INTERNATIONAL STANDARD

ISO 18762

First edition 2016-04-01

Tubes of titanium and titanium alloys — Welded tubes for condensers and heat exchangers — Technical delivery conditions

Tubes en titane et alliage de titane — Tubes soudés pour condenseurs et échangeurs de chaleur — Conditions techniques de livraison

COPYRIGHT PROTECTED DOCUMENT

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Coı	ntent	S	Page
Fore	word		iv
1	Scop	e	
2	Norn	native references	1
3	Infor	mation to be supplied by the purchaser	1
	3.1	General information	1
	3.2	Options	2
4	Manı	ufacturing	2
5	Requ	irements	
	5.1	General	
	5.2	Chemical composition	
	5.3	Tensile properties	
	5.4 5.5	Flattening testReverse flattening test	
	5.6	Drift-expanding (flaring) test	
	5.7	Non-destructive tests	
	017	5.7.1 General	
		5.7.2 Pneumatic test	
		5.7.3 Eddy current test	6
		5.7.4 Ultrasonic test	
	5.8	Surface conditions, imperfections and defects	
	5.9	Dimensions and tolerances	
	5.10	Finish	/
6	_	ection	
	6.1	Types of inspection and inspection documents	
		6.1.1 General	
	6.2	6.1.2 Inspection documents Specific inspection	
	0.2	6.2.1 Inspection frequency	
		6.2.2 Samples and test pieces for product analysis	
		6.2.3 Samples and test pieces for mechanical tests	
		6.2.4 Test methods	
7	Roun	nding-off procedure	9
8	Refe	rence test and analysis	9
9		ction	
10	•	king	
	10.1	General	
	10.2	Tube marking	
11	Pack	aging	10
12	Certi	fication	10
Bibl	iograph	IV.	11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information.

The committee responsible for this document is ISO/TC 79, *Light metals and their alloys*, Subcommittee SC 11, *Titanium*.

Tubes of titanium and titanium alloys — Welded tubes for condensers and heat exchangers — Technical delivery conditions

1 Scope

This International Standard specifies requirements for the manufacture of welded tubes made from titanium or titanium alloys, for use in condensers and heat exchangers.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature

ISO 8492, Metallic materials — Tube — Flattening test

ISO 8493, Metallic materials — Tube — Drift-expanding test

ISO 10474, Steel and steel products — Inspection documents

ISO 25902-1, Titanium pipes and tubes — Non-destructive testing — Part 1: Eddy-current examination

ISO 25902-2, Titanium pipes and tubes — Non-destructive testing — Part 2: Ultrasonic testing for the detection of longitudinal imperfections

ASTM E29, Practice for Using Significant Digits in test Data to Determine Conformance with Specifications

ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products

ASTM E120, Test methods for Chemical Analysis of Titanium and Titanium Alloys

ASTM E1409, Test method for determination of oxygen and nitrogen in titanium and titanium alloys by the inert gas fusion technique

ASTM E1447, Test method for determination of hydrogen in titanium and titanium alloys by the inert gas fusion thermal conductivity/ Infrared detection method

ASTM E1941, Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and their Alloys by Combustion Analysis

3 Information to be supplied by the purchaser

3.1 General information

The purchase order shall include the following information:

- a) quantity (e.g. total mass or total length of tube);
- b) grade number;
- c) outside diameter and wall thickness (minimum or average);

ISO 18762:2016(E)

- d) length and type of length (random or fixed lengths);
- e) method of manufacture and finish;
- f) non-destructive tests;
- g) packaging;
- h) inspection;
- i) certification.

3.2 Options

A number of options are specified in this International Standard and these are listed below. In the event that the purchaser does not indicate a wish to implement any of these options at the time of enquiry and order, the tubes shall be supplied in accordance with the basic specification.

- a) Restrictive chemistry (see <u>5.2</u>).
- b) Product analysis (see <u>5.2</u>).
- c) Special mechanical properties (see <u>5.3</u>).

4 Manufacturing

The welded tube shall be made from flat-rolled strips by an automatic arc-welding, a laser welding process and other welding processes. Use of a filler material is not permitted. Butt-welds are absolutely forbidden.

After welding, the tubes shall be annealed at a temperature between 500 °C to 800 °C when agreed upon between the manufacturer and purchaser and so stated in the purchase order.

5 Requirements

5.1 General

When supplied in the delivery condition indicated in 4.1 and inspected in accordance with <u>Clause 6</u>, the tubes shall conform to the requirements of this International Standard.

5.2 Chemical composition

The titanium and titanium alloys shall conform to the chemical requirements prescribed in Table 1.

