
used allocation rule was given by Dunnett (1955), which states that for a total of N subjects and k treatments 
to be compared to a common control, if the same number, n, of subjects are allocated to every treatment 
group, then the number, n0, to allocate to the control to optimize power is determined by the so-called square-
root rule. By this rule, the value of n is (the integer part of) the solution of the equation N = kn + n√k, and 
n0 =   − kn. (It is almost equivalent to say n0 = n√k.) This has been shown to optimize power for Dunnett’s test. 
It is used, often without formal justification, for other pair-wise tests, such as the Mann-Whitney and Fisher 
exact tests. Williams (1972) showed that the square-root rule may be somewhat sub-optimal for his test and 
optimum power is achieved when √k in the above equation is replaced by something between 1,1√k and 1,4√k. 

The optimality of the square-root rule to other tests, such as Jonckheere-Terpstra and Cochran-Armitage has 
not been published in definitive form, but simulations (manuscript in preparation by J.W. Green) show that for 
the step-down Jonckheere-Terpstra test, power gains of up to 25 % are common under this rule compared to 
results from equal sample sizes. In all the cases examined, the power is greater following this rule compared 
to equal sample sizes, where the total sample size is held constant. In the absence of definitive information on 
the Jonckheere-Terpstra and other tests, it is probably prudent to follow the square-root rule for pair-wise, 
Jonckheere-Terpstra and Cochran-Armitage tests and either that or Williams’ modification of the rule for other 
step-down procedures. 

The selection of an allocation rule is further complicated in experiments where two controls are used, since if 
the controls are combined for further testing, a doubling of the control sample size is already achieved. Since 
experience suggests that most experiments find no significant difference between the two controls, the 
optimum strategy for allocating subjects is not necessarily immediately clear. This of course would not apply if 
a practice of pooling of controls is not followed. 

The reported power increases from allocating subjects to the control group according to the square-root rule 
do not consider the effect of any increase in variance as concentration increases. One alternative, not without 
consequences in terms of resources and treatment of animals, is to add additional subjects to the control 
group without subtracting from treatment groups. There are practical reasons for considering this, since a 
study is much more likely to be considered invalid when there is loss of information in the controls than in 
treatment groups. 

5.1.8 Treatment of covariates and other adjustments to analysis 

It is sometimes necessary to adjust the analysis of toxicity data by taking into account some restriction on 
randomization, compartmentalization (housing) or by taking into account one or more covariates that might 
affect the conclusions.  

EXAMPLE Examples of potential covariates include: initial body masses, initial plant heights and age at start of test.  

While a thorough treatment of this topic is not presented, some attention to this topic is in order. 

For continuous, normally distributed responses with homogeneous variances, analysis of covariance 
(ANCOVA) is well developed. Hocking (1985) and Milliken and Johnson (1984) are among the many 
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references on this topic. For continuous responses that do not meet the normality or homogeneity 
requirements, non-parametric ANCOVA is available. 

Shirley (1981) indicates why non-parametric methods are needed in some situations. Stephenson and 
Jacobson (1988) contain a review of papers on the subject up to 1988. Subsequent papers include Wilcox 
(1991) and Knoke (1991). Stephenson and Jacobson recommend a procedure that replaces the dependent 
variable with ranks but retains the actual values of the independent variable(s). This has proved useful in 
toxicity studies. Seaman et al. (1985) discuss power characteristics of some non-parametric ANCOVA 
procedures. 

When the response variable is quantal and is assumed to follow the binomial distribution, ANCOVA can be 
accomplished through logistic regression techniques. In this case, the covariate is a continuous regressor 
variable and the dose groups are coded as “dummy variables”. This approach can be more generally 
described in the Generalized Linear Model (GLM) framework (McCullagh and Nelder 1989). For quantal data, 
Koch et al. (1998), Thall and Vail (1990), Harwell and Serlin (1988), Tangen and Koch (1999a, 1999b) 
consider some relevant issues. 

Adjustments shall be made to statistical methods when there are restrictions on randomization of subjects 
such as housing of subjects together. This is discussed for both quantal and continuous data in 5.2.2.5, 5.2.3, 
and 5.3.7.1, where the possibility of correlations among subjects housed together is considered, as are 
strategies for handling this problem. In the simple dose-response designs being discussed in this clause, other 
types of restrictions on randomization are less common. However, there is a large body of literature on the 
treatment of blocking and other issues that can be consulted. Hocking (1985) and Milliken and Johnson (1984) 
contain discussions and additional references. 

Transformation of the doses (i.e. not response measures) in hypothesis testing is restricted, in this clause, to 
the use of rank order of the doses. For many tests, the way that dose values (actual or rank order) are 
expressed has no effect on the results of analysis. An exception is the Cochran-Armitage test. (See E.1.) 

5.2 Quantal data (e.g. mortality, survival) 

5.2.1 Hypothesis testing with quantal data to determine NOEC values 

In this clause, the selection of methods and experimental designs for determining NOEC values focuses on 
identifying the tests most appropriate for detecting effects. The appropriateness of a given method hinges on 
the design of the experiment and the pattern of responses of the experimental units. Figure 3 illustrates an 
appropriate scheme for method selection, and identifies several statistical methods that are described in detail 
below. There are, of course, other statistical procedures that might be chosen. The following discussion 
identifies many of the procedures that might be used, gives details of some of the most appropriate, and 
attempts to provide some insight into the strengths and weaknesses of each method. 

If there are two negative controls (i.e. solvent and non-solvent), Fisher’s Exact test, applied just to the two 
controls, is used to determine whether the two groups differ wherever it is appropriate to analyse individual 
sampling units. Where replicate means or medians are the unit for analysis, the Mann-Whitney rank sum test 
can be used. Further discussion of when each approach is appropriate is given in 5.2.2 and 5.2.2.4. 4.2.5 
contains discussions of issues regarding multiple controls in an ecotoxicity study.  

Figure 3 identifies a number of powerful methods for the analysis of quantal data. There are, of course, other 
statistical procedures that might be chosen. The following discussion identifies many of the procedures that 
might be used, gives details of some of the most appropriate, and attempts to provide some insight into the 
strengths and weaknesses of each method. 

The methods used for determining NOEC values on quantal data can be categorized according to whether the 
tests involved are parametric or non-parametric and whether the methods are single-step or step-down. 
Table 3 lists methods that can be used to determine NOEC values. Some of these methods are applicable 
only under certain circumstances, and some methods are preferred over the others. 

Except for the two Poisson tests, those tests listed in the column “Parametric” can be performed only when 
the study design allows the proportion of organisms responding in replicated experimental units to be 
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calculated (i.e. there are multiple organisms within each of multiple test vessels within each treatment group). 
Such a situation yields multiple responses, namely proportions, for each concentration, and these proportions 
can often be analysed as continuous. For very small samples, such a practice is inappropriate. 

Typically, if responses increase or remain constant with increasing dosage, the trend-based methods perform 
better than pair-wise methods, and for most quantal data, a step-down approach based on the Cochran-
Armitage test is the most appropriate of the listed techniques. The strengths and weaknesses of most listed 
methods are discussed in more detail below. 

Table 3 — Methods used for determining NOEC values with quantal data  

Method Parametric Non-Parametric 

Single-step a   
(pair-wise) 

Dunnett 
Poisson comparisons 

Mann-Whitney c  with Bonferroni-Holm correction 
Chi-squared with Bonferroni-Holm correction 
Steel’s Many-to-One 
Fisher’s Exact test with Bonferroni-Holm correction 

Step-down b   
(trend-based) 

Poisson trend  
Williams 
Bartholomew 
Welsch 
Brown-Forsythe 
Sequences of linear contrasts 

Cochran-Armitage 
Jonckheere-Terpstra test 
Mantel-Haenszel 

NOTE The tests listed in this table are well established as tests of the stated hypothesis in the statistics literature. 

a All listed single-step methods are based on pair-wise comparisons. 
b All step-down methods are based on trend tests. 
c The Mann-Whitney test is identical to the Wilcoxon rank-sum test. 

5.2.2 Parametric versus non-parametric tests 

5.2.2.1 Basis 

Parametric tests are based on assumptions that the responses being analysed follow some given theoretical 
distribution. Except for the Poisson methods, the tests listed in Table 3 as parametric all require that the data 
be approximately normally distributed (possibly after a transformation).The normality assumption can be met 
for quantal data only if the experimental design includes treatment groups that are divided into subgroups, the 
quantal responses are used to calculate proportions responding in each of the subgroups, and these 
proportions are the observations analysed. These proportions are usually subjected to a normalizing 
transformation (see 4.3.2, 4.3.3 and 4.3.4), and a weighted ANOVA is performed, perhaps with weights 
proportional to subgroup sizes (Cochran 1943). (It is noteworthy that some statistical packages, such as SAS 
version 67) , do not always perform multiple comparisons within a weighted ANOVA correctly.) This approach 
limits the possibilities of doing trend tests to those based on contrasts, including Welsch and Brown-Forsythe 
tests (Roth 1983, Brown and Forsythe 1974). Non-trend tests include versions of Dunnett’s test for pair-wise 
comparisons allowing for unequal variances (Dunnett 1980, Tamhane 1979). These methods may not perform 
satisfactorily for quantal data, partly due to a loss of power in analysing subgroup proportions. An example is 
given in E.1. 

The Cochran-Armitage test is listed as non-parametric, even though it makes explicit use of a presumed 
binomial distribution of incidence within treatment groups. Some reasons for this are given in E.1. Fisher’s 
Exact test is likewise listed as non-parametric, even though it is based on the geometric distribution. The 
Jonckheere-Terpstra test applied to subgroup proportions is certainly non-parametric. An advantage of 
Jonckheere-Terpstra over the cited parametric tests is that the presence of many zeros poses no problem for 

                                                      

7) SAS version 6 is an example of a suitable product available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of this product. 
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the analysis and it provides a powerful step-down procedure in both large- and small-sample problems, 
provided the number of subgroups per concentration is not too small. An example in E.3 illustrates this 
concern. 

5.2.2.2 Single-step procedures 

Suitable single-step approaches for quantal data are Fisher’s Exact test and the Mann-Whitney test to 
compare each treatment group to the control, independently of other treatment groups, with a Bonferroni-Holm 
adjustment. Details of these tests are given in E.1. 

5.2.2.3 Step-down procedures 

5.2.2.3.1 Choice of step-down procedure 

Suitable step-down procedures for quantal data are based on the Cochran-Armitage and Poisson trend tests. 
First, a biological determination is made whether or not to expect a monotone dose response.  

⎯ If that judgement is to expect monotonicity, then the step-down procedure described below is followed, 
unless the data strongly indicate non-monotonicity.  

⎯ If the judgement is not to expect monotonicity, then Fisher’s Exact test is used. 

An analysis of quantal data is based on the relationships between the response (binary) variable and factors. 
In such cases, the Pearson Chi-squared (χ2) test for independence can be used to find if any relationships 
exist. 

5.2.2.3.2 Test for monotone dose response 

If one believes on biological grounds that there is a monotone dose response, then the expected course of 
action is to use a trend test. However, statistical procedures should not be followed mindlessly. Rather, one 
should examine the data to determine whether it is consistent with the plan of action. There is a simple and 
natural way to check whether the dose response is monotone.  

The k − 1 df Pearson Chi-squared statistic decomposes into a test for linear trend in the dose response and a 
measure of lack of fit or lack of trend, 

2 2 2
1 (1) 2(k ) (k )χ χ χ− −= +  

where  

χ2(1) is the 1 df calculated Cochran-Armitage linear trend statistic; and  

χ2(k − 2) is the k − 2 df Chi-squared test statistic for lack of fit.  

The details of the computations are provided in E.1. 

If the trend test is significant when all doses are included in the test, then proceed with a trend-based step-
down procedure.  

If the trend test with all doses included is not significant but the test for lack of fit is significant, then this 
indicates that there are differences among the dose groups but the dose response is not monotone. In this 
event, even if we expected a monotone dose response biologically, it would be unwise to ignore the contrary 
evidence and one should proceed with a pair-wise analysis. 
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The Cochran-Armitage trend test is available in several standard statistical packages including SAS and 
StatXact8). StatXact also provides exact power calculations for the Cochran-Armitage trend test with equally 
spaced or arbitrary doses. 

5.2.2.3.3 Analysing the monotonic response for quantal data — Step-down procedure 

A suitable approach to analysing the monotonic response for quantal data is as follows. 

⎯ Perform a Cochran-Armitage test for trend on responses from all treatment groups including the control. 

⎯ If the Cochran-Armitage test is significant at the 0,05 level, omit the high dose group, re-compute the 
Cochran-Armitage and Chi-squared tests with the remaining dose groups. 

⎯ Continue this procedure until the Cochran-Armitage test is first non-significant at the 0,05 level. 

⎯ The highest concentration remaining at this stage is the NOEC. 

5.2.2.3.4 Possible modifications of the step-down procedure  

There are two possible modifications to consider to the above.  

First, as noted by Cochran (1943), Fisher’s Exact test is more powerful for comparing two groups than the 
Cochran-Armitage test when the total number of subjects in the two groups is less than 20 and also when that 
total is less than 40 and the expected frequency of any cell is less than 5. This includes most laboratory 
ecotoxicology experiments. For this reason, if the step-down procedure described above reaches the last 
possible stage, where all doses above the lowest tested dose are significant, then we can substitute Fisher’s 
Exact test for Cochran-Armitage for the final comparison on the grounds that it is a better procedure for this 
single comparison. Such substitution does not alter the power characteristics or theoretical justification of the 
Cochran-Armitage test for doses above the lowest dose, but it does improve the power of the last comparison. 

Second, if the step-down procedure terminates at some higher dose because of a non-significant Cochran-
Armitage test, but there is at this stage a significant test for lack of monotonicity, one should consider 
investigating the lower doses further. This can be done by using Fisher’s Exact test to compare the remaining 
dose groups to the control, with a Bonferroni-Holm adjustment. The Bonferroni-Holm adjustment would take 
into account only the number of comparisons actually made using Fisher’s Exact test. The inclusion of a 
method within the step-down procedure to handle non-monotonic results at lower doses is suggested for 
quantal data (but not for continuous data) for two reasons.  

⎯ First, there is a sound procedure built into the decomposition of the Chi-squared test for assessing 
monotonicity that is directly related to the Cochran-Armitage test.  

⎯ Secondly, experience suggests that quantal responses are more prone to unexpected changes in 
incidence rates at lower doses than continuous responses, so that a strict adherence to a pure step-down 
process may miss some adverse effects of concern. 

5.2.2.4 Alternative procedures 

5.2.2.4.1 Parametric and non-parametric procedures 

The following parametric and non-parametric procedures are discussed because under some conditions, a 
parametric analysis of subgroup proportions may be the only viable procedure. This is especially true if there 
are also significant differences in the number of subjects within each subgroup, making analysis of means or 
medians problematic by other methods. 

                                                      

8) SAS and StatXact are examples of suitable products available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these products. 
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5.2.2.4.2 Pair-wise ANOVA-based methods 

Pair-wise ANOVA-based (weighted by subgroup size) methods performed on proportion affected have 
sometimes been used to determine NOEC values. While there can be problems with these proportion data 
meeting some of the assumptions of ANOVA (e.g. variance homogeneity), performing the analysis on 
proportion affected opens up the gamut of ANOVA-type methods, such as Dunnett’s test and methods based 
on contrasts. Failure of data to satisfy the assumption of homogeneity of variances can often be corrected by 
the use of an arcsine-square-root or other normalizing and variance stabilizing transformation. However, this 
approach tends to have less power than step-down methods designed for quantal data that are described 
above, and is especially problematic for very small samples. These ANOVA-based methods may not be very 
powerful and are not available if there are not distinct subgroups of multiple subjects each within each 
concentration. Williams’ test is a trend alternative that can be used, when data are normally distributed with 
homogeneous variance. 

5.2.2.4.3 Jonckheere-Terpstra trend test 

A non-parametric trend test that can be used to analyse proportion data is the Jonckheere-Terpstra trend test, 
which is intended for use when the underlying response on each subject is continuous and the measurement 
scale is at least ordinal. The most common application in a toxicological setting is for measures such as size, 
fecundity and time to an event. The details of this and other tests that are intended for use with continuous 
responses are given in 5.3. A disadvantage of the use of the Jonckheere-Terpstra trend test for analysing 
subgroup proportions where sample sizes are unequal is that it does not take sample size into account. It is 
not proper to treat a proportion based on 2 animals with the same weight as one based on 10, for example. 
For most toxicology experiments where survival is the endpoint, the sample sizes are equal, except for a rare 
lost subject, so this limitation is often of little importance. Where a sub-lethal effect on surviving subjects is the 
endpoint, then this is a more serious concern. 

The methods described in Table 4 are sometimes used but tend to be less powerful than the ones designed 
for quantal data given in Table 3. They are appropriate only if responses of organisms tested are independent, 
and there is not significant heterogeneity of variances among groups (i.e. within-group variance does not vary 
significantly among groups). If there is a lack of independence or significant heterogeneity of variances, then 
modifications are needed. Some such modifications are discussed below. In the ANOVA context, a robust 
ANOVA (e.g. Welch's variance-weighted one-way ANOVA) that does not assume variance homogeneity can 
be used. 

5.2.2.4.4 Poisson tests 

Poisson tests can be used as alternatives in both non-trend and trend approaches (see Annex E.1). A robust 
Poisson approach (Weller and Ryan, 1998) using dummy variables for groups, or multiple Mann-Whitney tests 
using subgroup proportions as the responses could be used. In each case, an adjustment for number of 
comparisons should be made. For the robust Poisson model, this would be of the Bonferroni-Holm type. For 
the Mann-Whitney test, the Bonferroni-Holm adjustment could be used or these pair-wise comparisons could 
be “protected” by requiring a prior significant Kruskal-Wallis test (i.e. an overall rank-based test of whether any 
group differs from any other). It should be noted that the Mann-Whitney approach does not take subgroup size 
into account, but this is usually not an issue for survival data. 

5.2.2.5 Assumptions of methods for determining NOEC values 

The assumptions that shall be met for the listed methods for determining NOEC values vary according to the 
methods. Assumptions common to all methods are given below, while others apply only to specific methods. 
The details on the latter are given in E.1. 

Assumption: Responses are independent. 

All methods listed in Table 4 are based on the assumption that responses are independent observations. 
Failure to meet this assumption can lead to highly biased results. If organisms in a test respond independently, 
they can be treated as binomially distributed in the analysis. (See 4.2.4 for further discussion.) It is not 
uncommon in toxicology experiments for treatment groups to be divided into subgroups.  
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For example, an aquatic experiment may have subjects exposed to the same nominal concentration but 
grouped in several different tanks or beakers. It sometimes happens that the survival rate within these 
subgroups varies more from subgroup to subgroup than would be expected if the chance of dying were the 
same in all subgroups. This added variability is known as extra-binomial (or extra-Poisson) variation, and is an 
indication that organisms in the subgroups are responding to different levels of an uncontrolled experimental 
factor (e.g. subgroups are exposed to differing light levels or are being held at differing temperatures) and are 
not responding independently. In this situation, correlations among subjects shall be taken into account.  

For quantal responses, an appropriate way to handle this is to analyse the subgroup responses; that is, the 
subgroups are considered to be the experimental unit (replicate) for statistical analysis. Note that lack of 
independence can arise from at least two sources: differences in conditions among the tanks and interactions 
among organisms. 

With mortality data, extra-binomial variation (heterogeneity) is not a common problem, but it is still advisable to 
do a formal or visual check. Two formal tests are suggested: a simple Chi-squared test and an improved test 
of Potthoff and Whittinghill (1966). Both tests are applied to the subgroups of each treatment group, in 
separate tests for each treatment group. While these authors do not suggest one, an adjustment for the 
number of such tests (e.g. Bonferroni) is advisable. It should be noted also that the Chi-squared test can 
become undependable when the number of expected mortalities in a Chi-squared cell is less than five. In this 
event, an exact permutation version of the Chi-squared test is advised and is available in commercially 
available software, such as StatXact and SAS. 

If organisms are not divided into subgroups, lack of independence cannot be detected easily, and the burden 
for establishing independence falls to biological argument. If there is a high likelihood of aggression or 
competition between organisms during the test, responses may not be independent, and this possibility should 
be considered before assigning all organisms in a test level to a single test chamber. 

It should be noted that even if subgroup information is entered separately, a simple application of the 
Cochran-Armitage test ignores the between-subgroup (i.e. within-group) variation and treats the data as 
though there were no subgrouping. This is inappropriate if heterogeneity among subgroups is significant. The 
same is true of simple Poisson modelling.  

Thus, if significant heterogeneity is found, an alternative analysis is advised. One in particular deserves 
mention. This is a modification of the Cochran-Armitage test developed by Rao and Scott (1992) that is simple 
to use and is appropriate when there is extra-binomial variation. The beta-binomial model of Williams (1975) is 
another modification of the Cochran-Armitage tests that allows for extra-binomial variation. If the Jonckheere-
Terpstra test is used, there is no adjustment (or any need to adjust) for extra-binomial variation, as that 
method makes direct use of the between-subgroup variation in observed proportions. However, as pointed out 
above, if there is considerable variation in subgroup sizes, this approach suffers by ignoring sample size. 

Treatment of multiple controls 

If both a solvent and water control are included in the experiment, a preliminary test can be done comparing 
just the two controls as a step in deciding how to interpret the experimental data. For quantal (e.g. mortality) 
data, Fisher’s Exact test is appropriate. The decision of how to proceed after this comparison of controls is 
given in 4.2.5. 

5.2.3 Additional information 

E.1 contains details of the principle methods discussed in 5.2, including examples.  

E.2 contains a discussion of the power characteristics of the step-down Cochran-Armitage test and Fisher's 
exact test.  

5.3 and E.3 contain discussions of the methods for continuous responses that can be used to analyse 
subgroup proportions, as discussed above. 
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5.2.4 Statistical items to be included in the study report 

The report describing quantal study results and the outcome of the NOEC determination should contain the 
following items: 

⎯ test endpoint assessed; 

⎯ number of test groups; 

⎯ number of subgroups within each group (if applicable); 

⎯ identification of the experimental unit; 

⎯ nominal and measured concentrations (if available) for each test group; 

⎯ number exposed in each treatment group (or subgroup if appropriate); 

⎯ number affected in each treatment group (or subgroup if appropriate); 

⎯ proportion affected in each treatment group (or subgroup if appropriate); 

⎯ confidence interval for the percent effect at the NOEC, provided that the basis for the calculation is 
consistent with the distribution of observed responses (see E.3); 

⎯ p value for test of homogeneity if performed; 

⎯ name of the statistical method used to determine the NOEC; 

⎯ the dose metric used; 

⎯ the NOEC; 

⎯ p value at the LOEC (if applicable); 

⎯ design power of the test to detect an effect of biological importance (and what that effect is) based on 
historical control background and variability; 

⎯ actual power achieved in the study; 

⎯ plot of response data versus concentration. 

5.3 Hypothesis testing with continuous data (e.g. mass, length, growth rate) to determine 
NOEC 

5.3.1 General 

Figure 3 provides a scheme for determining NOEC values for continuous data, and identifies several statistical 
methods that are described in detail below. As reflected in this flow-chart, continuous monotone 
dose-response data are best analysed using a step-down test based on the Jonckheere trend test or Williams 
test (the former applicable regardless of the distribution of the data, the latter applicable only if data are 
normally distributed and variances of the treatment groups are homogeneous). 
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Non-monotonic dose-response data should be assessed using an appropriate pair-wise comparison 
procedure. Several such are described below. They can be categorized according to whether the data are 
normally distributed or homogeneous. 

⎯ Dunnett’s test is appropriate if the data are normally distributed with homogeneous variance.  

⎯ For normally distributed but heterogeneous data, the Tamhane-Dunnett (T3) method (Hochberg and 
Tamhane 1987) can be used. Alternatively, such data can be analysed by the Dunn, Mann-Whitney, or 
unequal variance t-tests with a Bonferroni-Holm correction.  

⎯ Non-normal data can be analysed by using Dunn or Mann-Whitney tests with a Bonferroni-Holm 
correction. 

⎯ Normality can be formally assessed using the Shapiro-Wilk test (Shapiro and Wilk 1965). 

⎯ Homogeneity of variance is assessed by Levene’s test (Box 1953).  

⎯ Dunn’s test, if used, should be configured only to compare groups to control.  

All of these procedures are discussed in detail below. Alternatives exist to these if the software used does not 
include these more desirable tests. For normality, the Anderson-Darling, Kolmogorov-Smirnov, Cramér-von 
Mises, Martinez-Iglewicz and D’Agostino Omnibus tests are available. For variance homogeneity, Cochran’s 
Q, Bartlett’s and the Maximum F tests can be used. The tests described in detail in this clause are 
recommended where available, based on desirable statistical properties. 

There are, of course, a number of statistical procedures that are not listed in Figure 3 that might also be 
applied to continuous data. The following discussion identifies many of the procedures that might be used, 
and attempts to provide some insight into the strengths and weaknesses of each. 

Table 4 lists methods that are sometimes used to determine NOEC values. Some of these methods are 
applicable only under certain circumstances, and some methods are preferred over the others. Parametric 
tests listed are performed only when the distribution of the data to be analysed is approximately normally 
distributed. Some parametric methods also require that the variances of the treatment groups be 
approximately equal. 

Table 4 — Methods used for determining NOEC values with continuous data 

Method Parametric Non-Parametric 

Single-step a   
(pair-wise) 

Dunnett 
Tamhane-Dunnett 

Dunn 
Mann-Whitney with Bonferroni-Holm correction 

Step-down b   
(trend-based) 

Williams 
Bartholomew 
Welch trend 
Brown-Forsythe trend 
Sequences of linear contrasts 

Jonckheere-Terpstra 
Shirley 

a All listed single-step methods are based on pair-wise comparisons. 
b All step-down methods are based on trend tests. 

5.3.2 Parametric versus non-parametric tests 

The parametric tests listed in Table 4, all require that the data be approximately normally distributed. Many 
also require that the variances of the treatment groups be equal (exceptions are the Tamhane-Dunnett, Welch 
and Brown-Forsythe tests). Parametric tests are desirable when these assumptions can be met. The failure of 
the data to meet assumptions can sometimes be corrected by transforming the data (see 4.3.4).  
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Some non-parametric tests are almost as powerful as their parametric counterparts when the assumptions of 
normality and homogeneity of variances are met. The non-parametric tests may be much more powerful if the 
assumptions are not met. Furthermore, a test based on trend is generally more powerful than a pair-wise test.  

A decision to use a parametric or non-parametric test should be based on which best describes the physical, 
biological and statistical properties of a given experiment. 

Piegorsch and Bailer (1997) warn that use of the Jonckheere-Terpstra test requires that shapes of 
distributions or the response variable be equivalent. In many cases, this translates to requiring that the 
response variable have a common variance. They conclude the applicability of the Jonckheere-Terpstra test is 
brought into question when there are large disparities in variances. While the Jonckheere-Terpstra test 
discussed in detail below is a distribution-free trend test, that fact alone does not mean that its results are not 
susceptible to heterogeneity of variance. While most people who have investigated the usual non-parametric 
methods find them less sensitive to these problems than the usual parametric procedures, they are not 
impervious to these problems. To address this question, a large power simulation study has been carried out 
(J.W. Green, manuscript in preparation) comparing the effects of variance heterogeneity on the Jonckheere, 
Dunnett, and Tamhane-Dunnett tests. These simulations have shown the Jonckheere test to be much less 
affected by heterogeneity than the alternatives indicated and to lose little of its good power properties. 

Heterogeneity and non-normality are inherent in some endpoints, such as first or last day of hatch or swim up. 
There is observed zero within-group variance in the control and lower concentrations quite often and non-zero 
variance in higher concentrations. No transformation makes the data normal or homogeneous. It may be 
possible to apply some generalized linear model with a discrete distribution to such data, but that is not 
addressed in this clause. 

5.3.3 Single-step (pair-wise) procedures 

5.3.3.1 General 

These tests are used when there is convincing evidence (statistical or biological) that the dose response is not 
monotone. This evidence can be through formal tests or through visual inspection of the data, as discussed 
in 5.3.4. Pair-wise procedures are also appropriate when there are differences among the treatments other 
than dose, such as different chemicals or formulations. These tests are described briefly here. Details of each 
test, including mathematical description, power, assumptions, advantages and disadvantages, relevant 
confidence intervals, and examples are discussed in E.3. 

5.3.3.2 Dunnett's test 

Dunnett’s test is based on simple t-tests from ANOVA but uses a different critical value that controls the 
family-wise error (FWE) rate for the k – 1 comparisons of interest at exactly α. Each treatment mean is 
compared to the control mean. This test is appropriate for responses that are normally distributed with 
homogeneous variances and is widely available. 

5.3.3.3 Tamhane-Dunnett test 

Also known as the T3 test, this is similar in intent to Dunnett’s test but uses a different critical value and the 
test statistic for each comparison uses only the variance estimates from those groups. It is appropriate when 
the within-group variances are heterogeneous. It still requires within-group responses to be normally 
distributed and controls the FWE rate at exactly α. 

5.3.3.4 Dunn's test 

This non-parametric test is based on contrasts of mean ranks. In toxicity testing, it is used to compare the 
mean rank of each treatment group to the control. To control the FWE rate at α or less, the Bonferroni-Holm 
correction (or comparable alternative) should be applied. Dunn’s test is appropriate when the populations 
have identical continuous distributions, except possibly for a location parameter (e.g. the group medians differ), 
and observations within samples are independent. It is used primarily for non-normally distributed responses. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  43

5.3.3.5 Mann-Whitney test 

This is also a non-parametric test and can be applied under the same circumstances as Dunn’s test. The 
Mann-Whitney rank sum test compares the ranks of measurements in two independent random samples and 
has the aim of detecting if the distribution of values from one group is shifted with respect to the distribution of 
values from the other. It can be used to compare each treatment group to the control. When more than one 
comparison to the control is made, a Bonferroni-Holm adjustment is used. 

5.3.4 Step-down trend procedures 

For continuous data, two trend tests are described for use in step-down procedures, namely the Jonckheere-
Terpstra test and Williams’ test (described below), that are appropriate provided there is a monotone dose 
response. Where expert judgement is available, the assessment of monotonicity can be through visual 
inspection. For such an assessment, plots of treatment means, subgroup means, and raw responses versus 
concentration is helpful. An inspection of treatment means alone may miss the influence of outliers. However, 
a visual procedure cannot be automated, and some automation may be necessary in a high-volume toxicology 
facility. Although not discussed here in detail, the same methodology can be applied to the Welsch, Brown-
Forsythe or Bartholomew trend tests. 

A general step-down procedure is described in the next subclause. Where the term “trend test” is used, one 
may substitute either “Jonckheere-Terpstra test” or “Williams’ test”. Details of these, as well as advantages 
and disadvantages, examples, power properties, and related confidence intervals for each are given in E.3. 

5.3.5 Determining the NOEC using a step-down procedure based on a trend test 

5.3.5.1 General 

This subclause describes a generalized step-down procedure for determining the NOEC for a continuous 
response from a dose-response study. It is appropriate whenever the treatment means are expected to follow 
a monotone dose response and there is no problem evident in the data that precludes monotonicity. 

5.3.5.2 Preliminaries 

The procedure described is suitable if the experiment being analysed is a dose-response study with at least 
two dose groups (Figure 8). For clarity, the term “dose group” includes the zero-dose control. Before entering 
the step-down procedure, two preliminary actions shall be taken.  

First, the data are assessed for monotonicity (as discussed in 5.1.5). A step-down procedure based on trend 
tests is used if a monotonic response is evident. Pair-wise comparisons (e.g. Dunnett’s, Tamhane-Dunnett, 
Dunn’s test or Mann-Whitney with a Bonferroni-Holm correction, as appropriate) instead of a trend-based test 
should be used where there is strong evidence of departure from monotonicity.  

Next, examine the number of responses and number of ties (as discussed in 5.3.6.1). Small samples and data 
sets with massive ties should be analysed using exact statistical methods if possible. Finally, if a parametric 
procedure (e.g. Dunnett’s or Williams’ test) is to be used, then an assessment of normality and variance 
homogeneity should be made. These are described in 5.3.6.2 and 5.3.6.3, respectively. 

5.3.5.3 Step-down procedure 

5.3.5.3.1 Preferred approach 

The preferred approach to analysing monotonic response patterns is as follows. 

⎯ Perform a test for trend (Williams or Jonckheere) on responses from all dose groups including the control.  

⎯ If the trend test is significant at the 0,05 level, omit the high dose group, and re-compute the trend statistic 
with the remaining dose groups. 
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⎯ Continue this procedure until the trend test is first non-significant at the 0,05 level, then stop. The NOEC 
is the highest dose remaining at this stage.  

⎯ If this test is significant when only the lowest dose and control remain, then an NOEC cannot be 
established from the data. 

5.3.5.3.2 Williams' test 

Williams’ test is a parametric procedure that is applied in the same way the Jonckheere-Terpstra test is 
applied. This procedure, described in detail in E.3, assumes data within concentrations are normally 
distributed and homogeneous.  

In addition to the requirement of monotonicity rather than linearity in the dose response, an appealing feature 
of this procedure is that maximum likelihood methods are used to estimate the means (as well as the 
variance) based on the assumed monotone dose response of the population means. The resulting estimates 
are monotone.  

An advantage of this method is that it can also be adapted to handle both between- and within-subgroup 
variances. This is important when there is greater variability between subgroups than chance alone would 
indicate. Williams’ test shall be supplemented by a non-parametric procedure to cover non-normal or 
heterogeneous cases. Either Shirley’s (1979) non-parametric version of Williams’ test or the Jonckheere-
Terpstra test can be used, but if these alternative tests are used, one loses the ability to incorporate multiple 
sources of variances. Limited power comparisons suggest similar power characteristics for Williams’ and the 
Jonckheere-Terpstra tests. 

5.3.5.3.3 Jonckheere-Terpstra test 

The Jonckheere-Terpstra trend test is intended for use when the underlying response of each experimental 
unit is continuous and the measurement scale is at least ordinal.  

The Jonckheere-Terpstra test statistic is based on joint rankings (also known as Mann-Whitney counts) of 
observations from the experimental treatment groups. These Mann-Whitney counts are a numerical 
expression of the differences between the distributions of observations in the groups in terms of ranks. The 
Mann-Whitney counts are used to calculate a test statistic that is used in conjunction with standard statistical 
tables to determine the significance of a trend. E.3 gives details of computations. The Jonckheere-Terpstra 
test reduces to the Mann-Whitney test when only one group is being compared to the control. 

The Jonckheere-Terpstra test has many appealing properties. Among them is the requirement of monotonicity 
rather than linearity in the dose response. Another advantage is that an exact permutation version of this test 
is available to meet special needs (as discussed below) in standard statistical analysis packages, including 
SAS and StatXact. If subgroup means or medians are to be analysed, the Jonckheere-Terpstra test has the 
disadvantage of failing to take the number of individuals in each subgroup into account. 

Extensive power simulations of the step-down application of the Jonckheere-Terpstra test compared to 
Dunnett’s test have demonstrated in almost every case considered where there is a monotone dose response, 
that the Jonckheere-Terpstra test is more powerful than Dunnett’s test (Green J.W., in preparation for 
publication). The only situation investigated in which Dunnett’s test is sometimes slightly more powerful than 
the Jonckheere-Terpstra is when the dose response is everywhere flat except for a single shift. These 
simulations followed the step-down process to the NOEC determination by the rules given above and covered 
a range of dose-response shapes, thresholds, number of groups, within-group distributions, and sample sizes. 
The development of the Jonckheere-Terpstra test is available in many places, including Lehmann (1975). 

5.3.6 Assumptions for methods for determining NOEC values 

5.3.6.1 Small samples — Massive ties 

Many standard statistical tests are based on large-sample or asymptotic theory. If a design calls for fewer 
than 5 experimental units per concentration, such large-sample statistical methods may not be appropriate. In 
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addition, if the measurement is sufficiently crude, then a large proportion of the measured responses have the 
same value, or are very restricted in the range of values, so that tests based on a presumed continuous 
distribution may not be accurate. In these situations, an exact permutation-based methodology may be 
appropriate.  

While universally appropriate criteria are difficult to formulate, a simple rule that should flag most cases of 
concern is to use exact methods when any of the following conditions exists:  

a) at least 30 % of the responses have the same value;  

b) at least 50 % of the responses have one of two values;  

c) at least 65 % of the responses have one of three values.  

StatXact and SAS are readily available software packages that provide exact versions of many useful tests, 
such as the Jonckheere-Terpstra and Mann-Whitney tests. 

5.3.6.2 Normality 

When parametric tests are being considered for use, then a Shapiro-Wilk test (Shapiro and Wilk 1965) of 
normality should be performed. If the data are not normally distributed, then either a normalizing 
transformation (4.3.4) should be sought or a non-parametric analysis should be done. Assessment of non-
normality can be done at the 0,05 significance level, though a 0,01 level might be justified on the grounds that 
ANOVA is robust against mild non-normality. The data to be checked for normality are the residuals after 
differences in group means are removed; for example, from an ANOVA with concentration, and, where 
necessary, subgroup, as class (i.e. non-numeric) variables. 

5.3.6.3 Variance homogeneity 

If parametric tests are being considered for use and the data are normally distributed, then a check of 
variance homogeneity should be performed. Levene’s test (Box, 1953) is reasonably robust against marginal 
violations of normality. If there are multiple subgroups within concentrations, the variances used in Levene's 
test are based on the subgroup means. If there are no subgroups, the variances based on individual 
measurements within each treatment group would be used. It should be noted that ANOVA is robust to 
moderate violations of assumptions, especially if the experimental design is balanced (equal n in the treatment 
groups), and that some tests for homogeneity are less robust than the ANOVA itself. Small departures from 
homogeneity (even though they may be statistically significant by some tests) can be tolerated without 
adversely affecting the power characteristics of ANOVA-based tests. For example, it is well known that 
Bartlett’s test is very sensitive to non-normality. It is customary to use a much smaller significance level, 
(e.g. 0,001) if this test is used. Levene’s test, on the other hand, is designed to test for the very departures 
from homogeneity that cause problems with ANOVA, so that a higher level significance (0,01 or 0,05) in 
conjunction with this test can be justified. Where software is available to carry out Levene’s test, it is 
recommended over Bartlett’s. 

For pair-wise (single-step) procedures, if the data are normally distributed but heterogeneous, then a robust 
version of Dunnett’s test (called Tamhane-Dunnett in this Technical Specification) is available. Such a 
procedure is discussed in Hochberg and Tamhane (1987). Alternatives include the robust pair-wise tests of 
Welch and Brown-Forsythe. If the data are normally distributed and homogeneous, then Dunnett’s test is used. 
Specific assumptions and characteristics of many of the tests referenced in this subclause are given in E.3. 

Of course, expert judgement should be used in assessing whether a significant formal test for normality or 
variance homogeneity reveals a problem that calls for alternative procedures to be used. 
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5.3.7 Operational considerations for statistical analyses 

5.3.7.1 Treatment of experimental units 

A decision that shall often be made is whether the individual animals or plants can be used as the 
experimental unit for analysis, or whether subgroups should be the experimental unit. The consequences of 
this choice should be carefully considered. If there are subgroups in each concentration, such as multiple 
tanks or beakers or pots, each with multiple specimens, then the possibility exists of within- and among-
subgroup variation, neither of which should be ignored. If subjects within subgroups are correlated, that does 
not mean that individual subject responses should not be analysed. It does mean that these correlations 
should be explicitly modelled or else analysis should be based on subgroup means. Methods for modelling 
replicated dose groups (e.g. nested ANOVA) are available. For example, Hocking (1985), Searle (1987, 
especially 13.5), Milliken and Johnson (1984, especially Chapter 23), John (1971), Littell (2002) and many 
additional references contain treatments of this. 

Technical note: If both within-subgroup and between-subgroup variations exist and neither is negligible, then 
the step-down trend test should either be the Jonckheere-Terpstra test with mean or median subgroup 
response as the observation, or else an alternative trend test such as Williams’ or Brown-Forsythe with the 
variance used being the correct combination of the within- and among-subgroups variances as described in 
the discussion on the Tamhane-Dunnett test in E.3. 

Given the possibility of varying subgroup sample sizes at the time of measurement, it may not be appropriate 
to treat all subgroup means or medians equally. For parametric comparisons, this requires only the use of the 
correct combination of variance components, again as described as E.3. For non-parametric methods, 
including Jonckheere’s test, there are no readily available methods for combining the two sources of variability. 
The choices are between ignoring the differences in sample sizes and ignoring the subgroupings. If the 
differences in sample sizes are relatively small, they can be ignored. If the differences among subgroups are 
relatively small, they can be ignored. If both differences are relatively large, then there is no universal best 
method. A choice can be made based on what has been observed historically in a given laboratory or for a 
given type of response and built into the decision tree. 

5.3.7.2 Identification and meaning of outliers 

The data should be checked for outliers that might have undue influence on the outcome of statistical 
analyses. There are numerous outlier rules that can be used. Generally, an outlier rule such as Tukey’s 
(Tukey, 1977) that is not itself sensitive to the effects of outliers is preferable to methods based on standard 
deviations, which are quite sensitive to the effects of outliers. Tukey’s outlier rule can be used as a formal test 
with outliers being assessed from residuals (results of subtracting treatment means from individual values) to 
avoid confounding outliers and treatment effects. 

Any response more than 1,5 times the interquartile range above the third quartile (75th percentile) or below 
the first quartile (25th percentile) is considered an outlier by Tukey’s rule. Such outliers should be reported 
with the results of the analysis. The entire analysis of a given endpoint can be repeated with outliers omitted to 
determine whether the outliers affected the conclusion. While it is true that non-parametric analyses are less 
sensitive to outliers than parametric analyses, omission of outliers can still change conclusions, especially 
when sample sizes are small or outliers are numerous. 

Conclusions that can be attributed to the effect of outliers should be carefully assessed. If the conclusions are 
different in the two analyses, a final analysis using non-parametric methods may be appropriate, as they are 
less influenced than parametric methods by distributional or outlier issues. 

It is not appropriate to omit outliers in the final analysis unless this can be justified on biological grounds. The 
mere observation that a particular value is an outlier on statistical grounds does not mean it is an erroneous 
data point. 

5.3.7.3 Multiple controls 

To avoid complex decision rules for comparing a water and solvent control, it is recommended that a non-
parametric Mann-Whitney (or, equivalently, Wilcoxon) comparison of the two controls be performed, using 
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only the control data. This comparison can be either a standard or an exact test, according to whether the 
preliminary test for exact methods is negative or positive. If a procedure for comparing controls using 
parametric tests were to be employed, then another layer of complexity can result, where one has to assess 
normality and variance homogeneity twice (once for controls and again later, for all groups) and one shall also 
consider the possibility of using transformations in both assessments. 

5.3.7.4 General 

Outliers, normality, variance homogeneity and checks of monotonicity should be done only on the full data set, 
not repeated at each stage of the step-down trend test, if used. Diagnostic tools for determining influential 
observations can also be very helpful in evaluating the sensitivity of an analysis to the effects of a few unusual 
observations. 

5.4 Statistical items to be included in the study report 

The report describing continuous study results and the outcome of the NOEC determination should contain 
the following items: 

⎯ description of the statistical methods used; 

⎯ test endpoint assessed; 

⎯ number of test groups; 

⎯ number of subgroups within each group and how handled (if applicable); 

⎯ identification of the experimental unit; 

⎯ nominal and measured concentrations (if available) for each test group; 

⎯ the dose metric used; 

⎯ number exposed in each treatment group (or subgroup if appropriate); 

⎯ group means (and median, if a non-parametric test was used) and standard deviations; 

⎯ confidence interval for the percent effect at the NOEC, provided that the basis for the calculation is 
consistent with the distribution of observed responses (see E.3); 

⎯ the NOEC; 

⎯ p value at the LOEC (if applicable); 

⎯ results of power analysis; 

⎯ plot of response versus concentration. 
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6 Dose-response modelling 

6.1 Introduction 

The main regulatory use of dose-response modelling in toxicity studies is to estimate an ECx, the exposure 
concentration that causes an x % effect in the biological response variable of interest, and its associated 
confidence bounds. The value of x, the percent effect, may be specified in advance, based on biological (or 
regulatory) considerations. Guidelines may specify for which value(s) of x the ECx is required. This clause 
discusses how an ECx may be estimated, as well as how it may be judged that the available data are 
sufficient to do so. 

Dose-response (or concentration-response) modelling aims at describing the dose-response data as a whole, 
by means of a dose-response model. In general terms, it is assumed that the response, y, can be described 
as a function of concentration (or dose), x: 

y = f(x) 

where f can be any function that is potentially suitable for describing a particular dataset.  

Since y is considered as a function of x, the response variable y is also called the dependent variable, and the 
concentration x, the independent variable. As an example, consider the linear function: 

y = a + b x 

where the response changes linearly with the concentration. Here, a and b are called the model parameters.  

By changing parameter a one may shift the line upwards or downwards, while by changing the parameter b 
one may rotate the line. Fitting a line to a dataset is the process of finding those values of a and b that result in 
“the best fit”, i.e. making the distances of the data points to the line as small as possible. Similarly, for any 
other dose-response model, or function f, the best fit may be achieved by adjusting the model parameters. 

This example illustrates that the data determine the values of the parameters a and b, and thereby the location 
and angle of the line. However, whatever the data, the result of the fitting process is, for this model, always a 
straight line, so the flexibility of the dose-response model in following the dose-response data is limited. In 
general, the flexibility of a dose-response model tends to be larger when it includes more parameters. For 
example, the model: 

y = a + b x + c x2 + d x3 

has four parameters (a, b, c and d), which can all be varied in the fitting process. Therefore, this model is more 
flexible compared to the linear model, and can take on various shapes other than a straight line. One might 
conclude here: “the more parameters, the better”, but that is not the case. It only makes sense to include more 
parameters in a model when the data contain the information to estimate them [also referred to as the 
parsimony principle (3.25)], or when including the parameter in the model leads to a significantly better fit. 

The fit of the model to the data may be defined in various ways. One measure for the fit is the sum of squares 
of the residuals, where the residuals are simply the distances (differences) between the data and the model 
value at the pertinent concentration. The best fit is then found by minimizing the sum of squared residuals, or 
briefly the Sum of Squares (SS). Another measure for the fit is the likelihood, which is based on a particular 
distribution that is assumed for the data (e.g. a normal or log-normal distribution for continuous data, a 
binomial distribution for quantal data, or a Poisson distribution for count data). In that case, the best fit is found 
by maximizing the likelihood (or the log-likelihood, which amounts to the same thing). See 4.3.6. for a general 
discussion of model fitting. 

In this clause, a dose-response model is generally written as y = f(x), where x may denote either the 
concentration or dose. Indeed, a concentration-response and a dose-response model are not different from a 
statistical point of view. The response, y, may refer to data of various types. The type of the response data, 
either quantal or continuous (see Clause 3), does make an important difference, not only for the statistical 
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analysis, but also for the interpretation of the results. In this clause, dose-response modelling is separately 
discussed for quantal (6.2) and for continuous (6.3) data, since the statistical analysis is completely different. 
The flow-chart given in Figure 7 summarizes the main lines of a dose-response modelling approach. 

Of course, the response in biological test systems not only depends on the concentration (dose) but also on 
the exposure duration. Yet, most ecotoxicity tests only vary the concentration (dose), at a single exposure 
duration. Therefore, the larger part of this clause addresses how to model the concentration-response 
relationship, ignoring the exposure duration. Obviously, any results from the statistical analysis then only hold 
for that particular exposure duration. 

For data sets where the exposure duration varied as well, one may apply models where the response is a 
function of both concentration and exposure duration. The inclusion of exposure duration is discussed in 6.6, 
for both quantal and continuous data. In the other subclauses of this clause, time is considered as fixed. In 
Clause 7, the role of time and exposure duration in describing the response is further discussed from the 
perspective of biology-based modelling. 

6.2 Modelling quantal dose-response data (for a single exposure duration) 

6.2.1 General 

A quantal response, y, is defined as y = k/n, where k is the number of responding organisms (or experimental 
units) out of a total of n.  

A quantal response may also be expressed as a percentage, but the total number of observed units, n, cannot 
be omitted. For example, 2 responses out of 4 is not the same information as 50 out of 100. See also 
Clause 4. 

The purpose of dose-response modelling of quantal data is to estimate an ECx (LCx), where x is a given 
percentage, usually equal to or lower than 50 %. When the dose-response data relate to a particular (single) 
exposure duration, the estimated parameters (EC50 or ECx) obviously only hold for that particular exposure 
duration (or to, e.g. a single acute oral dose). 

In this clause, the terms ED50/EC50/LD50/LC50 are used interchangeably, as well as EDx/ECx/LDx/LCx, where 
x denotes a particular response level (usually smaller than 50). Note that x in model expressions denotes the 
concentration (or dose). In human risk assessment, the term Benchmark dose (BMD)9) is used, and is, for the 
case of quantal data, equivalent to the ECx (but not so for continuous responses, see 6.3). 

The terms dose and concentration are used interchangeably, as well as dose-response relationship and 
concentration-response relationship. 

                                                      

9) Orginally the BMD was introduced by Crump (1984) as the lower confidence bound of the point estimate. More 
recently this is often indicated as BMDL. 
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Key 

Exit: ECx cannot be assessed from the data at hand; repeat the experiment with more (adequate) doses, or go to 
Clause 5. 

* I.e. apparently different, given the noise in the data. 
** In addition, it should be assessed by visual inspection that the fitted model is sufficiently supported by the data. 

NOTE Doses = concentrations. 

Figure 6 — Flow-chart for dose-response modelling 

6.2.2 Choice of model 

6.2.2.1 General 

A (statistical) dose-response model serves to express the observed response as a function of dose, to provide 
for a tool to estimate the parameters of interest (in particular the ECx) and assess confidence intervals for 
those estimates. A statistical regression model itself does not have any meaning, and the choice of the model 
(expression) is largely arbitrary. It is the data, not the model, that determines the dose response, and thereby 
the ECx. Of course, an improper choice of the model can lead to an inappropriate estimate of the ECx, but the 
choice of the model is in most ecotoxicity studies governed by the data. 

Numerous dose-response models are theoretically possible, but in practice only a limited number are applied, 
mostly determined by historical habits in the field of application. Only the more frequently applied models are 
discussed here. See 6.4 for a discussion on model selection. 

For quantal data, an obvious property for a dose-response function is that it ranges between 0 and 1 (0 % and 
100 %). Further, one would normally expect the response to be monotone, i.e. it only increases (or decreases). 
Cumulative distribution functions (e.g. normal, logistic, Weibull) obey that property, and are therefore 
candidates for dose-response modelling of quantal data. 
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The use of cumulative distribution functions for quantal dose-response modelling can also be considered from 
the idea of tolerance distributions. By assuming that each individual in the population observed has its own 
tolerance for the chemical, a tolerance distribution expresses the variability between the individuals. Plotting 
the tolerance distribution cumulatively results in the quantal dose-response relationship, where the fraction of 
responding individuals (at a given concentration) is viewed as all individuals having a tolerance lower than that 
concentration. For example, a predicted response of 25 % at concentration 10 ppm is interpreted as 25 % of 
the individuals having a tolerance lower than 10 ppm. Given this interpretation, the slope of a quantal dose-
response relationship is a reflection of the variability between the individuals, with steeper slopes meaning 
smaller variability in tolerances. 

In light of the preceding, the choice of a quantal concentration-response model may be based on an assumed 
tolerance distribution. For several reasons, one may expect a tolerance distribution to be approximately log-
normal, or, equivalently, to be approximately normal for the log-concentrations. Indeed, a long history of 
experience has confirmed this, and it has become standard that models that are based on symmetrical 
tolerance distributions (e.g. the probit and logit models, see below) are fitted against the logarithms of the 
concentrations. 

In general, a dose-response model for quantal data is a function of the concentration or dose x: 

y = f(x) 

where y is the quantal response. 

It is important to keep in mind that in the model, y represents the true response, which may be thought of as 
the fraction of responding individuals in the infinite population, or as the probability of response for any 
individual. The function f(x) is chosen such that it equals zero at concentration zero (and unity for infinite 
concentration). However, theoretically, the probability of response in the unexposed population might be very 
small, but it cannot be (strictly) zero. Therefore, it is theoretically more appropriate to extend the model and 
include a background incidence parameter by putting 

y = f(x) = a + (1 – a) g(x) 

where a denotes the true background probability of response, and g(x) is a function increasing from 0 to 1 for x 
increasing from zero to infinity. In this formulation, the response at infinite concentrations remains unity 
(since g(x) = 1 for infinite x). 

Some of the more commonly used models are discussed below. For a more extensive list of models, see 
Scholze et al. (2001). 

6.2.2.2 Probit model 

The probit model is the cumulative normal distribution function. In practice, it is usually applied to the 
log-concentrations, implying that a log-normal tolerance distribution is assumed. The probit model (without the 
background mortality parameter a) can be expressed as 

50
50

( ) log( ) log(ED ) log( )
ED

xz y b x b= − =⎡ ⎤⎣ ⎦  (1) 

where z is the standard normal deviate associated with probability y. 

At first sight, the use of log-concentration in this model appears to present a problem for dose zero. Note, 
however, that for  

x = 0, z = − ∞, and the associated probability, y, is zero. 

In other words, Equation (1) assumes that the probability of ever observing a response in the control group is 
strictly zero. Therefore, when Equation (1) is fitted to the data, the control observations can just as well be 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

52  © ISO 2006 – All rights reserved
 

deleted10). They only provide information to the model when a background parameter is included in the model 
[see Equation (5)]. 

The standard normal deviate cannot be calculated from an explicit expression, as opposed to the logit model 
(see below). Common statistical software packages use standard algorithms; therefore, this should not 
concern the user. 

The probit model has two parameters: the ED50 and the slope (b). 

The ED50 is the median of the (log-normal) tolerance distribution, and the slope is the inverse of the standard 
deviation of that distribution. 

Figure 7 shows an application of the probit model to mortality data. 

 

Key 
a background mortality 
b slope  
c LD50  

NOTE Dashed lines indicate the LD20. 
   “pnorm” is the cumulative standard normal distribution function. 
  On log-scale, the zero concentration is minus infinity. 

Figure 7 — Probit model fitted to observed mortality frequencies (triangles) as a function of log-dose  

                                                      

10) Adequate software simply sets the log-likelihood score for observations in the control group at zero (whatever the 
observations). When a background response parameter is included in the model [see Equation (5)], the log-likelihood 
score associated with the observations in the control group only depends on the value of the background parameter. 
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6.2.2.3 Logit model 

The logit model is the cumulative logistic distribution function. The logistic distribution has wider tails than the 
normal distribution, but is similar otherwise. Just as with the probit model, the logit model is usually applied to 
the log-concentrations. 

The logit model (without the background mortality parameter, a) can be expressed as 

50

1
1 exp[ log(ED )]

y
b /x

=
+

 (2) 

where y is the probability of response. 

Just as in the probit model, the logarithm of dose does not present any problem for dose zero. It can be seen 
immediately that, in the limit, y equals zero for x approaching zero. In fitting the model, the control 
observations can be simply deleted, as they do not provide any information, unless a background parameter is 
included [see Equation (5)]. 

The logit model has two parameters: the ED50 and the slope, b. 

The ED50 is the median of the (log-logistic) tolerance distribution, and the slope is related to the standard 
deviation, s, by 

tol,dist 3
πs

b
=  

Figure 8 illustrates the logit model applied to the same mortality data as Figure 7. 

 

Key 
a background mortality  
b slope  
c LD50  

NOTE Dashed lines indicate the LD20. 

Figure 8 — Logit model fitted to mortality dose-response data (triangles) 
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6.2.2.4 Weibull model 

The Weibull distribution is not necessarily symmetrical, and is usually applied to the concentrations 
themselves (not their logs). The Weibull model (without the background mortality parameter, a) may be 
expressed as 

1 exp [ ( / ) ]cy x b= − −  (3) 

It has two parameters, a location parameter, b, and a parameter c (high values of c give steep slope). The 
ED50 is related to b and c by 

ED50 = b ln(2)1/c 

Figure 9 illustrates the Weibull model applied to the same mortality data as Figures 7 and 8. 

 

Key 
a background mortality  
b “location” parameter  
c “slope” parameter  

NOTE Dashed lines indicate the LD20. 

Figure 9 — Weibull model fitted to mortality dose-response data (triangles) 

The LD50 equals b ln(2)1/c = 0,145. 

NOTE The data and the model in Figures 7 to 9 are plotted against log-dose with the purpose of improving the 
readability of the plots. However, the Weibull model was fitted as a function of dose, while the probit and logit models were 
fitted as a function of log-dose. 
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6.2.2.5 Multi-stage models 

The multi-stage model (see e.g. Crump et al., 1976) is often used for describing tumour dose-response data. It 
is usually applied in a simplified version (the linearized multi-stage model, briefly LMS): 

2 31 exp { .... }y a bx cx dx= − − − − − −  (4) 

where the number of parameters is also called the number of stages. It includes the one-stage model: 

1 exp { }y a bx= − − − , 

also referred to as the one-hit model. 

Note that in the multi-stage model background mortality is included, and equals 1 – exp(-a). 

