INTERNATIONAL STANDARD ISO 19064-1 First edition 2015-11-15 # Plastics — Styrene/acrylonitrile (SAN) moulding and extrusion materials — Part 1: # **Designation system and basis for specifications** Plastiques — Styrène/acrylonitrile (SAN) pour moulage et extrusion — Partie 1: Système de désignation et base de spécification ISO 19064-1:2015(E) ### **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Cor | itent | P P | age | |-------|--------|-----------------------------------|-----------| | Fore | word | | iv | | Intro | ductio | n | v | | 1 | Scop | re | 1 | | 2 | Norn | native references | 1 | | 3 | Desi | gnation system | 2 | | | 3.1 | General | 2 | | | 3.2 | Data block 1 | 2 | | | 3.3 | Data block 2 | 3 | | | 3.4 | Data block 3 | 3 | | | 3.5 | Data block 4 | | | | | 3.5.1 Vicat softening temperature | 4 | | | | 3.5.1 Vicat softening temperature | 5 | | | 3.6 | Data block 5 | | | 4 | Exan | nples of designations | 5 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 9, *Thermoplastic materials*. This first edition of ISO 19064-1 cancels and replaces ISO 4894-1:1997, which has been technically revised to introduce a new designation system. The revised designation system is published under a new ISO number, as many existing documents refer to ISO 4894-1. If the existing ISO 4894-1 would be replaced by the new designation system, these documents would refer to the incorrect designation system. In order to give users time to switch from ISO 4894-1 to ISO 19064-1, any designation system according to ISO 4894-1 is to be phased out in 5 to 10 years. During this period, ISO 4894-2 will effectively be Part 2 of this International Standard. ISO 19064 consists of the following parts, under the general title *Plastics — Styrene/acrylonitrile (SAN)* moulding and extrusion materials: — Part 1: Designation system and basis for specifications ### Introduction ISO 4894-1:1997 is complex and does not fit with daily practice anymore. In practice the ISO 1043–series and ISO 11469 are, in combination, 'improperly' being used as a designation system for e.g. marking. The aim of this International Standard is to simplify the data block system and to connect more to the ISO 1043–series and ISO 11469, where the first two blocks are used for generic identification and marking of products. ## Plastics — Styrene/acrylonitrile (SAN) moulding and extrusion materials — ### Part 1: ### Designation system and basis for specifications #### 1 Scope This part of ISO 19064 establishes a system of designation for styrene/acrylonitrile (SAN) moulding and extrusion materials, which may be used as the basis for specifications. The types of styrene/acrylonitrile plastic are differentiated from each other by a classification system based on appropriate levels of the designatory properties, - a) Vicat softening temperature, - b) melt mass-flow rate, and on information about composition, intended application and/or method of processing, important properties, additives, colorants, fillers and reinforcing materials. This part of ISO 19064 is applicable to all copolymers of styrene and/or substituted styrene having between 5 % (m/m) and 50 % (m/m) acrylonitrile. It applies to materials ready for normal use, unmodified or modified by colorants, additives, fillers, etc. This part of ISO 19064 does not apply to expandable materials. It is not intended to imply that materials having the same designation give necessarily the same performance. This part of ISO 19064 does not provide engineering data, performance data or data on processing conditions which may be required to specify a material for a particular application and/or method of processing. If such additional properties are required, they shall be determined in accordance with the test methods specified in ISO 4894-2, if suitable. In order to specify a thermoplastic material for a particular application or to ensure reproducible processing, additional requirements may be given in data block 5 (see 3.1). #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1043-1, Plastics — Symbols and abbreviated terms — Part 1: Basic polymers and their special characteristics ISO 1043-2, Plastics — Symbols and abbreviated terms — Part 2: Fillers and reinforcing materials ISO 4894-2, Plastics — Styrene/acrylonitrile (SAN) moulding and extrusion materials — Part 2: Preparation of test specimens and determination of properties #### 3 Designation system #### 3.1 General The designation system for thermoplastics is based on the following standardized pattern: | Designation | | | | | | | |-------------------|-----------------------------|-----------------------|-----------------|-----------------|-----------------|--------------------| | | Identity block | | | | | | | Description block | International | Individual-item block | | | | | | (optional) | Standard
number
block | Data block
1 | Data block
2 | Data block
3 | Data block
4 | Data
block
5 | The designation consists of an optional description block, reading "Thermoplastics", and an identity block comprising the International Standard number and an individual-item block. For unambiguous designation, the individual-item block is subdivided into five data blocks comprising the following information: - Data block 1: Identification of the plastic by its abbreviated term (SAN) in accordance with ISO 1043-1 and information about the composition of the polymer (see 3.2). - Data block 2: Fillers or reinforcing materials and their nominal content (see 3.3). - Data block 3: First letter: Intended application and/or method of processing (see 3.4). - Letters 2 to 8: Important properties, additives and supplementary information (see 3.4). - Data block 4: Designatory properties (see 3.5). - Data block 5: For the purpose of specifications, a fifth data block may be added containing additional information (see <u>3.6</u>). The first character of the individual-item block shall be a hyphen. The data blocks shall be separated from each other by commas. If a data block is not used, this shall be indicated by doubling the separation sign, i.e. by two commas (,,). #### 3.2 Data block 1 In this data block, after the hyphen, styrene/acrylonitrile plastics are identified by its abbreviated term SAN, in accordance with ISO 1043-1 and, after the hyphen, the acrylonitrile content of the continuous phase is designated by a single-figure code-number as specified in <u>Table 1</u>. Table 1 — Ranges of acrylonitrile content In data block 1 | Code-number | Range of AN content
