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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 18213-3 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 5, 
Nuclear fuel technology. 

ISO 18213 consists of the following parts, under the general title Nuclear fuel technology — Tank calibration 
and volume determination for nuclear materials accountancy: 

⎯ Part 1: Procedural overview 

⎯ Part 2: Data standardization for tank calibration 

⎯ Part 3: Statistical methods 

⎯ Part 4: Accurate determination of liquid height in accountancy tanks equipped with dip tubes, slow 
bubbling rate 

⎯ Part 5: Accurate determination of liquid height in accountancy tanks equipped with dip tubes, fast bubbling 
rate 

⎯ Part 6: Accurate in-tank determination of liquid density in accountancy tanks equipped with dip tubes 
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Introduction 

This part of ISO 18213 describes statistical procedures suitable for the treatment of tank calibration and 
volume measurement data for nuclear materials accountancy tanks. It is one part of a six-part International 
Standard that deals with the acquisition, analysis, standardization and use of calibration data to determine 
liquid volumes in process tanks for accountability purposes, and is intended for use in conjunction with other 
parts of ISO 18213. Other parts of ISO 18213 and their topics are ISO 18213-1 (procedural overview), 
ISO 18213-2 (data standardization), ISO 18213-4 (slow bubbling rate), ISO 18213-5 (fast bubbling rate), and 
ISO 18213-6 (in-tank determination of liquid density). 

To someone without formal statistical training, the methods of ISO 18213-3 might appear to be unnecessarily 
complex. However, within the context of the data standardization model presented in other parts of ISO 18213, 
the statistical methods presented herein have been kept as simple as possible. Data collection, data 
standardization and statistical analysis go hand-in-hand. In order for one to meet the target uncertainty limits 
established for accountability purposes, it is necessary that the data standardization model be consistent with 
the measurement (instrument) capability and that the statistical error model likewise be compatible with the 
data standardization model. It makes no sense to use a highly refined data standardization model with crude 
measurement instruments. Conversely, the advantage of highly refined and precise measurement instruments 
is lost if a crude data standardization model is used in the subsequent analysis. Using a more refined 
measurement instrument, for example, does not improve results if the data standardization model fails, for 
example, to take proper account of the effects of temperature variation. 

Similarly, it makes no sense to use a sophisticated statistical model with either crude measurements or a 
crude data standardization model. Conversely, an overly simple statistical model, or one that is inconsistent 
with the underlying data standardization model, yields poor results even when used with high-quality 
instrumentation and a refined data standardization model. Because of the important role volume 
determinations play in its overall accountability program, a facility typically devotes significant resources to 
instrumentation for tank calibration and volume determination. However, refined state-of-the-art measurement 
capability by itself is not sufficient to meet target uncertainty limits. Resources are also required to develop a 
data standardization model and statistical methods with quality comparable to that of the plant’s measurement 
capability. The resources required for data analysis are typically much fewer than those allocated for 
instrumentation, but they are equally as important. In any event, adequate resources are required to engage 
someone with the necessary training to guide the development and application of computational and statistical 
methods that are comparable in sophistication to the measurements to which they are applied. 

The statistical methods presented in this part of ISO 18213 are closely tied to the comprehensive state-of-the-
art data standardization methodology presented in other parts of ISO 18213 and are therefore designed to be 
applicable over a wide range of measurement systems and operating conditions. As noted in the introduction 
to ISO 18213-1, it is not always necessary, or even possible, for the operator to develop the full model for all 
tanks in a given facility. Under these circumstances, the methods presented herein provide the framework for 
developing a “reduced” calibration model, including suitable estimates of uncertainty, that is consistent with 
the “reduced” standardization model developed for a particular tank. 
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Nuclear fuel technology — Tank calibration and volume 
determination for nuclear materials accountancy 

Part 3: 
Statistical methods 

1 Scope 

This part of ISO 18213 presents statistical procedures that can be applied to tank calibration and volume 
measurement data for nuclear materials accountancy tanks. In particular, this part of ISO 18213 presents 

a) several diagnostic plots that can be used to evaluate and compare tank calibration data; 

b) a procedure for estimating the uncertainties of tank calibration measurements (i.e., determinations of 
height and volume); 

c) a model for estimating either a tank’s calibration equation or its inverse (the measurement equation), 
together with related uncertainties, from a set of standardized tank calibration data (i.e., from a series of 
standardized height-volume determinations); 

d) a method for computing uncertainty estimates for determinations of liquid volume. 

It is intended that the methods in this part of ISO 18213 be used within the context of the other parts of 
ISO 18213. Specifically, the methods presented in this part of ISO 18213 are tailored to the general 
methodology described in ISO 18213-1 and to appropriate related algorithms in ISO 18213-2, ISO 18213-4, 
ISO 18213-5 or ISO 18213-6. Although the methodology in this part of ISO 18213 is intended for application 
specifically within the context of the other parts of ISO 18213, the methods are more widely applicable. In 
particular, the statistical model presented in Clause 6 for estimating the tank's measurement equation from a 
set of standardized calibration data can be applied, regardless of whether or not these data are acquired in 
accordance with the methods of ISO 18213. A similar statement holds for (propagation) methods of variance 
estimation: it is intended that the results in this part of ISO 18213 be applied to the specific models for which 
they were derived, but the methods themselves are more widely applicable. 

This part of ISO 18213 provides a facility with the option to develop equivalent plant- or tank-specific methods 
of statistical analysis as an alternative. However, if a facility adopts ISO 18213 and chooses not to develop 
equivalent alternative methods of statistical analysis, it is necessary to use the methods of this part of 
ISO 18213. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 18213-1:2007, Nuclear fuel technology — Tank calibration and volume determination for nuclear 
materials accountancy — Part 1: Procedural overview 

ISO 18213-4:2008, Nuclear fuel technology — Tank calibration and volume determination for nuclear 
materials accountancy — Part 4: Accurate determination of liquid height in accountancy tanks equipped with 
dip tubes, slow bubbling rate 
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ISO 18213-5:2008, Nuclear fuel technology — Tank calibration and volume determination for nuclear 
materials accountancy — Part 5: Accurate determination of liquid height in accountancy tanks equipped with 
dip tubes, fast bubbling rate 

ISO 18213-6:2008, Nuclear fuel technology — Tank calibration and volume determination for nuclear 
materials accountancy — Part 6: Accurate in-tank determination of liquid density in accountancy tanks 
equipped with dip tubes 

3 Symbols 

The symbols used in this part of ISO 18213 are defined below. The symbols are listed in the first column of 
the table, approximately in order of appearance. Some symbols are introduced in groups, such as in 
connection with a particular equation. The ordering of symbols within such a group may differ from their 
appearance in the text if doing so makes the information easier to use. The location at which each symbol first 
appears is given in the corresponding row of the second column. The definition or usage of each symbol is 
presented in the third column. 

Symbol First reference Definition/Usage 

Y 5.2.1 response variable (either height or volume, height by convention) 

X 5.2.1 control variable (either volume or height, volume by convention) 

i 5.2.2 subscript that denotes either calibration increment number or observation 
number 

Yi 5.2.2 standardized elevation of a point in the tank above some pre-established 
reference point, typically associated with the standardized volume
determined from the liquid added during the first i increments of a 
calibration run 

Xi 5.2.2 standardized volume of the tank determined from the total volume of liquid
added during the first i calibration increments, i.e., the standardized 
volume of the tank below Yi 

j 5.2.2 subscript 

xj 5.2.2 standardized volume of the jth increment of calibration liquid 

(Xi, Yi) 5.2.2 standardized volume-height data pair for the ith calibration increment 

f or f(...) 5.2.2 generic function, the tank calibration equation, by convention 

Ŷ Xα β ε= + +  5.2.3 equation that expresses height as a linear function of volume 

α, β 5.2.3 equation parameters 

ε 5.2.3 residual (height), the difference between the observed value of the
response variable (Y) and the corresponding predicted value (α + βX), 
Y − α − βX 

a, b 5.2.3 estimates of α, β 

Ŷ  5.2.3 predicted response (height by convention) derived from some functional
relationship between height and volume, Ŷ a bX= +  

Yi − a − bXi 5.2.3 estimated residual, the estimated difference between observed and
estimated values of the response variable for the ith calibration increment, 

ˆi iY Y−  
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Y = f(X) 5.2.3 tank calibration equation 

∆ 5.2.4 difference operator 

∆Y 5.2.4 change (difference) in the response variable (height), typically between 
two calibration increments 

∆X 5.2.4 change (difference) in the control variable (volume), typically between two 
calibration increments 

mi 5.2.4 computed slope (change in height per unit change in volume) of calibration
equation for the ith calibration increment, ∆Yi/∆Xi 

f1, f2 5.2.5.1 generic functions, typically used to denote calibration equations or
segments thereof 

f̂  5.2.5.2 estimate of the function f, the estimated calibration equation by convention

Ti 5.3.1 temperature, in either the tank or the prover, of the ith increment of 
calibration liquid 

ti 5.3.2 time associated with the ith calibration increment, e.g., time at start of 
increment 

∆ti 5.3.2 time required to complete the ith calibration increment, ti − ti−1 

Tm 6.1, Eq. (6) measured temperature of tank liquid 

Tr 6.1, Eq. (6) reference temperature established for calibration 

HM 6.1, Eq. (6) height of a point in the tank at measured temperature Tm 

Hr 6.1, Eq. (6) height of a point in the tank at reference temperature Tr 

∆P 6.1, Eq. (6) observed difference in pressure between the submerged bubbling probe
and the reference probe 

cM 6.1, Eq. (6) “corrections” that compensate for differences between the observed
pressure at the manometer and the actual pressure at the tip of the 
submerged probe 

ρM 6.1, Eq. (6) average density of the liquid in the tank at the measured temperature Tm 

ρa,s 6.1, Eq. (6) average density of the air in the tank above the liquid surface at the
prevailing pressure 

g 6.1, Eq. (6) local value of the acceleration due to gravity 

αex 6.1, Eq. (6) coefficient of linear thermal expansion for the dip tubes 

∆Tm 6.1, Eq. (6) difference between the measured and reference temperatures, Tm − Tr 

var(...) 6.1 variance operator, e.g., var(Hr) denotes the variance of Hr and var(∆P)
denotes the variance of ∆P, etc. 

1f̂ −  6.1 estimate of 1f −  

1f −  7.1 inverse of f, the measurement equation, by convention 
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H = f(V) 7.1 generic expression for the calibration equation 

( )1 HV f −=  7.1 generic expression for the measurement equation 

h or h(...) 7.2.1, Eq. (10) generic function, 1f − , by convention 

ε 7.2.1, Eq. (10) residual, the difference between the observed value of the response
variable (Y) and the corresponding predicted value h(X), Y − h(X) 

εi 7.2.1 residual difference between the observed value of the response variable
(Yi) and the corresponding predicted value h(Xi) for the ith calibration 
increment, Yi − h(Xi) 

ĥ  7.2.1 estimate of h, typically 1ˆ ˆh f −=  

s 7.2.1, Eq. (11) subscript 

cs 7.2.1, Eq. (11) “cut point,” point in the (height) range of the measurement equation 

S 7.2.1, Eq. (11) number of segments (intervals) into which the range of the measurement
equation is partitioned by cut points 

c0 7.2.1, Eq. (11) left-hand endpoint of the first segment, usually 0 

cS 7.2.1, Eq. (11) the right-hand endpoint of the largest segment, usually the largest value of
the control variable, i.e., cS = Xmax 

hs 7.2.1, Eq. (12) function defined over the interval (cs−1, cs), i.e., function defined for values 
between cs−1 and cs, where s ranges from 1 to S 

βi 7.2.1 model parameters (β0 denotes the intercept) 

n 7.2.1, Eq. (16) total number of observations, i.e., total number of height-volume data pairs 
(Xi, Yi) 

p + 1 7.2.1, Eq. (16) number of parameters in the specified model 

Y 7.2.1, Eq. (16) n × 1 vector of (response variable) observations 

H 7.2.1, Eq. (16) n × (p + 1) design matrix 

β 7.2.1, Eq. (16) (p + 1) × 1 vector of model parameters 

ε 7.2.1, Eq. (16) n × 1 vector of residual differences, i.e., n × 1 vector of fitting errors 

σ (σ2) 7.2.1 standard deviation (variance) of the components of ε 

h1, h2, h3 7.2.1 generic functions 

θ 7.2.2 (p + 1) × 1 vector of perturbations to the vector of model parameters, β 

θj 7.2.2 (p + 1) × 1 vector of perturbations to the vector of model parameters, β, 
attributable to the jth run 

θj,k 7.2.2 kth component of θj 

βj 7.2.2 (p + 1) × 1 vector of model parameters for the jth run, βj = β + θj 
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βj,k 7.2.2 kth component of βj 

E(...) 7.2.2 expectation operator 

′θ  7.2.2, Eq. (18) transpose of the vector θ 

Φ2 7.2.2, Eq. (18) variance-covariance matrix of (the components of) θ 

(Xj,i, Yj,i) 7.2.2 ith standardized height-volume data pair from jth calibration run 

nj 7.2.2, Eq. (19) total number of observations, i.e., total number of height-volume data pairs 
(Xj,i, Yj,i), from jth calibration run 

Yj 7.2.2, Eq. (19) nj × 1 vector of (response variable) observations from the jth calibration 
run 

Hj 7.2.2, Eq. (19) nj × (p + 1) design matrix for the jth calibration run 

εj 7.2.2, Eq. (19) nj × 1 vector of residual differences (fitting errors) for the jth calibration run

r 7.2.2, Eq. (19) number of calibration runs 

j′H  7.2.2, Eq. (21) transpose of the matrix Hj 

( )2
j jσ σ  7.2.2, Eq. (21) standard deviation (variance) of the components of εj 

I 7.2.2, Eq. (21) nj × nj identity matrix 

Yj,i 7.2.2, Eq. (22) ith component of the vector Yj 

j i′ ,h  7.2.2, Eq. (22) ith row of the design matrix Hj 

2 2ˆ ˆ ˆ, ,j j jσβ ε , etc. 7.3.2 respective estimators of 2 2, ,j j jσβ ε , etc. 

εj,i 7.3.2 ith component of εj 

jĥ  7.3.2, Eq. (26) estimated measurement equation from data of the jth calibration run 

β̂  7.3.3.1 estimator of β 

X0 7.3.3.2 specified (unobserved) value of the control variable (volume by
convention) 

Y0 7.3.3.2 value of the response variable (height) at X0 

0′h  7.3.3.2 row of the design matrix, H, that corresponds to X0 

0Ŷ  7.3.3.2 predicted (mean) value of the response variable Y0 at X0, 0
ˆ′h β  

2ˆ ˆ
j,Φ θ  7.3.3.3 respective estimators of Φ2 and θj 

( )ˆ ...var  7.3.3.3 estimated variance, e.g., ( )ˆˆvar β  denotes the estimated variance of ˆ,β
etc. 