The multi-stage model can be regarded as a family of nested models. For example, by setting the parameter d 
in the three-stage model equal to zero, one obtains the two-stage model. Thus, one can let the number of 
stages depend on the data (see below for a further discussion of nested models). 

6.2.2.6 Definitions of EC50 and ECx 

The ECx is defined as the concentration associated with x % response, with the EC50 as a special case11). 
The situation of nonzero background response complicates the definition of the EC50 and of the ECx, since 
the background response may be taken into account in various ways.  

The EC50 is defined as the concentration associated with 50 % response. However, a 50 % response (i.e. 
incidence) can relate to the whole population, irrespective of the background response, or only to that part of 
the population that did not respond at concentration zero. Consider the general quantal dose-response model 
where the background response (incidence), a, is included as a model parameter: 

y = f(x) = a + (1 − a) g(x) (5) 

Here g(x) may be any cumulative tolerance distribution, ranging from zero to one. It reflects the dose-response 
relationship for the fraction of the population that did not show a response at concentration zero. The 
background-corrected EC50 then simply is the EC50 as given by g(x). For example, when g(x) denotes the log-
logistic model, then parameter c is the background-corrected EC50. This definition of the EC50 (LD50) is used 
in Figures 7 to 9. 

For response levels x % smaller than 50 %, the ECx may be defined in various ways, e.g. 

x %/100 % = f(ECx) − a (additional risk) 

x %/100 % = [f(ECx) − a] / (1 − a) = g(ECx) (extra risk) 

EXAMPLE 1 Additional risk definition 

For example, when the background response, a, amounts to 3 %, then the EC10 according to the additional risk definition 
corresponds to a response in the population of 13 %, since 13 % − 3 % = 10 %. 

EXAMPLE 2 Extra risk definition 

In the extra risk definition, the EC10 would correspond to a response of 12,7 %, since (12,7 % − 3 %) / 97 % = 10 %. 

                                                      

11) In human risk assessment, the term Benchmark dose (BMD) is used, defined as the dose associated with a certain 
Benchmark response (= x %). Originally the Benchmark dose was defined as the lower confidence limit of the point 
estimate (Crump, 1984), also indicated as BMDL. See also Table 5 in 6.3. 
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Note that the background-corrected ECx, according to the extra risk concept, is equal to the (uncorrected) ECx 
of g(x) in Equation (5). Therefore, extra risk appears favourable, but the numerical difference for the ECx 
based on additional or extra risk is usually small. The illustrative examples in Figures 7 to 9 used the 
additional risk concept. 

In ecotoxicity testing, the additional risk is common for the ECx when x < 50 %. However, in the case of the 
EC50, the background response is usually taken into account according to the extra risk concept (as in 
Figures 7 to 9). 

It may be noted that in other disciplines, still other risk concepts are used. For instance, in epidemiology, more 
common measures are relative risk (response of exposed subjects divided by response in non-exposed 
subjects) and derived concepts, such as attributable proportion, and odds ratio. 

6.2.3 Model fitting and estimation of parameters 

6.2.3.1 Software and assumptions 

Fitting a model to dose-response data may be done by using any suitable software, e.g. SAS (www.sas.com), 
SPSS (www.spss.com), splus (www.insightful.com)12), and PROAST13) (Slob, 2003). 

The user does not need to be aware of the computational details, but some understanding of the basic 
principles in non-linear regression is required to be able to interpret the results properly. These principles are 
discussed in 6.7. 

Furthermore, the user should be aware of the assumptions underlying the fit algorithm. For quantal data, it is 
usually assumed that the data follow a binomial distribution, and the common fit algorithm is based on 
maximizing the binomial likelihood (see 6.2.4 for a discussion of the assumptions). The parameter values 
produced by this algorithm are the values associated with the maximum likelihood, and are also called the 
Maximum Likelihood Estimates (MLEs). 

Maximum likelihood can only be applied for data including at least two concentrations with partial responses, 
otherwise the MLE of the slope tends to infinity. When the data only include 0 % and 100 % responses, or 
only a single concentration with partial response, the slope of the dose response can therefore not be 
estimated. But there are several methods available for estimating the EC50 in those situations. These methods 
include procedures for assessing the precision of the estimated EC50 (Hoekstra, 1993). 

6.2.3.2 Response in controls 

Instead of estimating the background response (incidence) as a parameter in the dose-response model, 
Abbott’s correction is often used in situations where dose-response data show nonzero observed response in 
the controls. In this correction, each observed response, pi, is replaced by  

(pi − p0) / (1 − p0),  

where p0 denotes the observed background response. 

However, this is inappropriate, since the observed background response, p0, contains error, which is not taken 
into account in this way. Instead the background response should be treated as an estimate containing error, 
just like the observed responses in the other dose groups. By incorporating the background response as a 
parameter in the model, it is estimated from the data, and estimation errors are accounted for, e.g. in 
calculating confidence intervals.  

                                                      

12) SAS, SPSS and splus are examples of a suitable products available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these products. 

13) The PROAST (Possible Risk Obtained from Animal Studies) software is available upon request (Wout.slob@rivm.nl). 
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As already discussed, it is theoretically impossible that the probability of response in the controls equals 
(strictly) zero. Therefore, the background response should be regarded as an unknown value, and be 
estimated from the data, even if the observed background response is zero (the fact that all observed control 
individuals did not respond does not imply that a response is impossible). Nonetheless, as Figure 10 
illustrates, the background response may be estimated to be (virtually) zero, and in such situations fixing the 
background response at zero versus estimating it as a free parameter in the model does not make much 
difference (although the confidence intervals could be different, but probably not too much). Of course, one 
may always compare both ways of analyses in any practical situation.  

It should be noted that omitting the background parameter from the model has the advantage of one less 
parameter to be estimated (parsimony principle), but at the same time the observations in the control group 
are made worthless in that way. 

In practice, it may happen that the best fit of the model results in a negative estimate of the background 
response. To prevent this, the model should be fitted under the constraint that the background response shall 
be nonnegative (i.e. a W 0). Instead of a negative estimate, the background response a associated with the 
best fit is, in those situations, then estimated to be zero. 

 

NOTE Here background mortality (parameter a) was included as a free parameter in the model, and estimated to be 
close to zero. The dashed lines indicate the LD50, and the LD10. 

Figure 10 — Logit model fitted to mortality dose-response data (triangles), with background mortality  

6.2.3.3 Analysis of data with various observed fractions at each dose group 

Ecotoxicological (quantal) dose-response data often show replicated observed fractions at each concentration 
or dose group.  

EXAMPLE 1 For example, the individual organisms in each dose group may be housed in different containers, each 
container resulting in an observed fraction of responding organisms.  

EXAMPLE 2 As another example, the fraction of fertile eggs may be observed in individual female birds, where each 
dose group consists of various female birds. 

In more general terms, these designs have various experimental units per dose group, and in each 
experimental unit the fraction of responding sampling units is counted. Of course, a dose-response model can 
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be fitted to such data by simply regarding the various observed fractions at each dose group as true replicates. 
In that case, it is assumed that the experimental units themselves (e.g. aquaria, of female birds) do not differ 
from each other. 

If this cannot be assumed, the variability between experimental units shall be taken into account in the 
statistical analysis. Here, two approaches are briefly mentioned.  

⎯ One approach is to apply a normalizing (e.g. the square-root arcsine) transformation to the observed 
fractions related to each experimental unit. The transformed data can then be analysed as continuous 
data, as discussed in 6.3. However, this approach is problematic for data with 0 % and 100 % responses.  

⎯ Another approach is to account for the among-container variation by adjusting the binomial distribution. 
For example, the parameter reflecting the probability of response in the binomial distribution may be 
assumed to follow a beta distribution (reflecting the variability among containers). This implies that the 
observed response is beta-binomial distributed rather than binomial, and the associated likelihood may be 
maximized (see, for example, Teunis and Slob 1999).  

Subclause 5.2.2.5. gives a description of two methods for deciding whether extra binomial variation is present. 

6.2.3.4 Analysis of data with one observed fraction at each dose group 

When the study design has only one container per dose group, the analysis appears at first sight simpler as 
compared to the situation of replicated containers at each dose. However, this is apparent only. If the 
containers differ by themselves, this between-container variation results in extra-binomial variation just as well. 
Theoretically, the variation among containers could be taken into account by the approaches mentioned 
above. However, experience with how this works in practical ecotoxicity data appears to be lacking. 

6.2.3.5 Extrapolation and ECx 

Because of the fact that a fitted statistical model only reflects the information in the data, extrapolation outside 
the range of observation is usually unwarranted. Consequently, an ECx that is estimated to be below the 
lowest applied (nonzero) dose should not be trusted. 

6.2.3.6 Confidence intervals 

Whatever definition for the ECx is used, it is estimated from the point estimates of the parameters in the model. 
When these point estimates are obtained by maximum likelihood, these are Maximum Likelihood Estimates 
(MLEs). The ECx is also a MLE when it is (indirectly) calculated from these values. 

The MLE for the EC50, or any other ECx, is a point estimate only, and may, to a larger or smaller extent, be 
imprecise. The imprecision may be quantified by the standard error of the estimate, but it is more informative 
to calculate a confidence interval. A confidence interval indicates the plausible range for the parameter, e.g. 
a 95 %-confidence interval is supposed to contain the true value of the parameter with probability 95 %.  

Confidence intervals may be assessed in various ways: 

⎯ plus or minus twice the parameter’s standard error (provided by most dose-response software), which is 
estimated by the second derivative of the likelihood function (Hessian or information matrix), possibly with 
Fieller’s correction (Fieller, 1954); 

⎯ based on the profile of the log-likelihood function, using the Chi-squared approximation of the 
log-likelihood; 

⎯ value(s); 

⎯ bootstrap methods (see e.g. Efron 1987, Efron and Tibshirani 1993); 
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⎯ Bayesian methods, in particular if one has some preliminary knowledge on the plausible range of the 
parameter. 

Various studies have compared the first three methods (see e.g. Moerbeek et al. 2004). 

6.2.4 Assumptions 

6.2.4.1 General 

A dose-response model consists of a deterministic part (the predicted dose-response relationship) and a 
stochastic part (describing the noise). The assumptions made in the statistical part are analogous to those in 
hypothesis testing, and are only briefly mentioned here. The focus in this clause is on the additional 
assumption, that of the (deterministic) dose-response model. 

6.2.4.2 Statistical assumptions 

The assumptions for hypothesis testing equally hold for dose-response modelling: 

⎯ binomial distribution for observations per experimental unit, i.e. independence between the animals in the 
same experimental unit (e.g. container). When the experimental unit is not accounted for in the statistical 
model, it is additionally assumed that experimental units do not vary among each other by themselves (i.e. 
at the same dose); 

⎯ no systematic differences (caused by unintended experimental factors) between dose groups (the latter is 
particularly relevant for unreplicated designs, i.e. one container per dose-group); 

⎯ the values of the concentrations/doses are assumed to be known without error, or, in situations where 
they are measured, the measurement errors are assumed to be negligible. 

Additional assumption: 

⎯ the fitted model has a shape that is close to the true dose-response relationship. 

6.2.4.3 Evaluation of assumptions 

6.2.4.3.1 Evaluation of basic assumptions 

In designs with sample units (e.g. organisms, eggs) within experimental units (e.g. containers, female birds), 
the assumption of binomially distributed data may not be met, due to variation among the experimental units 
themselves. One way to check this is by fitting a model based on a betabinomial distribution, and comparing 
the associated log-likelihood with that obtained from a fit based on a binomial distribution. This comparison 
can be done by a likelihood ratio test, since the binomial and betabinomial distributions are nested. 

6.2.4.3.2 Evaluation of the additional assumption 

Fulfilment of the assumption that the shape of the fitted model is close to the true dose-response relationship 
depends not only on the choice of a proper dose-response model, but also on the quality of the dose-
response data. Therefore, one not only needs to consider if the model is suitable to describe the data, but also 
if the data are good enough to sufficiently guide the model in obtaining the right shape. For a fuller discussion 
of evaluating the shape of the fitted dose-response model, see 6.4. 
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6.2.4.4 Consequences of violating the assumptions 

6.2.4.4.1 Consequences of violating basic assumptions 

When the assumption of binomial distribution is not met, due to variation between experimental units, a fitted 
quantal dose-response model may result in a biased estimate of the ECx, as well as in too narrow confidence 
intervals. 

6.2.4.4.2 Consequences of violating the additional assumption 

Given that the data include both (close to) 0 % and (close to) 100 % responses, violation of the assumption 
(that the fitted model indeed reflects the true underlying dose-response relationship) is less serious for an 
EC50 than for an ECx (the more so for lower values of x).  

The (point) estimate of the ECx may be inaccurate (biased), and the associated confidence interval may in 
extreme cases not even include the true value of the ECx.  

Therefore, it is not recommended to estimate an ECx if the fitted model does not appear to be sufficiently 
confined by the data from visual inspection, or if it is found that various models fitting equally well result in 
different ECx estimates. In the latter case, one might consider constructing an overall confidence interval for 
the ECx based on various models that fit the data equally well (if repeating the experiment, aimed at more 
concentrations with partial responses, is not an option). 

6.3 Dose-response modelling of continuous data (for a single exposure duration) 

6.3.1 Purpose 

While a quantal response is based on the observation of whether or not each single organism (biological 
system) has a particular property (e.g. death, clinical signs, immobilization), a continuous response is a 
quantitative measure of some biological property (e.g. body mass, concentration of enzyme). Such a 
continuous response is measured in each experimental unit. Since organisms (biological systems) are never 
identical by themselves or are not observed under identical conditions, the resulting data show a certain 
amount of scatter, depending on the homogeneity of the treatment group. This scatter may be assumed to 
follow a certain distribution, e.g. a normal, a log-normal, or a Poisson distribution. 

Continuous data do not only differ from quantal data in a purely statistical sense (i.e. the underlying 
distribution). A more fundamental difference is that changes in response are interpreted in a completely 
different way. While the ECx in quantal responses relates to a change in response rate, an ECx in continuous 
responses relates to a change in the degree of the effect, as occurring in the average individual (of the 
population observed).  

EXAMPLE An IC10 in a fish test is associated with a 10 % inhibition of the growth rate in the “average” fish (under 
the average experimental conditions). 

The purpose of dose-response modelling of continuous data is to estimate the ECx, where x is any given 
percentage. When the dose-response data relate to a single exposure particular duration, the estimated ECx 
obviously only hold for that particular exposure duration (or to, e.g. a single acute oral dose). 

6.3.2 Terms and notation 

In this subclause, the following terms and notations are used. The continuous response, y, is related to the 
dose (or concentration), x, by the function, f : 

y = f(x) 
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In ecotoxicology, the term ECx is defined as the concentration (or dose) associated with an effect x14), where x 
is defined as 

(EC )% 100 1 %
(0)

xyx
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, 

i.e. x is defined as a percent change in the (average) level of the endpoint considered, e.g. a 10 % decrease in 
mass. 

In human toxicology, different terms exist for the ECx. The equivalent terms are  

⎯ CED (Critical Effect Dose), which is equivalent to the ECx, and   

⎯ CES (Critical Effect Size), which is equivalent to x in ECx (see e.g. Slob and Pieters 1998).  

However, in human toxicology another approach has been proposed, which is based on a change in response 
rather than on a change in the degree of effect. In that approach (also called the hybrid approach), the terms 
BMD and BMR are used (e.g. Crump 1995, Gaylor and Slikker 1990), but these terms are not comparable to 
the ECx in continuous responses in ecotoxicology. The following table summarizes the terms. 

Table 5 — Terms in human toxicology 

 Ecotoxicology Human toxicology term 

Quantal response 
(x in terms of response) 

x 
ECx 

BMR (benchmark response) 
BMD (benchmark dose) 

Continuous response 
(x in terms of degree of effect) 

x 
ECx (ICx) 

CES (critical effect size) 
CED (critical effect dose) 

Continuous response 
(BMR in terms of response) 

— 
— 

BMR 
BMD 

6.3.3 Choice of model 

6.3.3.1 First distinctions 

A (statistical) dose-response model only serves to smooth the observed dose response, to estimate an ECx by 
interpolating between applied doses, and to provide for a tool to assess confidence intervals. A statistical 
regression model itself does not have any meaning, and the choice of the model (mathematical expression) is 
largely arbitrary. Numerous dose-response models are theoretically possible, but in practice only a limited 
number are applied, mostly determined by historical habits in the field of application. A number of useful 
(families of) models are discussed here. 

A first distinction that can be made is linear versus non-linear regression models. This distinction is made as 
the type of calculations is different between these two classes of models. In linear models, the calculations are 
relatively simple, and could be done without a computer, which is hardly possible for non-linear models. 
Clearly, given the widespread use of computers, this advantage has become more and more irrelevant, and 
non-linear models are gaining attention, as they may be considered to more realistic for reflecting a 
dose-response relationship (see below). Yet, linear models are briefly discussed, for the sake of completeness. 
After that, a number of other models (or family of models) is discussed, most of which are non-linear. 

                                                      

14) Note that x is used for both concentration (dose) and the degree of effect. 
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6.3.3.2 Linear models 

Linear regression models are defined as models that are linear with respect to their parameters. They can be 
nonlinear with respect to the independent variable and thus not only include the straight line, but also 
quadratic, or higher order polynomials: 

2

2 3

y a bx

y a bx cx

y a bx cx dx

= +

= + +

= + + +

 

etc. 

These models have the property that the parameters (a, b, etc.) in the model can be estimated by evaluating a 
single (explicit) formula (as opposed to non-linear models, see below), which makes them relatively easy to 
apply.  

Another advantage is that these models are nested. For example, the quadratic model can be turned into a 
linear model by taking c = 0. Inversely, a linear model can be turned into a quadratic model by incorporating 
an additional parameter (here: c). It can be statistically tested, if the addition of parameters leads to a 
significant improvement of the fit (e.g. by an F-test). 

Linear models may be incorporated in the framework of GLM (generalized linear models), see e.g. Bailer and 
Oris (1997). 

A disadvantage of linear models is that they are not necessarily strictly positive, while biological endpoints 
typically are (if the data are not pre-treated), which makes them theoretically implausible. Further, they are not 
necessarily monotone, which can result in doubtful results, especially in the situation of a limited number of 
dose groups. 

6.3.3.3 Threshold models 

A threshold model is a model that contains a parameter reflecting a dose-threshold, i.e. a dose below which 
the change in the endpoint is (mathematically) zero. In general, a threshold model is given by 

y = a                  if x < c; 

y = a + f(x − c)  if x > c (6) 

where  

c denotes the threshold concentration; and 

f(x) may be any function. 

For example, in the (“hockey stick”) model. 

y = a   if x < c 

y = a + b (x − c)  if x > c, the response is linear above the threshold.  

The threshold concentration could be called an EC0, i.e. an ECx with x = 0. At first sight, the threshold 
concentration appears attractive, as it avoids the discussion of what value of x in ECx is ecologically relevant. 
However, various objections can be raised against the use of threshold models. One of them is that the (point) 
estimate of the threshold can be dependent on the dose-response relationship, i.e. the function that is chosen 
for f(x) in Equation (6). 
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6.3.3.4 Additive versus multiplicative models 

Strict continuous data (e.g. masses, concentrations) observed in toxicity studies usually have nonzero values 
in unexposed conditions, and the question then is to what extent the compound changes that level. Clearly, 
the compound interacts with that background level, by whatever biological mechanisms. This idea may be 
expressed in simple mathematical terms by incorporating the background level (a) in the dose-response 
model in a multiplicative way: 

f(x) = a ⋅ g(x) (7) 

rather than in an additive way: 

f(x) = a + g(x) (8) 

as is more common in models discussed in statistical textbooks. 

NOTE The models based on quantal models discussed in the previous subclause are also additive. 

Of course, the whole idea of defining the ECx as a given percent change compared to the background level is 
in concordance with the multiplicative interaction between compound and background level, as expressed in 
Equation (7). A further convenience of the multiplicative model is that two populations (e.g. species, sexes) 
showing different background levels but equally sensitive to the compound are, in this way, characterized by 
the same g(x). This implies that in the multiplicative model, two equally sensitive populations (but possibly with 
different background levels) are defined to have the same ECx. 

6.3.3.5 Models based on “quantal” models 

Continuous dose-response data from ecotoxicity tests have often been described by dose-response models 
that are derived from the models used for quantal data, i.e. models whose predicted values range from zero to 
one. To make these models applicable to continuous models, they are usually adjusted as follows: 

y = y(0) + [y(∝) − y(0)] f(x) 

for increasing dose responses, and  

y = y(∝) + [y(0) − y(∝)] [1 − f(x)] 

for decreasing responses (see e.g. Bruce and Versteeg 1992, Scholze et al. 2001),  

where 

y(0) is the (predicted) background value; 

y(∝) is the (predicted) value at infinite dose; and 

f(x) is any quantal dose-response model. 

NOTE These models are multiplicative (with respect to the background response), while their shape is typically 
sigmoidal. 

EXAMPLE When the logit model is chosen for f(x), the associated model for the continuous data becomes 

50

( ) (0)(0)
1 exp ln(ED / )

y yy y
b x

∞ −
= +

+ ⎡ ⎤⎣ ⎦
 

In current practice, it is common to correct the data for the background response, and fit the model without a 
background parameter. As discussed in 4.3.5, this procedure of pre-treatment of the data ignores the 
estimation error in the observed background, and is therefore unsound. By incorporating the parameter y(0) in 
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the model to be fitted, the estimation error is taken into account, and therefore this approach should always be 
taken. 

6.3.3.6 Nested non-linear models 

Slob (2002) proposed to use the following nested family of multiplicative non-linear models for general use in 
dose-response modelling. 

Model 1: y = a with a > 0 

Model 2: y = a exp(x/b) with a > 0 

Model 3: y = a exp[± (x/b)d] with a > 0, b > 0, d W 1 

Model 4: y = a [c − (c − 1) exp(−x/b)] with a > 0, b > 0, c > 0 

Model 5: y = a {c − (c − 1) exp[−(x/b)d]} with a > 0, b > 0, c > 0, d W 1 

where 

y  is any continuous endpoint; and 

x  denotes the dose (or concentration). 

In all models, the parameter  

a represents the level of the endpoint at dose zero, and  

b can be considered as the parameter reflecting the efficacy of the chemical (or the sensitivity of the 
subject).  

At high doses, Models 4 and 5 level off to the value ac, so the parameter  

c can be interpreted as the maximum relative change.  

Models 3 and 5 have the flexibility to mimic threshold-like responses (i.e. slowly changing at low doses, and 
more rapidly at higher doses).  

All these models are nested to each other, except Models 3 and 4, which both have three parameters. 

In all the models, the parameter a is constrained to being positive for obvious reasons (it denotes the value of 
the endpoint at dose zero). The parameter d is constrained to values larger than (or equal to) one, to prevent 
the slope of the function at dose zero being infinite, which seems biologically implausible. The parameter b is 
constrained to be positive in all models. Parameter c in Models 4 and 5 determines whether the function 
increases or decreases, by being larger or smaller than unity, respectively. To make Model 3 a decreasing 
function, a minus sign has to be inserted in the exponent. 

These models have the following properties. 

⎯ The predicted response is strictly positive. 

⎯ They are monotone, i.e. either decreasing or increasing. 

⎯ They do not contain a threshold, but they are sufficiently flexible to show strong curvature at low doses, 
so as to mimic threshold-like responses. 

⎯ They can describe responses that level off at high doses. 
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⎯ Two populations that differ in background level but are equally sensitive can be described by the same 
model, with only parameter a being different between the populations. 

⎯ It can be easily tested if two populations differ in sensitivity (by the likelihood ratio test). 

⎯ When two populations differing in sensitivity can be described by the same model from this family, with 
only parameter b (and possibly a) being different between the two populations, the difference in sensitivity 
can be quantified as the ratio of the value of b. This way of expressing differences in sensitivity is 
analogous to the relative potency factor, and to the extrapolation factors used in risk assessment. 

For all five models, the ECx can be derived by evaluating an explicit formula: 

{ 1ln[ ( 1 ) (1 ) ]EC - } /d
x

x c / c
b

+ − −
=  

where  

x is defined as x =  y(ECx)/a − 1; 

c = 0 for Models 2 and 3; and  

d = 1 for Models 2 and 4. 

Clearly, the five multiplicative models given here only apply for those endpoints that are strictly positive and 
have a nonzero background value (value of y in unexposed conditions). For example, describing internal 
concentration as a function of external concentration is not possible with these models, as in that case, y is 
expected to be zero for x = 0. 

The procedure of selecting a model from this nested family of models, i.e. accepting additional parameters 
only when it results in a significantly better fit, is illustrated in Figure 11. 

In this dataset, the following log-likelihoods were found: 

⎯ Model 1: 277,02; 

⎯ Model 2: 339,90; 

⎯ Model 3: 339,90; 

⎯ Model 4: 351,11; 

⎯ Model 5: 351,11. 

Model 3 resulted in exactly the same fit15) as Model 2, while Model 5 resulted in the same fit as Model 4. But 
Model 4 is significantly better than Model 2 (critical difference is 1,92 at α = 0,05, according to the likelihood 
ratio test) and, therefore, Model 4 should be selected for this dataset. (Note that Model 3 and Model 4 are not 
nested; they both have three parameters). 

                                                      

15) Adding a parameter to a model can, by definition, not result in a lower (optimum) log-likelihood. When the log-
likelihood remains the same, the additional parameter is estimated at the value that makes it disappear. In this case the 
parameter d was estimated to be one. 
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a)   Exponential model 

 
b)   Improved exponential model, with additional parameter, c, 

enabling the response to level-off 

NOTE The marks indicate the observed (geometric) means of the observations. 

Figure 11 — Two members from a nested family of models fitted to the same data set 
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6.3.3.7 Hill model 

Enzyme kinetics and receptor binding are usually described by the Hill model. It was introduced by A.V. Hill 
in 1910 in order to model the binding of oxygen to haemoglobin. The model is well known by enzymologists, 
biochemists and pharmacologists, and could be considered as one of the very few examples of a 
mechanistically based model. It has the form 

c

c
a xy

b x
=

+
 

where c is called the Hill parameter.  

By setting c = 1, it is equivalent to the Michealis-Menten expression in a strict sense, with  

a denoting the maximum level of y at infinite dose, and  

b  denoting the ED50 (dose resulting in half the maximum response). 

The following formulation makes more sense for toxicology, since the parameter noted b in the Hill model is 
actually a thermodynamic equilibrium dissociation constant, Kd , that can be changed as EC50

n which is more 
familiar to toxicologists and is homogenous to a concentration (or dose): 

50
(0) ( ) (0)

EC

n

n n
xy y y y

x
= + ∞ −⎡ ⎤⎣ ⎦

+
 

It is worth noticing that the Hill model is analytically equivalent to the logit model: 

50
1 1ECln

50

50

EC1 1
EC

nn n
x

n n
xy e

x x

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤⎛ ⎞⎢ ⎥ ⎢ ⎥= + = + =⎜ ⎟⎢ ⎥ ⎢ ⎥ +⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

 

It should be noted that dose-response data observed in in vivo studies are not the result of a single underlying 
receptor binding process, but of many processes acting simultaneously. Yet, it may be a very accurate model 
for describing particular data, see e.g. Figure 19. 

6.3.3.8 Non-monotone models 

In some cases, dose-response data appear to be non-monotone. Unfortunately, it is not easy to assess if this 
is due to an underlying dose-response relationship that is indeed non-monotone. It is not unlikely that an 
apparent non-monotone dose response in observed data is due to experimental artefacts, either systematic 
errors in unreplicated dose groups or simply random noise. Although the latter possibility can be checked by 
statistical methods, the former cannot. Therefore, when the apparent monotonicity is based on a single 
treatment group, no unambiguous conclusion can be drawn. Only multiple dose studies with a clear 
non-monotone pattern, supported by various consecutive dose groups, may provide evidence of a real 
non-monotone response. 

When it is assumed that the data do not contain any systematic errors, the straightforward way to test for non-
monotonicity is by fitting a non-monotone model to the data, and by comparing the fit with a nested model that 
is monotone. For an example of a nested non-monotone model, see Brain and Cousens (1989) or Hoekstra 
(1993).  

If the non-monotone model appears to be significantly better, it may still be doubtful if this particular model 
reflects the true dose-response relationship. The practical difficulty is that non-monotone models are highly 
data-demanding, in particular with respect to the number of consecutive dose groups around the local 
maximum (or minimum) of the response. Otherwise, the location and height of the local maximum response 
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are highly model-dependent. Therefore, fixation of the local maximum response requires the enclosure by 
sufficiently close adjacent dose groups. Since the location of the local maximum response is not known in 
advance, the study design would require a large number of dose groups. Therefore, when non-monotone 
dose-response relationships may be expected (as in plant growth data), a larger number of dose groups 
needs to be incorporated in the study design. 

Of course, dose-response models include more parameters to be estimated, and this is another reason that 
many dose groups are required. In most practical data sets, various non-monotone models would give 
different results, and therefore can often not be trusted. 

6.3.4 Model fitting and estimation of parameters 

6.3.4.1 Software and assumptions 

Fitting a model to dose-response data may be done by using any suitable software, e.g. SAS (www.sas.com), 
SPSS (www.spss.com), splus (www.insightful.com)16), and PROAST (Slob, 2003). The user does not need to 
be aware of the computational details, but some understanding of the basic principles in nonlinear regression 
is required to be able to interpret the results properly. These principles are discussed in 6.7.  

Furthermore, the user should be aware of the assumptions underlying the fit algorithm. For continuous data, it 
is often assumed that the data follow a normal or a log-normal distribution. In the latter case, a log-
transformation is used to make the data (more closely) normally distributed. When a normal distribution with 
homogenous variances is assumed (possibly after transformation), maximizing the likelihood or minimizing the 
Sum of Squares amounts to the same thing (see 4.3.6). When another distribution is assumed (e.g. a Poisson 
for counts), the model may be fitted by maximum likelihood, based on the particular distribution assumed. The 
parameter values produced by maximum likelihood are also called the Maximum Likelihood Estimates (MLEs). 

6.3.4.2 Response in controls 

In all the models discussed here, the background response is incorporated as a model parameter in the model. 
This parameter should be estimated from the data, before deriving the ECx or ICx. Pre-treatment of the data 
(dividing all responses by the mean background response) should be avoided (see also 4.3.4). 

6.3.4.3 Fitting the model assuming normal variation 

When the original data are assumed to be normally distributed with homogenous variances, the model may be 
fitted by either maximizing the log-likelihood function based on the normal distribution, or by minimizing the 
sum of squares. Both methods result in the same estimates of the regression parameters, which are 
maximum likelihood estimates (MLEs) in both cases. The fitted model describes the arithmetic mean response, 
as a function of dose. 

6.3.4.4 Fitting the model assuming normal variation after log-transformation 

When the residual variation is assumed to be log-normal, the model may be fitted after first log-transforming 
both the model predictions and the data, and then either maximizing the log-likelihood function based on the 
normal distribution, or minimizing the sum of squares. Both methods result in the same estimates of the 
regression parameters and the residual variance, which are maximum likelihood estimates (MLEs) in both 
cases. It should be noted that the resulting parameter estimates do relate to the original parameters of the 
(untransformed) model. Substituting the estimated regression parameters in the model results in a prediction 
of the median (or geometric mean) response as a function of dose. Therefore, in plotting the model together 
with the data, the back-transformed means (which are equivalent to the geometric means) should be plotted 
(see e.g. Figure 11). 

                                                      

16) SAS, SPSS and splus are examples of a suitable products available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these products. 
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While the MLEs of the regression parameters relate to the model on the original scale, the MLE of the 
variance (s2) relates to the log-transformed data. Apart from this variance (s2) on log-scale, the variation of the 
scatter around the model (i.e. of the regression residuals) may be equivalently reported by the geometric 
standard deviation (GSD), which is the back-transformed square root of s2, or by the coefficient of variation 
(CV), which relates to s2 by 

2CV exp( ) 1s= −  

when s2 relates to the variance of the data after natural log-transformation, or by 

2CV exp [ ln (10)] 1s= −  

when the log10-transformation was applied to the data. 

At first sight, a disadvantage of taking the logarithm of the data before fitting is that the logarithm of zero does 
not exist. Although zero observations for continuous responses rarely occur in ecotoxicity testing, the following 
may be noted. Zero observations usually mean that the response is below the detection limit rather than truly 
zero. By regarding zero observations as truncated observations, they can be easily and accurately dealt with 
by incorporating the information that the observation is lower than the detection limit in the log-likelihood 
function. 

6.3.4.5 Fitting the model assuming normal variation after other transformations 

When another transformation is applied to the data, the same transformation should be applied to the model, 
before maximizing the likelihood (or minimizing the SS). Both the fitted model and the transformed data may 
be back-transformed before plotting. Again, the resulting plot relates to the predicted and observed median 
response, as a function of dose (assuming that the transformation made the scatter symmetrical). 

6.3.4.6 No individual data available 

In reported studies (published papers), individual observations are not always given. Instead, means and 
standard deviations (or standard errors of the mean) for each dose group are commonly reported. Since the 
mean and standard deviation are “sufficient” statistics for a sample from a normal distribution, a dose-
response model can just as well be fitted based on these statistics without any loss of information (except 
possible outliers), by adjusting the log-likelihood function (Slob, 2002). In the case of an assumed log-normal 
distribution, sufficient statistics are provided by the geometric mean and the geometric standard deviation, or 
by the (arithmetic) mean and standard deviation on log-scale. These can be estimated from the reported 
mean and standard deviation (Slob, 2002). Figure 11 exemplifies a dose-response analysis applied to the 
reported means and standard deviations, without knowing the individual data, but taking the reported standard 
deviations into account. 

6.3.4.7 Fitting the model using GLM 

Since the log-likelihood function directly derives from the postulated distribution, one may theoretically assume 
any distribution, and apply maximum likelihood for fitting the model based on that assumption. For a number 
of distributions (the so-called exponential family of distributions), one may make use of the theory of 
Generalized Linear Models (GLM), and use existing software without deriving and programming one’s own 
formulae. The GLM framework is also useful for analysing data with replicated concentration groups. 

The Poisson distribution is a member of this exponential family, and the existing GLM software can be directly 
used. Thus, one may assume this distribution for the analysis of counts, and check if the distribution is 
reasonable. 

The gamma distribution is another example of a distribution belonging to the exponential family. This 
distribution can be directly dealt with by the existing (GLM) software (e.g. in SAS, SPSS, splus). The gamma 
distribution is very similar to the log-normal distribution regarding its behaviour of describing the variation in 
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data. Therefore, an analysis based on either one of these two distributions may be expected to give very 
similar results. However, there are a few differences.  

⎯ An analysis based on the log-normal distribution results in a model describing the median response (as 
estimated by the geometric means).  

⎯ An analysis based on the gamma distribution describes the response in terms of the statistical 
expectation (as estimated by the arithmetic means).  

Therefore, the latter fitted model lies, on the whole, at a lower level than the former because the mean is 
larger than the median (the more so for larger experimental variation, i.e. more skewed scatter). However, 
both analyses may be expected to result in similar point estimates for the ECx: the difference in level cancels 
as the ECx is a ratio of the two medians, or of the two mean levels, respectively.  

A second difference is, that the analysis based on the gamma distribution results in an estimate of the residual 
variation in terms of the variance on the original scale, while for the analysis based on the log-normal 
distribution, the residual variation is estimated in terms of a CV (or a GSD: geometric standard deviation). 

6.3.4.8 Covariates 

In many studies, not only the concentration is varied systematically. Other factors may also be varied 
intentionally as part of the design. For example, a chemical is studied under various conditions, e.g. 
temperature, pH or soil condition. Instead of fitting a model to each subset of data, it is often possible to fit the 
model simultaneously to the whole data set, by letting a particular parameter (possibly more) depend on that 
covariate.  

Such an analysis is illustrated in Figure 12, where AChE inhibition was measured at three points in time, i.e. at 
three different exposure durations. Here, a four-parameter model was fitted, two of which were allowed to 
depend on duration. Thus a total of nine parameters was estimated, while a separate analysis for each 
duration would have resulted in a total of 15 estimated parameters (three times 4 regressions plus one 
variance parameter). The gain of this is that the resulting confidence intervals for the ECx estimates are 
smaller. 
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Key 

triangles 3 weeks 
circles 7 weeks 
pluses 13 weeks 

NOTE Marks denote the geometric group means, the individual observations are not plotted here. The background 
AChE levels increase with duration (age), while the ECx (CED for CES = 0,20) decreases with exposure duration. The 
model used is Model 5 from the nested family of models proposed by Slob (2002). 

Figure 12 — Cholinesterase inhibition as a function of dose at three exposure durations  

6.3.4.9 Heterogeneity and weighted analysis 

In concordance with the parsimony principle (as discussed in e.g. 6.1), it is favourable to assume 
homogenous variances between dose groups; in this way, only one single parameter for the residual variance 
needs to be estimated. However, it should be noted that the term “homogenous variances” is closely 
associated with the normal distribution. When other distributions are assumed, the variances are generally not 
expected to be homogenous, e.g.: 

⎯ for log-normally (or Gamma) distributed data, variances increase with the means (more specifically, CVs 
are predicted to be constant), and this heterogeneity should vanish when the data are log-transformed. 
Thus, it may be assumed that (on the original scale) the CVs are homogenous, and the statistical analysis 
would result in a single estimate of the CV; 

⎯ for Poisson-distributed data (counts), the variances also increase with the mean. In fact they should be 
equal to the means, and if the data confirm this, no variance parameter needs to be estimated. In practice, 
this assumption is often violated, with the variances being larger than the means. This is called extra-
Poisson variation, and an extra parameter may be estimated expressing the proportionality constant 
between mean and variance. 

Apart from statistical reasons (the parsimony principle), the issue of homogenous variances should also be 
considered for biological reasons. It might be that the organisms did not respond equally to the compound due 
to variability in sensitivity, and this is reflected in the variances. It is not easy to discriminate between statistical 
heterogeneity (distribution effects) and biological heterogeneity (“true” effects). For that reason (among others), 
it is important to carefully consider what distribution should be assumed, e.g. by using historical data on the 
same (or similar) endpoint examined for other chemicals (or treatments). 
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When the heterogeneity of variances cannot be explained by the underlying distribution, one might conclude 
that the responses themselves are heterogeneous. Statistically, this implies that the precision of the estimated 
group means is not the same among groups. This may be taken into account in the statistical analysis by 
using a weighted analysis, e.g. weighted least squares, where the squares are multiplied by a weight, usually 
the inverse of the standard deviation of the relevant group, or by using maximum likelihood where a variance 
is estimated for each separate group17). For a more extensive discussion, see e.g. Scholze et al. (2001). 

A weighted analysis should result in a more efficient estimate of the mean response (as a function of dose) in 
situations where the data are considered to reflect the same underlying response, and the heterogeneity is 
due to differences in measurement errors. The interpretation of a mean response is, however, problematic 
when the heterogeneity reflects that the population responds heterogeneously, in particular when this is 
caused by distinct subpopulations that differ in response.  

EXAMPLE As an example, consider Figure 13, where relative liver masses are plotted on the log-scale (since for 
this endpoint, the scatter is normally proportional to the mean level). In this particular example, the scatter first decreases, 
then increases with the dose. This might lead one to perform a weighted analysis (e.g. weighted least squares). 

However, as Figure 14 shows, the heterogeneity in variances is caused by different responses in males and 
females. Fitting the model taking sex into account results in two different dose-response relationships, each 
with homogenous scatter around it. 

 
NOTE Normally, relative liver masses show homogenous scatter in log-scale, but in these data the scatter first 
decreases, then increases with dose. 

Figure 13 — Relative liver masses against dose, plotted on log-scale  

                                                      

17) When the heterogeneity in response changes systematically with the dose in a way that cannot be explained by the 
underlying distribution, one may also incorporate a dose-response relationship for the variation parameter in the likelihood 
function. 
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Figure 14 — Dose-response model fitted to the data of Figure 13, showing that the heterogeneous 
variance was caused by males (triangles) and females (circles) responding differently to the chemical 

6.3.4.10 Confidence intervals 

Confidence intervals may be assessed in various ways: 

⎯ the delta method, i.e. plus or minus twice (or the relevant standard normal deviate times) the standard 
error as estimated by the second derivative of the likelihood function (Hessian or information matrix); the 
standard errors of the parameters are provided by most dose-response software; 

⎯ based on the profile of the log-likelihood function, using the Chi-squared approximation of the 
log-likelihood; 

⎯ bootstrap methods (see e.g. Efron 1987, Efron and Tibshirani 1993); 

⎯ Bayesian methods, in particular if one has some preliminary knowledge on the plausible range of the 
parameter value(s). 

The relative performance of the first three methods applied to a typical toxicological dataset (from a rodent 
study) has been examined by Moerbeek et al. (2004). In this study, the second and third method resulted in 
similar intervals, while the first method appeared less accurate. 

6.3.4.11 Extrapolation 

Because of the fact that a fitted statistical model only reflects the information in the data, extrapolation outside 
the range of observation is usually unwarranted. Therefore, estimating an ECx that is much lower than the 
lowest applied (nonzero) dose or concentration should be avoided. 

6.3.4.12 Analysis of data with replicated dose group 

The individual organisms in each dose group may be housed in different containers. In that case, the 
individual observations may not be independent, due to systematic differences between the containers 
themselves. A straightforward and relatively simple approach for analysing such data is to follow two steps. 

⎯ In the first step the model is fitted as though the data were independent (i.e. the observations from 
various containers at the same dose are taken together and treated as a single sample).  
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⎯ Then, the residuals from the fitted model are calculated and these are subjected to a nested analysis of 
variance, resulting in an estimate for the (residual) variance within as well as among the containers.  

Strictly, the first step of this method is not completely valid, as it assumed independence between the 
observations. However, the results would normally not be much different (especially so for more or less 
balanced designs). 

One may also fit a mixed model to the data, i.e. a model that contains both the (systematic) dose-response 
relationship and the random variation between containers. 

These analyses result in an estimate of the variation among containers, and the residual variation within 
containers. 

In studies without replicated dose groups, the variation between containers is incorporated into the residual 
variance. Theoretically, the variation between containers can still be estimated in designs with a sufficient 
number of dose groups, but practical experience with real toxicity data appears to be lacking. 

6.3.5 Assumptions 

6.3.5.1 General 

A dose-response model consists of a deterministic part (the predicted dose-response relationship) and a 
statistical part (describing the noise). The assumptions made in the statistical part are analogous to those in 
hypothesis testing, and only be briefly mentioned here. The focus in this subclause is on the additional 
assumption, that of the (deterministic) dose-response model. 

6.3.5.2 Statistical assumptions 

The assumptions for hypothesis testing equally hold for dose-response modelling: 

⎯ independence between the animals in the same experimental unit (e.g. container); 

⎯ no variation between experimental units (e.g. containers) themselves, if they are not incorporated in the 
statistical analysis; 

⎯ a particular statistical distribution and variance structure for the residual variation, e.g. 

⎯ normal distribution with homogenous variance; 

⎯ log-normal distribution with homogenous Coefficient of Variation (CV); 

⎯ gamma distribution with homogenous Coefficient of Variation (CV); 

⎯ Poisson distribution without variance parameter, or with additional parameter for extra-Poisson 
variation; 

⎯ no systematic differences (due to unintended experimental factors ) between dose groups; 

⎯ the values of the concentrations/doses are assumed to be known without error, or, in situations where 
they are measured, the measurement errors are assumed to be negligible. 

6.3.5.3 Additional assumption 

The shape of the fitted model is close to the true dose-response relationship. 
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6.3.6 Evaluation of assumptions 

The statistical assumptions are similar to those in hypothesis testing, and may be further checked by plotting 
(analysing) the residuals (see 4.3.6 and Clause 5). However, the additional assumption (acceptance of the 
fitted dose-response model) is the most important, and the reader should first of all read and understand 6.4. 

6.3.7 Consequences of violating the assumptions 

6.3.7.1 Basic assumptions 

Violation of the assumption that containers do not vary amongst each other: While this variation is not taken 
into account in the statistical analysis, it does not have much impact on the point estimate of the ECx (in 
particular when the number of replicates is similar between dose groups). It does, however, distort the 
estimate of the confidence interval, which is too narrow. 

Systematic differences between (unreplicated) dose groups, caused by some unintended experimental factor, 
may have a deforming effect on the fitted model, and thereby result in a biased estimate of the ECx. However, 
especially for multiple dose designs, the effect may be small: systematic deviations in particular dose groups 
are, to a greater or lesser extent (depending on the situation), mitigated by the other dose groups in the 
process of fitting a single dose-response model to the complete data set. To prevent systematic errors 
between dose groups as much as possible, attention should be paid to applying randomization procedures in 
the study protocol (see also 4.2.2). 

If one suspects that experimental units (e.g. containers) vary by themselves, then one should incorporate 
replicated dose groups in the design (e.g. various containers per dose group), or increase the number of dose 
groups (keeping one container per dose). In both designs, the container effect can be estimated, although in 
the latter design this can only be done indirectly and may be difficult in practice. 

A dose-response model is often relatively insensitive to outliers. See Figure 15 for an illustration. 
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NOTE The estimate of the EC05 (CED at CES = 0,05) is only mildly affected, even though the outlier is in the top 
dose. The 90 % confidence interval was estimated at (1,63 to 2,30) with the outlier included, and at (2,12 to 2,93) when 
excluded. 

Figure 15 — Model fitted to dose-response data with and without an outlier in the top dose  

6.3.7.2 Additional assumption 

Violation of the assumption that the shape of the fitted model is close to the true dose-response relationship 
results in a biased estimate of the ECx. There is no remedy against violation of this assumption, other than to 
repeat the study with an improved design. Therefore, it is not recommended to estimate an ECx if the fitted 
model appears not sufficiently confined by the data from visual inspection, or if it is found that various models, 
fitting equally well, result in different ECx estimates. In the latter case, one might consider constructing an 
overall confidence interval for the ECx based on various models that fit the data equally well (if repeating the 
experiment, aimed at more concentrations with different response levels, is not an option). 
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6.4 To accept or not accept the fitted model? 

6.4.1 Can the fitted model be accepted and used for its intended purpose? 

A fundamental issue in dose-response modelling is the question 

 “Can the fitted model be accepted and be used for its intended purpose (such as estimating an ECx)?”. 

The issue is not that the model used should be the “right” model, since there is no such thing (at least not for 
statistical models). A statistical model completely hinges on the dose-response data, and the quality of the 
data is in fact the crucial aspect. In the fitting process, a model tries to hit the response at the observed doses. 
But when it is used for assessing an ECx by interpolating between observed doses, the model should also “hit” 
the response in the non-observed dose range in between. In other words, there are two aspects in evaluating 
the fitted model: one should not only assess if the model succeeded in describing the observed responses, 
but also if the model can be trusted to describe the non-observed responses in between. The former aspect 
focuses on the quality of the model, the latter on the quality of the data. The following discussion indicates 
how to deal with these two aspects. It should be noticed that this discussion holds for both quantal and 
continuous dose-response data. 

6.4.2 Is the model in agreement with the data? 

This question may be addressed using the goodness of fit. Goodness-of-fit methods can be used in an 
absolute or in a relative sense. In an absolute sense, one may test if the data significantly deviate from a 
particular model. It should be noted that this test is sensitive not only to the inadequacy of the model chosen, 
but also to any violations of the basic assumptions (e.g. no independent observations, outliers). In particular, a 
single deviating concentration group (due to some unknown experimental factor) could make the model be 
rejected significantly even when it perfectly follows the overall trend in the data. Therefore, the (absolute) 
goodness-of-fit test should never be strictly applied. A visual check of the data is always needed and may 
overrule a goodness-of-fit test. 

The goodness of fit may also be used in a relative way, i.e. to compare the fits of different models. When 
models are nested (as discussed in 6.2.2 and 6.3.2), the likelihood ratio test can be applied to determine the 
number of parameters needed for describing the data. For non-nested models, one may use the Akaike 
criteria (Akaike 1974, Bozdogan 1987), but this test is not exact. 

It has been suggested to focus the goodness of fit to the region of interest (around the ECx). This approach, in 
a sense, undermines the whole idea of dose-response modelling, i.e. describing the dose-response 
relationship as a whole. In particular, it is more sensitive for (systematic) errors in the data that happen to 
occur in one of the dose groups in the range of interest. As discussed in 6.3.4, one of the advantages of dose-
response modelling is that potential systematic errors in a single dose group may be mitigated by the others. 

6.4.3 Do the data provide sufficient information for fixing the model? 

This question is at least as important as the previous. Therefore, the fitted dose-response model should 
always be visually inspected, not only to see if the data are close to the model, but also to check if the data 
provide sufficient information to confine the model. Here, one should ask the question 

“If additional data on intermediate dose groups had been available, could that have substantially 
changed the shape of the dose-response relationship as compared to the current fitted model?”.  

(See also 4.3.6.) 

Another way to deal with this question is by comparing the outcomes from different fitted models. If the data 
do contain sufficient information to confine the shape of the dose-response relationship, different models fitting 
the data (nearly) equally well, result in similar fits and similar estimates of the parameters. To illustrate this (for 
the case of quantal data), the results of Figures 7 to 9 are summarized in Table 6. In this case, the results are 
quite independent from the model chosen, and one may conclude that the data provide sufficient information 
to rely on dose-response modelling. 
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Table 6 — Results of fitting three different models to the same data set (see Figures 7 to 9) 

Model a 
(background 

response) 

LD50 LD20 Confidence interval of LD20 a Log-likelihood

Probit 0,035 5 0,256 4 0,165 0,112 to 0,217 −34,01 

Logit 0,035 6 0,255 4 0,167 0,121 to 0,220 −34,16 

Weibull 0,035 2 0,262 5 0,145 0,084 to 0,218 −34,02 

a Confidence intervals based on 1 000 parametric bootstrap runs. 

As another illustration, Figure 16 shows two different models fitted to the same (continuous) data. Again, due 
to the good quality of the data, they result in very similar estimated concentration-response relationships, and 
therefore in a similar (point) estimate of any ECx. In situations where the results (in particular, the ECx) depend 
on the model chosen, it cannot be considered as a reliable estimate, and other methods should be considered 
(see 4.1). 
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NOTE Small marks indicate individual observations; large marks indicate (geometric) means. 

Figure 16 — Two different models (both with four parameters) fitted to the same data set resulting 
in similar dose-response relationships  

In current practice, there is a tendency to focus on the first part and a formal goodness-of-fit test is often 
regarded as (sufficient) evidence that the model is acceptable. This is unfortunate, since a goodness-of-fit test 
tends to be more easily passed for data with few dose groups, and in exactly that situation, the second 
condition is more likely not to be met. In addition, a goodness-of-fit test assumes that the experiment was 
carried out perfectly, i.e. perfectly randomized with respect to all potentially relevant experimental factors and 
actions. Clearly, this assumption is not realistic. 

The ideas discussed here are further illustrated (theoretically) in Figure 17. In the left panel, the data are 
insufficient to establish the dose-response relationship, leaving too much freedom to the model. In the right 
panel, the data are sufficiently informative to confine the shape of the dose-response relationship. 
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a)   Data (either quantal or continuous) 
do not contain sufficient information 

to confine the dose-response relationship 

b)   Data (either quantal or continuous) do 
contain sufficient information to confine 

the dose-response relationship 

NOTE 1 These figures also illustrate that more dose groups are more important than higher precision (indicated by 
vertical error bars). Although the precision of the ECx estimate is lower in 17a), it is more likely to be biased.  

NOTE 2 Dose group number 1, as indicated on the abscissa, may be read as the control group in these plots. 

Figure 17 — Two data sets illustrating that passing a goodness-of-fit test is not sufficient 
for accepting the model 

A number of general guidelines may be formulated in choosing and accepting a particular model for describing 
the dose-response data. 

⎯ When one of two nested models results in a significantly better fit, choose that model, otherwise the one 
with fewer parameters. One more parameter in the model can be regarded to result in a significantly 
better fit (at α = 0,05) if the log-likelihood is increased by at least 1,92 (which is half the critical Chi-
squared value with one degree of freedom at α = 0,05). One may also follow this procedure as a proxy for 
non-nested models (or use Akaike's criteria). 

⎯ When two (or more) models have the same number of parameters, but one of them has a better 
goodness of fit, the choice of the better fitting model is obvious. However, if one prefers for some reason 
the other model, one may use Akaike’s criteria to compare the model fits (Akaike, 1974; Bozdogan, 1987). 

⎯ When two models result in a similar goodness of fit, but their shapes are very different (resulting in 
different estimates of the ECx), no conclusion can be made other than the data being inconclusive. In this 
situation it is not recommendable to derive an ECx based on dose-response modelling. 

⎯ The situation that two (or more) models show a similar goodness of fit, both being similar in shape 
(resulting in similar ECx estimates), this can be considered as a confirmation that the data provide 
sufficient information to assess the dose-response relationship, and estimate the ECx. 

It is re-emphasized that a dose-response model, as long as it is not based on the mechanism of action of the 
particular chemical, only serves to smooth the observed dose-response relationship, and to provide for a tool 
to assess confidence intervals. A statistical regression model itself does not have any biological meaning, and 
the choice of the model (expression) is to some extent arbitrary. It is the data, not the model, that should 
determine the dose-response relationship, and thereby the ECx (Figure 17). When different models (with 
similar goodness of fit and equal number of parameters) result in different ECx estimates, the data are 
apparently not suitable for dose-response modelling. 

Dose-response models that are based on the mechanism of action of the particular chemical are, as opposed 
to statistical models, supposed to contain information by themselves, and therefore be less sensitive to data 
gaps (between dose groups). However, they do contain unknown parameters that need to be estimated from 
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the data, and it appears sensible to follow the guidelines described here in such models just as well. 
Mechanistic dose-response models are extremely rare, and contain some general elements at best. In the 
biological models discussed in Clause 7, the biological mechanisms in the models relate to the normal 
physiology in organisms rather than to the mechanism of action of specific chemicals. 

6.5 Design issues 

6.5.1 General 

Concentration-response modelling can only be applied if the data contain sufficient information on the shape 
of the concentration-response relationship. Although this condition should be judged in each individual 
situation, experience teaches us that at least four different response levels are needed (including the control 
group) in the case of continuous data. A similar condition holds for quantal data, e.g. two partial kills next to 
(almost) complete mortality and (almost) complete survival. When one actually “knows” in advance that the 
concentration-response relationship is linear, designs with fewer concentration groups may be considered, 
and, as a matter of fact, they are more efficient in terms of precision. However, it seems rare that one can be 
confident a priori that the concentration-response is indeed linear (usually not much is known in advance 
about the tested chemical’s action on the test organism) and extra concentration groups are highly 
recommendable. 

A design with three concentration groups and a control may result in concentration-response data that allow 
for concentration-response modelling. However, it is always advisable to include more concentration groups 
for various reasons. If just one of the concentration groups was inadequately chosen (e.g. no observable 
response), concentration-response modelling fails. Further, systematic differences between treatment 
(concentration) groups are not unusual in toxicity testing (e.g. caused by systematic order in handling the 
groups), which may result in biased estimation of the concentration-response relationship. This unfavourable 
effect can be diminished in designs with more concentration groups. 

In general, it may be stated that for the purpose of estimating an ECx, it is important to have a sufficient 
number of dose groups, to prevent biased estimates of the ECx. The allocation of the organisms (or 
experimental units) to more dose groups may be done at the expense of the number of replicates in each 
group without much loss (if any) for the precision of the estimated ECx. 

6.5.2 Location of dose groups 

Concretely, for the purpose of estimating an ECx, the available number of organisms (replicates) should be 
allocated to at least three (excluding the controls), but preferably more concentration groups. Next to a 
sufficient number of concentration groups (resulting in different response levels), one needs to choose a 
lowest and highest concentration level. 

For quantal data, one may aim at four concentrations showing different response levels, including (nearly) 
none and (nearly) complete responses together with two concentrations with partial responses, as a minimum 
requirement. In continuous data, the low concentration is preferably chosen such that the observed response 
differs from the controls to a similar degree as x in the required ECx (to prevent that the ECx can only be 
estimated by extrapolation). Although one is usually interested in low response levels, high response levels 
are needed to assess the concentration-response relationship. The highest concentration would be preferably 
chosen such that the range between highest and lowest observed response is large enough to potentially 
include at least four different (in a rough statistical sense, that is, they appear detectable from the noise) 
response levels. 

Interestingly, simulation studies show that the intuitive idea of concentrating dose levels around the ECx is not 
optimal. Designs that include sufficiently high dose levels (or rather sufficiently different response levels 
compared to the controls) perform better (Slob, in preparation). 

6.5.3 Number of replicates 

In typical quantal data (with both 0 % and 100 % observed response levels), the precision of the ECx declines 
with x, and the size of the experiment (total number of organisms or units) should be larger for smaller values 
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of x that are considered appropriate. Thus, when only an EC50 is required, a smaller experiment is required 
than when an ECx is aimed for. In continuous dose response, this phenomena appears to be less prominent. 

Theoretically, in quantal dose-response analysis, the relationship between the precision of an ECx and the 
size of the experiment can be calculated. However, the number of organisms needed to obtain any given 
precision depends on the slope of the dose-response function itself, which is typically unknown before the 
study. 

For the generally applicable nested family of (five) models, given in 6.3.2, simulation studies are being 
performed (for continuous data), to provide an indication of the (total) number of replicates necessary to 
achieve a particular precision for the ECx (Slob, in preparation). 

