

Reference number
ISO 19133:2005(E)

© ISO 2005

INTERNATIONAL
STANDARD

ISO
19133

First edition
2005-10-15

Geographic information — Location-
based services — Tracking and
navigation

Information géographique — Services basés sur la localisation — Suivi
et navigation

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2005
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2005 – All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved iii

Contents Page

Foreword.. viii
Introduction ... ix
1 Scope ... 1
2 Conformance... 1
3 Normative references ... 2
4 Terms and definitions... 2
5 Abbreviated terms and UML notation... 6
5.1 Abbreviated terms .. 6
5.2 UML notation ... 6
6 Tracking ... 7
6.1 Semantics .. 7
6.2 Package: Tracking Service .. 7
6.3 Package: Point Estimates .. 21
6.4 Package: Location Transformation... 26
6.5 Package: Measured Coordinates .. 27
6.6 Package: Linear Reference Systems.. 32
7 Navigation.. 39
7.1 Semantics .. 39
7.2 Cost Functions and algorithms... 41
7.3 Package: Navigation Service... 42
7.4 Package: Cost Function... 55
7.5 Package: Preferences... 68
8 Address Model .. 70
8.1 Semantics .. 70
8.2 Package: Address... 70
8.3 Package: Address Elements.. 74
9 Network.. 85
9.1 Semantics .. 85
9.2 Package: Network Model ... 85
9.3 Package: Turn and Junction.. 89
9.4 Package: Constraint and Advisory ... 95
9.5 Package: Link.. 108
9.6 Package: Network Position.. 111
9.7 Package: Route ... 112
9.8 Package: Combined Networks .. 117
10 Basic implementation packages ... 120
10.1 Package: Feature Data Model.. 120
10.2 Package: New Basic Types.. 124
Annex A (normative) Abstract test suite.. 127
Annex B (informative) Directed weighted graphs and their algorithms ... 134
Annex C (informative) View of Standard in terms of RM-ODP Services... 137
Bibliography ... 139

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

iv © ISO 2005 – All rights reserved

Figures

Figure 1 — Tracking packages ... 7
Figure 2 — Context Diagram: TK_Position ... 8
Figure 3 — Context Diagram: TK_MobileSubscriber ... 9
Figure 4 — Context Diagram: TK_TrackingLocation.. 10
Figure 5 — Context Diagram: TK_TrackingService.. 11
Figure 6 — Context Diagram: TK_PositionType ... 12
Figure 7 — Context Diagram: TK_TrackingLocationSequence .. 13
Figure 8 — Context Diagram: TK_Trigger ... 14
Figure 9 — Context Diagram: TK_PeriodicTrigger ... 15
Figure 10 — Context Diagram: TK_TransitionTrigger.. 16
Figure 11 — Context Diagram: TK_TrackingLocationMetadata.. 17
Figure 12 — Context Diagram: TK_Transition .. 18
Figure 13 — Context Diagram: TK_QualityOfPosition ... 19
Figure 14 — Context Diagram: TK_Accuracy ... 20
Figure 15 — Context Diagram: TK_AccuracyStatement.. 20
Figure 16 — Point Estimate classes... 21
Figure 17 — Geometric interpretations of point estimate types ... 22
Figure 18 — Context Diagram: EG_PointEstimateCircle ... 22
Figure 19 — Context Diagram: EG_PointEstimateEllipse ... 23
Figure 20 — Context Diagram: EG_PointEstimateArc ... 24
Figure 21 — Context Diagram: EG_PointEstimateSphere... 25
Figure 22 — Context Diagram: EG_PointEstimateEllipsoid .. 26
Figure 23 — Context Diagram: LT_LocationTransformationService.. 27
Figure 24 — Measure Position.. 28
Figure 25 — Measured Coordinate Systems... 29
Figure 26 — Context Diagram: MC_MeasurePosition.. 30
Figure 27 — Context Diagram: MC_CoordinateSystem... 30
Figure 28 — Context Diagram: MC_CoordinateReferenceSystem ... 31
Figure 29 — LRS classes .. 32
Figure 30 — Context Diagram: LR_PositionExpression.. 33
Figure 31 — Context Diagram: LR_LinearReferenceMethod .. 35
Figure 32 — Context Diagram: LR_OffsetDirection.. 35
Figure 33 — Context Diagram: LR_ReferenceMarker .. 36
Figure 34 — Context Diagram: LR_Feature... 37
Figure 35 — Context Diagram: LR_Element.. 37
Figure 36— Context Diagram: LR_OffsetExpression... 38
Figure 37 — Navigation Packages.. 39
Figure 38 — Example of route from one link position to another... 40

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved v

Figure 39 — Services... 42
Figure 40 — Context Diagram: NS_NavigationService.. 43
Figure 41 — Context Diagram: NS_RouteRequest... 46
Figure 42 — Context Diagram: NS_Instruction... 48
Figure 43 — Context Diagram: NS_InstructionList .. 49
Figure 44 — Context Diagram: NS_RouteResponse.. 50
Figure 45 — Context Diagram: NS_CostedTurn... 51
Figure 46 — Context Diagram: NS_RenderingService .. 51
Figure 47 — Context Diagram: NS_RenderingRequest ... 52
Figure 48 — Context Diagram: NS_RenderingResponse .. 53
Figure 49 — Context Diagram: NS_RenderingType... 53
Figure 50 — Context Diagram: NS_CostedLink ... 54
Figure 51 — Context Diagram: NS_CostFunctionCode... 54
Figure 52 — Context Diagram: NS_RouteRequestType .. 55
Figure 53 — Context Diagram: NS_CostFunction.. 59
Figure 54 — Context Diagram: NS_CostElements ... 59
Figure 55 — Context Diagram: NS_MonetaryCost ... 60
Figure 56 — Context Diagram: NS_Tolls... 61
Figure 57 — Context Diagram: NS_Fares.. 61
Figure 58 — Context Diagram: NS_Time... 62
Figure 59 — Context Diagram: NS_TravelTime .. 62
Figure 60 — Context Diagram: NS_WaitingTime.. 63
Figure 61 — Context Diagram: NS_Counts... 64
Figure 62 — Context Diagram: NS_NumberManeuvers... 64
Figure 63 — Context Diagram: NS_NumberTurns ... 65
Figure 64 — Context Diagram: NS_NumberTransfers ... 65
Figure 65 — Context Diagram: NS_Distance .. 66
Figure 66 — Context Diagram: NS_WeightedCost ... 67
Figure 67 — Context Diagram: NS_CostFunctionTerm ... 68
Figure 68 — Context Diagram: NS_RoutePreferences .. 68
Figure 69 — Context Diagram: NS_AvoidList... 69
Figure 70 — Leaf packages of the Address Model... 70
Figure 71 — Basic Address classes .. 71
Figure 72 — Context Diagram: AD_Address... 72
Figure 73 — Context Diagram: AD_AbstractAddress.. 72
Figure 74 — Context Diagram: AD_USAddress ... 74
Figure 75 — Context Diagram: AD_AddressElement .. 75
Figure 76 — Context Diagram: AD_Addressee .. 76
Figure 77 — Context Diagram: AD_StreetIntersection .. 76
Figure 78 — Context Diagram: AD_Street... 78

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

vi © ISO 2005 – All rights reserved

Figure 79 — Context Diagram: AD_PostalCode ... 79
Figure 80 — Context Diagram: AD_StreetLocation .. 79
Figure 81 — Context Diagram: AD_PhoneNumber... 80
Figure 82 — Context Diagram: AD_NamedPlace.. 81
Figure 83 — Context Diagram: AD_StreetAddress... 82
Figure 84 — Context Diagram: AD_NamedPlaceClassification .. 82
Figure 85 — Context Diagram: AD_Building... 83
Figure 86 — Context Diagram: AD_MuniQuadrant... 83
Figure 87 — Context Diagram: AD_RegionCode .. 84
Figure 88 — Context Diagram: AD_NumberRange... 85
Figure 89 — Context Diagram: AD_ListNamedPlaces ... 85
Figure 90 — Context Diagram: NT_Network ... 86
Figure 91 — Context Diagram: NT_WayPoint ... 87
Figure 92 — Context Diagram: NT_WayPointList... 88
Figure 93 — Junction and turns ... 89
Figure 94 — Context Diagram: NT_Turn.. 92
Figure 95 — Context Diagram: NT_TurnDirection .. 92
Figure 96 — Context Diagram: NT_Junction... 94
Figure 97 — Context Diagram: NT_JunctionType .. 95
Figure 98 — Context Diagram: NT_AngularDirection .. 95
Figure 99 — Context Diagram: NT_Constraint.. 96
Figure 100 — Context Diagram: NT_VehicleConstraint... 98
Figure 101 — Context Diagram: NT_TemporalConstraint ... 99
Figure 102 — Context Diagram: NT_LaneConstraint ... 100
Figure 103 — Context Diagram: NT_Vehicle ... 101
Figure 104 — Context Diagram: NT_Advisory .. 102
Figure 105 — Context Diagram: NT_SpatialRelation.. 103
Figure 106 — Context Diagram: NT_AdvisoryCategory .. 104
Figure 107 — Context Diagram: NT_AdvisoryElement .. 104
Figure 108 — Context Diagram: NT_ExitAssociation... 105
Figure 109 — Context Diagram: NT_AdvisoryDirection .. 106
Figure 110 — Context Diagram: NT_AdvisoryDistance ... 107
Figure 111 — Context Diagram: NT_AdvisorySpatialRelation .. 107
Figure 112 — Context Diagram: NT_Link .. 110
Figure 113 — Context Diagram: NT_RouteSegmentCategory .. 110
Figure 114 — Context Diagram: NT_LinkPosition .. 111
Figure 115 — Context Diagram: NT_NetworkPosition ... 112
Figure 116 — Context Diagram: NT_Route ... 114
Figure 117 — Context Diagram: NT_RouteSummary... 115
Figure 118 — Context Diagram: NT_Maneuver... 117

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved vii

Figure 119 — Combined Networks .. 117
Figure 120 — Context Diagram: NT_CombinedNetwork ... 118
Figure 121 — Context Diagram: NT_TransferNode.. 119
Figure 122 — Context Diagram: NT_Transfer... 119
Figure 123 — Context Diagram: NT_TransferLink ... 120
Figure 124 — Feature data classes.. 120
Figure 125 — Context Diagram: FD_Feature .. 121
Figure 126 — Context Diagram: FD_FeatureCollection... 122
Figure 127 — Context Diagram: FD_QueryFeatureCollection .. 123
Figure 128 — Context Diagram: FD_FeatureName .. 124
Figure 129 — Context Diagram: VoiceStream .. 125
Figure 130 — Context Diagram: BinaryData ... 125
Figure 131 — Context Diagram: Map... 126
Figure 132 — Context Diagram: Image.. 126
Figure C.1 — Conceptual architecture equating mobile and non-mobile services 137

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

viii © ISO 2005 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19133 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved ix

Introduction

This International Standard is a description of the data and services needed to support tracking and navigation
applications for mobile clients. The web services views of this International Standard are given in Annex C.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO 19133:2005(E)

© ISO 2005 – All rights reserved 1

Geographic information — Location-based services — Tracking
and navigation

1 Scope

This International Standard describes the data types, and operations associated with those types, for the
implementation of tracking and navigation services. This International Standard is designed to specify web
services that can be made available to wireless devices through web-resident proxy applications, but is not
restricted to that environment.

2 Conformance

Conformance to this International Standard takes on two meanings dependent on the type of entity declaring
conformance.

Mechanisms for the transfer of data are conformant to this International Standard if they can be considered to
consist of transfer record or type definitions that implement or extend a consistent subset of the object types
described within this International Standard.

Web servers for tracking and navigation are conformant to this International Standard if their interfaces
implement one or more of the subtypes of service defined in this International Standard and their
communications and messaging are accomplished using a conformant transfer mechanism.

Clauses 6 and 7 of this International Standard use the Unified Modeling Language (UML) to present
conceptual schemas for describing the information and services for tracking and navigation. Clause 8 further
describes a general schema for addresses to be used as location equivalents in three types of services.
Clause 9 describes network data appropriate for these services. This International Standard concerns only
externally visible interfaces and places no restriction on the underlying implementations other than what is
needed to satisfy the interface specifications in the actual situation, such as

⎯ interfaces to software services using techniques such as COM or CORBA;

⎯ interfaces to databases using techniques such as SQL;

⎯ data interchange using encoding as defined in ISO 19118.

Few applications will require the full range of capabilities described by this conceptual schema. This clause,
therefore, defines a set of conformance classes that will support applications whose requirements range from
the minimum necessary to define data structures to full object implementation. This flexibility is controlled by a
set of UML types that can be implemented in a variety of manners. Implementations that define full object
functionality shall implement all operations defined by the types of the chosen conformance class, as is
common for UML designed object implementations. Implementations that choose to depend on external “free
functions” for some or all operations, or forgo them altogether, need not support all operations, but shall
always support a data type sufficient to record the state of each of the chosen UML types as defined by its
member variables. Common names for “metaphorically identical” but technically different entities are
acceptable. The UML model in this International Standard defines abstract types, application schemas define
conceptual classes, various software systems define implementation classes or data structures, and the XML
from the encoding standard (ISO 19118) defines entity tags. All of these reference the same information
content. There is no difficulty in allowing the use of the same name to represent the same information content

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

2 © ISO 2005 – All rights reserved

even though at a deeper level there are significant technical differences in the digital entities being
implemented.

Details of the conformance classes are given in the abstract test suite in Annex A.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: Country
codes

ISO 19107, Geographic information — Spatial schema

ISO 19108, Geographic information — Temporal schema

ISO 19109, Geographic information — Rules for application schema

ISO 19111, Geographic information — Spatial referencing by coordinates

ISO 19112, Geographic information —Spatial referencing by geographic identifiers

ISO 19118, Geographic information — Encoding

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
candidate route
any route that satisfies all constraints of the routing request with the possible exception of optimality of the
cost function

NOTE Navigation is the process of finding the candidate route that optimizes a chosen cost function.

4.2
cost function
function that associates a measure (cost) to a route

NOTE The normal mechanism is to apply a cost to each part of a route, and to define the total route cost as the sum
of the cost of the parts. This is necessary for the operation of the most common navigation algorithms. The units of cost
functions are not limited to monetary costs and values only, but include such measures as time, distance, and possibly
others. The only requirement is that the function be additive and at least non-negative. This last criteria can be softened as
long as no zero or less cost is associated with any loop in the network, as this will prevent the existence of a “minimal
cost” route.

4.3
Dijkstra graph
positively weighted directed graph appropriately configured to execute a shortest path search

NOTE The term comes from the most commonly known algorithm for finding a shortest path in a positively weighted
graph, from E. Dijkstra’s paper [7]. Although this algorithm is not the only one in use, the requirements for the graph are
common to most. The most common relaxation of the requirement is the “positive weights”, which are not needed in the
Bellman–Ford algorithm [4], [8].

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 3

4.4
geocoding
translation of one form of location into another

NOTE Geocoding usually refers to the translation of “address” or “intersection” to “direct position”. Many service
providers also include a “reverse geocoding” interface to their geocoder, thus extending the definition of the service as a
general translator of location. Because routing services use internal location encodings not usually available to others, a
geocoder is an integral part of the internals of such a service.

4.5
instantiate
to represent (an abstraction) by the creation of a concrete instance or to create the ability to create an
instance

NOTE A class or data element definition instantiates a type if it creates the ability to create objects or data elements,
respectively, that can represent the concepts (instance data and/or operations) defined by that type. A class is instantiated
by an object if the class defines that object’s structure and function. A data schema is instantiated by a data element if the
data schema defines that element’s structure.

4.6
junction
single topological node in a network with its associated collection of turns, incoming and outgoing links

NOTE Junction is an alias for node.

4.7
linear referencing system
linear positioning system [ISO 19116]
positioning system that measures distance from a reference point along a route (feature)

NOTE The system includes the complete set of procedures for determining and retaining a record of specific points
along a linear feature such as the location reference method(s) together with the procedures for storing, maintaining, and
retrieving location information about points and segments on the highways. [NCHRP Synthesis 21, 1974]

4.8
link
directed topological connection between two nodes (junctions), consisting of an edge and a direction

NOTE Link is an alias for directed edge.

4.9
link position
position within a network on a link defined by some strictly monotonic measure associated with that link

NOTE Link positions are often associated with a target feature that is not part of the network. The most common link
measures used for this are the distance from start node or address. The most common use of a link position is to
geolocate an “address”.

4.10
location
identifiable geographic place

[ISO 19112]

NOTE A location is represented by one of a set of data types that describe a position, along with metadata about
that data, including coordinates (from a coordinate reference system), a measure (from a linear referencing system), or
an address (from an address system).

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

4 © ISO 2005 – All rights reserved

4.11
location-based service
LBS
service whose return or other property is dependent on the location of the client requesting the service or of
some other thing, object or person

4.12
location-dependent service
LDS
service whose availability is dependent upon the location of the client

4.13
main-road rule
set of criteria used at a turn in lieu of a route instruction; default instruction used at a node

NOTE This rule represents what is “most natural” to do at a node (intersection), given the entry link used. The most
common version is “as straight as possible”, or to exit a turn on the most obvious extension of the entry street, which is
usually, but not always, the same named street that was the entry. Every node in a route is either associated with an
instruction or can be navigated by the main-road rule.

4.14
maneuver
manœuvre
collection of related links and turns used in a route in combination

NOTE Maneuvers are used to cluster turns into convenient and legal combinations. They may be as simple as a
single turn, a combination of quick turns (“jogs” in the American mid-west consisting of a turn followed immediately by a
turn in the opposite direction) or very complex combinations consisting of entry, exit, and connecting roadways (“magic
roundabouts” in the UK).

4.15
navigation
combination of routing, route transversal and tracking

NOTE This is essentially the common term navigation, but the definition decomposes the process in terms used in
the packages defined in this International Standard.

4.16
navigation constraint
constraint
restriction on how a link or turn may be traversed by a vehicle, such as vehicle classification, physical or
temporal constraint

4.17
network
abstract structure consisting of a set of 0-dimensional objects called junctions, and a set of 1-dimensional
objects called links that connect the junctions, each link being associated with a start (origin, source)
junction and end (destination, sink) junction

NOTE The network is essentially the universe of discourse for the navigation problem. Networks are a variety of
1-dimensional topological complex. In this light, junction and topological node are synonyms, as are link and directed
edge.

4.18
position
data type that describes a point or geometry potentially occupied by an object or person

NOTE A direct position is a semantic subtype of position. Direct positions as described can only define a point and
therefore not all positions can be represented by a direct position. That is consistent with the “is type of” relation.
An ISO 19107 geometry is also a position, just not a direct position.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 5

4.19
route
sequence of links and/or partial links that describe a path, usually between two positions, within a network

4.20
route instruction
information needed at a point along a route in a network that allows that route to be traversed

NOTE To minimize the number of instructions needed to complete a route traversal, a default instruction can be
assumed at junctions without specifically associated instructions. This default is called the main-road rule.

4.21
route traversal
process of following a route

4.22
routing
finding of optimal (minimal cost function) routes between locations in a network

4.23
slope
rate of change of elevation with respect to curve length

4.24
tracking
monitoring and reporting the location of a vehicle

4.25
traveller
person subject to being navigated or tracked

cf. vehicle

NOTE Includes pedestrians. See ISO 14825. In this International Standard, traveller can be replaced by vehicle
without any change of intent.

4.26
traversable
condition of a link or turn that allows or restricts all traffic’s traversal, as opposed to a more detailed
navigation constraint

NOTE Traversability is usually a function of physical, cultural, or legal conditions. If traversable is false, then the
object cannot be navigated. This effectively removes a link from the usable network. In the case of a node, it effectively
removes the node and all associated links from the useable network. In the case of a turn, it simply removes it from any
viable route. Non-traversable entities are not included in maneuvers or routes.

4.27
turn
part of a route or network consisting of a junction location and an entry and exit link for that junction

4.28
vehicle
object subject to being navigated or tracked

cf. traveller

NOTE Includes pedestrians. See ISO 14825. In this International Standard, vehicle can be replaced by traveller
without any change of intent.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

6 © ISO 2005 – All rights reserved

4.29
vehicle classification
type of vehicle, based on the nature of its construction or intended purpose

NOTE Classifications based on construction include automobile, truck, bus, bicycle, etc. Classifications based on
purpose include taxi, emergency vehicle, etc. Vehicle classification can be used to determine the application of navigation
constraints.

4.30
waypoint
location on the network that plays a role in choosing candidate routes potentially satisfying a routing
request

5 Abbreviated terms and UML notation

5.1 Abbreviated terms

CRS Coordinate Reference System

CSL Conceptual Schema Language

ECCMA Electronic Commerce Code Management Association

GDF Geographic Data Files

GML Geography Markup Language

GPS Global Positioning System

IAEC International Address Element Code

LBS Location Based Service

LDS Location Dependent Service

LRM Linear Referencing Method

LRS Linear Reference System

OCL Object Constraint Language

PDA Personal Digital Assistant

UML Unified Modeling language

XML eXtensible Markup Language

5.2 UML notation

The UML notation used in this International Standard is described in ISO 19107, and differs from standard
UML only in the existence and interpretation of some special stereotypes, in particular “CodeList” and “Union”.

The term “context diagram” used extensively in the naming of figures in this International Standard means a
diagram that illustrates the context of a specified central type, meaning the types of it attributes, operations
and association targets. This is the information most useful to the implementer of this central class.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 7

6 Tracking

6.1 Semantics

The package “Tracking” contains other packages that are used in tracking services and related functions
(see Figure 1).

Figure 1 — Tracking packages

6.2 Package: Tracking Service

6.2.1 Semantics

The package “Tracking Service” contains types and classes useful in creating a tracking service. Since this is
the core of many of the navigation functions described elsewhere in this International Standard, this package
contains some important types universal to most if not all location-based services.

6.2.2 TK_Position

6.2.2.1 Semantics

The union class “TK_Position” is used to represent positions in tracking and associated applications. An
instance of this class locates a position or place within the network. It should always be interpretable as a
direct position (coordinate in a reference system), an address or as a network position. The discriminators for
the union, and their associated types are as follows:

directPosition: DirectPosition

placeName: SI_LocationInstance

featureID: FD_FeatureName

linearReference: LR_PositionExpression

networkPosition: NT_NetworkPosition

address: AD_AbstractAddress

phone: CharacterString

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

8 © ISO 2005 – All rights reserved

The operations on this type are all cast operators that allow the programmers to determine the position in the
form most useful to them. The UML for TK_Position is given in Figure 2.

6.2.2.2 Operation: asPosition

The operator “asPosition” derives the coordinates in the CRS of the data of this location.

TK_Position :: asPosition() : DirectPosition

6.2.2.3 Operation: asNetworkPosition

The operator “asNetworkPosition” derives the network position of this location.

TK_Position :: asNetworkPosition() : NT_NetworkPosition

6.2.2.4 Operation: asAddress

The operator “asAddress” derives the address of this location.