2σ̂  7.3.3.4 estimator of σ2 

ˆ jε  7.3.3.4 estimator of εj 
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,ˆ j iε  7.3.3.4 ith component of ˆ ,jε  estimate of the ith component of εj 

n 7.3.3.4 total number of observations from all runs, j
j

n∑  

ε0 7.4, Eq. (37) prediction error for a new (future) value of Y0, 
ε0 = Y0 − h(X0) = Y0 − ( )′ +0h β θ  

0Ŷ  7.4 estimated (predicted) value of Y0 

α 7.5.2.1, Eq. (40) specified confidence level (typically 0,025 or 0,05) 

( )2
0 0ˆ ˆσ σ  7.5.2.1, Eq. (40) estimated standard deviation (variance) of 0

ˆ ,Y  given by Equation (35) 

ν 7.5.2.1, Eq. (40) (approximate) degrees of freedom for the variance estimate 2
0σ̂  

tα/2(ν) 7.5.2.1, Eq. (40) 100(1 − α/2) % point from the t-distribution with parameter (degrees of 
freedom) ν 

2 2
1 2,S S  7.5.2.1 quantities used to compute degrees of freedom, ν 

v v1 2,  7.5.2.1 component degrees of freedom 

V, W 7.5.2.1 quantities used to compute degrees of freedom, ν 

X 7.5.2.2 an arbitrary unspecified value of the control variable (volume) 

ˆ
XY  7.5.2.2 predicted (mean) value of the response variable (height) at X, ˆ

X′h β  

X′h  7.5.2.2 row of the design matrix H that corresponds to X 

( )2ˆ ˆX Xσ σ  7.5.2.2 estimated standard deviation (variance) of ˆ
XY  

ν 7.5.2.2 (approximate) degrees of freedom for the variance estimate, 2ˆ Xσ  

Fα(p + 1,ν) 7.5.2.2 100(1 − α) % point from the F-distribution with parameters (p + 1) and ν 

newβ̂  7.5.2.3 estimator of β computed from the data of a new calibration run 

,new
ˆ
XY  7.5.2.3 predicted (mean) value of the response variable (height) at X obtained 

from the new calibration equation, new
ˆ

X′h β  

( )2
,new ,newˆ ˆX Xσ σ  7.5.2.3 estimated standard deviation (variance) of ,new

ˆ
XY  

ν1, ν2 7.5.2.3 (approximate) degrees of freedom for components of the variance 
estimate 2ˆ Xσ  

2ˆ ˆ( )X Xσ σ  7.5.3.2 estimated standard deviation (variance) of XŶ  

H0 8.2.1 a standardized reference height (at reference temperature Tr), H0 = X0 

V0 8.2.1 standardized reference volume that corresponds to the height H0 = X0, 
V0 = Y0 

( )0,predVvar  8.2.1, Eq. (55) variance of the (mean) predicted volume obtained from the measurement
equation at H0 

( )0,newVvar  8.2.1, Eq. (55) measurement component of variance of a (new) volume determination at
H0 
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( )0,transVvar  8.2.1, Eq. (55) component of variance of a (new) predicted volume resulting from the
“transfer” of uncertainty in H0 through the measurement equation 

( ) ( )0 0ĥ H H∂ ∂  8.2.1, Eq. (57) derivative of the estimated measurement equation ĥ , taken with respect 
to H and evaluated at H = H0 

VM 8.2.1 the volume at temperature Tm of the standardized reference volume, V0 

T3 8.2.2.2 specified temperature 

V3, ρ3 8.2.2.2 respective density and volume, at temperature T3, of a liquid that has 
volume VM and density ρM  at temperature Tm 

V1, V2 8.3 specified standardized volumes 

∆V 8.3 difference between two specified volumes, V1 − V2 

1′h , 2′h  8.3 row vectors that correspond respectively to the standardized height H1
and  H2 

4 Data required 

This part of ISO 18213 applies generally to data acquired during the process of data collection and analysis 
for tank calibration and volume determination as outlined in ISO 18213-1. Specific procedures apply either to 
particular subsets of these data or at various stages in the process pertaining to their acquisition, analysis, 
interpretation and use. The data to which a particular statistical procedure applies and the stage in the 
process at which the procedure should be used are identified in the subclause(s) where that procedure is 
discussed. 

5 Diagnostic plots 

5.1 Overview 

Diagnostic plots are among the most powerful tools available for analyzing and verifying volume measurement 
data. Plots are particularly useful for identifying anomalous observations and measurements in a set of tank 
calibration data. They are also quite useful for comparing the (standardized) data from two calibration runs 
and for comparing two estimates of the tank's calibration equation. Plots that may be used to evaluate a set of 
calibration (height and volume) data are presented in 5.2. Plots of auxiliary data (time, temperature) are 
presented in 5.3. Examples of all plots are given in Annex A. 

5.2 Calibration data 

5.2.1 General comments 

The plots discussed in 5.2 may be based on either the tank's calibration equation or its measurement equation. 
For plots based on the calibration equation, the response variable (denoted by Y) represents the height or 
elevation and the control variable (denoted by X) represents volume or increment number. For plots based on 
the measurement equation (the inverse of the calibration equation), the interpretation of Y and X is reversed: Y 
denotes volume and X denotes height. Both plot orientations can be useful in a particular application and both 
are illustrated in Annex A. For convenience, only the term “calibration equation” is used in 5.2, with the 
understanding that the discussion also applies to the measurement equation. 

The plots of 5.2 can be constructed from data that are presented in various forms. A specific plot is typically 
constructed from the standardized data from a particular calibration run, but it can also be constructed from 
the corresponding raw data, or from “data points” obtained by evaluating the tank's estimated calibration (or 
measurement) equation at a number of selected points. Although it is possible to construct plots from raw 
calibration data, the analysis of raw data is generally not recommended because meaningful comparisons are 
difficult, particularly if measurement conditions vary significantly during the period(s) of data collection. 
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Finally, it is often useful for comparative purposes to superpose or overlay several plots on a set of common 
axes. A plot obtained by superposing profile variation plots of the calibration data from several individual runs, 
for example (see 5.2.3), is very useful for examining run-to-run variations. Likewise, overlaying a profile 
variation plot of the data from a new calibration run on that from a previous estimate of the calibration equation 
can be very helpful for verifying that the tank's calibration equation has not changed since the previous 
calibration. 

5.2.2 Cumulative (Y vs. X) plots 

A cumulative plot displays the relationship between the height or elevation of points in a tank above some pre-
selected reference point, Y, and the corresponding volume of the tank, X, below these points. A cumulative 
plot shows the general features (shape) of the height-volume relationship for the tank. 

As noted in 5.2.1, a cumulative plot can be constructed 

a) from the standardized data from a particular calibration run, 

b) from the corresponding raw data (generally not recommended), or 

c) from a previously defined calibration equation for the tank, expressed in functional or tabular form. 

In the first two cases, the response of the tank’s measurement system, e.g., “liquid height,” is plotted for each 
increment of the calibration run against a measure of the total amount of calibration liquid, e.g., cumulative 
volume, required to reach this height. In the latter case, the plotted “data” are obtained by evaluating the 
tank's estimated calibration or measurement equation at a number of selected points. 

In the notation of ISO 18213-2, Yi denotes the (standardized) elevation, above some pre-established 
reference point, of a point in the tank determined by the liquid added during the first i increments of a 
calibration run. Similarly, Xi denotes the (standardized) total volume of the tank below that point, as 
determined from the volume of liquid added during the first i calibration increments, as given in Equation (1): 

ji jX x= ∑  (1) 

where xj denotes the standardized volume of the jth incremental addition of calibration liquid. A cumulative 
plot is obtained by plotting the standardized volume-height pairs (Xi, Yi) derived from the raw data of a 
particular calibration run. Methods for computing the standardized values Xi and Yi from a set of raw 
calibration data are described in ISO 18213-2. 

It can be useful for comparative purposes to overlay plots of the standardized data from several calibration 
runs. It is also possible to include a cumulative plot derived from a previously defined calibration equation, f, in 
the overlay plot. This is done by plotting the points [Xi, f(Xi)] obtained by evaluating the function at a suitable 
number of points. 

One variation of the cumulative plot (and all other plots discussed in 5.2) is to plot the response variable 
against increment number, i, instead of against cumulative volume, Xi. However, when several plots are 
overlaid, a valid comparison is possible only when all data are plotted on a common scale. 

Cumulative plots show the general features of the tank's profile (i.e., its height-volume relationship). They can 
also reveal gross differences in the data from several calibration runs, or among the data of several calibration 
runs and some pre-established calibration equation. However, the plotting range on the vertical scale is 
generally too large to provide adequate resolution for detecting 

⎯ small differences in tank profile, or 

⎯ outlying points in a set of calibration data. 

Variations in tank profile and anomalous data points are more easily detected with the aid of the profile 
variation and incremental slope plots discussed in 5.2.3 and 5.2.4, respectively. 
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5.2.3 Profile variation [(Y − a − bX) vs. X] plots 

A profile variation plot shows the difference between the observed height, Y, and an estimate of height 
computed from an equation that expresses height as a linear function of volume, Ŷ=a+bX , versus the volume, 
X, of the tank below the corresponding height. In other words, the profile variation plot shows the variation in 
the free (unobstructed) cross-sectional area of the tank about its average free cross-sectional area. A profile 
variation plot provides greater resolution in the vertical (“height”) scale than the cumulative plot, thereby 
revealing greater detail about the free cross-sectional area of the tank. 

Like the cumulative plot, the profile variation plot can be constructed from 

a) the standardized data from a particular calibration run, 

b) the corresponding raw data (generally not recommended), or 

c) a previously defined calibration equation for the tank, expressed in a functional form. 

In the first two cases, a profile variation plot is obtained by plotting, for each increment of a calibration run, the 
“residual height” against the corresponding cumulative volume. The residual heights are the differences 
between observed heights and corresponding estimates computed from a linear function chosen to describe 
or “fit” the relationship between height and cumulative volume in the selected data. In the later case, the 
plotted “data” are obtained by first evaluating the tank's estimated calibration or measurement equation at a 
number of selected points. 

In the notation of 5.2.2, where Y denotes standardized (liquid) height and X denotes the corresponding 
standardized cumulative volume, the profile variation plot is obtained by plotting the following points: 

ˆ( ) ( )i i i i i iY Y , X = Y a bX ,X− − −  (2) 

for all pairs of observations (Xi, Yi) obtained during the calibration run. In Equation (2), a and b are estimates of 
the coefficients α and β in the linear relationship Ŷ = + X +α β ε  employed to describe the data. 

The main objective of the profile variation plot is to increase the resolution in the vertical (height) dimension, 
and the method used to estimate α and β is secondary to this objective. The coefficients a and b may be taken 
as least squares regression estimates of the intercept and slope for a straight-line fit to the calibration data 
(Xi, Yi). Alternatively, a and b may be taken as the slope and intercept of a line that passes through some initial 
point, e.g., the second or third, and a terminal point, e.g., the next-to-last, of the run. It is generally advisable 
to avoid the first and last points because they tend to be more anomalous than other points in the run. 

As with cumulative plots, it can be useful for comparative purposes to overlay profile variation plots of the 
standardized data from several calibration runs. It is possible to include a profile variation plot from a 
previously defined calibration equation, f, in the overlay plot by evaluating the function Y = f(X) at suitable 
points, Xi, and computing Yi − a − bXi for each. It is also possible to make profile plots from the raw data, but 
this is not recommended for the reasons cited in 5.2.1. 

When data from several calibration runs or tank calibration equations are being compared, the linear 
coefficients a and b should be determined from the aggregated data from all runs or equations of interest to 
ensure that all data are plotted on a common scale. 

5.2.4 Incremental slope (∆Y/∆X vs. X) plots 

The incremental slope plot displays the incremental changes in the slope of the calibration function, i.e., 
changes in height between successive calibration increments with respect to the corresponding incremental 
changes in volume, plotted relative to the volume of the tank below the associated height. In other words, an 
incremental slope plot displays the rate of change in liquid height in the tank per unit change in volume for 
each volume increment in a calibration run. Incremental slope plots reveal great detail, so they are very useful 
for detecting small changes in tank profile that would not be revealed by cumulative or profile variation plots. 
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Consequently, incremental slope plots are especially useful for detecting outliers and other small data 
anomalies. 

As with previously discussed plots, the incremental slope plot can be constructed from 

a) the standardized data from a particular calibration run, 

b) the corresponding raw data (generally not recommended), or 

c) a previously defined calibration equation for the tank, expressed in a functional form. 

If Y denotes standardized height and X denotes standardized cumulative volume, the incremental slope, mi, i.e. 
the change in height per unit change in volume, for the ith calibration increment is given in Equation (3): 

( ) ( )
( )

∆ ∆

1 1

1

i i i

i i i i

i i i

m = Y / X

= Y Y X X

= Y Y x
− −

−

− −

−

 (3) 

where (Xi−1, Yi−1) and (Xi, Yi) are the cumulative volumes and heights, respectively, from the (i − 1)th and ith 
calibration increments. The incremental slope plot is created by plotting mi versus Xi for the selected 
calibration increments. 

It can be useful for comparative purposes to overlay several incremental slope plots. Incremental slope plots 
can be overlaid to compare standardized data from the same dip tube acquired over several calibration runs. 
They can also be overlaid to compare data from several dip tubes acquired during a single run. Incremental 
slope plots of data from different runs can be especially helpful for detecting subtle changes in profile, 
whereas incremental slope plots of data from several probes collected during the same calibration run are 
helpful for detecting anomalous measurements. As with other plots, it is possible to include an incremental 
slope plot from a previously defined calibration equation in the overlay plot by evaluating the function Y = f(X) 
at suitable points Xi. 

5.2.5 Comparison and residual plots 

5.2.5.1 Comparison {[Y − f(X)] vs. X or [f1(X) − f2(X)] vs. X} plots 

As its name implies, a comparison plot is a graphical comparison between two equations or two sets of data. 
Comparison plots are typically used to display differences between a set of calibration data and some 
reference function, such as the tank’s previously estimated calibration equation. Comparison plots can also be 
used to display 

a) differences between data from two calibration runs, 

b) differences between two functions (e.g., f1 and f2), such as new and old estimates of the calibration 
equation, or 

c) estimates of the calibration equation derived by the operator and the inspector. 

It is often desirable to select one of the entities as a reference for the comparison. 

As in 5.2.2, let Y denote the (standardized) liquid height and X denote the (standardized) cumulative volume. 
Then the plot for comparing a new set of calibration data with some function, f, of interest, such as a 
previously determined calibration equation, is obtained by plotting the following points: 

( ), i i iY f X X⎡ ⎤−⎣ ⎦  (4) 
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for all pairs of observations (Xi, Yi) obtained during the calibration run. It is clear from Equations (2) and (4) 
that the profile plot is a special case of the comparison plot in which the function, f, has the linear form 
f(X) = α + βX. Moreover, the residual plot discussed in 5.2.5.2 is a special case of the comparison plot in which 
the reference function, f, is estimated from the data (Xi, Yi) by statistical methods. 