6.5.4 Balanced versus unbalanced designs 

Due to the principle of leverage, observations in the extreme dose groups have more influence on the 
resulting model fit than the middle dose groups. This suggests that designs with larger sample sizes in the 
extreme dose groups may be more efficient than designs with the same sample sizes in all dose groups. Yet, 
preliminary simulation studies indicated that a design with twice the sample size in the controls performed only 
slightly better than one with equally sized dose groups. But more simulation studies are needed to give more 
definite answers to this question. 

For designs with replicated experimental units (e.g. containers), where the number of replicates is small, say 
two, it appears wise to allocate a higher number of replicates in the controls, since a single erroneous 
replicate in the controls may then have a large impact on the model fit. 

6.6 Exposure duration and time 

6.6.1 General 

It may be expected a priori that the response in biological systems is not only a function of dose, but also of 
the duration of the exposure. Therefore a model that describes the response as a function of both dose and 
duration would be more informative and give a more complete picture. Exposure duration is however a more 
complicated factor than dose, because it interferes with the factor time. The factor time has an impact by itself, 
e.g. on ageing, adaptation and repair of the processes underlying the response. Depending on the question to 
be answered, the study may, e.g. 

⎯ monitor the organisms during a period of time after an acute, or a fixed, period of exposure; 

⎯ monitor the organisms while they are held at various, but constant exposure levels; 

⎯ treat different groups of individuals with different exposure durations and compare the response at the 
end of exposure, or at a fixed point in time. 

The second type of study is quite common in ecotoxicity testing in general (the others may be relevant for 
specific situations). Usually, in these studies the same (individual or groups of) organisms are followed over 
time. For example, the same organisms are recorded to have died or not. Or, egg production is monitored for 
the same (group of) organisms over time. In other studies, however, the observations in time may relate to 
different experimental units. As a result, the observations may be or not be independent, and this should be 
taken into account in the analysis of the data. This subclause briefly discusses the analysis of this type of data 
for both quantal and continuous data. 

6.6.2 Quantal data 

When a quantal response is observed at various points in time (e.g. number of additional deaths recorded 
each day while maintaining exposure at the same level), the statistical analysis of the dose-response data 
may be extended to include this extra information. Some authors have suggested fitting a dose-response 
model to the separate data sets, i.e. for each exposure duration separately, and plotting the ensuing EC50s as 
a function of time. The value to which this function levels off is called the incipient EC50, interpreted as 
the EC50 for “infinite” exposure. This is not a proper method and should be avoided, for various reasons. 
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⎯ First, conceptual problems arise, e.g. an incipient LC50 does not make sense as more than 50 % of the 
animals die without any exposure at longer exposure durations. 

⎯ Second, statistical problems arise, e.g. the dose-response data at different time points are not 
independent, which hampers the establishment of confidence intervals for the incipient EC50. 

⎯ And third, comparing dose-response models (such as the log-logistic) that are fitted for several time 
points separately may lead to inconsistent results (e.g. the fitted dose-response functions for various 
exposure durations intersect each other). 

The approach of fitting a response surface to dose (concentration) and time simultaneously (multiple 
regression) is also improper, since the observations in time are not independent. 

A proper way of modelling dose-time-response data where each individual is followed in time, is by assuming 
a relationship of dose with the hazard. The hazard18) reflects the probability of an individual to respond (e.g. 
die in the case of mortality) in a very small time interval, divided by the probability that it is still alive at that age. 
On a population level, this reflects the incidence of response during that small time interval, divided by the 
fraction of the population still alive at that age. By assuming that the hazard is a function of dose, the dose-
time-response data can be described in a single model. The hazard can be directly transformed into a survival 
(or mortality) function, or, more generally, in a quantal time-response function. This function may be used for 
deriving the log-likelihood given the observed frequencies of response, in the usual way. There is a vast 
literature on survival analysis (see e.g. Cox and Oakes 1984, Miller 1981, Tableman and Kim 2004). For an 
example of dose-response modelling based on the hazard function, see 7.2. 

6.6.3 Continuous data 

6.6.3.1 General 

For many continuous endpoints, observations can be (and sometimes are) made in time. 

EXAMPLE 1 For example, body masses of animals can be determined at particular time intervals during the study. Or, 
the growth of algae can be monitored over time.  

EXAMPLE 2 As another example, the number of eggs produced can be counted at specific time intervals.  

It is re-emphasized that the observations in time may relate to the same or to different units (organisms), 
determining if the data should be treated as dependent or independent observations. 

6.6.3.2 Independent observations in time 

In some studies, the observations in time relate to different units.  

EXAMPLE In algal growth studies, the biomass at a concentration is followed in time (e.g. day 0, 1 and 2). Suppose 
that once any of the algal test vessels has been measured, it is removed from the test. In that case, each observation 
relates to another vessel, and the data can be treated as independent, i.e. they can be taken together in a single analysis.  

As an illustration consider the data in Figure 18, where at 9 different concentrations the biomass was 
measured at three consecutive days (each time with two replicates). Here a time-response model (i.e. a dose-
response model with dose replaced by time) was fitted to all the data simultaneously, by assuming that the 
biomass at time zero was equal among the concentrations, while the growth rate differed between the 
concentrations. Thus, for each concentration a slope parameter b was estimated, but only a single parameter 
a and a single variance parameter. Thus, 11 parameters in total were estimated in a simultaneous fit of the 
model to these data. 

                                                      

18) The hazard may be formally defined as − {[dS(t)/dt]/ S(t)}, where S(t) denotes the survival function. 
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NOTE Here, an exponential growth model was fitted, thereby estimating a single background value (a), a separate 
growth rate (b) for each  concentration, and a single residual variance (for log-biomass). Note that replicates are treated as 
independent observations in this analysis. 

Figure 18 — Observed biomasses (marks) as a function of time, for nine different concentrations 
of Atrazine 

The estimated growth rates can subsequently be subjected to a dose-response analysis, as shown in 
Figure 19. 

 
NOTE Point estimate of EC10 (= CED): 0,038 7 mg/l, with 90 % confidence interval: (0,035 1 to 0,042 4), based on 
1 000 bootstrap runs. 

Figure 19 — Growth rates as derived from biomasses observed in time (see Figure 18) at nine different 
concentrations (including zero), with the Hill model fitted to them 
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6.6.3.3 Dependent observations in time 

When the data in time relate to the same experimental units, the observations cannot be treated as 
independent data, and an analysis as in Figure 18 is improper. When the data show a clear trend in time, a 
straightforward approach is to fit the exponential growth model to the biomasses, but now allowing each 
experimental unit (flask) to have its own growth rate. This amounts to fitting a separate time-response model 
for each separate experimental unit, and subsequently subject the relevant19) parameter estimates to a 
dose-response analysis. This analysis is analogous to that illustrated in Figures 18 and 19, but the 
concentration-response data now have replicates (see Figure 20). 

 

NOTE Here, the individual flasks were taken into account, resulting in two growth rate estimates for each (nonzero) 
concentration, and six growth rates for concentration zero. 

Point estimate of EC10 (= CED): 0,038 8 mg/l, with 90 % confidence interval: (0,035 5 to 0,042 1), based on 5 000 
bootstrap runs. 

Figure 20 — Estimated growth rates as a function of (log-)concentration Atrazine 

It may be noted that the confidence intervals for the EC10 as derived from the data in Figure 19 and Figure 20 
are very similar, despite the fact that in the latter case there are more data points. The reason is that the 
information in both data sets is in fact the same. 

In data sets where no trend in time is apparent, one may just as well take the average over time (in each unit) 
and apply the dose-response analysis to the averages. 

6.7 Search algorithms and non-linear regression 

As discussed previously, non-linear regression models can only be fitted in an iterative “trial and error” 
approach. Computer software uses efficient algorithms to do that, and the user does not need to worry about 
the exact nature of the calculations. However, some basic understanding of the search process in required in 
order to interpret the results. In addition, such understanding is needed to evaluate whether the algorithm was 
successful or not, and if not, what if anything can be done about that. 

                                                      

19) The relevant parameter should follow from understanding the biological process. In algal biomass, the obvious 
parameter is the growth rate; when the observations relate to the number of eggs, supposed to level off at a constant level 
with age, either the parameter reflecting that level or the parameter reflecting the rate at which that level is reached could 
be the relevant parameter. 
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An iterative algorithm tries to find “better” parameter values in a process by evaluating if the fit can be 
improved by changing the parameter values. By regarding the fit criteria as a function of the parameters, the 
problem is in fact to find the maximum (in the case of likelihood) or minimum (in the case of Sum of Squares) 
of that function. Although algorithms have been developed to do this in an efficient way, one should keep in 
mind that the algorithm cannot see in advance where the optimum of the function is. One may compare the 
algorithm with a blindfolded person, who can only feel if there is a slope or not (and how steep it is). The 
algorithm recognizes the optimum by the property that around the optimum the slope changes from increasing 
to decreasing (or vice versa). 

Obviously, the algorithm can only start searching when the parameters have values to start with. Although the 
software often gives a reasonable first guess for the starting values, the user may have to change these. It is 
not unusual (in particular when the information in the data is hardly sufficient to estimate the intended 
parameters) that the end result depends on the starting values chosen, and the user should be aware of that. 

The algorithm keeps on varying the parameter values until it decides to stop. There are two possible reasons 
for the algorithm to stop the searching process. 

⎯ The algorithm has converged, i.e. it has found a clear maximum in the log-likelihood function. In this case 
the associated parameter values can be considered as the “best” estimates (MLEs if the likelihood was 
maximized). However, it can happen that the log-likelihood function has not one but more (local) maxima. 
This means that one may get other results when running the algorithm again, but with other start values. 
This can be understood by remembering that the algorithm can only “feel” the slope locally, so that it 
usually finds the optimum that is closest to the starting point. 

⎯ The algorithm has not converged, i.e. the algorithm was not able to find a clear optimum in the likelihood 
function, but it stops because the maximum number of iterations (trials) is exceeded. This may occur 
when the starting values were poorly chosen, such that the associated model would be too far away from 
the data. Another reason could be that the information in the data is poor relative to the number of 
parameters to be estimated. For example, a concentration-response model with five unknown parameters 
cannot be estimated with a four-concentration-group study. As another example, the variation between 
the observations within concentration groups may be large compared to the overall change in the 
concentration-response. In these cases, the likelihood function may be very flat, and the algorithm cannot 
find a point where the function changes between increasing and decreasing. The user may recognize 
such situations by high correlations between parameter estimates, i.e. changing the value of one 
parameter may be compensated by another, leaving the model prediction practically unchanged. 

6.8 Reporting statistics 

6.8.1 Quantal data 

With quantal data, the following should be reported: 

⎯ test endpoint assessed; 

⎯ number of test groups; 

⎯ number of subgroups within each group (if applicable); 

⎯ identification of the experimental unit; 

⎯ nominal and measured concentrations (if available) for each test group; 

⎯ number exposed in each treatment group (or subgroup if appropriate); 

⎯ number affected in each treatment group (or subgroup if appropriate); 

⎯ proportion affected in each treatment group (or subgroup if appropriate); 

⎯ the dose metric used; 
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⎯ the model function chosen for deriving the EC50 (ECx); 

⎯ plot of dose-response data with fitted model, including the point estimates of the model parameters and 
the log-likelihood (or residual SS); 

⎯ fit criteria for other fitted models; 

⎯ the EC50 together with its 90 %-confidence interval; 

⎯ if required: the ECx together with its 90 %-confidence interval; 

⎯ method used for deriving confidence intervals. 

6.8.2 Continuous data 

With continuous data, the following data should be reported: 

⎯ test endpoint assessed; 

⎯ number of test groups; 

⎯ number of subgroups within each group (if applicable); 

⎯ identification of the experimental unit; 

⎯ nominal and measured concentrations (if available) for each test group; 

⎯ the dose metric used; 

⎯ number exposed in each treatment group (or subgroup if appropriate); 

⎯ arithmetic group means and standard deviations, but geometric group means and standard deviation if 
log-normality was assumed; 

⎯ the model function chosen for deriving the ECx; 

⎯ plot of dose-response data with fitted model, including the point estimates of the model parameters and 
the log-likelihood (or residual SS); 

⎯ fit criteria for other fitted models; 

⎯ the ECx (CED) together with its 90 %-confidence interval; 

⎯ method used for deriving confidence intervals. 

7 Biology-based methods 

7.1 Introduction 

7.1.1 Effects as functions of concentration and exposure time 

Biology-based methods not only aim to describe observed effects, but also to understand them in terms of 
underlying processes such as toxico-kinetics, mortality, feeding, growth and reproduction (Kooijman 1997). 
This focus on dynamic aspects allows exposure time to be treated explicitly. 

This clause focuses on the analysis of data from a number of standardized toxicity tests on mortality, body 
growth (e.g. fish), reproduction (e.g. daphnia), steady-state population growth (of e.g. algae, duckweed). The 
guidelines for these tests prescribe that background mortality is small, while the duration of the test is short 
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relative to the life-span of the test-organisms. Moreover the tests are done under conditions that are otherwise 
optimal, which excludes multiple stressors [e.g. effects of food restriction, temperature (Heugens 2001, 2003)], 
and quite a few processes that are active under field conditions [e.g. adaptation, population dynamics, species 
interactions, life-cycle phenomena (Sibly and Calow 1989)]. The type of data that are routinely collected in 
these tests are very much limited, and do not include internal concentrations of test compounds. These 
restrictions exclude the application of quite a few potentially useful methods and models for data analysis, 
such as more advanced pharmacokinetic models and time series analysis, see e.g. Newman (1995). The 
theory behind biology-based methods can deal with dynamic environments (changing concentrations of test 
compounds, changing food densities), but the application in the analysis of results from toxicity tests is 
simplified by the assumption that organisms’ local environment in the test is constant. 

Biology-based methods make use of prior knowledge about the chemistry and biology behind the observed 
effects. This knowledge is used to specify a response surface, i.e. the effects as a function of the (constant) 
concentration of test compound in the medium and the exposure time to the test compound. This response 
surface is determined by a number of parameters. The first step is to estimate these parameters from data. 
The second step is to use these parameter values to calculate quantities of interest, such as the ECx-time 
curve, or the confidence interval of the No Effect Concentration (NEC). It is also possible to use these 
parameter values to predict effects at longer exposure times, or effects when the concentration in the medium 
is not constant. If the observed effects include those on survival and reproduction of individuals, these 
parameters can also be used to predict effects on growing populations (in the field) [Kooijman (1985, 1988, 
1997), Hallam et al. 1989]. 

It is essential to realize that ECx values decrease for increasing exposure time, as long as the exposure 
concentration and the organism’s sensitivity remain constant. This is partly due to the fact that effects depend 
on internal concentrations (Kooijman 1981, Gerritsen 1997, Péry et al. 2002), and that it takes time for the 
compound to penetrate the body of test organisms. (The standard is to start with organisms that were not 
previously exposed to the compound.) The exposure period during which the decrease is substantial depends 
on the properties of the test compound and of the organism and the type of effect.  

For test compounds with large octanol-water partition coefficients and test organisms with large body sizes, 
this period is usually large. The LC50 for daphnia hardly decreases for a surfactant after two days, for instance, 
but their LC50 for cadmium still decreases substantially after three weeks. For this reason, biology-based 
methods fit a response surface to data, using all observation times simultaneously. If just a single observation 
time is available, however, these methods can still be used and the response surface reduces to a response 
curve. Obviously, such data hardly contain information about the dynamic aspect of the occurrence of effects. 
The parameter(s) that quantify this aspect are then likely to be poorly defined. This does not need to be 
problematic for all applications (such as the interpolation of responses for other concentrations at that 
particular observation time; this is the job of dose-response methods).  

It is strongly recommended, however, for a two-day test on survival, for instance, to use not only the counts at 
the end of the experiment, but also those at one day. Such data are usually available (and GLP even requires 
the reporting of those data), but these data are not always used. More recommendations are given in 7.8. 

In practice, it is not unusual that very few, if any, concentrations exist with partial effects; survival of a cohort of 
individuals tends to be of the “all or nothing” type in most concentrations. High concentrations run out of 
surviving individuals more rapidly than lower concentrations. This can occur in ways such that for each single 
observation time, no, or very few, concentrations show partial mortality. This situation also occurs if each 
individual is exposed separately, and is measured rather than using nominal concentrations in the data 
analysis; one then has just a single individual per concentration because no two concentrations are exactly 
equal. Although such a case is generally problematic for dose-response methods, because a free slope 
parameter has to be estimated (Kooijman 1983), biology-based methods do not suffer from this problem, 
because the (maximum) slope is not a free parameter (model's slope of concentration-survival curves 
increases during exposure), and the information of the complete response surface is used. An example is 
given in 7.3. 

Biology-based methods allow the use of several data sets simultaneously, such as survival data, sub-lethal 
effect data, and data on the concentration of test compound inside the bodies of the test organisms during 
accumulation/elimination experiments. As is discussed below, logical relationships exist between those data, 
and these relationships can be used to acquire information about the value of particular parameters that occur 
in all these data sets. Both the statistical procedures and the computations can become somewhat more 
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complex in this type of advanced applications, but free and downloadable software exist that can do all 
computations with minimum effort (see below). 

7.1.2 Parameter estimation 

The maximum likelihood (ML) method is used to estimate parameter values. (The criterion of least-squared 
deviations between data and model predictions is a special case of the ML method, where the scatter is 
independently normally distributed with a constant variance.) If more than one data set is used (for instance, 
data on body size and reproduction rate and/or internal concentration), the assumption is that the stochastic 
deviations from the mean are independent for the different data sets. This allows the formulation of a 
composite likelihood function that contains all parameters for all models that are used to describe the available 
data sets. For effects on survival, the number of dead individuals between subsequent observation times 
follows a multinomial distribution (see e.g. Morgan 1992); for sub-lethal effects, the deviations from the mean 
are assumed to be independently normally distributed with a common (data-set-specific) variance. The 
deterministic part of the model prediction is fully specified by the theory. For the stochastic part, only these 
straightforward assumptions are programmed in the DEBtox software (see 7.9.2). The software package 
DEBtool20), allows more flexibility in the stochastic model, e.g. for ML estimates in the case that the variance 
is proportional to the squared mean; this rarely results in substantially different estimates, however. 

If surviving individuals are counted in a toxicity test, and tissue-concentrations are measured in another test, a 
composite likelihood function can be constructed that combines these multinomial and normal distributions. 
The elimination rate (dimension: per time) is a parameter that occurs in both types of data. In survival data, it 
quantifies how long it takes for death to show up; if the elimination rate is high, one only has to wait a short 
time to see the ultimate effects. The elimination rate can, therefore, be extracted from survival data in absence 
of data on internal concentrations. Although it is helpful to have the concentration-in-tissue data (both for 
estimating the parameters and for testing model assumptions), these data are by no means required to 
analyse effects on survival. If one has prior knowledge about the value of the elimination rate, one can fix this 
parameter and estimate the other parameters (such as the NEC) from survival data. 

Profile likelihood functions are used to obtain confidence intervals for parameters of special interest, and in 
particular for the NEC. This way of quantification of the uncertainty in a parameter value does not necessarily 
lead to a single compact interval, but sometimes leads to two, non-overlapping intervals. Therefore, they can 
better be indicated with the term “confidence set”. Computer simulation studies have shown that these 
confidence sets are valid for extremely low numbers of concentrations and of test organisms (Andersen et 
al., 2000). 

Estimation procedures have been worked out (Kooijman 1983) to handle somewhat more complex 
experimental designs, in which living individuals are sacrificed for tissue analysis during the test. The 
information that they were still living at the moment of sampling is taken into account in the estimation of 
parameter values that quantify the toxicity of the compound. Péry et al. (2001) discuss the estimation of 
parameters in the case that the concentration in the media varies in time using hazard models; Kooijman 
(1981) and Reinert et al. (2002) use critical body residue models. 

7.1.3 Outlook 

This Technical Specification only discusses the simplest experimental designs of toxicity tests and the 
simplest models. The authors of this Technical Specification are unaware of alternative models in the open 
literature that are applicable on a routine basis, and hope that this Technical Specification stimulates research 
in this direction. The models can be, and have been, extended in many different ways. All individuals are 
assumed to have identical parameter values in the models that are discussed below. Individuals can differ, 
despite the standardization efforts in tests. Such differences might relate to differences in one or more 
parameter values (Sprague 1995). It is mathematically not difficult to include such differences in the analysis, 
on the basis of assumptions about the simultaneous scatter distribution of the parameter values. Needless to 
say, one really does know little if anything about this distribution. This makes such assumptions inspired by 
convenience arguments rather than by mechanistic insight. A strong argument for refraining from such 
                                                      

20) DEBtool and DEBtox are examples of suitable products available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of this/these products. 
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extensions is that the method becomes highly unpractical. The data simply do not allow a substantial increase 
in the number of parameters that shall be estimated from routine data. 

The theory covers many features, such as extrapolating from constant to pulse exposures and vice versa, and 
including the effects of senescence, that are not yet worked out in software support (see 7.9). 

7.2 Modules of effect-models 

7.2.1 General 

Effects are described on the basis of a sequence of three steps (modules): 

a) change in the internal concentration: the step from a concentration in the local environment (here the 
medium that is used in the test) to the concentration in the test organism; 

b) change in a physiological target parameter: the step from a concentration in the test organism to a 
change in a target parameter, such as the hazard rate, the (maximum) assimilation rate, the specific 
maintenance rate, the energy costs per offspring, etc.; 

c) change in an endpoint: the step from a change in a target parameter to a change in an endpoint, such 
as the reproduction rate, the total number of offspring during an exposure period, etc. 

This decomposition of the description of effects into three modules calls for an eco-physiological model of the 
test organism that reveals all possible physiological targets. The primary interest is in small effects. A 
simplifying assumption is that just a single physiological process is affected at low concentrations and that this 
effect can be described by a single parameter. At higher concentrations, more processes might be affected 
simultaneously. This means that the number of possible effects (and so the number of required parameters) 
can rapidly increase for large effects. It is unpractical and, for our purpose not necessary, to try to describe 
large effects in detail. 

The concept “most sensitive physiological process” has an intimate link with the concept “no effect 
concentration”. The general idea is that each physiological process has its own “no effect concentration”, and 
that these concentrations can be ordered. Below the lowest no effect concentration, the compound has no 
effect on the organism as a whole. Between the lowest and the second lowest no effect concentrations, a 
single physiological process is affected; between the second and the third lowest no effect concentrations, two 
processes are affected, etc. 

The concept “no effect concentration” is quite natural in eco-physiology (see e.g. Chen and Selleck, 1969). 
All methods for the analysis of toxicity data (including hypothesis-testing and dose-response methods) make 
use of the concept “no effect concentration”. All methods assume, at least implicitly, that compounds in the 
medium, apart from the tested chemical, do not affect the organism’s response. Hypothesis testing explicitly 
assumes that the tested chemical has no effect on the response at concentrations equal to, and lower than, 
the NOEC. Biology-based methods use the NEC as a free parameter. 

Generally each compound has three domains in concentration: 

1) effects due to shortage. Think, for instance, of elemental copper, which is required in trace amounts 
for several co-enzymes of most species; 

2) no effect range. The physiological performance of the organism seems to be independent of the 
concentration, provided that it remains in the no effect range. Think, for instance, of the concentration 
of nitrate in phosphate-limited algal populations; Liebig’s famous minimum law rests on the “no 
effect” concept (von Liebig 1840); 

3) toxic effects. Think, for instance, of glucose, which is a nutritious substrate for most bacteria in low 
concentrations, but inhibits growth if the concentration is as high as in jam. 
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It is essential to realize that the judgement “no effect” is specific for the level of organization under 
consideration. At the molecular level, molecules cannot be classified into one type that does not give effects, 
and another type that gives effects. The response of the individual as a whole is involved (Elsasser, 1998).  

EXAMPLE The concept “no effect concentration” can deal with the situation that it is possible to remove a kidney, for 
instance, from a human subject (so a clear effect at the suborganism-level), without any obvious adverse effects at the 
level of the individual (during the limited time of a test). This example, therefore, shows that below the NEC effects can 
occur at the suborganismic level (e.g. enzyme induction), as well as on other endpoints that are not included in the 
analysis (e.g. changes in behaviour). 

Most compounds are not required for the organisms’ physiology, which means that their range of 
concentrations that cause effects due to shortage is zero, and the lower bound of the no effect range is, 
therefore, zero as well. Some compounds, and especially the genotoxic ones (van der Hoeven et al. 1990, de 
Raat et al. 1985, 1987, Purchase and Auton 1995), are likely to have a no effect range of zero as well, and the 
upper bound of the no effect range is, therefore, also zero. This gives no theoretical problems in 
biology-based methods. An NEC of zero is just a special case, and a point estimate for this concentration from 
effect-data should (ideally) not deviate significantly from zero (apart from the Type I error; a Type I error 
occurs if the null hypothesis is rejected, while it is true). 

The model for each of the three modules for the description of effects is kept as simple as possible for 
practical reasons, where one usually has very little, if any, information about internal concentrations, or 
physiological responses of the test organisms. Each of these modules can be replaced by more realistic (and 
more complex) modules if adequate information is available. Some applications allow further simplification. 
Algal cells, for instance, are so small that the intracellular concentration can be safely assumed to be in 
instantaneous equilibrium with the concentration in the media that are used in the test for growth inhibition. 
This gives a constant ratio between the internal and external concentrations, and simplifies the model 
considerably. The standard modules are introduced below. 

7.2.2 Toxico-kinetic model 

The toxico-kinetic module is taken to be a first order kinetics by default; the accumulation flux is proportional to 
the concentration in the local environment, and the elimination flux is proportional to the concentration inside 
the organism. This simple two-parameter model is rarely accurate in detail, but frequently captures the main 
features of toxico-kinetics (Harding and Vass 1979, Kimerle et al. 1981, McLeese et al. 1979, Spacie and 
Hamelink 1979, Wong et al. 1981, Janssen et al. 1991, Legierse et al. 1998, Jager 2003, Jager et al. 2003). It 
can be replaced by a more-compartment model, or a pharmacokinetic model, if there are sound reasons for 
this. Metabolic transformation, and satiation in the elimination rate can modify toxico-kinetics in ways that are 
sometimes simple to model (Kooijman 2000). 

If the organism grows during exposure, or changes in lipid content occur (for instance when the test 
organisms are starved during exposure), predictable deviations from first order kinetics can be expected, and 
taken into account (Kooijman and van Haren 1990, Kooijman 2000). Dilution by growth should always be 
taken into account in the test for body growth and reproduction, since such a dilution affects the effect-time 
profiles substantially. 

7.2.3 Physiological targets of toxicants 

The specification of sub-lethal effects involves an eco-physiological model that reveals all potential target 
parameters, and allows the evaluation of the endpoints of interest. A popular endpoint is, for instance, the 
cumulative number of offspring of female daphnia in a three-week period. The model should specify such a 
number, as well as the various physiological routes that lead to a change of this number. It should also be not 
too complex for practical application. An example of such a model is the Dynamic Energy Budget (DEB) 
model. Because it is the only model for which generic applications in the analysis of toxicity data has been 
worked out presently, the following discussion focuses on this model. 

The DEB model results from a theory that is described conceptually in Kooijman (2001) and Nisbet et al. 
(2000), and discussed in detail in Kooijman (2000). Figure 21 gives a scheme of fluxes of material through an 
animal, which are specified mathematically in the DEB model, on the basis of mechanistic assumptions. The 
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model’s main features are indicated in the legend of Figure 21. The DEB theory is not confined to animals, 
however, and covers all forms of life. 

 

Figure 21 — Fluxes of material and energy through an animal, as specified in the DEB model  

Assimilation, i.e. the conversion of food into reserve (plus faeces) is proportional to structure’s surface area. 
Somatic and maturity work (involved in maintenance) are linked to structure’s mass, but some components 
(heating in birds and mammals, osmo-regulation in freshwater organisms) are linked to structure’s surface 
area. Allocation to structure is known as growth; allocation to maturity as development; allocation to gametes 
as reproduction. Embryos do not feed; juveniles do not reproduce; adults do not develop. Reserves and 
structure are both conceived as mixtures of mainly proteins, carbohydrates and lipids; they can differ in 
composition. The rate of use of reserve depends on the amount of reserve and structure; this rate is known as 
the catabolic rate. A fixed fraction of the catabolic flux is allocated to somatic maintenance plus growth, as 
opposed to maturity maintenance plus development (or reproduction) 

The general philosophy behind the DEB theory is that there is a full balance approach for food (nutrients, 
energy, etc): “what goes in shall come out”. Offspring is (indirectly) produced from food, which relates 
reproduction to feeding. Large individuals eat more than small ones, which links feeding to growth. 
Maintenance represents a drain of resources that is not linked to net synthesis of tissue or to reproduction. An 
increase of maintenance, therefore, indirectly leads to a reduction of growth, so to a reduction of feeding and 
reproduction. 

This reasoning shows that the model requires a minimum level of complexity to address the various modes of 
action of a compound. One needs to identify this route to translate effects on individuals to that on the growth 
of natural populations (in the field). If food conditions are good, investment in maintenance, for instance, 
comprises only a small fraction of the daily food budget of individuals. Small effects of a toxicant on 
maintenance, therefore, result in very small effects on the population growth rate. If food conditions are poor, 
however, maintenance comprises a large fraction of the daily food budget. Small effects on maintenance can 
now translate into substantial effects on the population size. This reasoning shows that effects on populations 
depend on food conditions, which generally vary in time [Kooijman (1985, 1988), Hallam et al. 1989]. The 
different modes of action usually result in very similar point estimates for the NEC, within the current 
experience. Furthermore, no effects on individuals implies no effects on populations of individuals, but the 
mode of action is particularly important for predicting the effects at the population level. 

7.2.4 Change in target parameter 

The value of the target parameter is assumed to be linear in the internal concentration. The argumentation for 
this very simple relationship is in the Taylor’s Theorem which states that any regular function can be 
approximated with any degree of accuracy for a limited domain by a polynomial of sufficiently large order. The 
interest is usually in small effects only, and routine applicability urges for maximum simplicity, so a first order 
polynomial (i.e. a linear relationship) is a strategic choice. 

The biological mechanism of a linear relationship between the parameter value and internal concentration 
boils down to the independent action at the molecular level. Each molecule that exceeds an individual’s 
capacity to repress effects acts independent of the other molecules. Think of the analogy where 
photosynthesis of a tree is just proportional to the number of leaves as long as this number is small; as soon 
as the number grows large, self-shading occurs and photosynthesis is likely to be less than predicted. 
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We doubtlessly require nonlinear responses for larger effect levels, but then also need to include more types 
of effects. Interesting extensions include receptor-mediated effects. The biochemistry of receptors is rather 
complex.  

Two popular models are frequently used to model receptor-mediated effects and concentration:  

a) the Michaelis Menten model boils down to a hyperbolic relationship, rather than a linear one which has 
one parameter more (Muller and Nisbet 1997); 

b) the Hill model boils down to a log-logistic relationship [and has two parameters more than the linear 
model (Hill 1910, Garric et al. 1990, Vindimian et al. 1983). 

Such extensions are particularly interesting if toxico-kinetics is fast, and the internal concentration is 
proportional to the external one (such as in cell cultures). The assumption that the target parameter is linear in 
the internal concentration does not translate into a linear response of the endpoint; it usually translates into 
sigmoid concentration-endpoint relationships, which are well known from empirical results. Notice that the 
linear model is a special case of the hyperbolic one, which is a special case of the log-logistic one. 

7.2.5 Change in endpoint 

The DEB model specifies how changes in one or more target parameters translate into changes in a specified 
endpoint. Popular choices for endpoints are reproduction rates (number of offspring per time), cumulative 
number of offspring (in daphnia-reproduction tests), body length (in fish-growth tests) and survival probability. 
Survival and reproduction together determine steady-state population growth, if they are known for all ages. 
Reproduction rates depend on age, namely, and the first few offspring contribute much more to population 
growth than later offspring. This is a consequence of the principle of interest-upon-interest; early offspring start 
reproduction earlier than later offspring. As is discussed below, indirect effects on reproduction come with a 
delay of the onset of reproduction, while direct effects on reproduction do not. The DEB model takes care of 
these more complex, but important, aspects of reproduction. Given the DEB model, there is no need to study 
all ages of the test organism once the DEB parameters are known. This application requires some basic eco-
physiological knowledge about the species of test organism, but the acquisition of this knowledge does not 
have to be repeated for each toxicity test. 

7.3 Survival 

7.3.1 Relationship between hazard rate and survival probability 

The effects on the survival probability of individuals are specified via the hazard rate. A hazard rate 
(dimension: probability per time) is also known as the instantaneous death rate. The hazard rate, h(t), relates 
to the survival probability, Psurv(t), as 

1 d
surv survd( ) ( ) ( )th t P t P t−= −  

or  

surv 0
( ) exp ( ) d

t
P t h s s⎡ ⎤= −⎢ ⎥⎣ ⎦∫  . 

The product h times dt has the interpretation of the probability of dying in a small time increment, dt, given that 
the organism is alive at time t.  

If the hazard rate is constant, which is the standard assumption for the death rate in the control, the 
relationship between the survival probability and the hazard rate reduces to  

Psurv(t) = exp[-h(t)].  
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Generally, the hazard rate increases with time, however. The mortality process can be modelled via the 
hazard rate, as is standard in survival analysis (Miller 1981; Cox and Oakes 1984). The hazard rate can 
depend on ageing and toxicity, as implied by the present model for survival, and can decrease in time, if, for 
instance, the concentration of a toxic compound decreases in time. If the concentration is constant, the 
ultimate LC50 equals the NEC. 

7.3.2 Assumptions of survival probability at any concentration of test compound 

The following assumptions specify the survival probability at any concentration of test compound: 

⎯ assumptions on control behaviour 

⎯ the hazard rate in the control is constant; 

⎯ the organisms do not grow during exposure; 

⎯ assumption on toxico-kinetics 

⎯ the test chemical follows first order kinetics; 

⎯ assumption on effects 

⎯ the hazard rate is linear in the internal concentration; 

⎯ assumptions on measurements/toxicity test 

⎯ the concentrations of test-compound are constant during exposure; 

⎯ the measured numbers of dead individuals in subsequent time intervals are independently 
multinomially distributed. 

7.3.3 Summary 

In summary, the model amounts to: the hazard rate is linear in the internal concentration, which follows first 
order kinetics. These assumptions result in sigmoidal concentration-survival relationships, not unlike the 
log-logistic one, with a slope that increases during exposure (see Figure 22). 
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NOTE The resulting ML estimates are control hazard rate = 0,008 3 1/d NEC = 5,2 µg/l; killing rate 0,037 (µg.d)−1, 
elimination rate = 0,79 d−1. From the last three parameters, LCx-time curves can be calculated; curves for the LC0, LC50 
and LC99 are shown (calculated with DEBtox and DEBtool, see 7.9). For long exposure times, the LCx curves tend 
towards the NEC, for all x, in absence of blank mortality. 

Figure 22 — Time and concentration profiles of the hazard model, together with the data of Figure 27 

As is shown, the three exposure-time-independent parameters of the hazard model completely determine the 
response surface, thus the LCx-time curves. It is even possible to reverse the reasoning.  

EXAMPLE 1 

If LC50(1d) = 50 mM, LC50(2d) = 30 mM and LC50(3d) = 25 mM,  

then NEC = 17,75 mM, the killing rate = 0,045 1/(mM.d) and the elimination rate = 2,47 1/d.  
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Such reconstructions are not very reliable, however, but they improve somewhat if more LC50 values are used. 

If the observation times are very close together, the resulting huge matrix of survival-count data can be 
reduced to time-to-death data. Concentration-response modelling is traditionally considered to be different 
from time-to-death modelling, c.f. Newman et al. (1989), Dixon and Newman (1991), Diamond et al. (1991), 
but in the framework of biology-based models, these two approaches are just extreme cases of analyses of 
response-surfaces; their distinction vanishes and we generally deal with mixtures of both. The log-likelihood 
function then reduces to 

0
ln ( ) ( )djt

i
i j

l h t h s s= −∑ ∑ ∫  

where the first summation is across the individuals that actually died at the observed time points, excluding 
the ones that are taken alive out of the experiment. This can happen, for instance at the end of the experiment, 
or because their internal concentration is measured in a destructive way.  

The second summation is across all individuals (the ones that died, as well as the ones that were removed 
alive). This sampling scheme allows that the concentrations for all individuals differ.  

EXAMPLE 2 An example of this application is as follows: 

Time-to-death and concentration pairs (in d and mM, respectively): 

  (21;1); (20;1,1); (20;0,9); (18;1,2); (16;1,3); (16;1,4); (15;1,5); (10;2); (9;1,8); (6;2,2); (5;2,5); (2;3); (2;4,3); (1;5); (1;4,5). 

Time-of-removal and concentration pairs:  

  (21;0); (21;0); (21;0); (21;1).  

The ML estimates for this combined data set for 19 individuals in total are  

 control hazard rate = 0,061 d−1, 

 NEC = 1,93 mM,  

 killing rate = 0,33 1/(mM.d),  

 elimination rate 0,75 d−1. 

This means, for instance, that the LC50(2d) = 5,6 mM and the LC50(21d) = 2,06 mM. (Calculations were made with 
DEBtool, see 7.9.3.) 

The link between the DEB theory and the survival model is in the aging module of the DEB model, where the 
hazard rate, as affected by the ageing process, depends on the respiration rate in a particular way due to the 
action of free radicals; genotoxic compounds have a very similar mode of action and these compounds 
accelerate the ageing process (Kooijman 2000). The processes of tumour induction and growth have direct 
links with the ageing process (van Leeuwen and Zonneveld 2001). These effects on survival are beyond the 
scope of the present document, which deals with survival during (short) standardized exposure experiments. 

On the assumption that test animals do not recover from immobilization, the concept “death” can be replaced 
by “initiation of immobilization” in this model. Due to the nonlinearity that is inherent to toxico-kinetics, this 
model does not belong to the class of generalized linear models for survival, which has been proposed for the 
analysis of toxicity data (Newman 1995, McCullagh and Nelder 1989). 

The model for effects on survival, and details about the statistical properties of parameter estimates 
(especially that of NECs) are discussed in Andersen et al. (2000), Bedaux and Kooijman (1994), Klepper and 
Bedaux (1997, 1997a), Kooijman and Bedaux (1996, 1996a). Effects at time-varying concentrations are 
discussed in Péry et al. (2001, 2002), Widianarko and van Straalen (1996). 
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7.4 Body growth 

7.4.1 Routes for affecting body growth 

The DEB model allows for (at least) three routes for affecting body growth: 

a) a decrease of the assimilation rate: Assimilation deals with the transformation from food into reserves, 
and can be affected by a decrease of the feeding rate, or a decrease of the digestion efficiency; 

b) an increase of the somatic maintenance costs: These costs comprise protein turnover, the 
maintenance of intracellular and intra-organismal concentration gradients of compounds, osmo-regulation, 
heating of the body (mainly in birds and mammals), activity, and other drains on resources that are not 
linked to processes of net synthesis. Somatic maintenance costs directly compete with body growth for 
resources (in the DEB model). Thus an increase of maintenance costs directly results in a decrease of 
body growth, due to conservation of mass and energy; 

c) an increase in the specific costs for growth: This is the case where the resource allocation to body 
growth is not affected, but the conversion of these resources to new tissue is. 

This list does not exhaust all possibilities. An interesting alternative is in the change of the allocation to 
somatic maintenance plus body growth versus maturity maintenance and maturation (or reproduction). Under 
control conditions, the DEB model takes the relative investments in these two destinations to be constant (the 
absolute investments can change in time). Parasites and endocrine disrupting compounds (e.g. Andersen et 
al. 2001, Kooijman 2000) are found to change these relative investments. It is possible that a large number of 
compounds have similar effects. A practical problem in the application of a model that accounts for changes in 
the allocation fraction is that standardized tests for body growth do not include measurements that are 
necessary to quantify the effect appropriately. Detailed modelling of effects on mammalian development has 
been developed and applied (Setzer et al. 2001, Lau et al. 2000), but such approaches require adequate data 
and are specific for the compound as well as the test organism. 

7.4.2 Assumptions 

The following assumptions specify the effect on body growth at any concentration of test compound: 

⎯ assumption on control behaviour 

⎯ the test-organisms follow a von Bertalanffy growth curve in the control; 

⎯ assumption on toxico-kinetics 

⎯ the test chemical follows first order kinetics 
(Dilution by growth is taken into account); 

⎯ assumption on effects 

One of three modes of action occur: 

⎯ the assimilation rate decreases linearly in the internal concentration; 

⎯ the maintenance rate increases linearly in the internal concentration; 

⎯ the costs for growth increase linearly in the internal concentration; 

⎯ assumptions on measurements/toxicity test 

⎯ the concentrations of test-compound are constant during exposure; 

⎯ the measured body lengths are independently normally distributed with a constant variance. 
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7.4.3 Von Bertalanffy growth curve 

The von Bertalanffy growth curve is given by  

0 b( ) ( )exp{ }L t L L L r t∞ ∞= − − − , 

where 

L(t) is the length at time, t; 

L0 is the initial length; 

L∞  is the ultimate length; and 

rb is the von Bertalanffy growth rate. 

The DEB model predicts that body growth is of the von Bertalanffy type only at constant food densities, in the 
case of isomorphs (i.e. organisms that hardly change in shape during growth). An implied assumption is, 
therefore, that food density is constant, or high. Food intake depends hyperbolically on food density in the 
DEB model; variations in food density, therefore, hardly result in variations in food intake as long as food 
remains abundant. Examples of application of the model of effects on growth by an increase of the 
maintenance costs and by a decrease of assimilation are shown in Figures 23 and 24. 

 

NOTE The parameters estimates are NEC = 7,65 g/l; control ultimate length = 37 mm; tolerance concentration 
= 43,5 g/l; elimination rate = large. Fixed parameters are initial length = 4 mm; von Bertalanffy growth rate = 0,01 d. The 
profile likelihood function for the NEC is given left. The EC0(36d) = 766 g/l; EC50(36d) = 176 g/l. The use of the profile 
likelihood graphs to obtain confidence intervals is explained in the legend to Figure 29. 

Figure 23 — Time and concentration profiles for effects on growth of Pimephalus promelas via 
an increase of specific maintenance costs by sodium pentachlorophenate 

(data by Ria Hooftman, TNO-Delft)  
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NOTE 

The parameter estimates are NEC = 13 g/g; control ultimate length = 11,6 mm; tolerance concentration = 1,2 mg/g; 
elimination rate = large.  

Fixed parameters are initial length = 0 mm; von Bertalanffy growth rate = 0,018 d. The profile likelihood function for the 
NEC is given in the bottom left graph. EC0(100d) = 13 g/g; EC50(100d) = 605 g/g. 

Figure 24 — Time and concentration profiles for effects on growth of Lumbricus rubellus via 
a decrease of assimilation by copper chloride (data from Klok and de Roos 1996) 

The first example (Figure 23) shows that it is not necessary to have observations in time; the second example 
(Figure 24) shows that it is not absolutely necessary to have a control. Although inclusion of a control is 
always advisable, the control is treated in the same way as positive concentrations in the DEBtox method. The 
statistical properties of the parameter estimates and the confidence one has in them obviously improve if 
controls and positive concentrations are available. 

At high concentrations, the test compound probably not only affects body growth, but usually also survival. 
The DEBtox software (see 7.9) accounts for differences in number of individuals of which the body size has 
been measured. 

The models for effects on body growth, and details about the statistical properties of parameter estimation 
(especially that of NECs, are discussed in Kooijman and Bedaux (1996, 1996a). 

7.5 Reproduction 

7.5.1 Routes that affect reproduction 

The DEB model allows for (at least) five routes that affect reproduction. The first three routes are identical to 
that for growth and are called the indirect routes. The DEB model assumes namely that food intake is 
proportional to surface area, so big individuals eat more than small ones. This means that if growth is affected, 
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feeding is directly or indirectly affected as well, which leads to a change in resources that are available for 
reproduction. The routes not only lead to a reduction of reproduction, but also to a delay of reproduction. In 
addition, there are two direct routes for affecting reproduction: 

a) an increase in the costs per offspring, so an effect on the transformation from reserves of the mother to 
that of the embryo; 

b) death of early embryos, before they leave the mother. Dead embryos can be born, or are absorbed; only 
the living ones are counted. 

These two direct routes assume that the allocation to reproduction is not affected by the compound, but that 
the compound affects the conversion of these resources into living embryos. 

7.5.2 Assumptions 

The following assumptions specify the effect on reproduction at any concentration of test compound: 

⎯ assumptions on control behaviour 

⎯ the test-organisms follow a von Bertalanffy growth curve in the control; 

⎯ reproduction depends on assimilation, maintenance and growth as specified by the Dynamic Energy 
Budget (DEB) theory; 

⎯ assumption on toxico-kinetics 

⎯ the test chemical follows first-order kinetics 
(Dilution by growth is taken into account.); 

⎯ assumptions on effects 

One of five modes of action occur: 

⎯ the assimilation rate decreases linearly in the internal concentration; 

⎯ the maintenance rate increases linearly in the internal concentration; 

⎯ the costs for growth increase linearly in the internal concentration; 

⎯ the costs for reproduction increase linearly in the internal concentration; 

⎯ the hazard rate of the neonates increases linearly in the internal concentration; 

⎯ assumptions on measurements/toxicity test 

⎯ the concentrations of test-compound are constant during exposure; 

⎯ the measured cumulative numbers of young per female are independently normally distributed with a 
constant variance. 

7.5.3 Implication 

An implication of the DEB theory is that indirect effects on reproduction (the first three modes of action) are a 
reduction of the reproduction rate as well as a delay of the start of reproduction, while direct effects (the last 
two modes of action) involve a reduction of reproduction only. All three indirect effects on reproduction also 
have effects on growth, despite the fact that just a single target parameter is affected. The delay of the onset 
of reproduction is, therefore, coupled to effects on growth. The measurement of body lengths at the end of the 
test on reproduction can be used as an easy check and as an identification aid to the mode of action. This 
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mode of action is of importance to translate effects on individuals into those on growing populations (Kooijman 
1985, Nisbet et al. 2000). 

The DEBtox software (see 7.9) accounts for possible reductions of numbers of survivors in the reproduction 
test via weight coefficients; the more females contribute to the mean reproduction rate per female, the more 
weight that data point has in the parameter estimation. An example of application is from the OECD ring-test 
for effects of cadmium on Daphnia reproduction (Figure 25); the full results are reported in Kooijman et al. 
(1998): 

 
NOTE The figures show the time and concentration profiles. 
The parameter estimates are NEC = 3,85 nM; tolerance concentration = 5,40 nM; max reproduction rate = 14,4 d; 
elimination rate = 3,0 d.  
Fixed parameters are von Bertalanffy growth rate = 0,1 1/d; scaled length at birth = 0,13; scaled length at puberty = 0,42; 
energy investment ratio = 1. The NEC does not differ significantly from 0 on the basis of these data. If a more accurate 
estimate is required, lower test concentrations should be selected. These parameter values imply EC0(21d) = 0,1 mM and 
EC50(21d) = 0,336 mM. 

Figure 25 — Effects of cadmium on the reproduction of Daphnia magna through an increase 
of the costs per offspring — Data from the OECD ring-test 

The models for effects on reproduction, and details about the statistical properties of parameter estimation 
(especially that of NECs) are discussed in Kooijman and Bedaux (1996b, 1996c). 

7.6 Population growth 

7.6.1 General 

If individuals follow a cycle of embryo, juvenile and adult stages, one needs the context of physiologically 
structured population dynamics to link the behaviour of population dynamics to that of individuals. If the 
individuals only grow and divide, a substantial simplification is possible in the context of the DEB model. This 
is the case in the algal growth inhibition tests, and in tests with duckweed, for instance. 

7.6.2 Assumptions 

Three modes of action of the compound are delineated here. The following assumptions specify the model for 
effects on populations: 

⎯ assumptions on control behaviour 

⎯ the viable part of the population grows exponentially (the cultures are not nutrient or light limited 
during the test); 

⎯ assumption on toxico-kinetics 

⎯ the internal concentration is rapidly in equilibrium with the medium; 
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⎯ assumptions on effects 

One of three modes of action occur: 

⎯ the costs for growth are linear in the (internal) concentration; 

⎯ the hazard rate is linear in the (internal) concentration during a short period at the start of the 
experiment; 

⎯ the hazard rate is linear in the (internal) concentration during the experiment; 

⎯ assumptions on measurements/toxicity test 

⎯ the concentrations of test-compound are constant during exposure; 

⎯ the inoculum size is the same for all experimentally tested concentrations; 

⎯ biomass measurements include living and dead organisms; 

⎯ the measured population sizes are independently normally distributed with a constant variance. 

The rationale of the second mode of action (death only at the start of the experiment) is that effects relate to 

⎯ the transition from control culture to stressed conditions, not to the stress itself; 

⎯ the position of the transition in the cell cycle. Cells are not synchronized, so the transition occurs at 
different moments in the cell cycle, for the different cells. If cells are more sensitive for the transition 
during a particular phase in the cell cycle, only those cells are affected that happen to be in that phase. 

The ECx values for this type of test can be calculated in various ways, with different results. One way to do 
this is on the basis of biomass as a function of time. This should not be encouraged, however because the 
result depends on experimental design parameters that have nothing to do with toxicity (Nyholm 1985). 
Another way to do this is on the basis of specific population growth rates, which are independent of time 
(Kooijman et al. 1996a). An example of application of the DEBtox method is given in Figure 26. 

 

Figure 26 — Example of application of the DEBtox method 
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NOTE The figures show the data and the time and concentration profiles (note that this data set contains two blanks). 
The estimated parameters are inoculum = 494 cells/ml; specific growth rate = 2,62 1/d; NEC = 0,053 mg/l; tolerance 
concentration = 0,0567 mg/l.  

The profile likelihood function for the NEC is given in the lower left-hand figure. The EC50 = 0,062 4 mg/l. The robustness 
of this approach is demonstrated by the fact that removal of the highest concentration leads to the same point estimate for 
the NEC (but with a larger confidence interval). 

Figure 27 — The effect of a mixture of C,N,S-compounds on the growth of Skeletonema costatum 
via an increase of the costs for growth — Data from the OECD ring test  

The model for effects on population growth, and details about the statistical properties of parameter estimation 
(especially that of NECs) are discussed in Kooijman et al. (1996a). Toxic effects on logistically growing 
populations in batch cultures are discussed in Kooijman et al. (1983); a paper on the interference of toxic 
effects and nutrient limitation is in preparation. (Also see Figure 27.) 

7.7 Parameters of effect models 

7.7.1 General 

The parameters of effect models can be grouped into a set that relates directly to the effects of the test 
compound and a set that relates to the eco-physiological behaviour of the test organisms. 

7.7.2 Effect parameters 

7.7.2.1 Toxicity and dynamic parameters 

The basic biology-based models have two toxicity parameters and a single dynamic parameter: 

⎯ NEC = EC0(∞): No effect concentration, which is the 0 % effect level at very long exposure times 
(dimension: external concentration); 
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⎯ killing rate (for effects on survival; dimension: per external concentration per time) or tolerance 
concentration (for sub-lethal effects; dimension: external concentration); 

⎯ elimination rate of first-order kinetics (for survival, body growth and reproduction tests; not for population 
growth inhibition tests. Dimension: per time). Large values mean that the internal concentration rapidly 
reaches equilibrium with the concentration in the medium. If the internal concentration is in equilibrium, 
the effects no longer change. Notice that the elimination rate has no information about the toxicity of the 
test compound. 

7.7.2.2 Killing rate, bk 

The killing rate is the increase in the hazard rate per unit of concentration of test compound that exceeds the 
NEC: 

int
control k 0

BCF
( )     ch t h b c

k
+

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
  

where  

h(t) is the hazard rate, at time, t; 

hcontrol is the control hazard rate; 

bk is the killing rate; 

c0 is the no effect concentration; 

cint is the internal concentration; 

kBCF is the bio-concentration factor; and  

+ means that, if int

BCF

c
k

 is below c0, then the hazard rate equals the control hazard rate.  

The kBCF stands for the ratio of the internal and external concentrations in equilibrium. No assumptions are 
made about its value; it can be very small for compounds that hardly penetrate the body. 

The tolerance concentration quantifies the change in the target parameter per unit of concentration of test 
compound that exceeds the NEC: 

The parameter value is equal to the control parameter value times (1 plus the stress value). 

int
0

* BCF

1( )   q
cs c c

c k
+

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

where 

s(cq) is the stress function; 

c* is the tolerance concentration; 

cint is the internal concentration; and 

kBCF is the bio-concentration factor. 
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The target parameter value in this specification of the tolerance concentration can be the specific costs for 
growth, the specific maintenance costs or another physiological target parameter. This depends on the mode 
of action of the compound. 

The name “tolerance concentration” refers to the fact that the higher its value, the less toxic the chemical 
compound. Notice that the ratio “ int

BCF

c
k

” has the interpretation of an external concentration that is proportional 
to the internal concentration; the tolerance concentration, like the NEC, has the dimension of an external 
concentration. This is done because internal concentrations are generally unknown in practice. The internal 
concentration, and so the stress value, depends on the (constant) external concentration and the (changing) 
exposure time. The stress value is a dimensionless quantity, which is only introduced to simplify the 
specification of the change in the target parameter. 

7.7.3 Discussion 

The NEC, the elimination rate and the tolerance concentration (or killing rate) are parameters that do NOT 
depend on the exposure time. This is in contrast to ECx values, which do depend on exposure time. Notice 
that the accumulation rate (a toxico-kinetic parameter) does not occur in the parameter set of effect models. 
This is because less toxic compounds that accumulate strongly cannot be distinguished from toxic compounds 
that hardly accumulate if only effects, and no internal concentrations, are observed. This is also the reason 
why NECs, killing rates and tolerance concentrations are in terms of external concentrations, while the 
mechanism is via internal concentrations. Effect models treat internal concentrations as hidden variables. 

The kinetic parameters depend on the properties of the chemical compound. The elimination rate is inversely 
proportional to the square-root of the octanol-water partition coefficient (Pow), while the uptake rate is 
proportional to the square-root of this coefficient (Kooijman and Bedaux 1996, Kooijman 2000). Since effects 
depend on internal concentrations, so on toxico-kinetics, effect parameters depend on the partition coefficient 
as well; the NEC, tolerance concentration and inverse killing rate are all inversely proportional to the Pow 
(Gerristen 1997, Kooijman and Bedaux 1996, Kooijman 2000). Such relationships can be used in practice to 
test parameter estimates against expectations. 

The prediction of how the toxicity parameters depend on the octanol-water partition coefficient can be used for 
selecting appropriate concentrations to be tested.  

EXAMPLE 1 An example is as follows. 

Suppose that compound 1 with Pow = 106 has been tested for its effects on survival, which resulted in the parameter 
estimates NEC = 1,3 mM; killing rate = 1,5 1/(mM.d); elimination rate = 0,5 1/d.  

Now we have to test compound 2, with a physiologically similar mode of action and a Pow = 107.  

We expect to find the parameter estimates 

NEC = 0,13 mM; killing rate = 15 1/(mM.d); elimination rate = 0,5/√10 = 0,16 1/d.  

These three parameters imply that the LC0(2d) = 0,47 mM and the LC99(2d) = 1,9 mM, which gives some guidance for 
choosing the concentration range to be tested in a test of 2 d. 

Suppose now that we tested compound 1 for effects on reproduction in Daphnia with a control max reproduction rate of 
15 offspring per day.  

Let us assume that the compound increases the maintenance costs. 

This resulted in NEC = 1,3 mM; tolerance concentration = 10 mM; elimination rate = 0,5 1/d. 

We expect to find for compound 2 

NEC = 0,13 mM; tolerance concentration = 1 mM; elimination rate = 0,16 1/d.  

These three parameters imply that the EC0(21d) = 0,18 mM and the EC99(21d) = 1,9 mM, which gives some guidance 
for choosing the concentration range to be tested in a reproduction test of 21 d.  

(Calculations with DEBtool, see 7.9.3.) 
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Contrary to the more usual techniques to establish Quantitative Structure Activity Relationships (QSARs), the 
influence of the Pow on the parameters of biology-based models can be predicted on the basis of first 
principles; these QSARs are not derived from regression techniques that require toxicity data for other 
compounds. The reason why traditional regression techniques for establishing QSARs are somewhat 
cumbersome is in the standardization of the exposure period. For any fixed exposure period (usually 2 d or 
14 d), the LC50 (or EC50) for a compound with a low Pow, Pow is close to its LC50 for very long exposure times. 
For compounds with a large Pow, however, the ultimate LC50 is much lower than the observed one. If we 
compare LC50s for low Pow and high Pow values, we observe complex deviations from simple relationships, 
which are masked in log-log plots and buried in the allometric models that are usually applied to such data. 
(An allometric model is a model of the type y(x) = a xb, where a and b are parameters.) 