The elements listed in <u>Table 1</u> are either intentional alloy additions or elements that are inherent to the manufacture of titanium sponge, ingot, or mill product.

The content of any element intentionally added to the heat during melting shall be reported.

When agreed upon between the producer and the purchaser and specified in the purchase order, other specific residual elements not listed in Table 1 may be added; their content shall be reported.

Table 1 — Chemical composition

Chemical composition in % by mass

Grade	Designation	Nitrogen max.	Carbon max.	Hydro- gen max.	Iron max.	Oxygen max.	Alu- mini- um	Vana- dium	Ruthe- nium	Palladium	Mo- lybde- num	Nickel	Chro- mium	Cobalt	Residuals max.		Titani-
drade	Designation														Each	Total	um
1	CPTi240	0,03	0,08	0,015	0,20	0,18									0,1	0,4	balance
1H	CPTi270	0,03	0,08	0,015	0,20	0,18									0,1	0,4	balance
2L	CPTi340	0,03	0,08	0,015	0,25	0,20									0,1	0,4	balance
2	CPTi345	0,03	0,08	0,015	0,30	0,25									0,1	0,4	balance
3	CPTi450	0,05	0,08	0,015	0,30	0,35									0,1	0,4	balance
3Н	CPTI480	0,05	0,08	0,015	0,30	0,35									0,1	0,4	balance
7L	TiCR0,18Pd340	0,03	0,08,	0,015	0,25	0,20				0,12 to 0,25					0,1	0,4	balance
7	TiCR0,18Pd345	0,03	0,08	0,015	0,30	0,25				0,12 to 0,25					0,1	0,4	balance
9	TiA3Al2,5V	0,03	0,08	0,015	0,25	0,15	2,5 to 3,5	2,0 to 3,0							0,1	0,4	balance
12	TiCR0,3Mo 0,75Ni483	0,03	0,08	0,015	0,30	0,25					0,2 to 0,4	0,6 to 0,9			0,1	0,4	balance
16L	TiCR0,06Pd345	0,03	0,08	0,015	0,30	0,25				0,04 to 0,08					0,1	0,4	balance
16	TiCR0,06Pd345	0,03	0,08	0,015	0,30	0,25				0,04 to 0,08					0,1	0,4	balance
26	TiCR0,11Ru345	0,03	0,08	0,015	0,30	0,25			0,08 to 0,14						0,1	0,4	balance
31	TiCR0,05Pd0,- 5Co345	0,03	0,08	0,015	0,30	0,25				0,04 to 0,08				0,20 to 0,80	0,1	0,4	balance
33	TiCR0,015Pd0, 03Ru0.45Ni0.15Cr345	0,03	0,08	0,015	0,30	0,25			0,02 to 0.04	0,01 to 0,02		0,35 to 0,55	0.10 to 0,20		0,1	0,4	balance
37	TiCR0,1,5Al345	0,03	0,08	0,015	0,30	0,25	1,0 to 2,0								0,1	0,4	balance

5.3 Tensile properties

The room temperature tensile properties of the tubes shall conform to the requirements prescribed in $\underline{\text{Table 2}}$.

Mechanical properties for conditions other than those given in this table may be established by agreement between the manufacturer and the purchaser.

TS YS or 0,2 %Offseta **Elongation** MPa MPa Grade Designation 50 mm min % min max min max 1 CPTi240 240 138 310 24 CPTi270 1H 270 410 24 2L CPTi340 510 23 340 2 20 CPTi345 345 275 450 3 CPTi450 450 380 550 18 3H CPTi480 18 480 620 7L 510 23 TiCR0,18Pd340 340 7 TiCR0.18Pd345 345 275 450 20 12 TiA3Al2,5V 620 483 12 TiCR0,3Mo0,75Ni483 483 345 12 16L TiCR0,06Pd345 345 515 20 16 TiCR0,06Pd345 345 275 450 20 26 TiCR0,11Ru345 345 275 450 20 31 TiCR0.05Pd0.5Co345 345 515 20 33 TiCR0.015P-345 20 d0,03Ru0,45Ni0,15Cr345 37 TiCR0,1,5Al345 345 215 450 20 YS or 0,2 %Offset is specified for the tubes annealed and no specified property for as deformed tubes.

Table 2 — Mechanical properties at room temperature

5.4 Flattening test

The test shall be carried out in accordance with ISO 8492.