For examining the data from several calibration runs, it is particularly useful to overlay several plots in which 
the data from each run are compared with a common reference function, such as a previously determined 
estimate of the calibration equation. A plot of the differences between estimates of the tank's calibration 
equation from successive calibration exercises shows the extent to which the calibration has changed over 
time. Small differences indicate, for example, that the calibration equation has not changed significantly 
between calibrations. It is possible to construct various comparison plots that are quite useful for analysing 
tank calibration data. However, it is also easy to create plots that are confusing and difficult to interpret, so 
care is required to avoid useless or misleading plots. 

5.2.5.2 Residual {[(Y − f̂ (X)] vs. X} plots 

A residual plot is a special type of comparison plot that differs from a general comparison plot only in how the 
reference function is determined. Whereas any function may be used to make a comparison plot, the term 
residual plot is reserved for the case in which the reference function is obtained by “fitting” the data of interest. 

The construction of a residual plot is identical to that of a comparison plot. If Y denotes standardized liquid 
height and X denotes standardized cumulative volume, then the residual plot for a set of calibration data is 
obtained by plotting the following points: 

( )ˆ , i i iY f X X⎡ ⎤−⎣ ⎦  (5) 

for all pairs of observations (Xi, Yi) obtained during the calibration run. In this case, the function, ˆ,f  is 
estimated from the calibration data by means of some statistical fitting procedure such as, for example, least-
squares regression. 

Residual plots are used primarily for evaluating the “goodness” of various trial fits to a set of standardized 
calibration data in the search for a suitable estimate of the tank's calibration equation. Since residual plots 
show differences between the observed data points and the proposed estimate, they play a key role in the 
model fitting process of 7.3. When a model is fitted simultaneously to the data of several calibration runs, the 
corresponding residual plot also shows the extent to which run-to-run variation influences the resulting 
uncertainty estimates. 

5.3 Auxiliary data 

5.3.1 Temperature plots 

A temperature plot displays the temperature associated with each calibration increment on the vertical scale 
versus increment number on the horizontal scale. The temperature of interest may be either that of the 
calibration liquid in the prover or the liquid in the tank. If Ti denotes the temperature of interest for the ith 
calibration increment, then the temperature plot is a plot of the values Ti versus i. 

Depending upon which data are selected, a temperature plot provides an easy way to examine changes in the 
temperature of liquid in either the prover or the tank that occurred during a calibration run. Moreover, an 
overlay plot that shows, for each increment, the temperature of the liquid both in the prover and in the tank is 
convenient for determining the extent to which liquid temperature in the tank differed from that in the prover at 
any time during the run. 

Temperature plots are very useful for examining the data collected during a single calibration run. Overlay 
plots of temperatures from several calibration runs are useful for evaluating the overall temperature variation 
during a calibration exercise. 
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5.3.2 Inter-increment time plots 

The inter-increment time plot is a plot of the elapsed time between successive calibration increments versus 
increment number. If ti denotes the time at which the ith calibration increment is completed, then the inter-
increment time plot is simply a plot of the differences ∆ti = ti − ti−1 versus i. This plot provides an easy way to 
identify any excessive delays between successive increments of the calibration run. Only data from a single 
calibration run are used to construct an inter-increment time plot. 

6 Uncertainty estimation for calibration data 

6.1 Measurement system response (height) 

Methods for estimating the uncertainty of measurements made with the tank's measurement system 
(manometer) are presented in this subclause. In particular, a formula is presented for estimating the 
uncertainty of height determinations derived from pressure measurements made with a tank's pneumatic 
system. 

Expressions are given in ISO 18213-4:2008, Equations (7) to (9), or ISO 18213-5:2008, Equations (8) and (9), 
for determining Hr, the elevation of a point in the tank above a fixed reference point at some pre-determined 
reference temperature. A simplified form of that expression, in which Hr is given in terms of the pressure 
exerted by a column of liquid in the tank at the tip of a submerged dip tube at reference temperature, Tr, of a 
point in the tank whose height at the measurement temperature Tm was HM, has the form given in 
Equation (6): 

( ) ( )( )∆ ∆r M M a, ex m1sH = P c g ρ ρ +α T⎡ ⎤− −⎣ ⎦  (6) 

where 

∆P is the observed difference in pressure between the submerged bubbling probe and the 
reference probe that vents into the tank above the liquid surface; 

cM denotes the “corrections” that compensate for differences between the observed 
pressure at the manometer and the actual pressure at the tip of the probe;1)  

ρM is the average density of the liquid in the tank at the measured temperature Tm; 

ρa,s is the average density of the air in the tank above the liquid surface at the prevailing 
pressure; 

g is the local value of the acceleration due to gravity; 

αex is the coefficient of linear thermal expansion for the dip tube; 

∆Tm = Tm − Tr is the difference between the measured and reference temperatures. 

It is now possible to express the variance var(Hr) of the height determination, Hr, in terms of the quantities on 
the right-hand side of Equation (6). Each quantity is considered in turn. In practice, suitable estimates of these 
quantities are used to compute an estimate of var(Hr). 

                                                      

1) It is not the purpose of this part of ISO 18213 to present a detailed discussion of the corrections denoted by cM, except 
as they apply to variance estimation. A detailed development of Equation (6) is presented in ISO 18213-4:2008 for a slow 
bubbling rate and in ISO 18213-5:2008 for a fast bubbling rate. 
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At a given location, the acceleration due to gravity is constant. Consequently, any error in estimating this 
quantity appears as a bias in the determination of Hr, but does not otherwise contribute significantly to its 
variance. The factor, g, is therefore treated as a constant2). 

Similarly, the thermal correction factor, (1 + αex∆Tm), is retained as a bias correction, but is taken as a 
constant for variance estimation. Except in extreme cases, the contribution of the variability in this quantity to 
the total variability, var(Hr), is negligible because variability in (1 + αex∆Tm) due to temperature measurement 
variability is quite small. If it is further assumed that the quantities ∆P, cM, ρM and ρa,s are independent, then, 
to a first-order approximation, the variance of Hr can be expressed in terms of quantities on the right-hand side 
of Equation (6) as given in Equations (7) and (8): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∆ ∆ ∆ ∆
2 22 2

r ex m M M a, M M M a, M a,1 s s sH = g + α T P c ρ ρ P c P c + ρ ρ ρ ρ
− ⎡ ⎤⎡ ⎤⎡ ⎤ − − − − − −⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

var var var

 (7) 

or 

( ) ( ) ( ) ( ) ( ) ( )∆ ∆
22 2

r r M M M a, M a,s sH = H P c P c + ρ ρ ρ ρ⎡ ⎤− − − −⎢ ⎥⎣ ⎦
var var var  (8) 

In most cases, the contribution to var(Hr) of variability in the correction terms, cM, is quite small, being on the 
order of 10−3 or less for each measurement. Similarly, the contribution of variability in ρa,s to the total 
variability of Hr is typically quite small. If the quantities var(cM) and var(ρa,s) are ignored 2), then Equation (8) 
takes on the form of Equation (9): 

( ) ( ) ( ) ( ) ( ) ( )∆ ∆
22 2

r r M M M a,sH = H P P c + ρ ρ ρ⎡ ⎤− −⎢ ⎥⎣ ⎦
var var var  (9) 

The following considerations apply to the estimation of the quantities in Equation (9). 

⎯ The standardized height, Hr, is computed from ∆P by means of either ISO 18213-4:2008, Equations (7) 
to (9) (for a slow bubbling rate), or ISO 18213-5:2008, Equations (8) and (9) (for a fast bubbling rate), as 
appropriate. 

⎯ ∆P is observed. Ideally var(∆P) is estimated from replicated observations of ∆P made under typical 
measurement conditions. Alternatively, var(∆P) is estimated from a statistical characterization of the 
properties of the instrument (manometer) used to measure ∆P (as supplied, for example, by the vendor 
and verified at the facility). The alternative is less desirable because an instrument is usually 
characterized under carefully controlled conditions that do not reflect actual measurement conditions in 
the facility where it will be used. 

⎯ The corrections denoted by cM are computed by means of either ISO 18213-4:2008, Equations (7) to (9) 
(for a slow bubbling rate), or ISO 18213-5:2008, Equations (8) and (9) (for a fast bubbling rate), as 
appropriate. 

⎯ The determination of the density, ρM, depends on the liquid being measured. For calibration liquids that 
have been well characterized (e.g., demineralized water), the density may be determined either 
numerically or from pre-established tables (see ISO 18213-1:2007, 6.5.4). It is possible, for example, to 
obtain highly accurate values of the density of water from measurements of its temperature by means of 
the equation given in ISO 18213-6:2008, Clause 3. 

NOTE This equation is also given in ISO 18213-2:2007, Annex A; ISO 18213-4:2008, Annex A; and 
ISO 18213-5:2008, Annex A.  

                                                      

2) The simplifying assumptions made here are generally acceptable under normal operating conditions. However, it is 
necessary to verify any assumptions for each application. If an assumption seems questionable or it cannot be verified in a 
particular situation, then it is necessary to retain the relevant terms in subsequent calculations. 
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For a process liquid that is not well characterized, its density may be determined either analytically (in the 
laboratory) or by means of in-tank measurements. If the density is reported by the laboratory at some 
standard reference temperature, then a suitable interpolation equation is required to determine the 
density of the liquid at its in-tank measurement temperatures. A method is given in ISO 18213-6 for 
computing accurate density estimates for process liquids at in-tank measurement temperatures. In the 
absence of a good working knowledge of how the density of the measured process liquid changes with 
temperature, it is possible that estimates derived from in-tank measurements are actually superior to 
those obtained from the laboratory. However, the accuracy of in-tank estimates depends critically on the 
quality of the probe-separation determination used in their computation. A procedure for making very 
precise determinations of probe separation is presented in ISO 18213-6:2008, 6.2. 

⎯ var(ρM) is obtained as appropriate, depending on how ρM is determined. If ρM is determined analytically, 
then the laboratory is expected to provide an estimate of the uncertainty for the density value it reports. 
For a process liquid, where the density is estimated from in-tank measurements, the variance of ρM can 
be estimated as given in ISO 18213-6. This estimate is further considered in 8.2.1, where an equation is 
given for estimating the variability of a volume determination in terms of the variability of the 
corresponding standardized height, Hr, and the estimated measurement equation, ( )r r

1ˆV = f H− . 

⎯ The air density, ρa,s, is computed from measurements of prevailing atmospheric conditions as indicated in 
either ISO 18213-4:2008, Clause A.2, or ISO 18213-5:2008, Clause A.2. In the absence of direct 
measurements, ρa,s may alternatively be estimated for “standard” or “typical” atmospheric conditions. The 
use of direct measurements is preferable, but differences between the two alternatives are typically quite 
small and the effect on Equation (9) is negligible (see either ISO 18213-4:2008, Clause A.2, or 
ISO 18213-5:2008, Clause A.2, for details). If an estimate of var(ρa,s) is required, it may be derived in 
either case from Equation (A.3) in either ISO 18213-4:2008 or ISO 18213-5:2008 with the aid of 
propagation-of-variance methods. 

6.2 Measurements of tank content (volume, mass) 

As with manometer measurements of tank content made with the tank's pneumatic system, it is possible to 
estimate the uncertainties of independent measurements of tank content made with the prover. In practice, the 
uncertainties for determinations of tank content made with provers, either volumetric or gravimetric, are 
generally small enough to be ignored in subsequent uncertainty calculations. Because uncertainties are small 
and calculations are comparatively complex, equations for estimating the uncertainties associated with prover 
measurements are not presented in ISO 18213 (all parts). 

7 Estimation of the measurement equation and associated uncertainties 

7.1 Preliminaries 

The height-volume relationship for a tank embodied in the calibration model of ISO 18213-1:2007, Clause 2, is 
too complex to compute from engineering drawings with sufficient accuracy for safeguards accountability 
purposes. Therefore, a calibration exercise is conducted to obtain data for “calibrating the tank”, that is, for 
estimating either the tank's calibration equation or measurement equation. The twofold purpose of this clause 
is 

a) to present a statistical model for estimating a tank’s calibration or measurement equation from a set of 
(standardized) calibration data, and 

b) to describe how this equation is subsequently used to make volume determinations. 

Details concerning the construction of the model, its representation in matrix terms, procedures for estimating 
model parameters and the computation of associated uncertainties are presented. A method for comparing 
two or more estimates of the measurement equation is also presented. 
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The statistical measurement model presented in 7.2 may be used to estimate either the tank's calibration 
equation or its measurement equation. For estimating the calibration equation, the response variable, always 
denoted by Y, represents height or elevation and the control variable, denoted by X, represents volume. As 
with the plots in Clause 5, the interpretation of Y and X is reversed for estimating the measurement equation 
(the inverse of the calibration equation). It is theoretically correct to estimate the calibration equation, H = f(V), 
and invert this estimate to make subsequent volume determinations. However, it is simpler to estimate the 
measurement equation, ( )1 ,V = f H−  directly and the added complexity induced by the inversion step is 
seldom warranted in practice. For convenience, it is, therefore, assumed that the statistical model of 7.2 and 
7.3 is being used to estimate the measurement equation, with the understanding that the discussion can also 
be applied to the calibration equation. 

It is assumed throughout this clause that the calibration data have been suitably standardized to compensate 
for variations in measurement conditions during the calibration exercise (see ISO 18213-2 and either 
ISO 18213-4 or ISO 18213-5, as appropriate). Data that have not been standardized to a fixed set of 
reference conditions should not be used to estimate the measurement equation because it is possible to 
obtain an estimate that yields seriously biased estimates of volume and volume measurement uncertainty. 

An expression is given in 7.4 [(Equation (39)] for the uncertainty of volume predictions made with the 
estimated calibration equation. In 8.2, this expression is combined with the uncertainty estimate for a new 
height determination as derived in 6.1 to obtain an expression for the total uncertainty of a volume 
determination made by evaluating the estimated measurement equation at the given height determination. 
Such determinations, which are the major product of the tank calibration and volume determination effort, are 
of fundamental importance in any accountability programme for bulk materials in a nuclear facility. 

The modeling approach presented here represents an advance over conventional practice in that it enables 
the simultaneous estimation of the entire calibration equation 3). This approach not only makes the model 
easier to use, but it also simplifies and improves the estimation of uncertainties for model parameters and 
volume determinations. 