Effects of modifying factors, such as pH, can be predicted, and taken into account in the analysis of toxicity 
data (corrections on measured or nominal concentrations, and on measured or modelled pH values). If the 
compound affects the pH at concentrations where small effects occur, and the NEC and/or the killing rate of 
the molecular and ionic forms differ, the following relationships apply: 

m i pH pK
k k

k pH pK
10( )

1 10
b bb pH

−

−
+

=
+

 and 
pH pK

i m
0 0 0 i m pH pK

0 0

1 10(pH)
10

c c c
c c

−

−
+

=
+

 

where  

pK  is the ion-product constant; 

i
0c  is the NEC of the ionic form; 

m
0c  is the NEC of the molecular form; 

i
kb  is the killing rate of the ionic form; and  

m
kb  is the killing rate of the molecular ionic form (Kooijman 2000, Könemann 1980). 

The pH is affected much more easily in soft than in hard water (see e.g. Segel 1976, Stumm and Morgan 
1996). Compounds may affect internal pH to some extent; in that case the relationship is approximately only. 

On the assumption that the chemical environment inside the body of the test organisms is not affected (due to 
homeostatic control), the observed survival pattern can be used to infer about the toxicity of the molecular and 
the ionic form. The partitioning between the molecular and ionic form is fast, relative to the uptake and 
elimination (both in the environment and in the organism); this means that the elimination rate relates to both 
the molecular and the ionic form. An example is given in Table 7. 

Table 7 — Example of a pH effect on mortality 

pH 7,5 7,5 7,4 7,2 6,9 6,6 6,3 6,0 

Concentration 0 3,2 5,6 10 18 32 56 100 

Days Number of survivors 

0 20 20 20 20 20 20 20 20 

1 20 20 20 20 20 20 19 18 

2 20 20 19 19 19 18 18 18 

3 20 20 17 15 14 12 9 8 

4 20 18 15 9 4 4 3 2 

5 20 18 9 2 1 0 0 0 

6 20 17 6 1 0 0 0 0 

7 20 5 0 0 0 0 0 0 
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Suppose that we found the numbers of survivors as in the left table for a compound with ionisation product 
constant of 9,0. The parameter estimates are (calculations with DEBtool, see 7.9.3) given in Table 8. 

Table 8 — Example of estimated DEBtool parameters 

 Molecule Ion 

 ML a SD b ML a SD b 

Control mortality rate 0,009 0,005  

NEC 24,9 16,9 0,17 0,03 

Killing rate 0,039 0,013 2,82 2,16 

Elimination rate 1,48 0,50  

a ML is the maximum likelihood. 

b SD is the standard deviation. 

The elimination rate is proportional to the ratio of a surface area and a volume of the test organism, which 
yields an inverse length measure. This relationship implies predictable differences between elimination rates 
in organisms of different sizes, which have been tested against experimental data (see e.g. Gerritsen 1997). 
This is rather straightforward in the case of individuals of the same species, but also applies to individuals of 
different, but physiologically related, species. The body size scaling relationships as implied by the DEB 
theory suggest predictable differences in the chemical body composition, in lipid content and in elimination 
rate and toxicity parameters. Such relationships still wait for testing against experimental data, but are helpful 
in developing an expectation for parameter values; such expectations can be used in experimental design, 
and in checking results of parameter estimations. 

The prediction of how the three parameters of the hazard model depend on the body size of the test 
organisms can also be used for selecting appropriate concentrations to be tested.  

EXAMPLE 2 

Suppose that a compound has been tested using fish of a mass of 1 mg, which resulted in the parameter estimates 

NEC = 1,3 mM; killing rate = 1,5 1/(mM.d); elimination rate = 0,5 1/d.  

Now we have to test the compound for fish of 1 g of the same species.  

We expect to find a difference in the elimination rate only, i.e. 0,5/10 = 0,05 1/d. These three parameters imply that the LC0(2d) = 1,4 mM 
and the LC99(2d) = 5,5 mM, which gives some guidance for choosing the concentration range to be tested in a test of 2 d. 

(Calculations were made with DEBtool, see 7.9.3.) 

7.7.4 Eco-physiological parameters 

The model for effects on survival has the control mortality rate as a parameter, which results in an 
exponentially decaying survival probability. This means that the model delineates two causes for death: death 
due to background causes (for instance manipulation during the assay) and death due to the compound. This 
obviously complicates the analysis of the death rate at low exposure levels, because we can never be sure 
about the actual cause of death in any particular case. Not only the data in the control, but all data are used to 
estimate the control mortality rate; if no death occurs in the control, this does not imply that the control 
mortality rate is zero. The profile likelihood function for the NEC quantifies the likelihoods of the two different 
causes of death. Figures 22, 23 and 24 show how background causes can be distinguished from those by the 
compound.  
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NOTE The data in the body represent the number of surviving guppies. The first column specifies the observation 
times in days, the first row specifies the concentrations of dieldrin in g/l. Figure 29 shows how an answer can be found to 
the question whether the two deaths in the concentrations 3,2 g/l and 5,6 g/l are due to dieldrin, or to “natural” causes. 

Figure 28 — A typical table of data that serves as input for the survival model, as can be used in the 
software package DEBtox (Kooijman and Bedaux 1996) 

 

Figure 29 — This profile likelihood function of the NEC (right panel) for the data in Figure 28 results 
from the software package DEBtox (Kooijman and Bedaux 1996) 

This profile determines the confidence set for the NEC (first select the confidence level of your choice in the 
left panel, then read the ln likelihood; the concentrations in the right panel for which the ln likelihoods are 
below this level comprise the confidence set of the NEC; the confidence set for the NEC is a single interval for 
low confidence levels, but a set of two intervals for high confidence levels). The maximum likelihood estimate 
for the NEC is here 5,2 g/l, and corresponds to the interpretation of death in concentration 3,2 g/l due to 
“natural” causes; the second local extreme at 2,9 g/l corresponds to the interpretation of this death due to 
dieldrin. Figure 29 shows that this interpretation is less likely, but the figure shows that we cannot exclude this 
possibility for high confidence levels. If the lowest concentration would have no deaths in this data set, the 
profile likelihood function would not have a second local extreme. 

The model for effects on growth have a single eco-physiological parameter each (the ultimate body length, 
and the maximum reproduction rate), that is estimated from the data, and a scatter parameter that stands 
for the standard deviation of the normally distributed deviations from the model predictions. The latter 
parameter also occurs in the models for effects on population growth. 

The models for effects on body growth and reproduction have some parameter values that cannot be 
estimated from (routine) tests. Their values should be determined by preliminary eco-physiological 
experiments. These parameters are 

⎯ von Bertalanffy growth rate (dimension: per time). This parameter quantifies how fast the initial length 
approaches the ultimate length at constant food density. (The food density affects this parameter.) In 
principle, its value could be extracted from length measurements in the control, provided that enough 
observation times are included. Under standardized experimental conditions, its value should always be 
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the same, however. Moreover, the lengths are usually only measured at the end of the test only. These 
data do not have information about the value of the von Bertalanffy growth rate; 

⎯ initial body length (dimension: length), which is the body length at the start of the test. It is assumed that 
this applies to all individuals in all concentrations. The DEB model for reproduction has a scaled length at 
birth as parameter, which is dimensionless. This scaled length is the ratio of the length at birth and the 
maximum length of an adult at abundant food. Since the daphnia reproduction test uses neonates, the 
initial body length equals the length at birth; 

⎯ scaled length at puberty (dimensionless). This is the body length at the start of reproduction in the 
control as a fraction of the maximum body length of an adult at abundant food. The DEB model takes this 
value to be a constant, independent of the food density. At low food density, it takes a relatively long time 
to reach this length. The start of reproduction, therefore, depends on food density. The model for effects 
on reproduction needs the length at puberty. That on body growth does not use this parameter; 

⎯ energy investment ratio (dimensionless). This parameter stands for the ratio between the specific 
energy costs for growth and the product of the maximum energy capacity of the reserves and the fraction 
of the catabolic energy flux that is allocated to somatic maintenance plus growth. The maximum (energy) 
capacity of the reserves is reached after prolonged exposure to abundant food. The catabolic flux is the 
flux that is mobilized from the reserves to fuel metabolism (i.e. allocation to somatic and maturity 
maintenance, growth, maturation or reproduction; the relative allocation to somatic maintenance plus 
growth is taken to be constant in the DEB model). The value of the parameter does not affect the results 
in a sensitive way. The logic behind the DEB theory requires its presence, however; the parameter plays 
a more prominent role at varying food densities. 

The DEBtox software (see below) fixes these parameters at appropriate default values for the standardized 
tests on fish growth and daphnia reproduction. The user can change these values. 

The models for population growth have two eco-physiological parameters that are estimated from the data: 

⎯ the inoculum size (dimension: mass or number per volume), which is taken to be equal in all 
concentrations 

⎯ the control specific population growth rate (dimension: per time) 

7.8 Recommendations 

7.8.1 Goodness of fit 

As applies to all models that are fitted to data, one should always check for goodness of fit (as incorporated in 
DEBtox), inspect the confidence intervals of the NEC, and mistrust any conclusion from models that do not fit 
the data (see also 6.4). The routine presentation of graphs of model fits is strongly recommended. “True” 
models, however, do not always fit the data well, due to random errors. If deviations between data and model-
fits are unacceptably large, it makes sense to make sure that the experimental results are reproducible. 
Problems with solubility of the test compound, pH effects, varying concentrations, varying conditions of test 
animals, interactions between test animals and other factors can easily invalidate model assumptions. It might 
be helpful to realize that one approach for solving this problem is in taking such factors into account in the 
model (and apply a more complex model), but another approach is to change the experimental protocol such 
that the problems are circumvented. The models are designed to describe small effects; if the lack of fit relates 
to large effects, it can be recommended to exclude the high concentration(s) from the data analysis. 

Any model might fit data well for the wrong reasons; a good fit does not imply the “validity” of that model. This 
should motivate to explore all possible means for checking results from data analysis; an expectation for the 
value of parameters is a valuable tool. 

The assumption of first-order kinetics is not always realistic in detail. A general recommendation is to consider 
more elaborate alternatives only if data on toxico-kinetics are available. Depending on the given observation 
times, the elimination rate is not always accurately determined by the data. In such cases, one might consider 
to fix this parameter at a value that is extracted from the literature, and/or derived from a related compound, 
after correction for differences in Pow values. 
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7.8.2 Choice of modes of action 

Experience teaches us that the mode of action usually has little effect on the NEC estimates. Models for 
several modes of action frequently fit well to the same experimental data set; if additional type of 
measurements would have been available (such as feeding rate and/or respiration rate), it is much easier to 
choose between modes of action. These modes of action are of importance to translate effects on individuals 
to those on population dynamics, and how food availability interferes with toxic effects. The DEB theory deals 
with this translation.  

Measurements of feeding and respiration rates, and of body size (in reproduction tests) greatly help identifying 
the mode of action of the compound. The proper identification of the mode of action is less relevant for 
estimates of the NEC. 

7.8.3 Experimental design 

DEBtox has been designed to analyse the results from toxicity tests as formulated in OECD guidelines 
(numbers 201, 202, 203, 204, 211, 215, 218, 219) and ISO guidelines (ISO 6341, ISO 7346-3, ISO 8692, 
ISO 10229, ISO 10253, ISO 12890, ISO 14669). The experimental design described in these guidelines is 
suitable for the application of DEBtox. Confidence intervals for parameter estimates are greatly reduced if not 
only the responses at the end of the toxicity experiments are used, but also observations during the 
experiment. Ideally, one should be able to observe how fast effects build up during exposure in the data, till 
the effect levels satiate. Note that this does not require additional animals to be tested, only that they are 
followed for a longer period of time. 

Large extrapolations of effects, especially in the direction of longer exposure times, are generally not 
recommended; this is because, ideally, the assumptions need to be checked for all new applications. It, 
therefore, makes sense to let the optimal choice for the exposure period depend on the compound that is 
tested, and the test organisms that are used. The higher the solubility in fat of the test compound (e.g. 
estimated from Pow), and the larger the body size of the test organisms, the longer the exposure should last. 

As stated in the Introduction, it is strongly recommended to include all available observations into the analysis; 
not only those at the end of the experiment, but also the observations that have been collected during the 
experiment (for instance when the media are refreshed). It is generally recommended that the number of 
observations during exposure, the concentrations of test compound and the number of used test animals are 
such that the model parameters can be estimated within the desired accuracy. 

Experimental design should optimize the significance of the test; the significance of single-species tests is 
discussed in Reference [232]. From a data analysis point of view, it makes sense to extend the exposure 
period till no further effects show up. The length of the exposure period then relates to the physical-chemical 
properties of the compound. 

7.8.4 Building a database for raw data 

Since biology-based methods not only aim at a description, but also at an understanding of the processes that 
underlie effects, it is only realistic to assume that this understanding evolves over the years. In the future, it 
might be useful to reanalyse old data in the light of new insights. In anticipation of this, it is recommended to 
build a raw database. 

7.9 Software support 

7.9.1 General 

The models that are used by biology-based methods are fully derived and discussed in all mathematical detail 
in the open literature; a summary of the specification is given in Annex F of this report. There is, therefore, no 
need to use any of the software that is mentioned in this subclause. On the other hand, fitting sets of 
differential equations to data (as required by the models for effects on body growth and reproduction), the 
calculation of profile likelihoods for NECs, and the more advanced methods of fitting several datasets 
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simultaneously, is beyond the capacity of most standard packages. Even if packages can do the job, the 
optimization of numerical procedures (such as solving initial value problems) can be somewhat laborious. 

The computations for biology-based methods have been coded in two packages, DEBtox and DEBtool, which 
can be downloaded freely from the electronic DEB-laboratory at http://www.bio.vu.nl/thb/deb/. Both packages 
are updated at varying intervals; the user has to check the website for the latest version. These packages are 
used in (free) international internet-courses that are organized by the Department of Theoretical Biology at the 
Vrije Universiteit, Amsterdam. 

An MS Excel macro able to estimate Hill parameters using non-linear regression is available under the GPL 
license on the site: http://eric.vindimian.9online.fr/. 

7.9.2 DEBtox 

DEBtox is a load-module for Windows and Unix that is meant for routine applications. 

The user cannot define new models. The package has many options for parameter estimation, confidence 
intervals and profile likelihoods (for the NEC for instance), fixation of parameters at particular values (such as 
NEC = 0) while estimating the other parameters, calculation of statistics (such as ECx.t and ETx.c values and 
their confidence intervals), hypothesis testing about parameter values (such as NEC ≠ 0), graphical 
representations to check goodness of fit, residual analysis, etc. Example data-files are provided for each 
toxicity test. 

DEBtox is a user-friendly package, and the numerical procedures are optimized for the various models 
(modes of action) that can be chosen. The elimination rate, for instance, is not always accurately determined 
by the data, especially if a single observation time is given. DEBtox always calculates three sets of parameter 
estimates, corresponding with the elimination rate being a free parameter, or zero, or infinitely large. Only the 
best result is shown. The initial values for the parameters that are to be estimated are selected automatically. 
In fact, many trials (some hundred) are performed, and only the best result is shown. The user does not have 
to bother about these computational “details”. (The likelihood function can have many local maxima, 
depending on the model and on the observations. The result of the numerical procedure to find a local 
maximum depends on the initial value; we are only interested in the global maximum, however. This problem 
complicates nonlinear parameter estimation in practice; it is an extra reason to check the result graphically in 
all applications.) 

The current version of DEBtox can handle a single endpoint only (i.e. a single table of observations of 
responses at the various combinations of concentration and exposure time). In the period 2002-2006, DEBtox 
will be extended to include multiple samples to allow the analysis of effects on survival and reproduction 
simultaneously, and to test hypotheses about differences of parameter values between samples. 

7.9.3 DEBtool 

DEBtool is source code (in Octave and Matlab®) for Windows and Unix that is meant for research applications. 
Octave is freely downloadable, Matlab21) is commercial. DEBtool is much more flexible than DEBtox, but 
requires more knowledge for proper use; it is less user-friendly than DEBtox. Initial values for parameter 
estimations are not automatic, for instance. DEBtool has many domains that deal with the various applications 
of DEB models in eco-physiology and biotechnology; the domain “tox” deals with applications in ecotoxicology. 
The package can handle multiple data sets; several numerical procedures can be selected to find parameter 
estimates. DEBtool allows researchers to estimate parameters if the variance is proportional to the squared 
mean, to calculate the NEC, killing rate and elimination rate from LC50 values for three exposure times, to 
estimate parameters from time-to-death data, and to extract the toxicity parameters for the molecular and the 
ionic form when the pH is measured for each concentration, etc. Many specific models are coded, and the 
user can change and add models. 

 
                                                      

21) Matlab is an example of a suitable product available commercially. This information is given for the convenience of 
users of this Technical Specification and does not constitute an endorsement by ISO of this products. 
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8 List of existing guidelines with references to the subclauses of this Technical 
Specification 

Table 9 — Existing guidelines 

Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose-

response 
modelling) 

Reference 
(biology-based 

models) 

Growth rate 5.3 6.3 7.6 OECD 201 ISO 8692:2004 
ISO 14593:1999 
ISO 13829:2000 

Alga growth 
inhibition Area under growth 

curve (biomass) 
5.3 6.3 not 

recommended 

OECD 202 ISO 6341:1996 Daphnia 
immobilization 

Immobilization 5.2 6.2 7.3 

OECD 203 ISO 7346-1:1996 
ISO 7346-2:1996 
ISO 7346-3:1996 

Fish acute Mortality 5.2 6.2 7.3 

Mortality 5.2 6.2 7.3 OECD 204  Fish prolonged 
Body mass, length 5.3 6.3 7.4 

  Avian acute Mortality 5.2 6.2 7.3 
Mortality 5.2 6.2 7.3 
Body mass 5.3 6.3 7.4 

OECD 205  Avian dietary 

Food consumption 5.3 6.3 7.4 (theory 
covered, but not 

coded) 
Body mass (F0, F1), 
organ mass, 
food consumption, 
egg-shell thickness, 
egg-shell strength 

5.3 6.3 7.4 
(body mass) 

Egg production,  5.2/5.3 6.3 7.5 
14-day old survivors 
(counts) 

   

OECD 206  Avian-1-
generation 

Egg abnormality rate, 
egg fertility, viability, 
hatchability, chick 
survival rate 
(proportions) 

5.2 6.2 7.3 
(chick survival)

Mortality 5.2 6.2 7.3 OECD 207 ISO 11268-1: 1993 Earthworm acute 
Body mass 5.3 6.3 7.4 
Emergence 5.2 6.2 7.3 

(as survival) 
Biomass, Root length 5.3 6.3 (theory 

covered, but not 
coded) 

Visual phytotoxicity 5.3 6.3  

OECD 208 ISO 11269-1:1993 
ISO 11269-2:—a   

Non-target 
terrestrial plant 

Mortality 5.2 6.2 7.3 
 ISO 15522:1999 Activated sludge Microorganism cell 

growth 
5.3 6.3 7.6 
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Table 9 (continued) 

Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose-

response 
modelling) 

Reference 
(biology-based 

models) 

Mortality 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 (theory 

covered, but not 
coded) 

Hatching success 5.2 6.2 7.3 
Days to swim-up 5.2/5.3 6.3 7.4 (theory 

covered, but not 
coded) 

OECD 210  Fish ELS 

Mass, length 5.3 6.3 7.4 
Immobilization 5.2 6.2 7.3 OECD 211 ISO 10706:2000 Daphnia 

reproduction Fecundity 5.2/5.3 6.3 7.5 
Mortality 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 (theory 

covered, but not 
coded) 

OECD 212 ISO 12890:1999 Fish embryo and 
sac-fry stage 

Length 5.3 6.3 7.4 
OECD 213  Honeybee, acute 

oral 
Mortality 5.2 6.2 7.3 

OECD 214  Honeybee, acute 
contact 

Mortality 5.2 6.2 7.3 

Mortality 5.2 6.2 7.3 OECD 215 ISO 10229:1994 Fish juvenile 
growth test Body mass, length 5.3 6.3 7.4 

Emergence 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 
Survival 5.2 6.2 7.3 

OECD 
218/219 

 Chironomid 
toxicity 

Mass 5.3 6.3 7.4 
Mortality 5.2 6.2 7.3 OECD 220 ISO/CD  Enchytraeidae 

reproduction Fecundity 5.2/5.3 6.3 7.4 
Mortality 5.2 6.2 7.3 
Body mass 5.3 6.3 7.4 

 ISO 11268-2:1998 Earthworm 
reproduction 

Fecundity 5.2/5.3 6.3 7.5 
 ISO 11268-3:1999 Earthworm 

population size 
(field test) 

Number of individuals 
(for various species) 

5.2/5.3 6.3 7.6 

Average growth rate 5.3 6.3 7.4 
Area under growth 
curve 

5.3 6.3 not 
recommended 

OECD 221 ISO 20079:—b Lemna growth 
inhibition 

Final biomass 5.3 6.3 7.4 
Growth rate 5.3 6.3 7.6  ISO 10253:—c Marine algal 

growth inhibition 
test Biomass  5.3 6.3 7.6 

 ISO 14669:1999 Marine copepods Immobilization 5.2 6.2 7.3 
 ISO 11348-1:1998 

ISO 11348-2:1998 
ISO 11348-3:1998 

Light emission of 
Vibrio fischeri 

Luminescence 5.3 6.3 7.6 
(for zero 
growth) 
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Table 9 (continued) 

Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose-

response 
modelling) 

Reference 
(biology-based 

models) 

 ISO 10712:1995 Pseudomonas 
putida growth 
inhibition 

Growth rate 5.3 6.3 7.6 

 ISO 13829:2000 Genotoxicity 
(umu-test) 

Induction rate 5.3 6.3  

Offspring number 5.2/5.3 6.3 7.5  ISO 11267:1999 Collembola 
reproduction 
inhibition Mortality 5.2 6.2 7.3 

a To be published. (Revision of ISO 11269-2:1995) 
b To be published. 
c To be published. (Revision of ISO 10253:1995) 
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Annex A 
(informative) 

 
Analysis of an “acute immobilization of Daphnia magna” data set 
(OECD GL 202 — ISO 6341) using the three presented approaches 

A.1 Data set (see Table A.1) 

Table A.1 — Data set 

Concentration Number of 
immobilizations 0 h 

Number of 
immobilizations 24 h 

Number of 
immobilizations 48 h 

0 0 0 0 

0,39 0 0 0 

0,78 0 0 0 

1,56 0 0 1 

3,13 0 0 7 

6,25 0 6 11 

12,5 0 5 14 

25 0 5 20 

50 0 19 20 

100 0 20 20 

A.2 Examples of data analysis using hypothesis testing (NOEC determination) 

A.2.1 Example 1a — Daphnia acute example: Immobility after 48 h exposure 

A.2.1.1 NOEC determination by two methods 

The NOEC is 1,56 mg/l by both tests shown in the flow-chart, Figure 3. In this example, there was only a 
water control. Both Fisher’s Exact test with a Bonferroni-Holm correction and the step-down Cochran-
Armitage test are done to illustrate both approaches. In both cases, the overall false positive rate is controlled 
at 0,05 and one-sided tests are done comparing proportion alive in each concentration to that in the control. 
The p-values reported for Fisher’s Exact test do not include the Bonferroni-Holm correction, but the 
determination of significance makes that adjustment. 
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A.2.1.2 Statistical analysis list file — Daphnia live 48 h 

                         STATISTICAL ANALYSIS LIST FILE 22)  
             DAPHNID LIVE48 OBSERVED  DATA FROM DATASET ADAP_ACUTE 
                            GROUP STATISTICS BY DOSE 
 
           Number      Number           %         Dose    Test Dose 
  dose    at risk    Responding    Responding    Score    (mg/l) 
 
    1     20          20            100          1                0 
    2     20          20            100          2             0.39 
    3     20          20            100          3             0.78 
    4     20          19             95          4             1.56 
    5     20          13             65          5             3.13 
    6     20           9             45          6             6.25 
    7     20           6             30          7             12.5 
    8     20           0              0          8               25 
    9     20           0              0          9               50 
   10     20           0              0         10              100 
 

A.2.1.3 Fisher's Exact test versus control 

           FISHER EXACT TEST vs CONTROL FOR DAPHNIA LIVE48 OBSERVED 
                TESTING FOR A DECREASING ALTERNATIVE HYPOTHESIS 
 
                                          Fisher's 
                                         Exact Test 
  Test Dose     Number      Number        p-value     Significance 
    (mg/l)      at risk    Responding      (Left)         Rating 
 
       0.39     20          20          1.00000                  
       0.78     20          20          1.00000                  
       1.56     20          19          0.50000                  
       3.13     20          13          0.00416           *      
       6.25     20           9          0.00007          **      
       12.5     20           6          0.00000          **      
         25     20           0          0.00000          **      
         50     20           0          0.00000          **      
        100     20           0          0.00000          **      

* refers to 0,01 < p-value < 0,05 

** refers to a p-value < 0,01. 

A.2.1.4 Cochran-Armitage test using equally-spaced dose scores 

                             Cochran-Armitage Test 
                        Using Equally Spaced Dose Scores 
          Cochran-Armitage test is one-sided for DECREASE in RESPONSE 
                               All doses included 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 141.11145         9         0        
                  Trend    -11.4263         1 1.545E-30 **     
                  LOF     10.551094         8 0.2284543        
 
                         100 mg/l concentration omitted 

                                                      

22) In the annexes in this Technical Specification, the results of the tests shown in Courier New font include numbers with 
decimal points, instead of commas, as used elsewhere in this document. 
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                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 119.23185         8         0        
                  Trend   -10.46522         1 6.239E-26 **     
                  LOF     9.7109205         7 0.2055557        
 
                      100 and 50 mg/l concentrations omitted 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 93.867043         7         0        
                  Trend   -9.126828         1 3.527E-20 **     
                  LOF     10.568053         6 0.1026794        
 
                    100, 50 and 25 mg/l concentrations omitted 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 58.680261         6 8.341E-11        
                  Trend   -7.068764         1 7.816E-13 **     
                  LOF     8.7128292         5 0.1210814        
 
                 100, 50, 25 and 12.5 mg/l concentrations omitted 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 41.584158         5 7.1493E-8        
                  Trend   -5.637291         1 8.6373E-9 **     
                  LOF     9.8051068         4 0.0438418        
 
              100, 50, 25, 12.5 and 6.25 mg/l concentrations omitted 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 25.271739         4 0.0000444        
                  Trend   -3.909645         1 0.0000462 **     
                  LOF      9.986413         3  0.018682        
 
                      100, 50, 25, 12.5, 6.25 and 3.13 mg/l 
                             concentrations omitted 
 
                  SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
                  Overall 3.0379747         3 0.3858072        
                  Trend   -1.350105         1 0.0884911        
                  LOF     1.2151899         2 0.5446592        
 
As discussed in Figure 3 of Clause 5 and the accompanying text, the Cochran-Armitage test is first applied to 
the entire data set. Given that that test is significant at the 0,05 level (p-value for trend is less than 0,05), the 
high concentration is omitted and the test is repeated with the remaining concentrations. This procedure is 
repeated until the Cochran-Armitage test is first not significant. The highest concentration remaining at that 
step is the NOEC. In the present case, that occurs when the highest remaining concentration is 1,56 mg/l, 
which is thus the NOEC. 

Two other terms are shown at each stage. The first is labeled “Overall” and is the standard Chi-squared test 
with k-1 degrees of freedom for differences among the k groups represented. It is recalled that this Chi-
squared statistic is the sum of the 1-df Chi-squared statistic measuring linear trend (i.e. the square of the 
Cochran-Armitage test statistic) and the k-2 df Chi-squared statistic for departure from linearity here labelled 
LOF. 
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A.2.2 Example 1b — Daphnia acute example: Immobility after 24 h exposure 

A.2.2.1 NOEC determination by two methods 

NOEC is 3,13 mg/l by the step-down Cochran-Armitage test and 25 mg/l by Fisher’s Exact test. Both follow 
the flow-chart, Figure 3 of Clause 5. In this example, there was only a water control. Both Fisher’s Exact test 
with a Bonferroni-Holm correction and the step-down Cochran-Armitage test are done to illustrate both 
approaches. In both cases, the overall false positive rate is controlled at 0,05 and tests are done comparing 
proportion alive in each concentration to that in the control. The p-values reported for Fisher’s Exact test do 
not include the Bonferroni-Holm correction, but the determination of significance makes that adjustment 

A.2.2.2 Statistical analysis list file — Daphnia live 24 h 

                      STATISTICAL ANALYSIS LIST FILE 
         DAPHNID LIVE24 OBSERVED  DATA FROM DATASET ADAP_ACUTE 
                        GROUP STATISTICS BY DOSE 
 
        Number      Number           %       Dose    Test Dose 
dose   at risk    Responding    Responding  Score    (mg/l) 
  1       20          20            100        1                0 
  2       20          20            100        2             0.39 
  3       20          20            100        3             0.78 
  4       20          20            100        4             1.56 
  5       20          20            100        5             3.13 
  6       20          14             70        6             6.25 
  7       20          15             75        7             12.5 
  8       20          15             75        8               25 
  9       20           1              5        9               50 
 10       20           0              0       10              100 
 

A.2.2.3 Fisher's Exact test versus control 

       FISHER EXACT TEST vs CONTROL FOR DAPHNIA LIVE24 OBSERVED  
            TESTING FOR A DECREASING ALTERNATIVE HYPOTHESIS 
 
                                      Fisher's 
                                      Exact Test 
  Test Dose   Number      Number        p-value   Significance 
  (mg/l)      at risk    Responding      (Left)       Rating 
   0.39       20          20          1.00000                
   0.78       20          20          1.00000                
   1.56       20          20          1.00000                
   3.13       20          20          1.00000                
   6.25       20          14          0.01010                
   12.5       20          15          0.02356                
     25       20          15          0.02356                
     50       20           1          0.00000        **      
    100       20           0          0.00000        **      
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A.2.2.4 Cochran-Armitage test using equally spaced dose scores 

                         COCHRAN-ARMITAGE TEST 
                    USING EQUALLY SPACED DOSE SCORES 
      Cochran-Armitage test is one-sided for DECREASE in RESPONSE 
 
                           All doses included 
 
              SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
              Overall 136.55172         9         0        
              Trend   -9.896625         1 2.153E-23 **     
              LOF      38.60853         8 5.8093E-6        
 
                     100 mg/l concentration omitted 
 
              SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
              Overall 99.239409         8         0        
              Trend   -7.804546         1 2.986E-15 **     
              LOF     38.328473         7 2.6241E-6        
 
 
                  100 and 50 mg/l concentrations omitted 
 
              SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
              Overall        30         7  0.000095        
              Trend   -4.485426         1 3.6384E-6 **     
              LOF     9.8809524         6 0.1297557        
 
                100, 50 and 25 mg/l concentrations omitted 
 
              SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
              Overall 30.190275         6 0.0000362        
              Trend   -4.240398         1 0.0000112 **     
              LOF     12.209302         5 0.0320297        
 
             100, 50, 25 and 12.5 mg/l concentrations omitted 
 
              SOURCE  Test_stat Deg_Free  p-value   SIGNIF 
              Overall 31.578947         5 7.1979E-6        
              Trend   -3.678836         1 0.0001172 **     
              LOF     18.045113         4 0.0012093        
 
When all concentrations at or above 6,25 mg/l are omitted, there is 100 % survival at every remaining 
concentration and no test can be done, nor is a test needed. The NOEC is 3,13 mg/l. 

As discussed in Figure 3 of Clause 5 and the accompanying text, the Cochran-Armitage test is first applied to 
the entire data set. Given that that test is significant at the 0,05 level (p-value for trend is less than 0,05), the 
high concentration is omitted and the test is repeated with the remaining concentrations. This procedure is 
repeated until the Cochran-Armitage test is first not significant. The highest concentration remaining at that 
step is the NOEC. In the present case, that occurs when the highest remaining concentration is 1,56 mg/l, 
which is thus the NOEC. 

Two other terms are shown at each stage. The first is labelled “Overall” and is the standard Chi-squared test 
with k-1 degrees of freedom for differences among the k groups represented. It is recalled that this Chi-
squared statistic is the sum of the 1-df Chi-squared statistic measuring linear trend (i.e. the square of the 
Cochran-Armitage test statistic) and the k-2 df Chi-squared statistic for departure from linearity here labelled 
LOF.  
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A.3 Example of data analysis by dose-response modelling 

A.3.1 General 

Fitting a dose-response model to data is normally done with the aid of computer software. Therefore, the user 
does not need to worry about computational details. Outcomes from different software packages should be 
nearly identical when fitting the same model to the same data based on the same assumptions and methods. 
However, software packages may differ extensively in how to run them. In this subclause, the discussion of 
the examples is based on an analysis using the software package PROAST, but it is attempted to make the 
discussion helpful for users of other software just as well. 

A.3.2 Bioassay on acute mortality of Daphnia magna 

It is assumed that both an EC50 and an EC10 is required after two days of exposure. Therefore, a dose-
response analysis of the mortality data at day 2 is normally sufficient. The following subclause discusses how 
such may be done. 

A.3.3 Dose-response analysis for mortality at day 2 

The data are quantal, and include more than one partial response. According to the flow-chart in Clause 6 
(Figure 6), various models should be fitted in a way as described in 6.2.2. The first step is to put the data in 
the format that is required by the software to be used. Typically, the data shall be provided in a matrix form, as 
illustrated in Table A.2. Note that the information of the sample size in each concentration (dose) group is 
essential. Here, the model is fitted based on maximization of the log-likelihood assuming a binomial 
distribution for the observed responses. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  121

Table A.2 — Data input file (as required by PROAST) 

Daphnia_magna   

4  
1 4 0 0 

Dose Response Sample_size Day 
100 20 20 1 

50 19 20 1 
25 5 20 1 

12,5 5 20 1 
6,25 6 20 1 
3,13 0 20 1 
1,56 0 20 1 
0,78 0 20 1 
0,39 0 20 1 

0 0 20 1 
100 20 20 2 

50 20 20 2 
25 20 20 2 

12,5 14 20 2 
6,25 11 20 2 
3,13 7 20 2 
1,56 1 20 2 
0,78 0 20 2 
0,39 0 20 2 

0 0 20 2 

A.3.4 Fitting the probit model 

First, a probit model is fitted. As discussed in Clause 6, the background response should normally be 
estimated as a model parameter. However, when, as in this particular data set, fitting the model with or 
without a background parameter results in virtually the same outcome; the background parameter can just as 
well be omitted from the model (or, equivalently, be fixed at zero). It is preferable, in this case, to avoid non-
convergence of the (iterative) fit algorithm. Note that in fitting the model without a background parameter, the 
data in the controls are not used, and they could just as well be deleted from the data set. 

Figure A.1 shows the fit of the probit model for this data set. The parameter b is the EC50, and the parameter c 
is the slope. It may also be interpreted as the inverse of the standard deviation (σ) of the underlying tolerance 
distribution (on the log10-scale). 

Visual inspection of Figure A.1 indicates that the fitted model appears quite well supported by the data, and 
there is no reason to believe that the dose-response relationship could in fact be much different. To 
substantiate this, various other models are fitted, in concordance with the flow-chart in Clause 6. 
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Figure A.1 — Probit model fitted to mortality response at day 2 — CED = EC10 

A.3.5 Fitting various models 

Next to the probit model, three other models were fitted: the logit, the Weibull and the (two-stage) LMS model. 
As Table A.3 shows, the resulting EC50 and EC10 estimates are reasonably similar (less than 30 % difference). 
Also note that the EC10 is obtained by interpolation. Thus, it may be concluded that the data are suitable for 
deriving an EC10 by dose-response modelling. 

Table A.3 — Summary of results regarding four models fitted to the mortality data in Figure A.1 

Model Log-lik EC50 EC10 

  MLE a 90 %-CI b MLE a 90 %-CI b 

Probit − 45,60 5,64 4,53 - 6,93 1,89 1,42 to 2,68 

Logit − 46,46 5,63 4,59 - 6,94 1,90 1,36 to 2,72 

Weibull − 46,25 6,64 5,36 - 8,17 1,69 1,10 to 2,68 

Two-stage − 46,83 7,00 5,59 - 8,46 1,47 1,17 to 1,77 

a MLE = Maximum Likelihood Estimate. 
b CI = Confidence Interval; based on 1 000 bootstrap runs. 

A.3.6 Confidence intervals 

The confidence intervals can be calculated by one of the ways described in Clause 6, depending on the 
software available. In Table A.2, the 90 %-confidence intervals are of the EC50 and the EC10 are given, as 
obtained by the bootstrap method (1 000 runs). They are not dramatically different between the models, and 
one may choose the lowest of these. Alternatively, one may choose the lower bounds associated with the 
probit model, as this model gives a somewhat higher log-likelihood value than the others. The slightly better fit 
can also be seen by comparing Figure A.1 with Figure A.2. 
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Figure A.2 — The Weibull (left panel) and the two-stage LMS model fitted to the mortality data at day 2 

A.3.7 Mortality at both days 

Although a single analysis of mortality at day 2 is normally sufficient, some remarks are made here on using 
the data at day 1 as well. 

First, it may be noted that a similar analysis can be done for day 1 separately (see Figure A.3, left panel). 
Obviously, the ECx values are higher, and for a risk assessment these results are probably not relevant. 
However, from the perspective of an efficient use of the data, an analysis in which the data from both days are 
analysed simultaneously would be preferable. 

There are two ways of doing a simultaneous analysis.  

⎯ One is to fit the dose-response model to both days simultaneously, allowing for the fact that one (or 
some) of the parameters in the model depends on the number of days. This analysis is shown in the right 
panel of Figure A.3. Here, the parameter c (the slope) is assumed to be the same for both days, while the 
EC50 is allowed to differ between days. Thus, the simultaneous analysis estimated three parameters, 
while the two separate analyses together estimated four parameters in total.  

The sum of the log-likelihoods of the two separate analyses (−94,91) can be compared to the log-
likelihood of the simultaneous analysis (−94,75). The former log-likelihood is associated with one more 
free parameter estimated from the data, and therefore can only be larger (or equal) to the latter log-
likelihood. (NOTE: This holds in general for nested models, but not necessarily for non-nested models; 
two models are nested when one model can be derived from the other by reducing the number of 
parameters to be estimated from the data.) 

⎯ The likelihood ratio test can be used to assess if the larger number of parameters in the separate 
analyses is associated with in a significantly better fit. According to this test, the increase in log-likelihood 
should be at least 1,92 to be significant at α = 0,05. It may therefore be concluded that the mortality data 
can just as well be described by a probit model with the same slope for days 1 and 2. As Table A.4 shows, 
the estimated ECx values are quite similar between a simultaneous and a separate analysis. 
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Figure A.3 — Probit model fitted to mortality data on day 1 (left panel), and fitted to both day 1 and 
day 2 simultaneously 

Table A.4 — Results of fitting the probit model separately or simultaneously to day 1 and day 2 

 Day 1 Day 2 

 EC50 EC10 EC50 EC10 

Log-lik Number of 
parameters 
estimated 

Separate analysis 20,40 6,02 5,64 1,89 − 94,91 (n.s.) 4 

Simultaneous analysis 20,25 6,39 5,64 1,78 − 94,75 3 

The higher log-likelihood for the two separate analyses is not significantly higher than that for the 
simultaneous analysis. 

The gain of a simultaneous analysis is twofold. 

⎯ First, one may expect that the estimated values of the ECx are less likely to be biased (e.g. due to outliers 
or incidental systematic errors in the data), simply because they are based on more data points. 

⎯ Second, the data are described by less parameters, which complies with the parsimony principle (3.25). 

One of the expected consequences is that the confidence intervals are smaller. 

However, the analysis as now being discussed is not completely sound from a statistical point of view. The 
reason is that the data points for day 1 and day 2 are not independent, and therefore the confidence intervals 
may not be completely reliable. Nonetheless, they have been assessed for the EC50 and EC10 at day 2 (see 
Table A.5). They are wider than those obtained from a separate analysis of day 2, which is against 
expectation, since a fewer number of parameters was estimated in this analysis. 

The reason is that in this particular case, the data at day 1 appear to show more noise than the data at day 2. 
Therefore, the noise is increased by including day 1 in the analysis, compared to an analysis of day 2 only. As 
long as there is no clear reason why the noise at day 1 may be larger than at day 2, it is hard to say if the 
noise for day 2 is in fact smaller, or only apparent or incidental. Thus, the increase in noise by including day 1 
might be a more realistic reflection of the overall noise in the data. 
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Table A.5 — EC50 and EC10 at day 2, with 90 % confidence intervals, assessed by a simultaneous 
analysis of both days (see right panel of Figure A.3) 

Model EC50 at day 2 EC10 at day 2 

 MLE 90 %-CI a,b MLE 90 %-CI 

Probit 5,64 4,50 to 7,01 1,78 1,32 to 2,39 

a It should be noted that these confidence intervals may not be completely 
reliable, due to dependencies in the data between day 1 and day 2. 
b CI = Confidence Interval. 

The dependencies in the data between day 1 and day 2 may be avoided by doing a simultaneous analysis the 
other way around. The mortality data may be regarded as a function of time for each dose group, while one of 
the parameters in the survival function is a function of dose. For instance, assuming a Weibull survival 
function, it might be assumed that the median survival time is some function of dose. Another approach is to 
assume a dose-response analysis for the hazard function (see, for example, the next subclause). 

A.4 Example of data analysis using DEBtox (biological methods) 

A.4.1 Parameters and asymptotic standard deviations (ASD) 

(For a definition of all parameters, see Annex F.) 

 

Figure A.4 — DEBtox example: Parameters and asymptotic standard deviations (ASD) 

A.4.2 Graphical test of model predictions against data 

 

Figure A.5 — Graphical test of model predictions against data 
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Table A.6 — LCx values (derived from parameter values) in milligrams/litre 

Day LC0 ASD LC50 ASD 

1 1,48 0,344 21,1 2,26 

2 0,738 0,172 5,94 0,574 

A.4.3 Comments 

Slow kinetics appeared to fit the data best, which means that the elimination rate was too small to be 
estimated reliably. This means that the model loses this parameter. The consequence is that only the killing 
acceleration (which is the product of the killing rate and the elimination rate) can be estimated, not the killing 
rate itself. Similarly the ratio of the NEC and the elimination rate, called the no effect concentration time, could 
be estimated, rather than the NEC itself; the bioassay did not last long enough for this compound. The 95 % 
confidence interval for the NEC can still be estimated. 

The background mortality rate was found to be nil. Notice that, excluding this parameter, a total of two 
parameters have been fitted on 18 data points. 
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Annex B 
(informative) 

 
Analysis of an “algae growth inhibition” data set using 

the three presented approaches 

B.1 General 

The following data set has been used. The aim of the presented analysis is to show the methodology that can 
be applied to these kinds of data. 

Table B.1 — Data set on Selenastrum capricornutum 

Concentration Day 0 Day 0 Day 0 Day 1 Day 1 Day 1 Day 2 Day 2 Day 2 

0 1,767 1,777 1,775 7,889 7,921 7,901 46,46 46,32 46,28 

0 1,748 1,762 1,76 8,179 8,178 8,188 44,35 44,31 44,27 

0 1,762 1,762 1,758 7,99 7,989 8,001 41,99 41,79 41,84 

0 1,784 1,796 1,794 8,322 8,335 8,328 43,2 43,2 43,29 

0 1,79 1,789 1,785 8,323 8,343 8,353 46,21 46,16 45,91 

0 1,84 1,846 1,85 7,977 7,979 7,981 40,63 40,73 40,75 

0,01 1,738 1,741 1,747 8,229 8,23 8,25 40,4 40,27 40,22 

0,01 1,989 1,955 1,959 8,376 8,372 8,38 41,97 42,03 42,03 

0,02 1,892 1,89 1,892 7,662 7,666 7,653 39,82 39,75 39,79 

0,02 1,785 1,789 1,783 7,765 7,773 7,775 38,78 38,84 38,79 

0,03 1,779 1,773 1,78 7,737 7,733 7,748 34,79 34,82 34,84 

0,03 1,759 1,758 1,763 8,035 8,045 8,039 31,2 31,16 31,23 

0,06 1,776 1,775 1,775 7,122 7,129 7,136 25,92 25,91 25,96 

0,06 1,754 1,751 1,76 6,775 6,776 6,785 22,42 22,5 22,5 

0,1 1,774 1,776 1,77 4,947 4,937 4,941 14,83 14,89 14,83 

0,1 1,71 1,716 1,722 5,162 5,165 5,17 13,76 13,71 13,69 

0,2 1,746 1,741 1,741 3,593 3,59 3,593 6,389 6,391 6,394 

0,2 1,736 1,738 1,739 3,554 3,547 3,555 6,108 6,11 6,127 

0,3 1,828 1,822 1,827 2,92 2,925 2,92 3,731 3,708 3,714 

0,3 1,688 1,681 1,688 3,157 3,147 3,151 3,13 3,124 3,122 

0,6 1,72 1,722 1,72 2,109 2,117 2,122 2,125 2,122 2,099 

0,6 1,733 1,735 1,731 2,03 2,04 2,038 2,053 2,066 2,057 

According to the July 2002, Draft Revised TG 201 [300], growth rate can be determined from cell count, 
biomass, or fluorescence values. That guideline refers to Mayer P., Cuhel R. and Nyholm N. (1997), a simple 
in vitro fluorescence method for biomass measurements in algal growth inhibition tests, Water Research 31: 
pp. 2 525-2 531 on the use of fluorescence values for this purpose.  
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Indeed, any of these three measures of mass (cell count, biomass, or fluorescence) can be used to obtain 
very similar (but not necessarily identical) measures of growth rate on each replicate by fitting the model 

** b ty a e= , 

using time, t, in hours, and y, the observed measure of mass. The estimate slope, b, from this fit is the sample 
growth rate for a given replicate. The simplest procedure is to linearize the problem by working with logarithms 
to obtain the model  

log(y) = A + b*t,  

where A = log(a). 

In what follows, natural logarithms were used, but this choice does not affect the slope or growth-rate estimate. 
These growth rate values can then be analysed by hypothesis testing or regression methods. 

B.2 Examples of data analysis using hypothesis testing (NOEC determination) 

B.2.1 Example 2a — Atrazine example: Fluorescence at Day 2 

B.2.1.1 NOEC determination Atrazine by two methods 

In Example 2a, the total biomass (or its surrogate, fluorescence) is analysed. In Example 2b, growth rate is 
analysed. NOEC is 0,01 mg/l by both tests. Both Dunnett’s test and the step-down application of the 
Jonckheere test are illustrated, according to the chart in Figures 4 and 5 of 5.1. 

B.2.1.2 Statistical analysis list file — Ecotoxicity measurements from data set Atrazine 

                     STATISTICAL ANALYSIS LIST FILE 
               ECOTOX MEASUREMENTS FROM DATASET ATRAZINE 
                 GROUP STATISTICS FOR Average_2 BY DOSE 
 
  dose   doseval    COUNT   MEAN     MEDIAN    STD_DEV   STD_ERR 
    1          0     6     43.5278   43.5373   2.26521   0.92477 
    2       0.01     2     40.9206   40.9206   1.21151   0.85667 
    3       0.02     2     39.0623   39.0623   0.69532   0.49167 
    4       0.03     2     32.7739   32.7739   2.55973   1.81000 
    5       0.06     2     23.9689   23.9689   2.44423   1.72833 
    6        0.1     2     14.0523   14.0523   0.79903   0.56500 
    7        0.2     2      6.0204    6.0204   0.19540   0.13817 
    8        0.3     2      3.1888    3.1888   0.41884   0.29617 
    9        0.6     2      1.8543    1.8543   0.04007   0.02833 

B.2.1.3 Shapiro-Wilk test of normality of average 2 

              SHAPIRO-WILK TEST OF NORMALITY OF Average_2 
 
    STD         SKEW        KURT     SW_STAT    P_VALUE    SIGNIF 
  1.39706    -0.099030    0.10954    0.97324    0.78479           
  
The Shapiro-Wilk test was done on the residuals from a simple 1-factor ANOVA with concentration as sole 
factor. The Shapiro-Wilk test does not indicate a problem with the normality assumption. The Tukey outlier 
rule is used to identify observations that may be of special interest. Outliers can have an impact on the results, 
as well as on the assessment of normality and variance homogeneity. A possibly valuable use of these 
outliers would be to re-run the analysis with outliers omitted to determine whether the NOEC is affected by 
these outliers. If it is, then caution should be followed in using the results. It is important to understand that just 
because an observation is identified as an outlier, that does not mean the observation is “bad” or that it should 
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not be used. An observation should be excluded from analysis only for scientifically sound reasons and any 
such exclusion shall be clearly stated along with its justification. 

B.2.1.4 Outliers and influential observations 

                  Outliers and Influential Observations 
 
SELENASTRUM   Dose  Doseval   Group    OBSER      Pred   Resid  
         1      1         0   I       46.1206   43.5278  2.59278 
         5      1         0   I       45.8606   43.5278  2.33278 
         6      1         0   I       40.4706   43.5278 -3.05722 
 

B.2.1.5 Levene test for average 2 

                 LEVENE TEST FOR Average_2 - FULL Model 
 
             Effect    DF     LEVENE     P_VALUE    SIGNIF 
              DOSE      8    3.36022    0.025754      **   
 
The data was found to be normally distributed (the p-value for the SW test was 0,784 79) but group variances 
were unequal (the p-value for Levene’s test was 0,025 754). A Tamhane-Dunnett analysis is appropriate. 

B.2.1.6 Tamhane-Dunnett one-sided test for decrease in means in average 2 

    Tamhane-Dunnett one-sided test for decrease in means in Average_2 
   Using MAXIMUM LIKELIHOOD estimates of variation on ECOTOX values. 
 
  dose    MEAN    STDERR  degfree  CONTROL  OBS_DIFF    crit   SIGNIF 
 
    2   40.9206  0.85667  3.68718  43.5278   -2.6072   5.3026         
    3   39.0623  0.49167  5.87792  43.5278   -4.4656   3.5625    *    
    4   32.7739  1.81000  1.56884  43.5278  -10.7539  13.7828         
    5   23.9689  1.72833  1.62787  43.5278  -19.5589  13.2920    *    
    6   14.0523  0.56500  5.55760  43.5278  -29.4756   3.7643    *    
    7    6.0204  0.13817  5.21273  43.5278  -37.5074   3.3204    *    
    8    3.1888  0.29617  5.77453  43.5278  -40.3391   3.3255    *    
    9    1.8543  0.02833  5.00937  43.5278  -41.6736   3.3279    *   
 
Thus, the Tamhane-Dunnett test finds significant decreases in mean response at dose 3 = 0,02 mg/l and at 
0,06 mg/l and above, but not at dose 4 = 0,03 mg/l. So, there is some departure from monotonicity in the dose 
response. Whether the NOEC should be set at 0,03 or at 0,01 from this test is a matter of scientific judgement. 

B.2.1.7 Monotonicity check of average 2 

              MONOTONICITY CHECK OF Average_2 - FULL DATA 
        DOSES 0, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3, 0.6 mg/l 
 
                       PARM         P_T      SIGNIF 
                    DOSE TREND    0.00000      **   
                    DOSE QUAD     0.83911           
 
This is a formal test for departure from monotonicity in the dose response. It is based on linear contrasts, as 
described in 5.1.4. In this instance, there is evidence of a linear dose-response response (p-value for dose 
trend < 0,000 01), so there is no reason, based on this test, to doubt the overall monotonicity of the dose 
response. We accordingly proceed with the step-down Jonckheere-Terpstra test.  
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In the results presented below,  

⎯ JONC  is the value of the Jonckheere-Terpstra test statistics; 

⎯ P1DNCF  is the p-value associated with this test statistic to test the hypothesis of a downward trend;  

⎯ P1UPCF  is the test statistic for testing the significance of an upward trend and is a default printout of the 
software used and is not utilized in the present analysis, i.e. the p-value for the upward trend;  

⎯ ZC is a standardized value of the JONC statistic, computed with tie correction; 

⎯ ZCCF is ZC, except that it is computed using a standard continuity correction factor.  

The CF in several terms refers to the use of this continuity correction factor. 

p-values are for the tie-corrected test with the continuity correction factor.  

SIGNIF RESULTS are for a decreasing alternative hypothesis.  

Jonckheere Trend Test on Dose 0 + Lowest 8 Doses through 0.6 mg/l           
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -5.837314   -5.8087         1 2.2331E-9 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 7 Doses through 0.3 mg/l           
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -5.422661 -5.389596         1 2.4387E-8 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 6 Doses through 0.2 mg/l           
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -4.972358 -4.933512 0.9999996 2.7045E-7 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 5 Doses through 0.1 mg/l           
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -4.476023 -4.429398 0.9999953 3.0535E-6 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 4 Doses through 0.06 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -3.917286 -3.859679 0.9999432 0.0000352 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 3 Doses through 0.03 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -3.267487 -3.193226 0.9992965 0.0004163 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 2 Doses through 0.02 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -2.466679 -2.363901 0.9909582 0.0050929 **     
                                                                         
Jonckheere Trend Test on Dose 0 + Lowest 1 Doses through 0,01 mg/l          

             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
                2 -1.333333 -1.166667 0.8783275 0.0668072    
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The Jonckheere-Terpstra test is significant at the 0,05 level at each step until the highest remaining 
concentration used in evaluating that statistics is 0,01 mg/l. Accordingly, the NOEC is set at 0,01 mg/l. Group 
means should be examined to check for lack-of-fit to a linear trend before trend test results are accepted. That 
is, blind reliance on the formal test for monotonicity is not advised. Rather, an informed judgement should be 
made based on all the available information. The same holds for assessing normality. 

B.2.2 Example 2b — Atrazine example: Growth rate 

B.2.2.1 NOEC determination Atrazine by two methods 

In this subclause, an NOEC is obtained for growth rate, both by Dunnett’s test and by the step-down 
application of the Jonckheere-Terpstra test. For ease of reference, a table of growth rates obtained from the 
fluorescence data is given below. 

Conc REPLICATE G_Rate  Conc REPLICATE G_Rate 
        

0 A 0,07082 0,03 B 0,06269
0 B 0,07010 0,06 A 0,05860
0 C 0,06886 0,06 B 0,05587
0 D 0,06911 0,1 A 0,04688
0 E 0,07050 0,1 B 0,04599
0 F 0,06714 0,2 A 0,02929

0,01 A 0,06831 0,2 B 0,02840
0,01 B 0,06628 0,3 A 0,01631
0,02 A 0,06608 0,3 B 0,01435
0,02 B 0,06692 0,6 A 0,00490
0,03 A 0,06476 0,6 B 0,00409

 
The NOEC is 0,01 mg/l by the step-down Jonckheere-Terpstra test, as well as by Dunnett’s test. 

B.2.2.2 Statistical analysis list file — Ecotox measurements from data set ATRZ_GRATES 

                         STATISTICAL ANALYSIS LIST FILE 
                  ECOTOX MEASUREMENTS FROM DATASET ATRZ_GRATES 
                     GROUP STATISTICS FOR Estimate BY DOSE 
 
  dose   Conc     COUNT     MEAN      MEDIAN       STD_DEV      STD_ERR 
 
    1          0     6     0.069421   0.069604   .001355632   .000553435 
    2       0.01     2     0.067294   0.067294   .001435844   .001015295 
    3       0.02     2     0.066500   0.066500   .000598875   .000423469 
    4       0.03     2     0.063729   0.063729   .001462545   .001034175 
    5       0.06     2     0.057236   0.057236   .001932705   .001366629 
    6        0.1     2     0.046432   0.046432   .000626564   .000443048 
    7        0.2     2     0.028843   0.028843   .000627415   .000443649 
    8        0.3     2     0.015327   0.015327   .001389178   .000982297 
    9        0.6     2     0.004497   0.004497   .000571829   .000404344 
                                         

B.2.2.3 Shapiro-Wilk test of normality of estimate 

                   SHAPIRO-WILK TEST OF NORMALITY OF Estimate 
 
   OBS           STD      SKEW        KURT      SW_STAT    P_VALUE    SIGNIF 
    22    .000988660    -0.42123    -0.42443    0.94515    0.25242   
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The Shapiro-Wilk test was done on the residuals from a simple 1-factor ANOVA with concentration as sole 
factor. The non-significant p-value (p = 0,25242) for the Shapiro-Wilk test indicates no reason to reject the 
normality assumption. The Tukey outlier rule identified no observations of special interest and hence, no 
outliers are reported. 
 

B.2.2.4 Levene test for estimate — Full model 

                     LEVENE TEST FOR Estimate - FULL Model 
 
                  Effect    DF     LEVENE    P_VALUE    SIGNIF 
                   DOSE      8    1.38466    0.28901           
 
The data was found to be consistent with a normal distribution, as shown by the Shapiro-Wilk test above, and 
with equal variances, as shown by the Levene test immediately above. An analysis of variance is performed. 

                  Obs    Class    Levels         Values 
                   1     dose          9    1 2 3 4 5 6 7 8 9 
 

B.2.2.5 Overall F-tests for ANOVA 

                           OVERALL F-TESTS FOR ANOVA 
 
                                 Num     Den 
               Obs    Effect      DF      DF     FValue     ProbF 
                1      dose        8      13     897.85    <.0001 
 
As discussed in Clause 5, no use is made of this result, though it does indicate that there is significant 
variation among the treatment means. It is a default computer output. The reader shall be prepared to make 
intelligent use of default output. 