TK_Position :: asAddress() : AD_Address

Figure 2 — Context Diagram: TK_Position

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 9

6.2.3 TK_MobileSubscriber

6.2.3.1 Semantics

The type “TK_MobileSubscriber” is used to model the items being tracked within the tracking service. The
most common usage is the subscriber to a mobile service such as cell phone, where the service has the
ability to determine the location of the device. The interfaces for the tracking services are also applicable to
services that query the device for its location and would thus be applicable to GPS equipped devices as well.
The service is a UML <<Type>> as opposed to a UML <<Interface>> because of the need to associate
subscribers with their service.

There are deep issues of authentications between the service and the client, especially if the client is different
from the mobile subscriber (in which case there are privacy issues). This International Standard assumes that
those issues have been solved outside of the tracking interfaces (possible through a “verification” service, not
dependent on geography, and therefore outside the scope of this International Standard). The UML for
TK_MobileSubscriber is given in Figure 3.

6.2.3.2 Attribute: id : CharacterString

The attribute “id” is the identifier by which the associated tracking service knows this subscriber.

TK_MobileSubscriber :: id : CharacterString

6.2.3.3 Attribute: location : TK_TrackingLocation

The derived attribute “location” is the location of the subscriber at the time the attribute is accessed. This is
essentially another access to the tracking service in many cases. In the case where the subscriber is a GPS
equipped device, accessing this attribute would not necessarily activate the tracking service.

TK_MobileSubscriber :: location : TK_TrackingLocation

6.2.3.4 Role: trackingService[1..*] : TK_TrackingService

The association role “trackingService” links the subscribers to the tracking service that supports tracking them.

TK_MobileSubscriber :: trackingService[1..*] : TK_TrackingService

Figure 3 — Context Diagram: TK_MobileSubscriber

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

10 © ISO 2005 – All rights reserved

6.2.4 TK_TrackingLocation

6.2.4.1 Semantics

The type “TK_TrackingLocation” is used to represent objects describing a location and its associated
metadata, such as time of measure, or direction of travel. The UML for TK_TrackingLocation is given in
Figure 4.

6.2.4.2 Attribute: position : TK_Position

The attribute “position” describes the measurements that represent the position of this object.

TK_TrackingLocation :: position : TK_Position

6.2.4.3 Attribute: time[0..1] : TM_Primitive

The optional attribute “time” describes the time of the measurements that represent the position of this object.

TK_TrackingLocation :: time[0..1] : TM_Primitive

6.2.4.4 Attribute: direction[0..1] : Bearing

The attribute “direction” describes the direction of travel of the subscriber being tracked.

TK_TrackingLocation :: direction[0..1] : Bearing

6.2.4.5 Attribute: speed[0..1] : Velocity

The attribute “speed” describes the velocity of travel of the subscriber being tracked.

TK_TrackingLocation :: speed[0..1] : Velocity

6.2.4.6 Role: metadata[0..*] : TK_TrackingLocationMetadata

The association role “metadata” aggregates optional metadata elements associated with this location.

TK_TrackingLocation :: metadata[0..*] : TK_TrackingLocationMetadata

Figure 4 — Context Diagram: TK_TrackingLocation

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 11

6.2.5 TK_TrackingService

6.2.5.1 Semantics

The type “TK_TrackingService” defines interfaces and associations for tracking services. The UML for
TK_TrackingService is given in Figure 5.

6.2.5.2 Role mobileSubscriber[0..*] : TK_MobileSubscriber

The association role “mobileSubscriber” aggregates items (vehicle or traveller) that may be tracked by using
this service.

TK_TrackingService :: mobileSubscriber[0..*] : TK_MobileSubscriber

6.2.5.3 Operation: locate

The operation “locate” returns a single location for a tracked item.

TK_TrackingService ::
 locate(ms : TK_MobileSubscriber, type : TK_PositionType) :

TK_TrackingLocation

6.2.5.4 Operation: track

The operation “track” returns a sequence of locations for a tracked item. The trigger types that cause a new
location to be placed in the sequence are specified in the operation protocol.

TK_TrackingService ::
 track(ms : TK_MobileSubscriber, triggerType[1..*] : TK_Trigger) :

TK_TrackingLocationSequence

Figure 5 — Context Diagram: TK_TrackingService

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

12 © ISO 2005 – All rights reserved

6.2.6 TK_PositionType

The code list “TK_PositionType” lists the types of position available to the application. The initial members of
this list include: “coordinate”, “placeName”, “feature”, “linearReference”, “network”, “address”, and “phone”.
The UML for TK_PositionType is given in Figure 6.

Figure 6 — Context Diagram: TK_PositionType

6.2.7 TK_TrackingLocationSequence

6.2.7.1 Semantics

The type “TK_TrackingLocationSequence” is an access mechanism for the return of a continuous tracking of
an item. The UML for TK_TrackingLocationSequence is given in Figure 7.

6.2.7.2 Attribute: ms : TK_MobileSubscriber

The attribute “ms” gives the identity of the item being tracked.

TK_TrackingLocationSequence :: ms : TK_MobileSubscriber

6.2.7.3 Attribute: sequenceID : CharacterString

The attribute “sequenceID” gives the identity of the location sequence so that a client can repeatedly access
the location sequence.

TK_TrackingLocationSequence :: sequenceID : CharacterString

6.2.7.4 Operation: next

The operation “next” returns the next location in the sequence.

TK_TrackingLocationSequence :: next() : TK_TrackingLocation

6.2.7.5 Operation: suspend

The operation “suspend” stops temporarily the stream of locations in the sequence.

TK_TrackingLocationSequence :: suspend() : Boolean

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 13

6.2.7.6 Operation: restart

The operation “restart” restarts the stream of locations in the sequence that has been stopped by “suspend”.

TK_TrackingLocationSequence :: restart() : TK_TrackingLocation

6.2.7.7 Operation: terminate

The operation “terminate” stops permanently the stream of locations in the sequence.

TK_TrackingLocationSequence :: terminate() : Boolean

Figure 7 — Context Diagram: TK_TrackingLocationSequence

6.2.8 TK_Trigger

The abstract class “TK_Trigger” acts as a root class for trigger types to be used in controlling a location
sequence. There are generally two types: triggered by an event, or triggered by the passage of time. The UML
for TK_Trigger is given in Figure 8.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

14 © ISO 2005 – All rights reserved

Figure 8 — Context Diagram: TK_Trigger

6.2.9 TK_PeriodicTrigger

6.2.9.1 Semantics

The class “TK_PeriodicTrigger” is used to control location sequences by setting up temporal limits on how far
apart in time tracking samples are taken. Either minTime or maxTime shall be present for a valid
TK_PeriodicTrigger. The UML for TK_PeriodicTrigger is given in Figure 9.

6.2.9.2 Attribute: minTime[0..1] : TM_Primitive

The attribute “minTime” is the minimum amount of time between tracking samples. In the absence of other
criteria, the tracking service will begin the process to take a sample when the “minTime” has passed.
Assuming no lag time is involved, the samples will be “minTime” apart.

TK_PeriodicTrigger :: minTime[0..1] : TM_Primitive

6.2.9.3 Attribute: maxTime[0..1] : TM_Primitive

The attribute “maxTime” is the maximum amount of time between tracking samples. In the absence of other
criteria, the tracking service will attempt to assure that no two samples in the sequence are further apart than
the “maxTime” parameter.

TK_PeriodicTrigger :: maxTime[0..1] : TM_Primitive

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 15

Figure 9 — Context Diagram: TK_PeriodicTrigger

6.2.10 TK_TransitionTrigger

6.2.10.1 Semantics

The class “TK_TransitionTrigger” models transitions relative to the item being tracked that will trigger the
taking of a new location sample. In a TK_TransitionTrigger, at least one of the attributes shall be non-null.
The UML for TK_TransitionTrigger is given in Figure10.

6.2.10.2 Attribute: type[0..*] : TK_TransitionType

The attribute “type” describes the type or types of transitions being watched. The various types of transitions
are listed in the code list associated with the service.

TK_TransitionTrigger :: type[0..*] : TK_TransitionType

6.2.10.3 Attribute: deltaDirection[0..1] : Angle

The attribute “deltaDirection” describes the magnitude of the change of direction that triggers a new location
sample.

TK_TransitionTrigger :: deltaDirection[0..1] : Angle

6.2.10.4 Attribute: deltaPosition[0..1] : Distance

The attribute “deltaPosition” describes the magnitude of the change of location (distance) that triggers a new
location sample.

TK_TransitionTrigger :: deltaPosition[0..1] : Distance

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

16 © ISO 2005 – All rights reserved

Figure 10 — Context Diagram: TK_TransitionTrigger

6.2.11 TK_TransitionType

The code list “TK_TransitionType” enumerates the types of transition tracked by this service. The initial values
of the list include the following:

“enterCell” mobile subscriber enters a cell associated with the network, e.g. cell phone
network

“leaveCell” mobile subscriber leaves a cell associated with the network

“changeContacts” mobile subscriber changes the receivers with which it has contact

“changeDirection” mobile subscriber changes the direction of its motion greater than the
deltaDirection parameter specifies

“changePosition” mobile subscriber changes its position greater than the deltaPosition parameter
allows

“changeAvailability” contact with the mobile subscriber is either lost or gained. If lost, the position just
prior to loss is given. If gained, the first position calculated for the mobile
subscriber after the new contact is given

6.2.12 TK_TrackingLocationMetadata

6.2.12.1 Semantics

The data type “TK_TrackingLocationMetadata” contains the metadata that is used to describe the position
returned by the tracking service. As such, this data type shall always be contained in a TK_TrackingLocation,
or other location type. The UML for TK_TrackingLocationMetadata is given in Figure 11.

6.2.12.2 Attribute: ms[0..1] : TK_MobileSubscriber

The attribute “ms” gives the identity of the item being tracked. If this attribute is not present, it should be
derivable from context through the ownership of the containing TK_TrackingLocation.

TK_TrackingLocationSequence :: ms[0..1]: TK_MobileSubscriber

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 17

6.2.12.3 Attribute: quality : TK_QualityOfPosition

The attribute “quality” describes the quality of the position.

TK_TrackingLocationSequence :: quality : TK_QualityOfPosition

6.2.12.4 Attribute: time : TM_Primitive

The attribute “time” gives the time the position was measured.

TK_TrackingLocationSequence :: time : TM_Primitive

6.2.12.5 Attribute: clientID : CharacterString

The attribute “clientID” gives the identity of the client requesting the tracking service.

TK_TrackingLocationSequence :: clientID : CharacterString

6.2.12.6 Attribute: trigger[0..*] : TK_Transition

The attribute “trigger” gives the description of the transition that triggered this location measurement.

TK_TrackingLocationSequence :: trigger[0..*] : TK_Transition

Figure 11 — Context Diagram: TK_TrackingLocationMetadata

6.2.13 TK_Transition

6.2.13.1 Semantics

The class “TK_Transition” describes a particular event or transition that triggered a location measure. The
UML for TK_Transition is given in Figure 12.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

18 © ISO 2005 – All rights reserved

6.2.13.2 Attribute: type[1..*] : TK_TransitionType

The attribute “type” describes the type or types of transitions.

TK_Transition :: type[1..*] : TK_TransitionType

6.2.13.3 Attribute: time : TM_Primitive

The attribute “time” describes the time that the transition occurred. Normally, this should be approximately the
same time as in the location metadata.

TK_Transition :: time : TM_Primitive

6.2.13.4 Attribute: deltaDirection[0..1] : Angle

The attribute “deltaDirection” describes the magnitude of the change of direction that triggered this new
location sample.

TK_Transition :: deltaDirection[0..1] : Angle

6.2.13.5 Attribute: deltaPosition[0..1] : Distance

The attribute “deltaPosition” describes the magnitude of the change of location (distance) that triggered this
location sample.

TK_Transition :: deltaPosition[0..1] : Distance

6.2.13.6 Attribute: availability[0..1] : Boolean

The attribute “availability” describes whether the location of the item being tracked is currently available to be
measured.

TK_Transition :: availability[0..1] : Boolean

Figure 12 — Context Diagram: TK_Transition

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 19

6.2.14 TK_QualityOfPosition

6.2.14.1 Semantics

The data type “TK_QualityOfPosition” is used to describe the quality of position measurements. The UML for
TK_QualityOfPosition is given in Figure 13.

6.2.14.2 Role: accuracyStatement[1..*] : TK_AccuracyStatement

The association role “accuracyStatement” aggregates statements about the accuracy of the position.

TK_QualityOfPosition :: accuracyStatement[1..*] : TK_AccuracyStatement

Figure 13 — Context Diagram: TK_QualityOfPosition

6.2.15 TK_Accuracy

6.2.15.1 Semantics

The class “TK_Accuracy” is used to describe accuracy of a measure. The numerical values are in the same
units as the measure. The UML for TK_Accuracy is given in Figure 14.

6.2.15.2 Attribute: accuracyType : TK_AccuracyType

The attribute “accuracyType” gives the type of accuracy measure.

TK_Accuracy :: accuracyType : TK_AccuracyType

6.2.15.3 Attribute: sigmaLevel[0..1] : Number

The attribute “sigmaLevel” describes the accuracy of the measure based on a multiple of the standard
deviation.

TK_Accuracy :: sigmaLevel[0..1] : Number

6.2.15.4 Attribute: sigma[0..1] : Number

The attribute “sigma” describes the standard deviation.

TK_Accuracy :: sigma[0..1] : Number

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

20 © ISO 2005 – All rights reserved

6.2.15.5 Attribute: units[0..1]: UnitOfMeasure

The attribute “units” gives the unit of measure for the accuracy for the measurement as needed.

TK_AccuracyStatement :: unit[0..1] : UnitOfMeasure

Figure 14 — Context Diagram: TK_Accuracy

6.2.16 TK_AccuracyType

The code list “TK_AccuracyType” lists the type of accuracy measure used by this service. The initial values in
the value domain are “linear”, “circularRMS”, and “ellipticalRMS”.

6.2.17 TK_AccuracyStatement

6.2.17.1 Semantics

The data type “TK_AccuracyStatement” is used to make statements about metric accuracy of measurements.
The UML for TK_AccuracyStatement is given in Figure 15.

6.2.17.2 Attribute: axis[1..*] : CharacterString

The attribute “axis” gives the axis or axes about which the statement applies. This name shall correspond to
axes in a given coordinate reference system for the geometry of the given position.

TK_AccuracyStatement :: axis[1..*] : CharacterString

6.2.17.3 Attribute: accuracy : TK_Accuracy

The attribute “accuracy” gives accuracy for a measurement.

TK_AccuracyStatement :: accuracy : TK_Accuracy

Figure 15 — Context Diagram: TK_AccuracyStatement

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 21

6.3 Package: Point Estimates

6.3.1 Semantics

The package “Point Estimates” contains geometry object types, all subclasses of “GM_Point", used in
describing direct position estimates seen in tracking services. The UML for the inheritance hierarchy for the
point estimate classes is given in Figure 16. A graphic of their form, showing the estimate with its error
geometry, is given in Figure 17.

Figure 16 — Point Estimate classes

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

22 © ISO 2005 – All rights reserved

Figure 17 — Geometric interpretations of point estimate types

6.3.2 EG_PointEstimate

The type “EG_PointEstimate” is the abstract root of all the error estimate geometry objects. It is a subtype of
point. The best estimate of the location is the centre of the given geometry. The coordinates of the point
specify the primary constructive location of the geometry, and will be the best estimate of the location if and
only if it is also the centre of the geometry specified. The UML for EG_PointEstimate is given in Figure 16.

6.3.3 EG_PointEstimateCircle

6.3.3.1 Semantics

The class “EG_PointEstimateCircle” is used to describe a point with an error estimate that is a metric circle of
a given radius. It should be noted that this circle is not a circle in the coordinate reference system of the point
unless the reference system is equivalent a local engineering one. The point coordinates (inherited from
GM_Point) specify the centre of the circle, and the best estimate of position. The UML for
EG_PointEstimateCircle is given in Figure 18.

6.3.3.2 Attribute: radius : Distance

The attribute “radius” is the radius of the error circle used in the point estimate. The usual semantics is to
return a fixed “sigma” level that is a fixed multiple of the standard deviation of the measurement procedure.
Unless otherwise specified by a profile, a 1,0-sigma level is given.

EG_PointEstimateCircle :: radius : Distance

Figure 18 — Context Diagram: EG_PointEstimateCircle

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 23

6.3.4 EG_PointEstimateEllipse

6.3.4.1 Semantics

The point ellipse is the same as a point circle except that an ellipse defined by the parameters given specifies
the error. The point coordinates (inherited from GM_Point) specify the centre of the ellipse, and the best
estimate of position. The UML for EG_PointEstimateEllipse is given in Figure 19.

6.3.4.2 Attribute: majorAxisRadius : Distance

The attribute “majorAxisRadius” is half the length of the major axis of the ellipse.

EG_PointEstimateEllipse :: majorAxisRadius : Distance

6.3.4.3 Attribute: minorAxisRadius : Distance

The attribute “minorAxisRadius” is half the length of the minor axis of the ellipse.

EG_PointEstimateEllipse :: minorAxisRadius: Distance

6.3.4.4 Attribute: majorAxisBearing : Angle

The attribute “majorAxisBearing” is bearing of the major axis of the ellipse, given as an angle from true north.
The minor axis is perpendicular to the major axis.

EG_PointEstimateEllipse :: majorAxisBearing : Angle

Figure 19 — Context Diagram: EG_PointEstimateEllipse

6.3.5 EG_PointEstimateArc

6.3.5.1 Semantics

The point arc is the same as a point circle except that a pair of arcs between two given radii and two given
bearing angles gives the area estimate error. The point coordinates specify the centre of the two arcs. The
best estimate of position is the along the centreline of the two arcs and halfway between the two radii. The
UML for EG_PointEstimateArc is given in Figure 20.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

24 © ISO 2005 – All rights reserved

6.3.5.2 Attribute: innerRadius : Distance

The attribute “innerRadius” is the radius of the smaller of the two arcs.

EG_PointEstimateArc :: innerRadius : Distance

6.3.5.3 Attribute: outerRadius : Distance

The attribute “outerRadius” is the radius of the larger of the two arcs.

EG_PointEstimateArc :: outerRadius: Distance

6.3.5.4 Attribute: startBearing : Angle

The attribute “startBearing” is the bearing of one side of the arcs (left-hand end when viewed from the arc
centre).

EG_PointEstimateArc :: startBearing : Angle

6.3.5.5 Attribute: endBearing : Angle

The attribute “endBearing” is the bearing of the other side of the arcs (right-hand end when viewed from the
arc centre).

EG_PointEstimateArc :: endBearing: Angle

Figure 20 — Context Diagram: EG_PointEstimateArc

6.3.6 EG_PointEstimateSphere

6.3.6.1 Semantics

The class “EG_PointEstimateSphere” is used to describe a point with an error estimate that is a metric sphere
of a given radius. It should be noted that this sphere is not a sphere in the coordinate reference system of the
point unless the reference system is equivalent to a local engineering one. The point coordinates (inherited
from GM_Point) specify the centre of the sphere, and the best estimate of position. The UML for
EG_PointEstimateSphere is given in Figure 21.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 25

6.3.6.2 Attribute: radius : Distance

The attribute “radius” is the radius of the error sphere used in the point estimate. The usual semantics is to
return a fixed “sigma” level that is a fixed multiple of the standard deviation of the measurement procedure.
Unless otherwise specified by a profile, a 1,0-sigma level is given.

EG_PointEstimateSphere :: radius : Distance

Figure 21 — Context Diagram: EG_PointEstimateSphere

6.3.7 EG_PointEstimateEllipsoid

6.3.7.1 Semantics

The point ellipsoid is the same as a point sphere except that an ellipsoid defined by the parameters given
specifies the error. The point coordinates (inherited from GM_Point) specify the centre of the ellipsoid, and the
best estimate of position. The UML for EG_PointEstimateEllipsoid is given in Figure 22.

6.3.7.2 Attribute: majorAxisRadius : Distance

The attribute “majorAxisRadius” is half the length of the major axis of the ellipsoid. In this case, major means
“primary” or “central”. It may not necessarily be the longest of the three axes. It is the axis of rotation in the
case where the remaining axes are equal.

EG_PointEstimateEllipsoid :: majorAxisRadius : Distance

6.3.7.3 Attribute: minorAxisRadius : Distance

The attribute “minorAxisRadius” is half the length of the minor axis of the ellipsoid. If one axis radius is given,
the ellipsoid is a figure of rotation about the major axis, with this radius at the central “equator”. If two axes are
given, then the figure is a fully general tri-axis ellipsoid.

EG_PointEstimateEllipsoid :: minorAxisRadius: Distance

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

26 © ISO 2005 – All rights reserved

6.3.7.4 Attribute: majorAxisBearing : Angle

The attribute “majorAxisBearing” is bearing of the major axis of the ellipsoid, given as an angle from true north.
The minor axis is perpendicular to the major axis. If a second angle is given, this is an elevation angle from
the local horizontal.

EG_PointEstimateEllipsoid :: majorAxisBearing[1..2] : Angle

6.3.7.5 Attribute: minorAxisBearing : Angle

The attribute “minorAxisBearing” is bearing of the minor axis of the ellipsoid, given as an angle from true north.
The minor axis is perpendicular to the major axis. If no angle is given, then the minor axis is in the horizontal
plane, perpendicular to the major axis. If a second angle is given, this is an elevation angle from the local
horizontal. The third axis (second minor axis, if needed) is perpendicular to both other axes and therefore its
direction is fixed by the values already given. Its unit vector direction in 3D is the cross product of the unit
vector directions of the other two axes.

EG_PointEstimateEllipsoid :: minorAxisBearing[0..2] : Angle

Figure 22 — Context Diagram: EG_PointEstimateEllipsoid

6.4 Package: Location Transformation

6.4.1 Semantics

The package “Location Transformation” contains classes to support the transformation of the various forms of
location into one another.

6.4.2 LT_LocationTransformationService

6.4.2.1 Semantics

The abstract type “LT_LocationTransformationService” provides interfaces for services based upon the
transformation of one form of location into another. The most common example of such a service is a
geocoder, which maps addresses to geographic locations and vice versa. The UML for
LT_LocationTransformationService is given in Figure 23.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 27

6.4.2.2 Operation: cast

The operation “cast” takes one form of location and creates another form of the same location.

LT_LocationTransformationService ::
 cast(p : TK_TrackingLocation, asType : TK_PositionType) :

TK_TrackingLocation

Figure 23 — Context Diagram: LT_LocationTransformationService

6.5 Package: Measured Coordinates

6.5.1 Semantics

The package “Measured Coordinates” contains classes for associating measures to coordinate positions. This
is most commonly done in the creation of linear reference systems. This is done by modifying the coordinate
reference systems defined in ISO 19111, by adding extra coordinate axes to the systems that allow for the
storage of dependent coordinate measures, such as length measures.

This concept is illustrated in Figure 24. This illustrates how direct positions, the foundation of coordinate
geometries in ISO 19107, are modified to carry measure information. Figure 25 shows the mechanism for
altering a coordinate reference system to allow for the additional axes to be added allowing for the measure.
Normally, only one measure is added (usually a nominal arc distance), and other measures are given as
functions of this basic one.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

28 © ISO 2005 – All rights reserved

Figure 24 — Measure Position

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 29

Figure 25 — Measured Coordinate Systems

6.5.2 MC_MeasurePosition

6.5.2.1 Semantics

The data type “MC_MeasurePosition” extends the concept of a DirectPosition to include additional measures
as ordinates. The UML for MC_MeasurePosition is given in Figure 26.