7.2 Measurement model 

7.2.1 Model construction 

A statistical model for estimating a tank's volume measurement equation is presented in this subclause and 
further developed in 7.2.2. The general form of the model is as given in Equation (10): 

( )Y = h X + ε  (10) 

where, by the convention of 7.1, the control variable X denotes standardized height, the response variable Y 
denotes standardized volume, and h denotes the measurement function f−1. For each observation (Xi, Yi), the 
variable εi = Yi − h(Xi) represents the difference between the observed value, Yi, of the response variable and 
the corresponding predicted value, h(Xi). The function, h, is described by various parameters that are “fitted” to, 
i.e., estimated from, a particular set of calibration data. To compute a suitable estimate, ,̂h  of the 
measurement equation h, the range of the calibration is divided into several segments and a function, typically 
a low-order polynomial, is fitted to the data of each segment. The individual estimates for each segment are 
then combined to obtain an overall estimate of h. 

                                                      

3) The conventional approach is to partition the tank profile into several segments, fit an equation to the data of each 
segment (independent of other segments), and combine the resulting segment-wise fits to obtain an overall fit. 
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Relative to conventional practice, in which the measurement equation is estimated in a piecewise fashion, the 
modelling procedure presented here yields a unified estimate of the entire measurement equation for all 
segments in a single computational step. The essence of the approach for simultaneously estimating all 
segments of the measurement equation is to view estimates for individual segments as functions that extend 
over the entire range of the calibration in a specified way, rather than as independent functions, each of which 
is defined for a single segment. It is now possible to express the measurement equation as the sum of these 
“extended” functions. Once this is accomplished, standard statistical procedures can be used to 
simultaneously estimate all parameters of the composite representation of h, together with the corresponding 
matrix of model parameter uncertainties, in a single mathematical calculation.  

As under the conventional approach, the first step in the construction of a composite representation of h is to 
divide the range of the calibration into suitable segments. From an examination of the tank’s profile, it is 
usually possible to identify several segments that correspond to distinct regions in the tank in which the cross-
sectional area is either roughly constant or has an identifiable functional form.4) Let Equation (11) 

( ) ( )s sc = c c c = X−0 1 1 max0 , ,..., ,  (11) 

denote the boundaries of segments 1, 2, .., S, respectively, and let 1 2, ,..., Sh h h  denote the functions selected 
to fit the data in these segments. Each hs is usually selected to be a polynomial of low (first or second) degree, 
such as given in Equation (12) or Equation (13): 

( ) ( )1 1s sh X = β X c −−  (12) 

( ) ( ) ( ) 2
1 1 2 1s s sh X = β X c + β X c− −− −  (13) 

The values, hs, of the function are initially defined only for a particular segment. However, if the definition of hs 
is extended so that hs(X) = 0 for X u cs−1 and hs(X) = hs(cs) for X > cs, then it is possible to express the 
measurement equation, h, as given in Equation (14): 

( ) ( ) ( ) ( )0 1 2 Sh X = β + h X + h X + ...+ h X  (14) 

where X ranges from c0 = 0 to cS = Xmax. The extensions of the segment-wise functions hs (except the first) are 
constructed so that hs(cs−1) = 0, i.e., so that Equation (15) holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 1 1 1 0 1 1 2 1 1 1 1s s s s s s s s s sβ + h c + h c + ...+ h c = β + h c + h c + ...+ h c + h c− − − − − − − − −  (15) 

This construction ensures that h is continuous at segment boundaries and makes it possible to write a design 
matrix that permits the simultaneous estimation of all “segment” functions, hs. 

It is convenient for computational purposes to write the model of Equations (10) and (14) in matrix form. For a 
given set of (standardized) calibration data pairs (Xi, Yi), let 

= +Y Hβ ε  (16) 

where 

Y is an n × 1 vector of response variable observations Yi, i = 1, 2, …, n; 

H is an n × (p + 1) design matrix whose individual rows are functions of control variable observations 
Xi

5); 

                                                      

4) There is a certain amount of trial-and-error involved in the process of identifying suitable segments, and several 
iterations can be required during the fitting process to refine segment boundaries.  Profile variation and incremental slope 
plots are extremely helpful for identifying suitable calibration segments (see 5.2.3 and 5.2.4). 

5) The matrix form of the function h that relates the observed response Yi to the corresponding observation Xi is 
Yi = h(Xi) = ′ih β , where ′ih is the row of H that corresponds to the ith observation (Xi, Yi). 
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β is a (p + 1) × 1 vector of model parameters [(p + 1) is the number of parameters in the function h, 
including the intercept, β0]; 

ε is an n × 1 vector of residual differences, i.e., fitting errors. 

NOTE The components of ε are assumed to be independent and identically distributed normal (Gaussian) random 
variables, each with expected value (mean) of zero and a variance, σ2. 

The design matrix H contains one row for each observation pair (Xi, Yi) and one column for each parameter in 
the composite expression for h. The first column of H corresponds to the intercept term, β0. Each additional 
column corresponds to a term in the extended polynomial expression selected to model the function h over a 
particular segment [see Equation (14)]. A linear function requires one column, a quadratic function requires 
two columns, etc. 

Individual entries in the columns of H that correspond to linear functions are constructed as follows. If the 
segment has boundaries cs−1 and cs

 6 ), then the corresponding column of H contains a zero for each 
observation X for which X u cs−1. The column contains the value (X − cs−1) for each observation in the given 
segment (those for which cs−1 < X u cs). Finally, the column contains the value (cs − cs−1) for observations for 
which X > cs. Entries in the column for a quadratic term are obtained by squaring the corresponding entries in 
the column for the associated linear term. Similarly, entries in the column for a third-degree term or higher are 
obtained by raising the corresponding entries in the column for the associated linear term to the appropriate 
power. 

Thus, for example, the design matrix for a three-segment function, h, in which h1 is quadratic, and h2 and h3 
are linear, has five columns: one for the intercept, one each for the linear and quadratic terms in h1, and one 
each for the linear terms in h2 and h3. The design matrix for this illustrative example has the following block 
structural form as given in Equation (17): 

2
0 0 0 1

2
1 0 1 0 1 1 2

2 2 31 0 1 0 2 1 2

1 0 0 Segment 1
1 0 Segment 2

Segment31

X c (X c ) c < X c
c c (c c ) X c c < X c

c < X cc c (c c ) c c X c

⎡ ⎤− −
⎢ ⎥

= − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦

u
u
u

H  (17) 

The basic idea of this example is readily extended to measurement equations with more than three segments 
and to polynomials of higher degree. However, it is rarely necessary in practice to use polynomials of the third 
degree or higher. Because statistical complexity increases with degree, the construction of higher degree 
polynomials is not recommended except in unusual situations 7). 

After a model has been specified for the measurement equation (i.e., the segment boundaries, cs, are defined 
and the degree of the polynomial has been specified for each segment), the design matrix H for that model is 
easily generated by computer for a particular set of calibration data. Once the design matrix for a particular 
model has been generated, it is no longer necessary to keep track of which parameters are associated with a 
particular segment because this information is coded into the design matrix. 

                                                      

6) The lower boundary of the first segment is denoted by c0 = 0. The upper boundary of the last segment is denoted by 
cS = Xmax. 

7) There is a trade-off between the number of segments and the maximum degree of the polynomial required to fit a 
given set of calibration data. The goal is to obtain a fit that yields a “straight-line” residual plot for each run with low degree 
polynomials. It is generally preferable to increase the number of segments rather than to fit polynomials of a degree 
greater than 2 or 3. 
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7.2.2 Run-to-run variation 

In practice, data from several calibration runs are used to estimate a tank’s measurement equation, and it is 
possible (likely) that these data exhibit significant variation from one run to another. To obtain realistic 
estimates of variability for predictions of the response variable Y, it is necessary that this run-to-run variation 
be taken into account in the statistical modelling process. 

The effects of run-to-run variation are incorporated into the general model of Equation (16) by allowing the 
vector of model parameters, β, to vary from one run to another. Specifically, it is assumed that parameter 
vector β is subjected to a small random perturbation, θ, for each run. Thus, a particular run, j, is actually 
governed by the parameter vector βj = β + θj, where the components, θj,k, of θj represent perturbations in the 
corresponding components, βj,k, of β. It is further assumed that the perturbations, θ, are independent, normal 
(Gaussian), random vectors, each with expected value E(θ) = 0 and a variance-covariance matrix as given in 
Equation (18): 

( ) ( )= =′ 2  var θ E θθ Φ  (18) 

The components of Ф2 are the variances and covariances of the components of θ. Thus, run-to-run variability 
in the data is expressed in terms of the statistical properties of (the components of) the vector of perturbations, 
θ. It follows that βj is a Gaussian random vector with expected value E(βj) = β and variance-covariance matrix 
var(βj) = var(θ). 

The model of Equation (16) is typically fit to the standardized calibration data (Xj,i, Yj,i) from several calibration 
runs. For data from the jth calibration run, this model has the matrix form as given in Equation (19): 

( + )j j j j j j j= + = +Y H β ε H β θ ε  (19) 

where 

Yj is an nj × 1 vector of response variable observations, Yj,i, from run j; 

Hj is an nj × (p + 1) design matrix whose individual rows are functions of observations of the 
control variable, Xj,i

8); 

βj = (β + θj) is a (p + 1) × 1 vector of model parameters for the jth run; 

εj is an nj × 1 vector of residual differences (fitting errors). 

j is the run number (j = 1, 2, ..., r). 

Thus, the quantities Yj, Hj, and εj are defined exactly as for Equation (16), except that they now pertain only to 
the calibration data (Xj,i, Yj,i) from the jth calibration run. 

Here, the vector of model parameters βj is interpreted as the realization of β that governs the data of the jth 
calibration run. The βjs can now be estimated using conventional statistical methods. As noted above, the 
statistical properties of the θjs are used to estimate the run-to-run component of variability in the calibration 
data. 

                                                      

8) The matrix form of the function hj,i that relates the observed response Yj,i to the corresponding observation Xj,i is 
written as ( ) ( ),j,i j,i j,i j,i j j,i jY  = h X = ′ ′= + h ß    h ß  θ  where j,i′h  is the row of Hj that corresponds to the ith observation from 
the jth calibration run. 
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In accordance with 7.2.1, the components of εj are assumed to be independent and identically distributed, 
normal (Gaussian), random variables, each with an expected value (mean) of zero and a variance, 2

jσ . It is 
further assumed that the distribution of measurement errors is the same for all runs, so that 2

jσ  can be 
interpreted as the realization of σ2 [see Equation (16)] obtained from the data of the jth calibration run. Finally, 
it is assumed that errors from different runs are independent. 

Under the model of Equation (19), the vector of responses Yj has the expected value as given in 
Equation (20): 

( )j j=E Y H β  (20) 

and the variance as given in Equation (21): 

( ) 2 2
j j j j+σ′=var Y H Φ H I  (21) 

where 

Ф2 = E(θθ') = var(θ) is the variance-covariance matrix of the vector of perturbations, θ, [see 
Equation (18)]; 

I is the nj × nj identity matrix; 

2
jσ  is the variance of the components of the error vector, εj. 

The statistical properties of individual components of the vector, Yj, are derived by means of Equations (20) 
and (21). In particular, the ith component, Yj,i, of Yj has the expected value as given in Equation (22): 

( )j,i j,iY ′=E βh  (22) 

and the variance as given in Equation (23): 

( ) 2 2
j,i j,i j,i jY +σ′=var h Φ h  (23) 

where j,i′h  is the ith row of Hj (the row that corresponds to Xj,i). All other quantities in Equations (22) and (23) 
are defined as in Equations (20) and (21). 

It is important to note that when the data from several calibration runs are modeled, the same model is fit to 
the data of each calibration run. This means, in particular, that the same segments (segment boundaries) are 
specified for each run and that the polynomials specified for the corresponding segments of all runs have the 
same degree. 

7.3 Estimation of model parameters 

7.3.1 Preliminaries 

Parameters in the model for a particular run are estimated by “fitting” the model [Equation (19)] to the 
standardized calibration data from that run. Fitting is the process of determining those parameter values 
(called “least-squares” estimates) that minimize the sum of squared differences between the observed and 
predicted responses, i.e., that minimize the residual sum of squares, where the summation extends over all 
observed values of the control variable. Standard statistical methods are employed to compute the least-
squares estimates of model parameters. 
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Parameters in the general model [Equation (16)] are estimated from the parameters fitted to the data of the 
individual runs. In particular, the parameter vector β is estimated by averaging the estimates of the parameter 
vectors, βj, for the individual runs. 

7.3.2 Individual runs 

Let (Xj,i, Yj,i), i = 1,2, …, nj, denote the standardized data from the jth calibration run. In matrix form, the least-
squares estimate of parameter vector βj = (β + θj) that fits the measurement model of Equation (19) to these 
data is given in Equation (24): 

( ) 1ˆ
j j j j j

−
′ ′=β H H H Y  (24) 

It follows from the assumed model that ˆ
jβ  has the expected value ( )j =ˆE β β  and variance-covariance 

matrix as given in Equation (25): 

( ) ( ) 12 2ˆ =j j j j +σ
−

′var β H H Φ  (25) 

where 

jH  is defined as for Equation (19); 

Ф2 is defined by Equation (18); 

NOTE Estimation of Ф2 is deferred to 7.3.3 because it is not possible to estimate this quantity from the data of 
a single run. 

2
jσ  is the variance of the residual differences (errors) εj,i. 

This residual variance, 2
jσ , is estimated as given in Equation (26): 

( ) ( )

( )

22

2

ˆˆ 1

ˆ 1

j j,i j j,i ji

j,i ji

Y h X n p +

= ε n p +

σ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦

⎡ ⎤−⎣ ⎦

∑
∑

 (26) 

In matrix form, this estimator, 2ˆ ,jσ  is written as given in Equation (27): 

( ) ( ) ( )

( )

2 ˆ ˆˆ 1

ˆ ˆ 1

j j j j j j j j

j j j

n p +

n p +

σ ′ ⎡ ⎤= − − −⎣ ⎦

⎡ ⎤′= −⎣ ⎦

Y H β Y H β

ε ε
 (27) 

7.3.3 Several runs 

7.3.3.1 Vector β 

The parameter vector, β, in the general model of 7.2.1 [see Equation (16)] is estimated by averaging 
estimates of the parameter vectors βj = (β + θj) obtained by individually fitting the data of several calibration 
runs as given in Equation (28): 

1
1

ˆ ˆr
jj

r −
=

= ∑β β  (28) 
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It follows from 7.3.2 and the assumed independence of the ˆ sjβ  that the estimator, ˆ,β  is a random vector with 
an expected value ( )ˆE =β β  and a variance [see Equation (25)] as given in Equation (29): 

( ) ( )
( )

( )

r
jj

r
j j jj

r
j j jj

r

= r +

r + r

σ

σ

−
=

−−
=

−− −
=

=

⎡ ⎤′⎢ ⎥⎣ ⎦

′=

∑

∑

∑

2
1

12 2 2
1

12 2 1 2
1

ˆ ˆvar β var β

H H Φ

H H Φ

 (29) 

7.3.3.2 Predicted mean response, 0Y  

The predicted (mean) value of the response variable, Y0, at a specified new (unobserved) value of the control 
variable X0 is estimated as given in Equation (30): 

0 0
ˆ ˆY ′= h β  (30) 

where 0′h  denotes the row vector of H that corresponds to X0. 