B.2.2.6 Estimated dose effects and Dunnett for decreasing alternatives using Alpha = 0,05 

          ESTIMATED DOSE EFFECTS & DUNNETT FOR Decreasing ALTERNATIVE 
                   USING ALPHA=.05 FOR COMPARISONS TO CONTROL 
 
                                        Dunnett      Test 
                                        one-sided      Group 
                 Estimate     SIGNIF    p-value      Mean      N 
 
                DOSE TREND      **      0.00000     .          . 
                DOSE QUAD       **      0.00000     .          . 
                DOSE 2-1                0.16679    0.067294    2 
                DOSE 3-1         *      0.04470    0.066500    2 
                DOSE 4-1        **      0.00035    0.063729    2 
                DOSE 5-1        **      0.00000    0.057236    2 
                DOSE 6-1        **      0.00000    0.046432    2 
                DOSE 7-1        **      0.00000    0.028843    2 
                DOSE 8-1        **      0.00000    0.015327    2 

                DOSE 9-1        **      0.00000    0.004497    2 

The significant Dose Trend result indicates that there is a significant linear trend in the dose response and no 
reason, by this formal test, to question the monotonicity of the dose response. That there is also a significant 
quadratic trend is generally an indication that the overall trend is not linear. It does not, in itself, indicate non-
monotonicity. The plots in the regression analysis of these data are instructive in this regard. An inspection of 
the treatment means reveals that the means are indeed monotone. 

The Jonckheere-Terpstra test does not require linearity, only monotonicity.  

By Dunnett’s test, the NOEC is 0,01 mg/l, the lowest concentration. 
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B.2.2.7 Check for ties in estimate 

Check for ties in Estimate 
Percent of all data tied at 3 most frequently observed values 
Since 5 < 25%, 9 < 40% and 14 < 65%  
Exact methods (StatXact) are not required on this basis. 
 
COUNT    SUMWTS    NMISS    NOBS    RESPONSE    TIES    TIEPCT 
 
  1        22        2       24     0.004093      1        5   
  1        22        2       24     0.004901      2        9   
  1        22        2       24     0.014345      3       14   

B.2.2.8 Jonckheere-Terpstra test — Concentrations through groups 2, 3, 4, 5, 6, 7, 8 and 9 

The small number of replicates per concentration, two (except in the control) suggests an exact Jonckheere-
Terpstra test may be warranted. Certainly, such a test is not wrong. Below, both the exact and asymptotic 
(large-sample) results are given. It is observed that they do not agree. The exact result is considered definitive 
and is used to declare the NOEC to be 0,01 mg/l, the same as by Dunnett’s test for this example. As is seen 
below, each Jonckheere-Terpstra test is significant down to the 0,02 mg/l concentration. The result for the 
final test, where only the lowest concentration and control remain, differ in the exact and asymptotic versions 
of the test. 

                      Concentrations through Group 9 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  13.5000 
                Z                               -5.8373 
                Asymptotic Test 
                One-sided Pr <  Z                <.0001 
                Exact Test 
                One-sided Pr <=  JT           8.691E-15 
 
                      Concentrations through Group 8 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  13.0000 
                Z                               -5.4227 
                Asymptotic Test 
                One-sided Pr <  Z                <.0001 
                Exact Test 
                One-sided Pr <=  JT           1.629E-12 
 
                      Concentrations through Group 7 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  12.5000 
                Z                               -4.9724 
                Asymptotic Test 
                One-sided Pr <  Z                <.0001 
                Exact Test 
                One-sided Pr <=  JT           2.447E-10 
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                      Concentrations through Group 6 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  12.0000 
                Z                               -4.4760 
                Asymptotic Test 
                One-sided Pr <  Z                <.0001 
                Exact Test 
                One-sided Pr <=  JT           2.863E-08 
 
                      Concentrations through Group 5 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  11.5000 
                Z                               -3.9173 
                Asymptotic Test 
                One-sided Pr <  Z                <.0001 
                Exact Test 
                One-sided Pr <=  JT           2.511E-06 
 
                      Concentrations through Group 4 
 
                       Jonckheere-Terpstra Test 
                --------------------------------------- 
                Statistic (JT)                  11.0000 
                Z                               -3.2675 
                Asymptotic Test 
                One-sided Pr <  Z                0.0005 
                Exact Test 
                One-sided Pr <=  JT           1.563E-04 
 
                      Concentrations through Group 3 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)               10.5000 
                  Z                            -2.4667 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0068 
                  Exact Test 
                  One-sided Pr <=  JT           0.0063 
 
                      Concentrations through Group 2 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                9.0000 
                  Z                            -1.6667 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0478 
                  Exact Test 
                  One-sided Pr <=  JT           0.0714 
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B.3 Example of data analysis by dose-response modelling 

B.3.1 Data set and approach 

It is assumed that an EC10 is required. 

The data consist of observed biomass at three consecutive days, where exposure starts at the first day 
(= day 0). Each flask is sampled at the three points in time, so the data are not independent in time. 

One approach for dose-response analysis of this type of data is to fit a dose-response model to the biomass 
observations for day 1 and day 2 separately. In practice, the analysis of one day only is actually used (the one 
that results in the lowest EC10). 

Another approach that does make use of all data available is to consider not the biomass but the growth rate 
as a function of concentration. From a statistical point of view, this approach is more efficient (in using all the 
data in a single analysis). Further, one may argue that changes in biomass result from changes in growth rate, 
so that growth rate is a more relevant parameter from a biological point of view. Unfortunately, no consensus 
exists on this issue. This second approach is illustrated for the Atrazine data set (this analysis is also briefly 
discussed in Clause 6). 

B.3.2 Observations 

Figure B.1 shows the observed biomass (i.e. fluorescence) data at days 0, 1 and 2, where nine different 
concentrations (including zero) of Atrazine have been applied. An exponential model,  

y = a exp(bx), was fitted to the data,  

where  

a  denotes the initial biomass at day zero; and  

b the growth rate.  

Given the experimental protocol, the initial biomass cannot depend on the concentration, and therefore the 
parameter a in this growth model can be assumed constant. The parameter b is estimated by allowing it to be 
dependent on the concentration, i.e. for each concentration a particular value for b is estimated. Thus, a total 
of 11 parameters are estimated from this dataset: one value for a, nine values for b, and one value for var, the 
residual variance (the variance of the residuals23) on the log-scale). 

B.3.3 Analysis 

B.3.3.1 First step 

In the analysis underlying Figure B.1, the observations are assumed to be independent. However, as 
discussed above, at each concentration various flasks were used, and each flask was sampled at the three 
days of observation, i.e. the individual flasks were followed in time. Therefore, the data as plotted in Figure B.1 
are not independent, while nonetheless independence was assumed in fitting the model.  

This problem may be circumvented by estimating a growth rate for each individual flask. Since 22 flasks were 
observed (6 in the control, and 2 in the other concentration groups), a total of 24 parameters is estimated in 
such an analysis (including a and var). Figure B.2 shows the results of this analysis.  

The log-likelihood has increased from 464,80 (see Figure B.1) to 483,86 (see Figure B.2). This increase of 
19,06 log-likelihood units for a model with 24 - 11 = 13 more parameters is highly significant according to the 
                                                      

23) The residuals are the deviations of the individual data points from the fitted model. 
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likelihood ratio test (twice the difference in log-likelihood is approximately Chi-squared distributed with 
13 degrees of freedom; P ≈ 0,000 3). Hence, it may be concluded that individual flasks differ from each other 
by themselves. 

 

NOTE Biomass is plotted on the log-scale, resulting in linear growth curves. Biomass was assumed to be 
log-normally distributed, with homogenous variance on log-scale (i.e. homogenous CV). Here, 11 parameters are 
estimated (in a simultaneous fit). 

Figure B.1 — Exponential growth model fitted to biomass, assuming a constant initial biomass (a), and 
growth rate (b) dependent on concentration (0, 0,01, 0,02, 0,03, 0,06, 0,1, 0,2, 0,3, 0,6 mg/l)  

 

NOTE A total of 24 parameters are estimated (in a simultaneous fit). By comparing the log-likelihood (483,86) with 
that obtained in Figure B.1 (loglik = 464,80), it may be concluded that a significantly better fit is obtained, implying that 
flasks (at the same concentrations) are different with respect to growth rates. 

Figure B.2 — Exponential growth model fitted to biomass, assuming a constant initial biomass (a), 
and growth rate (b) dependent on each individual flask (six for the control group, 

and 2 for each nonzero concentration)  
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B.3.3.2 Second step 

As a second step in the analysis, the estimated growth rates are plotted against the concentration.  

Figure B.3 shows the growth rates from Figure B.2, as a function of concentration, and a dose-response 
model may be fitted to these data. Here, it is assumed that the growth rates are normally rather than log-
normally distributed (one of the reasons being that negative growth rates are possible). Figure B.3 shows the 
results for the Hill model fitted to the growth rates. This model fits the data extremely well, while the resulting 
curve is well confined by the data. Thus, estimation of an EC10 is fully warranted. It is no surprise that different 
models give very similar results and very narrow confidence intervals (see Table B.2). 

 

NOTE The Hill model is fitted here to the data. The data are plotted against log-concentration to improve visibility. 

Figure B.3 — Estimated growth rates (from individual flasks, see Figure B.2) as a function 
of the concentration of Atrazine  

Table B.2 — Summary of results of dose-response analysis for growth rate 

Model Log-lik EC10 90 % CI 

y = d + a xc /(bc + xc) 73,28 0,039 0,035 5 to 0,042 1 a 

y = a [c – (c-1)exp(-x/b)d] 71,17 0,035 0,032 2 to 0,038 6 b 

a Based on 5 000 bootstrap runs. 

b Based on likelihood profile method. 

B.3.4 Assumptions 

B.3.4.1 General 

To check the assumptions of normality and homogeneous variances, the regression residuals (i.e. the 
deviations of the individual data points from the dose-response model) may be plotted in various ways, e.g. 
the so-called QQ-plot. In a QQ-plot, the observed quantiles are plotted against the theoretical quantiles, e.g. 
according to the normal distribution. When data are sampled from a normal distribution, this plot should 
theoretically result in a straight line. It should be noticed that fitting a line to a QQ-plot is unsound (which is not 
always recognized). One may draw the theoretical straight line in the plot, with intercept equal to the mean of 
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the data points and with slope equal to the standard deviation of the data points. In the case of regression, the 
data points are the regression residuals, which are corrected for the dose-response relationship. 

In interpreting a QQ-plot, one should realize that, due to sampling errors, fluctuations around the line can 
easily arise, especially in small data sets. In particular, a pattern resembling Aesculapius’ staff is not unusual, 
even for data that are sampled from a normal distribution by the computer. Hence, QQ-plots should only lead 
to the conclusion that the assumed distribution is inadequate when the data show a clear overall curvature. It 
is always the general trend, not single data points that should be considered. 

B.3.4.2 Biomass data 

The biomass observations were assumed to be log-normally distributed, and therefore the model was fitted on 
log-scale. Hence, the residuals on a log-scale should be normally distributed with zero mean. From the left 
panel of Figure B.4 it may be concluded that the assumption of log-normally distributed biomass is reasonable. 
In the right panel of Figure B.4 the regression residuals are plotted for the three days separately. This plot 
reveals no differences in scatter between days, and it may be concluded that the assumption of homogeneous 
variances (on log-scale) is reasonable as well. 

For the sake of illustration, the same plots are shown for the residuals resulting from an analysis without 
transformation. The QQ-plot shows a much less linear relationship, while the scatter is clearly not 
homogeneous between days. Clearly, an analysis after logarithmic transformation is more adequate. 

 
NOTE The QQ-plots (left panels) show that the data comply with the assumption of log-normality, but less so with 
normality. The variances appear to be homogeneous for the analysis on log-scale (upper right panel), with some outliers 
at day 1 (middle group). The same three outliers are visible in the QQ-plot (upper left panel). The analysis without 
transformation [lower right panel] results in a large scatter in the residuals at day 1 (middle group), and the assumption of 
homogeneous variances is clearly violated. 

Figure B.4 — Regression residuals from analysis on log-scale (upper panels) and from analysis 
without transformation (lower panels) 
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B.3.4.3 Growth rates 

The growth rates were analysed without transformation, i.e. they were assumed to be normally distributed 
themselves, with homogeneous variance among concentration groups. As Figure B.5 shows, both 
assumptions appear reasonable. 

 
a)   QQ-plot for regression residuals for 

growth rates, confirming the assumption 
of normality 

b)   Regression residuals plotted against 
(log-)concentration, confirming the 

assumption of homogeneous variances 

Figure B.5 — Growth rate plots 

B.3.5 Dependencies due to individual flasks 

The dose-response analysis discussed here was based on the growth rates derived for the individual flasks. 
As already discussed in Clause 6, an analysis that is based on an estimated growth rate for each 
concentration group (as in Figure B.1) results in virtually the same estimate for the EC10 and for its confidence 
interval. Yet, the first analysis (separate growth rate estimate for each flask) is favourable, as it may give the 
information that a particular flask might be an outlier. Further, it may give information on weaknesses in the 
study protocol, for instance when replicate flasks in the same concentration group deviate from the general 
dose-response pattern. Such would indicate that the experimental protocol could be improved by better 
randomization. In this way, the test could be made more effective. 

B.4 Examples of data analysis using DEBtox (biological methods) 

B.4.1 Data 

Figure B.6 shows the data set used to analyse the effects of Atrazine in micrograms per litre (µg/l) on the 
growth of Selenastrum capricornutum in cells per millilitre (cells/ml). 

 

Figure B.6 — DEBtox example: Data for effects of Atrazine in micrograms per litre on the growth of 
Selenastrum capricornutum in cells per millilitre 

Figure B.7 shows the parameter estimates and Asymptotic Standard Deviations (ASD). 

 

Figure B.7 — DEBtox example: Parameter estimates and asymptotic standard deviations (ASD) 
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B.4.2 Graphical test 

Figures B.8 and B.9 show graphical tests of model predictions against data (the different curves correspond to 
the different concentrations). 

 

Figure B.8 — DEBtox example: Time profile 
(Population growth, growth model, CAS 1912-24-9) 

 

Figure B.9 — DEBtox example: Concentration profile 
(Population growth, growth model, CAS 1912-24-9) 
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B.4.3 Profile likelihood for NEC estimate 

First select the confidence level of your choice in the left panel (see Figure B.10), then read the ln likelihood. 
The concentrations in the right panel for which the ln likelihoods are below this level comprise the confidence 
set of the NEC. 

 

Figure B.10 — DEBtox example: Profile likelihood for NEC estimate 
(Population growth, growth model, CAS 1912-24-9) 

Table B.3 — ECx values 

Day EC0 ASD EC50 ASD 

1 15,6 1,16 139 5,75 

2 15,6 1,16 61 2,03 

Comments 

The model for effects on the growth rate fits quite acceptably, but those for effects on adaptation and hazard 
fitted slightly better with similar NEC values (see Table B.4). The effects on growth have been selected here to 
improve the comparability with the concentration-response method. The 99 % confidence intervals for the 
NEC values in micrograms per litre (µg/l) for the three models are: 

Table B.4 — 99 % confidence intervals for the NEC values for the three models 

Model 99 % Confidence intervals 

Hazard 5,89 14,4 

Adaptation 4,46 9,59 

Growth 13,2 17,4 

These values are obtained by selecting the different models in the DEBtox software, and using its routine for 
computation of the confidence interval of the NEC. 
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Annex C 
(informative) 

 
Analysis of an “Daphnia magna reproduction” data set (OECD GL 211 – 

ISO 10706) using the three presented approaches 

Table C.1 — Data set on Daphnia magna — Data for the cumulative number of offspring per female 
as affected by an unknown compound 

Number of live young produced Concentration  
mg/l 

Day 
Rep A Rep B Rep C Rep D Rep E Rep F Rep G 

0 7 0 0 0 0 0 0 0 
0 10 13 4 12 0 8 7 6 
0 12 2 14 0 0 0 0 0 
0 14 13 0 14 14 13 14 34 
0 17 25 27 31 19 32 24 38 
0 19 34 34 40 24 40 18 38 
0 21 0 0 0 0 0 0 0 
0,014 7 0 0 0 0 0 0 0 
0,014 10 8 6 12 5 8 12 7 
0,014 12 2 0 0 0 2 0 0 
0,014 14 20 16 23 14 14 20 15 
0,014 17 27 24 26 27 25 32 32 
0,014 19 34 27 41 33 24 35 35 
0,014 21 0 0 0 0 0 0 0 
0,050 7 0 0 0 0 0 0 0 
0,050 10 10 12 11 10 1 0 0 
0,050 12 0 0 0 0 18 2 0 
0,050 14 12 21 22 17 0 3 11 
0,050 17 26 36 26 30 8 21 0 
0,050 19 37 29 28 7 33 0 18 
0,050 21 0 0 0 20 0 19 18 
0,18 7 0 0 0 0 0 0 0 
0,18 10 9 7 9 7 7 0 12 
0,18 12 21 16 0 3 0 — 0 
0,18 14 0 0 17 9 17 — 18 
0,18 17 27 24 23 20 23 — 23 
0,18 19 34 37 28 21 0 — 33 
0,18 21 0 0 0 0 23 — 0 
0,64 7 0 0 0 0 0 0 0 
0,64 10 5 7 7 7 0 0 6 
0,64 12 0 0 21 16 9 8 17 
0,64 14 7 11 0 0 17 11 0 
0,64 17 28 24 25 20 25 26 17 
0,64 19 0 16 32 30 0 0 31 
0,64 21 22 0 0 0 30 25 0 
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Table C.1 (continued) 

Number of live young produced Concentration  
mg/l 

Day 
Rep A Rep B Rep C Rep D Rep E Rep F Rep G 

2,3 7 0 0 0 0 0 0 0 
2,3 10 0 0 4 0 12 7 0 
2,3 12 — 0 0 4 0 0 0 
2,3 14 — 11 16 15 19 13 19 
2,3 17 — 16 27 21 28 18 27 
2,3 19 — 12 0 0 26 0 30 
2,3 21 — 0 20 13 0 26 0 
8,0 7 0 0 0 0 0 0 0 
8,0 10 0 0 0 0 0 0 0 
8,0 12 0 0 0 0 0 0 0 
8,0 14 0 0 0 0 0 0 0 
8,0 17 0 0 — 0 — — — 
8,0 19 0 — — — — — — 
8,0 21 0 — — — — — — 

C.1 Examples of data analysis using hypothesis testing (NOEC determination) 

C.1.1 Example 3a — Daphnia chronic reproduction data: Total live young after 14 days 
exposure 

C.1.1.1 NOEC determination by two methods 

Since TLY14 is count data, a square-root transform is used. Not reported is an analysis of untransformed 
values that yielded the same conclusions. 

The NOEC exceeds 2,35 mg/l by both methods, the highest concentration for which there was a surviving 
adult. While it is possible to fit a regression model to these data, given the non-monotone and shallow nature 
of the dose response, there is little point in doing so. 

C.1.1.2 Statistical analysis list file — Ecotoxicity measurements from data set ADAP_REPRO 

                     STATISTICAL ANALYSIS LIST FILE 
              ECOTOX MEASUREMENTS FROM DATASET ADAP_REPRO 
                   GROUP STATISTICS FOR TLY14 BY DOSE 
 
dose doseval    COUNT      MEAN     MEDIAN    STD_DEV    STD_ERR 
 
 1         0      7      24.0000     21.0      8.4656    3.19970 
 2     0.015      7      26.2857     24.0      6.0198    2.27527 
 3     0.053      7      21.4286     22.0     10.6748    4.03471 
 4      0.19      6      25.3333     25.0      4.2740    1.74483 
 5      0.67      7      21.2857     23.0      5.4072    2.04374 
 6      2.35      6      20.0000     19.5      6.3875    2.60768 
 7      8.23      0        .           .        .         .      
                                     

C.1.1.3 Shapiro-Wilk test of normality 

             SHAPIRO-WILK TEST OF NORMALITY OF SQRT(TLY14) 
 
    STD        SKEW        KURT     SW_STAT    P_VALUE    SIGNIF 
  0.75316    -0.43909    0.94111    0.97340    0.45806           
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The Shapiro-Wilk test was done on the residuals from a simple 1-factor ANOVA with concentration as sole 
factor. The Shapiro-Wilk test does not indicate a problem with the normality assumption. The Tukey outlier 
rule is used to identify observations that may be of special interest. Outliers can have an impact on the results, 
as well as on the assessment of normality and variance homogeneity. A possibly valuable use of these 
outliers would be to re-run the analysis with outliers omitted to determine whether the NOEC is affected by 
these outliers. If it is, then caution should be followed in using the results. It is important to understand that just 
because an observation is identified as an outlier, that does not mean the observation is “bad” or that it should 
not be used. An observation should be excluded from analysis only for scientifically sound reasons and any 
such exclusion shall be clearly stated along with its justification. 

C.1.1.4 Outliers and influential observations 

                  Outliers and Influential Observations 
                       SQRT(TLY14) FROM FULL DATA 
 
DAPHNIA   dose   doseval        group       OBSER      Pred 
 
     20     3           0.053   III        2.23607   4.46961 
 
 SE_PRED      L95M       U95M       Resid        LB          UB 
 
 0.30488    3.85002    5.08920    -2.23354    -1.61856    1.70612 
                                     

C.1.1.5 Levene test for SQRT(TLY14) — Full model 

 
                LEVENE TEST FOR SQRT(TLY14) - FULL Model 
 
              Effect    DF     LEVENE    P_VALUE    SIGNIF 
               DOSE      5    1.20201    0.32914           
 
The data was found to be normally distributed (Shapiro-Wilk p-value = 0,458 06) with equal variances (Levene 
p-value = 0,329 14). An analysis of variance is performed. 

                 Obs    Class    Levels      Values 
                  1     dose          6    1 2 3 4 5 6 
 

C.1.1.6 Overall F-tests for ANOVA 

                       OVERALL F-TESTS FOR ANOVA 
 
                       Num     Den 
            Effect      DF      DF     FValue     ProbF 
             dose        5      34       0.84    0.5330 
 
The overall ANOVA F-test is not significant. However, this does not affect the remainder of the analysis. As 
discussed in Clause 5, a significant or non-significant F-test should not be used as a decision rule for the 
multiple comparisons of step-down Jonckheere-Terpstra test. The F-test can be affected by significant 
differences among treatments of no interest to toxicology or by the necessity to control for a large number of 
possible differences of no interest to toxicology. 
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C.1.1.7 Estimated dose effects and Dunnett for decreasing Alternative using Alpha = 0,05 

      ESTIMATED DOSE EFFECTS and DUNNETT FOR Decreasing ALTERNATIVE 
               USING ALPHA=.05 FOR COMPARISONS TO CONTROL 
 
                                    Dunnett      Test 
                                    one-sided     Group 
             Estimate     SIGNIF    p-value      Mean     N 
            DOSE TREND              0.24959     .         . 
            DOSE QUAD               0.65360     .         . 
            DOSE 2-1                0.95623    5.09841    7 
            DOSE 3-1                0.49052    4.46961    7 
            DOSE 4-1                0.92891    5.01786    6 
            DOSE 5-1                0.60723    4.57826    7 
            DOSE 6-1                0.45937    4.42441    6 
 
The Dose Trend and Dose Quad are formal tests for departure from monotonicity in the dose response. They 
are based on linear contrasts, as described in 5.1.4. In this instance, the test for linear dose response is not 
significant but neither is the test for departure from linearity (Dose Quad), so there is no reason, based on 
these tests, not to go on with the step-down Jonckheere-Terpstra test. However, an inspection of the 
treatment means does indicate some non-monotonicity in the dose response. Thus, some caution should be 
used in interpreting the results of the Jonckheere-Terpstra test presented below.  

In the results presented below,  

⎯ JONC  is the value of the Jonckheere-Terpstra test statistics; 

⎯ P1DNCF  is the p-value associated with this test statistic to test the hypothesis of a downward trend;  

⎯ P1UPCF  is the test statistic for testing the significance of an upward trend and is a default printout of the 
software used and is not utilized in the present analysis, i.e. the p-value for the upward trend;  

⎯ ZC is a standardized value of the JONC statistic, computed with tie correction; 

⎯ ZCCF  is ZC, except that it is computed using a standard continuity correction factor.  

The CF in several terms refers to the use of this continuity correction factor. 

p-values are for the tie-corrected test with the continuity correction factor.  

SIGNIF RESULTS are for a decreasing alternative hypothesis.  

  
Jonckheere Trend Test on Dose 0 + Lowest 5 Doses through 2.35 mg/l          
Analysis of TLY14                                                        
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
            281.5 -1.223426 -1.211548 0.8871572 0.1083588        
 
Since the Jonckheere-Terpstra test with all concentrations present is not significant, no further testing is 
required. Jonckheere test results are included in the summary table. Group means should be examined to 
check for lack-of-fit to a linear trend before trend test results are accepted. 

It is observed that neither Dunnett's test nor the Jonckheere-Terpstra test found a significant effect at any 
concentration at 14 days. 
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C.1.2 Example 3b — Daphnia chronic reproduction data: Total live young (TLY) 
after 21 days exposure 

C.1.2.1 NOEC determination by two methods 

Since TLY21 is count data, a square-root transform is used. Not reported is an analysis of untransformed 
values that yielded the same conclusions. 

The NOEC by Dunnett’s test exceeds 2,35 mg/l, the highest tested concentration for which at least one adult 
daphnia survived. The NOEC by the Jonckheere-Terpstra test is 0,19 mg/l. 

C.1.2.2 Ecotoxicity measurements from data set ADAP_REPRO — Group statistics for TLY21 by dose 

 
              ECOTOX MEASUREMENTS FROM DATASET ADAP_REPRO 
                   GROUP STATISTICS FOR TLY21 BY DOSE 
 
dose doseval     COUNT      MEAN     MEDIAN    STD_DEV    STD_ERR 
 
  1         0      7      84.5714     87.0     20.3130    7.67760 
  2     0.015      7      86.5714     89.0     11.8583    4.48201 
  3     0.053      7      72.2857     84.0     21.2581    8.03479 
  4      0.19      6      78.0000     80.5     11.4717    4.68330 
  5      0.67      7      71.4286     71.0      9.5718    3.61779 
  6      2.35      6      64.0000     65.5     16.3707    6.68331 
  7      8.23      0        .           .        .         .      
 

C.1.2.3 Shapiro-Wilk test of normality 

             SHAPIRO-WILK TEST OF NORMALITY OF SQRT(TLY21) 
                       AQUATIC DAPHNIA: FULL DATA 
 
    STD        SKEW        KURT      SW_STAT    P_VALUE    SIGNIF 
  0.87309    -0.34552    -0.55535    0.96350    0.22028           
 
The Shapiro-Wilk test was done on the residuals from a simple 1-factor ANOVA with concentration as the sole 
factor. The Shapiro-Wilk test does not indicate a problem with the normality assumption. The Tukey outlier 
rule was used to identify observations that may be of special interest. For these data, no outliers were 
identified. 

C.1.2.4 Levene test  

                LEVENE TEST FOR SQRT(TLY21) - FULL Model 
                 ANALYSIS OF VARIANCE ON FULL DATA SET 
 
              Effect    DF     LEVENE    P_VALUE    SIGNIF 
               DOSE      5    0.91555    0.48269           
 
The data was found to be consistent with a normal distribution with equal variances. An analysis of variance is 
performed. 

 
                 Obs    Class    Levels      Values 
                  1     dose          6    1 2 3 4 5 6 
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C.1.2.5 Overall F-tests for ANOVA 

                   OVERALL F-TESTS FOR ANOVA 
 
                       Num     Den 
            Effect      DF      DF     FValue     ProbF 
             dose        5      34       1.90    0.1199 
 
The overall ANOVA F-test is not significant. However, this does not affect the remainder of the analysis. As 
discussed in Clause 5, a significant or non-significant F-test should not be used as a decision rule for the 
multiple comparisons of step-down Jonckheere-Terpstra test. The F-test can be affected by significant 
differences among treatments of no interest to toxicology or by the necessity to control for a large number of 
possible differences of no interest to toxicology. 

C.1.2.6 Estimated dose effects and Dunnett for decreasing alternative using alpha = 0,05 

      ESTIMATED DOSE EFFECTS and DUNNETT FOR Decreasing ALTERNATIVE 
               USING ALPHA =.05 FOR COMPARISONS TO CONTROL 
 
                                    Dunnett      Test 
                                    one-sided     Group 
             Estimate     SIGNIF    p-value      Mean     N 
            DOSE TREND       *      0.01150     .         . 
            DOSE QUAD               0.71556     .         . 
            DOSE 2-1                0.91014    9.28556    7 
            DOSE 3-1                0.24321    8.41734    7 
            DOSE 4-1                0.59511    8.81095    6 
            DOSE 5-1                0.25588    8.43515    7 
            DOSE 6-1                0.05306    7.94130    6 
 
The Dose Trend and Dose Quad are formal tests for departure from monotonicity in the dose response. They 
are based on linear contrasts, as described in 5.1.4. In this instance, the test for linear dose response is 
significant but not the test for departure from linearity (Dose Quad), so there is no reason, based on these 
tests, not to go on with the step-down Jonckheere-Terpstra test. As discussed in 5.3, the only condition, based 
on these formal tests, to question the use of the Jonckheere-Terpstra test would be a non-significant test for 
dose trend and a significant test for dose quad. In addition, an inspection of the treatment means indicate 
some non-monotonicity in the dose response, but the overall downward trend is quite evident.  

In the results presented below,  

⎯ JONC  is the value of the Jonckheere-Terpstra test statistics; 

⎯ P1DNCF  is the p-value associated with this test statistic to test the hypothesis of a downward trend;  

⎯ P1UPCF  is the test statistic for testing the significance of an upward trend and is a default printout of the 
software used and is not utilized in the present analysis, i.e. the p-value for the upward trend;  

⎯ ZC is a standardized value of the JONC statistic, computed with tie correction; 

⎯ ZCCF  is ZC, except that it is computed using a standard continuity correction factor.  

The CF in several terms refers to the use of this continuity correction factor. 

p-values are for the tie-corrected test with the continuity correction factor.  

SIGNIF RESULTS are for a decreasing alternative hypothesis.  
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Jonckheere Trend Test on Dose 0 + Lowest 5 Doses through 2.35 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
            216.5 -2.761099 -2.749249 0.9970134 0.0027775 **     
 
Jonckheere Trend Test on Dose 0 + Lowest 4 Doses through 0.67 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
            163.5 -2.050218 -2.035031 0.9790761 0.0194424  *  
                                    
Jonckheere Trend Test on Dose 0 + Lowest 3 Doses through 0.19 mg/l          
 
             JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 
            107.5 -1.255247 -1.233604 0.8913248 0.1008208        

Since the Jonckheere-Terpstra test is not significant with all concentrations above 0,19 mg/l omitted, no 
further testing is required and the NOEC is 0,19. It is observed that Dunnett’s test found no significance at any 
concentration. 

The Jonckheere test results are included in the summary table. Group means should be examined to check 
for lack-of-fit to a linear trend before trend test results are accepted. 

C.2 Example of data analysis by dose-response modelling 

C.2.1 Daphnia reproduction test: number of young 

Total number of life young are reported at various points in time after exposure, showing a clear increase in 
rate of number of young produced with time. This information in time may be used, as shown at the end of this 
subclause. First, however, it is illustrated how the number of young for a particular time period may be 
analysed by dose-response modelling 

Since the production of young only starts after a number of days, with an increasing rate in the period 
thereafter, the total count over the first two weeks, or that over the third week may, for example, be chosen as 
the response variable for dose-response analysis. As Figure C.1 illustrates, the production of young has 
indeed increased with age. This figure also illustrates that the dose-response relationship of the counts over 
the first two weeks is similar to that over the third week. Although in this way the data from the first two weeks 
and from the third week are used together in a single analysis, the problem is that the analysis assumes the 
data to be independent, which they are not (see Figure C.2). Therefore, the analysis of Figure C.1 is from a 
statistical point of view not valid, in particular the confidence interval may not be reliable. 
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Figure C.1 — Number of life young as a function of concentration (on log-scale to improve visibility), 
counted over the first two weeks (triangles) and over the third week (circles) 

CED = EC10. Model 2: y = a exp(bx). This model was reparameterized by substituting the parameter b by the 
EC10. In this way, the confidence interval for the EC10 (L-5 to L-95) can be estimated by the likelihood profile 
method. Note that the confidence interval in this analysis may not be reliable, due to violation of independence 
of the data (see Figure C.2). 

 

Figure C.2 — Total live young (TLY) in third week plotted against TLY in first 
two weeks, showing the correlations between these counts 

The obvious way to avoid the problem of dependent data in the analysis of Figure C.1 is to perform the 
analysis on the counts over the third week only. Another argument for this selection is that it may be assumed 
that at this time the reproduction rate has reached a more or less stable level, whereas the counts over the 
first two-weeks period includes the starting-up of the reproduction (leading to more variation and problems of 
interpretation). According to the recommendation of Clause 6, various models are fitted to the counts over 
week three. 
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First the nested non-linear model proposed by Slob (2002) is fitted. This results in the following log-likelihoods: 

Model 1 y = a loglik  = 4,19 

Model 2 y = a exp(x/b) loglik = 8,26 

Model 3 y = a exp(±(x/b)d)  loglik = 8,26 

Model 4 y = a [c − (c − 1) exp(-x/b)] loglik = 8,26 

The log-likelihoods can be compared with the likelihood-ratio test. A model with one more parameter fits the 
data significantly better (at α = 0,05) than the model without that parameter when the increase in the log-
likelihood is greater than 1,92. The difference in log-likelihoods between Model 2 and Model 1 is 4,07, so it 
may be concluded that the data show a significant dose response. The models with more parameters result in 
the same log-likelihood, and it may be concluded that Model 2 is, from this family of models, the appropriate 
one for describing the data. Figure C.3 shows the results for this model. 

Next a polynomial model is fitted to these data. Since this is again a nested family of models, the 
log-likelihoods can be compared by the ratio-likelihood test: 

Model 1 y = a loglik = 4,19 

Model 2 y = a + bx loglik = 8,20 

Model 3 y = a + bx + cx2 loglik = 8,50  

Here, Model 2 (straight line) is not significantly improved by higher-order polynomials, and this model may be 
selected from this family of models. 

Finally, the power model, y = c + axb, is fitted to the number of young. This model results in a log-likelihood 
value of 9,15. However, by fixing the parameter b to one, the model reduces to a straight line. Hence, the 
power model and the straight line are nested, and their log-likelihoods can be compared. Since the straight 
line resulted in a log-likelihood of 8,20, the power model does not give a significantly better fit. 

It may be concluded that these data should be described by a two-parameter model, either the exponential, or 
the linear (straight-line) model. Figure C.3 shows the fit of the exponential model. Table C.2 summarizes the 
results for both fits, showing that the EC10 (and its confidence interval) are similar for both models. 

Table C.2 — Number of live young: Summary of results for exponential and 
straight-line model, both having two parameters 

Model Log-lik EC10 90 % CI 

y = a exp(bx) 8,26 0,91 0,58 to 2,05a 

y = a + bx 8,20 1,00 0,69 to 2,15b 

a Based on profile-likelihood method. 
b Based on 1 000 bootstrap runs. 

C.2.2 Assumptions 

To check the assumptions of normality and homogeneous variances, the regression residuals (i.e. the 
deviations of the individual data points from the dose-response model) may be plotted in various ways. Here, 
two plots are considered. One is the so-called QQ-plot, where the observed quantiles are plotted against the 
theoretical quantiles, e.g. according to the normal distribution. When data are sampled from a normal 
distribution, this plot should theoretically result in a straight line. It should be noticed that fitting a line to a QQ-
plot is unsound (which is not always recognized). One may draw the theoretical straight line in the plot, with 
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intercept equal to the mean of the data points and with slope equal to the standard deviation of the data points. 
In the case of regression, the data points are the regression residuals, which are corrected for the dose-
response relationship. 

In interpreting a QQ-plot, one should realize that, due to sampling errors, fluctuations around the line can 
easily arise, especially in small data sets. In particular, a pattern resembling Aesculapius’ staff is not unusual, 
even for data that are sampled from a normal distribution by the computer. Hence, QQ-plots should only lead 
to the conclusion that the assumed distribution is inadequate when the data show a clear overall curvature. It 
is always the general trend, not single data points that should be considered. 

As Figure C.4 (upper left panel) shows, the data did comply with the assumption of log-normality, since these 
residuals resulted from an analysis on the log-counts. The same residuals plotted against concentration 
(upper right panel) do not reveal a clear trend, and the assumption of homogeneous variances (on log-scale) 
appears acceptable. 

Although not strictly needed, the residual plots are also shown for an analysis where the log-transformation 
was omitted (middle panels of Figure C.4), as well as where a square root transformation was applied (lower 
panels of Figure C.4). The plots for these three situations are similar. The reason of this similarity is that the 
scatter in these data is relatively small (CV of around 20 %) A log-normal distribution gets closer to a normal 
distribution with smaller variation (CV).  

Therefore, the smaller the scatter in the data, the more data are needed to see any difference in the QQ-plots 
assuming normality, log-normality, or square-root-normality. For the same reason, it may be expected that 
applying or omitting any transformation has no large impact on the results of the analysis when the scatter in 
the data is relatively small. Indeed, re-analysing these data without transformation results in an 
EC10 = 0,90 mg/l, while the same analysis with log-transformation resulted in EC10 = 0,91 mg/l. 

 

NOTE This model was reparameterized by substituting the parameter b by the EC10. In this way, the confidence 
interval for the EC10 (L − 5 to L − 95) can be estimated by the likelihood profile method. 

Figure C.3 — Exponential model fitted to the number of life young counted over week three 
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a)   QQ-plots for regression residuals for 

the exponential model 
b)   The same residuals plotted against dose 

(dose on log-scale to improve visibility) 
NOTE Upper panels: analysis on log-scale.  

 Middle panels: no transformation. 

 Lower panels: analysis on square root scale. 

Figure C.4 — Plots of regression residuals  
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C.2.3 Two-step analysis: Taking time into account 

Similar to the algal test example, these data can be analysed in two steps, taking the information in time into 
account. In the first step, the (cumulative) number of eggs is considered as a function of time. Figure C.5 
shows the Hill model fitted to the data, where for each concentration a separate value is estimated for the 
parameter b (= ET50, time at which 50 % of maximum value is achieved). 

In these data of cumulative counts, the variance clearly increases with the mean (data not shown). A log-
transformation resulted in the variance decreasing with the mean, but a square root transformation resulted in 
homogeneous variance, and compliance with the normal distribution. 

 

NOTE Each symbol represents a concentration, and to each concentration the Hill model is fitted, assuming that the 
parameters a and c are equal amongst concentrations, while parameter b was assumed to be different. The parameter d 
was set at zero here (since reproduction is zero at time zero). 

Figure C.5 — Means of number of young, plotted cumulatively against time  

In the second step, the estimated values for the ET50 are considered as a function of the concentration, and a 
dose-response model is fitted to these data (see Figure C.6). Again, the second (nonzero) concentration 
appears to deviate from the general pattern (compare with Figure C.3). The EC10 for this endpoint is 
estimated at 2,30 mg/l, with a confidence interval (1,41 to 6,19). 

Since the number of young are followed in time for a number of replicates at each concentration, it is better to 
estimate an ET50 for each replicate (see discussion in algal data set). This is illustrated in Figure C.7. Next the 
ET50 values for each replicate may be considered as a function of the concentration (see Figure C.8). The 
EC10 is estimated at 2,36 mg/l, similar to the value obtained in Figure C.6, but the confidence interval is 
somewhat larger (1,36 to 8,82). 

From Figure C.8 it becomes apparent that the deviation of the second concentration group is caused by two 
outlier replicates. When these two outliers are removed, a more regular dose-response relationship results 
(see Figure C.9). This also results in a lower EC10 (1,90 mg/l), and a smaller confidence interval (1,30 to 3,49). 
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Figure C.6 — Estimated ET50 values from Figure C.5, plotted against the concentration, 
with a fitted dose-response model 

 
NOTE Each symbol represents a replicate, and to each replicate the Hill model is fitted, assuming that the 
parameters a and c are equal amongst replicates, while parameter b was assumed to be different. The parameter d was 
set at zero here (since reproduction is zero at time zero). 

Figure C.7 — Number of young, plotted cumulatively against time 
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Figure C.8 — ET50s estimated per replicate (see Figure C.7) as a function of 
the concentration with a fitted dose-response model 

 

Figure C.9 — ET50s estimated per replicate (see Figure C.7) as a function of  
the concentration, with two outliers removed 

C.3 Examples of data analysis using DEBtox (biological methods) 

C.3.1 Data 

Figure C.10 shows data for the cumulative number of offspring per female as affected by an unknown 
compound. The data were weighted in the estimation of parameters by the number of surviving females (data 
not given here). 
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Figure C.10 — DEBtox example: Data for the cumulative number of offspring 
per female as affected by an unknown compound 

C.3.2 Parameter estimates and asymptotic standard deviations (ASD) 

 

Figure C.11 — DEBtox example: Parameter estimates and asymptotic standard deviations (ASD) 

Table C.3 — ECx values (derived from parameter values) 

Values in milligrams per litre

Day EC0 ASD EC50 ASD 

21 1,10−5 0,44 4,22 6,59 
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C.3.3 Graphical test of model predictions against data 

 

Figure C.12 — DEBtox example: Time profile (reproduction, maintenance model, ISO repro set) 

 

Figure C.13 — DEBtox example: Concentration profile (reproduction, 
maintenance model, ISO repro set) 
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C.3.4 Profile likelihood for NEC estimate 

 

Figure C.14 — DEBtox example: Profile likelihood for NEC estimate (reproduction, 
maintenance model, ISO repro set) 

C.3.5 Body length at 21 days 

 

Figure C.15 — DEBtox example: Body length at 21 days 
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C.3.6 Comments 

This dataset is special in several respects. We have counts of offspring at relatively few points in time, not for 
each day as the guideline recommends. This reduces the effectiveness of the biology-based method; the fact 
that these data do not give detailed information about the start of the reproduction is especially troublesome.  

The first graph (Figure C.12) shows that reproduction starts here later than expected on the basis of the 
default value of 0,42 for the scaled length at puberty. Therefore, this scaled length has been set at 0,61 to 
mimic this late start. The model for effects on maintenance appeared to fit the data best; an increase in 
maintenance costs reduces the ultimate length of the daphnia.  

This is confirmed by the length data, shown in the last plot (Figure C.15); the fitted length at 21 d are 
calculated with DEBtool; the plotted curve involves the estimation of a single parameter: the ultimate length in 
the blank. All other parameters are already fixed by the reproduction data, and determine the toxico-kinetics, 
including the dilution by growth, and the effects on growth during exposure. The length data were not used to 
estimate any effect parameters. The good fit of the length data confirms the effects on growth by an increase 
of the maintenance costs as expected from the observed effects on reproduction. Direct effects on 
reproduction would not affect body size; direct effects on growth would affect the growth rate, but not the 
ultimate size. The data do not give information about growth, but it is likely that growth almost ceased before 
21 d for daphnia, even in the stressed situation. The NEC was found to be not significantly different from zero, 
with a 95 % confidence interval of (0 to 0,082) mg/l. 
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Annex D 
(informative) 

 
Analysis of a “fish growth” data set (OECD GL 204/215 – ISO 10229) 

using the three presented approaches 

D.1 Data set 

The data used here have been obtained for a 21-day fish test following OECD GL204. 

Test organism:  Oncorhynchus mykiss 

Temperature:  14 °C to 15 °C 

Table D.1 — Number of dead fish 

Nominal concentration of the test item  
Control 

mg/l 
Day 0 1,0 2,2 4,6 10 22 46 

1        

2        

3        

6       1 

7       2 

8       2 

9       2 

10   1    5 

13   1   1 5 

14   1  1 1 5 

15   1  1 1 5 

16   1  1 1 5 

17   1  1 1 5 

21 0 0 1 0 1 1 6 
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Table D.2 — Length of the fish in millimetres 

Control Nominal concentration of the test item 
mg/l  

0 1,0 2,2 4,6 10 22 46 
5,7 5,7 5,1 5,9 5,9 6,0 5,9 
5,3 5,8 6,0 5,9 5,7 5,6 5,6 
6,0 5,6 5,7 5,7 5,5 5,9 6,0 
5,9 6,0 5,8 5,5 5,6 5,6 5,6 
5,9 5,5 5,5 6,0 5,6 5,7 5,3 
5,6 6,0 5,8 6,0 5,9 5,8 6,0 
5,6 5,9 6,0 5,6 6,0 5,2 5,0 
5,0 5,1 5,6 5,3 5,0 5,7 5,3 
6,0 5,2 5,1 5,3 5,5 5,1 5,1 

0 
da

ys
 

5,4 5,4 5,6 5,1 5,1 5,5 5,5 
6,5 6,2 6,5 6,5 6,7 6,3 5,3 
6,5 6,9 6,4 6,5 6,3 6,0 6,3 
6,4 6,8 6,5 6,9 5,8 6,9 5,2 
7,1 6,0 6,6 6,2 5,7 5,7 4,9 
6,8 5,8 6,5 6,0 6,4 6,7 * 
5,4 6,7 7,3 6,4 5,7 6,7 * 
6,6 6,9 6,8 5,8 6,2 5,9 * 
6,3 6,3 6,1 7,2 6,8 6,2 * 
6,1 6,3 6,0 6,0 6,1 5,8 * 

28
 d

ay
s 

6,7 6,5 * 6,0 * * * 

Table D.3 — Wet mass in grams 

Control Nominal concentration of the test item 
 mg/l  

0 1,0 2,2 4,6 10 22 46 
1,9 1,8 1,4 1,8 2,2 2,2 2,2 
1,7 2,0 2,2 2,0 1,9 1,7 1,9 
2,7 1,9 1,8 2,1 1,8 2,1 2,3 
2,0 2,2 2,1 1,8 2,2 1,8 1,8 
1,8 1,6 1,9 2,0 1,7 1,9 1,7 
1,8 2,2 1,9 2,3 2,0 2,2 2,0 
1,9 1,8 2,4 1,9 2,1 1,5 1,4 
1,4 1,6 1,7 1,7 1,4 1,8 1,5 
2,3 1,5 1,5 1,5 1,5 1,5 1,6 

0 
da

ys
 

1,5 1,5 1,7 1,5 1,4 1,7 1,6 
2,8 2,7 2,9 2,9 3,4 2,7 1,6 
3,0 3,3 2,6 3,0 2,8 2,0 2,8 
2,7 2,9 2,7 3,5 2,1 3,5 1,2 
3,9 2,2 3,3 2,7 2,3 1,8 0,9 
3,1 2,0 2,7 2,3 3,1 3,1 * 
1,8 3,1 4,0 2,7 1,8 3,2 * 
2,9 3,2 3,0 2,0 2,4 2,2 * 
2,5 2,5 2,5 4,0 3,0 2,5 * 
2,2 2,5 2,2 2,2 2,3 1,8 * 

28
 d

ay
s 

3,1 2,6 * 2,4 * * * 
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D.2 Examples of data analysis using hypothesis testing (NOEC determination) 

D.2.1 NOEC determination for growth 

Given that there are two measurements on each fish, one on Day 0 (before exposure to compound) and one 
on Day 28, this is a repeated-measures experiment. It is unfortunate that individual fish are not identified. This 
means there is no way to determine growth on an individual fish and statistical power may suffer as a result. 
No replicate information is provided, so it is not possible to treat the replicate as sampling unit and do 
repeated measures analysis or paired difference analysis on the replicate means. The data cannot be 
analysed therefore with repeated measures methodology. There are nonetheless at least two ways to proceed 
to determine the NOEC. 

⎯ Method 1. Compute treatment means for each day and concentration. The response to be analysed is 
the difference of the treatment means for each concentration, to obtain the mean growth from day 0 to 
day 28 for that treatment group. This leaves one observation per treatment group. ANOVA methods, such 
as Dunnett’s test, are then not available, since there is no estimate of error. However, the Jonckheere-
Terpstra test can still be applied, preferably in its exact permutation implementation. This approach 
ignores the reduced sample size in the 28-day high concentration group. 

⎯ Method 2. Do a two-factor ANOVA with day and concentration, and their interaction as the model terms. 
Then compare the growth, (day 28 mean) – (day 0 mean), in each concentration to the growth in the 
control by standard ANOVA methods. This is not entirely correct, since it ignores the repeated measures 
nature of the data. 

In the present case, the two lead to the same NOEC, namely the 22 mg/l concentration. Of the two, method 1 
is theoretically soundest. Details are provided below. 

D.2.2 Length 

D.2.2.1 Method 1 

The step-down Jonckheere-Terpstra test is applied, first with all concentrations present, then with the 46 mg/l 
group omitted. The variable DeltaL is the difference of the day 28 mean minus the day 0 mean for each 
concentration. This was done using SAS Proc Freq. The default output includes both one- and two-sided tests 
for trend and both exact and asymptotic tests. These are all left for the reader to see, but only the one-sided 
exact results are used in the discussion. 

 
           Jonckheere-Terpstra Test of DeltaL Through Conc=46 
 
                 Statistics for Table of DeltaL by Conc 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                3.0000 
                  Z                            -2.1268 
 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0167 
                  Two-sided Pr > |Z|            0.0334 
 
                  Exact Test 
                  One-sided Pr <=  JT           0.0218 
                  Two-sided Pr >= |JT - Mean|   0.0437 
 
Since the Jonckheere-Terpstra test with all concentrations included is significant at the 0,05 level (p-value for 
exact one-sided trend is = 0,0218), the high concentration is omitted and the test is repeated with the 
remaining concentrations. 
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           Jonckheere-Terpstra Test of DeltaL Through Conc=22 
 
                 Statistics for Table of DeltaL by Conc 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                3.0000 
                  Z                            -1.5302 
 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0630 
                  Two-sided Pr > |Z|            0.1260 
 
                  Exact Test 
                  One-sided Pr <=  JT           0.0944 
                  Two-sided Pr >= |JT - Mean|   0.1889 

This test is not significant at the 0,05 level, so no further testing is required and the NOEC is 22 mg/l. 

 
D.2.2.2 Method 2 

D.2.2.2.1 Full trout-size data set and basic statistics for length 

     Fish Growth Example: Length 
           Trout Size Data 
            FULL DATA SET 
 
Method 2 is a two-factor ANOVA on length, with day and concentration, and their interaction as model terms. 
First, the simple means are computed. It is apparent that there is a dose response, perhaps beginning with the 
2,2 mg/l concentration. 

 Obs    Conc     DeltaL      DeltaW 
 
  1        0     0.94000    1.20000 
  2        1     0.94000    1.10000 
  3      2.2     1.02222    1.27778 
  4      4.6     0.85000    1.17000 
  5       10     0.68889    0.97778 
  6       22     0.74444    0.93333 
  7       46    -0.07500    0.02500 
 
         Basic Statistics for length 
 
                  mean_ 
  Days     Conc   length    std_length  n_length 
 
    0        0     5.64    0.33065591    10 
    0        1     5.62    0.3190263     10 
    0      2.2     5.62    0.3190263     10 
    0      4.6     5.63    0.32335052    10 
    0       10     5.58    0.32930904    10 
    0       22     5.61    0.28460499    10 
    0       46     5.53    0.3591657     10 
   28        0     6.44    0.4575296     10 
   28        1     6.44    0.38355066    10 
   28      2.2     6.52    0.38005848     9 
   28      4.6     6.35    0.44284434    10 
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   28       10     6.19    0.40756731     9 
   28       22     6.24    0.43620841     9 
   28       46     5.425   0.60759087     4 
 
It is observed that mortality in the high concentration has noticeably affected the sample size on day 28. The 
other differences in sample size are quite small and are likely to have insignificant impact on conclusions. 

      CovParm     Estimate 
      Residual      0.1428 
 
           Num   Den  
Effect      DF    DF   FValue   ProbF    MSERR    SSQRS    SSERR 
 
Days         1   117    84.86  <.0001  0.14282  12.1195  16.7102 
Conc         6   117     3.78  0.0018  0.14282   3.2401  16.7102 
Days*Conc    6   117     2.57  0.0224  0.14282   2.2045  16.7102 
 
These are the overall F-tests for ANOVA. It is observed that both main effects and the interaction are 
significant at the 0,05 level. The CovParm above the F-tests is the pooled sample mean-squared error. 

D.2.2.2.2 ANOVA summary statistics 

              ANOVA SUMMARY STATISTCS 
 
      MODELSS     SSERR      TOTSS     RSQUARE 
      20.1477    16.7102    36.8579    0.54663 

These are basic measures that can be used for model assessment. Since this is a linear model, the R-squared 
value indicates the proportion of overall variation (55 %) in the data accounted for by the model. For a 
biological response, an R-square this small is not unusual. 

                    Class    Levels    Values 
                    Days          2    0 28 
                    Conc          7    0 1 2.2 4.6 10 22 46 
 
Label                   Estimate  StdErr   DF   tValue   Probt 
 
Growth: 46 mg/l vs 0    -0.9050   0.2803  117   -3.23    0.0016 
Growth: 22 mg/l vs 0    -0.1656   0.2423  117   -0.68    0.4958 
Growth: 10 mg/l vs 0    -0.1911   0.2423  117   -0.79    0.4319 
Growth: 4.6 mg/l vs 0   -0.0800   0.2390  117   -0.33    0.7384 
Growth: 2.2 mg/l vs 0    0.1022   0.2423  117    0.42    0.6739 
Growth: 1 mg/l vs 0      0.0200   0.2390  117    0.08    0.9335 
 
The appropriateness of this ANOVA analysis is assessed partly through the following test for normality. This 
test is done on the residuals from the ANOVA. As pointed out above, this test ignores the correlations of 
measurements on the same fish (since fish are not identified individually). The only significant comparison is 
at the 46 mg/l concentration. Accordingly, the NOEC is 22 mg/l, the same as by the Jonckheere-Terpstra test. 

D.2.2.2.3 Shapiro-Wilk test of normality of length 

                    SHAPIRO-WILK TEST OF NORMALITY OF length 
                                Variable:  Resid 
 
                                    Moments 
        N                         131    Sum Weights                131 
        Mean                        0    Sum Observations             0 
        Std Deviation       0.3585244    Variance            0.12853974 
        Skewness           -0.0318169    Kurtosis            -0.3018538 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  165

        Uncorrected SS     16.7101667    Corrected SS        16.7101667 
        Coeff Variation             .    Std Error Mean      0.03132442 
 
                           Basic Statistical Measures 
 
                 Location                    Variability 
             Mean      0.00000     Std Deviation            0.35852 
             Median   -0.01000     Variance                 0.12854 
             Mode      0.38000     Range                    1.91500 
                                   Interquartile Range      0.51444 
 
     Fish Growth Example: Length 
           Trout Size Data 
            FULL DATA SET 
                              Tests for Normality 
           Test                  --Statistic---    -----p Value------ 
           Shapiro-Wilk          W      0.98607    Pr < W      0.2041 
           Kolmogorov-Smirnov    D     0.065603    Pr > D     >0.1500 
           Cramer-von Mises      W-Sq  0.080864    Pr > W-Sq   0.2078 
           Anderson-Darling      A-Sq   0.59964    Pr > A-Sq   0.1199 
 
This is default SAS Proc Univariate output, so four tests for normality are shown. It is highly recommended 
that each laboratoy select one of these tests and use it as the formal test of normality. Alternatively, a 
laboratory can develop a set of rules that indicate when to use which test. In either case, care should be taken 
so as not to be guilty of selecting the statistical result desired. In the present case, all tests yield the same 
conclusion. According to the Shapiro-Wilk test, the data are consistent with normality. 

 
                                Variable:  Resid 
                            Quantile       Estimate 
                            100% Max       0.875000 
                            99%            0.850000 
                            95%            0.550000 
                            90%            0.455556 
                            75% Q3         0.270000 
                            50% Median    -0.010000 
                            25% Q1        -0.244444 
                            10%           -0.510000 
                            5%            -0.530000 
                            1%            -0.640000 
                            0% Min        -1.040000 
 
                Stem Leaf                     #             Boxplot 
                   8 58                       2                | 
                   7 8                        1                | 
                   6 166                      3                | 
                   5 15                       2                | 
                   4 2666677                  7                | 
                   3 22666677788889          14                | 
                   2 1666677889              10             +-----+ 
                   1 125568889                9             |     | 
                   0 12256666677788899       17             |  +  | 
                  -0 98844443322222211       17             *-----* 
                  -1 5444322221              10             |     | 
                  -2 4443322                  7             +-----+ 
                  -3 955544433                9                | 
                  -4 998443221                9                | 
                  -5 85433222221             11                | 
                  -6 44                       2                | 
                  -7 
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                  -8 
                  -9 
                 -10 4                        1                0 
                     ----+----+----+----+ 
                 Multiply Stem.Leaf by 10**-1 
 
                          Fish Growth Example: Length 
                                Trout Size Data 
                    SHAPIRO-WILK TEST OF NORMALITY OF length 
                                 FULL DATA SET 
                                Variable:  Resid 
 
                                 Normal Probability Plot 
              0.85+                                               *++* 
                  |                                             +*+ 
                  |                                          *** 
                  |                                       ++* 
                  |                                     ** * 
                  |                                 ***** 
                  |                              **** 
                  |                            +** 
                  |                         **** 
                  |                      **** 
                  |                    *** 
                  |                 +*** 
                  |              ++*** 
                  |            +**** 
                  |      ******* 
                  |   ** +++ 
                  |   +++ 
                  |+++ 
                  | 
             -1.05+* 
                   +----+----+----+----+----+----+----+----+----+----+ 
                       -2        -1         0        +1        +2 

D.2.2.2.4 Possible outliers from ANOVA on length 

                     POSSIBLE OUTLIERS FROM ANOVA ON length 
 
Obs    Days        Conc      Length    Pred   Resid     LB        UB 
1      28           0         5.4  6.44000  -1.04  -1.01611  1.04167 
D.2.2.2.5 Levene test for length 

                        LEVENE TEST FOR length 
 
                  Effect      DF     LEVENE    P_VALUE 
                 Days*Conc     6    0.17219    0.98381 
 
By Levene's test, there is no reason to reject the hypothesis that the within-group variances are equal. A 
standard ANOVA can be done. 