6.5.2.2 Role: coordinateReferenceSystem[0..1] : MC_CoordinateReferenceSystem

The optional association role “CoordinateReferenceSystem” inherited from DirectPosition, will now reference a
measured coordinate system. If this role is empty, then, as in the case of direct position, there shall be a larger
context that implies the coordinate reference system.

MC_MeasurePosition :: CoordinateReferenceSystem[0..1] :
MC_CoordinateReferenceSystem

6.5.2.3 Operation: measure

The operation “measure” gives the measured position of a projection onto its measure component.

MC_MeasurePosition :: measure() : Measure

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

30 © ISO 2005 – All rights reserved

Figure 26 — Context Diagram: MC_MeasurePosition

6.5.3 MC_CoordinateSystem

6.5.3.1 Semantics

The class “MC_CoordinateSystem” describes coordinate systems that have been augmented with measures.
The UML for MC_CoordinateSystem is given in Figure 27.

6.5.3.2 Role: axis[1..*] : SC_CoordinateSystemAxis

The role “axis” aggregates the axes for the coordinate reference system. This association is inherited form
ISO 19111, but is modified here to accommodate additional axes for the measures. Normally, only one strictly
monotonic measure axis is needed, as other measures can be implemented as functions of this one.
The most common measure for this is some version of arc length for curves.

MC_CoordinateSystem :: axis[1..*]: SC_CoordinateSystemAxis

Figure 27 — Context Diagram: MC_CoordinateSystem

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 31

6.5.4 MC_CoordinateReferenceSystem

6.5.4.1 Semantics

The class “MC_CoordinateReferenceSystem” extends the class “SC_CoordinateReferenceSystem” defined in
ISO 19111 to allow for additional coordinate axes to accommodate measures. The UML for
MC_CoordinateReferenceSystem is given in Figure 28.

6.5.4.2 Role: theSC_CoordinateSystem : MC_CoordinateSystem

The association role “theSC_CoordinateSystem” inherited from ISO 19111 is extended here to allow for target
class changes.

MC_CoordinateReferenceSystem ::
 theSC_CoordinateSystem : MC_CoordinateSystem

Figure 28 — Context Diagram: MC_CoordinateReferenceSystem

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

32 © ISO 2005 – All rights reserved

6.6 Package: Linear Reference Systems

6.6.1 Semantics

The package “Linear Reference Systems” supplies classes and types to the definition of linear reference
systems. Linear reference systems are in wide use in transportation. They allow for the specification of
positions along curvilinear features by using measured distances from known positions, usually represented
by physical markers along the right-of-way of the transportation feature. The classes for this system and their
relationships are depicted in Figure 29.

Figure 29 — LRS classes

6.6.2 LR_PositionExpression

6.6.2.1 Semantics

The class “LR_PositionExpression” is used to describe position given by a measure value, a curvilinear
element being measured, and the method of measurement. The UML for LR_PositionExpression is given in
Figure 30.

6.6.2.2 Attribute: measure : Measure

The attribute “measure” gives the measure (usually a distance) of this position expression.

LR_PositionExpression :: measure : Measure

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 33

6.6.2.3 Role: LRM : LR_LinearReferenceMethod

The role “LRM” gives the linear reference method used for this position expression.

LR_PositionExpression :: LRM : LR_LinearReferenceMethod

6.6.2.4 Role: referent [0..1] : LR_ReferenceMarker

The optional association role “referent” gives the marker or known position from which the measure is taken
for the linear reference method used for this position expression. If the referent is absent, the measurement is
made from the start of the LR_element.

LR_PositionExpression :: referent [0..1]: LR_ReferenceMarker

6.6.2.5 Role: referenceDomain : LR_Element

The role “referenceDomain” gives the linear object upon which the measure is taken for the linear reference
method used for this position expression.

LR_PositionExpression :: referenceDomain : LR_Element

6.6.2.6 Role: offset[0..1] : LR_OffsetExpression

The optional association role “offset” gives perpendicular distance offset of this position expression. If the
offset is absent, then the position is on the LR_element.

LR_PositionExpression :: offset[0..1] : LR_OffsetExpression

Figure 30 — Context Diagram: LR_PositionExpression

6.6.3 LR_LinearReferenceMethod

6.6.3.1 Semantics

The type “LR_LinearReferenceMethod” describes the manner in which measurements are made along
(and optionally laterally offset from) a curvilinear element. The UML for LR_LinearReferenceMethod is given in
Figure 31.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

34 © ISO 2005 – All rights reserved

6.6.3.2 Attribute: name : CharacterString

The attribute: “name” gives the name of this linear reference method.

LR_LinearReferenceMethod :: name : CharacterString

6.6.3.3 Attribute: type : CharacterString

The attribute: “type” gives the type of this linear reference method.

LR_LinearReferenceMethod :: type : CharacterString

6.6.3.4 Attribute: units : UnitOfMeasure

The attribute: “units” gives the units of measure used for this linear reference method for measures along the
base elements.

LR_LinearReferenceMethod :: units : UnitOfMeasure

6.6.3.5 Attribute: offsetUnits : UnitOfMeasure

The attribute: “offsetUnits” gives the units of measure used for this linear reference method for measures
perpendicular to the base elements.

LR_LinearReferenceMethod :: offsetUnits : UnitOfMeasure

6.6.3.6 Attribute: positiveOffsetDirection : LR_OffsetDirection = "right"

The attribute: “positiveOffsetDirection” gives the direction used as positive for this linear reference method for
measures perpendicular to the base elements. The default value is right for positive, left for negative.

LR_LinearReferenceMethod ::
 positiveOffsetDirection : LR_OffsetDirection = "right”

6.6.3.7 Role: marker[1..*] : LR_ReferenceMarker

The association role “marker” aggregates all reference markers used by the linear reference methods.
Normally, this will be grouped by linear element.

LR_LinearReferenceMethod :: marker[0..*] : LR_ReferenceMarker

6.6.3.8 Role: referenceElement[1..*] : LR_Element

The role: “referenceElement” aggregates all the linear elements along which this method is supported.

LR_LinearReferenceMethod :: referenceElement[1..*] : LR_Element

6.6.3.9 Operation: project

The operation “project” will find the measure of the point on a base element closest to the given point, and
then express the point as a position expression for the linear reference method. If the point is precisely on one
of the linear elements, then the offset will be zero there is no offset expression.

LR_LinearReferenceMethod ::
 project(pt : GM_Point) : LR_PositionExpression

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 35

Figure 31 — Context Diagram: LR_LinearReferenceMethod

6.6.4 LR_OffsetDirection

The enumeration “LR_OffsetDirection” gives the two options for offset measure. The values are left and right.
This offset direction is as viewed from above the linear element facing in the direction of increasing measure.
The UML for LR_OffsetDirection is given in Figure 32.

Figure 32 — Context Diagram: LR_OffsetDirection

6.6.5 LR_ReferenceMarker

6.6.5.1 Semantics

The type “LR_ReferenceMarker” is used to describe reference markers used in linear reference systems. At
least one of the attributes “position” or “location” shall be given. If both are given they shall refer to the same
physical location. The UML for LR_ReferenceMarker is given in Figure 33.

6.6.5.2 Attribute: name : CharacterString

The attribute “name” is the identifier used for this marker.

LR_ReferenceMarker :: name : CharacterString

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

36 © ISO 2005 – All rights reserved

6.6.5.3 Attribute: type : CharacterString

The attribute “type” is the type of this marker.

LR_ReferenceMarker :: type : CharacterString

6.6.5.4 Attribute: position[0..1] : GM_Point

The optional attribute “position” is the position of this for this marker, given in some coordinate system. If this
attribute is not given, then the “location” shall be given.

LR_ReferenceMarker :: position[0..1] : GM_Point

6.6.5.5 Attribute: location[0..1] : LR_PositionExpression

The optional attribute “location” is the location of this marker given as a linear reference measure along and
from the start of the underlying linear element.

LR_ReferenceMarker :: location[0..1] : LR_PositionExpression

Figure 33 — Context Diagram: LR_ReferenceMarker

6.6.6 LR_OffsetReference

The code list “LR_OffsetReference” enumerates the offset reference types used for this linear reference
method (see Figure 36). The initial value domain included:

1) “centerline” centre of the structure of the highway, or reference line for the highway

2) “edgeOfTravel” outside edge of all travel lanes

3) “edgeOfPavement” outside edge of travel-lane quality paved surface

4) “rightOfWay” edge of the legal right of way

5) “curbFace” curb (the roadway must be curbed for this to be used)

6) “curbBack” curb (the roadway must be curbed for this to be used)

7) “edgeOfShoulder” outside edge of all hardened surface (paved or gravel) surface

8) “edgeOfBerm” outside edge of levelled land for the road structure

9) “walkwayInside” sidewalk edge closest to travel lanes

10) “walkwayOutside” sidewalk edge furthest from travel lanes

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 37

6.6.7 LR_Feature

The type “LR_Feature” is a behavioural description of features used as base elements in a linear reference
method. This is the most common approach used for LRS’s. The UML for LR_Feature is given in Figure 34.

Figure 34 — Context Diagram: LR_Feature

6.6.8 LR_Element

6.6.8.1 Semantics

The type “LR_Element” describes the underlying curvilinear elements upon which the measures in the linear
reference system are taken. The UML for LR_Element is given in Figure 35.

6.6.8.2 Role: datumMarkers[1..*] : LR_ReferenceMarker

The ordered association role “datumMarkers” aggregates the markers along this element. The ordering of the
markers is consistent with the order in which the markers would be found in traversing the LR_Element from
beginning to end (i.e. in increasing order of distance from the “zero marker” the beginning of the element).

LR_Element :: datumMarkers[1..*] : LR_ReferenceMarker

Figure 35 — Context Diagram: LR_Element

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

38 © ISO 2005 – All rights reserved

6.6.9 LR_OffsetExpression

6.6.9.1 Semantics

The type “LR_OffsetExpression” is used to describe the offset for a position described using a linear reference
method. The UML for LR_OffsetExpression is given in Figure 36.

6.6.9.2 Attribute: offsetReference : LR_OffsetReference

The attribute “offsetReference” indicates the base line for the offset measure.

LR_OffsetExpression :: offsetReference : LR_OffsetReference

6.6.9.3 Attribute: offset[0..1] : Measure

The optional attribute “offset” is the measure of the offset of the position expression. A missing value is to be
interpreted as being located at the offset reference.

LR_OffsetExpression :: offset[0..1] : Measure

Figure 36— Context Diagram: LR_OffsetExpression

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 39

7 Navigation

7.1 Semantics

7.1.1 Package structure

The package “Navigation” supplies classes and types to describe navigation services and their supporting
data.

Tracking is the process of following the position of a vehicle in a network, and associating it to steps in a route.
Routing is the finding of optimal (minimal cost function) routes between positions in a network. Route traversal
is the execution of a route, usually through the use of instructions at each node in the path, and a start and
stop instruction, at the first and last position of the route. The combination of routing, route transversal and
tracking is Navigation. The various subpackages for Navigation are shown in Figure 37.

Figure 37 — Navigation Packages

7.1.2 Route

A “route” represents a possible path for a vehicle to navigate across some portion of a network. A generic
example of the geometry of a route is given in Figure 38. A route consists of the following parts.

a) Nodes that represent important points in the network, such as intersections.

b) Links that represent uninterrupted paths between nodes with an orientation that indicates which direction
the link is to be traversed.

c) Turns that associate a node with an entry link and exit link to a node.

d) Stops that consist of either nodes or positions on links within the network:

⎯ the start of the route that is a type of stop;

⎯ the end of the route that is a type of stop.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

40 © ISO 2005 – All rights reserved

The route can be sorted into the following.

1 The start position.

2 A link consistent with this start position:

⎯ if the start is a node, then the link is an exit for that node;

⎯ if the start is a link position, then the link is the one on which that position is located.

2n+1 A turn which includes the previous link as its entry, and the following link as its exit.

2n A link that is the exit of the previous turn and an entry of the following turn.

last the stop position.

In Figure 38, there is a composite curve, which is the underlying geometry for a route. The route begins at a
position on the first “link” element of the composite, and then traverses to the next node. That node is
associated with a “turn” that transitions to the next link, and so forth, until the last link is reached. The route
terminates at some position on the last link, possibly the end node.

Figure 38 — Example of route from one link position to another

7.1.3 Turns

A turn is the description of a possible traversal of a node. It consist of three major parts:

⎯ the incoming link,

⎯ the junction (node),

⎯ the outgoing link.

In addition, restrictions on how the turn may be executed are associated with the turn. This included such
things as which lanes in the incoming link access the turn, and whatever controlling appliance may exit there.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 41

7.1.4 Maneuver

A maneuver aggregates legal combinations of turns with their spanning links. Some turns are maneuvers in
their own right (and can be treated as such). Some combinations of turns are either illegal or impossible, and
are not traversable maneuvers. When a vehicle comes to a decision point in the network, a choice between
the legal maneuvers at that point must be made for the vehicle to move onward.

7.1.5 Junctions

A junction is a collection of all the turns at a particular node.

7.1.6 Links

Links are directed edges between nodes, with additional information on navigation. Each edge will have at
least two links, one for each directed edge. Multiple links for each directed edge are possible, but no use for
such a generalization is seen at this time.

7.1.7 Network positions

Network positions are positions described not by coordinates from a coordinate reference system, but in
relation to objects within the network. For positions related to nodes, the node is sufficient to describe the
position. For an edge, the link determines the “side” of the road, and some measure is used to specify the
specific position upon that link. The most common and natural measure is the length along the link from its
start point that corresponds to the position.

7.2 Cost Functions and algorithms

Much of this International Standard has been affected by the assumption that implementations of the implied
applications would use one of the well-known algorithms for finding the shortest path through a weighted
graph. The two primary such algorithms are known as Dijkstra’s algorithm [7], and the Bellman–Ford algorithm
[4], [8]. Other algorithms are possible. Some basic understanding of these types of algorithms is helpful in
understanding some of the decisions made in formulating this International Standard (see Annex B).

The solution in this model involves the concept of a maneuver. A maneuver aggregates legal combinations of
turns (with their spanning links) into a single edge in the Dijkstra graph.

For this International Standard, cost functions are divided into groups based upon attributes: simple or
complex, static, predictive or dynamic. Simple functions are easy to calculate and approximate cost in terms of
either time or distance. They tend to take a simplified view of the world, but may approximate reality to such a
degree to assure an optimal or near-optimal route selection. Complex cost functions take a richer view of the
world, taking many factors into consideration. They are more complex, more difficult to use, but may give
more realistic results in unusual situations. Static cost functions take average values for cost and will return
the same answer regardless of actual time constraints on targets. Predictive cost functions take time into
account, but only in terms of a priori averages, and not actively retrieved current values. Predictive cost
functions are usually based on long-term histories of the link, and are separated to some degree on time of
day, and date (day of week, type of day). Dynamic cost functions take real-time variables into consideration
and modify link and node measures based first upon predictive variables but eventually on the values of these
variables based on the actual time of traversal. Dynamic functions use real-time data and can be used for
dynamic routing that modifies routing based on current traffic and road conditions.

Navigation services may provide various levels of service depending on the type of measure supported and
type of cost functions used.

A basic navigation service shall support at least cost functions based on distance and expected average time.

A predictive navigation service is a basic service that shall be able to take the chosen time of day and date
into account for predicting time of traversal.

A real-time navigation service is a predictive service that shall be able to monitor traffic and road conditions
and to reroute based on current information.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

42 © ISO 2005 – All rights reserved

A multiple-stop service is a basic, predictive or real-time service that shall be able to handle multiple stops
(uncosted) along the route (see model for a description of how multiple stops are defined).

A complex navigation service is a multiple-stop, real-time service that shall be able to include cost based on
activities associated with traversal of the route, such as costing stops based on price of activities at those
stops (see the description of cost functions below).

Each of these services may require other data beyond what is needed for the simpler service, or may require
external services to supply extra data. This is described in Table 1.

Table 1 — Navigation service type summary

Navigation
service level

Link and maneuver
measures required

Node measure
required

Cost function
types

Time usage Other data,
services required

basic length, average time,
address

none distance, time static yellow pages,
geolocation

predictive length, average time,
average speed,
address

time distance, time static, predictive yellow pages,
geolocation

real-time length, average time,
average speed,
address

time distance, time static, predictive
dynamic

yellow pages,
geolocation

multiple-stop
(basic, predictive,
or real-time)

length, average time,
average speed,
address

time distance, time static, predictive
dynamic

yellow pages,
geolocation

complex length, average time,
average speed,
address, slope, others

time, other distance, time,
cost, price

static, predictive
dynamic

yellow pages,
geolocation, price
directory, etc.

7.3 Package: Navigation Service

7.3.1 Semantics

The package “Navigation Service” provides classes that describe the actual services themselves. The basic
services in navigation are depicted in the UML of Figure 39.

Figure 39 — Services

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 43

7.3.2 NS_NavigationService

7.3.2.1 Semantics

The interface “NS_NavigationService” supplies operations central to navigating and tracking a single target.
The UML for NS_NavigationService is given in Figure 40.

7.3.2.2 Attribute: capabilities [0..*]: NS_RouteRequestType

The attribute “capabilities” list the types of request that this service can handle.

NS_ BasicNavigationService :: capabilities[0..*] : NS_RouteRequestType

7.3.2.3 Operation: route

This operation “route” returns a proposed route matching the criteria passed in through the request, which is
optimal for these criteria.

NS_ BasicNavigationService ::
 route(targets : NS_RouteRequest) : NT_RouteResponse

7.3.2.4 Operation: capabilities

The operation “capabilities” returns a sequence of route request types that are properly handled by the service
supporting this interface.

NS_NavigationService ::
 capabilities() : Sequence<NS_RouteRequestType>

Figure 40 — Context Diagram: NS_NavigationService

7.3.3 NS_RouteRequest

7.3.3.1 Semantics

The data type “NS_RouteRequest” is the navigation request specifying the source (starting point), waypoints
and destination (ending point) of the requested route. Cost functions used are based on general criteria.
Depending on the capabilities of the routing services, other attributes are added. The UML for
NS_RouteRequest is given in Figure 41.

7.3.3.2 Attribute: routeRequestType [1..*] : NS_RouteRequestType

The attribute “routeRequestType” indicates the type of request being made. The types “basic” and “complex”
cannot be used together. The “complex” type requires that a cost function be specified. “Predictive” will require
a time statement for either departure or arrival. “Dynamic” will require an update interval be specified.

NS_RouteRequest :: routeRequestType [1..*] : NS_RouteRequestType

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

44 © ISO 2005 – All rights reserved

7.3.3.3 Attribute: vehicle : NT_Vehicle

The attribute “vehicle” indicates the type of vehicle for which the route is being requested. It is necessary to
know so that the routing service can check constraints against links, turns and maneuvers.

NS_RouteRequest :: vehicle : NT_Vehicle

7.3.3.4 Attribute: wayPointList[1..*] : NT_WayPointList

The attribute “wayPointList” enumerates the starting point and all stopping points for the required route.
Multiple way point list may be given if the route required is essentially a sequence of subroutes, each with its
own list.

NS_RouteRequest :: wayPointList[1..*] : NT_WayPointList

7.3.3.5 Attribute: avoidList : NS_AvoidList

The attribute “avoidList” describes the items to avoid in determining candidate routes for this request.

NS_ComplexRouteRequest :: avoidList : NS_AvoidList

7.3.3.6 Attribute: departureTime[0..1] : TM_Period

The attribute “departureTime” is a temporal period during which the traveller plans to begin navigation.
The departure time or arrival time shall be specified if this request is used for predictive or dynamic routing.

NS_RouteRequest :: departureTime[0..1] : TM_Period

7.3.3.7 Attribute: arrivalTime[0..1] : TM_Period

The attribute “arrivalTime” is a temporal period during which the traveller plans to begin navigation.
The departure time or arrival time shall be specified if this request is used for predictive or dynamic routing.

NS_RouteRequest :: arrivalTime[0..1] : TM_Period

7.3.3.8 Attribute: costFunction[0..1] : NS_CostFunctionCode = "distance"

The attribute “costFunction” specifies the cost function used to choose among the candidate routes.

NS_RouteRequest :: costFunction[0..1] : NS_CostFunctionCode = "distance"

7.3.3.9 Attribute: preferences[0..*] : NS_RoutePreferences

The attribute “preferences” enumerates the user preference for the required route.

NS_RouteRequest :: preferences[0..*] : NS_RoutePreferences

7.3.3.10 Attribute: advisories[0..*] : NT_AdvisoryCategory

The attribute “advisories” enumerates the types of advisories to be returned with the requested route.

NS_RouteRequest :: advisories[0..*] : NT_AdvisoryCategory

7.3.3.11 Attribute: isDynamic : Boolean

The Boolean attribute “isDynamic” specifies whether this request is slated for dynamic update.

NS_RouteRequest :: isDynamic: Boolean = “FALSE”

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 45

7.3.3.12 Attribute: refreshInterval : TM_Duration

The attribute “refreshInterval” is the maximum duration between dynamic recalculations of the route during
execution.

NS_RouteRequest :: refreshInterval : TM_Duration

7.3.3.13 Attribute: returnRouteInstructions : Boolean

The Boolean attribute “returnRouteInstructions” specifies whether a full instruction set should be returned with
the requested route.

NS_RouteRequest :: returnRouteInstructions : Boolean

7.3.3.14 Attribute: returnRouteMaps : Boolean

The Boolean attribute “returnRouteMaps” specifies whether a set of maps should be returned with the
requested route.

NS_RouteRequest :: returnRouteMaps : Boolean

7.3.3.15 Attribute: returnRouteGeometry : Boolean

The Boolean attribute “returnRouteGeometry” specifies whether summary geometry should be returned with
the requested route.

NS_RouteRequest :: returnRouteGeometry : Boolean

7.3.3.16 Role: costFunction : NS_CostFunction

The association role “costFunction” indicates the cost function to use for this request.

NS_ComplexRouteRequest :: costFunction : NS_CostFunction

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

46 © ISO 2005 – All rights reserved

Figure 41 — Context Diagram: NS_RouteRequest

7.3.4 NS_Instruction

7.3.4.1 Semantics

The data type “NS_Instruction” describes a single route instruction or advisory. An instruction can cover
multiple maneuvers as in “turn right and then immediately left”. Most such examples involve maneuvers that
are not separated by “long” links. A route can be navigated by executing a sequence of instructions.
Instructions are required for each maneuver that does not execute the main-road rule. The UML for
NS_Instruction is given in Figure 42.

7.3.4.2 Role: maneuver : NS_Maneuver

The role “maneuver” is the maneuver being executed by this instruction.

NS_Instruction :: maneuver : NS_Maneuver

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 47

7.3.4.3 Attribute: cost : Measure

The attribute “cost” is the cost calculated for this maneuver, and the following link (which takes the route up to
the next maneuver/instruction). For example, the instruction might say “turn right and go 40km”, in which case
the value for a distance-based cost function is “40km”.