The quantity 0Ŷ  has the expected value as given in Equation (31): 

( ) ( )Y E′ ′= =0 0 0
ˆ ˆE h β h β  (31) 

and a variance [see Equation (29)] as given in Equation (32): 

( ) ( )
( )

0 0

12 2 2
0 01

ˆ ˆ

r
j j jj

Y

r + rσ
−−

=

′=

⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦∑

var var h β

h H H Φ h
 (32) 

7.3.3.3 Variances of β̂  and 0Ŷ  

An estimate of the covariance matrix, Ф2, is required to compute the variances of β̂  and 0Ŷ . This matrix is 
estimated as given in Equation (33): 

( )( )2 1
1

1
1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

r
j jj

r
j jj

r

r

−
=

−
=

′= − −

′=

∑
∑

Φ β β β β

θ θ
 (33) 

The elements of the (p + 1) × (p + 1) matrix 12ˆ ˆ ˆ
j j jr Σ− ′=Φ θ θ  are the estimated variances and covariances of 

the run-to-run variance parameters, θj,k, in the model of 7.2.2. 

Estimates of ( )ˆvar β  and ( )0Ŷvar  are now obtained by substituting the estimators for Ф2 and 2
jσ  from 

Equations (33) and (27) into Equations (29) and (32) as given in Equations (34) and (35), respectively: 

( ) ( ) 12 2
1

2 2 1
1 1

ˆˆˆ ˆ

ˆ ˆˆ ( )

r 2
j j jj

r r
j j j j jj j

r + r

r +

σ

σ

−−
=

− −
= =

⎡ ⎤′= ⎢ ⎥⎣ ⎦
⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦

∑

∑ ∑

var H H Φ

H H θ θ

β
 (34) 
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( ) ( )
( )

0 0

12 2
0 01 1

ˆ ˆˆ ˆ

ˆ ˆˆr r
j j j j jj j

Y

r +σ
−−

= =

′=

⎡ ⎤′ ′ ′= ⎢ ⎥⎣ ⎦
∑ ∑

var var h β

h H H θ θ h
 (35) 

7.3.3.4 Variance, σ2 

The error variance estimates, 2,jσ  given by Equation (27) have the same statistical properties for all runs, so 
they are pooled to obtain the estimate for σ2 as given in Equation (36): 

( ) ( )

( )

( )

2 2
1 1

2
,1 1

1

ˆ ˆ1 1

ˆ 1

ˆ ˆ 1

j

r r
j j jj j

r n
j ij i

r
j jj

n p n p

n r p

n r p

σ σ

ε

= =

= =

=

⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= − +⎣ ⎦

⎡ ⎤′= − +⎣ ⎦

∑ ∑
∑ ∑
∑ ε ε

 (36) 

where n = jj
n∑ is the total number of observations from all runs 9). 

7.4 Volume determinations and variance estimates 

In the model of 7.2.2, the response Y0 for a single new (future) value of the control variable X0 is expressed as 
given in Equation (37): 

( )
( )

Y = h X +

= +

ε

ε′ +
0 0 0

0 0h β θ
 (37) 

where 

0′h  is the row vector of the design matrix H that corresponds to X0; 

NOTE The specific form of 0′h  depends on the segment of the measurement equation into which X0 falls. 

0ε  is the residual prediction error. 

Let Y0ˆ  denote the estimated value of the new response, Y0. Then, the estimated (mean) value of 0Ŷ  is given 
by Equation (30). The variance of Y0ˆ  has two components: 

a) variance of its estimated mean; 

b) variance of a (new) individual observation. 

                                                      

9) The variance estimators, 2,ˆ jσ  for the individual runs all have the same statistical properties, so it is theoretically 
correct to replace each 2ˆ jσ  in Equation (35) by 2σ̂ . In practice, differences between the two computational alternatives 
are small. 
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It follows from Equations (32) and (23) that the theoretical variance of the new predicted response at X0 is as 
given in Equation (38): 

( ) ( ) ( )

( ) ( )

( )

'

r
j j jj

Y = Y + Y

= + Y

r + r + +σ σ
−−

=
⎡ ⎤′ ′ ′= ⎢ ⎥⎣ ⎦∑

β

0 0 0

0 0

12 2 2 2 2
0 0 0 01

ˆˆ

ˆ

var var var

var h var

h H H Φ h h Φ h

 (38) 

An estimator of ( )0̂var Y  is obtained by substituting the estimators of Equations (27), (36) and (33) for the 
corresponding theoretical quantities into Equation (38) as given in Equation (39): 

( ) ( )

( ) ( )

r r r
j j j j j j jj j j

r r
j j j j jj j

Y = r + + r +

= r + r +

σ σ

σ σ

−− −
= = =

−−
= =

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞′ ′ ′+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑

12 2 1 2
0 0 0 0 01 1 1

12 2 2
0 01 1

ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ1

var h H H θ θ h h θ θ h

h H H θ θ h
 (39) 

The decomposition in Equation (39) shows explicitly how run-to-run variability contributes to the variance of a 
new, observed value of the response variable. This decomposition is relevant not only because run-to-run 
variability in the calibration data contributes to the uncertainty of the estimated measurement equation, but 
also because it contributes to the uncertainty of any future volume determinations. Equations (35) and (39) are 
the basic expressions from which all subsequent statistical results in this part of ISO 18213 are derived. In 
particular, these expressions are used to obtain both the confidence regions and the prediction intervals 
presented in 7.5, as well as the uncertainty estimates for volume determinations given in 8.2. 

At a given value X0 of the control variable, the quantity ( )0 0
ˆ ˆˆ

j j′ ′= −h h β βθ  that appears implicitly in the 
second term in brackets in the first line of Equation (39) is the difference between the predicted value of the 
response variable at X0 for the jth run and that of the overall (average) fit. Thus, the estimate of the run-to-run 
component of variability in Y0 at a given value of X0 is simply the estimated variance of the predicted values 

0Ŷ  obtained from the fits of the calibration model to the data of the individual calibration runs. 

If the statistical model of 7.2 is used estimate to the measurement equation (where Y = volume, X = height), 
then Equation (30) yields the volume estimate for a particular (standardized) determination of height, and 
Equation (39) yields the estimated variance of that volume estimate. Conversely, if the statistical model is 
used to estimate the calibration equation (where Y = volume, X = height), then Equation (30) yields the height 
that corresponds to a particular volume, and Equation (39) yields the estimated variance of that height 
determination. Since the ultimate goal is to determine the volume associated with a particular height 
determination, it is necessary to “invert” the results in the latter case. The latter approach is theoretically 
correct, but the additional complexity introduced by choosing this alternative is seldom warranted in practice. 

7.5 Confidence regions and prediction intervals 

7.5.1 General 

It is possible to construct confidence regions for estimates of the measurement equation and prediction 
intervals for values of the response variable. These confidence regions and prediction intervals are useful for 
determining the significance of differences between 

a) individual observations, 

b) observations and an estimate of the measurement equation, 

c) two estimates of the measurement equation. 
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They are especially helpful when plotted in connection with the diagnostic plots presented in Clause 5. All of 
the prediction intervals and confidence regions presented here are based on Equation (30) and Equation (39), 
and are derived by the methods in Reference [4]. In particular, the variance of the estimated (mean) response 

0 0
ˆ ˆY ′= h β  is given by Equation (35) for any value of the control variable, X0. 

To ensure that the computed confidence regions and prediction intervals yield valid comparisons, it is 
assumed throughout that all data have been standardized to the same set of reference conditions. 

7.5.2 Confidence regions for the measurement equation 

7.5.2.1 Confidence interval for the measurement equation at a single value of the control variable 

An approximate 100(1 − α) % confidence interval for the predicted (mean) value of the measurement equation 
at a single specified value X = X0 of the control variable, X, has the form as given in Equation (40): 

( )0 0 2
ˆ ˆ α/tσ ν′ ±h β  (40) 

where 

0′h  is the row vector of the design matrix H that corresponds to X0; 

β̂  is given by Equation (28); 

2
0σ̂  is the estimated variance of the prediction 0 0

ˆ ˆY ′= h β  given by Equation (35); 

( )2α/t ν  is the 100(1 − α/2) % point from the t-distribution with parameter (degrees of freedom) ν ; 

ν is the (approximate) degrees of freedom for the variance estimate 2
0σ̂ . 

It is necessary to compute the degrees of freedom, ν, before the confidence interval of Equation (40) can be 
computed. The number of degrees of freedom depends upon 

a) the relative magnitudes of the components of 2
0σ̂ , 

b) the number of parameters in the model (p + 1), 

c) the number runs, r, 

d) the number of observations in each run that are used to estimate the model parameters, nj. 

The computation is typically accomplished by means of the Welch-Satterthwaite equation (see Annex B). In 
this case, the approximate degrees of freedom for (the distribution of) 2

0σ̂  is computed from the two terms on 
the right-hand side of Equation (35) as given in Equations (41) and (42): 

( )r
j j jj

S = σ
−

=
⎡ ⎤′ ′⎢ ⎥⎣ ⎦∑

12 2
1 0 01

ˆh H H h  (41) 

( ) 12
2 0 01

ˆ ˆr
j jj

S =
−

=
⎡ ⎤′ ′⎢ ⎥
⎣ ⎦
∑h θ θ h  (42) 
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The approximate degrees of freedom for 2
1S  and 2

2S  are given by Equations (43) and (44) 10), respectively: 

ν1 = n − r(p + 2) (43) 

ν2 = r (44) 

The value of ν is now computed by means of Equation (B.2), with ( )2
1 2V = S n r p⎡ ⎤− +⎣ ⎦  and 2

2W = S r . 

Typical values of α are 0,025 and 0,05. 

7.5.2.2 Confidence intervals for the measurement equation that hold simultaneously for 
an indeterminate number of values of the control variable 

Approximate 100(1 − α) % point confidence intervals for the predicted (mean) value of the measurement 
equation that hold simultaneously for an indeterminate number of values of the control variable, X, have the 
form as given in Equation (45): 

( ) ( ) 0,5ˆ ˆ 1 1,X X p F p νασ ⎡ ⎤′ ± + +⎣ ⎦h β  (45) 

where 

X′h  is the row vector of the design matrix H that corresponds to X; 

β̂   is given by Equation (28); 

2ˆ Xσ  is the estimated variance of the prediction ˆ ˆ
X XY ′= h β given by Equation (35); 

( )1,F p να +  is the 100(1 − α) % point from the F-distribution with parameters (p + 1) and ν ; 

ν is the (approximate) degrees of freedom for the variance estimate 2ˆ Xσ . 

The quantity (p + 1) is the number of parameters in the underlying general measurement model (see 7.2). For 
a particular value of X, the parameter ν is computed by means of the Welch-Satterthwaite formula (see 
Annex B) exactly as for Equation (40). The values of 2ˆ Xσ  and the corresponding values of ν obtained by this 
computation vary from one value of X to another. Instead of computing these quantities for each X, the 
smallest value of 2ˆ Xσ  (produced by the smallest value of 2

1S ) and the corresponding value of ν can be used 
for all values of X. This alternative approximation produces confidence intervals that are somewhat narrower 
than those obtained when 2ˆ Xσ  and ν are determined for each X. 

Typical values of α are 0,025 and 0,05. 

An approximate confidence region for arbitrarily many values of the control variable is obtained by first 
evaluating Equation (45) for a series of values of X selected to cover some range of interest, and then 
interpolating between adjacent points. The resulting confidence region is especially useful when used in 
connection with the plots presented in 5.2. The plot is most easily interpreted when ˆ ˆ

X XY ′= h β is used as a 
reference, and upper and lower confidence limits are plotted as differences relative to this equation (see 
Annex A for examples). 

                                                      

10) The total number of observations from all runs is jj
n n= ∑ . 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 18213-3:2009(E) 

26  © ISO 2009 – All rights reserved
 

7.5.2.3 Confidence bands for the difference between two estimates of the measurement equation 

Suitable confidence bands are particularly useful for comparing two estimates of the measurement equation. 
The two estimates may, for example, be those from two calibration exercises conducted at different times. In 
this case, one estimate is typically from a new calibration undertaken to verify an existing (old, reference) 
measurement equation obtained from a previous calibration exercise. The two estimates may also be those 
from two analyses of a single set of calibration data, such as those produced by the operator and the 
inspector. 

An approximate 100(1 − α) % confidence interval for the difference between two independent estimates of the 
measurement equation at some arbitrary value of the control variable, X, is given by Equation (46): 

( ) ( )( ) ( )
0,52 2

new new
ˆ ˆ ˆ ˆ 1 1X X , X p F p ,ασ σ ν⎡ ⎤′ − ± + + +⎢ ⎥⎣ ⎦

h β β  (46) 

where 

X′h  is the row vector of the design matrix H that corresponds to X; 

,new new
ˆ ˆ
X XY ′= h β  is the predicted value of the response variable at X obtained from the new 

measurement equation; 

ˆ ˆ
X XY ′= h β  is the predicted value of the response variable at X obtained from the reference (old) 

measurement equation. 

The estimated variances of new
ˆ

X′h β  and ˆ,X′h β  denoted respectively by 2
,newˆ Xσ  and 2ˆ ,Xσ  are computed from 

Equation (35), each with values of r, 2ˆ ,σ  Hj, and ˆ
jθ  appropriate to its respective calibration run (new or old).  

The quantity ( )1,F p να + is the 100(1 − α) % point from the F-distribution with parameters (degrees of 
freedom) (p + 1) and ν. The degrees of freedom parameter, ν, is computed from the individual degrees of 
freedom for 2

,newˆ Xσ  and 2ˆ Xσ  by means of the Welch-Satterthwaite formula. If ν1 and ν2 denote the degrees 
of freedom for the quantities 2

,newˆ Xσ  and 2ˆ ,Xσ  respectively, then ν1 and ν2 are computed for their respective 
calibrations from Equation (35) by means of the Welch-Satterthwaite equation exactly as for Equation (40). 
The parameter ν is now computed by a second application of Equation (B.2), with 2

,new 1ˆ XV vσ= and 
2

2ˆ XW vσ= . 

In the case where one estimate of the measurement equation (e.g., the new one) is derived from the data of a 
single calibration run, it is not possible to obtain a direct estimate of the run-to-run component of variability for 

2
,newˆ Xσ . If the same procedure is used to derive both estimates of the measurement equation, then it may be 

possible to estimate the run-to-run variability for the new equation from the estimate computed for the 
reference equation. 