D.2.3 Mass 

D.2.3.1 Method 1 

The Step-Down Jonckheere-Terpstra test is applied, first with all concentrations present, then with the 46 mg/l 
group omitted. The variable DeltaL is the difference of the day 28 mean minus the day 0 mean for each 
concentration. This was done using SAS Proc Freq. The default output includes both one- and two-sided tests 
for trend and both exact and asymptotic tests. These are all left for the reader to see, but only the one-sided 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  167

exact results are used in the discussion. It is observed, however, that for these data, the asymptotic and exact 
methods do not lead to the same NOEC. 

           Jonckheere-Terpstra Test of DeltaW Through Conc=46 
 
                 Statistics for Table of DeltaW by Conc 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                3.0000 
                  Z                            -2.2528 
 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0121 
                  Two-sided Pr > |Z|            0.0243 
 
                  Exact Test 
                  One-sided Pr <=  JT           0,0151 
                  Two-sided Pr >= |JT - Mean|   0,0302 
 
Since the Jonckheere-Terpstra test with all concentrations included is significant at the 0,05 level, the high 
concentration is omitted and the test is repeated with the remaining concentrations. 

           Jonckheere-Terpstra Test of DeltaW Through Conc=22 
 
                 Statistics for Table of DeltaW by Conc 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                3.0000 
                  Z                            -1.6908 
 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.0454 
                  Two-sided Pr > |Z|            0.0909 
 
                  Exact Test 
                  One-sided Pr <=  JT           0.0681 
                  Two-sided Pr >= |JT - Mean|   0.1361 

The exact test is not significant at the 0,05 level, so no further testing is required and the NOEC is 22 mg/l. 
Note, however, that if standard asymptotic methods were used, the test would continue one step further, as 
shown below. There is no general expectation that asymptotic methods are more (or less) sensitive or 
powerful than exact methods. A laboratory should decide on rules for the use of exact and asymptotic 
methods and then use whatever conclusion follows. 

           Jonckheere-Terpstra Test of DeltaW Through Conc=10 
                 Statistics for Table of DeltaW by Conc 
 
                        Jonckheere-Terpstra Test 
                  ------------------------------------ 
                  Statistic (JT)                3.0000 
                  Z                            -0.9798 
 
                  Asymptotic Test 
                  One-sided Pr <  Z             0.1636 
                  Two-sided Pr > |Z|            0.3272 
                  Exact Test 
                  One-sided Pr <=  JT           0.2417 
                  Two-sided Pr >= |JT - Mean|   0.4833 
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D.2.3.2 Method 2 

D.2.3.2.1 Full trout-size data set and basic statistics for mass 

          Fish Growth Example: Weight 24)  
                Trout Size Data 
                 FULL DATA SET 
 
A two-factor ANOVA on length, with day and concentration, and their interaction as model terms. First, the 
simple means are computed. It is apparent that there is a dose response, perhaps beginning with the 2,2 mg/l 
concentration. 

 Obs    Conc    DeltaL      DeltaW 
 
  1        0    0.94000    1.20000 
  2        1    0.94000    1.10000 
  3      2.2    1.02222    1.27778 
  4      4.6    0.85000    1.17000 
  5       10    0.68889    0.97778 
  6       22    0.74444    0.93333 
  7       46   -0.07500    0.02500 
 
                     Basic Statistics for weight 
 
                   Mean_ 
 Days          Conc        Weight    Std_weight    n_Weight 
 
    0             0           1.9    0.37712362       10 
    0             1          1.81    0.26436507       10 
    0           2.2          1.86    0.30983867       10 
    0           4.6          1.86    0.25473298       10 
    0            10          1.82    0.31198291       10 
    0            22          1.84    0.25905812       10 
    0            46          1.8     0.2981424        10 
   28             0          2.8     0.56764621       10 
   28             1          2.7     0.42687495       10 
   28           2.2          2.88    0.52387445        9 
   28           4.6          2.77    0.61472668       10 
   28            10          2.58    0.52387445        9 
   28            22          2.53    0.63245553        9 
   28            46          1.63    0.83416625        4 
 
It is observed that mortality in the high concentration has noticeably affected the sample size on day 28. The 
other differences in sample size are quite small and are likely to have insignificant impact on conclusions. 

                  CovParm     Estimate 
                  Residual      0.1988 
 
         Num  Den 
Effect    DF   DF FValue   ProbF   MSERR    SSQRS      SSERR 
 
Days       1  117  79.24  <.0001  0.19877  15.7509    23.2566 
Conc       6  117   3.29  0.0050  0.19877   3.9250    23.2566 
Days*Conc  6  117   2.62  0.0203  0.19877   3.1254    23.2566 

                                                      

24) The quantity “weight” is a force (gravitational force) and is measured in newtons (N). The quantity “mass” is measured 
in kilograms (kg). The use of the term “weight” in the extractions shown in the Courier New font listings is deprecated, but 
is retained in this Technical Specification as this is the way it appears in the actual extractions from the program(s) used. 
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These are the overall F-Tests for ANOVA. It is observed that both main effects and the interaction are 
significant at the 0,05 level. The CovParm above the F-tests is the pooled sample mean-squared error. 

D.2.3.2.2 ANOVA summary statistics 

                            ANOVA SUMMARY STATISTCS 
 
                    MODELSS     SSERR      TOTSS     RSQUARE 
                    26.1387    23.2566    49.3953    0.52917 

These are basic measures that can be used for model assessment. Since this is a linear model, the R-squared 
value indicates the proportion of overall variation in the data accounted for by the model. For a biological 
response, an R-square this small is not unusual. 

                          Fish Growth Example: Weight 
                                Trout Size Data 
                            CLASS LEVEL INFORMATION 
                                 FULL DATA SET 
 
                    Class    Levels    Values 
 
                    Days          2    0 28 
                    Conc          7    0 1 2.2 4.6 10 22 46 
 
                          Fish Growth Example: Weight 
                                Trout Size Data 
                           TESTS OF LINEAR CONTRASTS 
                                 FULL DATA SET 
 
        Label         Estimate   StdErr    DF  tValue   Probt 
 
Growth: 46 mg/l vs 0   -1.0750   0.3306   117   -3.25  0.0015 
Growth: 22 mg/l vs 0   -0.2067   0.2859   117   -0.72  0.4712 
Growth: 10 mg/l vs 0   -0.1422   0.2859   117   -0.50  0.6198 
Growth: 4.6 mg/l vs 0   0.01000  0.2820   117    0.04  0.9718 
Growth: 2.2 mg/l vs 0   0.1178   0.2859   117    0.41  0.6811 
Growth: 1 mg/l vs 0    -0.01000  0.2820   117   -0.04  0.9718 
 
The appropriateness of this ANOVA analysis is assessed partly through the following test for normality. This 
test is done on the residuals from the ANOVA. As pointed out above, this test ignores the correlations of 
measurements on the same fish (since fish are not identified individually). The only significant comparison is 
at the 46 mg/l concentration. Accordingly, the NOEC is 22 mg/l, the same as by the exact Jonckheere-
Terpstra test. 

D.2.3.2.3 Shapiro-Wilk test of normality of mass 

                          Fish Growth Example: Weight 
                                Trout Size Data 
                    SHAPIRO-WILK TEST OF NORMALITY OF Weight 
                                 FULL DATA SET 
 
                                Variable:  Resid 
                                    Moments 
 
        N                         131    Sum Weights                131 
        Mean                        0    Sum Observations             0 
        Std Deviation      0.42296218    Variance            0.17889701 
        Skewness           0.50903274    Kurtosis            0.53166703 
        Uncorrected SS     23.2566111    Corrected SS        23.2566111 
        Coeff Variation             .    Std Error Mean      0.03695438 
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                           Basic Statistical Measures 
 
                 Location                    Variability 
             Mean      0.00000     Std Deviation            0.42296 
             Median   -0.03333     Variance                 0.17890 
             Mode     -0.73333     Range                    2.23000 
                                   Interquartile Range      0.54000 
 
                              Tests for Normality 
           Test                  --Statistic---    -----p Value------ 
           Shapiro-Wilk          W     0.979035    Pr < W      0.0403 
           Kolmogorov-Smirnov    D     0.072519    Pr > D      0.0897 
           Cramer-von Mises      W-Sq  0.090825    Pr > W-Sq   0.1493 
           Anderson-Darling      A-Sq  0.632637    Pr > A-Sq   0.0978 
 
The Shapiro-Wilk test is significant at the 0,05 level. A examination of the QQ-plot and stem-and-leaf plot 
below, as well as the p-value being just below 0,05, may suggest the violation of normality is minor. Also, 
while it is not included here to keep the text to a minimum, if the outliers identified below are omitted and the 
resulting dataset is re-analysed, the NOEC is the same and the significant Shapiro-Wilk test is eliminated. 
Altogether, this information suggests the present analysis can be accepted.  

                           Quantiles (Definition 5) 
 
                           Quantile         Estimate 
                           100% Max        1.2300000 
                           99%             1.1750000 
                           95%             0.8000000 
                           90%             0.5000000 
                           75% Q3          0.2400000 
                           50% Median     -0.0333333 
                           25% Q1         -0.3000000 
                           10%            -0.4777778 
                           5%             -0.7000000 
                           1%             -0.7777778 
                           0% Min         -1.0000000 
 
                          Fish Growth Example: Weight 
                                Trout Size Data 
                                 FULL DATA SET 
 
                                Variable:  Resid 
 
                Stem Leaf                     #             Boxplot 
                  12 3                        1                0 
                  11 028                      3                0 
                  10 
                   9 7                        1                | 
                   8 02                       2                | 
                   7 3                        1                | 
                   6 07                       2                | 
                   5 00247                    5                | 
                   4 000224                   6                | 
                   3 004668899                9                | 
                   2 000234468                9             +-----+ 
                   1 0002344789              10             |     | 
                   0 000002444689            12             |  +  | 
                  -0 776664432211            12             *-----* 
                  -1 88866644200000          14             |     | 
                  -2 8881100000              10             |     | 
                  -3 8766644321100           13             +-----+ 
                  -4 87622200                 8                | 
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                  -5 7300                     4                | 
                  -6 80                       2                | 
                  -7 873320                   6                | 
                  -8                                           | 
                  -9                                           | 
                 -10 0                        1                | 
                     ----+----+----+----+ 
                 Multiply Stem.Leaf by 10**-1 
 
                          Fish Growth Example: Weight 
                                Trout Size Data 
                    SHAPIRO-WILK TEST OF NORMALITY OF Weight 
                                 FULL DATA SET 
 
                            The UNIVARIATE Procedure 
                                Variable:  Resid 
 
                                 Normal Probability Plot 
              1.25+                                                  * 
                  |                                            * ** 
                  |                                                 ++ 
                  |                                           *   ++ 
                  |                                         ** +++ 
                  |                                         *++ 
                  |                                        *+ 
                  |                                     *** 
                  |                                   *** 
                  |                                 ** 
                  |                              *** 
                  |                            *** 
                  |                         +*** 
                  |                       **** 
                  |                    *** 
                  |                  **+ 
                  |               **** 
                  |            ***+ 
                  |          **++ 
                  |         *+ 
                  |   ** *+* 
                  |    +++ 
                  |* ++ 
             -1.05+++ 
                   +----+----+----+----+----+----+----+----+----+----+ 
                       -2        -1         0        +1        +2 

D.2.3.2.4 Possible outliers from ANOVA on mass 

                Fish Growth Example: Weight 
                      Trout Size Data 
           POSSIBLE OUTLIERS FROM ANOVA ON Weight 
                       FULL DATA SET 
 
 Obs  Days    Conc   Weight     Pred     Resid      LB     UB 
   1    28       0      3.9   2.80000   1.10000   -1.11   1.05 
   2    28     2.2        4   2.87778   1.12222   -1.11   1.05 
   3    28     4.6        4   2.77000   1.23000   -1.11   1.05 
   4    28      46      2.8   1.62500   1.17500   -1.11   1.05 
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D.2.3.2.5 Levene test for mass 

                      LEVENE TEST FOR  Weight 
 
                Effect      DF     LEVENE    P_VALUE 
               Days*Conc     6    0.46436    0.83347 
 
By Levene's test, there is no reason to reject the hypothesis that the within-group variances are equal. A 
standard ANOVA can be done. 

D.3 Example of data analysis by dose-response modelling 

D.3.1 General 

It is assumed that an EC10 is required. 

According to the flow-chart of Clause 6, the dose-response data should include more than two concentration 
groups with different response levels. The dose-response data of this data set (for both lengths and masses) 
do not clearly comply with this requirement (see figures below). However, in view of the relatively large 
number of concentration groups, and the general trend of decreasing response with concentration, the data 
might nonetheless be suitable for deriving an EC10. In accordance with the general recommendation of 
Clause 6, various models are fitted to the data. 

D.3.2 Dose-response analysis for fish mass 

In fitting the dose-response model, the mass data are assumed to be log-normally distributed. Hence, the 
model is fitted to the data on log-scale, i.e. both the data and the model prediction is log-transformed. Note, 
however, that the models used describe the response variable on the original scale as a function of dose. 

First the nested non-linear model proposed by Slob (2002) is fitted. This results in the following log-likelihoods: 

Model 1 y = a  loglik = −5,21 

Model 2 y = a exp(x/b) loglik = 4,85 

Model 3 y = a exp[±(x/b)d] loglik = 6,53 

Model 4 y = a [c − (c − 1) exp(−x/b)] loglik = 4,85 

Model 5 y = a {c − (c − 1) exp[−(x/b)d]} loglik = 6,53 

The log-likelihoods can be compared with the likelihood-ratio test. A model with one more parameter fits the 
data significantly better (at α = 0,05) than the model without that parameter when the increase in the 
log-likelihood is greater than 1,92. The difference in log-likelihoods between Model 2 and Model 1 is 10,06, so 
there is no doubt that the data show a significant dose-response. While Model 3 results in a higher log-
likelihood than Model 2, the difference is not significant, and it may be concluded that Model 2 is from this 
family of models the appropriate one for describing the data. Figure D.1 shows the results for this model. 

Next a polynomial model is fitted to these data. Since this is again a nested family of models, the log-
likelihoods can be compared by the ratio-likelihood test: 

Model 1 y = a loglik = −5,21 

Model 2 y = a + bx loglik = 5,55 

Model 3 y = a + bx + cx2 loglik = 6,58 

Model 4 y = a + bx + cx2 + dx3 loglik = 6,69 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  173

Here, Model 2 (straight line) is not significantly improved by higher-order polynomials, and this model may be 
selected from this family of models. 

Finally, the power model, y = c + axb, is fitted to the masses. This model results in a log-likelihood value of 
6,57. However, by fixing the parameter b to unity, the model reduces to a straight line. Hence, the power 
model and the straight line are nested, and their log-likelihoods can be compared. Since the straight line 
resulted in a log-likelihood of 5,55, the power model does not give a significantly better fit. 

None of the three-parameter models gives a significantly better fit than its two-parameter counterpart. As 
Table D.4 shows, both two-parameter models give similar results. The table also shows the results for two 
models with three parameters, even though they did not result in a significantly better fit than the associated 
two-parameter model. As discussed in Clause 6, a model that contains too many parameters (i.e. in relation to 
the data) may results in wider confidence intervals for the EC10. This is clearly illustrated in this case. 

It may be concluded that both two-parameter models give similar results. Also, the confidence intervals are 
similar. Hence, although this particular data set only shows two clearly different response levels, the data 
apparently contain sufficient information to warrant the estimation of the EC10. This may be explained by the 
relatively large number of concentrations tested, most of which show no or only a small response. Thus, the 
estimated EC10 is sufficiently supported by surrounding concentrations that have been tested. 

Table D.4 — Summary of results for exponential and straight-line models 

Model a Log-lik EC10 90 % Confidence interval 

y = a exp(x/b) b 4,85 9,19 6,86 to 13,94 

y = a exp(x/bc) c 6,53 21,08 9,89 to 41,39 

y =    + bx d 5,55 10,55 8,56 to 14,25 

y = a + bxc e 6,57 20,70 8,65 to 34,34 

a Note that both the first two and the second two models form a nested couple. 
b Exponential model, with two parameters. 
c Exponential model, with three parameters. 
d Straight-line model, with two parameters. 
e Straight-line model, with three parameters. 
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a)   Concentration on x-axis b)   log10-concentration on x-axis (to improve 
visibility) 

CED = EC10. 

NOTE The model was re-parameterized here to make the EC10 a parameter in the model (instead of b). In this way, 
the confidence interval (L − 5 to L − 95) for the EC10 can be calculated by the likelihood profile method.  

Large marks: geometric means 

Figure D.1 — Exponential model, y = a exp(bx), fitted to masses at 28 days 

Assumptions 

To check the assumptions of normality and homogeneous variances, the regression residuals (i.e. the 
deviations of the individual data points from the dose-response model) may be plotted in various ways. Here, 
two plots are considered. One is the so-called QQ-plot, where the observed quantiles are plotted against the 
theoretical quantiles, e.g. according to the normal distribution. When data are sampled from a normal 
distribution, this plot should theoretically result in a straight line. It should be noticed that fitting a line to a 
QQ-plot is unsound (which is not always recognized). One may draw the theoretical straight line in the plot, 
with intercept equal to the mean of the data points and with slope equal to the standard deviation of the data 
points. In the case of regression, the data points are the regression residuals, which are corrected for the 
dose-response relationship. 

In interpreting a QQ-plot one should realize that, due to sampling errors, fluctuations around the line can 
easily arise, especially in small data sets. In particular, a pattern resembling Aesculapius’ staff is not unusual, 
even for data that are sampled from a normal distribution by the computer. Hence, QQ-plots should only lead 
to the conclusion that the assumed distribution is inadequate when the data show a clear overall curvature. It 
is always the general trend, not single data points that should be considered. 

In Figure D.2, the regression residuals resulting from the analysis on log-scale are plotted. As the left panel 
shows, the data did comply with the assumption of log-normality. The residuals plotted against concentration 
do not reveal a clear trend, and the assumption of homogeneous variances (on log-scale) appears acceptable 
(see right panel of Figure D.2). 
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a)   QQ-plot (for normal distribution) of the 
regression residuals for the analysis of 

Figure D.1, where the model was fitted on 
log-scale 

b)   The same residuals plotted against dose 
(dose on log-scale to improve visibility 

Figure D.2 — Plots of regression residuals for the analysis of Figure D.1 

Although not strictly needed, the residual plots are also shown for an analysis where the log-transformation 
was omitted (see Figure D.3). The QQ-plot now shows a slight curvature, which confirms the use of a 
log-transformation. It should be noted that the scatter in these data is relatively mild (CV = 23 %), and that a 
log-normal distribution gets closer to a normal distribution with smaller variation (CV). Therefore, the smaller 
the scatter in the data, the more data are needed to see any difference in the QQ-plots assuming normality or 
log-normality. For the same reason, it may be expected that applying or omitting the log-transformation has no 
large impact on the results of the analysis when the scatter in the data is relatively small. 

 

a)   QQ-plot (normal distribution) of the 
regression residuals for an analysis as in 

Figure D.1, where the model was fitted without 
transformation 

b)   The same residuals plotted against dose 
(dose on log-scale to improve visibility) 

Figure D.3 — Plots of regression residuals 

The analysis shown in Figure D.1 was repeated but now omitting the log-transformation (see Figure D.4). The 
results are somewhat different, especially with regard to the upper confidence limit for the EC10 (see 
Table D.5). 
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NOTE Large marks: arithmetic means. 

Figure D.4 — Dose-response analysis of the fish masses, but without log-transformation  

Table D.5 — Summary of results for the exponential model fitted 
to the log-transformed masses, and the untransformed masses 

 EC10 90 % Confidence interval 

Analysis with log-transformation 9,19 6,86 to 13,94 a 

Analysis without transformation 11,78 7,79 to 21,94 a 

a Obtained by the likelihood profile method. 

D.3.3 Dose-response analysis for fish length 

The analysis of the length data is very similar to that of the mass data. Figure D.5 shows the exponential 
model fitted to the lengths (assuming lognormality). The EC10 is estimated at 31,90 mg/l, as compared to 
9,19 mg/l for the masses (same model fitted). Therefore, the mass data would most likely be used for deriving 
an EC10. However, one might argue that a decrease in body length by 10 % is not equivalent to a decrease in 
body mass by 10 % from a biological point of view. 
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NOTE Large marks: geometric means. 

Figure D.5 — Exponential model fitted to the body lengths  

D.4 Examples of data analysis using DEBtox (biological methods) 

D.4.1 Data 

The mean initial volumetric length of Oncorhynchus mykiss is 1,222 g 1/3. 

Table D.6 — Response versus concentration at 21 d 

Concentration 
in mg/l 0 1 2,2 4,6 10 22 46 

Response 
in mean volumetric 

length, g 1/3 
1,403 1,389 1,418 1,398 1,365 1,355 1,152 

D.4.2 Parameter estimates and asymptotic standard deviations (ASD) 

 

Figure D.6 — DEBtox example: Parameter estimates and asymptotic standard deviations (ASD) 
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Table D.7 — ECx values (derived from parameter values) 
in milligrams per litre 

Day EC0 ASD EC10 ASD 

21 5,6 7,4 37,4 5,71 

D.4.3 Graphical test of model predictions against data 

 

Figure D.7 — DEBtox example: Concentration profile 
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D.4.4 Profile likelihood for NEC estimate 

 

Figure D.8 — DEBtox example: Profile likelihood for NEC estimate 

D.4.5 Comments 

The mean body size at the highest concentration was lower than the initial one; the increase in mass 
during 21 d in the blank was very small. The model for effects on assimilation fitted slightly better than for 
effects on maintenance or growth costs. The von Bertalanffy growth rate was fixed at 5,9 10−4 d (from 
Kooijman, 2000), and the initial size at 1,222 g1/3 (measured mean value). The EC50 is on body length, which 
is not meaningful in this case since 50 % of the blank length is far below the initial length. The NEC value 
does not differ significantly from zero, with a 95 % confidence interval of 0 mg/l to 22 mg/l. 
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Annex E 
(informative) 

 
Description and power of selected tests and methods 

E.1 Description of selected methods for use with quantal data 

E.1.1 Cochran-Armitage trend test 

E.1.1.1 General 

Quantal (binary) data can be collected and categorized by explanatory factors (such as dosage or treatment 
level). An analysis of such data usually tries to indicate relationships between the response (binary) variable 
and factors such as dose level. In such cases, the Pearson Chi-squared (χ2) test for independence can be 
used to find if any relationships exist. The Cochran-Armitage test decomposes the Pearson Chi-squared test 
into a test for linear trend for the dose-response and a measure of lack of monotonicity, 

2 2 2
( 1) (1) ( 2)k kχ χ χ− −= +  

where 

χ2
(1) is the 1 df calculated Cochran-Armitage linear trend statistic; and  

χ2
(k−2)  is the k−2 df Chi-squared test statistic for lack of monotonicity. 

Suppose the number of affected individuals is Yi within a group of Ni animals exposed to dose Xi. 

The proportion affected by dosage Xi is pi = Yi/Ni.  

The model is  

pi = H(α + βzi),  

where 

zi is the dose-metric (e.g. log-dose or dose rank); and  

H is some twice-differentiable, monotone link function such as the logistic. 

The test for linear trend is a test for β = 0.  

Standard weighted regression gives the estimate of β as 
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where 

z  is the weighted mean of the zi;  

p   is the weighted sum of the pi. 

The test statistic for β = 0 is b2/ Var(b) which is approximately distributed as χ2
(1). Formally written, the 

Cochran-Armitage Chi-squared is 

2

1

1

2
1 2
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where 

Ty = Σ Yi; 

T = Σ Ni; 

q  is the weighted sum of the qi = 1- pi.  

The Cochran-Armitage Chi-squared can also be expressed as a z-statistic in order to take account of the 
direction of the trend. The z-statistic is obtained from the formula given by removing the exponent 2 in the 
numerator and taking the square-root of the denominator. This z-test has a standard normal distribution under 
the null hypothesis of no trend, and the probability of the z-statistic can be obtained from a table of areas 
under the standard normal distribution. Only the z-statistic is appropriate for one-sided tests. Unlike the one-
sided test, the χ2 version of the Cochran-Armitage test can remain significant in a step-down application even 
when there is a change in direction of the trend. To avoid this situation when doing a two-sided test, one 
applies both one-sided z-tests with all doses present at the α/2 level. At most one of these can be significant. 
If one is significant, this determines the direction of the trend and all further tests are done with the z-statistic 
for that same direction at the α/2 level. 

A general linear trend model for quantal data is 

pi = H(a + bdi), 

where 

a and b  are parameters to be estimated; 

di is some metric (measure) of the exposure level (e.g. dose, concentration, log concentration); 

pi is the probability of response; and 

H is some monotone function, (referred to as a link function), e.g. 

logistic, H1(u) = eu/(1 + eu), 

probit, H2(u) = Μ(u), 

extreme value,  H3(u) = 1 − exp(eu), 

one-hit, H4(u) = 1 − e–u. 
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For example, the trend model for the one-hit link function could be written as 

pi = 1 − exp[−(a + bdi )]. 

Tarone and Gart (1980) showed that for any link function likely to be of practical use, the same test statistic for 
significance of trend always arises from likelihood-type considerations, namely, the Cochran-Armitage test. 
Thus, it is not necessary to postulate the particular form of the link function. They also showed that this test is 
in general the most efficient test of trend for any monotone model. This is one of the reasons some regard the 
Cochran-Armitage test as inherently non-parametric. Hirji and Tang (1998) discuss the favourable power 
properties of the Cochran-Armitage test compared to various alternatives. They offer evidence that this test 
can be used for small samples and sparse data without undue concern that it is an asymptotic test. 

E.1.1.2 Assumptions 

Subjects are independent within and among groups and subgroups (if present). Group proportions are 
monotonic with respect to the dose score. While formally, this is a test for linear trend in the response in 
relation to the dose score used, it is generally the most powerful test against any monotone dose-response 
alternative. Furthermore, rank-order of doses (or equally-spaced dose scores) is used to reduce dose-
dependence in the test. Note that robust versions of this test are available which allow for extra-binomial 
variation, notably one based on a beta-binomial model. 

E.1.1.3 Power 

Extensive power simulations of the step-down Cochran-Armitage test have demonstrated that in every 
instance considered where there is a monotone dose-response, the step-down application of the Cochran-
Armitage test is more powerful than Fisher’s Exact test. These simulations followed the step-down process to 
the NOEC determination, and covered a range of dose-response shapes, thresholds, background rates, 
number of treatment groups and number of subjects per group. These simulation results are useful in design 
of experiments and are being prepared for publication by J.W. Green. A small sample giving an idea of the 
results is found in E.2. These should be useful in experimental design. 

E.1.1.4 Confidence intervals for incidence rate 

Given the discussion above of Tarone and Gart (1980), confidence intervals for the true incidence rate at a 
given tested concentration can be calculated from one of the regression models described in Clause 6 for 
quantal data. There is no direct link between the Cochran-Armitage test statistic and these confidence 
intervals. 

E.1.1.5 Example from a trout early life stage experiment 

E.1.1.5.1 Data set 

The data are from a trout early life stage experiment. Initially, there were 20 eggs placed in each of four 
replicate subgroups per concentration. Of those eggs that hatched (shown as the Number at risk value), some 
larvae did not survive to the time of thinning. The analysis is of the larval survival to time of thinning. There 
were two control groups, one water-only and the other including a solvent that is also present in all positive 
dose groups. There were no mortalities in either control, so they were combined for further analysis. 
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Dose     Number     Number        %            Dose    

(PPM)    at risk    Responding    Responding   Score    

 

 0         125           0           0.0       1      

 1          62           1           1.6       2      

 2          62           1           1.6       3      

 4          60           2           3.3       4      

 8          65           0           0.0       5      

        16         72          10          13.9       6      

        32         65          29          44.6       7 

 

E.1.1.5.2 Cochran-Armitage test using equally-spaced dose scores 

Cochran-Armitage test is one-sided for INCREASE in RESPONSE. 

All doses included:  

       SOURCE  Test_stat  Deg_Free   p-value SIGNIF 

       Overall 140.23874         6         0    

       Trend   8.7567722         1         0 ** 

       LOF      63.55768         5 2.231E-12    

With the 32 ppm concentration omitted: 

       SOURCE  Test_stat  Deg_Free   p-value SIGNIF 

       Overall 34.479817         5 1.9107E-6    

       Trend   4.1393854         1 0.0000174 ** 

       LOF     17.345306         4  0.001656    

With the 32 ppm and 16 ppm concentrations omitted: 

      SOURCE  Test_stat  Deg_Free   p-value SIGNIF 

      Overall 5.3062133         4 0.2572958    

      Trend   0.7720901         1 0.2200305    

      LOF     4.7100902         3 0.1942989    

No further testing is required. NOEL is current high concentration, 8 mg/l. 

E.1.1.5.3 Subgroup proportions 

E.1.1.5.3.1 Analysis of subgroup proportions — General 

There were actually four replicate subgroups in each concentration in this experiment, which this analysis did 
not take into account. The data, broken down by replicate subgroup, are as follows. With the possible 
exception of the high concentration, there is no significant evidence of extra binomial variation in these data. 
While it is clear that by any reasonable analysis, the high dose group is an effects level, and there is no 
reason evident in the data to suggest a need to model replicate subgroups, it may be illustrative to do such an 
analysis. 
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For this purpose, we analyse subgroup proportions, which are reported below. With the large number of zeros, 
an analysis based on the normality of the proportion dead, even after an arc-sine square-root or Freeman-
Tukey transformation is not justified. Rather, a Jonckheere-Terpstra test is done. While this ignores 
differences in sample sizes among the subgroups, these differences are small, so little precision is lost by 
such an analysis. Both the Jonckheere-Terpstra and Dunn tests find the NOEC to be dose 5, or 8 mg/l, the 
same as the Cochran-Armitage test. 

E.1.1.5.3.2 Dunn's multiple comparisons (increasing) on DEADPROP 

DOSE COUNT N0 MRANK ABS_DIFF CRIT05 CRIT01 SIGNIF P_VAL 

 

 0     8    8  10.500   0.000   9.7600  11.9665       . 

 1     4    8  13.250   2.750  11.9535  14.6559      1.000 

 2     4    8  13.750   3.250  11.9535  14.6559      1.000 

 4     4    8  16.500   6.000  11.9535  14.6559      0.688 

 8     4    8  10.500   0.000  11.9535  14.6559      1.000 

16     4    8  26.625  16.125  11.9535  14.6559  **  0.004 

32     4    8  30.375  19.875  11.9535  14.6559  **  0.000 

 

E.1.1.5.3.3 Step-down Jonckheere-Terpstra test 

          MONOTONICITY CHECK OF DEADPROP 

 

               PARM            P_T    SIGNIF 

 

            DOSE TREND      0.0001      **   

            DOSE QUAD       0.0001      **   

 

KEY 

 

ZC IS JONCKHEERE STATISTIC COMPUTED WITH TIE CORRECTION               

ZCCF IS ZC WITH CONTINUITY CORRECTION FACTOR                          

P1UPCF IS p-VALUE FOR UPWARD TREND                                    

P1DNCF IS p-VALUE FOR DOWNWARD TREND                                  

p-VALUES ARE FOR TIE-CORRECTED TEST WITH CONTINUITY CORRECTION FACTOR 

SIGNIF RESULTS ARE FOR AN INCREASING ALTERNATIVE HYPOTHESIS           

 

Hi_Dose JONC        ZC      ZCCF    P1UPCF    P1DNCF SIGNIF 

32     332   4.4091617 4.4281667 4.7519E-6 0.9999943 ** 

16     220.5 3.0749658 3.1003788 0.0009664 0.9988541 ** 

 8     124.5 0.9908917 1.0305274 0.1513813 0.8292628    
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E.1.1.5.3.4 Raw data for Dunn and Jonckheere-Terpstra examples 

TOTRISK is the number of larvae exposed.  

DEADLARV is the number of exposed larvae found dead by the end of the experimental period.  

PROPDEAD = DEADLARV/TOTRISK.  

REP is an identifier for a replicate subgroup within a given concentration (CONC). 

 

CONC    REP    TOTRISK    DEADLARV  PROPDEAD 

  0      1        16          0  0 

  0      2        16          0  0 

  0      3        16          0  0 

  0      4        15          0  0 

  0      5        16          0  0 

  0      6        15          0  0 

  0      7        15          0  0 

  0      8        16          0  0 

  1      1        16          1  .0625 

  1      2        15          0  0 

  1      3        15          0  0 

  1      4        16          0  0 

  2      1        16          0  0 

  2      2        15          1  .065 

  2      3        16          0  0 

  2      4        15          0  0 

  4      1        14          0  0 

  4      2        15          1  .065 

  4      3        15          0  0 

  4      4        16          1  .065 

  8      1        15          0  0 

  8      2        16          0  0 

  8      3        17          0  0 

  8      4        17          0  0 

  16     1        17          2  .1176 

  16     2        17          3  .1765 

  16     3        18          2  .1111 

  16     4        20          3  .15 

  32     1        15          8  .5333 

  32     2        17          3  .1765 

  32     3        15          8  .5333 

  32     4        18         10  .5556 
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E.1.2 Fisher's Exact test 

E.1.2.1 General 

Fisher’s Exact test is based on a 2 × 2 contingency table where control and a single treatment group are 
compared according to their prospective counts (affected/not affected). The diagram below illustrates this 
case. 

Table E.1 — Fisher's Exact test: Contingency table 

 Control group Treatment group Total 

Affected n00 n01 n0. 

Not affected n10 n11 n1. 

Total n.0 n.1 n.. 

Fisher’s Exact test is based on the probability of observing n01 affected subjects in the treatment group, if all 
marginal totals are considered fixed. This probability is given by the hypergeometric distribution: the stated 
probability of observing n01 affected subjects in the treatment group, given that n0. subjects were affected 
overall and a total of n.. subjects were in both groups combined is 
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This gives the significance level of the observed response for a one-sided test of an increase in the treatment 
group. Fisher’s Exact test can be applied to compare each treatment group to the control, independently of all 
other treatment to control comparisons. When this is done, a Bonferroni-Holm adjustment for the number of 
comparisons being made can be applied to control the over-all false positive rate. 

E.1.2.2 Power  

The power of Fisher’s Exact test is available in several software packages, including StatXact 4, PASS, and 
Study Size. The second of these can be found at http://www.ncss.com. The third is available at 
StudySize@CreoStat.com 25). A simple search of the internet locates several such sites, some of which have 
free downloads. It is important to understand that the power of Fisher’s Exact test depends on the background 
(i.e. control) incidence rate, with power decreasing as background rate increases (up to 50 %), when all other 
factors are fixed. 

E.1.2.3 Assumptions  

Subjects are independent within and among groups and subgroups (if present). 

                                                      

25) StatXact, PASS, and Study Size are examples of suitable products available commercially. This information is given 
for the convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these 
products. 
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E.1.2.4 Confidence intervals  

Since no dose response relationship is assumed in using Fisher’s Exact test, only a crude confidence interval 
based on the binomial distribution or its normal approximation can be constructed for the incidence rate at a 
tested concentration. 

E.1.2.5 Example 

The same data are analysed as for the Cochran-Armitage example. In this instance, Fisher’s Exact test 
reports the same NOEC as the tests given above. 

FISHER EXACT TEST vs CONTROL FOR DEADLARV OBSERVED 

TESTING FOR AN INCREASING ALTERNATIVE HYPOTHESIS 

                                          

       Number    Number       p-value   Significance 

Dose   at risk  Responding     (Right)   

 

  1     62         1         0.33155                

  2     62         1         0.33155                

  4     60         2         0.10400                

  8     65         0         1.00000                

 16     72        10         0.00003        **      

 32     65        29         0.00000        **      

 

E.1.3 Poisson tests 

E.1.3.1 General 

Similar to the context of the Cochran-Armitage test, quantal (binary) data can be collected and categorized by 
explanatory factors (such as dosage or treatment level). An analysis of such data usually tries to indicate 
relationships between the response (binary) variable and factors. The counts within subgroups are assumed 
to follow a Poisson distribution whose mean is a function, usually linear, of some dose metric. The use of 
equally spaced dose scores (i.e. rank-order) makes this more a test for trend than raw doses do, when there 
are large differences in doses. An advantage of the Poisson model over the Jonckheere for quantal data is the 
use of a rate multiplier to adjust for unequal sample sizes. 

Suppose the number of affected individuals is Yij within subgroup j of group i, a group of nij animals exposed 
to the ith dose with dose score zi. The proportion affected by this dosage is pi = Yi/nij. The model is determined 
by 

[ ]
!

i y
i

ij
e

p Y y
y

µ µ−
= = , 

where µi is a function of dose. 
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E.1.3.2 Trend version of the Poisson test 

For the trend version of the Poisson test, it is typical to model 

log(µij) = log(rij) + α + βzi, 

where zi is the dose-metric (e.g. log-dose or dose rank), rij is a rate multiplier (which can be the subgroup 
size) for the jth subgroup of the ith group, and α and β are parameters to be estimated. The test for linear 
trend is a test for β = 0. 

For the Poisson trend model, one fits the model with all dose groups present and tests the hypothesis β = 0 
against the alternative β > 0. If this hypothesis is rejected at the 0,05 significance level, then the high dose 
group is omitted and the model is re-fit to the remaining dose groups. This process is continued until the 
hypothesis of positive slope is first not rejected. The high dose remaining at this stage is the NOEC. 

E.1.3.3 Non-trend version of the Poisson test 

For a non-trend version of this test, βzi is replaced by i′z β , where β is a parameter vector < βI > and zi is a 
column vector <ziu> whose uth component is zero unless u = i. For i = 0 (i.e. for the control group), all 
components of zi are zero. 

One then tests the hypotheses βi = 0, for i = 1, 2, . . . against the obvious one- or two-sided alternatives. 
Generally, a Bonferroni-Holm adjustment is made for the number of such comparisons made. 

E.1.3.4 Other tests for lack of fit of the Poisson model 

There are tests for lack of fit of the Poisson model, which are not described here.  

References include McCullagh and Nelder (1989), Collett (1991), Aitkin et al. (1989), Morgan (1992), Mehta 
and Patel (1999), Hosmer and Lemeshow (1989), Thomas (1983).  

Software includes the GENMOD procedure in SAS version 8 and LogXact 426) for Windows. The availability in 
LogXact of exact permutation procedures is especially appropriate for small samples or rare events.  

Robust versions of the Poisson tests are available. [Weller and Ryan (1998); Hirji and Tang (1998); Breslow 
(1990); Tarone and Gart (1980)]. 

E.1.3.5 Assumptions  

Subjects are independent within and among groups and subgroups (if present). Within-group counts follow a 
Poisson distribution.  

⎯ For the trend version, a monotone trend in the dose-response is assumed.  

⎯ For the non-trend version, the dose metric is not used. Rather, an ANOVA-type model is used which 
assumes Poisson distribution rather than normal.  

Note that robust versions of this test are available which allow for extra-binomial variation among subgroups. 

                                                      

26) GENMOD and LogXact are examples of suitable products available commercially. This information is given for the 
convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these products. 
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E.2 Power of the Cochran-Armitage test 

E.2.1 General 

It is important to understand that the power of the Cochran-Armitage test depends on the background (i.e. 
control) incidence rate, with power decreasing as background rate increases (up to 50 %), when all other 
factors are fixed. 

The powers associated with the step-down application of the Cochran-Armitage test are not available, so far 
as we know, in any commercial or on-line source or even in published form. For that reason, a set of power 
plots has been included. The power of a statistical test also depends on the size effect to be found, the 
number of observations per treatment group and other factors. In comparing percent effect of treatments to a 
common control using a step-down trend test, additional factors affecting power are the shape of the 
concentration-response curve, the number of concentrations and the true threshold of toxicity (if such a thing 
exists). This last point is relevant only in that it affects the concentration-response shape by affecting the 
concentration at which the concentration-response begins to depart from horizontal. 

A full treatment of the power of the step-down Cochran-Armitage test is being prepared for publication. As an 
aid in designing experiments, the following power curves can be used. These are for a response following a 
linear concentration-response shape, with no lag (i.e. threshold = 0), for sample sizes 20, 40, 60 and 80 and 
number of concentrations ranging from 3 to 5. 

A further consideration is whether the test is done in a one-sided or two-sided fashion. For quantal responses, 
it is unusual to be interested in anything but an increased incidence rate, so only one-sided powers are 
presented. Powers for a two-sided test are, of course, lower for the same set of conditions. 

E.2.2 Interpretation of the power curves 

Three plots are presented for each of the sample sizes 20, 40, 60 and 80 subjects per concentration. The first 
of a set of three plots show the power of detecting an effect of a given size in the highest dose. The second of 
a set of three plots shows the power of detecting an effect of a given size at stage two of the step-down 
process; that is, in the second highest dose. The third of a set of three plots shows the power of detecting an 
effect of a given size in the third highest dose, that is, at stage three of the step-down process. For each plot, 
the vertical axis is the power or probability (expressed as a percent) of finding a significant effect if the true 
effect has the magnitude given on the horizontal axis. The horizontal axis shows the true change in percent 
effect from the control or background rate. Five power curves are drawn in each plot corresponding to 
background rates of 0 %, 5 %, 10 %, 15 %, and 20 %. 

To avoid ambiguity, it should be noted that these powers are expressed in terms of absolute, not relative, 
change. Thus, for example, they show the power of detecting an increase of 10 percentage points in the 
incidence rate as a function of background rate. For a background rate of 0, this is an increase from 0 % to 
10 % incidence. For a background rate of 5 %, this is an increase from 5 % to 15 %. Of course, these changes 
could be expressed in terms of a decrease in the rate of non-occurrence, e.g. as decreases in survival rate. 
Simple arithmetic allows the use of these plots to compute relative rates of change as well.  

In designing an experiment, no drastic change in number of replicates is generally needed to achieve at 
least 75 % power of observing the size effect deemed important, bearing in mind that we do not know in 
advance with certainty at which concentration this is evident from the power curves that if we are to estimate 
small changes in percent effects, then large sample sizes are needed. 

In all cases shown, the test used is a 0,05-level test, as described elsewhere in this Technical Specification. 
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E.2.3 Example of power computations 

An example of power computations using these plots might be helpful.  

Suppose one wants to determine the NOEC for mortality in an experiment with daphnia magna, where past 
experience with this species and suggests the background mortality rate is near zero. The goal is to be able to 
detect a 20 % mortality rate. Suppose that based on preliminary range finding experiments, a decision was 
made to do an experiment with five concentrations at 50 ppm, 100 ppm, 200 ppm, 400 ppm and 800 ppm of 
the test compound plus a single (non-solvent) control. Furthermore, there is no anticipation of extra-binomial 
variance or within-tank correlations, so a standard Cochran-Armitage test can be done treating all subjects 
within a concentration equally (i.e. ignoring any tank or replicate effect). The question is then: how many 
subjects per concentration should be planned? 

First, consider designs with the same number, n, of subjects in each concentration as in the control. The 
power of the Cochran-Armitage test depends on the shape of the dose-response curve, which we do not know. 
Powers have been simulated for numerous shapes. Based on an examination of the various power plots, a 
reasonable choice for design purposes is the linear dose-response shape. In addition, the power depends on 
the threshold of toxicity. For design purposes, we assume that is zero. The following plots help. 

 

Figure E.1 — Cochran-Armitage test: Plot showing that 5 subjects per concentration 
would give very low power 

Figure E.1 shows that 5 subjects per concentration would give very low power (about 25 %) to detect a 20 % 
change in the high concentration. There is little point in conducting the experiment for the purpose. 

Consider a design with 20 subjects per concentration (Figure E.2). 
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Figure E.2 — Cochran-Armitage test: Design with 20 subjects per concentration 

This sample size gives a power of 82 % to detect a 20 % mortality in the 800 ppm concentration. This may 
well be adequate. Next, consider the power to detect a 20 % in lower concentrations. Fortunately, not much 
power is lost in the step-down procedure. The power to detect a 20 % mortality rate at 400 ppm is 80 %, at 
200 ppm is 78 % and at 100 ppm is 76 %. However, if the background incidence rate were 10 % instead of 
zero, then the power to detect an increase in mortality rate of 20 % drops to around 40 %, which would be 
inadequate for most purposes. 

E.2.4 Replicates 

Decisions on the number of subjects per subgroup and number of subgroups per group should be based on 
power calculations using historical control data to estimate the relative magnitude of within- and among- 
subgroup variation and correlation. If there are no subgroups, then there is no way to distinguish housing 
effects from concentration effects and neither between- and within-group variances or nor correlations can be 
estimated, nor is it possible to apply any of the statistical tests described for continuous responses to 
subgroup means. Thus, a minimum of two subgroups per concentration is recommended; three subgroups are 
much better than two; four subgroups are better than three. The improvement in modelling falls off 
substantially as the number of subgroups increases beyond four. (This can be understood on the following 
grounds. The modelling is improved if we get better estimates of both among- and within-subgroup variances. 
The quality of a variance estimate improves as the number of observations on which it is based increases. 
Either sample variance has, at least approximately, a Chi-squared distribution. The quality of a variance 
estimate can be measured by the width of its confidence interval and a look at a Chi-squared table verifies the 
statements made.). 

The number of subgroups per concentration and subjects per subgroup should be chosen to provide adequate 
power to detect an effect of magnitude judged important to detect. This power determination should be based 
on historical control data for the species and endpoint being studied. 
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Figure E.3 — Cochran-Armitage power versus maximum rate change: Power at Dose 5 in 5-dose study, 
with trend shape linear, lag = 0, sample size = 20 

 

Figure E.4 — Cochran-Armitage power versus maximum rate change: Power at Dose 4 in 5-dose study, 
with trend shape linear, lag = 0, sample size = 20 
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Figure E.5 — Cochran-Armitage power versus maximum rate change: Power at Dose 3 in 5-dose study, 
with trend shape linear, lag = 0, sample size = 20 

 

Figure E.6 — Cochran-Armitage power versus maximum rate change: Power at Dose 5 in 5-dose study 
with trend shape linear, lag = 0, sample size = 40 
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Figure E.7 — Cochran-Armitage power versus maximum rate change: Power at Dose 4 in 5-dose study 
with trend shape linear, lag = 0, sample size = 40 

 

Figure E.8 — Cochran-Armitage power versus maximum rate change: Power at Dose 3 in 5-dose study 
with trend shape linear, lag = 0, sample size = 40 
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Figure E.9 — Cochran-Armitage power versus maximum rate change: Power at Dose 5 in 5-dose study 
with trend shape linear, lag = 0, sample size = 60 

 

Figure E.10 — Cochran-Armitage power versus maximum rate change: Power at Dose 4 in 5-dose 
study with trend shape linear, lag = 0, sample size = 60 
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Figure E.11 — Cochran-Armitage power versus maximum rate change: Power at Dose 3 in 5-dose 
study with trend shape linear, lag = 0, sample size = 60 

 

Figure E.12 — Cochran-Armitage power versus maximum rate change: Power at Dose 5 in 5-dose 
study with trend shape linear, lag = 0, sample size = 80 
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Figure E.13 — Cochran-Armitage power versus maximum rate change: Power at Dose 4 in 5-dose 
study with trend shape linear, lag = 0, sample size = 80 

 

Figure E.14 — Cochran-Armitage power versus maximum rate change: Power at Dose 3 in 5-dose 
study with trend shape linear, lag = 0, sample size = 80 
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E.3 Description of selected tests for use with continuous data 

E.3.1 References for selected tests 

General references on trend tests are Barlow et al. (1972) and Robertson et al. (1988).  

Hochberg and Tamhane (1987) discuss step-down tests in general.  

Selwyn (1988) discusses the use of the Cochran-Armitage test in this way to establish the NOEC.  

USEPA (1995) recommends the use of step-down trend tests to establish NOECs for both quantal (incidence) 
and continuous responses. USEPA (1995) recommends the Mantel-Haenszel test instead of the almost 
equivalent Cochran-Armitage test for incidence data and Jonckheere-Terpstra test for continuous data to 
establish the NOEC.  

Dunnett and Tamhane (1991, 1992, 1995) discuss step-down trend tests to determine the equivalent of NOEC 
in medical tests.  

Tamhane and Dunnett (1996) discuss them in toxicology experiments, as do Tamhane et al. (2001), Capizzi 
et al. (1984), Tukey et al. (1985). These authors criticize single-step procedures as having low power of 
detecting real effects and offer step-down procedures as an improvement. 

Both 1- and 2- tailed step-down procedures belong to the class of “fixed sequence” tests in the terminology of 
Westfall (1999) and Westfall et al. (1999). Such tests also belong to the more general class of closed systems 
of hypothesis tests Peritz (1970) and Marcus, Peritz and Gabriel (1976). Budde and Bauer (1989) discuss a 
step-down procedure based on the Jonckheere-Terpstra test that differs from that discussed here. Kodell and 
Chen (1991) apply this same idea to quantal data, including the Cochran-Armitage test. These authors 
followed the more general but also more cumbersome closed system of Peritz (1970) and Marcus, Peritz and 
Gabriel (1976) rather than the fixed sequence approach. 

There are several methods used to perform the tests of “fixed sequence” hypotheses for continuous 
responses, including Williams’ test, the Jonckheere-Terpstra test, Bartholomew’s test, Welch, and Brown-
Forsythe tests, and sequences of linear contrasts, among others. These are well established as tests of the 
stated hypothesis in the statistics literature. 

Williams’ test is also a step-down trend test commonly used to establish NOECs in toxicological experiments. 
Tamhane and Dunnett (1996) discuss Williams’ test and two new step-down procedures for use in toxicology 
and drug development. They note the low power of multiple comparison approaches to this work in toxicology 
in the context of discussing the benchmark dose approach of Gaylor (1983) and Crump (1984). They claim 
Williams’ test loses power under some non-monotone alternatives, while their methods do not. 

Salsburg (1986) discusses the low power of ANOVA methods in analysing dose-response experiments. He 
recommends Bartholomew’s test as the most general test against ordered alternatives. He discusses the use 
of linear contrasts, but notes that they may not be powerful in experiments where the lower doses have no 
effect and all the effect is found only at the highest dose. Contrast tests make no direct use of the supposed 
monotone dose-response relationship, and, hence, are lower in power than alternative procedures that do. 
Also, linear contrasts test specifically for a linear relationship, not monotone relationships. If the dose-
response is not linear with respect to the particular dose metric used, it loses power. Bartholomew’s test is 
difficult to implement and Puri (1965) has shown that Jonckheere-Terpstra test is of very similar power. 
Robertson et al. (1988) has shown that under some conditions, Jonckheere-Terpstra test is more powerful, 
does not assume any specific shape (such as linearity) in the dose-response, and only requires monotonicity. 
It is also easily incorporated into step-down procedures. Robertson et al. (1988) discuss in great depth various 
tests that are appropriate in dose-response experiments, or more generally, when the explanatory variable 
has an order restriction. They found that under certain conditions, namely the mean responses are 
approximately uniformly related to dose order (not magnitude); Jonckheere-Terpstra is more powerful than 
other alternatives considered. 
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Bartholomew (1961) compares Jonckheere-Terpstra test to his own. In the case of 3 or 4 treatment groups, 
Bartholomew sees little difference between the power of the two tests, for either equally spaced means or all 
but one mean equal. He, in fact, found Jonckheere-Terpstra test to be preferable, given its distribution-free 
nature. For larger k, however, Bartholomew’s test is superior for the case of all means but one equal, while 
Jonckheere-Terpstra is still preferable for the equally spaced means case. 

E.3.2 Williams’ Test  

E.3.2.1 General 

Williams’ test is step-down or fixed-sequence test procedure that can be used in the same situations as the 
Jonckheere-Terpstra test. Unlike the latter, Williams’ is based on normally distributed, homogeneous 
responses and formally incorporates the presumed monotone dose-response in the estimated mean effects at 
each dose. These means are called isotonic estimates and are based on maximum likelihood theory, given 
the dose-response is monotone. Isotonic estimators were developed by Ayer et al. (1955), who called their 
method Pool-the-Adjacent-Violators (PAVA) algorithm. Isotonic regression was introduced by Barlow et al. 
(1972). 

E.3.2.2 Assumptions  

Independent random samples of normally distributed, homogeneous variables with monotone means (for 
example, µ0 u µ1 u µ2 u … u µk). The maximum likelihood estimate of µi under the monotone assumption is 
given by 

1

v

j j
j u

i u i i v k v

j
j u

n Y

Max Min

n

µ =

=

=

∑

∑
u u u u , 

where 

jY  is the arithmetic mean of dose group i; and  

nj is the sample size. 

The roles of Min and Max are reversed for a non-increasing trend. It is easier to compute isotonic estimators 
than to describe them. Given that we expect a non-decreasing trend in the means, we look for a violation of 
this expected result. If jY  > 1jY + , then we pool (or amalgamate) these two means using a simple weighted 
average. We then re-examine the reduced set of means for violations of the expected order and do additional 
pooling as needed. It makes no difference in the final result which adjacent means we amalgamate first. We 
continue this amalgamation procedure until the means are in the expected non-decreasing order. The control 
is never amalgamated with positive dose groups. 

It is evident from this description that, given unequal sample sizes, it can happen that doses i and i+1 are 
amalgamated and 1it + is significantly different from the control but it is not. There are several ways to avoid 
this situation. Williams suggests re-computing the isotonic means at each stage of the step-down procedure, 
using only those means remaining at each stage. In the balanced case, this is equivalent to the procedure 
already described. Another alternative is to use only the reduced set of amalgamated means and declaring all 
dose groups involved in the amalgamated mean to have significant effects if the amalgamated mean is 
significantly different from the control. Williams also suggests other modifications. 
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E.3.2.3 Advantages of Williams’ test 

This test makes direct use of the assumed monotone dose-response both in terms of the estimated mean 
effect at each dose and in the step-down conduct of the test. Under one of the modifications indicated above, 
it cannot happen that a low dose shows an effect and a higher dose does not. The test can be modified to 
take multiple sources of variation into account. The same method used in the Tamhane-Dunnett test below 
can be used for this purpose. 

E.3.2.4 Disadvantages of Williams’ test 

This test loses power when additional higher dose groups are added to the design, unless the effects at the 
new doses are substantially greater than at the lower dose levels. There can be a loss in power if there is a 
change in direction at the high dose, such as might occur if there is substantial mortality in that group. It is 
affected in an unknown way if the data are not normally distributed or heterogeneous. (However, Shirley’s 
(1979) non-parametric alternative to Williams’ is available for non-normal or heterogeneous data.) According 
to Bretz (1999) and Bretz and Hothorn (2000), the null distribution of Williams’ test is known only for the 
balanced case. For the unbalanced case, the actual p-value when the nominal is 0,05 can be as much as 
20 % larger than the nominal. Williams (1972) claims that the equal sample size error probabilities are 
approximately correct if the difference in sample sizes is not great. Bretz and Hothorn (2000) give reasons 
why this test should not be used for highly unbalanced data and they provide an alternative test, similar to 
Williams but overcoming several difficulties. 

E.3.2.5 Power of Williams’ test:  

Definitive power properties of Williams’ test are not readily available, though limited simulations have been 
published [Marcus, R. (1976); Poon, A.H. (1980); Shirley, E.A. (1979); Williams, D.A. (1971, 1972)] that 
suggest power characteristics similar to those for the Jonckheere-Terpstra test, so long as the data meet the 
requirements for Williams’ test and there is no change in direction at the high dose. Large-sample theoretical 
power properties have been published by Puri (1965), Bretz (1999) and Bretz and Hothorn (2000). 

E.3.2.6 Confidence intervals for NOEC from Williams’ test 

It is sometimes of interest to have confidence bands for a dose-response curve. These bands can be used to 
construct simultaneous confidence intervals for mean or individual responses at different doses, form 
confidence intervals for doses at a given response, and to compare different dose-response curves. In the 
parametric regression context, it is quite straight forward to construct such confidence bands. When no such 
model is fit to the data, other methods shall be employed. 

Genz and Bretz (1999) have shown how simultaneous confidence intervals can be computed for the mean 
effect at each concentration that are applicable to Williams’ and Dunnett’s tests, as well as to various others. 
These procedures may suffer from the need to compute confidence intervals for means of no interest, namely 
at all concentrations rather than just at the NOEC. Hence, these intervals are wider than what might be 
obtained by focusing on just the NOEC. The methods of Korn, Williams, and Schoenfeld which are described 
below are appropriate in the context of Williams’ test. 

According to Korn (1982), for a normally distributed response, one could construct simultaneous 1-α 
confidence intervals for the means µi from the following. 