The tubes shall be flattened under a load applied gradually at room temperature until the distance between the load platens reaches the value *H* calculated by Formula (1):

$$H = \frac{\left(1 + e\right)t}{\left(e + \frac{t}{D}\right)}\tag{1}$$

where

- *H* is the distance between platens under load, in millimetres;
- *t* is the specified wall thickness, in millimetres;
- *D* is the specified diameter, in millimetres;
- *e* is a constant, the value described in <u>Table 3</u>.

Table 3 — constant value of "e"

Grade	Designation	Constant e			
1	CPTi240	0,07			
1H	CPTi270	0,07			
2L	CPTi340	0,07			
2	CPTi345	0,07			
3	CPTi450	$0.04(OD \le 25.4 \text{ mm}) \ 0.06(OD > 25.4 \text{ mm})$			
3Н	CPTi480	$0.04(OD \le 25.4 \text{ mm}) \ 0.06(OD > 25.4 \text{ mm})$			
7L	TiCR0,18Pd340	0,07			
7	TiCR0,18Pd345	0,07			
9	TiA3Al2,5V	To be negotiated			
12	TiCR0,3Mo0,75Ni483	To be negotiated			
16L	TiCR0,06Pd345	0,07			
16	TiCR0,06Pd345	0,07			
26	TiCR0,11Ru345	0,07			
31	TiCR0.05Pd0.5Co345	0,07			
33	TiCR0,015P- d0,03Ru0,45Ni0,15Cr345	0,07			
37	TiCR0,1,5Al345	0,03			

The weld shall be positioned on the 90° or 270° centreline during loading so as to be subjected to the maximum stress.

After testing, the test piece shall be free from cracks or breaks. Examination for cracking shall be by the unaided eye. However, slight incipient cracks at its edges shall not be regarded as justification for rejection.

However, when low D-to-t ratio tubular products are tested, because the strain imposed due to geometry is unreasonably high on the inside surface at the 6 o'clock and 12 o'clock locations, cracks at these locations shall not be cause for rejection if the D-to-t ratio is less than ten (10).

The results from all calculations are to be rounded to two decimal places.

5.5 Reverse flattening test

Tubes shall be subjected to a reverse flattening test in accordance with ASTM A370 supplementary requirement II. A section of the tube, approximately 100 mm (4 in) long, that is slit longitudinally 90° either side of the weld, shall be opened and flattened with the weld at the point of maximum bend. No cracking is permitted.

5.6 Drift-expanding (flaring) test

The test shall be carried out in accordance with ISO 8493.

The tube section, approximately 100 mm (4 in), shall be expanded with a 60° conical tool, until the percentage increase in inside diameter shown in <u>Table 4</u> is reached. After testing, the test piece shall be free from cracks or breaks. Examination for cracking shall be by the unaided eye. However, slight incipient cracks at its edges shall not be regarded as justification for rejection.

Table 4 — Drift expanding (flaring) requirements

Grade	Designation	Expansion of inside diameter min%			
1	CPTi240	22			
1H	CPTi270	14			
2L	CPTi340	14			
2	CPTi345	20			
3	CPTi450	17			
3H	CPTi480	14			
7L	TiCR0,18Pd340	14			
7	TiCR0,18Pd345	20			
9	TiA3Al2,5V	20			
12	TiCR0,3Mo0,75Ni483	17			
16L	TiCR0,06Pd345	14			
16	TiCR0,06Pd345	20			
26	TiCR0,11Ru345	20			
31	TiCR0.05Pd0.5Co345	14			
33	TiCR0,015P- d0,03Ru0,45Ni0,15Cr345	14			
37	TiCR0,1,5Al345	14			

5.7 Non-destructive tests

5.7.1 General

The tubes shall be tested using a pneumatic test together with an eddy current test and an ultrasonic test.

Any tubes showing an indication in excess of that obtained from the calibration standard shall be set aside and be subject to rework, retest or rejection. A tube thus set aside may be examined further for confirmation of the presence of a defect and may be resubmitted for inspection if no defect is found. Any tubes may also be resubmitted for inspection if reworked so as to remove the defect within the specified diameter and wall thickness tolerances (rework by weld repair is not permitted).

5.7.2 Pneumatic test

Each tube shall withstand an internal air pressure of 0,69 MPa minimum, for 5 s minimum, without showing evidence of leakage. The test shall permit easy detection of any leakage by using either the pressure differential method or the air under water method. Any evidence of leakage shall be cause for rejection.

At the option of the purchaser, this pneumatic test can be replaced by the helium leak test with a maximum acceptable leak rate of 10^{-4} Pa.m³.sec⁻¹ (10^{-3} atm.l.sec⁻¹).

5.7.3 Eddy current test

Each tube shall be 100 % inspected by the Eddy current test in accordance with ISO 25902-1.