Two estimates of the measurement equation, e.g., new and reference, can be compared visually by plotting 
the confidence bounds of Equation (46) for a series of values of X and interpolating between adjacent points. 
If at any point the confidence band for the difference between the new and reference equations does not 
contain zero, then the two equations are significantly different at the specified significance level. 

7.5.3 Prediction intervals for future observations 

7.5.3.1 Prediction interval for the response variable at a single future observation of the control 
variable 

Under the model of 7.2.2, the response variable, Y0, at a single new (future) observation of the control variable, 
X0, is given by Equation (37). The predicted (mean) value of Y0, as given by Equation (31), is 0 0

ˆ ˆY ′= h β  and, 
from Equation (39), the estimated variance of 0Ŷ  is given in Equation (47): 
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( ) ( )12 2 2 2
0 0 01 1

ˆ ˆˆ ˆ ˆ 1r r
j j j j jj j

r rσ σ σ
−−

= =
⎡ ⎤⎛ ⎞′ ′ ′= + + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∑ ∑h H H θ θ h  (47) 

Thus, an approximate 100(1 − α) % prediction interval for the response variable at a single future observation 
X0 is as given in Equation (48): 

( )0 0 2 0
ˆ ˆ /tασ ν′ ±h β  (48) 

where 2
0σ̂  is given by Equation (47). Other quantities are defined as in 7.5.2.1. For computing the degrees of 

freedom 0,ν  it is convenient to write Equation (47) as given in Equation (49): 

( ) 12 2 2 2 1
0 0 0 0 01 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆr r r
j j j j j j jj j j

= r + + + rσ σ σ
−− −

= = =
⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑h H H θ θ h h θ θ h  (49) 

The first term on the right-hand side of Equation (49) is given by Equation (35). Thus, the degrees of freedom 
associated with this term, say ν1, is computed by means of the Welch-Satterthwaite formula exactly as for 
Equation (40). The degrees of freedom for the last two terms, say ν2, is computed by means of the Welch-
Satterthwaite formula with ( )2ˆ 2V = σ n r p  ⎡ ⎤− +⎣ ⎦ and 2

0 0
ˆ ˆ

j jj
W = r − ⎛ ⎞′ ′⎜ ⎟

⎝ ⎠∑h θ θ h . Finally, 0ν  is computed by 
means of a third application of the Welch-Satterthwaite formula, this time with V and W as given in 
Equations (50) and (51), respectively: 

( ) 12 2
0 0 11 1

ˆ ˆˆr r
j j j j jj j

V = r + vσ
−−

= =
⎡ ⎤′ ′ ′⎢ ⎥⎣ ⎦∑ ∑h H H θ θ h  (50) 

2 1
0 0 21

ˆ ˆˆ r
j jj

W = + r vσ −
=

⎡ ⎤⎛ ⎞′ ′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∑h θ θ h  (51) 

7.5.3.2 Prediction intervals that hold simultaneously for an indeterminate number of future 
observations of the control variable 

It is possible to construct prediction intervals that hold simultaneously for a specified number of future 
observations of the control variable. These intervals are not especially useful in practice because the specific 
number of new predictions is rarely known in advance. Moreover, the confidence intervals become quite wide 
when the number of predictions is large. Nevertheless, it is useful to have a means of comparing data from a 
new calibration to an existing measurement equation. This is done with the aid of a family of tolerance 
intervals that hold simultaneously at all values of the control variable. Details of construction are given in 
Reference [4]. A somewhat simpler approximation that works well in practice is given here. 

The variance of a single new prediction of volume, 0ˆ ,Y  obtained from the estimated measurement equation at 
X0 is given by Equation (47). Thus, approximate 100(1 − α) % confidence intervals for the predicted responses 
that hold jointly (simultaneously) for an indeterminate number of new values of the control variable X have the 
form as given in Equation (52): 

( ) ( ) 0,5ˆ ˆ 1 1,X Xσ p F p να⎡ ⎤′ ± + +⎣ ⎦h β  (52) 

For a particular value of X, 2ˆ Xσ and its associated degrees of freedom, ν, are computed exactly as for 
Equation (48). The quantities 2ˆ Xσ  and ν vary from one value of X to another. An alternative to computing 2ˆ Xσ  
and ν for each X is to use the smallest value of 2ˆ Xσ  and the corresponding value of ν for all values of X. This 
alternative approximation produces confidence intervals that are somewhat narrower than those obtained 
when ν is determined for each X. 
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Confidence bands for an arbitrary number of new predictions are obtained by plotting the confidence bounds 
of Equation (52) for a series of selected values of X and interpolating between adjacent points. These 
confidence bands can be used to compare data from a new calibration run with an existing calibration. If any 
observation from the new run falls outside the confidence region for the calibration equation, the new data are 
inconsistent with the old calibration at the specified probability level. The plot is most easily interpreted when 
ˆ ˆ
X XY ′= h β  is used as a reference and upper and lower confidence limits are plotted as differences relative to 

this equation (see Annex A for examples). 

8 Uncertainty estimates for volume determinations 

8.1 Overview 

The purpose of a tank calibration exercise is to develop an estimate of the tank’s measurement equation that 
can subsequently be used to determine the volume of process liquid in the tank associated with a given 
measure of pressure. The quantity of interest may be either the volume of liquid contained in the tank (a 
contained volume) or the volume of liquid involved in a transfer operation (a transfer volume). Equations are 
presented in 8.2 and 8.3, respectively, for estimating the uncertainty of both contained and transfer volume 
determinations. 

The procedure for estimating the volume of process liquid contained in a tank is broken into two major steps. 
First, the response that the liquid produces in the tank's measurement (manometer) system is observed and 
converted to a measure of height at standard reference conditions (as outlined in 6.1; see ISO 18213-4 or 
ISO 18213-5 for additional details). Second, this measure of height is then substituted into the tank’s 
estimated measurement equation to obtain the corresponding determination of volume (at reference 
conditions). It is possible to express the total variability for the resulting volume determination as the sum of 
three components: 

a) variance of the predicted (mean) volume attributable to the estimated measurement equation as a result 
of the calibration process (i.e., variability in the measurement equation due to the calibration process); 

b) variance of a new volume determination not associated with the calibration process; 

c) variability in the predicted volume that is propagated or transferred through the measurement equation as 
a result of measurement uncertainty in the underlying height determination. 

8.2 Contained volumes 

8.2.1 Estimation of volume variance 

Let X0 = H0 denote a standardized reference height for which the associated volume is desired, let Y0 = V0 
denote the corresponding standardized volume (at reference temperature Tr), and let 1ˆ ˆh f −= denote the 
estimated measurement equation. The reference height [see Equation (6)] can be written as given in 
Equation (53): 

( ) ( )( )0 0 M M a, ex m1sX H P c g Tρ ρ α⎡ ⎤= = ∆ − − + ∆⎣ ⎦  (53) 

The predicted (mean) volume obtained from the measurement equation [see Equation (30)] is as given in 
Equation (54): 

( )0 0 0 0
ˆ ˆˆV Y = h H ′= = h β  (54) 
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In accordance with 8.1, the total variability of V0 can be written as given in Equation (55): 

( ) ( ) ( ) ( )
( ) ( )

V V + V V

Y + V

= +

=

0 0,pred 0,new 0,trans

0 0,transˆ

var var var var

var var
 (55) 

( )0Ŷvar  represents the variance of a single predicted new response obtained from the measurement 
equation; an estimate of this quantity, based on Equation (39), is given in Equation (56): 

( ) ( ) ( )r r
j j j jj j

Y = r + r +σ σ
−−

= =
⎡ ⎤⎛ ⎞′ ′ ′+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∑ ∑

12 2 2
0 0 01 1

ˆ ˆˆˆ ˆ ˆ1var h H H θ θ h  (56) 

The last term on the right-hand side of Equation (55) has the form as given in Equation (57): 

( ) ( ) ( ) ( )
2

0,trans 0 0 0
ˆˆ V = h H H H⎡ ⎤∂ ∂⎣ ⎦var var  (57) 

and is estimated, based on Equation (9), as given in Equation (58): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 2
0,trans 0 0 0 M M M a,

ˆˆ sV = h H H H P P - c -ρ ρ ρ⎡ ⎤⎡ ⎤∂ ∂ ∆ ∆ +⎢ ⎥⎣ ⎦ ⎣ ⎦
var var var  (58) 

The following expression for the estimated total variability of the new volume determination V0 associated with 
the standardized height determination H0 is obtained by substituting Equations (56) and (58) into 
Equation (55), as given in Equation (59): 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

r r
j j j jj j

s

V = r r

h H H H P P c

σ σ

ρ ρ ρ

−−
= =

⎡ ⎤⎛ ⎞′ ′ ′+ + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎡ ⎤+ ∂ ∂ ∆ ∆ − + −⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑
12 2 2

0 0 01 1

2 22 2
0 0 0 M M M a,

ˆ ˆˆ ˆ ˆ1 ...

ˆ...

var h H H θ θ h

var var
 (59) 

For Equation (59), the following hold. 

⎯ H0 is the reference (standardized) height for the liquid of interest. This quantity is determined from 
measurements of the pressure ∆P as given by Equation (53) (see 6.1 and corresponding discussions in 
ISO 18213-4 or ISO 18213-5, respectively, for details). 

⎯ ĥ  denotes the estimated measurement equation, 1f̂ − . 

⎯ ( )0 0
ˆV h H=  is the standardized volume that corresponds to H0. Equivalently, 0 0

ˆV ′= h β , where 0′h is the 
vector of the design matrix that corresponds to the standardized height, H0. 

⎯ β̂  is the vector of parameters that characterize the estimated measurement equation (see 7.3). 

The quantity ( ) ( )0 0ĥ H H∂ ∂ denotes the derivative of the estimated measurement equation, ,̂h  taken with 
respect to H and evaluated at H = H0. The square of this quantity propagates or “transfers” uncertainty 
(variance) in H0 through the measurement equation to the volume estimate, V0. The value of 

( ) ( )0 0ĥ H H∂ ∂ depends on the coefficients of the measurement equation, h, for the segment in which H0 falls. 
Thus, for a particular value of H0, this quantity is computed by taking the derivative with respect to the 
appropriate coefficients in the vector of parameter estimates, β̂. 
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The remaining quantities in Equation (59) are defined in 7.2 or 7.3, and all are computed at the model fitting 
stage. 

Beginning with a measurement of pressure and an estimate of the tank’s measurement equation, the 
corresponding standardized volume is determined by means of the steps described in ISO 18213-1:2007, 
Clause 6 (see also 6.1 in this part of ISO 18213). These steps, which apply to process liquids as well as 
calibration liquids, are summarized as follows. 

a) Observe the differential pressure (∆P) produced by the liquid of interest and record the additional 
information on ambient conditions, etc., that is required to perform the necessary standardization 
calculations. 

b) Compute the height of liquid, at measurement temperature, that corresponds to the observed pressure 
measurement as given in Equation (60): 

( ) ( )M M M a,sH P c g ρ ρ⎡ ⎤= ∆ − −⎣ ⎦  (60) 

c) Compute the corresponding (standardized) height at the reference temperature Tr: ( )∆H = H + Tα0 M ex m1  

d) Use the tank's estimated measurement equation to determine the corresponding standardized volume at 
the calibration reference temperature: ( )0 0

ˆ=V h H  or 0 0
ˆ′= h βV . 

e) Compute the estimated uncertainty for the resulting volume determination, V0, as given by Equation (59). 

The estimation of each quantity in Equation (59) is discussed in turn. The quantity ( ) ( )0 0
ˆ∂ ∂h H H  has already 

been discussed. 

It is possible to estimate the variance of H0 by means of the steps outlined in 6.1 [see Equation (9)] as given in 
Equation (61): 

( ) ( ) ( ) ( ) ( ) ( ) 22 2
0 0 M M M a,sH = H P P c ρ ρ ρ⎡ ⎤∆ ∆ − + −⎢ ⎥⎣ ⎦

var var var  (61) 

The major components of uncertainty in this equation are those for ∆P and ρM. Uncertainty in the 
measurement ∆P depends upon both the capabilities of the tank’s measurement system (manometer) and the 
number of readings, and is determined at the time of measurement. If the same equipment and procedures 
are used for measurements of process liquid as were used for calibration, then the estimate of var(∆P) 
obtained at the time of calibration may also be suitable for process measurements (see 6.1). 

Unlike the situation with a calibration liquid, the density, ρM, of a process liquid is not known a priori and it is 
necessary, therefore, to estimate it at the time of measurement. This can be done either analytically in the 
laboratory or by means of in-tank measurements. An appropriate estimate of var(ρM) depends upon the 
method used to determine ρM. When the procedure of ISO 18213-6 is used to determine liquid density (at its 
tank temperature) from in-tank measurements of pressure, the corresponding variance estimate var(ρM) shall 
be computed as indicated in ISO 18213-6:2008, Clause 7. If the density is determined by chemical analysis, 
then the laboratory is expected to provide a suitable estimate of the variance for the density value that it 
reports. If the density is reported by the laboratory at some standard reference temperature, a suitable 
interpolation equation is required to determine the density of the liquid at its in-tank measurement temperature. 

The remaining quantities required to compute ( )0ˆ Vvar  are 2ˆ ,σ  ( )
1

j jj

−
′∑ H H  and ˆ ˆ

j jj
′∑ θ θ . These 

quantities are best computed at the time the model is fit to the calibration data as indicated in 7.3. 
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Once the reference volume, V0, and its estimated variance have been computed, it is sometimes necessary to 
determine the corresponding quantities at measurement temperature Tm. At its measurement temperature, the 
estimated reference volume V0 becomes as given in Equation (62): 

( ) ( )
( )

∆

∆

V + T h H

+ T V

α

α

=

=
M ex m 0

ex m 0

ˆ1 3

1 3
 (62) 

where ∆Tm = Tm − Tr, and the estimated variance of VM is as given in Equation (63): 

( ) ( ) ( )∆ 2
M m 0ˆ ˆ1 3V + T Vα=var var  (63) 

where ( )0ˆ Vvar  is given by Equation (59). 

8.2.2 General procedural considerations 

8.2.2.1 Beginning with an observation of pressure, it is possible to combine all the indicated calculations 
for determining VM into a single equation of the form as given in Equation (64): 

( ) ( )
( ) ( ) ( )( ){ }

∆

∆ s

V + T h H

+ T h P c G + T

α

α ρ ρ α

=

⎡ ⎤= ∆ − − ∆⎣ ⎦

M ex m 0

ex m M M a, ex m

ˆ1 3

ˆ1 3 1
 (64) 

Thus, it is possible to obtain the volume, VM, of process liquid at its measured temperature directly from the 
measurement equation at reference temperature by means of Equation (64). 