% (m/m) | |-------------|--------------------------------| | 1 | >5 but ≤20 | | 2 | >20 but ≤30 | | 3 | >30 | For the purposes of this part of ISO 19064, the AN content of the continuous phase shall be determined as specified in ISO 4894-2, Annex A. #### 3.3 Data block 2 In this data block, the type of filler and/or reinforcing material is represented by a single code-letter in position 1 and its physical form by a second code-letter in position 2, the code-letters being as specified in Table 2 (in accordance with ISO 1043-2). For the filler material of metal, it is represented by a two-code-letter in position 1. Subsequently, the mass content may be given by a two-figure-number in position 3 and 4. The first figure-number is presented by 0 and the second figure-number is the figure of the mass content if the mass content of filler and/or reinforcing material is less than 10 %. Mixtures of filler materials or forms may be indicated by combining the relevant codes using the sign "+" within parentheses followed by the total filler content outside the parentheses. For example, a mixture of 25 % glass fibres (GF) and 10 % mineral powder (MD) would be indicated by (GF+MD)35 or (GF25+MD10). Table 2 — Code-letters for fillers and reinforcing materials in data block 2 | Code-letter | Material
(Position 1) | Form
(Position 2) | |-------------|---------------------------------|-----------------------| | В | boron | beads, spheres, balls | | С | carbon ^a | | | D | | fines, powder | | F | | fibre | | G | glass | ground | | Н | | whiskers | | K | calcium carbonate | | | L | cellulose | | | M | mineral ^a | | | ME | metal ^b | | | S | synthetic organic ^a | flakes | | Т | talcum | | | X | not specified | not specified | | Z | others ^a | others | ^a These materials may be identified after the code-letter, e.g. by chemical symbol or additional codes to be agreed upon. #### 3.4 Data block 3 In this data block, information about the method of processing is represented by a code-letter, followed by code letters about additives, supplementary information, and other characteristics. The code-letters used are specified in Table 3. If no specific information is given on the method of processing the letter X shall be used as the first code-letter. $^{^{\}rm b}$ The type of metal shall be identified by means of the relevant chemical symbol (s) after the mass content . For example, steel whiskers may be designated "MEH05Fe". Table 3 — Code-letters used in data block 3 | Code-letter | First letter | Letters 2 to 8 | |-------------|------------------------|-----------------------------------| | A | | processing stabilized | | В | blow moulding | antiblocking | | С | calendering | coloured | | D | | powder | | Е | extrusion | expandable | | F | extrusion of films | special burning characteristics | | G | general use | granules | | Н | | heat stabilized | | К | cable and wire coating | metal deactivated | | L | monofilament extrusion | light stabilized | | М | moulding | nucleated | | N | | natural (no colour added) | | P | | impact modified | | Q | compression moulding | | | R | rotational moulding | mould release agent | | S | sintering | lubricated | | Т | tape manufacture | transparent | | X | no indication | | | Y | | increased electrical conductivity | | Z | | antistatic | #### 3.5 Data block 4 In this data block, the range of Vicat softening temperature is represented by a three-figure codenumber (see 3.5.1), the range of melt mass-flow rate by a two-figure code-number (see 3.5.2). The two code-numbers are separated from each other by hyphens. If a property value falls on or near a range limit, the manufacturer shall state which range will designate the material. If subsequent individual test values lie on, or on either side of, the limit because of manufacturing tolerances, the designation is not affected. NOTE Not all combinations of the values of the designatory properties may be possible for currently available materials. #### 3.5.1 Vicat softening temperature The Vicat softening temperature (VST) shall be determined in accordance with ISO 4894-2. The possible values of the VST are divided into four ranges, each represented by a three-figure codenumber as specified in Table 4. Table 4 — Code-numbers for Vicat softening temperature in data block 4 | Code-number | Range of Vicat softening
temperature
°C | |-------------|---| | 085 | ≤90 | | 095 | >90 but ≤100 | | 105 | >100 but ≤110 | | 115 | >110 | #### 3.5.2 Melt mass-flow rate The melt mass-flow rate (MFR) shall be determined in accordance with ISO 4894-2. The material for the determination of the MFR shall be conditioned for 3 h \pm 0,5 h at 80 °C \pm 3 °C and then stored in a desiccator at room temperature until tested. The possible values of the MFR are divided into four ranges, each represented by a two-figure codenumber as specified in <u>Table 5</u>. Table 5 — Code-numbers for melt mass-flow rate in data block 4 (measured at 220 °C/10 kg) | Code-number | Range of melt mass-flow rate
g/10 min | |-------------|--| | 04 | ≤5 | | 08 | >5 but ≤10 | | 15 | >10 but ≤20 | | 25 | >20 | #### 3.6 Data block 5 Indication of additional requirements in this optional data block is a way of transforming the designation of a material into a specification for a particular application. This shall be done for example by reference to a suitable national standard or to a standard-like, generally established specification. #### 4 Examples of designations A styrene/acrylonitrile copolymer thermoplastic material (SAN) with an acrylonitrile content of 25 % (m/m) (2), filled with boron (B) powder (D) and an filler content of 6 %(m/m)(06), intended for injection moulding (M), light or weather stabilized (L), natural (not coloured) (N) and with a Vicat softening temperature VST/B50 of 101 °C (105) and a melt mass-flow rate of 6 g/10 min (08), with no additional information, would be designated. #### ISO 19064-1:2015(E) **Designation**: Thermoplastics ISO 19064-SAN-2,BD06,MLN,105-08,,or ISO 19064-SAN-2,BD06,MLN,105-08,,or ISO 19064-SAN-2,BD06,MLN,105-08 Part marking: >SAN-2 BD06< ICS 83.080.20 Price based on 6 pages