INTERNATIONAL STANDARD ISO 19649 First edition 2017-03 # Mobile robots — Vocabulary Robots mobiles — Vocabulaire # **COPYRIGHT PROTECTED DOCUMENT** # © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Cor | ntent | ts | Page | | | |-------|-----------------------|---|------|--|--| | | | | iv | | | | Intro | | on | | | | | 1 | Scop | pe | 1 | | | | 2 | Norr | mative references | 1 | | | | 3 | Terms and definitions | | | | | | | 3.1 | General terms related to mobile robots | 1 | | | | | 3.2 | Terms related to locomotive structure | 2 | | | | | 3.3 | Terms related to wheeled robots | 3 | | | | | 3.4 | Terms related to legged robots Terms related to locomotion | 3 | | | | | 3.5 | Terms related to locomotion | 4 | | | | | 3.6 | Terms related to navigation | 6 | | | | Anne | ex A (in | nformative) Examples | 8 | | | | Rihli | iogranl | hv | 10 | | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 299, *Robotics*. # Introduction With the increase of mobile robots in both industrial and non-industrial applications, there is a growing need to define terms relating to mobile robots. ISO 8373 defines fundamental terms relating to robotics, but it does not define terms relating to mobile robots fully. This document defines terms for mobile platforms and mobile robots based on the definitions in ISO 8373:2012. # Mobile robots — Vocabulary # 1 Scope This document defines terms relating to mobile robots that travel on a solid surface and that operate in both industrial robot and service robot applications. It defines terms used for describing mobility, locomotion and other topics relating to the navigation of mobile robots. # 2 Normative references There are no normative references in this document. # 3 Terms and definitions ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at http://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ # 3.1 General terms related to mobile robots # 3.1.1 # mobile robot robot able to travel under its own control Note 1 to entry: A mobile robot can be a *mobile platform* (3.1.2) with or without manipulators. [SOURCE: ISO 8373:2012, 2.13] #### 3.1.2 # mobile platform assembly of all components of the *mobile robot* (3.1.1) which enables *locomotion* (3.1.10) Note 1 to entry: A mobile platform can include a chassis which can be used to support a load. Note 2 to entry: Because of possible confusion with the term "base", it is advisable not to use the term "mobile base" to describe a mobile platform. [SOURCE: ISO 8373:2012, 3.18] # 3.1.3 # mobility ability of the *mobile platform* (3.1.2) to travel within its environment Note 1 to entry: Mobility can be used as a measure, e.g. an *omni-directional mobile mechanism* (3.3.6) usually has higher mobility than a *differential drive* (3.3.7) wheeled mechanism. # 3.1.4 #### steering control of the direction of travel of the *mobile platform* (3.1.2) # ISO 19649:2017(E) # 3.1.5 # configuration set of all joint values that completely determines the shape of the robot at any time [SOURCE: ISO 8373:2012, 3.5] # 3.1.6 # alignment configuration # reference configuration specified *configuration* (3.1.5) of the *mobile platform* (3.1.2) defined by the manufacturer EXAMPLE Zero-steering configuration for a wheeled robot, specified stand-still configuration of a legged robot #### 3.1.7 #### travel surface terrain on which the *mobile robot* (3.1.1) travels [SOURCE: ISO 8373:2012, 7.7] #### 3.1.8 #### travel surface contact area #### ground contact area area of one or more wheels, tracks, or legs in contact with the *travel surface* (3.1.7) #### 3.1.9 # support polygon convex hull of all the travel surface contact areas (3.1.8) # 3.1.10 # locomotion self-propelled travel of the *mobile platform* (3.1.2) #### 3.1.11 #### turret rotating structure mounted on a *mobile platform* (3.1.2) to give independent orientation to any devices attached on the structure # 3.2 Terms related to locomotive structure # 3.2.1 # suspension system or structure which absorbs shock or vibration from the *travel surface* (3.1.7) Note 1 to entry: The purpose of suspension can be to maintain the stability of the *mobile platform* (3.1.2) and to overcome roughness of the travel surface by maintaining contact to the travel surface. #### 3.2.2 # active suspension suspension (3.2.1) whose damping and/or spring characteristics can be controlled #### 3.2.3 # **Zero Moment Point** #### **7.MP** point, on the *support polygon* (3.1.9), with respect to which the moment, resultant from all the forces exerted from the *travel surface* (3.1.7) to the *mobile robot* (3.1.1), has zero components in the horizontal direction # 3.3 Terms related to wheeled robots #### 3.3.1 # steer wheel #### steered wheel wheel whose orientation is controlled to change the direction of travel #### 3.3.2 #### drive wheel # driving wheel wheel that propels the *mobile platform* (3.1.2) #### 3.3.3 # idler wheel follower # trailing wheel wheel that does not propel the mobile platform (3.1.2) and