, ,/ /j jk N k j j k N k jY m s n Y m s nµ− −− < < +   (E.1) 

where  

mk,N−k is the studentized maximum modulus distribution (Hochberg and Tamhane, 1987) for k treatment 
groups and N−k degrees of freedom; 

s  is the square-root of the pooled within-group variance estimate; 
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N  is the total sample size; and  

jY  is the arithmetic mean of the jth group. 

However, as Korn and others observe, these confidence intervals are wider than necessary for a monotone 
dose-response, in part because they make no use of the monotonicity. 

Three methods for constructing more appropriate simultaneous confidence bounds are presented, all of which 
assume normality of the response within groups. If an alternative distribution is found for the response, it may 
be possible to modify these methods, but little such work appears to have been done. In addition, we may not 
want simultaneous confidence bounds at all tested concentrations, but only at the NOEC. Two methods are 
presented for that. 

The basis for all methods is isotonic regression, which yields maximum likelihood estimates of the treatment 
means based on a monotone dose-response model. Isotonic estimators of the treatment means come from 
the Pool-the-Adjacent-Violators Algorithm, or PAVA, discussed in the context of Williams’ test. 

Korn suggests the following modification of Equation (E.1). 

, ,max ( / ) min ( / )i ij i k N k i j i j k N k iY m s n Y m s nµ− −− < < +u u . 

These intervals are not derived from the isotonic estimates of means but from the sample means and the 
monotone (i.e. isotonic) assumption on the means. Korn suggests doing linear interpolation to obtain 
approximate confidence bounds for the response between tested doses. 

Williams (1977) makes direct use of the isotonic estimators of the mean responses in his approach. An upper 
1-α confidence bound on the true mean for the jth treatment is given by ,j A sν αµ + , where s is the square-
root of the usual pooled variance estimate, jµ is the isotonic estimate of the jth treatment mean, and ,Aν α is 
the critical value from the distribution of ( ) /j sµ µ− , under the assumption 1jµ − = ∞ and 

1 2 ...j j kµ µ µ+ += = = . Williams (1977) contains tabulated critical values for this distribution. He also gives a 
modification of this to provide confidence bounds or intervals for the difference 0 jµ µ−  and simultaneous 
confidence intervals for arbitrary contrasts of the means under the monotone assumption. These bounds are 
only available for the equal sample size case, though if sample size differences are small, they should be 
reasonable approximations. 

Rather than use Williams’ bounds, Schoenfeld (1986) developed isotonic estimators of the bounds based on 
likelihood ratio methods. His bounds are sometimes much tighter than those proposed by Williams (1977) and 
he specifically recommends them for toxicity experiments, especially when the dose-response curve is 
shallow and we desire upper confidence bounds on the effects at concentrations at or below the NOEC. The 
unfortunate aspect of Schoenfeld’s otherwise attractive procedure is that for unequal sample sizes, the critical 
values used in constructing the upper bounds shall be estimated by simulation. This makes the procedure 
more computer-intensive than desirable for routine use. For this reason, the unequal sample procedure is not 
reproduced here. If the differences in sample sizes are not large, then approximate confidence bounds can be 
obtained by treating them as equal and using tables he provides. The method for equal sample sizes for an 
increasing trend follows. 

Let 

 jy  denote the arithmetic mean of the jth treatment group,  

 jy  the isotonic mean of that group, and  

  jy the isotonic mean, based on just groups 1 through j.  

Suppose that for some σ2,  
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σ2/aj is the within-group variance of group j,  

nj  is the sample size of that group, and  

 N = n0 + n1 + n2 +  . . . + nk. Let 

2 2

1 1 1
( ) / ( 1)

jnk k

j jm jj
j m j

a y y nσ
= = =

= − −∑ ∑ ∑ , 

Finally, let wj = nj * aj.  

Then, the upper 1-α isotonic confidence bound on iy  is the greatest solution x to the equation  

T(x) = Cα, 

where Cα comes from a table of critical values given in the cited paper, and 

2 2

1 2
( ) ( ) ( )j j j jT x w x y w x y

⎧ ⎫⎪ ⎪= − − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ , 

where 
1
∑  is summed over all j  

such that iy  u jy  u x , and 

 
2
∑  is summed over all j < i  

such that iy  u jy  u x. 

The solution of this equation is simple, given that this is just a quadratic in x. It should be noted that for 
unequal sample sizes, the procedure is the same other than the manner of obtaining the critical value Cα. 

It should be noted that this is a confidence bound for a single isotonic mean. Schoenfeld shows how this can 
be modified to yield simultaneous confidence bounds for estimating confidence bounds for several isotonic 
means simultaneously. He claims these simultaneous bounds, modified further to be two-sided, can be used 
to check whether a parametric regression model fits the data, since the predicted responses at all 
concentrations should fall within these simultaneous confidence intervals. Alternatively, though Schoenfeld 
does not suggest it, the same idea can be used to check for violations of the monotonicity assumption. The 
utility of either idea has not been fully explored. 
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E.3.2.7 Example 1 — Williams’ test 

Consider an experiment with five doses of 10 ppm, 25 ppm, 60 ppm, 150 ppm and 1 000 ppm, respectively, 
plus a zero-dose control, with the following means and sample sizes. The response is trout mass in milligrams. 

 Dose number 

 0 1 2 3 4 5 

Dose, in ppm 0 10 25 60 150 1 000 

iY  53,1 52,7 45,2 47,1 44,8 46,6 

ni 18 10 9 10 10 8 

The null hypothesis is H0: µ0 = µ1 = µ2 = … = µk. 

The alternative is H1: µ0 W µ1 W µ2 W … W µk, a non-increasing trend.  

The first violation of the expected trend is from Dose 2 to Dose 3.  

⎯ We amalgamate these to get 2Y  = 3Y =(9*45,2 + 10*47,1)/(9+10) = 46,2. 

⎯ The means are now 53,1; 52,7; 46,2; 44,8; 46,6 with sample sizes 18, 10, 19, 10, 8.  

The next violation is from (un-amalgamated) Doses 4 to Dose 5. 

⎯ We amalgamate these to obtain 4Y  = 5Y  = (10*44,8 + 8*46,6)/(10+8) = 45,6. 

⎯ The means are now 53,1; 52,7; 46,2; 45,6 with sample sizes 18, 10, 19, 18. 

Now that amalgamation is complete, we can write the dose group means as 53,1; 52,7; 46,2; 46,2; 45,6; 45,6 
to retain the original number of groups.  

Williams’ test statistic to compare dose i to the control is 

0

0

1 1
i

i

i

Y Y
t

s
n n

−
=

+
, 

where s2 is the usual ANOVA pooled within-group variance estimator. 

The statistic it is compared to a Williams’ critical value ,it α which decreases as i increases. The amalgamation 
and tests can be carried out in some software packages, such as Probmc27) in SAS. 

To complete the example, we need the pooled within-group standard deviation, s. Suppose that s is 7,251. 
The resulting calculations are as follows, where WILL is the value of Williams’ statistic, P2 and CRIT2 are the 
associated p-value and critical values of Williams’ test, respectively, YBAR is the arithmetic mean of the 
indicated dose group, YTILDE is the isotonic mean, n is the sample size, YBAR0 is the mean of the control 
group, n0 is the control sample size, DFE is the degrees of freedom for Williams’ test. 

                                                      

27) Probmc is an example of a suitable product available commercially. This information is given for the convenience of 
users of this Technical Specification and does not constitute an endorsement by ISO of this product. 
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DOSE YBAR YTILDE YBAR0 N N0 DFE WILL    P2      CRIT2 
 
1    52.7  52.7  53.1  10 18  59  -0.1399  0.4446  -1.6711 
2    45.2  46.2  53.1   9 18  59  -2.3309  0.0032  -1.3082 
3    47.1  46.2  53.1  10 18  59  -2.4127  0.0013  -1.1721 
4    44.8  45.6  53.1  10 18  59  -2.6225  0.0004  -1.1002 
5    46.6  45.6  53.1   8 18  59  -2.4342  0.0006  -1.0557 
 
Thus, for these data, the NOEC is Dose 1, or 10 ppm. The observed percent effects at the NOEC and LOEC 
are 0,75 % and 14,9 %, respectively. 

Suppose the same data was collected, as above, but in each concentration, there were two replicate 
subgroups. The breakdown of between- and within-replicate variance could affect the test results. In general, 
for a given total variance, the greater between-replicate variance is, the less sensitive the test is.  

For example, the data above is consistent with VarBtween = 9,076 and VarWithin = 39,064 (as can be 
computed from the data for example 1 below using repa) and Williams’ yields an NOEC of Dose 2, or 25 ppm, 
when analysed to take both sources of variation into account. These data are also consistent with 
VarBtween = 24,732 and VarWithin = 21,844 (using repb below) and in that case, Williams’ yields an NOEC 
exceeding 1000 ppm. These results arise because large between-replicate variance suggests the data is less 
repeatable. Greater uncertainty in the results makes definitive conclusions more difficult. Note: The analyses 
just discussed used maximum likelihood estimates of the variance components. Other variance component 
estimators, such as REML estimators, can lead to different conclusions. 

For reference, these same data were analysed by a one-sided Dunnett’s test and Jonckheere-Terpstra test. 
These analyses are described below. 

E.3.3 Jonckheere-Terpstra trend test  

E.3.3.1 Calculation 

The calculation of the Jonckheere-Terpstra test statistic is based on Mann-Whitney counts. These Mann-
Whitney counts can be thought of as a numerical expression of the differences between observations in two 
groups in terms of ranks. The idea of the Jonckheere-Terpstra test is very simple. Order the observations from 
all groups combined, from smallest to largest. Decide, on biological or physical grounds, what direction 
(increasing or decreasing) the dose-response has. 

For each two groups i and j, with i < j and di < dj, examine each pair (xi, xj) of observations that can be made, 
with xi from group i and xj from group j. Count the number, Oij, of these pairs which follow the expected order, 
xi < xj (for increasing trend; order reversed for decreasing trend). Add all of the Oij and compare that sum to 
what would be expected if the dose-response were flat. A large positive difference is evidence of a significant 
increasing dose-response. 

A step-by-step description of the calculation of the Jonckheere-Terpstra statistic follows. This description is 
largely from Rossini (1995, 1997). 

a) Compute the k(k−1)/2 Mann-Whitney counts Oij, comparing group i with group j, for i < j, as indicated 
above. 

b) Define a test statistic J by 

1

1 1

k k

ij
i j i

J O
−

= = +

= ∑ ∑  

where J is the sum of the Mann-Whitney counts. 
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c) For an exact test, at the α level of significance, reject H0 if 

1,( , ... , )kJ j k n nα,⎡ ⎤⎣ ⎦ W  

and accept otherwise. The constant 

1,( , ... , )kj k n nα,⎡ ⎤⎣ ⎦  

is found in tabulated form in Hollander and Wolfe (1973) and numerous other sources. 

d) For an approximate test, at the α-level of significance, compute J* by: 

( )
( ) ( ) ( )

0

0

2 2

2 2

1

4
*

Var 2 3 1 2 3

72

k
jj

H

k
H j jj

N n
J

J E J
J

J N N n n

⎛ ⎞− −⎜ ⎟
− ⎜ ⎟
⎜ ⎟− ⎝ ⎠= =
+ − − +

∑

∑
  

J* can be compared to the appropriate critical values of the normal distribution (i.e. reject H0 if J* > zα). 
Recall that ni is the number of observations in the ith group. 

E.3.3.2 Advantages of Jonckheere-Terpstra test  

As a rank-based procedure, this test is robust against both mild and major violations of normality and 
homoscedasticity. There is an exact permutation version of the test available in commercial software (e.g. 
SAS and StatXact) to handle situations of small sample sizes or massive ties in the response values. It is 
based on a presumed monotone dose-response and is powerful against ordered alternatives for a wide variety 
of dose-response patterns and distributions. There is no problem with unequal sample sizes if individual 
subjects are the experimental units for analysis. 

E.3.3.3 Disadvantages of Jonckheere-Terpstra test 

There is no way to take into account multiple sources of variance, such as within- and between-subgroups. A 
consequence of this is that if the experimental unit for analysis is a subgroup mean or median and these 
subgroups are based on unequal numbers of subjects, then no adjustment can be made for this inequality. 
There is no built-in procedure for deciding whether the data are consistent with a monotone dose-response 
model. Published power characteristics are limited, though extensive power simulations have been done (and 
are being prepared for publication) and an excerpt is included with this Technical Specification. 

E.3.3.4 Power of Jonckheere-Terpstra test 

Asymptotic power properties of this test have been published [for example, Poon 1980, Bartholomew 1961, 
Odeh (1971, 1972), Puri 1965], but they overestimate the power, sometimes grossly, for samples sizes less 
than 30 and are not computed for the step-down application described in this Technical Specification. Limited 
simulations studies have also been published (e.g. Potter and Sturm 1981, Poon 1980, Shirley 1979). A full 
treatment of the power of the step-down Jonckheere-Terpstra test is being prepared for publication. As an aid 
in designing experiments, the power curves in E.4 can be used. These are for a two-sided test (as described 
in Clause 5 and in the next paragraph, a two-sided test is used when one is confident that the dose-response 
is monotone, but not confident in advance whether the trend is increasing or decreasing. That direction is set 
by the initial tests for increasing and decreasing trend with all data present) on a normally distributed response 
following a linear concentration-response shape, with no lag (i.e. response threshold=0), for sample sizes 5, 
10, 20, 40 and 80 per concentration and number of concentrations ranging from 3 to 6. The full treatment 
considers other distributions, other shapes for the dose-response and other values of the response threshold. 
The sample size refers to the experimental unit used in analysis, whether it is an individual subject or a 
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subgroup mean or median. In the latter case, it is assumed that the means or medians are all based on the 
same number of subjects. 

A further consideration is whether the test is done in a one-sided or two-sided fashion. It is often true that in 
advance of the experiment, it is not known whether the response in question is likely to increase with 
increasing concentration or decrease. In this event, a two-sided step-down test can be used. The power 
curves shown are for a two-sided test. Powers for a one-sided test are, of course, higher. The choice to 
present only the linear dose-response shape was made to be intermediate between the powers for convex 
and concave shapes. The choice of presenting powers for two-sided tests and the case of 0 lag serves to 
make these curves conservative for experimental design purposes. That is, if one achieves P % power to 
detect a given effect size from these choices, one can be reasonably confident of one’s design achieving at 
least P % power if some of the details of the dose-response differ from those presented. 

In designing an experiment, the power curves can be used to design experiments of whatever power 
characteristics desired. In our experience, it should be possible with commonly used sample sizes, to achieve 
at least 75 % power of observing the size effect usually deemed important, bearing in mind that we do not 
know in advance with certainty at which concentration this size effect is observed. Since we do not know in 
advance at which concentration the started effect size occurs, at the design stage, we shall consider the 
power of finding this size effect at any stage of the step-down procedure. Fortunately, as the power plots 
indicate, except for low power situations, the power is not much affected by the stage at which the effect is 
found. To be clear, the 75 % power goal is somewhat arbitrary, but is a level achievable (and often exceeded) 
in experiments of the sizes typically used. Preliminary range-finding experiments usually provide some 
relevant information. In all cases shown, the test used is a 0,05-level test, as described elsewhere in this 
Technical Specification. 

E.3.3.5 Confidence intervals for effect size at NOEC from Jonckheere-Terpstra test 

It is not clear that any meaningful method exists for constructing confidence intervals for non-normally 
distributed responses where non-parametric methods are used to evaluate the data. There is no true 
confidence interval associated with the Jonckheere-Terpstra test. If a gross estimate of a confidence interval 
of the mean response at the NOEC is desired, despite the fact that the test is non-parametric, then one shall 
resort to normal theory even though the NOEC determined by the Jonckheere-Terpstra test has very little 
association with normal theory. To do this, one could construct a traditional confidence interval of the form 

*x t s n±  

where 

n  is the number of observations for the mean;  

s is the within-group ANOVA standard deviation; 

t is the 100(1−α/2) quantile of the central t-distribution with ANOVA degrees of freedom. 

This formulation ignores the possible non-normality or heterogeneous nature of the data, the effect of outliers 
on the variance estimate and the fact that the NOEC was obtained without reference to this ANOVA. A more 
relevant measure of the adequacy of the NOEC is given by the power characteristics of the test used to 
determine it. Such power considerations are discussed in this Technical Specification. 

It is tempting to apply the confidence bounds described for Williams’ test to means when another trend test is 
used, such as Jonckheere-Terpstra or Cochran-Armitage (where group proportions, suitably transformed, are 
used). However, these tests are not based on isotonic estimates of group means, so the applicability of these 
methods is not clear. Nevertheless, where there is no serious violation of the normality or homoscedasticity 
requirements or multiple variance components to take into account, these methods seem better than ad hoc 
methods discussed here. 
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E.3.3.6 Example 2 — Jonckheere-Terpstra test  

This uses the same data as the Example 1 for Williams’ test. However, it is reproduced in full here with more 
information to illustrate additional points. The monotonicity test presented is that described in 5.1.4 in terms of 
linear contrasts. 

First, consider the power characteristics of the test.  

For illustrative purposes, consider the case that at design, an experiment of 10 daphnia per concentration (in 
replicates of size 1) is to be evaluated, with a total of six concentrations (five plus control).  

Based on historical control data, the expected within-group standard deviation σ = 0,1, At design time, a fairly 
conservative approach would be to consider a dose-response linear with respect to log concentration.  

From the power curves for the Jonckheere-Terpstra test with 6 doses and linear dose-response shape, the 
power to detect a shift in the high dose group of 1,5 σ is about 93 %. The power to detect the same size shift 
in the second highest concentration is about 90 % and the power to detect this size shift at the third highest 
concentration is about 90 %. The curves provided do not show the power to detect such a shift in the fourth 
highest concentration, but it is about 88 %. Given a control mean of 4,1 (historical control mean), we have 
high power of detecting a shift of 1,5 σ or 100*1,5/4,1 = 3,7 % of the control mean in any of the top four 
concentrations. For other dose-response shapes, the power is somewhat higher or lower, according to the 
shape. 

In the present example, the actual sample standard deviation was slightly higher, at 0,010 7 and a few 
daphnia died before the end of the experiment (final samples sizes 9, 10, 8, 7, 7, 10), so the achieved power 
is a bit less, but it should still be satisfactory. 

Raw Data for Example 1 

REPA is for the first subgrouping, REPC is for the second. 

CONC DOSE REPA REPC   Y    CONC DOSE REPA REPC   Y 
   0   1    2    1   39.5419   25   3    1    2   47.2060 
   0   1    1    1   42.1589    25   3    2    2   49.0197 
   0   1    2    1   45.1310    25   3    2    2   49.0803 
   0   1    1    1   45.7584    25   3    2    2   58.0969 
   0   1    1    1   46.3502    60   4    1    1   41.4250 
   0   1    1    1   48.4031    60   4    1    1   41.4392 
   0   1    1    1   49.1750    60   4    2    1   42.7406 
   0   1    1    1   51.2812    60   4    1    1   43.4315 
   0   1    1    1   51.8452    60   4    1    1   44.1543 
   0   1    2    1   52.9215    60   4    1    2   45.7393 
   0   1    1    2   54.8646    60   4    2    2   49.1442 
   0   1    1    2   55.5785    60   4    2    2   51.0632 
   0   1    1    2   56.4552    60   4    2    2   51.6004 
   0   1    2    2   56.9496    60   4    2    2   60.2623 
   0   1    2    2   60.4886   150   5    2    1   32.6964 
   0   1    2    2   62.0290   150   5    2    1   39.6888 
   0   1    2    2   64.3035   150   5    1    1   41.6733 
   0   1    2    2   72.5645   150   5    2    1   42.0448 
  10   2    2    1   43.2570   150   5    1    1   42.4995 
  10   2    2    1   45.3761   150   5    2    2   47.3381 
  10   2    2    1   50.7812   150   5    1    2   47.8829 
  10   2    1    1   53.8215   150   5    1    2   48.1557 
  10   2    2    1   53.8444   150   5    1    2   52.6260 
  10   2    1    2   54.4215   150   5    2    2   53.3945 
  10   2    1    2   54.4328  1000   6    1    1   31.2249 
  10   2    2    2   54.8774  1000   6    1    1   40.1562 
  10   2    1    2   56.6354  1000   6    1    1   43.2021 
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  10   2    1    2   59.5528  1000   6    1    1   44.2384 
  25   3    1    1   33.7865 1000   6    2    2   44.9417 
  25   3    1    1   36.9014 1000   6    2    2   52.7730  
  25   3    1    1   42.2580 1000   6    2    2   56.0988  
  25   3    1    1   44.5783 1000   6    2    2   60.1649  
  25   3    2    1   45.8729   
 

Test for Monotonicity 
      SOURCE          NDF    DDF         F       P_F 
 
   LINEAR TREND  1       59      8.59      0.0048 
   QUADR  TREND  1       59      2.38      0.1285 

Test for monotonicity indicates trend test is appropriate. 

The step-down Jonckheere trend test is done. 

⎯ JONC  is the value of the Jonckheere-Terpstra test statistics; 

⎯ P1DNCF  is the p-value associated with this test statistic to test the hypothesis of a downward trend;  

⎯ P1UPCF  is the test statistic for testing the significance of an upward trend and is a default printout of the 
software used and is not utilized in the present analysis, i.e. the p-value for the upward trend;  

⎯ ZC is a standardized value of the JONC statistic, computed with tie correction; 

⎯ ZCCF  is ZC, except that it is computed using a standard continuity correction factor.  

The CF in several terms refers to the use of this continuity correction factor. 

p-values are for the tie-corrected test with the continuity correction factor.  

Hi Dose  JONC  ZC       ZCCF   P1UPCF  P1DNCF  SIGNIF 
 1000     589  -3.17698 -3.1712 0.9992  0.0007  ** 
  150     401  -3.32851 -3.3214 0.9996  0.0004  ** 
   60     265  -2.61104 -2.6014 0.9954  0.0044  ** 
   25     147  -1.96502 -1.9508 0.9745  0.0239  ** 
   10      90   0        0.0240 0.4904  0.4904 
 

No significant trend DOWN from control to conc = 10. No further testing below 10 is required. It is observed 
that the NOEC is conc 10 and all higher concentrations indicate a significant effect. The above was computed 
with the individual subject as unit of analysis. 

Suppose the same data was collected, as above, but in each concentration, there were two replicate 
subgroups. Then there would be two variance components to consider, VarBtween and VarWithin, the 
variance between replicates and the variance within replicates. The breakdown of between- and within-
replicate variance could affect the test results. In general, for a given total variance, the greater between-
replicate variance is, the less sensitive the test is. For example, the data above is consistent with 
VarBtween = 9,076 and VarWithin = 39,064 and Williams’ yields an NOEC of 25 ppm, when analysed to take 
both sources of variation into account. This decomposition of the data into replicates is identified as REPA. 
These data are also consistent with VarBtween = 24,732 and VarWithin = 21,844 and in that case, Williams’ 
yields an NOEC exceeding 1 000 ppm. This decomposition of the data into replicates is identified as REPC. 
These results arise because large between-replicate variance suggests the data is less repeatable. Greater 
uncertainty in the results makes definitive conclusions more difficult. Note: The analyses just discussed used 
maximum likelihood estimates of the variance components. Other variance component estimators, such as 
REML estimators, can lead to different conclusions. 
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If replicate means are analysed instead of individual observations as above, then all of the procedures 
(Williams’, Jonckheere-Terpstra, and Dunnett) and exact permutation analysis yield NOECs greater than 
1 000 for either scenario of between- vs. within-replicate variance. This is in contrast to the previous 
conclusion that the NOEC is 10 and all higher concentrations are effects levels. This is because of loss of 
power from the much reduced sample sizes, the sample sizes now being the number of replicates per 
concentration. While there is a reduction in variability from using the means, that reduced variability is not 
enough to overcome the reduced sample sizes and a lower power test results. Thus, a decision to analyse 
replicate means should be made only if there is sufficient evidence of between-subject correlation as to render 
the indicated analyses invalid. This issue is less important if there are more replicate subgroups, because the 
impact on sample size (for degree of freedom calculations) is less. This consideration has obvious 
implications for experimental design. 

The test was repeated using replicates, as defined by REPA and repeated again with replicates as defined by 
REPC. In each case, the NOEC was found to exceed 1 000 ppm. As would be expected, if we reduce the 
number of analysis units to 2 per concentration, there is substantial loss of power. It should also be 
recognized that unweighted an analysis of subgroup means ignores the unequal sample sizes. While that is 
not a major consideration when sample size differences are very small, it can be quite significant when, as is 
the case here, sample size differ by 50 % or more. The selection of weighting scheme to use is not trivial and 
is not discussed here. 

It should be emphasized that these data are used to illustrate several ideas, such as indicating the potential 
effect of subgroups on an analysis. The fact that the data are analysed in several ways to illustrate these 
ideas should not be taken to imply that all methods are appropriate for the same data set. Where there are 
subgroups, one shall give careful consideration to how the subgroup information is used in the analysis. 

E.3.3.7 Example 3 — Jonckheere-Terpstra test 

The lengths of the daphnia in individual beakers were measured at the end of a 21-day study. A large 
percentage of the measurements were identical, as shown by the following frequency table. 

FREQUENCY TABLE OF LENGTH BY CONC 
 
    LENGTH / CONC 
 (MM)    (mg/l) 
               0     1     2    4    8     16   Total 
 
       3.5     0     0     0    0    0     1      1 
       3.6     0     0     0    0    0     1      1 
       3.7     0     0     1    0    1     2      4 
       3.8     0     0     0    0    1     4      5 
       3.9     0     2     0    1    2     2      7 
       4.0     1     4     1    3    2     0     11 
       4.1     5     4     6    3    1     0     19 
         4     3     0     0    0    0     0      3 
 
  Total        9    10     8    7    7    10     51 
 

Given the large percentage of ties in these measurements of daphnia length, the data cannot be regarded as 
normally distributed, nor any transformation of the data make it so.  

⎯ If we, nonetheless, analyse this by Dunnett’s or Williams’ test, ignoring the normality issue, the result is 
that under Dunnett’s and Williams’ tests (either as is or after a log-transformation), the NOEC is less than 
the lowest concentration, whereas under Jonckheere-Terpstra (large-sample), the NOEC is 2.  

⎯ If, on the other hand, we do an exact permutation analysis because of the tie issue, the exact 
Jonckheere-Terpstra NOEC is 8.  
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It would be hard to justify 2 as the NOEC, given the higher percent change at 1, but calling a 2,5 % change 
from control an effects level seems overly restrictive. The exact result seems cautious without being overly 
restrictive, and is the recommended procedure. Interestingly, Dunn’s test, a large-sample non-parametric 
procedure, sets the NOEC at 4, which has some intuitive appeal for these data. However, like Dunnett’s test, 
Dunn’s makes no use of the presumed monotone dose-response nature of the data and a single example 
should not persuade one to drop the step-down approach to analysis of toxicity data. 

This example underscores the dependence of the statistical conclusion on the method of analysis. There is no 
escape from this under the regression approach, since the model used to estimate an EC20, EC10, EC5, etc, 
can have a large impact on the estimate and its confidence bounds. 

TRTMNT    MEAN    MEDIAN  STD_DEV    COUNT Pct Change 
             from Control  
Control   4.12222    4.1   0.06667     9     0 
1  mg/l   4.02000    4.0   0.07888    10 2.5 
2  mg/l   4.03750    4.1   0.14079     8 2.1 
4  mg/l   4.02857    4.0   0.07559     7 2.3 
8  mg/l   3.91429    3.9   0.13452     7 5.0 
16 mg/l   3.75000    3.8   0.12693    10 9.0 

An additional example using the Jonckheere-Terpstra is given in E.1, where proportions are so analysed. 

E.3.4 Tamhane-Dunnett test  

E.3.4.1 General 

This test assumes normally distributed data but is optimized for variance heterogeneity. There is little power 
loss for homoscedastic data. The basic statistic is quite simple: 

0
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For a two-sided test, T is compared to the maximum modulus distribution for k comparisons and 
df = n0 + ni − 2. For a one-sided test, T is compared to the Studentized maximum distribution for same k and df. 

If there are subgroups in the treatment groups, the sample variances in the above formula are replaced by 
Satterthwaite-type expressions. 

Let 

2
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where 

ngj  is the number of subjects in the jth subgroup of treatment group g, g = 0 or i; and  

ng  is the total number of subjects in treatment group g.  

Let 
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where 

2
WR,gs  is the within-subgroup variance of treatment group g; and  

2
BR,gs  is the between-subgroup variance of treatment group g. 

In the expression for T above, substitute Ui , U0 for si
2, s0

2. 

The approximate degrees of freedom for this variance estimate is 
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Tables for the Studentized maximum and maximum modulus distributions can be found in Hochberg and 
Tamhane (1987), among other sources. Alternatively, tables for these distributions can be computed using the 
following formulae. 

Maximum Modulus Distribution 

0

Pr{max | | } 2 ( ) 1 d ( )
k

iT t tx F xνΦ
∞

= −⎡ ⎤⎣ ⎦∫u  

Studentized Maximum Distribution 

0

Pr{max } ( ) d ( )
k

iT t tx F xνΦ
∞

= ⎡ ⎤⎣ ⎦∫u  

In both formulae,  

k is the number of treatment groups in addition to the control; and  

v is the df. 

E.3.4.2 Advantages of Tamhane-Dunnett test 

This test allows heterogeneous variances, but loses little power, compared to Dunnett’s test, when the 
variances are homogeneous. As shown above, it can be adapted to handle multiple sources of variance (e.g. 
within- and between-subgroups). 

E.3.4.3 Disadvantages of Tamhane-Dunnett test  

This test assumes within-group (or subgroup) normality. The main disadvantage is that it makes no use of a 
presumed monotone dose-response and, thus, loses power in comparison to tests that do. 

E.3.4.4 Power of Tamhane-Dunnett test  

According to Dunnett (1980) and Hochberg and Tamhane (1987), the power of this test is very similar to that 
of Dunnett’s test when the assumptions underlying that test are met. The power for the unequal variance case 
depends on the particular pattern of variances. 
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E.3.4.5 Confidence Intervals for Effect Size at NOEC for Tamhane-Dunnett test  

A general method is discussed above for simultaneous confidence intervals for effect size at all concentrations 
included in the experiment. A simple confidence interval for the difference between the mean effect at the 
NOEC and at the control comes immediately from the test statistic. A 95 % confidence interval for that 
difference is given by 

2 2
000
0

* i
ii

i

s s
x x T

n n
µ µ− = − ± + , 

where T is the maximum modulus distribution for k comparisons and df = n0 + ni − 2. 

Simple arithmetic can convert this into a confidence interval for the percent effect. Where appropriate, this can 
be given in one-sided form based on the Studentized maximum distribution for same k and df. 

E.3.4.6 Example 4 — Tamhane-Dunnett test 

Daphnia were housed in individual beakers. The response is total live young after 21 days exposure to the 
chemical. Since the observation is a count, a square-root transform might be used prior to grouping the data 
and doing an analysis. The result of such a transform is not reported here, but the transformed response was 
not normally distributed so a non-parametric procedure would be appropriate. In this example, the control is 
labelled Dose 1. 

                    TOTLY MEASUREMENTS FROM DATASET TAMHANE 
           GROUP STATISTICS FOR VALUE BY DOSE 
 
DOSE COUNT   MEAN    MEDIAN    STD    STD_ERR 
1      9    17.2222   18.0    2.48886  0.82962 
2     10    26.9000   26.5    1.28668  0.40689 
3     10    21.4000   22.5    6.36309  2.01219 
4      9    18.2222   17.0    8.48201  2.82734 
 
 
      SHAPIRO-WILK TEST OF NORMALITY OF TOTLY 
STD     SKEW     KURT     SW_STAT     P_VALUE    SIGNIF 
38    5.21021   -0.12654  2.51771    0.94106    0.060989           
 
        LEVENE TEST FOR TOTLY 
 DF     LEVENE     P_VALUE    SIGNIF 
  3    4.17542    0.012769      **   
 
The data was found to be normally distributed but group variances were unequal. A Tamhane-Dunnett 
analysis is appropriate. 

Tamhane-Dunnett two-sided test for difference in means in TOTLY Using maximum likelihood estimates of 
variance. 

DOSE   MEAN  STDERR   DF    CONTROL   DIFF   CRIT  SIGNIF 
 
2    26.90   0.40689  11.71 17.222    9.68   2.5482  *  
3    21.40   2.01219  11.93 17.222    4.18   5.9843       
4    18.22   2.82734   9.37 17.222    1.00   8.4401       
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Only the low dose group mean response was found significantly different from the control mean response. 

MONOTONICITY CHECK OF TOTYOUNG 
DOSES 0, 60, 75, 100 PPM 
 
    PARM            P_T    SIGNIF 
 DOSE TREND      0.8228           
 DOSE QUAD       0.0038      **   
 
Based on the formal test for monotonicity, a trend test is not indicated. The monotonicity test presented is that 
described in 5.1.4 in terms of linear contrasts of normalized ranks. Of course, the decision of whether to apply 
the Tamhane-Dunnett test rather than a trend-based test depends on a prior determination of the 
appropriateness of a trend-based test. The results are presented in opposite order here, since the focus is on 
illustrating the Tamhane-Dunnett test. 

E.3.5 Dunnett test 

E.3.5.1 General 

This test assumes normally distributed responses with homogeneous within-group variances. The basic 
statistic is that for the Student t-test and is similar to that for the Tamhane-Dunnett: 

0

0

1 1
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x xT
s

n n

−
=

+
, 

where s is the square-root of the usual pooled within-group sample variance.  

T is compared to the one- or two-sided upper α equicoordinate point of a k-variate t-distribution with 
correlations defined below, and df = n0 + ni + ni . . . + nk−1 – k. 

The correlation of the ith and jth comparisons is given by 
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. 

If all treatment sample sizes are equal, but the control sample size is possibly different, these all reduce to 
1/(1 + r), where r = n0 / n and n is the common treatment sample size. 

Note that if n0 = n, this is just 0,5. Tables for various values of r are available in many places and the 
calculations based on the general correlation structure are computed automatically by some commercial 
software packages, such as SAS. 

Variations on this and computational formulas are given in Hsu (1992) and in Hochberg and Tamhane (1987). 
If there are subgroups in the treatment groups, the sample variances in the above formula can be replaced by 
Satterthwaite-type expressions as for the Tamhane-Dunnett procedure. 

E.3.5.2 Advantages of Dunnett's test  

It is readily available in many books and statistical software packages, is familiar to most toxicologists as well 
as statisticians, is simple to calculate. 
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E.3.5.3 Disadvantages of Dunnett’s test  

It assumes normality and variance homogeneity (within group and within subgroup). More importantly, it 
ignores the monotonicity in the dose-response if present and, thus, loses power in relationship to step-down 
trend methods. The test was developed for qualitatively different treatments, such as different formulations of 
a drug or different drugs. As with all pair-wise tests, this can lead to a low dose being found statistically 
significant and a higher dose not statistically different from the control. 

E.3.5.4 Power of Dunnett’s test 

A key question to address here is the precise alternative hypothesis for which power is desired. One relevant 
power of Dunnett’s test is the probability of a significant result for a particular concentration, given the true 
mean response for that concentration differs from the control by a specified amount, ∆. Such a power can be 
approximated using the distribution functions for Dunnett’s test and the t-test.  

In SAS, such an approximate power can be computed as follows. 

Let 

.
2
n

∆λ
σ

=  

POWER1 = 1−PROBT(PROBMC('DUNNETT1',.,1-α,DF,GRPS),DF,λ), 

POWER2 = 1−PROBT(PROBMC('DUNNETT2',.,1-α,DF,GRPS),DF,λ), 

where  

α  is the size of the test,  

∆  is the difference in means to be detected at the specified concentration;  

n  is the number of replicates in each concentration (assumed equal here);  

DF  is the ANOVA degrees of freedom for error;  

GRPS  is the number of concentrations to be compared to the control;  

σ  is the estimated within-group standard deviation;  

POWER1 is the approximate power of one-sided tests; and  

POWER2  is the approximate powers of two-sided tests. 

This and related powers can also be obtained using the %IndividualPower macro given in Westfall et al. 
(1999). Additional references to power computations to Dunnett’s test are Dunnett and Tamhane (1992) and 
Dunnett (2000). 
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E.3.5.5 Confidence interval for effect at NOEC from Dunnett's test  

A general method is discussed above for simultaneous confidence intervals for effect size at all concentrations 
included in the experiment. A simple confidence interval for the difference between the mean effect at the 
NOEC and at the control comes immediately from the test statistic. A 95 % confidence interval for that 
difference is given by 

00
0

1 1*ii
i

x x T s
n n

µ µ− = − ± +  

where  

T is the two-sided upper α equicoordinate point of a k-variate t-distribution with correlations defined 
above, and  

df = n0 + ni + ni . . .  + nk-1 −k. 

Simple arithmetic can convert this into a confidence interval for the percent effect. This can also be given in 
one-sided form, where appropriate. 

E.3.5.6 Example 5 — Dunnett's test 

The data from Example 1 were re-analysed using Dunnett’s test. As shown below, the NOEC is still dose 2 
when the analysis unit is the individual subject.  

Shapiro-Wilk Test for Normality 
  SW_STAT      SW_P     SIGNIF 
  0.98735    0.92077 
 
Data are normally distributed, so a parametric analysis can be done. Levene's test is done to determine 
whether to use standard or robust ANOVA. 

LEVENE TEST FOR  Y 
DF     LEVENE    P_VALUE 
 5    0.86180    0.51220 

By Levene's test, the within-group variances are equal. A standard ANOVA is done. 

 
DOSE LSMEAN SERR     DIFF SE_DIFF DF  T    ADP_P  SIGNIF 
   0 53.10 1.70910   0.00  .     .     .    . 
  10 52.70 2.29299  -0.40 2.8599 59  -0.14 1.0000 
  25 45.20 2.41703  -7.90 2.9602 59  -2.67 0.0443 ** 
  60 47.10 2.29299  -6.00 2.8599 59  -2.10 0.1653 
 150 44.80 2.29299  -8.30 2.8599 59  -2.90 0.0241 ** 
1000 46.60 2.56364  -6.50 3.0811 59  -2.11 0.1613 
 
The above analysis used individual daphnia as the experimental unit for analysis. If the analysis is repeated 
assuming the subgroup structure as shown in replicate A, the result is quite different, as discussed under the 
Jonckheere-Terpstra test example. 
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E.3.6 Dunn’s test  

E.3.6.1 General 

While Dunn’s test is often described in texts as a way of comparing all possible pairs of treatment groups, her 
original paper (Dunn 1964) provided a means of estimating any number of general contrasts and adjusting for 
the number of contrasts estimated. For present purposes, we shall describe only comparisons of treatments to 
a common control. The procedure is to rank the combined treatment groups, using the mean rank for tied 
responses.  

Compute the mean rank, Ri, for each treatment group. Compute the combined sample size, N, and the 
individual sample sizes ni. Finally, compute the variance of Ri − R0 as follows. 

3

0
0

( )( 1) 1 1
12 12( 1)i

i

t tN NV
N n n

⎡ ⎤− ⎡ ⎤+⎢ ⎥= − +⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

∑  

where the sum is over all distinct responses and t is the number of observations tied at that response. 

The test statistic 

0

0

i

i

R R
Z

V
−

=  

is compared to a standard normal distribution at p = 1 − α/k,  

where 

k is the number of comparisons to control; and  

α is 0,05 or 0,025, according as a one- or two-sided test is used. 

E.3.6.2 Advantages of Dunn’s test  

This test is based on ranks, and thus is robust against a wide variety of distributions and heteroscedasticity. It 
is also flexible, so that arbitrary contrasts can be tested, not just comparisons of treatments to control. 
However, this latter is no advantage in a standard dose-response experiment. 

E.3.6.3 Disadvantages of Dunn’s test  

This test does not permit modelling multiple sources of variances (e.g. within- and between-subgroups). The 
Bonferroni-Holm adjustment for multiple comparisons is statistically conservative. There is no exact 
permutation counterpart to this test, so it is not useful for very small samples or experiments with massive ties 
among the response values. 

E.3.6.4 Power of Dunn’s test  

Dunn (1964) describes an extreme situation, where all but one of k population means equal the control, but 
that every observation in that treatment group exceeds every observation in the control. The power of her two-
sided test to detect this difference is approximately 

1 / 2
( 1) / 2

61
[( 1) 1][ 2]

12

k
k knz kn

k n k

α
Φ

−
⎡ ⎤+

−⎢ ⎥
⎢ ⎥−
⎢ ⎥− + −
⎢ ⎥
⎣ ⎦

, 

where n is the common within-group sample size. 
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For a one-sided test, the divisor 2k in the subscript of z is replaced by k. 

The power of Dunn’s test depends on the specific alternative, as is the case for other procedures. 
Nevertheless, the above provides an approximate power that can be used for design assessment purposes. 

E.3.7  Mann-Whitney test 

E.3.7.1  General 

The Mann-Whitney rank sum test compares the ranks of measurements in two independent random samples 
of n1 and n2 observations and aims to detect whether the distribution of values from one group is shifted with 
respect to the distribution of values from the other. It is equivalent to the Wilcoxon test. 

To use the Mann-Whitney rank sum test, we first rank all (n1 + n2 ) observations, assigning a rank of 1 to the 
smallest, 2 to the second smallest, and so on. Tied observations (if they occur) are assigned ranks equal to 
the average of the ranks of the tied observations. Then the ranks of the observations in each group are 
summed and designated as T1 and T2. If the distributions in the two groups are identical, then T1 and T2 would 
be identical. If the two distributions differ, then the difference between T1 and T2 is dissimilar, with the rank 
sums indicating the degree of overlap between the groups. There are one-tailed and two-tailed versions of the 
test, as well as small sample and large-sample (asymptotic) versions. 

For the one-tailed test, the test statistic is T1 if n1 < n2 or T2 if n2 W n1. The rejection region is T1 W TU, if T1 is 
test statistic; or T2 u TL, if T1 is test statistic. The values of TU and TL can be obtained from tables available in 
many statistics texts.  

If n1 W 10 and n2 W 10, then the large-sample approximation can be used. In this case the test statistic is 

( )

( )

1 2 1 1
1

1 2 1 2

1
2

1
12

n n n n
T

z
n n n n

⎡ ⎤+ +
− ⎢ ⎥

⎢ ⎥⎣ ⎦=
+ +

 

The rejection region is z < − zα (or z > zα) for the one-tailed tests and z < − zα /2 or z > zα /2 for the two-tailed test. 
If more than one comparison is to be made, then an adjustment in the critical values is made, such as the 
Bonferroni-Holm correction discussed in 5.1.4.2. Tables of the probability of the z statistic are available in most 
statistics texts. 

The assumptions of the Mann-Whitney rank-sum test are only that samples shall be independent, and 
distributions of values shall be symmetrical. The Mann-Whitney is nearly as efficient as the t-test when data 
are normally distributed with equal variances, and is generally more efficient when the test data fail to meet 
the assumptions for the t-test. 

E.3.7.2 Advantages of Mann-Whitney test  

This test is based on ranks, and thus is robust against a wide variety of distributions and heteroscedasticity. 
There is an exact permutation version of this test, so it can be used for very small samples or where there are 
massive ties in the response values. 

E.3.7.3 Disadvantages of Mann-Whitney test  

This test does not permit modelling multiple sources of variances (e.g. within- and between-subgroups). The 
Bonferroni-Holm adjustment for multiple comparisons is statistically conservative, whereas an unadjusted 
multiple comparison procedure has an unacceptable type I error. The usual large-sample version of this test 
has low power for small samples. 
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E.3.7.4 Power of Mann-Whitney test  

An approximate power of the Mann-Whitney test for comparing two normal populations can be derived from 
the power of the t-test from the fact that the asymptotic relative efficiency (A.R.E) of the Mann-Whitney relative 
to the t-test is about 0,95. The meaning of this is that the sample size, Nu, required to give an equal power 
using the Mann-Whitney as using the t-test, is Nu/A.R.E. It should be cautioned that this is an asymptotic 
result and it obviously does not apply when the distribution is not normally distributed. There are a number of 
computer programs that computes power of this test. These include StatXact, PASS, and Study Size28). The 
second of these can be found at http://www.ncss.com. The third is available at StudySize@CreoStat.com. A 
simple search of the internet locates several such sites, some of which have free downloads. 

General Admonition: An additional practical caution for practitioners concerns the difficulty of explaining 
certain technical details to non-statisticians. For example, means are easier to explain than medians and 
untransformed responses are much easier to communicate than transformed ones. Plots can sometimes 
convey more than many paragraphs. In general, technical details should be presented sparingly. For example, 
explaining amalgamated means to non-statisticians has on some occasions led to serious and unhelpful 
resistance to acceptance of conclusions. It is probably best to avoid such details in reports and presentations. 

As these examples show, we should not conclude that one method invariably gives lower NOECs than the 
others, nor should this be the criterion by which to judge a method. The selection of a method should be 
driven by biological and statistical considerations and then, a consistent analysis protocol should be used to 
avoid the appearance of selecting a method to give the desired answer. What this example suggests is that 
care shall be taken in selecting statistical methods. In general, preference is given to step-down methods that 
actively use the expected monotone dose-response nature of the data. 

E.4 Power of step-down Jonckheere-Terpstra test 

Interpretation of the power curves The vertical axis is the power or probability (expressed as a percent) of 
finding a significant effect if the true effect is of the magnitude given on the horizontal axis. For a given sample 
size, the first power curve is for the first step in a 6-concentration experiment and is labelled PCT61 (see 
Figure E.15). That is, it shows the power of finding a significant effect at the high concentration of an 
experiment with six concentrations plus control, when the true effect at that concentration is as shown. The 
horizontal axis is in terms of standard deviation units. Thus, delta = 1 means the true effect is 1 standard 
deviation away from the mean. The horizontal axis is labelled delta6, delta5, etc, but the numerical suffix is 
software-generated for reasons of no importance here and should be ignored. 

The second plot (Figure E.16) for a given sample size shows two curves. One is for the second step of a six-
concentration experiment and is labelled PCT62. That is, it gives the power of finding a significant effect at the 
second highest concentration of an experiment with six concentrations plus control, when the true effect at 
that concentration is as shown. The other is for the first step of a 5-concentration experiment and is labelled 
PCT51. That is, it gives the power of finding a significant effect at the highest concentration of an experiment 
with five concentrations plus control, when the true effect at that concentration is as shown. 

The third plot (Figure E.17) of a given sample size is for the third step in a six-concentration experiment and is 
labelled PCT63, the second step in a 5-concentration experiment (PCT52) and the first step in a 
4-concentration experiment (PCT41). 

To use these plots to determine the percent change from control, it should be possible to detect with a given 
experiment, we need additional information. Suppose we want the power of detecting a 100 % change from 
the mean.  

                                                      

28) StatXact, PASS, and Study Size are examples of suitable products available commercially. This information is given 
for the convenience of users of this Technical Specification and does not constitute an endorsement by ISO of these 
products. 
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Thus, if µ0 is the control mean and µ1 is a treatment mean, we want the power of detecting a shift of 

1 0 0pµ µ µ− =  

or 

0
1 0 CV

pp
µ

µ µ σ σ
σ

− = =  

where 

CV .σ
µ

=  

Here CV is the coefficient of variation.  

NOTE The coefficient of variation is often expressed as a percent, which is CV (as written) multiplied by 100 %. 

EXAMPLE Determine the power of detecting a 25 % change from the control when the CV = 0,2 (or 20 %). The shift 
in standard deviation units is given by 

0,25shift 1,25 .
CV 0,2

p
= = =  

The power can then be read from the plot using DELTA = 1,25 on the horizontal axis. 

While it might have been helpful to have presented the power curves in terms of percent shift from the control 
mean directly, it would have been necessary to present power curves for a range of CVs, which would require 
much more space. Consider a 6-dose experiment (5 positive concentrations plus control) with 10 experimental 
units per concentration. From the first of the plots below (reproduced from below), one sees that the power of 
declaring significant an effect at the highest concentration is approximately 88 %. 

 

Figure E.15 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 10 
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The power of declaring significant this size effect in the second highest concentration is obtained from the next 
plot and is seen to be about 84 %. 

 

Figure E.16 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step 1, N = 10 

The power of declaring significant this sized effect at the third highest concentration is about 80 %, as seen 
from the next plot. So, there is small drop in power as one steps down through the concentrations. This is to 
be expected, as there is less information in the reduced number of concentrations under investigation. This 
plot also shows that it is not the step-down process itself that accounts for the small decrease in power, since 
this plot also shows that the power to detect this size effect in the second highest concentration in a 5-dose 
experiment, and the power to detect this sized effect in at the highest concentration in a 4-dose experiment, 
are very nearly the same. Rather, it is the number of concentrations remaining at this stage. 

 

Figure E.17 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 10 

Additional information, and another example, on the use of these power curves is given in E.3.3 in the 
discussion of the Jonckheere-Terpstra test. 
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Figure E.18 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step 1, N = 5 

 

Figure E.19 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 5 
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Figure E.20 — Power of step-down Jonckheere test: (Doses,Step) = (6,4) (5,3)(4,2) (3,1), N = 5 

 

Figure E.21 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 5 
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Figure E.22 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 10 

 

Figure E.23 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step 1, N =10 
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Figure E.24 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 10 

 

Figure E.25 — Power of step-down Jonckheere test: (Doses, Step) = (6,4) (5,3) (4,2) (3,1), N = 10 
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Figure E.26 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 20 

 

Figure E.27 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step 1, N = 20 
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Figure E.28 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 20 

 

Figure E.29 — Power of step-down Jonckheere test: (Doses, Step) = (6,4) (5,3) (4,2) (3,1), N = 20 
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Figure E.30 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 40 

 

Figure E.31 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step 1, N = 40 
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Figure E.32 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 40 

 

Figure E.33 — Power of step-down Jonckheere test: (Doses, Step) = (6,4) (5,3) (4,2) (3,1), N = 40 
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Figure E.34 — Power of step-down Jonckheere test: 6 doses at Step 1, N = 80 

 

Figure E.35 — Power of step-down Jonckheere test: 6 doses at Step 2 versus 5 doses at Step, N = 80 
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Figure E.36 — Power of step-down Jonckheere test: 6 doses at Step 3 versus 5 doses at Step 2 versus 
4 doses at Step 1, N = 80 

 

Figure E.37 — Power of step-down Jonckheere test: (Doses, Step) = (6,4) (5,3) (4,2) (3,1), N = 80 
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Annex F 
(informative) 

 
Annex to Clause 7 “Biology-based methods” 

F.1 General 

This annex specifies the models for bioassays on survival/immobilization, body growth, reproduction and 
population growth. Biology-based methods put emphasis on the story behind the model, rather than the model 
itself; the derivation from underlying mechanistic assumptions is not given here, however. The assumptions 
themselves are given in the main text. 

The dimensions and interpretations of all variables and parameters are given in tables for each type of 
bioassay. The dimensions are indicated with symbols that have the following interpretation: 

Table F.1 — Symbols interpretation 

symbol interpretation 

- dimensionless 
t time 

l length 

# number 

F.2 Effects on survival 

The target parameter is the hazard rate. At time 1
0 0ln{1 / }et k c c−= − −  the survival probability starts to deviate 

from the control for 0c c> . The survival probability, Psurv, is given by 

( ) ( ){ }surv 0 e 0 e k e k 0 0( , ) exp exp exp / ( )( )P t c h t c k t k t b k b c c t t⎡ ⎤= − + − − − − − −⎡ ⎤⎣ ⎦⎣ ⎦  if 0c c>  and 0t t> ; 

or 

( )surv 0( , ) expP t c h t= −  if 0c c< or 0t t< . 

DEBtox estimates up to four parameters from bioassay data. The variables and parameters are the following. 

Table F.2 — Variables and parameters 

Variable Units Interpretation 

t  exposure time 
c mol l−3 external concentration 

q — survival probability 

Parameters   

h0 t−1 control mortality rate 

c0 mol l−3 NEC 

bk mol−1 l3 t−1 killing rate 

ke t−1 elimination rate 
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Effects on body growth 

Growth depends on the concentration of the compound in the tissue. This concentration is treated as a hidden 
variable and scaled to remove a parameter (the Bioconcentration Factor, kBCF). The scaled tissue-
concentration, qc , relates to the tissue-concentration, qC , as /q qc C= kBCF. The scaled tissue-concentration 
has the dimension of an external concentration, but is proportional to the tissue-concentration. The change in 
scaled tissue-concentration is 

d d
d d

3 q m
q e qt t

e m

c Lc k c c L
k L L

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 with (0) 0qc = . 

The third term in the second factor accounts for the dilution by growth; the change in body length depends on 
the mode of action of the compound and is specified below. The three modes of action are expressed in terms 
of the dimensionless “stress” function 

( )1
* 0( ) max 0,q qs c c c c−= −  

The modes of action are 

⎯ direct effects on body growth: target parameter is the conversion efficiency from reserve to structure 

d
d

1( )
1 1 ( )B mt

q

gL r L L
g s c

+
= −

⎡ ⎤+ +⎣ ⎦
 with 0(0)L L= . 

⎯ effects on maintenance: target parameter is the specific maintenance costs. 

{ }d
d 1 ( )B m qt L r L L s c⎡ ⎤= − +⎣ ⎦  with 0(0)L L= . 

⎯ effects on assimilation: target parameter is the maximum specific assimilation rate 

{ }d
d 1 ( )B m qt L r L s c L⎡ ⎤= − −⎣ ⎦  with 0(0)L L= . 
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DEBtox fixes three parameters at default values, and estimates up to four parameters from bioassay data. 
The variables and parameters are the following. 

Table F.3 — Variables and parameters 

Variables Units Fix Interpretation 

t —  exposure time 
c mol l−3  external concentration 

cq mol l−3  scaled internal concentration 

L   body length 
s(cq) —  stress function 

Parameters    

L0  + initial body length 

Lm  − maximum body length 

g — + energy investment ratio 
rB t−1 + von Bertalanffy growth rate 

c0 mol l−3 − NEC 

c* mol l−3 − tolerance concentration 

ke t−1 − Elimination rate 

Effects on reproduction 

Body length is treated as a hidden variable and scaled to remove a parameter (maximum length mL ); scaled 
length relates to length as / ml L L= . The reproduction rates are given as a function of scaled length, and 
external concentration. The scaled length and scaled internal concentration are given as differential equations. 
Their solutions are functions of time and external concentration. The endpoint in the Daphnia reproduction 
bioassay is the cumulated number of offspring, rather than the reproduction rate. This number N relates to the 
reproduction rate R as 

( )
0

( , ) ( ),
t

N t c R l s c ds= ∫  or d
d ( ),t N R l t c= ⎡ ⎤⎣ ⎦  with (0, ) 0N c = . 

The reproduction rate in the control amounts to 

2 3
3( ,0)

11
m

p
p

R g lR l l l
gl

⎛ ⎞+
= −⎜ ⎟+− ⎝ ⎠

 for pl l> ; ( ,0) 0R l =  for pl l< , where /p p ml L L=  

Growth and reproduction depend on the concentration of the compound in the tissue. The change in scaled 
tissue-concentration is 

( )1d d
d d3 /q e q q et tc k c c c k l l−= − −  with (0) 0qc = . 

The third term in the second factor accounts for the dilution by growth. The reproduction and growth rates 
depend on the mode of action, and are specified below. The effects are expressed in terms of the 
dimensionless “stress” function 

( )1
* 0( ) max 0,q qs c c c c−= −  
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For indirect effects on reproduction (namely via effects on assimilation, maintenance or growth), the change in 
scaled body length and the reproduction rate, R(l,c), at scaled body length, l, and external concentration, c, 
are: 

⎯ for effects on assimilation (target parameter is the maximum specific assimilation rate) 

d
d 1 ( )B qt l r s c l⎡ ⎤= − −⎣ ⎦  with 0(0)l l=  

3
( , ) 1 ( ) ( ,0)qR l c s c R l⎡ ⎤= −⎣ ⎦  for pl l>  

⎯ for effects on maintenance (target parameter is the specific maintenance costs) 

{ }d
d 1 1 ( )B qt l r l s c⎡ ⎤= − +⎣ ⎦  with 0(0)l l=  

2
( , ) 1 ( ) ( ,0)qR l c s c R l

−
⎡ ⎤= +⎣ ⎦  for pl l>  

⎯ for effects on growth (target parameter is the conversion efficiency from reserve to structure) 

d
d

1(1 )
1 ( )Bt

q

gl r l
g s c
+

= −
⎡ ⎤+ ⎣ ⎦

 with 0(0)l l=  

2 3
3

1 ( )
( )

1 ( ) 11
pm

p
pp

s c g lRR l l l
s c gl

⎛ ⎞⎡ ⎤+ +⎣ ⎦⎜ ⎟= −
⎜ ⎟⎡ ⎤+ +− ⎣ ⎦⎝ ⎠

 for pl l>  

For direct effects on reproduction, the body growth is not affected and reduces to 

d
d ( )B mt L r L L= −  with 0(0)L L= , or ( )0( ) ( )expm m BL t L L L r t= − − − . 