8.2.2.2 The step described in 8.2.2.1 yields the volume, VM, of the process liquid at its measurement 
temperature, Tm. It is sometimes necessary to relate the volume of this liquid to its volume at some other 
temperature (e.g., the ambient temperature in the laboratory, say T3). This calculation requires the density of 
the liquid at both temperatures Tm and T3, and is accomplished by means of the usual equation for 
conservation of mass as given in Equation (65): 

3 M M 3V V ρ ρ=  (65) 

The uncertainty of V3 is determined from the uncertainties of the quantities on the right-hand side of 
Equation (65) by means of standard propagation-of-variance methods. 

8.2.2.3 Except for measurement variability in ∆P, the equations presented in 8.2.1 do not take account of 
variability in the prover measurements. It is possible for prover measurements to be a significant source of 
variability in certain high-precision measurement and calibration systems. In case it is necessary to consider 
the prover measurement variability for a particular application, this can be done by means of appropriate 
propagation-of-variance calculations. Since prover measurement variability can safely be ignored in nearly all 
applications, and calculations are complex, the estimation of prover measurement uncertainty is not pursued 
in this part of ISO 18213. 

8.2.3 Heel volume 

The reference volume, V0, obtained from the measurement equation is a measure of only the calibrated 
volume of the tank below the point H0. In particular, the volume of any liquid in the tank at the start of a 
calibration (the heel) is not included in the estimate V0 unless this volume has been independently measured 
and incorporated into the cumulative volumes obtained during the calibration process. Thus, the reference 
volume, V0, is an accurate measure of actual or total (i.e., contained) volume of the tank below the point H0 (at 
reference temperature) only if the heel volume of the tank has been incorporated into the calibration process 
or the tank was completely empty at the start of the calibration exercise. 
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Although determinations of transfer volumes are independent of any liquid in the tank at the start of the 
calibration exercise, determinations of contained volume are typically required for inventory purposes. It is, 
therefore, important to incorporate accurate determinations of heel volume into estimates of the calibration 
and measurement equations if these equations are used to make volume determinations for inventory 
purposes. 

8.3 Transfer volumes 

A transfer volume is simply the difference between two measurements of contained volume. Let V1 denote the 
before-transfer (initial) volume and let V2 denote the after-transfer (final) volume. It is assumed for 
convenience that the transfer is out of the tank, in which case V1 is the larger of the two volumes and the 
transfer volume is the difference as given in Equation (66): 

1 2V = V V∆ −  (66) 

In terms of the measurement equation, the transfer volume is expressed as given in Equation (67): 

( ) ( )

( )

1 2

1 2

1 2

ˆ ˆ

ˆ ˆ

ˆ'

V h H h H∆ = −

′ ′= −

= −

h β h β

h h β

 (67) 

where i′h  for i = 1, 2, is the (row) vector that corresponds to the standardized height, Hi, from which Vi is 
determined. 

If the measurement errors, εi, in the two observations of height are assumed to be independent, the estimated 
variance of ∆V is given by Equation (68), which is derived with the aid of Equation (59): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

12 2 2
1 2 1 21 1

2 2 22
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2 2 22
2 2 2 2 2 2 M,2 M,2 M,2 a,

ˆ ˆˆ ˆ ˆ2 1 ...

ˆ... ...

ˆ...

r r
j j j jj j

s

s

V σ r σ r

h H H H P P c

h H H H P P c

ρ ρ ρ

ρ ρ ρ

−−
= =

⎡ ⎤⎛ ⎞′ ′ ′∆ = + − + + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎡ ⎤+ ∂ ∂ ∆ ∆ − + − +⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ ∂ ∂ ∆ ∆ − + −⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑var h h H H θ θ h h

var var

var var

 (68) 

The first two terms on the right-hand side of Equation (68) represent the combined uncertainty in the predicted 
volume difference ∆V that is attributable to 

a) the prediction uncertainty due to the measurement equation, 

b) the variability in the difference between the two new observations. 

The last two terms on the right-hand side of Equation (68), represent the respective contributions to the total 
variance of the two height determinations, H1 and H2, as propagated through the estimated measurement 
equation. All terms in Equation (68) are computed exactly as outlined in 8.2 for contained volumes. 

Except for segments between those in which H1 and H2 fall, inclusive, the components of the vector 1 2( )′−h h  
are zero. In particular, the components are zero for any initial segments common to the two measurements. 
Since the heel volume does not enter into the computations of Equations (67) and (68), it is clear that 
determinations of transfer volume are independent of the tank's heel volume. 
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Annex A 
(informative) 

 
Examples of diagnostic plots 

Figure A.1 shows a cumulative plot in which height is plotted against volume. Data from seven calibration runs 
are plotted. Prior to plotting, all data were standardized to a predefined set of reference conditions and aligned 
to compensate for differences in heel volume between successive runs. The plot shows that initially height 
increases rapidly with volume. The rate of increase gradually decreases until approximately 1 500 l. 
Thereafter, the increase in height with volume appears to be approximately linear. Figure A.2 shows the same 
data as Figure A.1, except that volume has been plotted against height. The cumulative plots show the gross 
departure from linearity in the height-volume relationship at the bottom of the tank, but finer details are 
obscured by the wide plotting range on the vertical axis. 

 

Key 
X volume, expressed in litres 
Y height, expressed in millimetres 

NOTE The curve includes the data of seven runs. 

Figure A.1 — Cumulative plot of height vs. volume 
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Key 
X height, expressed in millimetres 
Y volume, expressed in litres 

NOTE The curve includes the data of seven runs. 

Figure A.2 — Cumulative plot of volume vs. height 

Figure A.3 shows a profile variation plot created from the data of Figure A.1. This plot shows the residuals 
obtained by fitting a linear regression equation to the combined data (height vs. volume) of all seven runs. As 
a result, the vertical range has been decreased from approximately 2 700 mm in Figure A.1 to 160 mm in 
Figure A.3. The reduced range on the vertical axis makes it possible to see detail in the profile that is not 
evident in the cumulative plot. The tank’s profile is not nearly as linear as it appears in Figure A.1, and several 
distinct regions are evident in the portion of the tank that appears to be linear in the cumulative plot. For this 
reason, the profile variation plot is quite helpful for identifying segments when one is fitting a calibration or 
measurement equation to the data. Figure A.4 is similar to Figure A.3, except that the plot shows the residuals 
obtained by regressing volume on height. The two plots reveal the same information and the choice of which 
to use is largely a matter of personal preference. 
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Key 
X volume, expressed in litres 
Y residual height, expressed in millimetres 

NOTE The curve includes the data of seven runs. 

Figure A.3 — Profile variation plot of height vs. volume 

 
Key 
X height, expressed in millimetres 
Y residual volume, expressed in litres 

NOTE The curve includes the data of seven runs. 

Figure A.4 — Profile variation plot of volume vs. height 
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Figures A.5 and A.6 show incremental slope plots of the same data shown in Figures A.1 to A.4. The first 
expresses incremental changes in height (the change in height per unit change in volume) for each volume 
increment added to the tank during a calibration run, while the second shows incremental changes in volume 
for each observed change in height. Figures A.5 and A.6 show the slopes of the calibration and measurement 
equations, respectively, at each calibration increment. Both plots provide the same information, but the 
measurement scales are typically such that the second is generally easier to read. 

Incremental slope plots reveal the fine detail in the tank’s profile and are, therefore, very helpful for identifying 
or confirming the locations of pipes, agitators and other internals that have a local effect on the free cross-
sectional area of the tank. Both plots reveal an abrupt change in profile at a height of approximately 700 mm 
or a volume of approximately 2 000 l. (Note that this feature is more evident in Figure A.6 than in Figure A.5.) 
The engineering drawings for the tank confirm that an agitator exists at this height in the tank. Another major 
structural feature is evident at a height of approximately 2 500 mm. The jagged appearance in the profile 
between approximately 850 mm and 2 200 mm is caused by internal heating and cooling coils. The fact that 
all seven runs show these features confirms that the variation is due to structural features in the tank and not 
to measurement variation. The features are so repeatable across runs that it would be possible (but tedious 
and perhaps unnecessary) to model individual coils when fitting a measurement equation to these data. 

 

 Key 
X volume, expressed in litres 
Y slope 

NOTE The curve includes the data of seven runs. 

Figure A.5 — Incremental slope plot of height vs. volume 
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Key 
X height, expressed in millimetres 
Y slope 

NOTE The curve includes the data of seven runs. 

Figure A.6 — Incremental slope plot of volume vs. height 

In this example, the incremental slope plots for all runs are nearly identical, indicating that the (standardized) 
data are in very good agreement. Run-to-run discrepancies revealed by an incremental slope plot are an 
indication that one or more of the runs are anomalous. In particular, if the slopes for one run differ from those 
of other runs at an isolated point or two, the plot provides a strong indication that one or more measurements 
are erroneous in the anomalous run. 

The incremental slope plot, particularly that of the measurement equation (Figure A.6), is perhaps the most 
useful of all plots for “fine-tuning” the segments identified with the aid of a profile variation plot. The previously 
mentioned features at approximately 700 mm and 2 200 mm require special attention, as does the region at 
the top of the heel between 700 mm and 900 mm, approximately. Moreover, the region at the top of the coils 
between approximately 2 150 mm and 2 400 mm is distinct from the coil region. By examining the calibration 
data with the aid of suitable incremental slope plots, it is possible to make quite precise determinations of the 
segment boundaries (cut points) used for model fitting. 

Since incremental slope plots show derivative (slope) information, they are also very useful for identifying the 
degree of the polynomial that fits the data of a given segment of the calibration or measurement equation. 
Consider Figure A.6, which shows incremental changes in volume for observed changes in height (the 
measurement form). Segments in which the slopes are constant can be fit with a linear equation. Segments in 
which the slopes are linear can be fit, at least initially, by a second-degree polynomial, and similarly for higher 
degrees. The slopes in Figure A.6 are quite linear in the initial segment ranging from 250 mm to 700 mm, 
approximately. This suggests that a second-degree polynomial fits the measurement equation in this region of 
the tank. Similarly, a linear equation should fit the measurement equation in the region at the top of the coils 
between 2 150 mm and 2 400 mm, approximately. It should be clear, especially from Figure A.6, that 
incremental slope plots are quite useful, not only for identifying segment boundaries, but also for determining 
the degree of the polynomial that fits the data in a particular segment. Clearly, the amount of trial and error 
required to achieve a good fit to a set of calibration data can be greatly reduced with the aid of incremental 
slope plots. 
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As the name implies, comparison plots are used primarily to compare two equations. Figure A.7 shows a plot 
of the data from two runs (run 6 and run 7) in which a fit to one (run 7) was selected as the reference function 
for plotting purposes. These runs are part of the same series of runs shown in Figures A.1 to A.6. It is clear 
from Figure A.7 that these runs differ from each other by an amount that is significantly greater than 
differences among runs shown in previous figures. Further investigation reveals that both run 6 and run 7 are, 
in fact, anomalous. In a complete calibration exercise, the reasons for these anomalies should be investigated 
to determine whether or not data from these runs are suitable for inclusion in future analyses. Provided that 
they are large enough, the differences shown in the comparison plot are also revealed by a profile variation 
plot. However, it is unlikely that differences such as those shown in Figure A.7 will be revealed by an 
incremental slope plot because the two profiles are so nearly parallel. 

 

Key 
X height, expressed in millimetres 
Y residual volume, expressed in litres 
1 run 6 
2 run 7 

Figure A.7 — Comparison plot 

After segment boundaries were identified and the degree of the polynomial for fitting each segment was 
established, the measurement equation (height vs. volume) was fitted to the data of plots in Figures A.1 to A.6. 
The residuals from this fit are shown in Figure A.8, together with the segment boundaries (vertical lines) used 
to define the fit. The residual traces for each run are approximately linear, indicating that little improvement is 
to be expected by defining additional segments. At capacity (approximately 22 000 l), the residuals exhibit a 
spread of approximately 8 l. For this fit, confidence limits for the predicted volume at capacity are 
approximately ± 5 l. The corresponding prediction error is in the order of 0,02 %, a result that is quite 
acceptable in any safeguards programme. 

Figure A.9 shows the same information as Figure A.8, but results are presented in the form of a comparison 
plot. To create this plot, the fitted measurement equation was selected as a reference function and the 
observed (standardized) calibration data were plotted relative to this function. The purpose of this plot is to 
demonstrate that the residual plot is simply a particular type of comparison plot. 
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Key 
X height, expressed in millimetres 5 run 8 
Y residual volume, expressed in litres 6 run 9 
1 run 2 7 run 10 
2 run 3 cut point 
3 run 4 floating cut point 
4 run 5   

Figure A.8 — Residual plot of volume vs. height 

 
Key 
X height, expressed in millimetres 4 run 5 
Y residual volume, expressed in litres 5 run 8 
1 run 2 6 run 9 
2 run 3 7 run 10 
3 run 4   

Figure A.9 — Comparison plot of volume vs. height 
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Figure A.10 shows the temperature of the calibration liquid in the tank for each increment of two separate 
calibration runs. For run 1, the initial temperature is approximately 25 °C. The temperature increases steadily 
throughout the run, reaching a high of approximately 40 °C for the final increment. The temperature changes 
in run 2 are much more irregular. Beginning at approximately 31 °C, the temperature remains nearly constant, 
or increases slowly, for the first half of the calibration run, but increases sharply at increment 14 and for 
several increments thereafter. The temperature is nearly constant, at approximately 39 °C, for the final 
increments of the run. 

The interpretation of temperature information, which is more easily seen in a plot than in any other fashion, is 
crucial to a proper analysis of the calibration data. It is common practice to standardize data relative to 
“average” temperature, perhaps of the tank liquid or the prover liquid, or both. However, when large 
temperature variations such as those shown in Figure A.10 occur during a calibration, this practice can lead to 
significant errors. In fact, for the data in this plot, using the “average” temperature for data standardization can 
result in errors on the order of 0,15 % to 0,20 % of the total volume. If initial temperature differences are large, 
relative errors at lower levels in the tank can be even greater than those cited here. Such errors far exceed 
any acceptable limits for volume measurement error. It is possible to avoid these procedural errors by using 
increment-specific measurements, especially of temperature, to individually standardize each increment of 
calibration data. 

Naturally, prover temperatures should be used to standardize prover data and tank temperatures should be 
used to standardize tank data. To protect against erroneous results, it is prudent to adopt the practice of 
standardizing data for each increment, even when temperature ranges are not large. Complete details are 
given in ISO 18213-2. 

As with temperatures, the times between successive calibration increments are most easily seen with a 
suitable plot. An example of an inter-increment time plot is given in Figure A.11. Such plots are useful for 
identifying any anomalous times between successive calibration increments. Figure A.11 shows that each of 
the first 10 calibration increments took approximately 15 min. These were followed by an increment that took 
nearly 2 h (possibly a lunch break or an equipment malfunction), after which the 15 min interval resumed for 
two more increments. Subsequent increments, except the last, took approximately twice as long as previous 
ones. Such differences in increment times can indicate a procedural change or some type of equipment 
problem that is relevant to the subsequent analysis and interpretation of the calibration data. In this case, the 
increased times for increments 14 and above were due to a “double pour” of calibration liquid into the prover 
weigh tank. 