is not actively steered # 3.3.4 # swivel castor #### castor assembly including one or more wheels in a housing which rotates freely around a vertical axis that has a horizontal offset from the wheel's axis of rotation #### 3.3.5 #### omni-directional wheel wheel with rollers attached on its outer surface which allows a displacement in any direction, even perpendicular to the wheel itself EXAMPLE Omniwheels (rollers oriented in 90° angle to the wheel axle), Mecanum wheels (rollers oriented in 45° angle to the wheel axle) Note 1 to entry: An *omni-directional mobile mechanism* (3.3.6) is often constructed using three or more omnidirectional wheels. # 3.3.6 # omni-directional mobile mechanism wheeled mechanism which enables instantaneous travel of the mobile robot (3.1.1) in any direction [SOURCE: ISO 8373:2012, 3.19.] # 3.3.7 # differential drive mechanism and method of motion control in which *drive wheels* (3.3.2) along an axis are controlled independently, the speeds of the wheels effecting translation and the difference thereof effecting rotation Note 1 to entry: This term can also apply to tracked robots. # 3.4 Terms related to legged robots # 3.4.1 #### gait pattern of cyclic motion of the leg(s) for legged *locomotion* (3.1.10) # 3.4.2 # stride length # stride travel distance of legged robot for one cycle of *gait* (3.4.1) # ISO 19649:2017(E) # 3.4.3 # walking period gait period time of one cycle of gait(3.4.1) #### 3.4.4 # leg phase ratio of time delay of the start of *swing state* (3.4.6) of a leg from that of the reference leg to the *walking period* (3.4.3) #### 3.4.5 # support state # stance state state of a leg in which the leg is in contact with the *travel surface* (3.1.7) #### 3.4.6 # swing state # recovery state #### transfer state state of a leg in which the leg is not in contact with the *travel surface* (3.1.7) #### 3.4.7 # duty factor ratio of the duration of the support state (3.4.5) of a leg to the walking period (3.4.3) #### 3.4.8 # gait diagram diagram of cyclic motion of the legs in time for legged *locomotion* (3.1.10) EXAMPLE A gait diagram for crawl *gait* (3.4.1) of a quadruped is shown in Figure A.1. # 3.5 Terms related to locomotion # 3.5.1 # travel surface reaction force # ground reaction force force exerted to the *mobile platform* (3.1.2) from the *travel surface* (3.1.7) through the *travel surface contact area* (3.1.8) # 3.5.2 # travel surface contact pressure # ground contact pressure pressure exerted to the *mobile platform* (3.1.2) from the *travel surface* (3.1.7) with wheels, tracks or legs through the *travel surface contact area* (3.1.8) #### 3.5.3 # overturning moment minimum moment required to overturn a *mobile robot* (3.1.1) from a statically stable *pose* (3.6.1) Note 1 to entry: This moment is dependent on surface conditions, e.g. slope. # 3.5.4 #### traction maximum frictional force that can be produced between *travel surface* (3.1.7) and *mobile robot* (3.1.1) wheels, tracks or legs # 3.5.5 # mobile platform coordinate system coordinate system referenced to one of the components of a mobile platform (3.1.2) Note 1 to entry: ISO 9787:2013, 5.5, specifies a mobile platform coordinate system, O_p - X_p - Y_p - Z_p . The origin of the mobile platform coordinate system, O_p , is the mobile platform origin. The + X_p axis is normally taken in the forward direction of the mobile platform. The + Z_p axis is normally taken in the upward direction of the mobile platform. See Figure A.2 [SOURCE: ISO 8373:2012, 4.7.6, modified – Original Note 1 to entry has been deleted and new Note 1 to entry has been added.] #### 3.5.6 # steer angle angular displacement of the axle of a steer wheel (3.3.1) about the $+Z_p$ axis Note 1 to entry: Steer angle is usually zero when the wheel axle is aligned with Y_p direction of the *mobile platform* (3.1.2). Note 2 to entry: See mobile platform coordinate system (3.5.5). #### 3.5.7 #### forward travel movement of the *mobile platform* (3.1.2) along its $+X_p$ axis Note 1 to entry: See mobile platform coordinate system (3.5.5). # 3.5.8 #### reverse travel # backward travel movement of the *mobile platform* (3.1.2) along its $-X_p$ axis Note 1 to entry: See mobile platform coordinate system (3.5.5). #### 3.5.9 # traverse # lateral travel movement of the *mobile platform* (3.1.2) along its Y_p axis Note 1 to entry: See mobile platform coordinate system (3.5.5). # 3.5.10 # diagonal travel movement of the *mobile platform* (3.1.2) as a combination of *forward travel* (3.5.7)/*reverse travel* (3.5.8) and *traverse* (3.5.9) # 3.5.11 # omni-directional travel movement of the *mobile platform* (3.1.2) whose direction of travel can be changed instantaneously and arbitrarily by means of an *omni-directional mobile mechanism* (3.3.6) #### 3.5.12 # turning movement of the *mobile platform* (3.1.2) causing a change of the orientation of the *mobile platform* coordinate system (3.5.5) Note 1 to entry: Turning is typically accompanied