NS_Instruction :: cost : Measure

7.3.4.4 Attribute: action[0..1] : CharacterString

The attribute “action” describes the action to be taken to navigate through the associated maneuver.

NS_Instruction :: action[0..1] : CharacterString

7.3.4.5 Attribute: advisory[0..*] : NT_Advisory

The attribute “advisory” describes any advisory associated with the maneuvers being executed by the
instruction.

NS_Instruction :: advisory[0..*] : NT_Advisory

7.3.4.6 Operation: renderAsMap

The operation “renderAsMap” renders the instruction as a map view of the associated maneuvers.

NS_Instruction :: renderAsMap(scale : Scale) : Map

7.3.4.7 Operation: renderAsVoice

The operation “renderAsVoice” renders the instruction as a voice data stream.

NS_Instruction :: renderAsVoice() : VoiceStream

7.3.4.8 Operation: renderAsText

The operation “renderAsText” renders the instruction as a text stream.

NS_Instruction :: renderAsText() : CharacterString

7.3.4.9 Operation: renderAsGroundLevelView

The operation “renderAsGroundLevelView” renders the instruction as a ground level view.

NS_Instruction :: renderAsGroundLevelView() : Image

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

48 © ISO 2005 – All rights reserved

Figure 42 — Context Diagram: NS_Instruction

7.3.5 NS_InstructionList

7.3.5.1 Semantics

The data type “NS_InstructionList” is an ordered list of instructions. The UML for NS_InstructionList is given in
Figure 43.

7.3.5.2 Role: instruction[1..*] : NS_Instruction

The association role “instructions” aggregates the instructions in the list.

NS_InstructionList :: instruction[1..*] : NS_Instruction

7.3.5.3 Attribute: route : NT_Route

The attribute “route” describes the route that execution of the instructions in the list will execute.

NS_InstructionList :: route : NT_Route

7.3.5.4 Operation: renderAsMap

The operation “renderAsMap” renders the instruction list as a sequence of map views of the associated
maneuvers.

NS_Instruction :: renderAsMap(scale : Scale) : Sequence<Map>

7.3.5.5 Operation: renderAsVoice

The operation “renderAsVoice” renders the instruction list as a sequence of voice data streams.

NS_Instruction :: renderAsVoice() : Sequence<VoiceStream>

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 49

7.3.5.6 Operation: renderAsText

The operation “renderAsText” renders the instruction list as a text stream.

NS_Instruction :: renderAsText() : Sequence<CharacterString>

7.3.5.7 Operation: renderAsGroundLevelView

The operation “renderAsGroundLevelView” renders the instruction list as a sequence of ground level views.

NS_Instruction :: renderAsGroundLevelView() : Sequence<Image>

Figure 43 — Context Diagram: NS_InstructionList

7.3.6 NS_RouteResponse

7.3.6.1 Semantics

The data type “NS_RouteResponse” describes the route response for a navigation service. The UML for
NS_RouteResponse is given in Figure 44.

7.3.6.2 Attribute: request[0..1] : NS_RouteRequest

The attribute “request” contains the request information that caused this route to be generated. It can be
eliminated if there is no chance of confusion.

NS_RouteResponse :: request[0..1] : NS_RouteRequest

7.3.6.3 Attribute: route[0..*] : NT_Route

The attribute “route” contains the requested route (unless an error was found in the request that prevented a
route from being calculated).

NS_RouteResponse :: route[0..1] : NS_Route

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

50 © ISO 2005 – All rights reserved

7.3.6.4 Role: rendering[0..*] : NS_RenderingResponse

The role “rendering” contains the requested route renderings (unless an error was found in the request that
prevented a route from being calculated).

NS_RouteResponse :: rendering[0..*] : NS_RenderingResponse

Figure 44 — Context Diagram: NS_RouteResponse

7.3.7 NS_CostedTurn

7.3.7.1 Semantics

The class “NS_CostedTurn” is used to represent a turn for which the cost has been calculated according to
the indicated cost function. The UML for NS_CostedTurn is given in Figure 45.

7.3.7.2 Role: costFunction : NS_CostFunction

The association role “costFunction” indicates the cost function used to calculate the cost for this turn.

NS_CostedTurn :: costFunction : NS_CostFunction

7.3.7.3 Role: turn : NT_Turn

The association role “turn” indicates the turn that represents this costed turn with the cost stripped out (or not
yet calculated).

NS_CostedTurn :: turn : NT_Turn

7.3.7.4 Attribute: cost : Measure

The attribute “cost” is the cost of this turn according to the cost function given by the association role “cost
function".

NS_CostedTurn :: cost : Measure

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 51

Figure 45 — Context Diagram: NS_CostedTurn

7.3.8 NS_RenderingService

7.3.8.1 Semantics

The interface “NS_RenderingService” specifies the interfaces required of a portrayal service that will render
the calculated routes in a form suitable for the user interface requirements. The UML for
NS_RenderingService is given in Figure 46.

7.3.8.2 Operation: render

The operation “render” translates a route into one or more appropriate portrayals.

NS_RenderingService ::
 render(request : NS_RenderingRequest) : NS_RenderingResponse

Figure 46 — Context Diagram: NS_RenderingService

7.3.9 NS_RenderingRequest

7.3.9.1 Semantics

The data type “NS_RenderingRequest” formats a request to translate a route into one or more forms usable in
the navigation services. The UML for NS_RenderingRequest is given in Figure 47.

7.3.9.2 Attribute: route : NT_Route

The attribute “route” specifies the route to be rendered or portrayed.

NS_RenderingRequest :: route : NT_Route

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

52 © ISO 2005 – All rights reserved

7.3.9.3 Attribute: type[1..*] : NS_RenderingType

The attribute “type” specifies the type of portrayal required

NS_RenderingRequest :: type[1..*] : NS_RenderingType

Figure 47 — Context Diagram: NS_RenderingRequest

7.3.10 NS_RenderingResponse

7.3.10.1 Semantics

The data type “NS_RenderingResponse” contains rendered instructions corresponding to a route. The UML
for NS_RenderingResponse is given in Figure 48.

7.3.10.2 Attribute: map[0..1] : Sequence<Map>

The attribute “map” contains the route rendered as a sequence of maps.

NS_RenderingResponse :: map[0..1] : Sequence<Map>

7.3.10.3 Attribute: voice[0..1] : Sequence<VoiceStream>

The attribute “voice” contains the route rendered as a sequence of voice data streams.

NS_RenderingResponse :: voice[0..1] : Sequence<VoiceStream>

7.3.10.4 Attribute: text[0..1] : Sequence<CharacterString>

The attribute “text” contains the route rendered as a sequence of character strings.

NS_RenderingResponse :: text[0..1] : Sequence<CharacterString>

7.3.10.5 Attribute: groundLevelView[0..1] : Sequence<Image>

The attribute “groundLevelView” contains the route rendered as a sequence of images depicting the ground
level views of the route.

NS_RenderingResponse :: groundLevelView [0..1] : Sequence<Image>

7.3.10.6 Attribute: instructionList[0..1] : NS_InstructionList

The attribute “instructionList” contains the route rendered as a sequence of instructions, each associated with
a maneuver in the returned route.

NS_RenderingResponse :: instructionList[0..1] : NS_InstructionList

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 53

Figure 48 — Context Diagram: NS_RenderingResponse

7.3.11 NS_RenderingType

The code list “NS_RenderingType” supplies the types of portrayal available through the service using it. The
initial values are “map”, “voice”, “text”, “groundLevelView” and “maneuverInstructions”. The UML for
NS_RenderingType is given in Figure 49.

Figure 49 — Context Diagram: NS_RenderingType

7.3.12 NS_CostedLink

7.3.12.1 Semantics

The class “NS_CostedLink” is used to represent links that have been assigned a cost based upon a cost
function. The creation of such links is one of the first steps is setting up a graph for calculating minimum cost
paths. The UML for NS_CostedLink is given in Figure 50.

7.3.12.2 Role: costFunction : NS_CostFunction

The association role “costFunction” links this costed link to the function used to calculate its cost weight.

NS_CostedLink :: costFunction : NS_CostFunction

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

54 © ISO 2005 – All rights reserved

7.3.12.3 Role: link : NT_Link

The association role “link” links this costed link to the underlying costed link.

NS_CostedLink :: link : NT_Link

7.3.12.4 Attribute: totalCost : Measure

The attribute “totalCost” indicated the cost of traversing this entire link in a route.

NS_CostedLink :: totalCost : Measure

Figure 50 — Context Diagram: NS_CostedLink

7.3.13 NS_CostFunctionCode

The code list “NS_CostFunctionCode” enumerates the types of cost functions supported by the service with
this version of the code list. The initial values are “distance”, “time”, and “numberTurns”. The UML for
NS_CostFunctionCode is given in Figure 51.

Figure 51 — Context Diagram: NS_CostFunctionCode

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 55

7.3.14 NS_RouteRequestType

The code list “NS_RouteRequestType” enumerates the types of route requests. The initial values are “basic”,
“predictive”, “dynamic”, and “complex”. The UML for NS_RouteRequestType is given in Figure 52.

Figure 52 — Context Diagram: NS_RouteRequestType

7.4 Package: Cost Function

7.4.1 Semantics

7.4.1.1 Basic contents

The package “Cost Function” contains classes and types for the description of cost functions for use in route
determination.

7.4.1.2 Standard variables

7.4.1.2.1 Semantics

The cost of executing a route (which determines the optimal choice) shall be calculable from the attributes and
measures stored for the links (either on the link, or on the underlying edge) and the maneuvers. This section
describes the most common variables that may appear within a user defined or standard cost function. The
mechanism for storage or calculation of these variables is implementation dependent. These attributes may
be stored directly as attributes on the associated objects, or derived from some other service, such as traffic
information or travel condition services. Dynamic routing will be sensitive to real-time data, but static or
predictive routing will by definition often use averages for time-dependent variables, such as travel or waiting
time.

7.4.1.2.2 Distance

The distance travelled along the links is the most fundamental of all the variables, often being the basis for
calculating other variables. Distance, or more precisely length, is defined on GM_Curve in ISO 19107. For
each directed Curve (Link), it shall be possible to measure the length along this curve to any position on it.

The basic assumption is that distance is only associated with links. Maneuvers derive their lengths from the
sum of the lengths of their included links. Turns, which are maneuvers in their own right and independent of
the previous path of the vehicle up to that point, have zero (0,0) length. Nodes are considered to be 0-
dimensional and hence zero length.

7.4.1.2.3 Time

Travel time to link position from the start node is the second most fundamental variable. The most common
assumption is that the link has a constant average speed associated with it, making travel time proportional to
length along the link. The simplifying assumption is often sufficient, but for long link, especially in urban areas,
average speed may not be so constant. For this reason, time may vary non-linearly with distance. Such
conditions may be modelled using linear reference methods defined in 6.6.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

56 © ISO 2005 – All rights reserved

7.4.1.2.4 Stopping time

Maneuvers, turns and links may be associated with an average or current stopping time, such as the delay for
a traffic control mechanism (e.g. a light).

7.4.1.2.5 Speed

Speed, time and distance are obviously related, and only two of them need to be stored, with the third being
calculated from well-known formulae.

7.4.1.2.6 Speed limits

Constraints play a large part in navigation. One of the most obvious is the legal (or possibly physical) limit on
speed over links or maneuvers.

7.4.1.2.7 Slope

Most roads, rails or other transportation links are designed within limits of slope and, for some vehicles, the
slope of the link within this limit has little effect on any cost function. On the other hand, large commercial
freight vehicles may be affected by slope in many ways. One of the most common vehicle-based constraints
may be a limit on slope.

7.4.1.2.8 Link capacity

The link capacity is the limit of the link in terms of the traffic it can accommodate. It is dependent on the size of
the link, the number of lanes, the sinks (outgoing turns) and sources (incoming turns) associated with the link.
The normal assumption is that the closer a link is to its capacity, the slower the traffic moves along it.

7.4.1.2.9 Link volume

This temporal attribute represents the current amount of traffic on the link, given in the same measure as its
total capacity.

7.4.1.2.10 Link average volume

This attribute represents the average amount of traffic on the link, given in the same measure as its total
capacity.

7.4.1.2.11 Link peak volume

This attribute represents the normal peak amount of traffic on the link, given in the same measure as its total
capacity.

7.4.1.2.12 Stopping time

An attribute of a turn that describes the expected (or current average) stopping time associated with the turn.

7.4.1.2.13 Conditions

Conditional attributes associated with a link or turn are attributes that may have a negative effect on the
capacity of the link. These include, but are not limited to, the following:

⎯ weather,

⎯ special events or unusual occurrences,

⎯ construction zones.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 57

7.4.1.2.14 Tolls

The application of tolls to particular decision points (nodes in the Dijkstra graph) is a very culturally dependent
issue. Toll values (usually as a marginal cost) should be incorporated in cost functions at the point where the
decision to incur that toll is made irreversible. In the USA, the most common point is at exits, where the
decision to progress to the next exit is made. At this point, the difference between the tolls paid at the two
exits is added as a marginal cost to the trip (assuming the toll is counted towards the selected cost function).
In the presence of non-toll alternatives, tolls alone cannot be used in the optimization algorithms. The
existence of “zero-cost” cycles (closed curves, see ISO 19107) will potentially put such algorithms into infinite
loops.

7.4.1.3 Simple cost functions

7.4.1.3.1 Basic

A “basic” cost function is one of the several static (non-varying with time) cost functions that are commonly
used in routing. The most common are time and distance.

The simplest cost function is distance. It is static to a large extent, changing only when the network is
physically modified. Routing based on distance is valid essentially for the life span of the current version of the
network. It does not require contributions from the nodes. For node-to-node routes, each link shall have a total
length. For position-to-position routes, where partial links are used, the distance from any point on a link to the
end shall be calculable (as required in ISO 19107). Given this ability, the accuracy of distance functions is as
good as the data accuracy will allow.

The next simplest function is time of travel. For short links, it is reasonable to assume that average speed
along the link is probably close enough to maintain accurate time estimates, and assure optimality of the route
finally chosen. For longer routes, it may be necessary to maintain a link measure that gives either average
time to location or average speed at location (either can be derived from the other).

Travel time can also take into consideration the physical aspects of the route and the limitations of the vehicle.

Either of these two functions can approximate actual costs to some degree of assurance.

7.4.1.3.2 Predictive

A “predictive” cost function is a non-static (dynamic) cost function that does not use real-time data. General
averages that are dependent on the time of the day, the type of day, the time of year and any other
predictable factor, are used. Since real-time data is not required, the predictive cost function can be used at
any time and will return the same optimal route (up to the capability of the algorithm to do so) regardless of
when it is invoked. The most common such cost functions are time and distance.

This type of calculation of cost functions brings into account the time of traversal. For these cost functions,
either the source or destination target position shall have a time constraint. Using this time constraint, the
routing routine can predict at what time any particular point on the route would be traversed. Given time
sensitive variables, the cost of traversal can calculated based on the time of traversal. Because of the nature
of the process, the first pass at calculation of such a route will use variables based on past observations,
experience or some form of predictive model. The most common time considerations are:

⎯ time of day;

⎯ type of day (weekday, weekend, holiday);

⎯ particular date (day of the week, actual date, holiday);

⎯ average traffic conditions on the route given the time traversal.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

58 © ISO 2005 – All rights reserved

7.4.1.3.3 Dynamic

The dynamic cost functions take into account real-time data that may affect the total cost of a route, and
hence the currently optimal route. In a dynamic service, the service provider is expected to recalculate optimal
routes in a manner sufficient to ensure that the vehicle can be rerouted if the optimal route for the current
vehicle position changes in some significant way.

Dynamic cost functions shall be linked to real-time or near real-time sources of information about conditions
within the network that can affect travel time, such as traffic conditions, weather conditions, and special
circumstances (police, fire, accident, special events). Beginning with a predictive route, and tracking the
vehicle along the route, a dynamic service will recalculate the cost function for the remainder of the route, and
re-optimize if this cost function value changes beyond a given limit (usually a percentage of remaining cost).
Obviously, a dynamic cost function requires direct and reasonably constant contact with the vehicle.

7.4.2 NS_CostFunction

7.4.2.1 Semantics

The type “NS_CostFunction” is used to represent functions for the calculation of costs associated with the
traversal of the various parts of a network. The UML for NS_CostFunction is given in Figure 53.

7.4.2.2 Role: turn : NS_CostedTurn

The association role “turn” aggregates the costed turn for this cost function.

NS_CostFunction :: turn : NS_CostedTurn

7.4.2.3 Role: link : NS_CostedLink

The association role “link” aggregates the costed link for this cost function.

NS_CostFunction :: link : NS_CostedLink

7.4.2.4 Attribute: description : CharacterString

The attribute “description” contains a general description of the cost function.

NS_CostFunction :: description : CharacterString

7.4.2.5 Attribute: formula[0..1] : CharacterString

The optional attribute “formula” contains algebraic formulae describing this cost function.

NS_CostFunction :: formula[0..1] : CharacterString

7.4.2.6 Operation: cost

The various operations called “cost” assign a cost to various types of components of routes or to entire routes.
For dynamic cost functions, the variable “t” indicates the date and time for the evaluation of cost.

NS_CostFunction :: cost(
 turn : NT_Turn, t[0..1] : TM_DateAndTime = "now") : Measure
NS_CostFunction :: cost(
 link : NT_Link, t[0..1] : TM_DateAndTime = "now") : Measure
NS_CostFunction :: cost(
 route : NT_Route, t[0..1] : TM_DateAndTime = "now") : Measure
NS_CostFunction :: cost(
 maneuver : NT_Maneuver, t[0..1] : TM_DateAndTime = "now") : Measure

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 59

Figure 53 — Context Diagram: NS_CostFunction

7.4.3 NS_CostElements

The data type “NS_CostElement” is the root of the collection of data types used to define cost functions. The
UML for NS_CostElements is given in Figure 54.

Figure 54 — Context Diagram: NS_CostElements

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

60 © ISO 2005 – All rights reserved

7.4.4 NS_MonetaryCost

7.4.4.1 Semantics

The data type “NS_MonetaryCost” is the root class for all types that have a monetary-valued cost. The UML
for NS_MonetaryCost is given in Figure 55.

7.4.4.2 Operation: cost

The various operations called “cost” are overridden so that their return type is a type of currency.

NS_MonetaryCost :: cost(
 turn : NT_Turn, t[0..1] : TM_DateAndTime = "now") : Currency
NS_MonetaryCost :: cost(
 link : NT_Link, t[0..1] : TM_DateAndTime = "now") : Currency
NS_MonetaryCost :: cost(
 route : NT_Route, t[0..1] : TM_DateAndTime = "now") : Currency
NS_MonetaryCost :: cost(
 maneuver : NT_Maneuver, t[0..1] : TM_DateAndTime = "now") : Currency

Figure 55 — Context Diagram: NS_MonetaryCost

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 61

7.4.5 NS_Tolls

The data type “NS_Tolls” is used for monetary cost arising from the payment of tolls or other use fees. The
UML for NS_Tolls is given in Figure 56.

Figure 56 — Context Diagram: NS_Tolls

7.4.6 NS_Fares

The data type “NS_ Fares” is used for monetary cost arising from the payment of fares (such as to a ferry) or
other transport fees. The UML for NS_Fares is given in Figure 57.

Figure 57 — Context Diagram: NS_Fares

7.4.7 NS_Time

7.4.7.1 Semantics

The data type “NS_ Time” is the root class for all types that have a time-valued cost. The UML for NS_Time is
given in Figure 58.

7.4.7.2 Operation: cost

The various operations called “cost” are overridden so that their return type is a type of time.

NS_Time :: cost(turn : NT_Turn, t[0..1] : TM_DateAndTime = "now") : Time
NS_Time :: cost(link : NT_Link, t[0..1] : TM_DateAndTime = "now") : Time
NS_Time :: cost(route : NT_Route, t[0..1] : TM_DateAndTime = "now") : Time
NS_Time :: cost(maneuver : NT_Maneuver, t[0..1] : TM_DateAndTime = "now") :

Time

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

62 © ISO 2005 – All rights reserved

Figure 58 — Context Diagram: NS_Time

7.4.8 NS_TravelTime

The data type “NS_TravelTime” is used for time cost arising from time expended in travel along the route. The
UML for NS_TravelTime is given in Figure 59.

Figure 59 — Context Diagram: NS_TravelTime

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 63

7.4.9 NS_WaitingTime

The data type “NS_WaitingTime” is used for time cost arising from time expended waiting or stopped at points
along the route. The UML for NS_WaitingTime is given in Figure 60.

Figure 60 — Context Diagram: NS_WaitingTime

7.4.10 NS_Counts

7.4.10.1 Semantics

The data type “NS_ Counts” is the root class for all types that have a count-valued cost. The UML for
NS_Counts is given in Figure 61.

7.4.10.2 Operation: cost

The various operations called “cost” are overridden so that their return type is a type of time.

NS_Counts :: cost(
 turn : NT_Turn, t[0..1] : TM_DateAndTime = "now") : Integer
NS_Counts :: cost(
 link : NT_Link, t[0..1] : TM_DateAndTime = "now") : Integer
NS_Counts :: cost(
 route : NT_Route, t[0..1] : TM_DateAndTime = "now") : Integer
NS_Counts :: cost(
 maneuver : NT_Maneuver, t[0..1] : TM_DateAndTime = "now") : Integer

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

64 © ISO 2005 – All rights reserved

Figure 61 — Context Diagram: NS_Counts

7.4.11 NS_NumberManeuvers

The data type “NS_NumberManeuvers” is the cost element used for counting maneuvers. Normally its value
on a maneuver should be 1, and 0 elsewhere, unless “in-link” maneuvers (such as lane changes) are counted.
The UML for NS_NumberManeuvers is given in Figure 62.

Figure 62 — Context Diagram: NS_NumberManeuvers

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 65

7.4.12 NS_NumberTurns

The data type “NS_NumberTurns” is the cost element used for counting turns. Normally its value on a turn
should be 1, unless “straight” turns are not counted. The UML for NS_NumberTurns is given in Figure 63.

Figure 63 — Context Diagram: NS_NumberTurns

7.4.13 NS_NumberTransfers

The data type “NS_NumberTransfers” is the cost element used for counting transfers. Transfers could include
mode changes (see ISO 19134) or changes of network or link type such as from a road to a ferry. The UML
for NS_NumberTransfers is given in Figure 64.

Figure 64 — Context Diagram: NS_NumberTransfers

7.4.14 NS_Distance

7.4.14.1 Semantics

The data type “NS_ Distance” is the root class for all types that have a distance-valued cost. The UML for
NS_Distance is given in Figure 65.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

66 © ISO 2005 – All rights reserved

7.4.14.2 Operation: cost

The various operations called “cost” are overridden so that their return type is a type of time.