5.7.4 Ultrasonic test

All tubes shall be 100 % inspected according to ISO 25902-2 by ultrasonic test in the longitudinal.

At the option of the purchaser, a transversal inspection can be done in addition of the longitudinal inspection.

5.8 Surface conditions, imperfections and defects

The finished tubes shall be clean and free of foreign material, shall have smooth ends free of burrs, and shall be free of injurious external and internal imperfections. Minor defects can be removed, provided that the dimensional tolerances are not exceeded.

5.9 Dimensions and tolerances

Variations in diameter and wall thickness from those specified shall not exceed the amounts prescribed in $\underline{\text{Table 5}}$.

Table 5 — Permissible variations in outside dimensions based on individual measurements

Outside diameter mm	Diameter tolerances mm	Wall thickness tolerances %
Under 25,4 mm excluded	±0,102 mm	±10 %
25,4 mm to 38,1 mm excluded	±0,127 mm	±10 %
38,1 mm to 50,8 mm excluded	±0,152 mm	±10 %
50,8 mm to 63,5 mm excluded	±0,178 mm	±10 %
63,5 mm to 88,9 mm excluded	±0,254 mm	±10 %

These permissible variations in outside diameter apply only to tubes as finished at the mill before subsequent swaging, expanding, bending, polishing, or other fabricating operations.

When minimum wall tubes are ordered, wall thickness tolerances are all plus and shall be double the values shown.

The outside diameter shall not vary from that specified by more than the amounts given in $\underline{\text{Table 5}}$ as measured by "go" and "no go" ring gages.

When the maximum outside diameter tubes are ordered, the diameter tolerance is all minus and shall be double the value shown.

The inside diameter of the "go" ring gage shall be equal to the nominal tube diameter plus the plus tolerance plus 0,051 mm. The length of the "go" ring gage shall be the larger of 25,4 mm or the nominal tube diameter.

The inside diameter of the "no go" ring gage shall be equal to the nominal tube diameter minus the minus tolerance. The length of the "go" ring gage shall be the larger of 25,4 mm or the nominal tube diameter.

For tube diameters not listed in <u>Table 5</u>, the dimensional tolerances shall be agreed upon the purchaser and the manufacturer or supplier.

- Length: when tube is ordered cut to length, the length shall not be less than specified, but a variation of 3,2 mm will be permitted on tube up to 7,3 m inclusive. For lengths over 7,3 m, an additional over tolerance of 3,2 mm for each 3,05 m or fraction thereof shall be permissible up to 13 mm maximum.
- Straightness: the tube shall be free of bends or kinks and the tubes shall roll freely on the inspection table.

Maximum local deviation: 2 mm/m

Total maximum deviation: 0,15 % of the tube total length

5.10 Finish

The tubes are to be cut at right angles to the tube axis and the tube ends shall be free from burrs. The angle of cut of the end of any tube may depart from square by not more than 0,016 mm/mm of diameter.

6 Inspection

6.1 Types of inspection and inspection documents

6.1.1 General

Compliance with the requirements of the purchase order shall be checked by specific inspection in accordance with ISO 10474.

Inspection documents shall be in printed form or in electronic form as an EDI transmission that conforms to any EDI agreement between the purchaser and the manufacturer.

6.1.2 Inspection documents

If agreed, the manufacturer shall furnish ISO 10474 Inspection Certificate 3.1. or 3.2.

6.2 Specific inspection

6.2.1 Inspection frequency

6.2.2 Samples and test pieces for product analysis

All tests and inspection required by this International Standard shall be made at the place of the manufacture prior to shipment and at the manufacturer's expense unless otherwise specified and shall be so conducted as not to interfere unnecessarily with the operation of the works. When specified in the order, the manufacturer shall notify the purchaser in time so that the purchaser may have his inspector present to witness any part of the tests that may be desired.

When agreed upon in writing between the manufacturer and the purchaser, a certification that the material conforms to the requirements of this International Standard shall be the basis for acceptance of the material. Otherwise, the manufacturer shall report to the purchaser or his representative the results of the chemical analyses and mechanical tests made in accordance with this International Standard.

6.2.3 Samples and test pieces for mechanical tests

6.2.3.1 General

The test specimens and the tests required by this International Standard shall conform to those described in ISO 6892–1.

All routine mechanical tests shall be made at room temperature.