In scaled body length have 

d
d (1 )Bt l r l= −  with 0(0)l l= , or ( )0( ) 1 (1 )exp Bl t l r t= − − −  

Two types of direct effects on reproduction are delineated: 

⎯ for effects on the survival of (early) offspring (target parameter is the hazard rate of offspring): 

( , ) ( ,0)exp ( )qR l c R l s c⎡ ⎤= −⎣ ⎦  for pl l>  

⎯ for effects on the costs for reproduction (target parameter is the conversion efficiency of reserve from 
mother to offspring): 

1
( , ) ( ,0) 1 ( )qR l c R l s c

−
⎡ ⎤= +⎣ ⎦  for pl l>  
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DEBtox fixes four parameters at default values, and estimates up to four parameters from bioassay data. The 
variables and parameters are the following. 

Table F.4 — Variables and parameters 

Variables Units Fix Interpretation 

t —  exposure time 

c mol l−3  external concentration 

cq mol l−3  scaled internal concentration 

l —  scaled body length 

s(cq) —  stress function 

Parameters    

L0 — + initial scaled body length 

lp — + scaled body length at onset reproduction 

g — + energy investment ratio 

rB t−1 + von Bertalanffy growth rate 

Rm #t−1 − maximum reproduction rate 

c0 mol l−3 − NEC 

c* mol l−3 − tolerance concentration 

ke t−1 − elimination rate 

Effects on population growth 

The number of individuals in a population is partitioned into living and dead ones; the total number is counted 
or measured. The internal concentration is taken to be proportional to the external one, so the stress function 
can be written as 

( )1
* 0( ) max 0,s c c c c−= −  

Three modes of action are delineated: 

⎯ effects on growth costs 

( , ) (0, )exp ( )N t c N c r c t= ⎡ ⎤⎣ ⎦  with 1
0( ) 1 ( )r c r s c −= +⎡ ⎤⎣ ⎦  

⎯ effects on survival (during growth) 

(0) (0)( , ) (0, ) exp ( ) 1
( ) ( )

r rN t c N c r c t
r c r c

⎛ ⎞
= + −⎡ ⎤⎜ ⎟⎣ ⎦

⎝ ⎠
 with 1

0( ) 1 ( )r c r s c −= +⎡ ⎤⎣ ⎦  

⎯ effects on adaptation (i.e. on survival at the start only) 

{ }0( , ) (0, ) exp ( ) 1 exp ( )N t c N c r t s c s c= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

236  © ISO 2006 – All rights reserved
 

DEBtox estimates up to four parameters from bioassay data. The variables and parameters are the following. 

Table F.5 — Variables and parameters 

Variables Units Interpretation 

t — exposure time 
c mol l−3 external concentration 

s(c) — stress function 

Parameters   

N(0,c) # l−3 inoculum size at concentration c 
r0 t−1 control specific pop. growth rate 

c0 mol l−3 NEC 

c* mol l−3 tolerance concentration 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  237

Bibliography 

References to ISO International Standards  

[1] ISO 6341:1996, Water quality — Determination of the inhibition of the mobility of Daphnia magna 
Straus (Cladocera, Crustacea) — Acute toxicity test 

[2] ISO 7346-1:1996, Water quality — Determination of the acute lethal toxicity of substances to a 
freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 1: Static 
method 

[3] ISO 7346-2:1996, Water quality — Determination of the acute lethal toxicity of substances to a 
freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 2: Semi-static 
method 

[4] ISO 7346-3:1996, Water quality — Determination of the acute lethal toxicity of substances to a 
freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 3: Flow-through 
method 

[5] ISO 8692:2004, Water quality — Freshwater algal growth inhibition test with unicellular green algae 

[6] ISO 10229:1994, Water quality — Determination of the prolonged toxicity of substances to freshwater 
fish — Method for evaluating the effects of substances on the growth rate of rainbow trout 
[Oncorhynchus mykiss Walbaum (Teleostei, Salmonidae)] 

[7] ISO 10253, Water quality — Marine algal growth inhibition test with Skeletonema costatum and 
Phaeodactylum tricornutum 

[8] ISO 10706:2000, Water quality — Determination of long term toxicity of substances to Daphnia magna 
Straus (Cladocera, Crustacea) 

[9] ISO 10712:1995, Water quality — Pseudomonas putida growth inhibition test (Pseudomonas cell 
multiplication inhibition test) 

[10] ISO 11267:1999, Soil quality — Inhibition of reproduction of Collembola (Folsomia candida) by soil 
pollutants 

[11] ISO 11268-1:1993, Soil quality — Effects of pollutants on earthworms (Eisenia fetida) — Part 1: 
Determination of acute toxicity using artificial soil substrate 

[12] ISO 11268-2:1998, Soil quality — Effects of pollutants on earthworms (Eisenia fetida) — Part 2: 
Determination of effects on reproduction 

[13] ISO 11268-3:1999, Soil quality — Effects of pollutants on earthworms (Eisenia fetida) — Part 3: 
Guidance on the determination of effects in field situations 

[14] ISO 11269-1:1993, Soil quality — Determination of the effects of pollutants on soil flora — Part 1: 
Method for the measurement of inhibition of root growth 

[15] ISO 11269-2, Soil quality — Determination of the effects of pollutants on soil flora — Part 2: Effects of 
chemicals on the emergence and growth of higher plants 

[16] ISO 11348-1, Water quality — Determination of the inhibitory effect of water samples on the light 
emission of Vibrio fischeri (Luminescent bacteria test) — Part 1: Method using freshly prepared 
bacteria 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

238  © ISO 2006 – All rights reserved
 

[17] ISO 11348-2, Water quality - Determination of the inhibitory effect of water samples on the light 
emission of Vibrio fischeri (Luminescent bacteria test) — Part 2: Method using liquid-dried bacteria 

[18] ISO 11348-3, Water quality — Determination of the inhibitory effect of water samples on the light 
emission of Vibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze-dried bacteria 

[19] ISO 12890:1999, Water quality — Determination of toxicity to embryos and larvae of freshwater fish — 
Semi-static method 

[20] ISO 13829:2000, Water quality — Determination of the genotoxicity of water and waste water using 
the umu-test 

[21] ISO 14593:1999, Water quality — Evaluation of ultimate aerobic biodegradability of organic 
compounds in aqueous medium — Method by analysis of inorganic carbon in sealed vessels (CO2 
headspace test) 

[22] ISO 14669:1999, Water quality — Determination of acute lethal toxicity to marine copepods 
(Copepoda, Crustacea) 

[23] ISO 15522:1999, Water quality — Determination of the inhibitory effect of water constituents on the 
growth of activated sludge microorganisms 

[24] ISO 20079, Water quality — Determination of toxic effect of water constituents and waste water to 
duckweed (Lemna minor) — Duckweed growth inhibition test 

References for Clauses 1 to 4 

[25] AKRITAS, M.G. and VAN KEILEGOM, I. (2001), Nonparametric ANCOVA methods for heteroscedastic 
nonparametric regression models. Journal of the American Statistical Association, 96, pp. 220-231 

[26] ARMITAGE, A.C. and BERRY, G. (1987), Statistical methods in medical Research. Oxford, Blackwell 

[27] ATKINSON, A.C. (1987), Plots, transformations and regression. Oxford: Oxford University press 

[28] AZZALINI, A. and BOWMAN, A.W. (1997), Applied Smoothing Techniques for Data Analysis, Oxford, 
pp. 48-85 

[29] ASTM (2000) - E1847-96, Standard Practice for Statistical Analysis of Toxicity Tests Conducted under 
ASTM Guidelines. ASTM Annual Book of Standards, Vol. 11.05. ASTM, West Conshohocken, 
Pennsylvania 

[30] BELSEY, D.A., KUH, E. and WELSCH, R.E. (1980), Regression diagnostics: Identifying Influential Data 
and Sources of Collinearity. New York: Wiley 

[31] BOX, G.E.P. and COX, D.R. (1964), An analysis of transformations, J. Roy. Statist. Soc., B-26, 
pp. 211-252 

[32] BOX, G.E.P. and HILL, W.J. (1974), Correcting inhomogeneity of variance with power transformation 
weighting, Technometrics, 16, pp. 385-389 

[33] BOX, G.E.P. and TIDWELL, P.W. (1962), Transformations of the independent variables, Technometrics, 
4, pp. 531-550 

[34] CARROLL, R.J., MACA, J.D. and RUPPERT, D. (1999), Nonparametric regression with errors in covariates, 
Biometrika, 86, pp. 541–554 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  239

[35] CHAPMAN, P.F., CRANE, M., WILES, J.A., NOPPERT, F. and MCINDOE, E.C. (1995), Asking the right 
questions: ecotoxicology and statistics. In: Report of a workshop held at Royal Holloway University of 
London, Egham, Surrey, United Kingdom, SETAC Eds, 32 pp. 

[36] CHAPMAN, P.M., CALDWELL, R.S. and CHAPMAN, P.F. (1996), A warning: NOECs are inappropriate for 
regulatory use. Environ. Toxicol. Chem., 15(2), pp. 77-79 

[37] COOK, R.D. and WEISBERG, S. (1982), Residuals and Influence in Regression. New York: Chapman 
Hall 

[38] DRAPER, N.R. and COX, D.R. (1969), On distributions and their transformations to normality, J. Roy. 
Statist. Soc. B-31, pp. 472-476 

[39] EASTON, D. and PETO, J. (2000), Presenting statistical uncertainty in trends and dose–response 
relations. American Journal of Epidemiology, 152, pp. 393–394 

[40] Environment Canada (2003), Guidance document on statistical methods for environmental toxicity 
tests. Fifth draft, Environmental Protection Series, Method development and application section, 
Environmental technology centre, Environmental protection service, Ottawa, Ontario 

[41] FAN, J. and GIBJELS, I. (1996), Local Polynomial Modelling and Its Applications, London: Chapman and 
Hall 

[42] FINNEY, D.J. (1978), Statistical method in biological assay. London., Griffin 

[43] GREEN, P.J. and SILVERMAN, B.W. (1994), Nonparametric Regression and Generalized Linear Models: 
A Roughness Penalty Approach, Chapman and Hall, London 

[44] HARDLE, W. (1991), Smoothing Techniques, London: Springer-Verlag 

[45] HOEKSTRA, J.A. and VAN EWIJK, P.H. (1993), Alternatives for the no-observed-effect level. Environ. 
Toxicol. Chem., 12(2), pp. 187-194 

[46] HOCHBERG, Y. and TAMHANE, A.C. (1987), Multiple comparison procedures, Wiley, New York 

[47] HURLBERT, S.H. (1984), Pseudoreplication and the design of ecological field experiments. Ecological 
Monographs 54, pp. 187-211 

[48] KERR, D.R. and MEADOR, J.P. (1996), Modelling dose response using generalized linear models. 
Environ. Toxicol. Chem., 15(3), pp. 395-401 

[49] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996), The analysis of aquatic ecotoxicity data. VU University 
Press, ISBN 90-5383-477-X 

[50] LASKOWSKJ, R. (1995), Some good reasons to ban the use of NOEC, LOEC and related concepts in 
ecotoxicology. OIKOS, 73(1), pp. 140-144 

[51] MC CULLAGH, P. and NELDER, J.A. (1983), Generalized linear models. London, Chapman and Hall, 
p. 261 

[52] NEWMAN, M.C. (1994), Quantitative Methods in Aquatic Ecotoxicology. Lewis Publishers 

[53] OECD (1998), Report on the OECD workshop on statistical analysis of aquatic toxicity data. Series on 
testing and assessment, N° 10. Environmental Health and Safety Publications. Series on testing and 
Assessment. ENV/MC/CHEM(98)18 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

240  © ISO 2006 – All rights reserved
 

[54] OECD (2000), Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. 
OECD Environmental Health and Safety Publication, Series on Testing and Assessment No. 23. 
Organisation for Economic Cooperation and Development (OECD), Paris. 53 pp. 

[55] PACK, S. (1993), A review of statistical data analysis and experimental design in OECD aquatic 
toxicology Test Guidelines 

[56] PIEGORSCH, W.W. and BAILER, A.J. (1997), Statistics for Environmental Biology and Toxicology, Boca 
Raton, FL: Chapman and Hall/CRC Press 

[57] SILVERMAN, B. (1985), Some aspects of the spline smoothing approach to non-parametric regression 
curve fitting (with discussion). Journal of the Royal Statistical Society, B 47, pp. 1-52 

[58] SMITH-WARNER, S.A., SPIEGELMAN, D., YAUN, S.S., VAN DEN BRANDT, P.A., FOLSOM, A.R., 
GOLDBOHM, R.A., GRAHAM, S., HOLMBERG, L., HOWE, G.R., MARSHALL, J.R., MILLER, A.B., POTTER, J.D., 
SPEIZER, F.E., WILLETT, W.C., WOLK, A. and HUNTER, D.J. (1998), Alcohol and breast cancer in women: 
a pooled analysis of cohort studies. Journal of the American Medical Association, 279, pp. 535-540 

[59] SPARKS, T. (2000), Statistics in Ecotoxicology. John Wiley and Sons, Ltd., West Sussex, England. 
320 pp. 

[60] TUKEY, J.W., CIMINERA, J.L. and HEYES, J.F. (1985), Testing the statistical certainty of a response to 
increasing doses of drug. Biometrics, 41, pp. 295-301 

[61] WILLIAMS, D.A. (1971), A test for differences between treatment means when several dose levels are 
compared with a zero dose control. Biometrics, 27, pp. 103-117 

References for Clause 5 

These references serve both for quantal and continuous response hypothesis testing. Not all references 
included have been cited in the text. The additional references are included to provide the interested reader 
sources to further explore the issues and procedures that have been presented. 

[62] AGRESTI, A. (1990), Categorical Data Analysis, Wiley, New York 

[63] AITKIN, M., ANDERSON, D., FRANCIS, B. and HINDE, J. (1989), Statistical analysis in GLIM, Oxford 
Science Publications, Clarendon Press, Oxford 

[64] AIYAR, R.J., GUILLIER, C.L. and ALBERS, W. (1979), Asymptotic relative efficiencies of rank tests for 
trend alternatives, Journal of the American Statistical Association, 74, pp. 226-231 

[65] ALLDREDGE, J. R. (1987), Sample size for monitoring of toxic chemical sites, Environmental Monitoring 
and assessment, 9, pp. 143-154 

[66] ARMITAGE, P. (1955), Tests for linear trends in proportions and frequencies, Biometrics, 11, 
pp. 375-386 

[67] BARLOW, R.E., BARTHOLOMEW, D.J., BREMMER, J.M. and BRUNK, H.D. (1972), Statistical inference under 
order restrictions, Wiley 1972 

[68] BARTHOLOMEW, D.J. (1961), Ordered tests in the analysis of variance, Biometrika, 48, pp. 325-332 

[69] BAUER, P. (1997), A note on multiple testing procedures in dose finding, Biometrics, 53, pp. 1125-1128 

[70] BERENSON, B.M. (1982a), A comparison of several k sample tests for ordered alternatives in 
completely randomized designs, Psychometrika 47, pp. 265-280 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  241

[71] BERENSON, M.L. (1982b), A study of several useful tests for ordered alternatives in the randomized 
block design, Comm. Statistical (B) 11, pp. 563-581 

[72] BERENSON, M.L. (1982c), Some useful nonparametric tests for ordered alternatives in randomized 
block experiments, Comm. Statistical (A) 11, pp. 1681-1693 

[73] BIRCH, J.B. and MYERS, R.H. (1982), Robust Analysis of Covariance, Biometrics 38, pp. 699-713 

[74] BLISS, C.L. (1957), Some principals of bioassay, Am. Sci. 45, pp. 449-466 

[75] BOX, G.E.P. and COX, D.R. (1964), An analysis of transformations, J. Roy. Statist. Soc., B-26, 
pp. 211-252 

[76] BOX, G.E.P. (1953), Non-normality and tests on variances. Biometrika, 40, pp. 318-335 

[77] BOX, G.E.P. and HILL, W.J. (1974), Correcting inhomogeneity of variance with power transformation 
weighting, Technometrics, 16, pp. 385-389 

[78] BOX, G.E.P. and TIDWELL, P.W. (1962), Transformations of the independent variables, Technometrics, 
4, pp. 531-550 

[79] BRESLOW, N. (1990), Tests of hypotheses in overdispersed Poisson regression and other quasi-
likelihood models, JASA, 85, pp. 565-571 

[80] BRETZ, F. (1999), Powerful modifications of Williams’ test on trends, Dissertation, University of 
Hanover 

[81] BRETZ, F. and HOTHORN, L.A. (2000), A powerful alternative to Williams’ test with application to 
toxicological dose-response relationships of normally distributed data, Environmental and Ecological 
Statistics, 7, pp. 135-254 

[82] BROWN, M. B. and FORSYTHE, A.B. (1974), The small sample behaviour of some statistics which test 
the equality of several means, Technometrics, 16, pp. 129-132 

[83] BUDDE, M. and BAUER, P. (1989), Multiple test procedures in clinical dose finding studies, J. American 
Statistical Association, 84, pp. 792-796 

[84] CAPIZZI, T., OPPENHEIMER, L., MEHTA, H., NAIMIE, H. and FAIR, J.L. (1984), Statistical considerations in 
the evaluation of chronic aquatic toxicity studies, Envir. Sci. Technol., 19, pp. 35-43 

[85] CHASE, G.R. (1974), On testing for ordered alternatives with increased sample size for a control, 
Biometrika, 61, pp. 569-578 

[86] COCHRAN, W.G. (1943), Analysis of variance for percentages based on unequal numbers, JASA, 38, 
pp. 287-301 

[87] COCHRAN, W.G. (1954), Some Methods for Strengthening the Common χ2-Tests, Biometrics, 10, 
pp. 417-451 

[88] COLLETT, D. (1991), Modelling Binary Data, Chapman and Hall, London 

[89] CONOVER, W. J. and IMAN, R.L. (1982), Analysis of Covariance Using the Rank Transform, Biometrics, 
38, pp. 715-724 

[90] CRUMP, K.S., GUESS, H.A. and DEAL, K.L. (1977), Confidence intervals and tests of hypotheses 
concerning dose response relations inferred from animal carcinogenicity data, Biometrics, 33, 
pp. 437-451 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

242  © ISO 2006 – All rights reserved
 

[91] CRUMP, K.S. (1984), A new method for determining allowable daily intakes, Fundam. Appl. Toxicol., 4, 
pp. 854-871 

[92] CRUMP, K.S. (1979), Dose response problems in carcinogenesis, Biometrics, 35, pp. 57-167 

[93] DAVIS, J.M. and SVENDSGAARD, D.J. (1990), U-Shaped Dose-Response Curves: Their Occurrence and 
Implications for Risk Assessment, J. Toxicology and Environmental Health, 30, pp. 71-83 

[94] DRAPER, N.R. and SMITH, H. (1981), Applied Regression Analysis, 2nd edition, Wiley, New York 

[95] DRAPER, N.R. and COX, D.R. (1969), On distributions and their transformations to normality, J. Roy. 
Statist. Soc., B-31, pp. 472-476 

[96] DUNNETT, C.W. (1964), New tables for multiple comparisons with a control, Biometrics, 20, 
pp. 482-491 

[97] DUNNETT, C.W. (1955), A multiple comparison procedure for comparing several treatments with a 
control, J. American Statistical Association, 50, pp. 1096-1121 

[98] DUNNETT, C.W. (2000), Power and Sample Size Determination in Treatment vs. Control Multiple 
Comparisons, Submitted 

[99] DUNNETT, C.W. and TAMHANE, A.C. (1998), New multiple test procedures for dose finding, Journal of 
Biopharmaceutical Statistics, 8, pp. 353-366 

[100] DUNNETT, C.W. and TAMHANE, A.C. (1995), Step-up multiple testing of parameters with unequally 
correlated estimates, Biometrics, 51, pp. 217-227 

[101] DUNNETT, C.W. and TAMHANE, A.C. (1992), A step-up multiple test procedure, Journal of the American 
Statistical Association, 87, pp. 162-170 

[102] DUNNETT, C.W. and TAMHANE, A.C. (1991), Step-down multiple tests for comparing treatments with a 
control in unbalanced one-way layout, Statistics in Medicine, 10, pp. 939-947 

[103] DUNNETT, C.W. (1980), Pairwise multiple comparisons in the unequal variance case, Journal of the 
American Statistical Association, 75, pp. 796-800 

[104] DUNN, O.J. (1964 ), Multiple Comparisons Using Rank Sums, Technometrics, 6, pp. 241-252 

[105] FAIRWEATHER, P.G. (1991), Statistical power and design requirements for environmental monitoring, 
Aust. J. Mar. Freshwater Res., 42, pp. 555-567 

[106] FLEISS, J.L. (1986), The design and analysis of clinical experiments, Wiley, New York 

[107] FREEMAN, M.F. and TUKEY, J.W. (1950), Transformations Related to the Angular and the Square Root, 
Annals of Mathematical Statistics, 21, pp. 607-611 

[108] GAD, S.C. and WEIL, C.S. (1986), Statistics and experimental design for toxicologists, Telford Press, 
Caldwell, NJ, p. 86 

[109] Gaylor, D.W. (1983), The use of safety factors for controlling risk, J. Toxicology and Environmental 
Health, 11, pp. 329-336 

[110] GENZ, A. and BRETZ, F. (1999), Numerical computation of multivariate t-probabilities with application to 
power calculation of multiple contrasts, J. Stat. Comp. Simul., 63, pp. 361-378 

[111] GOOD, P. (1994), Permutation Tests, Springer-Verlag, New York 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  243

[112] HARWELL, M.R. and SERLIN, R.C. (1988), An Empirical Study of a Proposed Test of Nonparametric 
Analysis of Covariance, Psychology Bulletin, 104, pp. 268-281 

[113] HENDERSON, C.R. (1982), Analysis of Covariance in the Mixed Model: Higher-Level, Nonhomogeneous, 
and Random Regressions, Biometrics, 38, pp. 623-640 

[114] HIRJI, K.F. and TANG, M.-L. (1998), A comparison of tests for trend, Commun. Statist. — Theory Meth., 
27, pp. 943-963 

[115] HOCHBERG, Y. and TAMHANE, A.C. (1987), Multiple comparison procedures, Wiley, New York 

[116] HOCKING, R.R. (1985), The Analysis of Linear Models, Brooks/Cole, Monterey, CA 

[117] HOLLANDER, M. and WOLFE, D.A. (1973), Nonparametric Statistical Methods, Wiley, New York 

[118] HOLM, S. (1979), A simple sequentially rejective multiple test procedure, Scand. J. Statist., 6, pp. 65-70 

[119] HOPPE, F.M. ed. (1993), Multiple Comparisons, Selection, and Applications in Biometry, Marcel-Dekker, 
New York 

[120] HOSMER, D. W. and LEMESHOW, S. (1989), Applied logistic regression, Wiley, New York 

[121] HOTHORN, L.A., and HAUSCHKE, D. (2000), Identifying the maximum safe dose: a multiple testing 
approach. J. Biopharmaceutical Statistics 10, pp 15-30 

[122] HSU, J.C. (1992), The Factor Analytic Approach to Simultaneous Confidence Interval for Multiple 
Comparisons with the Best, Journal of Computational Statistics and Graphics, 1, pp. 151-168 

[123] HSU, J. C. and BERGER, R.L. (1999), Stepwise confidence intervals without multiplicity adjustment for 
dose response, and toxicity studies, Journal of the American Statistical Association, 94, pp. 468 482 

[124] HUBERT, J.J., BOHIDAR, N.R. and PEACE, K.E. (1988), Assessment of pharmacological activity, 83-148 
in Biopharmaceutical statistics for drug development, K.E. Peace, ed, Marcel Dekker, New York 

[125] HUBERT, J.J. (1996), Environmental Risk Assessment, Department of Mathematics and Statistics, 
University of Guelph, Guelph, Ontario 

[126] JOHN, P.W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan, New York. 
(especially 4.7) 

[127] JONCKHEERE, A.R. (1954), A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 
p 133 

[128] KLAASSEN, C.D. (1986), Principals of toxicology, Chapter 2 in Casarett and Doull's Toxicology the basic 
science of Poisson, third ed., C.D. Klaassen, M.O. Amdur and J. Doull, editors, MacMillan, New York 

[129] KNOKE, J.D. (1991), Nonparametric Analysis of Covariance for Comparing Change in Randomized 
Studies with Baseline Values Subject to Error, Biometrics, 47, pp. 523-533 

[130] KOCH, G.C., TANGEN, C.M., JUNG, J.-W. and AMARA, I. (1998), Issues for Covariance Analysis of 
Dichotomous and Ordered Categorical Data from Randomized Clinical Trials and Non-Parametric 
Strategies for Addressing Them, Statistics in Medicine, 17, pp. 1863-1892 

[131] KODELL, R.L. and CHEN, J.J. (1991), Characterization of Dose-Response Relationships Inferred by 
Statistically Significant Trend Tests, Biometrics, 47, pp. 139-146 

[132] KORN, E.L. (1982), Confidence Bands for Isotonic Dose-Response Curves, Appl. Statis., 31, pp. 59-63 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

244  © ISO 2006 – All rights reserved
 

[133] LAGAKOS, S.W. and LEWIS, T.A. (1985), Statistical analysis of rodent tumorigenicity experiments, in 
Toxicological Risk Assessment, Volume I Biological and Statistical Criteria, CRC Press, Boca Raton, 
Florida, pp. 149-163 

[134] LEHMANN, E.I. (1975), Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, 
San Francisco 

[135] LITCHFIELD, J.T. and WILCOXON, F. (1949), Simplified method of evaluating dose-effect experiments, 
J. Pharmacol. Exp. Ther., 96, pp. 99-113 

[136] LITTELL, R.C. (2002), Analysis of Unbalanced Mixed Model Data: A Case Study Comparison of 
ANOVA versus REML/GLS, J. Agriculture, Biological, and Environmental Statistics, 7, pp. 472-490 

[137] MARASCUILO, L.A. and MCSWEENEY, M. (1967), Non-parametric post-hoc multiple comparisons for 
trend, Psychol. Bull., 67, pp. 401-412 

[138] MARCUS, R., PERITZ, E. and GABRIEL, K.R. (1976), On closed testing procedures with special reference 
to ordered analysis of variance, Biometrika, 63, pp. 655-660 

[139] MARCUS, R. and PERITZ, E. (1976), Some simultaneous confidence bounds in normal models with 
restricted alternatives, J. Roy. Statistical Soc., Ser. B 38, pp. 157-165 

[140] MARCUS, R. (1976), The powers of some tests of the equality of normal means against an ordered 
alternative, Biometrics 63, pp. 177-183 

[141] MARCUS, R. (1982), Some results on simultaneous confidence intervals for monotone contrasts in one-
way ANOVA model, Commun. Statist., Ser. A 11, pp. 615-622 

[142] MAURER, W., HOTHORN, L.A. and LEHMACHER, W. (1995), Multiple comparisons in drug clinical trials 
and preclinical assays: a priori ordered hypotheses, Biometrie in der chemisch-pharmazeutischen 
Industrie, 6 (Ed. J. Vollmar), pp. 3-18, Stuttgart: Gustav Fischer Verlag 

[143] MCCULLAGH, P. and NELDER, J.A. (1989), Generalized linear models, second edition, Chapman and 
Hall, London 

[144] MEHTA, C. and PATEL, N. (1999), LogXact 4 for Windows, Cytel Software Corporation, Cambridge, MA 

[145] MEHTA, C. and PATEL, N. (1999), StatXact 4 for Windows, Cytel Software Corporation, Cambridge, MA 

[146] MILLER, R.J. (1981), Simultaneous statistical inference, second edition, Springer-Verlag, New York 

[147] MILLIKEN, G.A. and JOHNSON, D.A. (1984), Analysis of Messy Data Volume I: Designed Experiments, 
Lifetime Learning Publications, Belmont, CA 

[148] MORGAN, B.J.T. (1992), Analysis of quantal response data, Chapman and Hall, London 

[149] MUKERJEE, H., ROBERTSON, T. and WRIGHT, F.T. (1987), Comparison of several treatments with a 
control using multiple contrasts, Journal of the American Statistical Association, 82, pp. 902-910. 

[150] ODEH, R.E. (1972), On the power of Jonckheere’s k-sample test against ordered alternatives, 
Biometrika, 59, pp. 467-471. 

[151] ODEH, R.E. (1971), On Jonckheere’s k-Sample Test Against Ordered Alternatives, Technometrics, 13, 
pp. 912-918 

[152] OLEJNIK, S.F. and ALGINA, J. (1984), Parametric ANCOVA and the Rank Transform ANCOVA when 
the Data are Conditionally Non-Normal and Heteroscedastic, Journal of Educational Statistics, 9, 
pp. 129-149 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  245

[153] ORIS, J.T. and BAILER, A.J. (1992), Statistical analysis of the Ceriodaphnia toxicity test: sample size 
determination for reproductive effects, Environmental Toxicology and Chemistry, 12, pp. 85-90 

[154] PERITZ, E. (1970), A note on multiple comparisons, unpublished manuscript, Hebrew University 

[155] PERITZ, E. (1965), On inferring order relations in analysis of variance, Biometrics, 21, pp. 337-344 

[156] POON, A.H. (1980), A Monte-Carlo study of the power of some k-sample tests for ordered binomial 
alternatives, J. Statist. Comp. Simul., 11 

[157] POTTER, R.W. and STURM, G.W. (1981), The Power of Jonckheere’s Test, The American Statistician, 
35, pp. 249-250 

[158] POTTHOFF, R.F. and WHITTINGHILL, M. (1966), Testing for homogeneity I. The binomial and multinomial 
distributions, Biometrika, 53, pp. 167-182 

[159] PURI, M.L. (1965), Some distribution-free k-sample rank tests of homogeneity against ordered 
alternatives, Commun. Pure Applied Math., 18, pp. 51-63 

[160] PURI, M.K. and SEN, P.K. (1985), Nonparametric Methods in General Linear Models, Wiley, New York 

[161] QUADE, D. (1982), Nonparametric Analysis of Covariance by Matching, Biometrics, 38, pp. 597-611 

[162] RAO, J.N.K. and SCOTT, A.J. (1992), A simple method for the analysis of clustered binary data, 
Biometrics, 48, pp. 577-585 

[163] ROBERTSON, T., WRIGHT, F.T. and DYKSTRA, R.L. (1986), Advances in order-restricted statistical 
inference, Springer-Verlag 

[164] ROBERTSON, T., WRIGHT, F.T. and DYKSTRA, R.L. (1988), Order restricted statistical inference, Wiley 

[165] RODDA, B.E., TSIANCO, M.C., BOLOGNESE, J.A. and KERSTEN, M.K. (1988), Clinical development. In 
Biopharmaceutical statistics for drug development, K. E. Peace, ed., Marcel Dekker, New York, 
pp. 273-328 

[166] ROM, D. M., COSTELLO, R.J. and CONNELL, L.T. (1994), On closed test procedures for dose-response 
analysis, Statistics in Medicine, 13, pp. 1583-1596 

[167] ROSSINI, A. (1995, 1997), Nonparametric Statistical Methods: Supplemental Text 

[168] ROTH, A.J. (1983), Robust trend tests derived and simulated analogs of the Welch and Brown-
Forsythe tests, Journal of the American Statistical Association, 78, pp. 972-980 

[169] RUBERG, S.J. (1989), Contrasts for identifying the minimum effective dose, Journal of the American 
Statistical Association, 84, pp. 816-822 

[170] ROTHMAN, K.J. (1978), A show of confidence, New England Journal of Medicine, 299, pp. 1362-1363 

[171] SALSBURG, D.S. (1986), Statistics for Toxicologists, Marcel Dekker, New York, pp. 85-86 

[172] SASABUCHI, S. and KULATUNGA, D.D.S. (1985), Some approximations for the null distribution of the 2E  
statistic used in order-restricted inference, Biometrika, 72 

[173] SCHOENFELD, D. (1986), Confidence intervals for normal means under order restrictions, with 
applications to dose-response curves, toxicology experiments and low dose extrapolation, Journal of 
the American Statistical Association, 81, pp. 186-195 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

246  © ISO 2006 – All rights reserved
 

[174] SEAMAN, S.L., ALGINA, J. and OLEJNIK, S.F. (1985), Type I Error Probabilities and power of the Rank 
and Parametric ANCOVAL Procedures, Journal of Educational Statistics, 10, pp. 345-367 

[175] SEARLE, S.R. (1987), Linear Models for Unbalanced Data, Wiley, New York 

[176] SELWYN, M.R. (1988), Preclinical Safety Assessment, in K. E. Peace, ed., Biopharmaceutical Statistics 
for Drug Development, Marcel Dekker, New York 

[177] SHAPIRO, S.S. and WILK, M.B. (1965), An analysis of variance test for normality (complete samples). 
Biometrika, 52, pp. 591-611 

[178] SHIRLEY, E.A. (1979), The comparison of treatment to control group means in toxicology studies, 
Applied Statistics, 28, pp. 144-151 

[179] SHIRLEY, E.A.C. (1981), A Distribution-free Method for Analysis of Covariance Based on Ranked Data, 
Applied Statistics, 30, pp. 158-162 

[180] SHOEMAKER, L.H. (1986), A Nonparametric Method for Analysis of Variance, Comm. Statist.-Simula., 
15, pp. 609-632 

[181] SIMPSON, D.G. and MARGOLIN, B.H. (1986), Recursive nonparametric testing for dose-response 
relationships subject to downturns at high doses, Biometrika, 73 

[182] STEPHENSON, W.R. and JACOBSON, D. (1988), A Comparison of Nonparametric Analysis of Covariance 
Techniques, Communications in Statistics — Simulations, 17, pp. 451-461 

[183] SWALLOW and WILLIAM H. (1984), Those overworked and oft-misused mean separation procedures-
Duncan’s, LSD, etc., Plant Disease, 68, pp. 919-921 

[184] TAMHANE, A.C. (1979), A comparison of procedures for multiple comparison of means with unequal 
variances, Journal of the  American Statistical Association, 74, pp. 471-480 

[185] TAMHANE, A. and DUNNETT, C.W. (1996), Multiple test procedures for dose finding, Biometrics, 52, 
pp. 21-37  

[186] TAMHANE, A.C, DUNNETT, C.W., GREEN, J.W. and WETHERINGTON, J.D. (2001), Multiple Test 
Procedures for Identifying a Safe Dose, JASA, 96, pp. 835-843 

[187] TARONE, R.E. and GART, J.J. (1980), On the robustness of combined tests for trends in proportions, 
JASA, 75, pp. 110-116 

[188] THALL, P.F. and VAIL, S.C. (1990), Some Covariance Models for Longitudinal Count Data with 
Overdispersion, Biometrics, 46, pp. 657-671 

[189] THOMAS, P.C. (1983), Nonparametric estimation and tests of fit for dose response relations, Biometrics, 
39, pp. 263-268. 

[190] TOFT, C.A. and SHEA, P.J. (1983), Detecting community-wide patterns: estimating power strengthens 
statistical inference, The American Naturalist, 122, pp. 618-625 

[191] TUKEY, J.W., CIMINERA, J.L. and HEYES, J.F. (1985), Testing the statistical certainty of a response to 
increasing doses of a drug, Biometrics, 41, pp. 295-301 

[192] TUKEY, J.W. (1977), Exploratory Data Analysis, Addison-Wesley, Reading, MA 

[193] TANGEN, C.A. and KOCH, G.C. (1999), Nonparametric Analysis of Covariance for Hypothesis Testing 
with Logrank and Wilcoxon Scores and Survival-Rate Estimation in a Randomized Clinical Trial, 
Journal of Biopharmaceutical Statistics, 9, pp. 307-338 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  247

[194] TANGEN, C.A. and KOCH, G.C. (1999), Complementary Nonparametric Analysis of Covariance for 
Logistic Regression in a Randomized Clinical Trial, Journal of Biopharmaceutical Statistics, 9, 
pp. 45-66 

[195] U.S.EPA (1995), The Use of the Benchmark Dose Approach in Health Risk Assessment, Risk 
Assessment Forum, EPA/630/R-94/007, United States Environmental Protection Agency, Washington, 
DC. Principal authors: K. Crump, B. Allen, E. Faustman 

[196] WELLER, E.A. and RYAN, L.M. (1998), Testing for trend with count data, Biometrics, 54, pp. 762-773 

[197] WESTFALL, P.H. (1999), A course in multiple comparisons and multiple tests, Texas Tech University 

[198] WESTFALL, P.H., TOBIAS, R.D., ROM, D., WOLFINGER, R.D. and HOCHBERG, Y. (1999), Multiple 
comparisons and multiple tests, SAS Institute, Cary, North Carolina 

[199] WESTFALL, P.H. and YOUNG, S.S. (1993), Resampling-Based Multiple Testing, Wiley, New York 

[200] WILCOX, R.R. (1991), Non-parametric analysis of covariance based on predicted medians, British 
Journal of Mathematical and Statistical Psychology, 44, pp. 221-230 

[201] WILLIAMS, D.A. (1971), A test for differences between treatment means when several dose levels are 
compared with a zero dose control, Biometrics, 27, pp. 103-117 

[202] WILLIAMS, D.A. (1972), The comparison of several dose levels with a zero dose control, Biometrics, 28, 
pp. 519-531 

[203] WILLIAMS, D.A. (1975), The Analysis of Binary Responses from Toxicological Experiments Involving 
Reproduction and Teratotlogy, Biometrics, 31, pp. 949-952 

[204] WILLIAMS, D.A. (1977), Some inference procedures for monotonically ordered normal means, 
Biometrika, 64, pp. 9-14 

[205] WOLFE, R.A., ROI, L.D. and MARGOSCHES, E.H. (1981), Monotone dichotomous regression estimates, 
Biometrics, 37, pp. 157-167 

[206] WRIGHT S.P. (1992), Adjusted P-values for Simultaneous Inference, Biometrics, 48, pp. 1005-1013 

References for Clause 6 

[207] AKAIKE, H. (1974), A New Look at the Statistical Model Identification. IEEE Transaction on Automatic 
Control, AC -19, pp. 716-723 

[208] BAILER, A.J. and ORIS, J.T. (1997), Estimating inhibiting concentrations for different response scales 
using generalized linear models. Environ. Toxicol. Chem., 16, pp. 1554-1559 

[209] BOX, G.E.P. and TIDWELL, P.W. (1962), Transformations of the independent variables, Technometrics, 
4, pp. 531-550 

[210] BOZDOGAN, H. (1987), Model Selection and Akaike's Information Criterion (AIC): The General Theory 
and Its Analytical Extensions. Psychometrika, 52, pp. 345-370 

[211] BRAIN, P. and COUSENS, R. (1989), An equation to describe dose responses where there is stimulation 
of growth at low doses. Weed res., 29, pp. 93-96 

[212] BRUCE, R.D. and VERSTEEG, D.J. (1992), A statistical procedure for modeling continuous toxicity data. 
Environ. Toxicol. Chem., 11, pp. 1485-1494 

[213] COX, D.R. and OAKES, D. (1984), Analysis of survival data. London: Chapman and Hall 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

248  © ISO 2006 – All rights reserved
 

[214] CRUMP, K.S., HOEL, D.G., LANGLEY, C.H. and PETO, R. (1976), Fundamental carcinogenic processes 
and their implications to low dose risk assessment. Cancer Research 36, pp. 2973-2979 

[215] CRUMP, K.S. (1984), “A new method for determining allowable daily intakes”, Fundamental and Applied 
Toxicology, 4, pp. 845-871 

[216] CRUMP, K.S. (1995), Calculation of Benchmark Doses from Continuous Data. Risk Anal., 15, pp. 79-89 

[217] EFRON, B. (1987), Better bootstrap confidence intervals. Journal of the American Statistical Association, 
82, pp. 171-200 

[218] EFRON, B. and TIBSHIRANI, R. (1993), An introduction to the bootstrap. Chapman and Hall, London, UK 

[219] FIELLER, E.C. (1954), Some problems in interval estimation. J. R. Stat. Soc. B., 16, pp. 175-185 

[220] GAYLOR, D.W. and SLIKKER, W. (1990), Risk assessment for neurotoxic effects. NeuroToxicology, 11, 
pp. 211-218 

[221] HOEKSTRA, J.A. (1993), Statistics in Ecotoxicology. PhD thesis, Free University Amsterdam 

[222] MILLER, R.G. (1981), Survival Analysis. New York: Wiley 

[223] MOERBEEK, M., PIERSMA, A.H. and SLOB, W. (2004) - A comparison of three methods for calculating 
confidence intervals for the benchmark approach. Risk Anal., 24, pp. 31-40 

[224] SCHOLZE, M., BOEDEKER, W., FUAST, M., BACKHAUS, T., ALTENBURGE, R. and GRIMME, L.H. (2001), A 
general best-fit method for concentration-response curves and the estimation of low-effect 
concentrations. Environ. Toxicol. Chem., 20, pp. 448-457 

[225] TEUNIS, P.F.M. and SLOB, W. (1999), The Statistical Analysis of Fractions Resulting From Microbial 
Counts. Quantitative Microbiology, 1, pp. 63-88 

[226] SLOB, W. and PIETERS, M.N. (1998), A probabilistic approach for deriving acceptable human intake 
limits and human health risks from toxicological studies: general framework. Risk Analysis, 18, 
pp. 787-798 

[227] SLOB, W. (2003), PROAST - a general software tool for dose-response modelling. RIVM, Bilthoven 

[228] SLOB, W. (2002), Dose-response modelling of continuous endpoints. Toxicol. Sci., 66, pp. 298-312 

[229] TABLEMAN, M. and KIM, J.S. (2004), Survival analysis using S: Chapman and Hall 

References for Clause 7 

[230] ANDERSEN, H.R., WOLLENBERGER, L, HALLING-SORENSEN, B. and KUSK, K.O. (2001), Development of 
copepod nauplii to copepodites — A parameter for chronic toxicity including endocrine disruption. 
Environ. Toxicol. Chem., 20, pp. 2821-2829 

[231] ANDERSEN, J.S., BEDAUX, J.J.M., KOOIJMAN, S.A.L.M. and HOLST, H. (2000), The influence of design 
parameters on statistical inference in non-linear estimation; a simulation study. Journal of Agricultural, 
Biological and Environmental Statistics, 5, pp. 28-48 

[232] ANONYMOUS (1999), Guidance document on application and interpretation of single-species tests in 
environmental toxicology. Report EPS 1/RM/34, Minister of Public Works and Government Services, 
ISBN 0-660-16907-X 

[233] BEDAUX, J.J.M. and KOOIJMAN, S.A.L.M. (1994), Statistical analysis of bioassays, based on hazard 
modelling. Environ. and Ecol. Stat., 1, pp. 303-314 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  249

[234] CHEN, C.W. and SELLECK, R.E. (1969), A kinetic model of fish toxicity threshold. Res. J. Water Pollut. 
Control Feder., 41, pp. 294-308 

[235] COX, D.R. and OAKES, D. (1984), Analysis of survival data. Chapman and Hall, London 

[236] DIAMOND, S.A., NEWMAN, M. C., MULVEY, M. and GUTTMAN, S.I. (1991), Allozyme genotype and time to 
death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of 
populations. Aqua. Toxicol., 21, pp. 119-134 

[237] DIXON, P.M. and NEWMAN, M.C. (1991), Analyzing toxicity data using statistical models for time-to-
death. In: Newman, M. C. and McIntosh, A. W. (eds) An introduction, in metal ecotoxicology, concepts 
and applications. Lewis Publishers, Chelsea, MI 

[238] ELSASSER, W.M. (1998), Reflections on a theory of organisms; Holism in biology. John Hopkins 
University Press, Baltimore 

[239] GERRITSEN, A. (1997), The influence of body size, life stage, and sex on the toxicity of alkylphenols to 
Daphnia magna. PhD-thesis, University of Utrecht 

[240] GARRIC, J, MIGEON, B. and VINDIMIAN, E. (1990), Lethal effects of draining on brown trout. A predictive 
model based on field and laboratory studies. Water Res., 24, pp. 59-65 

[241] HALLAM, T.G., LASSITER, R.R. and KOOIJMAN, S.A.L.M. (1989), Effects of toxicants on aquatic 
populations. In: Levin, S. A., Hallam, T. G. and Gross, L. F. (Eds), Mathematical Ecology. Springer, 
London, pp. 352-382 

[242] HARDING, G.C.H. and VASS, W.P. (1979), Uptake from seawater and clearance of p,p’-DDT by marine 
planktonic crustacea. J. Fish. Res. Board Can., 36, pp. 247-254 

[243] HEUGENS, E.H.W., HENDRIKS, A.J., DEKKER, T., VAN STRAALEN, N.M. and ADMIRAAL, W. (2001), A review 
of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors of use in 
risk assessment. Crit. Rev Toxicol., 31, pp. 247-284 

[244] HEUGENS, E.H.W., JAGER, T., CREYGHTON, R., KRAAK, M.H.S., HENDRIKS, A.J., VAN STRAALEN, N.M. and 
ADMIRAAL, W. (2003), Temperature-dependent effects of cadmium on Daphnia magna: accumulation 
versus sensitivity. Environ. Sci. Tehnol, 37, pp. 2145-2151 

[245] HILL, H.V. (1910), The possible effects of aggregation on the molecules of haemoglobin on its 
dissociation curves. J. Physiol. (London), 40, pp. IV-VII 

[246] HOEVEN N. VAN DER, KOOIJMAN, S.A.L.M. and DE RAAT, W.K. (1990), Salmonella test: relation between 
mutagenicity and number of revertant colonies. Mutation Res., 234, pp. 289-302 

[247] JAGER, T. (2003), Worming your way into bioavailability; modelling the uptake of organic chemicals in 
earthworms. PhD thesis, Utrecht University 

[248] JAGER, T., BAERSELMAN, R., DIJKMAN, E., DE GROOT, A., HOGENDOORN, E., DE JONG, A., KRUITBOSCH, J. 
and PEIJNENBURG, W. (2003), Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia 
Andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Environ. Tox Chem., 22, 
pp. 767-775 

[249] JANSSEN, M.P.M., BRUINS, A., DE VRIES, T.H. and VAN STRAALEN, N.M. (1991), Comparison of Cadmium 
kinetics in 4 soil arthropod species. Arch. Environ. Cont. Toxicol.,20, pp. 305-313 

[250] KIMERLE, R.A., MACEK, K.J., SLEIGHT, B.H. III and BURROWS, M.E. (1981), . Bioconcentration of linear 
alkylbenzene sulfonate (LAS) in bluegill (Lepoma macrochirus). Water Res., 15, pp. 251-256 

[251] KLEPPER, O. and BEDAUX, J.J.M. (1997), Nonlinear parameter estimation for toxicological threshold 
models. Ecol. Mod., 102, pp. 315-324 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

250  © ISO 2006 – All rights reserved
 

[252] KLEPPER, O. and BEDAUX, J.J.M. (1997a), A robust method for nonlinear parameter estimation 
illustrated on a toxicological model Nonlin. Analysis, 30, pp. 1677-1686 

[253] KLOK, C. and DE ROOS, A.M. (1996), Population level consequences of toxicological influences on 
individual growth and reproduction of Lumbricus rubellus (Lumbricidae, Oligochaeta). Ecotoxicol. 
Environm. Saf., 33, pp. 118-127 

[254] KÖNEMANN, W.H. (1980), Quantitative structure-activity relationships for kinetics and toxicity of aquatic 
pollutants and their mixtures for fish. PhD thesis, Utrecht University, the Netherlands 

[255] KOOIJMAN, S.A.L.M. (1981), Parametric analyses of mortality rates in bioassays. Water Res., 15, 
pp. 107-119 

[256] KOOIJMAN, S.A.L.M. (1983), Statistical aspects of the determination of mortality rates in bioassays. 
Water Res., 17, pp. 749-759. 

[257] KOOIJMAN, S.A.L.M. (1985), Toxicity at population level. In: Cairns, J. (ed) Multispecies toxicity, 
Pergamon Press, N.Y. pp. 143-164 

[258] KOOIJMAN, S.A.L.M. (1988), Strategies in ecotoxicological research. Environ. Aspects Appl. Biol., 17 
(1), pp. 11-17 

[259] KOOIJMAN, S.A.L.M. (1997), Process-oriented descriptions of toxic effects. In: Schüürmann, G. and 
Markert, B. (Eds) Ecotoxicology. Spektrum Akademischer Verlag, pp. 483-519 

[260] KOOIJMAN, S.A.L.M. (2000), Dynamic Energy and Mass Budgets in Biological Systems. Cambridge 
University Press 

[261] KOOIJMAN, S.A.L.M. (2001), Quantitative aspects of metabolic organisation; a discussion of concepts. 
Phil. Trans. R. Soc. B, 356, pp. 331-349 

[262] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996), Some statistical properties of estimates of no-effects 
levels. Water Res., 30, pp. 1724-1728 

[263] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996), Analysis of toxicity tests on fish growth. Water Res., 
30, pp. 1633-1644 

[264] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996a), Some statistical properties of estimates of no-effects 
concentrations. Water Res., 30, pp. 1724-1728 

[265] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996b), Analysis of toxicity tests in Daphnia survival and 
reproduction. Water Res., 30, pp. 1711-1723 

[266] KOOIJMAN, S.A.L.M. and BEDAUX, J.J.M. (1996c), The analysis of aquatic toxicity data. VU University 
Press, Amsterdam 

[267] KOOIJMAN, S.A.L.M., BEDAUX, J.J.M. and SLOB, W. (1996), No-Effect Concentration as a basis for 
ecological risk assessment. Risk Analysis, 16, pp. 445-447 

[268] KOOIJMAN, S.A.L.M., BEDAUX, J.J.M., GERRITSEN, A.A.M., OLDERSMA, H. and HANSTVEIT, A.O. (1998), 
Dynamic measures for ecotoxicity. Report of the OECD Workshop on Statistical Analysis of Aquatic 
Toxicity Data OECD Environmental Health and Safety Publications 10, pp. 64-90. Also in: Newman, 
M.C. and Strojan, C., Risk Assessment: Logic and Measurement. Ann Arbor Press, pp 187-224. 

[269] KOOIJMAN, S.A.L.M., HANSTVEIT, A.O. and NYHOLM, N. (1996a), No-effect concentrations in algal 
growth inhibition tests. Water Res., 30, pp. 1625-1632 

[270] KOOIJMAN, S.A.L.M., HANSTVEIT, A.O. and OLDERSMA, H. (1983), Parametric analyses of population 
growth in bioassays. Water Res., 17, pp. 727-738 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

© ISO 2006 – All rights reserved  251

[271] KOOIJMAN, S.A.L.M. and VAN HAREN, R.J.F. (1990), Animal energy budgets affect the kinetics of 
xenobiotics. Chemosphere, 21, pp. 681-693 

[272] LAU, C., ANDERSEN, M.E., CRAWFORD-BROWN, D.J., KAVLOCK, R.J., KIMMEL, C.A., KNUDSEN, T.B., 
MUNEOKA, K., ROGERS, J.M., SETZER, R.W., SMITH, G. and TYL, R. (2000), Evaluation of biologically 
based dose-response modelling for developmental toxicology: A workshop report. Regul. Toxicol. 
Pharmacol., 31, pp. 190-199 

[273] LEEUWEN, I.M.M. and ZONNEVELD, C. (2001), From exposure to effect: a comparison of modelling 
approaches to chemical carcinogenesis. Mutation Res., 489, pp. 17-45 

[274] LEGIERSE, K.C.H.M. and SIJM, D.T.H.M. (1998), Bioconcentration kinetics of chlorobenzenes and the 
organophosphorus pesticide chlorthion in the pond snail Lymnaea stagnalis – a comparison with the 
guppy Poecilia reticulata. Aquat. Toxicol., 41(4), pp. 301-323 

[275] VON LIEBIG, J. (1840), Chemistry in its application to agriculture and physiology. Taylor and Walton, 
London 

[276] MILLER, R. G. (1981), Survival Analysis. Wiley, New York 

[277] MORGAN, B.J.T. (1992), Analysis of quantal response data. Monographs on Statistics and Applied 
Probability 46. Chapman and Hall, London 

[278] MCCULLAGH, P. and NELDER, J.A. (1989), Generalised linear models. Monographs on Statistics and 
Applied Probability 37. Chapman and Hall, London 

[279] MCLEESE, D.W., ZITKO, V. and SERGEANT, D.B. (1979), Uptake and excretion of fenitrothion by clams 
and mussels. Bull. Environ. Contam. Toxicol., 22, pp. 800-806 

[280] MULLER, E.B. and NISBET, R.M. (1997), Modelling the Effect of Toxicants on the Parameters of 
Dynamic Energy Budget Models. In: Dwyer, F. J., Doane, T. R. and Hinman, M. L. (Eds.): 
Environmental Toxicology and Risk Assessment: Modelling and Risk Assessment (Sixth Volume), 
pp. 71-81, American Society for Testing and Materials 

[281] NEWMAN, M.C. (1995), Quantitative methods in aquatic ecotoxicology. Lewis Publ, Boca Raton 

[282] NEWMAN, M.C., DIAMOND, S.A., MULVEY, M. and DIXON, P. (1989), Allozyme genotype and time to death 
of mosquitofish, Gambusia affinis (Baird and Girard) during acute toxicant exposure: A comparison of 
arsenate and inorganic mercury. Aqua. Toxicol., 21, pp. 141-156 

[283] NISBET, R.M., MULLER, E.B., LIKA, K. and KOOIJMAN, S.A.L.M. (2000), From molecules to ecosystems 
through Dynamic Energy Budget models. J. Anim. Ecol., 69, pp. 913-926 

[284] NYHOLM, N. (1985), Response variable in algal growth inhibition tests — Biomass or growth rate? 
Water Res., 19, pp. 273-279 

[285] PÉRY, A.R.R., BEDAUX, J.J.M., ZONNEVELD, C. and KOOIJMAN, S.A.L.M. (2001), Analysis of bioassays 
with time-varying concentrations. Water Res., 35, pp. 3825-3832 

[286] PÉRY, A.R.R., FLAMMARION, P., VOLLAT, B., BEDAUX, J.J.M., KOOIJMAN, S.A.L.M. and GARRIC, J. (2002), 
Using a biology-based model (DEBtox) to analyse bioassays in ecotoxicology: Opportunities and 
recommendations. Environ. Toxicol. and Chem., 21(2), pp. 459-465 

[287] PURCHASE, I.F.H. and AUTON, T.R. (1995), Thresholds in chemical carcinogenesis. Regul. Toxicol. 
Pharmacol., 22: pp. 199-205 

[288] DE RAAT, K., KOOIJMAN, S.A.L.M. and GIELEN, J.W.J. (1987), Concentrations of polycyclic hydrocarbons 
in airborne particles in the Netherlands and their correlation with mutagenicity. Sci. Total Environ., 66, 
pp. 95-114 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TS 20281:2006(E) 

252  © ISO 2006 – All rights reserved
 

[289] DE RAAT, K., DE MEYERE, F.A. and KOOIJMAN, S.A.L.M. (1985), Mutagenicity of ambient aerosol 
collected in an urban and industrial area of the Netherlands. Sci. Total Environ., 44, pp. 17-33. 

[290] REINDERT, K.H., GIDDINGS, J.M. and JUDD, L. (2002), Effects analysis of time-varying or repeated 
exposures in aquatic ecological risk assessment of agrochemicals. Environ. Tox. Chem., 21, 
pp. 1977-1992 

[291] SEGEL, I.W. (1976), Biochemical calculations; how to solve mathematical problems in general 
biochemistry. J. Wiley and Sons, New York 

[292] SETZER, R.W., LAU, C., MOLE, M.L., COPELAND, M.F., ROGERS, J.M. and KAVLOCK, R.J. (2001), Toward 
a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: A 
mathematical construct. Toxicol. Sci., 59, pp. 49-58 

[293] SIBLY, R. M. and CALOW, P. (1989), A life-cycle theory of response to stress. Biol. J. Linn. Soc., 37, 
pp. 101-116 

[294] SPACIE, A. and HAMELINK, J.L. (1979), Dynamics of trifluralin accumulation in river fish. Environ. Sci. 
Technol., 13, pp. 817-822 

[295] SPRAGUE, J.B. (1995), Factors that modify toxicity. In: Rand, G. M. (ed) Fundamentals of aquatic 
toxicology. Taylor and Francis, Washington, pp. 1012-1051 

[296] STUMM, W. and MORGAN, J.J. (1996), Aquatic chemistry. J. Wiley and Sons, New York 

[297] VINDIMIAN, E., RABOUT, C. and FILLION, G. (1983), A method of co-operative and non co-operative 
binding studies using non linear regression analysis on a microcomputer. J. Appl. Biochem., 5, 
pp. 261-268 

[298] WIDIANARKO, B. and VAN STRAALEN, N. (1996), Toxicokinetics-based survival analysis in bioassays 
using nonpersistent chemicals. Environ. Toxicol. Chem., 15, pp. 402-406 

[299] WONG, P.T.S., CHAU, Y.K., KRAMAR, O. and BENGERT, G.A. (1981), Accumulation and depuration of 
tetramythyllead by rainbow trout. Water Res., 15, pp. 621-625 

Reference for Annex B 

[300] OECD (2002), OECD Guidelines for the testing of chemicals - Proposal for Updating Guideline 201: 
Freshwater Alga and Cyanobacteria, Growth Inibition Test. Draft Revised Guideline 201, July 2002 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TS 20281:2006(E) 

ICS  13.060.70 
Price based on 252 pages 

© ISO 2006 – All rights reserved 
 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-