NS_Distance :: cost(
 turn : NT_Turn, t[0..1] : TM_DateAndTime = "now") : Distance
NS_Distance :: cost(
 link : NT_Link, t[0..1] : TM_DateAndTime = "now") : Distance
NS_Distance :: cost(
 route : NT_Route, t[0..1] : TM_DateAndTime = "now") : Distance
NS_Distance :: cost(
 maneuver : NT_Maneuver, t[0..1] : TM_DateAndTime = "now") : Distance

Figure 65 — Context Diagram: NS_Distance

7.4.15 NS_WeightedCost

7.4.15.1 Semantics

The type “NS_WeightedCost” is a cost function that is the sum of the numeric values of other cost functions
with weights. These weights are used to put the various types of cost on a common basis. Since this is
dependent on personal preferences, the weights will most often be dependent on a traveller’s profile. The
handling of such personalization is in the domain of the implementation. This International Standard will not
discuss the determination of weights, but will discuss how such cost functions are used once defined. The
UML for NS_WeightedCost is given in Figure 66.

7.4.15.2 Role: term : NS_CostFunctionTerm

The association role “term” aggregates the various weighted terms of this cost function.

NS_WeightedCost :: term : NS_CostFunctionTerm

7.4.15.3 Attribute: targetUnit[0..1] : UnitOfMeasure

The optional attribute “targetUnit” defines the units to be associated with the numeric answer of this cost
function. For example, if the cost function were designed to put all costs on a monetary basis, then the target
unit would be a monetary type (such as the US dollar). This is a common practice based on “time is money”
metaphors.

NS_WeightedCost :: targetUnit[0..1] : UnitOfMeasure

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 67

Figure 66 — Context Diagram: NS_WeightedCost

7.4.16 NS_CostFunctionTerm

7.4.16.1 Semantics

The data type “NS_CostFunctionTerm” is a component of a cost function that is the sum of the numeric values
of other cost functions with weights. The UML for NS_CostFunctionTerm is given in Figure 67.

7.4.16.2 Attribute: unit : UnitOfMeasure

The attribute “unit” is the unit for the term that corresponds to the conversion weight. All costs of the type listed
are converted to this unit of measure before the weight is applied.

NS_CostFunctionTerm :: unit : UnitOfMeasure

7.4.16.3 Attribute: type : NS_CostElementType

The attribute “type” is the type of cost for the term.

NS_CostFunctionTerm :: type : NS_CostElementType

7.4.16.4 Attribute: weight : Number

The attribute “weight” is the weight for the term that will be used to multiply the numeric value of the cost
(in the units indicated) to get a weighted contribution for this cost function.

NS_CostFunctionTerm :: weight : Number

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

68 © ISO 2005 – All rights reserved

Figure 67 — Context Diagram: NS_CostFunctionTerm

7.4.17 NS_CostElementType

The code list “NS_CostElementType” enumerates the types of cost function elements supported. The initial
values of this list are “time”, “waitingTime”, “travelTime”, “currency”, “tolls”, “fares”, “counts”, “turns”,
“transfers”, “maneuvers”, and “distance”. The UML for NS_CostElementType is given in Figure 67.

7.5 Package: Preferences

7.5.1 Semantics

The package “Preferences” contains classes and code list for the specification of traveller preference that are
outside of the cost function. Such preference will be used to modify the network used before the cost function
is minimized. As such, some of these modifications will be heuristic in nature, and are therefore the domain of
the implementation.

7.5.2 NS_RoutePreferences

The code list “NS_RoutePreferences” specifies the types of route segment that the traveller prefers. The initial
values are “scenic”, “easiest”, “majorRoadsOnly” and “avoidMajorRoads”. The “scenic” preference is difficult to
quantify (how much scenery is worth how much time), and taken to extreme could create anomalous results
(such as all routes going through the Grand Canyon, even if they are from New York to Boston). The “easiest”
preference could probably be quantified in the cost function by grading the maneuvers and links by their
“difficulty”. The “majorRoadsOnly” preference produces a route that uses major roads if at all possible (again
doable by a modification to the cost function that penalizes minor roads). The “avoidMajorHighways” does the
opposite by penalizing major roads. The UML for NS_RoutePreferences is given in Figure 68.

Figure 68 — Context Diagram: NS_RoutePreferences

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 69

7.5.3 NS_AvoidList

7.5.3.1 Semantics

The type “NS_AvoidList” specifies a list of places that the traveller wishes to avoid during his travels. For
example, if the avoid list for a route from Boston to Washington, DC, were to carry “greater New York” on its
avoid list, the candidate routes would have to avoid Manhattan and its surrounding urban areas. The UML for
NS_AvoidList is given in Figure 69.

7.5.3.2 Role: avoidFeature : FD_Feature

The association role “avoidFeature” aggregates individual features to be avoided in candidate routes.

NS_AvoidList :: avoidFeature : FD_Feature

7.5.3.3 avoidFeatureType : GF_FeatureType

The association role “avoidFeatureType” aggregates entire feature types to be avoided in candidate routes.

NS_AvoidList :: avoidFeatureType : GF_FeatureType

7.5.3.4 Attribute: pointElement[0..*] : NT_WayPoint

The attribute “pointElement” is a list of waypoints to be avoided.

NS_AvoidList :: pointElement[0..*] : NT_WayPoint

7.5.3.5 Attribute: mode[0..*] : CharacterString

The attribute “mode” is a list of travel modes to be avoided. The most common entry in this list would be link
types.

NS_AvoidList :: mode[0..*] : CharacterString

Figure 69 — Context Diagram: NS_AvoidList

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

70 © ISO 2005 – All rights reserved

8 Address Model

8.1 Semantics

Addresses are the most common manner in which locations are transmitted to navigation services for
vehicles. Unfortunately, there is not an applicable current international address standard, and address formats
vary from country to country and from culture to culture. For this reason, this International Standard adopts a
design strategy very loosely based on the Electronic Commerce Code Management Association (ECCMA)
International Address Element Code (IAEC). The basis for this strategy is a set of simple assumptions.

⎯ Addresses are made up of a sequence of text elements with well-known semantic content (valid because
of the use of ISO 11180:1993, Postal addressing).

⎯ These elements are not universal to all countries or cultures, but there is a reasonable collection of such
elements that can be gathered to cover all situations.

⎯ Address elements are used and represented differently in different countries and cultures, but these local
formats can be captured in “style templates” that describe how the elements of the national address can
be placed in an ISO 11180:1993 compliant postal address.

This package contains two leaf packages that describe a tentative model for a beginning set of address
elements, generic addresses consisting of aggregations of those elements (applicable to contributing member
countries), and a description of the required system for maintaining this part of the standard.

The components of the address model are two leaf packages: one (Address) for the overall address model as
an aggregate of elements, and another (Address Elements) for the address element model. This structure is
depicted in Figure 70.

Figure 70 — Leaf packages of the Address Model

8.2 Package: Address

8.2.1 Semantics

The Address package contains data types based on postal street address suitable for use as location input to
location-based functions. The classes consist of an abstract superclass for all addresses
(AD_AbstractAddress), a generic class for address (AD_Address) that will fit the information content of any
instance of the abstract class, and a set of national address examples. All the component members of these
classes are address elements and are defined in the next package. This structure is depicted in Figure 71.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 71

Figure 71 — Basic Address classes

8.2.2 AD_Address

8.2.2.1 Semantics

The datatype “AD_Address” is a concrete subclass of AD_AbstractAddress, whose data structure is
consistent with any applicable subtype of abstract address. Instances of AD_Address consist of any number
of AD_Address elements. The UML for AD_Address is given in Figure 72.

8.2.2.2 Attribute: addressee[0..1] : AD_Addressee

The attribute “addressee” is the contact person or designated recipient of items using this address. Non-postal
addresses, which are common in navigation locations, would normally not have a specific addressee.

AD_Address :: addressee[0..1] : AD_Addressee

8.2.2.3 Attribute: addressElement[0..*] : AD_AddressElement

Any address compliant with this International Standard will be representable as a sequence of address
elements. The attribute “addressElement” will be any number of instances of subtypes of
AD_AddressElements. Normally, each address element will correspond to a single, complete line in the
address template.

AD_Address :: addressElement [0..*] : AD_AddressElement

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

72 © ISO 2005 – All rights reserved

8.2.2.4 Attribute: phoneNumber[0..*] : AD_PhoneNumber

Since AD_PhoneNumber is an address element, the “addressElement” attribute is sufficient to allow this to be
included in the address. Since phone numbers are of particular importance in mobile subscriber network
applications, the attribute “phoneNumber” makes this explicit.

AD_Address :: phoneNumber[0..*] : AD_PhoneNumber

Figure 72 — Context Diagram: AD_Address

8.2.3 AD_AbstractAddress

The class “AD_AbstractAddress”, an empty abstract class, is the root of the address-subclassing tree. The
design strategy is to define “address elements” commonly used across multiple cultures and countries, and to
allow any country to define an address type of its own by combinations of these elements. New elements are
allowed if they have character string representations. The printed address for any country would be a template
of the strings specified in its subtype of address. Note that any viable instance for any subtype of abstract
address would also be a viable AD_Address, as long as all of its address elements are defined. To allow for
total freedom of specification, this class has no members. Its use as a member of any class or type in this
specification would most likely be replaced by a country-specific subclass in implementation profiles. The UML
for AD_AbstractAddress is given in Figure 73.

Figure 73 — Context Diagram: AD_AbstractAddress

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 73

8.2.4 AD_USAddress

8.2.4.1 Semantics

The data type “AD_USAddress” is supplied in this International Standard as an example of how a country
specific subclass of AD_AbstractAddress might be formed. It is meant to reflect a standard United States
street address, but specification of such is the purview of a US profile of this International Standard. As such,
this class definition is informative. This is a “street” address (as opposed to postal boxes which are not
normally associated with street locations). The UML for AD_USAddress is given in Figure 74.

8.2.4.2 Attribute: addressee[0..1] : AD_Addressee

The attribute “addressee” is the contact person or designated recipient of items using this address. Non-postal
addresses, which are common in navigation locations, would normally not have a specific addressee.

AD_Address :: addressee[0..1] : AD_Addressee

8.2.4.3 Attribute: street[0..1] : AD_StreetAddress

The attribute “street” contains the street address of the AD_USAddress.

AD_USAddress :: street[0..1] : AD_StreetAddress

8.2.4.4 Attribute: city[0..1] : AD_NamedPlace

The attribute “city” contains the city, town, village or borough element of the AD_USAddress.

AD_USAddress :: city[0..1] : AD_NamedPlace

8.2.4.5 Attribute: state[0..1] : AD_NamedPlace

The attribute “state” contains the state element of the AD_USAddress.

AD_USAddress :: state[0..1] : AD_NamedPlace

8.2.4.6 Attribute: postalCode[0..1] : AD_PostalCode

The attribute “postalCode” contains the “ZIP code” element of the AD_USAddress. This is a 5-digit number in
the US. Within the AD_PostalCode, the “addonCode” is the extended “Postal Code” containing the
“ZIP+4 code” extension. This is a 4-digit number.

AD_USAddress :: postalCode[0..1] : AD_PostalCode

8.2.4.7 Attribute: phoneNumber[0..*] : AD_PhoneNumber

The attribute “phoneNumber” contains the phone number element of the AD_USAddress. In the US, this
would be a character string of the form “+1 (nnn) nnn-nnnn”, where “n” is any numeric character consistent
with its position (area codes and exchanges never begin with “0” for example).

NOTE Historically, the US phone number consists, in order, of a 3-digit area code, a 3-digit exchange, and a 4-digit
local number. The meaning of these subcomponents is generally being lost, especially with regard to mobile devices
[(cell phones, pagers, personal digital assistants (PDA)].

AD_USAddress :: phoneNumber[0..*] : AD_PhoneNumber

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

74 © ISO 2005 – All rights reserved

Figure 74 — Context Diagram: AD_USAddress

8.3 Package: Address Elements

8.3.1 Semantics

Address elements are components of address, associated with a single line or less of the textual street
address of a location.

8.3.2 AD_AddressElement

The abstract class “AD_AddressElement” is the root class of all elements, and allows the address package to
define a generic address type by aggregating any number of elements. The UML for AD_AddressElement is
given in Figure 75.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 75

Figure 75 — Context Diagram: AD_AddressElement

8.3.3 AD_Addressee

8.3.3.1 Semantics

The data type “AD_Addressee” in an address specifies the recipient of any message sent to this address. In a
navigation application, addressee would not normally be needed, as it is not part of most specific locations.
If the navigation system is associated with directories (such as “yellow pages” (business directory) or “white
pages” (non-business directory)) then the addressee may be all that is needed. The UML for AD_Addressee is
given in Figure 76.

8.3.3.2 Attribute: name : CharacterString

The attribute “name” is the addressee’s name as a character string.

AD_Addressee :: name : CharacterString

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

76 © ISO 2005 – All rights reserved

Figure 76 — Context Diagram: AD_Addressee

8.3.4 AD_StreetIntersection

8.3.4.1 Semantics

The data type “AD_StreetIntersection” is an alternative to addressing. It specifies the point where the
component streets intersect (normally one unique point). Some areas accept intersection specifications as
postal addresses, and intersections are often useful in cases where address information is unknown. The
UML for AD_StreetIntersection is given in Figure 77.

8.3.4.2 Attribute: streets[0..*] : AD_Street

The attribute “streets” contains specifications for each of the streets in the intersection. There are normally
only two streets required, but other cardinalities are encountered.

AD_StreetIntersection :: streets[0..*] : AD_Street

Figure 77 — Context Diagram: AD_StreetIntersection

8.3.5 AD_Street

8.3.5.1 Semantics

The datatype “AD_Street” specifies a street by “name”. The UML for AD_Street is given in Figure 78.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 77

8.3.5.2 Attribute: directionalPrefix[0..1] : CharacterString

The attribute “directionalPrefix” specifies directional information held before the street name. Normal values of
this prefix are “north”, “south”, “east” or “west”, their abbreviations, or their local language equivalents.

AD_Street :: directionalPrefix[0..1] : CharacterString

8.3.5.3 Attribute: typePrefix[0..1] : CharacterString

The attribute “typePrefix” specifies the type of the street. In English, this is usually done as a suffix, but
prefixes are not unknown, especially if the name was inherited from another language such as in
“Camino Real”, which is Spanish for Royal Road.

AD_Street :: typePrefix[0..1] : CharacterString

8.3.5.4 Attribute: officialName[0..1] : CharacterString

The attribute “officialName” specifies the actual name of the street.

AD_Street :: officialName[0..1] : CharacterString

8.3.5.5 Attribute: trailingSpaces[0..1] : Boolean = "TRUE"

The attribute “trailingSpaces” is a Boolean that specifies the use of spacing in a street name.

AD_Street :: trailingSpaces [0..1] : CharacterString

8.3.5.6 Attribute: typeSuffix[0..1] : CharacterString

The attribute “typeSuffix” specifies the type of the street. This is the same information as the “typePrefix” but
the formatting of the final character string name is affected depending on which attribute is used.

AD_Street :: typeSuffix [0..1] : CharacterString

8.3.5.7 Attribute: directionalSuffix[0..1] : CharacterString

The attribute “directionalSuffix” specifies directional information held after the street name. Normal values of
this prefix are “north”, “south”, “east” or “west”, their abbreviations, or their local language equivalents. This is
the same information as the “directionalPrefix” but the formatting of the final character string name is affected
depending on which attribute is used.

AD_Street :: directionalSufffix [0..1] : CharacterString

8.3.5.8 Attribute: muniQuadrant[0..1] : AD_ MuniQuadrant

The attribute “muniQuadrant” is used in some addresses much like the directional attributes. Here the town is
divided into sections based on major east–west and north–south divisions. The effect is as if multiple
directionals were used. These are almost always used as suffixes.

AD_Street :: muniQuadrant [0..1] : AD_ MuniQuadrant

8.3.5.9 Attribute: postalCode[0..1] : AD_PostalCode

The attribute “postalCode” contains the postal code applicable to this street element.

AD_Street :: postalCode[0..1] : AD_PostalCode

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

78 © ISO 2005 – All rights reserved

Figure 78 — Context Diagram: AD_Street

8.3.6 AD_PostalCode

8.3.6.1 Semantics

The data type “AD_PostalCode” is used to store the postal code. The UML for AD_PostalCode is given in
Figure 79.

8.3.6.2 Attribute: code: CharacterString

The attribute “code” is the primary postal code as a character string.

AD_PostalCode :: code: CharacterString

8.3.6.3 Attribute: addonCode: CharacterString

The optional attribute “addonCode” is any secondary postal code as a character string.

AD_PostalCode :: addonCode[0..1] : CharacterString

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 79

Figure 79 — Context Diagram: AD_PostalCode

8.3.7 AD_StreetLocation

The abstract class “AD_StreetLocation” is the root for any address element that specifies a position on a
street. A number is the most common pattern. The UML for AD_StreetLocation is given in Figure 80.

Figure 80 — Context Diagram: AD_StreetLocation

8.3.8 AD_PhoneNumber

8.3.8.1 Semantics

The data type AD_PhoneNumber contains a character string representation of the phone number of the
address. The UML for AD_PhoneNumber is given in Figure 81.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

80 © ISO 2005 – All rights reserved

8.3.8.2 Attribute: number : CharacterString

The attribute “number” is the phone number.

AD_PhoneNumber :: number : CharacterString

Figure 81 — Context Diagram: AD_PhoneNumber

8.3.9 AD_NamedPlace

8.3.9.1 Semantics

The class “AD_NamedPlace” contains a place name, as might be found in a gazetteer. Place names are
usually hierarchical in nature, with larger political units containing smaller ones. The roots of these hierarchies
are the countries (or similar political units, such as protectorates, territories or colonies). The UML for
AD_NamedPlace is given in Figure 82.

8.3.9.2 Attribute: name : CharacterString

The attribute “name” specifies the name of the place as a character string.

AD_NamedPlace :: name : CharacterString

8.3.9.3 Attribute: regionOrCountry[0..1] : AD_RegionCode

The optional attribute “regionOrCountry” identifies the country or region of the country in which the place is
contained. Implementations are free to use ISO 3166-1, ISO 3166-2 or any other equivalent standardized list.

AD_NamedPlace :: regionOrCountry [0..1]: AD_RegionCode

8.3.9.4 Attribute: level[0..1] : Integer

The attribute “level” specifies the depth of the place hierarchy where this name belongs.

AD_NamedPlace :: level[0..1] : Integer

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 81

8.3.9.5 Attribute: type : AD_NamedPlaceClassification

The attribute “type” specifies the type of the named place. While related to the level, the types found at a
particular level are often a function of the local political organization model. If a named place is not specified
as being embedded in a larger place, up to the country level, then it may not represent a unique place and is
considered as “out of context”. Such context-free names can normally be placed in context by system
assumptions, such as “nearest to client”. Such assumptions are often at the core of location-based services.

AD_NamedPlace :: type : AD_NamedPlaceClassification

Figure 82 — Context Diagram: AD_NamedPlace

8.3.10 AD_StreetAddress

8.3.10.1 Semantics

The class “AD_StreetAddress” specifies a location by naming a street and a location on that street, usually by
numbered address. The UML for AD_StreetAddress is given in Figure 83.

8.3.10.2 Attribute: location : AD_StreetLocation

The attribute “location” specifies the location on the named street. This is normally a “house number” or some
other building designation.

AD_StreetAddress :: location : AD_StreetLocation

8.3.10.3 Attribute: street : AD_Street

The attribute “street” specifies the street involved in this location.

AD_StreetAddress :: street : AD_Street

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

82 © ISO 2005 – All rights reserved

Figure 83 — Context Diagram: AD_StreetAddress

8.3.11 AD_NamedPlaceClassification

The code list “AD_NamedPlaceClassification” specifies the type of named place. Local profiles of this
International Standard may extend or modify this code list to reflect the local standard. The initial code list
consists of “country”, “countrySubdividsion”, “countrySecondarySubdivision”, “municipality” and
“municipalitySubdivision”. The UML for AD_NamedPlaceClassification is given in Figure 84.

Figure 84 — Context Diagram: AD_NamedPlaceClassification

8.3.12 AD_Building

8.3.12.1 Semantics

The class “AD_Building” is a type of street location. It specifies the location on a street by specifying the
building name, or number, with an optional building subdivision name. Normally, one and only one of name
and number will be NULL. The UML for AD_Building is given in Figure 85.

8.3.12.2 Attribute: number[0..1] : CharacterString

The optional attribute “number” specifies the number of the building, as it would be in a postal address.

AD_Building :: number[0..1] : CharacterString
8.3.12.3 Attribute: subdivision[0..1] : AD_NamedPlace

The optional attribute “subdivision” specifies the named-place subdivision within which the building lies.

AD_Building :: subdivision[0..1] : AD_NamedPlace

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 83

8.3.12.4 Attribute: buildingName[0..1] : CharacterString

The optional attribute “buildingName” is the name of the building as a character string.

AD_Building :: number[0..1] : CharacterString

Figure 85 — Context Diagram: AD_Building

8.3.13 AD_MuniQuadrant

The enumeration “AD_MuniQuadrant” is a subdivision mechanism used for many places based on a north–
south line and an east–west line which intersect at a politically defined “city center”, thereby dividing the
municipality into four quadrants. The enumerated list (in English) is NW, NE, SE, and SW. The UML for
AD_MuniQuadrant is given in Figure 86.

Figure 86 — Context Diagram: AD_MuniQuadrant

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

84 © ISO 2005 – All rights reserved

8.3.14 AD_RegionCode

The code list “AD_RegionCode” consists of all country codes as defined by ISO 3166-1. Implementations are
free to use ISO 3166-1, ISO 3166-2 or any other equivalent standardized list. The UML for AD_RegionCode is
given in Figure 87.

Figure 87 — Context Diagram: AD_RegionCode

8.3.15 AD_NumberRange

8.3.15.1 Semantics

The data type “AD_NumberRange” is used to specify a sequential list of integers, used here to represent
address ranges. The interval is assumed to be closed, i.e. it includes the first and last numbers (if present).
Fractional addresses are included in the range if both the lower and upper bounds of the fractional number are
included. Augmented ranges (extended by a letter or some other suffix), are included if their base number and
the next integer is included, thus “221½” and “221B” are treated in the same manner. The UML for
AD_NumberRange is given in Figure 88.

8.3.15.2 Attribute: first : Integer, last[0..1] : Integer

The two attributes “first” and “last” are the end points of the range. If the last is not given, the range extends to
all numbers larger than “first”.

AD_NumberRange :: first : Integer,
AD_NumberRange :: last[0..1] : Integer

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 85

Figure 88 — Context Diagram: AD_NumberRange

8.3.16 AD_ListNamedPlaces

8.3.16.1 Semantics

The data type “AD_ListNamedPlaces” is an ordered list (nested from smallest to largest) of names of named
places, each name providing a context for the previous name. For example, “Dupont Circle, Washington, DC,
USA” is representable as a 4-long list. The largest place is the country, “USA”. The second is the “District of
Columbia” or “DC” as normally abbreviated. The next is “Washington”, which is the name of the city (the only
one in DC). The smallest place is the area of the traffic circle called “Dupont Circle” in northwest Washington.

8.3.16.2 Attribute: name[0..9] : AD_NamedPlace

The repeating attribute “name” is the sorted list of named places. The UML for AD_ListNamedPlaces is given
in Figure 89.

AD_ListNamedPlaces :: name[0..9] : AD_NamedPlace

Figure 89 — Context Diagram: AD_ListNamedPlaces

9 Network

9.1 Semantics

The Network package builds on the topological model presented in ISO 19107. It adds information used in
specifying location and in navigation.