 
Key 
X increment 
Y temperature, expressed in degrees Celsius 
1 run 1 
2 run 2 

Figure A.10 — Temperature plot 
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Key 
X increment 
Y time between measurements, expressed as ti − ti−1 

Figure A.11 — Inter-increment time plot 
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Annex B 
(informative) 

 
Welch-Satterthwaite equation for computing degrees of freedom 

The method of Welch and Satterthwaite provides a means for computing the degrees of freedom for a 
variance estimate obtained by combining two or more independent variance estimates that are statistically 
different. The Welch-Satterthwaite equation [5] is required to compute the degrees of freedom for the 
confidence bands and prediction intervals given in 7.5 and for the volume determinations given in Clause 8. 

Let 2
1σ  and 2

2σ  denote two components of the variance 2 2 2
1 2σ σ σ= + , and let 2

1S  and 2
2S  be independent 

estimators of 2
1σ  and 2

2σ  with respective degrees of freedom v1 and v2  that are to be combined (“pooled”) to 
estimate 2σ . If 2

1S  and 2
2S  are statistically equal (i.e., not significantly different, as determined by a statistical 

test of equality), then the estimator 2 2 2
1 2S S S= +  has degrees of freedom as given in Equation (B.1): 

v v v= +1 2  (B.1) 

If 2
1S  and 2

2S  are significantly different, however, the use of Equation (B.1) yields an incorrect result in which 
the computed degrees of freedom is too large by an amount related to the degree of correlation between 2

1S  
and 2

2S . In the case where 2
1S  and 2

2S  are correlated, a more appropriate degrees of freedom for the 
estimator 2S  is given by Equation (B.2): 

( ) ( ) ( )v V +W V v +W v⎡ ⎤= − −⎣ ⎦
2 2 2

1 21 1  (B.2) 

where V S v= 2
1 1  and W S v= 2

2 2 . An alternative form of Equation (B.2) that may occasionally prove more 
convenient for computational purposes is given in Equation (B.3): 

( ) ( ) ( ) ( )v S /v + S /v S /v v + S /v v− −⎡ ⎤⎡ ⎤= − −⎢ ⎥⎣ ⎦ ⎣ ⎦

2 2 21 12 2 2 2
1 1 2 2 1 1 1 2 2 21 1  (B.3) 
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Annex C 
(informative) 

 
Target uncertainty limits for measurements associated with tank 

calibration and volume determination 

C.1 Introduction 

The measurement capability of the entire tank calibration and volume measurement system, or the various 
components thereof, is addressed at a number of places in ISO 18213 (all parts). Moreover, uncertainty 
constraints are imposed on volume determinations for control and accountability purposes. These constraints, 
in turn, impose constraints on uncertainties at various stages of the tank calibration and volume measurement 
process. It is necessary that these constraints be internally consistent and, further, it is necessary that they be 
reasonable in the sense that they are achievable with state-of-the-art measurement systems and good 
implementation procedures. 

It is the purpose of this annex to present target uncertainty limits that apply at various stages, or to various 
components of, the volume measurement process (see Figure C.1). Specifically, the proposed limits are 
designed to 

a) be internally consistent, 

b) achieve overall volume-measurement uncertainties that are acceptable to the safeguards community, 

c) be achievable with good in-plant measurement equipment and good technique. 

The limits proposed in this annex are intended to be used as guidelines or target values, and not as limits that 
it is necessary to achieve at all costs. 

In the context of Figure C.1, accountability limits are imposed from the top down, starting with the limit for the 
total uncertainty of an individual volume determination. This limit ultimately leads to limits on the basic 
measurements of pressure and density. Conversely, an assessment of measurement capability employs a 
bottom up approach, beginning with measurements of pressure and density and ultimately ending with a 
statement of uncertainty for individual volume determinations that it is possible to achieve. It is necessary that 
any inconsistencies between accountability requirements and measurement capability for a particular facility 
ultimately be resolved in its materials control and accountability programme. These guidelines are intended to 
help resolve such inconsistencies. 

All specified uncertainty values are given in terms of either instrument resolution or the half-width of a two 
standard deviation confidence interval (2σ, half of an interval of width ± 2σ), as appropriate. All percentages 
apply at pressures of 10 000 Pa or greater. (The pressure exerted by a 1 m column of water is approximately 
10 000 Pa.) As pressures decrease, relative uncertainties tend to increase. It is therefore recommended that 
actual values at 10 000 Pa, rather than associated percentages, be used as limits at pressures lower than 
10 000 Pa. Depending on the capability of the instrument or measurement system in question, it can be 
possible or even necessary to establish some value other than 10 000 Pa at which to switch from the use of 
percentages to a constant value. 
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All specified values are intended to be reasonably achievable with contemporary equipment and favourable 
measurement conditions. Corresponding “ideal” or “tight” specifications are given parenthetically. Generally, 
the goal at one level is set at 50 % to 60 % of that at the next highest level. A rough application of this 
constraint ensures that values are consistent from one level to another. The underlying principle is that if two 
or more sources of variability contribute to a particular measurement, then the total variability of the 
measurement cannot be less than the total variability attributable to these sources. Mathematically, this is 
expressed as given in Equation (C.1): 

2 2 2
1 2σ σ σ+ u  (C.1) 

where 2σ  is the total variability for a measurement and 2
1σ  and 2

2σ  are the variances of two contributing 
components of variability. The requirement of internal consistency does not of itself establish specific values 
for 2

1σ  and 
2
2σ . Subject to the constraints of Equation (C.1), there is considerable opportunity to make 

trade-offs when setting limits for these quantities. Indeed, if it is possible in practice to control the variability of 
the first component, so that 2

1σ  is small, then it may be possible to relax the constraint on second component. 
It is, therefore, possible in practice to design a set of constraints that is specific to the strengths and 
weaknesses of a particular measurement system and its associated procedures. 

C.2 Total uncertainty for individual volume determinations for process liquids 

The most fundamental limit for accountability purposes is that for the total uncertainty of individual volume 
determinations for process liquids. All other limits are either directly or indirectly related to this limit. Key 
relationships are shown in Figure C.1. The goal or target value (and the ideal value) for the total uncertainty of 
an individual volume determination is equal to 0,1 % (0,05 %) at pressures of 10 000 Pa or greater. 

This goal specifies that the combined contribution of uncertainties from all sources to the uncertainty of a 
volume determination does not exceed 0,1 % of the measured volume. The goal of 0,1 % is generally 
acceptable for safeguards purposes. Moreover, it is achievable with good measurement and computation 
techniques. Indeed, more stringent uncertainty goals are often achieved in practice. In a given facility, it is 
necessary to resolve any discrepancy or inconsistency between safeguards requirements and measurement 
capability before it is possible to establish a meaningful limit for this quantity. The limit established for the total 
volume determination uncertainty in turn limits the uncertainties at all other points in the tank calibration and 
volume measurement process. 

Major components of uncertainty for individual volume determinations are 

⎯ total uncertainty for the height determination from which the volume is determined, 

⎯ total calibration uncertainty. 

The limits imposed by the target value of 0,1 % on these quantities are discussed in Clauses C.3 and C.4. 

C.3 Total uncertainty for individual height determinations for process liquids 

The target value for the total uncertainty for a height determination for a process liquid is equal to 0,06 % 
(0,03 %) at pressures of 10 000 Pa or greater. 

Major components of total uncertainty for height determinations for process liquids are 

⎯ measurement uncertainty, 

⎯ run-to-run variability. 
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Measurement uncertainty reflects variability in the measurements of pressure and uncertainty in the density 
determination from which the height determination is derived. Run-to-run variability is relevant because the 
new measurements of process liquids are subject to the same random environmental factors that produce 
run-to-run variability during the calibration process. 

Measurement uncertainty for height determinations for process liquids and run-to-run variability are discussed 
in C.3.1 and C.3.2 respectively. 

C.3.1 Measurement uncertainty for height determinations for process liquids 

The target value for the measurement uncertainty component of total uncertainty for a height determination for 
a process liquid is 0,04 % (0,025 %) at pressures of 10 000 Pa or greater. 

Major components of measurement uncertainty for a height determination for a process liquid are 

⎯ uncertainty of the individual pressure determination, 

⎯ uncertainty of the density determination. 

These are discussed, respectively, in C.3.1.1 and C.3.1.2. 

C.3.1.1 Uncertainty of individual pressure determinations 

The target value for the uncertainty of individual pressure determinations is 0,01 % (0,005 %) at pressures of 
10 000 Pa or greater. 

The goal is to obtain individual measurements of pressure that are within 1 Pa to 2 Pa of the true (differential) 
pressure exerted at the measurement point. This resolution is routinely possible with the high-precision 
electromanometers presently used for making safeguard measurements in nuclear facilities. 

If the resolution of the instrument (manometer) used to measure pressure is not sufficient to meet this goal, 
replicate manometer readings can be averaged to obtain pressure determinations of increased resolution. The 
number of replicates should be large enough so that the variance of the average does not exceed the 
established target value. For a given target value, fewer readings are required for instruments with greater 
resolution. See 6.1 for additional discussion. 

C.3.1.2 Density-determination uncertainty 

For process liquids, the target value for uncertainty of density determinations used to compute liquid heights is 
0,03 % (0,02 %). 

Because the density of a process liquid is typically not well known at its measurement temperature, density-
determination uncertainty can be one of the largest components of total uncertainty for volume determinations. 
If volume-determination uncertainty is too large, it can often be reduced by the use of improved determinations 
of density. 

The density of the process liquid may be determined either analytically (in the laboratory) or by means of in-
tank measurements. A method for computing accurate density estimates for process liquids from 
measurements of pressure is given in ISO 18213-6. The variance of the density determination is obtained as 
appropriate, depending on how the density is determined. If the density is determined analytically, then the 
laboratory is expected to provide an estimate of uncertainty together with the density value it reports. For a 
process liquid where density is determined from in-tank measurements, the variance of the determination is 
estimated as indicated in ISO 18213-6. See 6.1 for additional information. 

For process liquids, it can be difficult to achieve this goal with density determinations obtained from in-tank 
measurements. However, it is necessary to determine the density of a process liquid to within approximately 
0,03 % in order to meet the overall uncertainty goal of 0,1 %. As noted above, it can be possible to 
compensate for the somewhat greater uncertainty in the density determination by reducing the uncertainty of 
other measurements. 
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C.3.2 Run-to-run variability 

The target value for the component of total uncertainty for a height determination for a process liquid 
attributable to run-to-run variation is 0,05 % (0,03 %). 

Run-to-run variation is typically a major component of calibration uncertainty. Run-to-run variation is 
apparently caused by (unknown and) uncontrolled random environmental factors that affect measurements 
from one time period to another during the calibration process. 

It is possible to improve estimates of run-to-run variability by increasing the number of calibration runs. 
However, run-to-run variability can only be controlled or reduced by controlling or reducing variability in 
measurement conditions (especially by controlling temperature, of both the liquid and the measurement 
environment) during times of measurement. It can be possible to reduce estimates of run-to-run variability by 
improving the data standardization model, but gains are likely be marginal. 

C.4 Total calibration uncertainty 

The target value for total calibration uncertainty is 0,06 % to 0,07 % (0,03 % to 0,04 %). 

Major components of calibration uncertainty are 

⎯ statistical uncertainty, 

⎯ run-to-run variability. 

These are discussed in C.4.1 and C.4.2, respectively. 

C.4.1 Statistical uncertainty 

The target value for statistical uncertainty is 0,04 % (0,02 %). 

Statistical uncertainty refers to uncertainty that is attributed to the statistical model fitting process and reflects 
such factors as fitting error (lack of fit) and “pure” or “random” measurement error. It is possible to reduce 
fitting error by increasing the number and degree of segments in the calibration model that is fitted to the data. 
However, statistical estimators become increasingly variable as the number of points in a segment decreases. 
Thus, this strategy becomes counter-productive at some point unless the number of points in the underlying 
calibration runs is correspondingly increased. 

C.4.2 Run-to-run variability 

See C.3.2. 

C.4.3 Measurement uncertainty for height determinations for calibration liquids 

The target value for the measurement uncertainty for individual height determinations for a calibration liquid is 
0,03 % (0,02 %) at pressures of 10 000 Pa or greater. 

Major components of measurement uncertainty for a height determination for a calibration liquid are 

⎯ uncertainty of the individual pressure determination, 

⎯ uncertainty in the density determination. 

These are discussed, respectively, in C.4.3.1 and C.4.3.2. 
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C.4.3.1 Uncertainty of individual pressure determinations 

See C.3.1.1. 

C.4.3.2 Density-determination uncertainty 

For calibration liquids, the target value for the uncertainty of density determinations used to compute liquid 
heights is 0,02 % (0,01 %). 

The density of a calibration liquid should be sufficiently well known at expected measurement temperatures to 
meet the stated uncertainty limits. (If not, the liquid should not be selected as a calibration liquid.) For water, it 
is possible to obtain highly accurate values of density from measures of temperature by means of the equation 
given in ISO 18213-6:2008, Clause 3. These values meet the stated uncertainty limit. 

C.5 Discussion 

Whenever an uncertainty limit is imposed on a particular quantity, it is always theoretically possible to meet 
the limit by imposing sufficiently tight uncertainty limits on all contributing components. However, the relative 
contributions of the major component can vary from one measurement system to another, so some trade-offs 
can be necessary. (With very precise determinations of liquid height, for example, more variability can be 
allowed in the fitting process. Conversely, if measurement conditions are quite stable, then run-to-run 
variability is small, and less stringent requirements can be applied to other components.) Therefore, it is both 
undesirable and impossible to make exact specifications that apply in all cases. As a general rule, when the 
variability (standard deviation) of one component is less than approximately 20 % that of a second, its relative 
contribution to total variability at the next stage is negligible. It is necessary that this rule be applied with 
caution, however, because the total contribution of several terms with comparatively small variability can build 
up to be significant. 

In the final analysis, resolving all of the necessary trade-offs that it is necessary to make in the overall process 
of determining liquid volume uncertainties in process tanks is a key component of the calibration planning 
process described in ISO 18213-1 and amplified in related standards. 

Finally, uncertainty values stated here should be interpreted as goals or targets, and not as limits. If a facility is 
able to set more restrictive limits, it should do so. Similarly, a facility should set reasonable uncertainty limits 
based on current capability even if it cannot meet the stated goals (because of older instrumentation or 
adverse measurement conditions, for example). In short, a facility should not be penalized for setting 
uncertainty goals different from those prescribed in ISO 18213 (all parts) when the deviation is justifiable. 
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Figure C.1 — Target uncertainty limits for tank calibration and volume determination measurements 
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