by the change of the direction of travel of the mobile platform. Note 2 to entry: Table A.1 provides a comparison of turning, pivoting (3.5.13) and spinning (3.5.14). # ISO 19649:2017(E) #### 3.5.13 # pivoting # pivot turning rotating with translation during which one wheel, track or leg contact point stays in one place on the *travel surface* (3.1.7) to be used for the centre of *turning* (3.5.12) Note 1 to entry: Table A.1 provides a comparison of turning, pivoting and spinning (3.5.14). #### 3.5.14 # spinning # spin turning in-place rotation, or rotation about the *mobile platform* (3.1.2) origin without translation Note 1 to entry: Table A.1 provides a comparison of turning (3.5.12), pivoting (3.5.13) and spinning. #### 3.5.15 # turning radius radius of curvature of the path of the mobile platform (3.1.2) origin #### 3.5.16 # turning width minimum width of the rectangular passage within which the *mobile platform* (3.1.2) can complete a specific type of *turning* (3.5.12) # 3.5.17 # cornering force force exerted on the *mobile robot* (3.1.1) by centrifugal force when travelling # 3.5.18 # balance control # balance management process of maintaining the static and dynamic stability of the *mobile robot* (3.1.1) # 3.6 Terms related to navigation # 3.6.1 # pose combination of position and orientation in space Note 1 to entry: Pose for the manipulator normally refers to the position and orientation of the end effector or the mechanical interface. Note 2 to entry: Pose for a *mobile robot* (3.1.1) can include the set of poses of the *mobile platform* (3.1.2) and of any manipulator attached to the mobile platform, with respect to the world coordinate system. [SOURCE: ISO 8373:2012, 4.5] #### 3.6.2 # simultaneous localization and mapping # **SLAM** constructing and refining the environment map while using features of the partly constructed map for recognizing the pose (3.6.1) of the mobile robot (3.1.1) travelling within its environment # 3.6.3 #### guidance provision of external information to enable the *mobile robot* (3.1.1) to navigate # 3.6.4 #### path planning planning an ordered set of *poses* (3.6.1) to travel #### 3.6.5 # trajectory planning path planning (3.6.4) with time as parameter #### 3.6.6 # collision dynamic contact resulting in momentum exchange #### 3.6.7 # obstacle avoidance preventing interference, such as approaching, contacting or *collision* (3.6.6), with obstacles by detecting them with external state sensors and adjusting *trajectory planning* (3.6.5) # 3.6.8 #### collision avoidance preventing *collision* (3.6.6) using external state sensors and reacting accordingly #### 3.6.9 # docking process of reaching and/or connecting a station, facility or other *mobile platform* (3.1.2) in order to perform an intended task Note 1 to entry: Examples of intended tasks include charging, exchanging data and transferring payload. # 3.6.10 # inertial navigation system #### INS system that processes data from inertial sensors to calculate the *pose* (3.6.1) and velocity of *mobile platform* (3.1.2) Note 1 to entry: INS usually calculates the pose and velocity employing an inertial measurement unit (IMU) which is composed of a gyroscope and an accelerometer, and additionally a compass. # 3.6.11 #### dead reckoning method of obtaining the *pose* (3.6.1) of a *mobile robot* (3.1.1) using only internal measurements from a known initial pose [SOURCE: ISO 8373:2012, 7.8.] # 3.6.12 # odometry measurement method employing the incremental distance data from internal state sensors to estimate the changes in position over time Note 1 to entry: When not only incremental distance data but also direction information from a compass or inertial navigation system (3.6.10) is employed, dead reckoning (3.6.11) is a proper term rather than odometry. # Annex A (informative) # **Examples** The duty factor is 0.75 for all legs. The leg phases of legs 2, 3, and 4 are 0.75, 0.25, and 0.5, respectively. Figure A.1 — Gait diagram of a typical crawl gait Figure A.2 — Example of mobile platform coordinate system Table A.1 — Comparison of turning, pivoting and spinning | | Turning | Turning | Pivoting | Spinning | |------------------------|---------------------------|---------|---|-----------------------------------| | Differential
drive | • | • | • | • | | Omni-directional drive | • | • | • | • | | Description | Rotating with translation | Turning | Special turning where one of the contact points with the surface acts as a centre of rotation | Rotating without trans-
lation | # **Bibliography** - [1] ISO 8373:2012, Robots and robotic devices Vocabulary - [2] ISO 9283, Manipulating industrial robots Performance criteria and related test methods - [3] ISO 9787:2013, Robots and robotic devices Coordinate systems and motion nomenclatures - [4] ISO 9946, Manipulating industrial robots Presentation of characteristics - [5] ISO 13482, Robots and robotic devices Safety requirements for personal care robots Price code A