9.2 Package: Network Model

9.2.1 NT_Network

9.2.1.1 Semantics

An instantiation of the type NT_Network is essentially two separate topologies. Its geometric topology is the
value of the association role “geometry”. The second topology is the graph of the NT_Link, NT_Junction, and
NT_Turn entities that comprise it. Although the links, junctions and turns have the underlying geometry of the

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

86 © ISO 2005 – All rights reserved

TP_Complex, they have their own connectivity based on usable “vehicle” routes. If a link comes to a cross-
roads and U-turns are allowed, there are up to four turns which exit that link and enter one of the links
associated with a directed edge leaving that node, including the one that reversed the incoming link. This
microtopology does not have a different geometric existence from the "road” network but represents the
potential traffic patterns through each of the “intersections” represented by the TP_Nodes of the associated
TP_Complex. The UML for NT_Network is given in Figure 90.

As a topological complex, a Network is dimension 1.

NT_Network:
 { complex.dimension() = 1 }

9.2.1.2 Role: link : NT_Link

The association role “link” aggregates all the links contained in the network. Links are the instantiation of
directed edges for networks.

NT_Network :: link: NT_ Link

9.2.1.3 Role: element : NT_Junction

The association role “element”, inherited and restricted from TP_Complex, aggregates all the junctions
contained in the network. Thus, network nodes are junctions.

NT_Network :: element : NT_Junction

9.2.1.4 Role: turn : NT_Turn

The association role “turn” aggregates all the turns contained in the network. Turns represent navigable paths
through the junctions, and will be composed of the entry link, the junction node, and the exit link.

NT_Network :: turn : NT_Turn

Figure 90 — Context Diagram: NT_Network

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 87

9.2.2 NT_WayPoint

9.2.2.1 Semantics

Waypoints are used in route requests to indicate features or positions that shall be either traversed or
avoided. The link attribute “avoid” determines which. The UML for NT_WayPoint is given in Figure 91.

9.2.2.2 Attribute: avoid : Boolean

The attribute “avoid” indicates whether or not the waypoint is to be visited or avoided.

NT_WayPoint :: avoid : Boolean

9.2.2.3 Attribute: position : TK_Position

The attribute “position” specifies the position of the waypoint.

NT_WayPoint :: position : TK_Position

9.2.2.4 Role: restriction : NT_Constraint

The association role “restriction” aggregates all constraints applicable to this waypoint.

NT_WayPoint :: restriction : NT_Constraint

Figure 91 — Context Diagram: NT_WayPoint

9.2.3 NT_WayPointList

9.2.3.1 Semantics

This class is a list of descriptions of waypoints that a route shall either pass through or avoid. The route
satisfies the target list if it passes through each location so indicated and avoids each target so indicated. The
types of description may vary although most common descriptions are either coordinate positions or street-
level addresses. The UML for NT_WayPointList is given in Figure 92.

9.2.3.2 Attribute: startPoint : NT_WayPoint

The attribute “startPoint” indicates the waypoint from which candidate routes shall begin. The “avoid” attribute
of the startPoint is ignored (false would not make sense in this usage).

startPoint : NT_WayPoint

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

88 © ISO 2005 – All rights reserved

9.2.3.3 Attribute: viaPoint [0..*] : NT_WayPoint

The attribute “viaPoint” is an array of waypoints and indicates the waypoints through which candidate routes
shall pass or avoid depending on their “avoid” attribute value.

viaPoint[0..*] : NT_WayPoint

9.2.3.4 Attribute: endPoint : NT_WayPoint

The attribute “endPoint” indicates the waypoint at which candidate routes shall end. The “avoid” attribute of
the endPoint is ignored (false would not make sense in this usage).

endPoint : NT_WayPoint

9.2.3.5 Attribute: isOrdered : Boolean = TRUE

The attribute “isOrdered” specifies whether or not the order of the viaPoint list is part of the route
requirements.

Figure 92 — Context Diagram: NT_WayPointList

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 89

9.3 Package: Turn and Junction

9.3.1 Semantics

The package “Turn and Junction” specifies the mechanisms required for the navigation of nodes in a network
or route. The UML for turns and junctions is given in Figure 93.

Figure 93 — Junction and turns

9.3.2 NT_Turn

9.3.2.1 Semantics

The NT_Turn type represents a mechanism for traversing from one link to another. Each turn will be located at
a node of the underlying topology and will form the bridge for a link entering the node and a link exiting the
node. The use of turns allows a restricted network (one with constraints) to be represented by an unrestricted
one. The use of the word “turn” does not necessarily reflect a change of direction. Going straight through an
intersection is one such viable option and would be represented by an “NT_Turn”. In public transport such as

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

90 © ISO 2005 – All rights reserved

a rail system the “NT_Turns” are routes through “stations” connecting one incoming “train” with one outgoing
“train”. NT_Turns are thus called “connections” when speaking of airports and have temporal constraints
based on the availability of the “links”, i.e. on flight times. The UML for NT_Turn is given in Figure 94.

9.3.2.2 Attribute: exitCount : Integer

The attribute “exitCount” indicates how far around the intersection the exit link occurs relative to the entrance
link. In right-hand lane systems the count is counter-clockwise. In left-hand systems the count is clockwise. In
non-road systems, the number can often be ignored. Like many of the attributes of turn, the exit count is
mainly to aid in the creation of instructions for navigation.

NT_Turn :: exitCount : Integer

9.3.2.3 Attribute: turnDirection [0..1] : NT_TurnDirection

The attribute “turnDirection” indicates what sort of change in direction is accomplished in taking the turn. This
attribute is mainly to aid in the creation of instructions for navigation.

NT_Turn :: turnDirection [0..1] : NT_TurnDirection

9.3.2.4 Attribute: isTraversable : Boolean

The attribute “isTraversable” indicates whether this turn is usable from the incoming link in any circumstances.

NT_Turn :: isTraversable : Boolean

A turn marked as not traversable (isTraversable = FALSE), is never usable as part of a route. A turn usable in
some conditions but not in others is marked with constraints which explain the conditions when the turn is
usable or not, see 9.4.2.

9.3.2.5 Attribute: isManeuver : Boolean

The attribute “isManeuver” indicates whether this turn is always usable from the incoming link. Essentially, if
“isManeuver” is true, then the turn constitutes a maneuver than can always be used regardless of how the
incoming link was entered.

NT_Turn :: isManeuver: Boolean

9.3.2.6 Attribute: entryCount : Integer

The attribute “entryCount” indicates how far around the intersection the entry link occurs relative to the exit
link. In right-hand lane systems the count is counter-clockwise. In left-hand systems the count is clockwise. In
non-road systems, the number can often be ignored. Like many of the attributes of turn, the entry count is
mainly to aid in the creation of instructions for navigation.

NT_Turn :: entryCount: Integer

9.3.2.7 Role: toLink : NT_Link

The association role “toLink” specifies the link into which this turn navigates.

NT_Turn :: toLink : NT_Link

9.3.2.8 Role: fromLink : NT_Link

The association role “fromLink” specifies the link from which this turn navigates.

NT_Turn :: fromLink: NT_Link

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 91

9.3.2.9 Role: constraint : NT_Constraint

The association role “constraint” aggregates all constraints that are associated with this turn.

NT_Turn :: constraint : NT_Constraint

9.3.2.10 Role: junction : NT_Junction

The association role “junction” specifies the junction (node) at which this turn occurs.

NT_Turn :: junction : NT_Junction

9.3.2.11 Role: advisory : NT_Advisory

The association role “advisory” specifies the advisories associated with this turn.

NT_Turn :: advisory : NT_Advisory

9.3.2.12 Role: maneuver : NT_Maneuver

The association role “maneuver” specifies the maneuvers associated with this turn.

NT_Turn :: advisory : NT_Advisory

9.3.2.13 Operation: cost

The operation “cost” returns a costed turn given a cost function.

NT_Turn :: cost(function : NS_CostFunction) : NS_CostedTurn

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

92 © ISO 2005 – All rights reserved

Figure 94 — Context Diagram: NT_Turn

9.3.3 NT_TurnDirection

The code list “NT_TurnDirection” enumerates the types of turns used in a route. The descriptions should be
adjusted for the cultural and application context. The default values in the code list are as follows: straight,
keepLeft, slightLeft, left, sharpLeft, uTurn, sharpRight, right, slightRight, and keepRight. The UML for
NT_TurnDirection is given in Figure 95.

Figure 95 — Context Diagram: NT_TurnDirection

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 93

9.3.4 NT_Junction

9.3.4.1 Semantics

The type “NT_Junction” replaces its supertype “TP_Node” for NT_Network instances. In terms of navigation, a
junction is where turns occur. The UML for NT_Junction is given in Figure 96.

9.3.4.2 Attribute: junctionType[0..1] : NT_JunctionType

The attribute “junctionType” describes the type of this junction.

NT_Junction :: junctionType[0..1] : NT_JunctionType

9.3.4.3 Role: turn : NT_Turn

The role “turn” aggregates all NT_Turns that occur at this junction.

NT_Junction :: turn : NT_Turn

9.3.4.4 Role: spoke : NT_Link

The role “spoke” is inherited from NT_Node. In a junction, the spokes are links.

NT_Junction :: spoke : NT_Link

9.3.4.5 Role: maximalComplex : NT_Network

The role “maximalComplex” is inherited from NT_Node. In a junction, the maximalComplex is a network.

NT_Junction :: maximalComplex : NT_Network

9.3.4.6 Operation: entryLinks

The operation “entryLinks” returns a list of potential entry links that are valid for a particular exit link. Thus, for
each element “entry” in the returned sequence, the pair “entry, startLink” constitutes a valid turn.
The parameters of the operation are the following:

startLink the first link to act as a starting point for the count, and list;

direction the angular direction in which to count.

NT_Junction :: entryLinks(
 startLink : NT_Link, direction : NT_AngularDirection = clockwise) :
 Sequence<NT_Links>

9.3.4.7 Operation: nextExit

The function “nextExit” returns an exit link at a particular offset from a given entry link.

entryLink the entry link from which to start the search;

count the offset of the requested exit link, default “1” which is the next available exit link.

NT_Junction ::
 nextExit(entryLink : NT_Link, count[0..1] : Integer = 1) : NT_Link

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

94 © ISO 2005 – All rights reserved

9.3.4.8 Operation: exitLinks

The operation “exitLinks” returns a list of potential exit links that are valid for a particular entry link. Thus, for
each element “exit” in the returned sequence, the pair “startLink, exit” constitutes a valid turn. The parameters
of the operation are the following:

startLink the first link to act as a starting point for the count, and list;

direction the angular direction in which to count.

NT_Junction :: exitLinks(
startLink : NT_Link, direction : NT_AngularDirection =
counterclockwise) : Sequence<NT_Links>

Figure 96 — Context Diagram: NT_Junction

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 95

9.3.5 NT_JunctionType

The code list “NT_JunctionType” provides a value domain for the types of junctions. The current values of
junction type are “intersection”, “roundabout”, “enclosedTrafficArea”, “exitRamp”, “entranceRamp”,
“changeOver”, “boardingRamp”, “station”, and “transfer”. The UML for NT_JunctionType is given in Figure 97.

Figure 97 — Context Diagram: NT_JunctionType

9.3.6 NT_AngularDirection

The enumeration “NT_AngularDirection” provides the value domain for describing in which manner angles are
measured. The possible values are “clockwise” and “counterclockwise”. As in ISO 19107, this refers to the
view of the angle from above. At ground level, clockwise angles would increase towards the right, and
counterclockwise angles increase towards the left. The UML for NT_AngularDirection is given in Figure 98.

Figure 98 — Context Diagram: NT_AngularDirection

9.4 Package: Constraint and Advisory

9.4.1 Semantics

The package “Constraints and Advisory” in the model provides classes and types useful for associating
constraints and advisory items to objects, usually turns, maneuvers and links.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

96 © ISO 2005 – All rights reserved

9.4.2 NT_Constraint

9.4.2.1 Semantics

The datatype “NT_Constraint” is an abstract class that is the root class of those types use to specify turn and
link restrictions. The UML for NT_Constraint is given in Figure 99.

9.4.2.2 Attribute: temporalValidity[0..1] : TM_Primitive

The attribute “temporalValidity” specifies the times at which this constraint is valid. In a temporal constraint,
the temporalValidity may be used to indicate a time frame within which the temporal constraint is valid. For
example, the temporalValidity may be “April-September” and the temporal constraint list “Monday-Friday, 8AM
to 10AM”, meaning that the constraint is active only during those months, those days and between those
times.

NT_Constraint :: temporalValidity[0..1] : TM_Primitive

9.4.2.3 Attribute: description[0..1] : CharacterString

The attribute “description” is a natural language description of the constraint, and may contain additional
advisory information to be used in creating instructions in which this constraint plays a role.

NT_Constraint :: description[0..1] : CharacterString

9.4.2.4 Role: coConstraint[0..*] : CharacterString

The association role “coConstraint” associates this constraint with various other primitive constraints to further
define this constraint.

NT_Constraint :: coConstraint[0..*] : NT_Constraint

The interpretation of a set of constraints is a Boolean intersection of all conditions (all conditions must be met
for the constraint to apply). Boolean unions are given by separate constraints.

Figure 99 — Context Diagram: NT_Constraint

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 97

9.4.3 NT_VehicleConstraint

9.4.3.1 Semantics

The data type “NT_VehicleConstraint” is used to specify constraints on the type or size of a vehicle that is
allowed to traverse a link or a turn. The UML for NT_VehicleConstraint is given in Figure 100.

9.4.3.2 Attribute: allowedVehicle[0..*] : NT_Vehicle

The attribute “allowedVehicle” is used to specify which vehicle types are allowed. If blank, the default
assumption is that all vehicles except those specifically disallowed are allowed.

NT_VehicleConstraint :: allowedVehicle[0..*] : NT_Vehicle

9.4.3.3 Attribute: disallowedVehicle[0..*] : NT_Vehicle

The attribute “disallowedVehicle” is used to specify which vehicle types are specifically disallowed. If blank,
the default assumption is that all vehicles except those specifically allowed are disallowed. If both
allowedVehicle and disallowedVehicle are blank, then the default assumption is that all vehicle types are
allowed.

NT_VehicleConstraint :: disallowedVehicle [0..*] : NT_Vehicle

9.4.3.4 Attribute: turnRadius[0..1] : Distance

The attribute “turnRadius” is the minimum radius of curvature of the turn or link under restriction. Vehicles
incapable of turns of this radius are disallowed.

NT_VehicleConstraint :: turnRadius [0..1] : Distance

9.4.3.5 Attribute: grade[0..2] : Angle

The attribute “grade” is the maximum (in absolute value) slope of the turn or link under restriction. Two values
are given if the link has both significant upward and downward segments. Positive angles are upward slopes,
and negative angles are downward slopes. Vehicles incapable of navigating slopes of this grade are
disallowed. If the application needs more precise information on grade, then the associated geometry object
should be queried directly.

NT_VehicleConstraint :: grade [0..2] : Angle

9.4.3.6 Attribute: maxClearance[0..*] : Distance

The attribute “maxClearance” specifies the maximum heights of a vehicle allowed.

NT_LaneConstraint :: maxClearance[0..1] : Distance

9.4.3.7 Attribute: maxWeight[0..*] : Weight

The attribute “maxWeight” specifies the maximum weights of a vehicle allowed.

NT_LaneConstraint :: maxClearance[0..1] : Distance

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

98 © ISO 2005 – All rights reserved

Figure 100 — Context Diagram: NT_VehicleConstraint

9.4.4 NT_TemporalConstraint

9.4.4.1 Semantics

The data type “NT_TemporalConstraint” specifies when a network entity may be traversed. The constraint
may be listed in two distinct manners: when the network entity is closed to traffic or when it is opened. A co-
constraint (see 9.4.2.4) on this entity may further specify vehicle types. The UML for NT_TemporalConstraint
is given in Figure 101.

9.4.4.2 Attributes: allowedTime[0..1] : TM_Primitive

The attribute “allowedTime” is used to specify the time when the entity is open for use. If NULL, the value is
assumed to be the complement of the “forbiddenTime”.

NT_TemporalConstraint :: allowedTime[0..1] : TM_Primitive

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 99

9.4.4.3 Attributes: forbiddenTime[0..1] : TM_Primitive

The attribute “forbiddenTime” is used to specify the time when the entity is closed for use. If NULL, the value
is assumed to be the complement of the “allowedTime”.

NT_TemporalConstraint :: forbiddenTime[0..1] : TM_Primitive

Figure 101 — Context Diagram: NT_TemporalConstraint

9.4.5 NT_LaneConstraint

9.4.5.1 Semantics

This datatype is used to list lane restrictions. Lane numbers are counted from the normal outside edge of
allowable travel (rightmost in right-hand lane systems, leftmost in left-hand lane systems). Allowed lanes are
ones from which the turn can be made both legally and physically (if the vehicle has a large turning radius).
The UML for NT_LaneConstraint is given in Figure 102.

9.4.5.2 Attribute: allowedLanes[0..*] : Integer

The attribute “allowedLanes” specifies the allowed lanes from which the turn can be made. Lanes counted
from the left are assigned positive numbers; the leftmost lane is “+1”. Lanes counted from the right are
assigned negative numbers; the rightmost lane is “-1”.

NT_LaneConstraint :: allowedLanes[0..*] : Integer

9.4.5.3 Attribute: turningRadius[0..*] : Distance

The turning radii, if given, are ordered in the same manner as the allowed lanes and are the minimum turning
radius required of a vehicle making this turn from this lane.

NT_LaneConstraint :: turningRadius[0..*] : Distance

9.4.5.4 Attribute: disallowedLanes[0..*] : Integer

The attribute “disallowedLanes” specifies the disallowed lanes from which the turn cannot be made.

NT_LaneConstraint :: disallowedLanes [0..*] : Integer

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

100 © ISO 2005 – All rights reserved

9.4.5.5 Attribute: applicableVehicleTypes[0..*] : NT_Vehicle

The attribute “applicableVehicleTypes” specifies the vehicle types to which this constraint applies.

NT_LaneConstraint :: applicableVehicleTypes[0..*] : NT_Vehicle

Figure 102 — Context Diagram: NT_LaneConstraint

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 101

9.4.6 NT_Vehicle

The code list “NT_Vehicle” lists the type of vehicle or traveller to which data can be applied. The current
values are: “allVehicles”, “passengerCars”, “truck”, “deliveryTruck”, “transportTruck”, “pedestrian”, “bicycle”,
“motorcycle”, “moped”, “emergency”, “taxi”, “publicBus”, “facility”, “residential”, “employee”, “hov”, “military”,
“carWithTrailer”, “privateBus”, “farm”, “explosiveCargo”, “pollutingToWaterCargo”, “dangerousCargo”,
“trolleyBus", “lightRail”, “schoolBus”, “4WheelDrive”, “snowChains”, “mailDelivery”, “tanker”,
“disableOccupant”, and “userDefined”. The UML for NT_Vehicle is given in Figure 103.

Figure 103 — Context Diagram: NT_Vehicle

9.4.7 NT_Advisory

9.4.7.1 Semantics

The data type “NT_Advisory” is used to attach free text information that might be useful in understanding
navigation instructions involving an associated object. The UML for NT_Advisory is given in Figure 104.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

102 © ISO 2005 – All rights reserved

9.4.7.2 Attribute: category : NT_AdvisoryCategory

The attribute ” NT_AdvisoryCategory” specifies the type of advisory being used.

NT_Advisory :: category : NT_AdvisoryCategory

9.4.7.3 Attribute: description[0..1] : CharacterString

The attribute “description” is the free text used to describe the nature of the advisory.

NT_Advisory :: description[0..1] : CharacterString

9.4.7.4 Attribute: element[0..*] : NT_AdvisoryElement

The attribute “element” is a list of additional information used to describe the nature of the advisory or the
position of the items or features described in the advisory text in “description”.

NT_Advisory :: element[0..*] : NT_AdvisoryElement

Figure 104 — Context Diagram: NT_Advisory

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 103

9.4.8 NT_SpatialRelation

The code list “NT_SpatialRelation” is used to describe the spatial relation between the route and the items
mentioned in an advisory, constraint or other data. The current value domains consist of “leftOfRoute”,
“rightOfRoute”, and “overRoute”. The UML for NT_SpatialRelation is given in Figure 105.

Figure 105 — Context Diagram: NT_SpatialRelation

9.4.9 NT_AdvisoryCategory

The code list “NT_AdvisoryCategory” is used to list the types of advisories used. The current possible values
of “NT_AdvisoryCategory” and their meanings are listed below.

“startLocation” beginning of route

“endLocation” end of route

“viaLocation” requested stopping point

“enterPlace” entry of a start, via or end location

“exitPlace” exit of a start, via or end location

“byPass” bypass of a urban area or other high density area

“streetNameChange” indication of a name change of the street even though a maneuver has
not taken place

“tollBooth” toll taking facility

“landmark” landmark visible from the route

“crossRoad” crossroads or intersection

“highwayMerge” merging traffic between two highways

“rampMerge” merging traffic from a ramp, access road, or slip road

“roadMerge” merging traffic from a road

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

104 © ISO 2005 – All rights reserved

The UML for NT_AdvisoryCategory is given in Figure 106.

Figure 106 — Context Diagram: NT_AdvisoryCategory

9.4.10 NT_AdvisoryElement

The abstract class “NT_AdvisoryElement” is the root of a subtyping hierarchy of data types used to describe
advisories. The UML for NT_AdvisoryElement is given in Figure 107.

Figure 107 — Context Diagram: NT_AdvisoryElement

9.4.11 NT_ExitAssociation

9.4.11.1 Semantics

The data type “NT_ExitAssociation”, a subtype of “NT_AdvisoryElement”, is used to associate an advisory
with an exit or pair of exits at a junction. The UML for NT_ExitAssociation is given in Figure 108.

EXAMPLE Toll roads often have temporally restricted exits that require the use of exact change when the tollbooth is
not manned.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 105

9.4.11.2 Attribute: exit1 : Integer

The attribute “exit1” is the exit count, from the entry point of the route into the junction, of the primary exit
associated with this advisory.

NT_ExitAssociation :: exit1 : Integer

9.4.11.3 Attribute: exit2[0..1] : Integer

The optional attribute “exit2” is the exit count from the entry point of the route into the junction, of a secondary
exit associated with this advisory.

NT_ExitAssociation :: exit2[0..1]: Integer

Figure 108 — Context Diagram: NT_ExitAssociation

9.4.12 NT_AdvisoryDirection

9.4.12.1 Semantics

The data type “NT_AdvisoryDirection”, subtyped under “NT_AdvisoryElement”, is used to describe the
direction associated with an item mentioned in the descriptive text of the associated advisory. The UML for
NT_AdvisoryDirection is given in Figure 109.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

106 © ISO 2005 – All rights reserved

9.4.12.2 Attribute: direction[0..*] : NT_TurnDirection

The attribute “direction” specifies the direction of the item mentioned in the descriptive text of the associated
advisory using the same terminology that is used for turn angles.

Figure 109 — Context Diagram: NT_AdvisoryDirection

9.4.13 NT_AdvisoryDistance

9.4.13.1 Semantics

The data type “NT_AdvisoryDistance”, subtyped under “NT_AdvisoryElement”, describes the distance at
which the item mentioned in the descriptive text of the associated advisory occurs. The UML for
NT_AdvisoryDistance is given in Figure 110.