6.2.3.2 Number of tests

One sample shall be selected from lots of $1\,600\,\mathrm{m}$ or less. For lots greater than $1\,600\,\mathrm{m}$, one sample shall be selected from the first $1\,600\,\mathrm{m}$ and one additional sample shall be selected from each additional $1\,600\,\mathrm{m}$ or less in the lot. Samples are to be selected at random and in no case shall more than one sample be taken from a single tube length. The size of the lot may be either the manufactured lot or the purchased lot at the manufacturer's option.

Chemical composition of the lot shall be the ingot manufacturer's analysis, except for hydrogen, which shall be determined on each sample from the lot. Hydrogen determination shall be one (1) tube analysis per strip mother coil.

One tension test shall be made on each sample.

One flattening test in accordance with <u>5.4</u> shall be made on each sample.

One reverse flattening test in accordance with <u>5.5</u> shall be made on each sample.

One flaring test in accordance with <u>5.6</u> shall be made on each sample.

If any test specimen shows defective machining or develops flaws due to preparation, the specimen may be discarded and another substituted.

If the percent of elongation of any tension test specimen is less than specified in <u>5.3</u> and any part of the fracture is more than 19 mm from the centre of the gage length as indicated by scratches marked on the specimen before testing, the specimen may be discarded and another substituted.

Each length of finished tube shall be examined by the non-destructive tests specified in 5.7.

6.2.3.3 Retests

If the results of any chemical or mechanical property test lots are not in conformance with the requirements of this International Standard, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the standard, the retest values will become the test values for certification. Only original confirming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the standard, the material will be rejected.

6.2.4 Test methods

The tests required by this International Standard shall conform to those described in the following standards:

- ASTM A370 supplementary requirement II for the reverse flattening test;
- ISO 6892–1 for the tensile test;
- ISO 8492 for the flattening test;
- ISO 8493 for the flaring or drift-expanding test;
- ISO 25902-1 for the Eddy current examination;
- ISO 25902-2 for the Ultrasonic examination.

All routine mechanical tests shall be made at room temperature.

The chemical analysis shall be conducted by the standard techniques normally utilized by the manufacturer and the purchaser. In case of disagreement, Test Methods ASTM E120 shall be used as the referee method except for carbon, oxygen and hydrogen, which are not covered in test Methods ASTM E120. Test Method ASTM E1409 shall be used as a referee method for oxygen, and Test Method ASTM E1447 shall be used as a referee method for hydrogen and Test Method ASTM E1941 shall be used as a referee method for carbon.

7 Rounding-off procedure

For purposes of determining conformance with the specifications contained herein, an observed or calculated value shall be rounded off to the nearest "unit" in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice ASTM E29.

8 Reference test and analysis

In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this International Standard, a mutually acceptable referee shall perform the tests in question. The referee's testing shall be used in determining conformance of the materials of this International Standard.

9 Rejection

Material not conforming to this International Standard or to authorized modifications shall be subject to rejection unless otherwise specified, rejected materials may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives within three weeks of notice of rejection other instructions for disposition.

10 Marking

10.1 General

Tubing manufactured in accordance with this International Standard shall be marked by the manufacturer.

Each length of tube 13 mm in outside diameter and larger, manufactured in accordance with this International Standard, shall be legibly marked, either by stencilling, stamping, or rolling. On smaller than 13 mm outside diameter tubing that is bundled, the same information may be legibly stamped on a metal tag securely attached to each bundle.

Additional markings, as desired by the manufacturer or as specified in the purchase order, may be applied.

10.2 Tube marking

Tube marking shall include the following information, as applicable:

- a) private name or identifying mark of the manufacturer of the tube (X);
- b) standard designation;
- c) grade or designation (Table 1);
- d) heat number and lot number;
- e) specified outside diameter;
- f) specified wall thickness;
- g) mark of the customer's inspection representative (Y), if applicable.

EXAMPLE X ISO 3183 Ti Gr. 2 Heat N° Lot N°25,4 mm × 0.5 mm.

NOTE For specified outside diameter markings in USC units, ending zero digits to the right of the decimal sign need not be included.

11 Packaging

The tube shall be packaged in accordance with the manufacturer's standard practice, unless otherwise agreed upon between the manufacturer and the purchaser and so stated in the purchase order.

12 Certification

If so requested by the purchaser, the manufacturer shall supply at least one copy of his report certifying that the material supplied has been inspected and tested in accordance with the requirements of this International Standard and that the results of chemical analyses and mechanical tests meet the requirements of this International Standard for the appropriate grade.

Bibliography

- [1] ISO 9606, Qualification testing of welders Fusion welding
- [2] ISO 22963, Titanium and titanium alloys Determination of oxygen Infrared method after fusion under inert gas
- [3] ISO 80000-1, Quantities and units Part 1: General

Price based on 11 pages