9.4.13.2 Attribute: distance[1..2] : Distance

The attribute “distance” specifies the distance at which the item mentioned in the descriptive text of the
associated advisory occurs. Two values represent a range for the distance.

NT_AdvisoryDistance :: distance[1..2] : Distance

9.4.13.3 Attribute: from[0..1] : CharacterString

The attribute “from” specifies the point from which the measurement of the distance is made. If “blank” then
the default assumption is that the measurement is from the approximate location of the vehicle at the time the
advisory takes effect.

NOTE The relationship between this value and the offset measure in linear reference systems is currently left to the
application semantics.

NT_AdvisoryDistance :: from[0..1] : CharacterString

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 107

Figure 110 — Context Diagram: NT_AdvisoryDistance

9.4.14 NT_AdvisorySpatialRelation

9.4.14.1 Semantics

The data type “NT_AdvisorySpatialRelation”, subtyped under “NT_AdvisoryElement”, describes the spatial
relationship between the route and the item mentioned in the descriptive text of the associated advisory.
The UML for NT_AdvisorySpatialRelation is given in Figure 111.

9.4.14.2 Attribute: spatialRelationship : NT_SpatialRelation

The attribute “spatialRelationship” specifies the spatial relationship, using the code list NT_SpatialRelation as
its value domain.

Figure 111 — Context Diagram: NT_AdvisorySpatialRelation

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

108 © ISO 2005 – All rights reserved

9.5 Package: Link

9.5.1 Semantics

The package “Link” contains classes for the description of links.

9.5.2 NT_Link

9.5.2.1 Semantics

The type “NT_Link”, which is a subtype of “TP_DirectedEdge”, is used in networks for all of the directed
edges. Thus, links are the basic oriented curve elements of a network topology. Links are always associated
with a topological complex, via the TP_Primitive :: complex association role inherited from TP_Primitive
through TP_DirectedEdge. They are also potentially associated with a geometric complex through the role
TP_Primitive :: geometry inherited from TP_Primitive. Because of the dimensionality constraints on this role, it
will be an association with an instance of GM_Curve. In navigation applications, this associated curve is
almost always, but not necessarily, associated with a linear reference system (LRS) as part of its coordinate
reference system (CRS). The LRS allows attributes to be associated with parts of the link through intervals in
the measure and thus, indirectly, to subsets of the curve that may be independent of its defining segmentation
(hence the name “dynamic segmentation”).

If the underlying edge is not traversable in at least one direction, then it should not be part of the network. This
can be expressed in OCL as follows.

NT_Link:
-- At least one direction of the NT_Link is traversable in the network
 {Not(NT_Link.isTraversable) implies NT_Link.negate().isTraversable}
 {Not(NT_Link.negate().isTraversable) implies NT_Link.isTraversable}

The UML for NT_Link is given in Figure 112.

9.5.2.2 Attribute: isTraversable : Boolean

The attribute “isTraversable” indicates whether this link is navigable in this direction.

NT_Link :: isTraversable : Boolean

9.5.2.3 Attribute: isUturnPossible : Boolean

The attribute “isUturnPossible” indicates whether it is possible for a vehicle to execute a U-turn along this link,
and thus transfer to its opposite directed edge link.

NOTE This is usually not needed unless during execution the vehicle makes an error, or the navigation software
decides to use a U-turn to overcome a turning restriction at the previous junction. For example, if a left turn is illegal, the
same effect can be accomplished by a right turn followed immediately by a U-turn.

NT_Link :: isUturnPossible: Boolean

9.5.2.4 Attribute: routeSegmentCategory[0..*] : NT_RouteSegmentCategory

The attribute “routeSegmentCategory” is used to specify the category of the route segment.

NT_Link :: routeSegmentCategory[0..*] : NT_RouteSegmentCategory

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 109

9.5.2.5 Role : startTurn [0..*] : NT_Turn

The role “startTurn” associates this link with all potential turns that can be used to enter this link. Maneuvers
can be accessed through the turns.

NT_Link :: startTurn [0..*] : NT_Turn

9.5.2.6 Role : endTurn[0..*] : NT_Turn

The role “endTurn” associates this link with all potential turns that can be used to exit this link.

NT_Link :: endTurn [0..*] : NT_Turn

9.5.2.7 Role : constraint : NT_Constraint

The role “constraint” aggregates all the constraints associated with this link.

NT_Link :: constraint [0..*] : NT_Constraint

9.5.2.8 Role : advisory : NT_Advisory

Means: The role “advisory” aggregates all the constraints associated with this link.

NT_Link :: constraint [0..*] : NT_ Advisory

9.5.2.9 Operation: cost

The operation “cost” dynamically associates this link with a costed link based upon the choice of a cost
function.

NT_Link :: cost(function : NS_CostFunction) : NS_CostedLink

9.5.2.10 Operation: exitTurns

The operation “exitTurns” creates a list of exit turns, sorted by angle (closest first), for the terminal junction of
this link that can be used to navigate from this link to another.

NT_Link :: exitTurns() : Sequence<NT_Turn>

9.5.2.11 Operation: entranceTurns

The operation “entranceTurns” creates a list of entrance turns, sorted by angle (closest first), for the initial
junction of this link that can be used to navigate to this link from another link.

NT_Link :: entranceTurns () : Sequence<NT_Turn>

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

110 © ISO 2005 – All rights reserved

Figure 112 — Context Diagram: NT_Link

9.5.3 NT_RouteSegmentCategory

The code list “NT_RouteSegmentCategory” is the value domain for segment categories. The current list
includes: “road”, “ferry”, “rail”, “walkway”, “subway”, “airway”, “lightRail”, “bus”, “airRoute”, “bikepath”, “toll”,
“tunnel”, “endway” and “bridge”. The UML for NT_RouteSegmentCategory is given in Figure 113.

Figure 113 — Context Diagram: NT_RouteSegmentCategory

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 111

9.6 Package: Network Position

9.6.1 Semantics

The package “Network Position” contains classes for specifying position within a network, using a linear
reference system (LRS).

9.6.2 NT_LinkPosition

9.6.2.1 Semantics

The data type “NT_LinkPosition” is used to describe position along a link by using an LRS. The UML for
NT_LinkPosition is given in Figure 114.

9.6.2.2 Role: link : NT_Link

The role “link” indicates which link the position is on. The measure used is actually against the underlying
geometric object, but the link is used to give an entry point into the network. The link specified is the nearest
navigable link to the actual location (where “side of road” is taken into account).

NT_LinkPosition :: link : NT_Link

9.6.2.3 Attribute: linkMeasure : MemberName

The attribute “linkMeasure” is the name of the measure axis from the LRS that is used to specify this link
position. This is the same as the name in the CRS for the underlying geometric curve.

NT_LinkPosition :: linkMeasure : MemberName

9.6.2.4 Attribute: marker : Measure

The attribute “marker” is the measurement in the LRS for this link position. Looking at the underlying geometry
and finding the position of this marker will determine the spatial coordinates of the position.

NT_LinkPosition :: marker : Measure

Figure 114 — Context Diagram: NT_LinkPosition

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

112 © ISO 2005 – All rights reserved

9.6.3 NT_NetworkPosition

9.6.3.1 Semantics

The union class “NT_NetworkPosition” unites the value domains of the two mechanisms for specifying a
network position. The UML for NT_NetworkPosition is given in Figure 115.

9.6.3.2 Attribute: node : NT_Junction

If the network position is given by a node, then the attribute “node” is the NT_Junction (the subtype of node
used for networks) for the position.

NT_NetworkPosition :: node : NT_Junction

9.6.3.3 Attribute: linkPosition : NT_LinkPosition

If the network position is given by a link position, then the attribute “linkPosition” is the NT_LinkPosition for the
position.

NT_NetworkPosition :: linkPosition : NT_LinkPosition

Figure 115 — Context Diagram: NT_NetworkPosition

9.7 Package: Route

9.7.1 Semantics

The package “Route” contains classes for specifying a route within a network. Since a route is simply a
special type of 1-dimensional complex (a composite line if realized by geometry), it is a subtype of network.

9.7.2 NT_Route

9.7.2.1 Semantics

The type “NT_Route” describes routes defined by a geometric object (a composite curve) and starts and stops
positions on that geometry. A route is calculated from and optimizes a cost function from the set of possible
routes that traverse a set of target positions. The recalculate function determines a new route that optimizes
the new cost function from the passed target position to the end of the route. If the cost function has not
changed, the new route should coincide with old one.

The two canonical representations of a route are

⎯ an ordered list of directed links to be traversed,

⎯ an ordered list of maneuvers to be made.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 113

Each maneuver advisory or route instruction is associated with a link, a maneuver or a turn of the route. The
UML for NT_Route is given in Figure 116.

9.7.2.2 Attribute: summary : NT_RouteSummary

The attribute “summary” contains general information about the route.

NT_Route :: summary : NT_RouteSummary

9.7.2.3 Attribute: geometry : GM_CompositeCurve

The attribute “geometry” contains the geometry of the route expressed as a composite curve. The intent is that
the components of the curve would be the major segments of the route, but this level of organization is
application specific.

NT_Route :: geometry : GM_CompositeCurve

9.7.2.4 Role: maneuver : NT_Maneuver

The association role “maneuver” aggregates an ordered set of maneuvers that constitute the major executable
portions of the route. As a composite curve, the route is an ordered alternating set of links and turns. Critical
sequences of turns and links are aggregated into maneuvers; thus, the route can be viewed also as an
alternating set of links and maneuvers.

NT_Route :: maneuver : NT_Maneuver

9.7.2.5 Operation: recalculate

The operation “recalculate” causes the route to be recalculated from some point along it (given by a waypoint).
The return value of the function is the new route. The returned route follows the original at least up to and
through the passed waypoints. The inputs are as follows:

from point along the current route where the returned route can diverge,

cost “new” cost function for the remainder of the route.

NT_Route ::
 recalculate(from : NT_WayPoint, cost : NS_CostFunction) : NT_Route

9.7.2.6 Operation: asLinks

The operation “asLinks” returns a version of the route as a sequence of links (directed edges).

NT_Route :: asLinks() : Sequence<NT_Link>

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

114 © ISO 2005 – All rights reserved

Figure 116 — Context Diagram: NT_Route

9.7.3 NT_RouteSummary

9.7.3.1 Semantics

The data type “NT_RouteSummary” contains route summary information. The UML for NT_RouteSummary is
given in Figure 117.

9.7.3.2 Attribute: time : TM_Duration

The attribute “time” returns the expected time required for execution of the route.

NT_RouteSummary :: time : TM_Duration

9.7.3.3 Attribute: distance : Distance

The attribute “distance” returns the length of the route.

NT_RouteSummary :: distance : Distance

9.7.3.4 Attribute: extent : EX_GeographicExtent

The attribute “extent” returns the geographic extent of the route.

NT_RouteSummary :: extent : EX_GeographicExtent

9.7.3.5 Attribute: begin : NT_NetworkPosition

The attribute “begin” returns the location of the first point on the route, as a network position.

NT_RouteSummary :: begin : NT_NetworkPosition

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 115

9.7.3.6 Attribute: stops[0..1] : NT_WayPointList

The attribute “stops” returns the location of the stops made on the route, as network positions. These are part
of the route request.

NT_RouteSummary :: stops[0..1] : NT_WayPointList

9.7.3.7 Attribute: end : NT_NetworkPosition

The attribute “end” returns the location of the last point on the route, as a network position.

NT_RouteSummary :: end : NT_NetworkPosition

Figure 117 — Context Diagram: NT_RouteSummary

9.7.4 NT_Maneuver

9.7.4.1 Semantics

The type “NT_Maneuver” is used to describe maneuvers. A maneuver is a legal sequence of actions, given by
a sequence of turns, each of which terminates on the link that is the start of the next turn. Most maneuvers are
single turns; but, for some turns, traversability is dependent on route history (such as an ending turn in a U-
turn across a divided highway). Since in this case, the turn’s traversability cannot be decided by a single link’s
history, the maneuver extends that history to a sufficient length to determine traversability. The total length of
most maneuvers is quite short.

Maneuvers can also contain U-turns, which is slightly counter-intuitive since, under most circumstances,
optimal routes would not use a U-turn (which causes a visit to the same node twice). The problem occurs
because of turn restrictions. If a left turn is the optimal choice at a junction, but a left turn is illegal, then a
sequence of a right turn, a U-turn and a straight-through would be a legal approximation of the optimal route.

NOTE U-turns create a costing problem, since if not done at an intersection, the cost of the two links is not fully
realized. How to apportion costs for U-turns and the links involved is an issue left to the application.

The UML for NT_Maneuver is given in Figure 118.

9.7.4.2 Attribute: isTraversable : Boolean

The attribute “isTraversable” specifies if this maneuver is usable. Normally, non-traversable maneuvers would
be of little use, but in an active database where a maneuver might become invalid for an indeterminate time,
or be needed for historical purposes, a non-traversable maneuver may be useful.

NT_Maneuver :: isTraversable : Boolean

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

116 © ISO 2005 – All rights reserved

9.7.4.3 Role: turns : NT_Turn

The association role “turns” aggregates the ordered set of turns involved in this maneuver. Starting and
costing a maneuver at a turn is a computational convenience, allowing the standard graph theory algorithms
to operate more or less in the normal manner on the graph of links and maneuvers, as they would in a non-
restricted graph of links.

NT_Maneuver :: turns : NT_Turn {ordered}

9.7.4.4 Role: advisory : NT_Advisory

The association role “advisory” aggregates all advisories associated with this maneuver as a whole. Other
advisories may be associated with its turns and spanning links separately.

NT_Maneuver :: advisory : NT_Advisory

9.7.4.5 Role: constraint : NT_Constraint

The association role “constraint” aggregates all constraints associated with this maneuver as a whole. Other
constraints may be associated with its turns and spanning links separately.

NT_Maneuver :: constraint : NT_Constraint

9.7.4.6 Operation: cost

The operation “cost” calculates the cost for this maneuver given a cost function. The default reasoning is that
the cost of a maneuver is the sum of the cost of its components, but this may not be the case. If a U-turn is
involved, or if there is a dependency in the timing of its parts, the cost of a maneuver can be significantly
different (either greater or less) than the sum of the costs of its components. The operation shall receive a
cost function as an input parameter. The type of the measure returned will be consistent with the cost function
definition.

NT_Maneuver :: cost(function : NS_CostFunction) : Measure

9.7.4.7 Operation: startTurn

The operation “startTurn” returns the first turn of the maneuver.

NT_Maneuver :: startTurn() : NT_Turn

9.7.4.8 Operation: endTurn

The operation “endTurn” returns the last turn of the maneuver.

NT_Maneuver :: endTurn() : NT_Turn() :

9.7.4.9 Operation: startLink

The operation “startLink” returns the first link of the maneuver. This is the link that is the entry for the start turn.
This function allows an easy algorithm for building the input graph for optimization.

NT_Maneuver :: startLink() : NT_Link

9.7.4.10 Operation: endLink

The operation “endLink” returns the last link of the maneuver. This is the link that is the exit for the end turn.
This function allows an easy algorithm for building the input graph for optimization.

NT_Maneuver :: endLink() : NT_Link

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 117

Figure 118 — Context Diagram: NT_Maneuver

9.8 Package: Combined Networks

9.8.1 Semantics

The package “Combined Networks” contains types and classes useful in creating larger networks by joining
smaller ones. The general purpose is to supply mechanisms for navigation across networks from different
sources. These techniques are valid both for single-mode and multi-mode networks, depending on whether
the joining classes include a mode transition. A summary of the combined network package is given in
Figure 119.

Figure 119 — Combined Networks

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

118 © ISO 2005 – All rights reserved

9.8.2 NT_CombinedNetwork

9.8.2.1 Semantics

The type “NT_CombinedNetwork” models networks built from smaller component networks through the use of
transfer links and transfer nodes, which are described below. If the component networks are all of the same
mode, the combined network will be single mode. If not, the transfers would be mode changes within the
combined multimodal network. The UML for NT_CombinedNetwork is given in Figure 120.

9.8.2.2 Role: componentNetworks : NT_Network

The association role “componentNetworks” specifies the simpler networks from which this one is created.

NT_CombinedNetwork :: componentNetworks : NT_Network

9.8.2.3 Role: transferLink : NT_TransferLink

The association role “transferLink” specifies the transfer links used by the combined network to link other
networks from its component network list.

NT_CombinedNetwork :: : transferLink : NT_TransferLink

9.8.2.4 Role: transferNode : NT_TransferNode

The association role “transferNode” specifies the transfer nodes used by the combined network to join other
networks from its component network list.

NT_CombinedNetwork :: : transferNode : NT_TransferNode

Figure 120 — Context Diagram: NT_CombinedNetwork

9.8.3 NT_TransferNode

9.8.3.1 Semantics

A transfer Node is a node (junction) in a combined network that is the union of several component junctions.
Its links and turns contain all the links and turns of the component junctions plus transfers that move from a
link in one component network to a link in one of the other component networks. The combined network can
be recast (alternately represented) by a single network in which all component junctions of a single transfer
node have been united into a single node (of type junction), whose links consist of all the component links and
whose turns consist of all the component turns combined with the transfers. The UML for NT_TransferNode is
given in Figure 121.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 119

9.8.3.2 Role: componentJunction : NT_Junction

The association role “componentJunction” specifies the simpler junctions from which this one is created.

NT_ TransferNode :: componentJunction : NT_Junction

9.8.3.3 Role: turn : NT_Transfer

The association role “turn” specifies the turns (subtyped as NT_Transfers) that are located at this transfer
node.

NT_ TransferNode :: turn : NT_Transfer

Figure 121 — Context Diagram: NT_TransferNode

9.8.4 NT_Transfer

The type “NT_Transfer” is used to represent a turn that occurs at a transfer node and which has entry and exit
links connected to separate component junctions. The UML for NT_Transfer is given in Figure 122.

Figure 122 — Context Diagram: NT_Transfer

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

120 © ISO 2005 – All rights reserved

9.8.5 NT_TransferLink

The type “NT_TransferLink”, a subtype of NT_Link, is used to represent links in a combined network whose
boundary nodes are in different component networks. The UML for NT_TransferLink is given in Figure 123.

Figure 123 — Context Diagram: NT_TransferLink

10 Basic implementation packages

10.1 Package: Feature Data Model

10.1.1 Semantics

The classes in this package are used as stand-ins for any implementation of features as defined in
ISO 19109. The summary of this package is given in Figure 124.

Figure 124 — Feature data classes

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 121

10.1.2 FD_Feature

10.1.2.1 Semantics

The type “FD_Feature” is used to represent an implementation of features. The UML for FD_Feature is given
in Figure 125.

Figure 125 — Context Diagram: FD_Feature

10.1.2.2 Attribute: id[0..1] : FD_FeatureName

The attribute “id” is the local name, or identity of the feature. This will usually be listed in the name space for
the container feature collection for this feature.

FD_Feature:: id[0..1] : FD_FeatureName

10.1.2.3 Attribute: attributes : Record

The attribute “attributes” is a record containing all the attributes of this feature. This mechanism is used to
assure that any combination of attributes can be associated with a feature. This will support most type
systems semantics normally used for feature representations, including, strong, weak, dynamic, and untyped.

FD_Feature:: attributes : Record

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

122 © ISO 2005 – All rights reserved

10.1.3 FD_FeatureCollection

10.1.3.1 Semantics

The type “FD_FeatureCollection” is the basic class for feature collections The UML for FD_FeatureCollection
is given in Figure 126.

Figure 126 — Context Diagram: FD_FeatureCollection

10.1.3.2 Attribute: isOrdered : Boolean = false

The Boolean attribute “isOrdered” indicates whether there is any meaning in the order of this collection’s
“feature” role.

FD_FeatureCollection :: isOrdered : Boolean = false

10.1.3.3 Role: feature[0..*] : FD_Feature

The association role “feature” aggregates the features in this collection. The ordering may or may not be of
semantic importance depending on the “ordered” attribute of the feature collection.

FD_FeatureCollection :: feature[0..*] : FD_Feature

10.1.3.4 Operation: getFeature

The operation “getFeature” retrieves the feature on the association role “feature” having a given name.

FD_FeatureCollection :: getFeature(name : FD_FeatureName) : FD_Feature

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 123

10.1.4 FD_QueryFeatureCollection

10.1.4.1 Semantics

The type “FD_QueryFeatureCollection” specifies a feature collection that is defined by a query. The
association “Feature” might not be populated; but when it is, it represents the query results at the time the
query was last executed. The UML for FD_QueryFeatureCollection is given in Figure 127.

Figure 127 — Context Diagram: FD_QueryFeatureCollection

10.1.4.2 Attribute: query : CharacterString

The attribute “query” is the query, represented by a character string that defines containment in this collection.

FD_QueryFeatureCollection :: query : CharacterString

10.1.4.3 Attribute: queryLanguage[0..1] : CharacterString

The attribute “queryLanguage” is the query language used by the query.

FD_QueryFeatureCollection :: queryLanguage[0..1 : CharacterString

10.1.4.4 Operation: realize

The operation “realize” populates the Feature Collection association with the features that satisfies this query.
Normally, this will reuse this FD_QueryFeatureCollection, but that is dependent on the semantics of the
implementation.

FD_QueryFeatureCollection :: realize() : FD_FeatureCollection

10.1.5 FD_FeatureName

10.1.5.1 Semantics

The class “FD_FeatureName” is used to specify the name of a feature or feature collection for use in target
lists for navigation requests. The UML for FD_FeatureName is given in Figure 128.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

124 © ISO 2005 – All rights reserved

10.1.5.2 Attribute: id : GenericName

The attribute “id” contains the identity of the feature in the name space used for features in the datastore.

FD_FeatureName :: id : GenericName

10.1.5.3 Attribute: type : TypeName

The attribute “type” contains the type name for the feature in the name space used for feature types in the
datastore.

FD_FeatureName :: type : TypeName

10.1.5.4 Operation: getObject

The operation “getObject” retrieves the feature associated with this feature name.

FD_FeatureName :: getObject() : FD_Feature

Figure 128 — Context Diagram: FD_FeatureName

10.2 Package: New Basic Types

10.2.1 Semantics

The package “New Basic Types” loosely defines some basic types that this International Standard requires.
These are generic types that exist in various forms, and this International Standard does not place any special
requirements on them.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 125

10.2.2 VoiceStream

The class “VoiceStream” is any binary array representing an encoded voice. This is used for user interfaces.
The UML for VoiceStream is given in Figure 129.

Figure 129 — Context Diagram: VoiceStream

10.2.3 BinaryData

The class “BinaryData” is any data encoded as a binary stream. The UML for BinaryData is given in
Figure 130.

Figure 130 — Context Diagram: BinaryData

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

126 © ISO 2005 – All rights reserved

10.2.4 Map

The class “Map” is any encoded data representing a map, usually as an image, such as a JPEG or GIF file.
The UML for Map is given in Figure 131.

Figure 131 — Context Diagram: Map

10.2.5 Image

The class “Image” is any encoded data representing an image, such as a JPEG or GIF file. The UML for
Image is given in Figure 132.

Figure 132 — Context Diagram: Image

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 127

Annex A
(normative)

Abstract test suite

A.1 Semantics

Conformance to this International Standard shall consist of either service conformance or data conformance.

Data conformance includes the usage of data types from application schemas (“application type”) that are
mappable into types in this International Standard (“standard type”). In this context, “mappable” means that
there is a correspondence between the standard types in the appropriate part of this International Standard,
and the application types of the application schema in such a way that each standard type can be considered
as a supertype of the application type designated by the correspondence. This means that an application type
corresponding to a standard type contains sufficient data to recreate that standard type’s information content.

Service conformance includes both the consistent use of message-based request–response interfaces and
data conformance for the message packages used by those interfaces.

A.2 Data Types

A.2.1 Common Data Type

A.2.1.1 TK_Position

Most of the modules in this conformance annex require the use of some application class for TK_Position.
Since this is a union type, a conformant application schema implementation or profile need only implement a
viable subset of the optional representations.

a) Test Purpose: to verify an adequate set of application classes for the expressions of position. The
conformance class shall support at least one of the forms listed in the references below.

b) Test Method: Inspect the documentation of the application schema or profile and exhibit the required
correspondence.

c) References: ISO 19107, ISO 19108, ISO 19109, ISO 19112, and the subclauses specified below from
this International Standard.

1) Temporal Data: ISO 19108

2) TK_Position: 6.2.2

3) TK_PositionType: 6.2.6

4) DirectPostion: ISO 19107

5) SI_LocationName: ISO 19112

6) FD_FeatureName: ISO 19109

7) LR_PositionExpression: 6.6.2

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

128 © ISO 2005 – All rights reserved

8) NT_NetworkPosition: 9.6.3

9) AD_AbstractAddress: 8.2.3

10) phone::CharacterString

A.2.2 Address

a) Test Purpose: to verify an adequate set of application classes for the expressions of Addresses.

b) Test Method: Inspect the documentation of the application schema or profile and exhibit the required
correspondence.

c) References: ISO 19133; 8.2 and 8.3 of this International Standard, including the subclauses specified
below.

1) AD_Address: 8.2.2

2) AD_AbstractAddress: 8.2.3

3) AD_AddressElement: 8.3.2

4) AD_Addressee: 8.3.3

5) AD_StreetIntersection: 8.3.4

6) AD_Street: 8.3.5

7) AD_PostalCode: 8.3.6

8) AD_StreetLocation: 8.3.7

9) AD_PhoneNumber: 8.3.8

10) AD_NamedPlace: 8.3.9

11) AD_StreetAddress: 8.3.10

12) AD_NamedPlaceClassification: 8.3.10

13) AD_Building: 8.3.12

14) AD_MuniQuadrant: 8.3.13

15) AD_RegionCode: 8.3.14

16) AD_NumberRange: 8.3.15

17) AD_ListNamedPlaces: 8.3.16

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 129

A.2.3 Linear Reference System

a) Test Purpose: to verify an adequate set of application classes for the expressions of positions within a
Linear Reference System.

b) Test Method: Inspect the documentation of the application schema or profile and exhibit the required
correspondence.

c) References: ISO 19108; ISO 19133; 6.6 of this International Standard, including the subclauses specified
below.

1) Temporal Data: ISO 19108

2) LR_PositionExpression: 6.6.2

3) LR_LinearReferenceMethod: 6.6.3

4) LR_OffsetDirection: 6.6.4

5) LR_ReferenceMarker: 6.6.5

6) LR_OffsetReference: 6.6.6

7) LR_Feature: 6.6.7

8) LR_Element: 6.6.8

9) LR_OffsetExpression: 6.6.9

A.2.4 Network

a) Test Purpose: to verify an adequate set of application classes for the expressions within a Network Data
Model.

b) Test Method: Inspect the documentation of the application schema or profile and exhibit the required
correspondence.

c) References: ISO 19108; ISO 19133; Clause 9, through 9.7 of this International Standard, including the
subclauses specified below.

1) Temporal Data: ISO 19108

2) NT_Network: 9.2.1

3) NT_WayPoint: 9.2.2

4) NT_WayPointList: 9.2.3

5) NT_Turn: 9.3.2

6) NT_TurnDirection: 9.3.3

7) NT_Junction: 9.3.4

8) NT_JunctionType: 9.3.5

9) NT_AngularDirection: 9.3.6

10) NT_Constraint: 9.4.2

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

130 © ISO 2005 – All rights reserved

11) NT_VehicleConstraint: 9.4.3

12) NT_TemporalConstraint: 9.4.4

13) NT_LaneConstraint: 9.4.5

14) NT_Vehicle: 9.4.6

15) NT_Advisory: 9.4.7

16) NT_SpatialRelation: 9.4.8

17) NT_AdvisoryCategory: 9.4.9

18) NT_AdvisoryElement: 9.4.10

19) NT_ExitAssociation: 9.4.11

20) NT_AdvisoryDirection: 9.4.12

21) NT_AdvisoryDistance: 9.4.13

22) NT_AdvisorySpatialRelation: 9.4.14

23) NT_Link: 9.5.2

24) NT_RouteSegmentCategory: 9.5.3

25) NT_LinkPosition: 9.6.2

26) NT_NetworkPosition: 9.6.3

27) NT_Route: 9.7.2

28) NT_RouteSummary: 9.7.3

29) NT_Maneuver: 9.7.4

A.2.5 Combined Network

a) Test Purpose: to verify an adequate implementation classes for the expressions of a Combined Network
Data Model.

b) Test Method: Inspect the documentation of the application schema or profile and exhibit the required
correspondence.

c) References: ISO 19108; ISO 19133; Clause 9 of this International Standard, including the subclauses
specified below.

1) Network: A.2.4

2) NT_CombinedNetwork: 9.8.2

3) NT_TransferNode: 9.8.3

4) NT_Transfer: 9.8.4

5) NT_TransferLink: 9.8.5

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 131

A.3 Services

A.3.1 Tracking service

A.3.1.1 Interfaces

a) Test Purpose: to verify the use of the appropriate interfaces for a tracking service.

b) Test Method: Inspect the documentation of the service interface to verify the use of interfaces defined in
the references below.

c) References: ISO 19108; ISO 19133; 6.2 and 6.3 of this International Standard, including the subclauses
specified below.

1) Temporal Data: ISO 19108

2) TK_Position: A.2.1

3) TK_MobileSubscriber: 6.2.3

4) TK_TrackingLocation: 6.2.4

5) TK_TrackingService: 6.2.5

6) TK_TrackingLocationSequence: 6.2.7

7) TK_Trigger: 6.2.8

8) TK_PeriodicTrigger: 6.2.9

9) TK_TransitionTrigger: 6.2.10

10) TK_TransitionType: 6.2.11

11) TK_TrackingLocationMetadata: 6.2.12

12) TK_Transition: 6.2.13

13) TK_QualityOfPosition: 6.2.14

14) TK_Accuracy: 6.2.15

15) TK_AccuracyType: 6.2.16

16) TK_AccuracyStatement: 6.2.17

17) EG_PointEstimateCircle: 6.3.2

18) EG_PointEstimateEllipse: 6.3.4

19) EG_PointEstimateArc: 6.3.5

20) EG_PointEstimate: 6.3.2

21) EG_PointEstimateSphere: 6.3.6

22) EG_PointEstimateEllipsoid: 6.3.7

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

132 © ISO 2005 – All rights reserved

A.3.2 Location Transformation

a) Test Purpose: to verify the use of the appropriate interfaces for a Location Transformation service

b) Test Method: Inspect the documentation of the service interface to verify the use of interfaces defined in
the references below.

c) References: ISO 19108 and ISO 19133, 6.4 and 6.5 of this International Standard, including the
subclauses specified below.

1) Temporal Data: ISO 19108

2) LT_LocationTransformationService: 6.4.2

3) MC_MeasurePosition: 6.5.2

4) MC_CoordinateSystem: 6.5.3

5) MC_CoordinateReferenceSystem: 6.5.4

A.3.3 Navigation Services

a) Test Purpose: to verify the use of the appropriate interfaces for a Navigation service.

b) Test Method: Inspect the documentation of the service interface to verify the use of interfaces defined in
the references below.

c) References: ISO 19108; ISO 19133; 7.3, 7.4 and 7.5 of this International Standard, including the
subclauses specified below.

1) Temporal Data: ISO 19108

2) NS_NavigationService: 7.3.2

3) NS_RouteRequest: 7.3.3

4) NS_Instruction: 7.3.4

5) NS_InstructionList: 7.3.5

6) NS_RouteResponse: 7.3.6

7) NS_CostedTurn: 7.3.7

8) NS_RenderingService: 7.3.8

9) NS_RenderingRequest: 7.3.9

10) NS_RenderingResponse: 7.3.10

11) NS_RenderingType: 7.3.11

12) NS_CostedLink: 7.3.12

13) NS_CostFunctionCode: 7.3.13

14) NS_RouteRequestType: 7.3.14

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 133

15) NS_CostFunction: 7.4.2

16) NS_CostElements: 7.4.3

17) NS_MonetaryCost: 7.4.4

18) NS_Tolls: 7.4.5

19) NS_Fares: 7.4.6

20) NS_Time: 7.4.7

21) NS_TravelTime: 7.4.8

22) NS_WaitingTime: 7.4.9

23) NS_Counts: 7.4.10

24) NS_NumberManeuvers: 7.4.11

25) NS_NumberTurns: 7.4.12

26) NS_NumberTransfers: 7.4.13

27) NS_Distance: 7.4.14

28) NS_WeightedCost: 7.4.15

29) NS_CostFunctionTerm: 7.4.16

30) NS_CostElementType: 7.4.17

31) NS_RoutePreferences: 7.5.2

32) NS_AvoidList: 7.5.3

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

134 © ISO 2005 – All rights reserved

Annex B
(informative)

Directed weighted graphs and their algorithms

B.1 Introduction

Much of this International Standard was written with a programming approach in mind. While it is not the intent
of this International Standard to specify the particular algorithms used to support the service interfaces
described here, it should aid in the understanding of those services if the algorithms envisaged by the authors
are described.

Most of these algorithms are based on directed weighted graphs. While graphs have an obvious mapping to
physical features, they have other applications as well. A graph in this context is a set of places or states
called “nodes” that are connected by 1-way channels called “links”. Two-way channels are described as pairs
of links, one in each direction. In a 1-dimensional topological complex, the nodes and directed edges form a
directed graph. The weights of a graph are numbers assigned to the links. These weights are usually
representations of some sort of marginal cost – either in distance, time or money – incurred in traversing or
executing that link. The semantics of cost function require that the weights be non-negative numbers. Graph
theory in general is independent of semantics, and can treat with negative weights in some particularly limited
cases. Nodes are not costed.

The following sections define this structure in a more formal manner and describe problems and some of their
potential solutions.

B.2 Directed weighted graphs

A directed graph consists of two sets, N and E. The set N contains the “nodes” of the graph. E contains the
directed links of the graph and is a subset of the cross product N × N called the edges of the graph. Each
edge (n1, n2) is a mechanism to traverse from node n1 to node n2. Thus, the graph can be thought of as the
states and transitions of a finite state machine.

A path in the graph consists of a sequence of nodes (n0, n1, n2, n3, n4, … , nk) such that for each i with
0 u i < k, (ni, ni+1) ∈ E. If a graph is thought of as a description of a finite state machine, then a path is a legal
description of a legal program for that machine. Since programs are most commonly thought of as sequences
of actions, a path is alternatively represented by a sequence of edges {(ni, ni+1) | 0 u i < k and (ni, ni+1) ∈ E }.
The trivial paths contain only one node and no edge and are thus of the form (n0).

A cycle is a path (n0, n1, n2, n3, n4, … , nk) with n0 = nk. Thus, a cycle is a path that begins and ends at the
same node.

A weighted graph is one in which each edge (ni, nj) is assigned a number or “weight” wi,j. Since the weights
are often considered as representing costs, most graphs will have wi,j > 0 for each edge (ni, nj). If such a
restriction holds, the graph is positively weighted. The weight of a nontrivial path is the sum of the weights of
its links, so:

1
0

weight (, ,... ,) weight (,)
k

k i i
i

+
=

= ∑0 1n n n n n .

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 135

B.3 Shortest path problems

The most common problems encountered in this International Standard are variants of the “shortest path
problem”. The problem statement is as follows.

Given a source node a and a target node b

find a path P = (n0, n1, n2, n3, n4, … , nk)

of minimum weight with a = n0 and b = nk .

The criteria for the existence of a solution to the shortest path problem in a weighted directed graph are as
follows.

⎯ The graph is connected, i.e. there is a path from each node to every other node in the graph.

⎯ No cycle has a negative weight.

The first criterion ensures that some path exists, and the second ensures that a minimum exists.

There are several algorithms for this problem, but all of them are based on the same concept: Label the graph
based on successively better approximations to the distance from the source node. When the destination b is
labelled for the last time (according to a stopping criteria of the algorithm), its label is the distance from a to b.
By keeping track of the predecessor of each node, the path that realizes that distance can be traced
backwards for b. These algorithms are all based on a trivial observation which is true for non-negative
weights: If a path p optimizes travelling from a to b, then it also optimizes travelling from a to n, for any n on
that path. This means that p is an ever-longer sequence of shortest paths:

{(n0, n1), (n0, n1, n2), (n0, n1, n2, n3), (n0, n1, n2, n3, n4), …, (n0, n1, n2, n3, n4, …, nk)}

Dijkstra’s algorithm is the simplest of the type. The essentials of the algorithm are:

Begin with a path sequence P containing the trivial path (a). This is the
shortest path (length 0) starting at a.

For all neighbors of endpoint of the paths in the path sequence, look at
links exiting this point and create a candidate path from the current
path and the new link. You need not visit nodes already in paths
in P.

Take the minimum length path from among the candidates and add it to P.
P now contains the|P|(number of paths in P) shortest paths beginning at a.
Iterate through the 3rd step until the path added ends at b. This newest

path is the shortest path from a to b.

The drawback to Dijkstra’s algorithm is the building of the path sequence P. It tends to grow in all directions at
once forming an ever-growing network neighbourhood of a. The simplest technique to improve this is to bias
the growth of P towards paths whose endpoints get nearer and nearer to b. This is done with an estimator
function d: N × N → R+ that estimates the distance between nodes. Instead of sorting P on “weight(p)”, you
sort on “weight(p) + d(end(p), b)”. If you know that d always underestimates the distance between nodes
along paths, then the first path to reach b is the shortest path as in Dijkstra’s algorithm. This is an instance of
the “A*star” search algorithm.

There are other variants of this “path tree search” mechanism, but they all essentially do the same thing,
search for paths starting at the source node. They all put the same requirements on the graph, but they do
use widely variant mechanisms for storing that graph during calculations.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

136 © ISO 2005 – All rights reserved

B.4 Mapping real road networks into positively weighted directed graphs

The naïve assumption is that a road network is a weighted graph. If the road network were mapped directly to
the graph, node for node and directed edge for link, then we would have to interpret the properties of the
graph in terms of the properties of the road network. Unfortunately, directed graphs have several properties
that do not always reflect the reality of a road network.

First, in a graph problem, traversing a node is always free. The naïve interpretation would then require that all
turns be free. In a time-weighted graph, this would not always be the case, since time would have to be
allowed for delays caused by traffic controls (such as traffic lights).

Second, the directed graph assumes that the choice of the exit from a node is dependent only on the node,
and not how that node was approached. This is not consistent with turn restrictions. For example, if a sign
“no left turn” appears at some entrance to an intersection where a left turn would otherwise be legal, then
vehicles approaching from that direction are not allowed use of that exit link. A similar problem arises for
“U-turns” which are executed as two consecutive lefts. If the turns are independent, then the U-turn is always
legal.

Third, directed graphs do not allow decision points along the link, making U-turns other than at intersections
difficult to model.

There are two basic methods to work around this type of problem. The naïve one is to modify the algorithm to
match reality. The less obvious one is to modify the network to match the definitions. In fact, most of the
algorithm modifications are equivalent to network modifications. For the purposes of this analysis, we can
assume that the networks are modified to match the definition of a weighted graph given above.

To understand how this is done, consider the finite state machine metaphor. In such a machine, the graph
nodes are the decision points and the links are the uninterrupted execution of those decisions.

B.5 Choosing decision points

The decision points in a road network are the positions at which several alternatives exist and the driver must
commit himself to one of them.

B.6 Turns and maneuvers

As a vehicle approaches a junction, the driver must make a choice from a set of combinations that will take
him beyond that junction. If there are no restrictions placed upon him, then this is equivalent to choosing the
exit link at the next intersection (which is the set of turns). If there are restrictions, especially in a complex
junction consisting of multiple intersections, then the maneuvers are sequences of turns (and their intervening
links).

The easiest way to model this is to place decision-point nodes at the end and beginning of all road segments
long enough to remove historical restriction. At each ending decision node, the exiting graph links would
consist of the maneuvers legal at that point. Each maneuver ends at the beginning point of its last link. If non-
intersection U-turns are possible, then they can be placed at the beginning decision node of each road link as
a maneuver ending at the ending decision point of the opposite directed-edge road link (possibly a different
edge if the road is divided and the other lanes are digitized separately). Non-traversable directed edges would
not appear as links in the navigation graph.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 137

Annex C
(informative)

View of Standard in terms of RM-ODP Services

C.1 Engineering viewpoint

The basic Engineering Viewpoint assumption is that the services described in this International Standard will
be made available on the web to be accessed by mobile devices, whose web connection may be transient, in
a manner similar to permanently on-web clients. The exception is that the mobile client can either update or
request an update of its own geographic location at one or more times during the process of the service
interaction. There are no specific requirements on the network platform, and the interface and data definitions
in this International Standard are platform neutral.

A web-resident, and persistent, proxy application for the mobile client is required to make this possible. This
proxy acts as a device transformer for messages and embedded data flowing between the service and the
mobile client. The interface between the mobile client and the on-web proxy is not within the scope of this
International Standard and is covered by International Standards written by and within ISO/TC 204. This
conceptual architecture is shown in Figure C.1. In that diagram, thin and medium client nodes appear at the
top of the diagram. The other nodes on the network are persistent, on-web services available to mobile clients
through their “Proxy Application and Device Transformer”. Services specifically defined in this International
Standard are marked as such. Other services in Figure C.1 are for example, but may represent functionality
required for the marked service. For example, “Gazetteer Service” should be compliant with ISO 19112.

Figure C.1 — Conceptual architecture equating mobile and non-mobile services

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 19133:2005(E)

138 © ISO 2005 – All rights reserved

The second assumption is that the state of the mobile client will be maintained by the client application or by
its on-web proxy application. This means that all requests for services will be totally encapsulated in a
request–response pair. The operations will all be prototypically represented as

<serviceType> :: <svrOperation>(<serviceRequest>) : <serviceResponse>

Thus, we have a service model based on sets of three basic types:

⎯ a service type (listing of service operations);

⎯ a set of service request data types associated with some number of operations;

⎯ a set of service response data types associated with some number of operations.

The data types will have a core set of required components and another set of optional components that can
affect the outcome and semantics of the operations. For example, the simplest form of navigation requires
simply a “from target position” and a “to target position”, but can be modified by sending an optional
description of a different cost function.

C.2 Information viewpoint

The packages in this International Standard specify components of the information model for the services
defined here or related to those defined here. Each information model component is a type that will be used in
one or more of the services defined in this International Standard. In many cases, they will also be output
types for services that support the services defined here.

C.3 Service taxonomy

All services in this International Standard are represented by <<Type>> stereotyped classifiers and are
processing services.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 19133:2005(E)

© ISO 2005 – All rights reserved 139

Bibliography

[1] National Cooperative Highway Research Program (NCHRP), 1974, Highway Location Reference
Methods, Synthesis of Highway Practice 21, National Academy of Sciences, Washington, D.C.

[2] ABADI, M. and CARDELLI, L., A Theory of Objects, Springer-Verlag, New York, 1996

[3] AHUJA, R.K., MAGNANTI, T.L. and ORLIN, J.B., Network Flows: Theory, Algorithms and Applications,
Englewood Cliffs, NJ: Prentice Hall, 1993

[4] BELLMAN, R.E., 1958, On a routing problem, Quarterly of Applied Mathematics, Vol. 16, pp. 87-90

[5] CHERKASSKY, B.V., GOLDBERG, A.V. and RADZIK, T., 1993, Shortest Paths Algorithms: Theory and
Experimental Evaluation, Technical Report 93-1480, Computer Science Department, Stanford
University

[6] CHRISTENSEN, E., CURBERA, F., MEREDITH, G. and WEERAWARAMA, S., 15 March 2001, Web services
Description Language (WSDL) 1.1, W3C Note, <http://www.w3.org/TR/wsdl>

[7] DIJKSTRA, E., 1959, A note on two problems in connection with graphs, Numerische Mathematik, Vol.
1, pp. 269-271

[8] FORD, L.R. Jr., 1956, Network Flow Theory, Paper P-923, RAND Corporation, Santa Monica,
California

[9] HOROWITZ, A.J., 1991, Delay-Volume Relations for Travel Forecasting: Based on the 1985 Highway
Capacity Manual, Federal Highway Administration, Washington, D.C., March 1991

[10] SCARPONCINI, P., 2002, Generalized Model for Linear Referencing in Transportation, GeoInformatica,
Vol. 6, pp. 35-55

[11] SUH, S., PARK, C.H. and KIM, T.J., 1990, A Highway Capacity Function in Korea: Measurement and
Calibration, Transportation Research, 24A, pp. 176-186

[12] YOU, J. and KIM, T.J., 2000, Development and Evaluation of a Hybrid Travel Time Forecasting Model,
Transportation Research C. 8, pp. 231-256. [Also published as a chapter in THILL, J.-C., (ed),
Geographic Information Systems in Transportation Research, 2000, Elsevier Science Ltd, Oxford, UK.]

[13] ZHAN, F.B. and NOON, C.E., 2000, A Comparison Between Label-Setting and Label-Correcting
Algorithms for Computing One-to-One Shortest Paths, Journal of Geographic Information and Decision
Analysis, Vol. 4, No. 2, pp. 1-13

[14] ZHAN, F.B., and NOON, C.E., 1996, Shortest Path Algorithms: An Evaluation Using Real Road
Networks. Transportation Science, 32, pp. 65-73

[15] ZHAN, F.B., 1997, Three Fastest Shortest Path Algorithms on Real Road Networks: Data Structures
and Procedure, Journal of Geographic Information and Decision Analysis, Vol. 1, No. 1, pp. 69-82.
Available at <http://publish.uwo.ca/~jmalczew/gida_1/Zhan/Zhan.htm>

[16] ISO/IEC 11404, Information technology — Programming languages, their environments and system
software interfaces — Language-independent datatypes

[17] ISO 14825, Intelligent transport systems — Geographic Data Files (GDF) — Overall data specification

ISO 19116, Geographic information — Positioning services

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.w3.org/TR/wsdl
http://publish.uwo.ca/~jmalczew/gida_1/Zhan/Zhan.htm

ISO 19133:2005(E)

ICS 35.240.70
Price based on 139 pages

© ISO 2005 – All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

