
© ISO 2016

Electronic fee collection —
Application interface definition for
autonomous systems —

Part 2 :
Communication and connection to
the lower layers

Perception du télépéage — Définition de l’interface d’application pour
les systèmes autonomes —

Partie 2: Communications et connexions aux couches basses

INTERNATIONAL
STANDARD

ISO
17575-2

First edition
2016-01-15

Reference number
ISO 17575-2:2016(E)

ISO 17575-2:2016(E)

ii © ISO 2016 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO 17575-2:2016(E)

Foreword . iv

Introduction .v

1 Scope . 1

2 Terms and definitions . 2

3 Abbreviated terms . 3

4 EFC Front End communication architecture .4
4.1 General . 4
4.2 Relationship with the overall EFC architecture . 5

5 EFC communication services (functions) . 5
5.1 General concept . 5
5.2 Initialization phase . 7

5.2.1 General. 7
5.2.2 Incoming (BE to FE Application) session request . 7
5.2.3 Outgoing (FE Application to BE) session establishment . 8

5.3 Point-to-point communication service primitives . 8
5.3.1 General. 8
5.3.2 Unstructured messages (ADUs) . 8
5.3.3 Structured messages (ADUs) . 8

5.4 Session end . 8
5.5 Session failure . 9
5.6 Security considerations . 9
5.7 Media selection options . 9

6 The use of a communication stack . 9
6.1 General . 9
6.2 Requirements for an underlying communication technology . 9
6.3 Mobile terminated calls . 10

Annex A (normative) Abstract API definition .11

Annex B (normative) Protocol implementation conformance statement (PICS) proforma .17

Annex C (informative) API requirements .22

Annex D (informative) Examples of definitions for appropriate languages. .23

Annex E (informative) Use of this part of ISO 17575 for the EETS .26

Bibliography .28

© ISO 2016 – All rights reserved iii

Contents Page

ISO 17575-2:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies) . The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1 . In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives) .

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents) .

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 204, Intelligent transport systems.

This edition of ISO 17575-2 cancels and replaces ISO/TS 17575-2:2010, which has been technically
revised. The following changes have been made:

— conversion from a Technical Specification to an International Standard;

— editorial and formal corrections as well as changes to improve readability.

ISO 17575 consists of the following parts, under the general title Electronic fee collection — Application
interface definition for autonomous systems:

— Part 1: Charging

— Part 2: Communication and connection to the lower layers

— Part 3: Context data

In this edition of the ISO 17575-series the contents of ISO/TS 17575-4:2011 were incorporated into
ISO 17575-3:2016. ISO/TS 17575-4:2011 will be withdrawn once ISO 17575-3 has been published.

iv © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Introduction

0.1 Autonomous systems

ISO 17575 is a series of standards defining the information exchange between the Front End and the
Back End in electronic fee collection (EFC) based on autonomous on-board equipment (OBE) . EFC
systems automatically collect charging data for the use of road infrastructure including motorway
tolls, zone-based fees in urban areas, tolls for special infrastructure like bridges and tunnels, distance-
based charging and parking fees.

Autonomous OBE operates without relying on dedicated road-side infrastructure by employing wide-
area technologies such as Global Navigation Satellite Systems (GNSS) and Cellular Networks (CN) .
These EFC systems are referred to by a variety of names. Besides the terms autonomous systems and
GNSS/CN systems, the terms GPS/GSM systems and wide-area charging systems are also in use.

Autonomous systems use satellite positioning, often combined with additional sensor technologies such
as gyroscopes, odometers and accelerometers, to localize the vehicle and to find its position on a map
containing the charged geographic objects, such as charged roads or charged areas. From the charged
objects, the vehicle characteristics, the time of day and other data that are relevant for describing road
use, the tariff and ultimately the road usage fee are determined.

Two strengths of the autonomous approach to electronic fee collection are its flexibility, allowing
the implementation of almost all conceivable charging principles, and its independence from local
infrastructure, thereby predisposing this technology towards interoperability across charging systems
and countries. Interoperability can only be achieved with clearly defined interfaces, which is the aim
and justification of ISO 17575.

0.2 Business architecture

This part of ISO 17575 complies with the business architecture defined in ISO 17573. According to this
architecture, the toll charger is the provider of the road infrastructure and, hence, the recipient of the
road usage charges. The toll charger is the actor associated with the toll charging role (see Figure 1) .

Service Usage

Service

Provision

Toll

Charging

Interoperability

Management

Figure 1 — The role-based model underlying ISO 17575

Service providers issue OBE to the users of the road infrastructure. Service providers are responsible
for operating OBE that will record the amount of road usage in all toll charging systems the vehicle
passes through and for delivering the charging data to the individual toll chargers. In general, each
service provider delivers charging data to several toll chargers and, in general, each toll charger
receives charging data from more than one service provider. Interoperability management, as shown in
Figure 1 , comprises all specifications and activities that define and maintain a set of rules that govern
the overall toll charging environment.

© ISO 2016 – All rights reserved v

ISO 17575-2:2016(E)

0.3 Technical architecture

The technical architecture of Figure 2 is independent of any particular practical realization. It reflects
the fact that some processing functionalities can either be allocated to the OBE or to an associated off-
board component (proxy) . An example of processing functionality that can be realized either on- or off-
board is map-matching, where the vehicle locations in terms of measured coordinates from GNSS are
associated to geographic objects on a map that either reside on- or off-board. Also, the computation of
tariffs can be done with OBE tariff tables and processing, or with an off-board component.

Processing Equipment

Front End Back End

Scope of

ISO 17575

OBE

Proxy

Road Usage Data

Context Data

Figure 2 — Assumed technical architecture and interfaces

The combined functionality of OBE and proxy is denoted as Front End. A Front End implementation
where processing is predominately on the OBE-side is known as a smart client (or intelligent client,
fat client) or edge-heavy. A Front End where processing is mostly done off-board is denoted as thin-
client or edge-light architecture. Many implementations between the “thin” and “thick” extremes are
possible, as depicted by the gradual transition in the wedges in Figure 2 . Both extremes of architectural
choice have their merits and are one means where manufacturers compete with individual allocations
of functionality between on-board and central resources.

Especially for thin client OBE, manufacturers might devise a wide variety of optimizations of the
transfer of localization data between OBE and off-board components, where proprietary algorithms are
used for data reduction and data compression. Standardization of this transfer is neither fully possible
nor beneficial.

0.4 Location of the specification interface

In order to abstract from, and become independent of, these architectural implementation choices,
the primary scope of ISO 17575 is the data exchange between Front End and Back End (see the
corresponding vertical line in Figure 2) . For every toll regime, the Back End will send context data, i .e.
a description of the toll regime in terms of charged objects, charging rules and, if required, the tariff
scheme to the Front End, and will receive usage data from the Front End.

It has to be noted also that the distribution of tasks and responsibilities between service provider and
toll charger will vary individually. Depending on the local legal situation, toll chargers will require
“thinner” or “thicker” data, and might or might not leave certain data processing tasks to service
providers. Hence, the data definitions in ISO 17575 may be useful on several interfaces.

vi © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

ISO 17575 also provides for basic media-independent communication services that may be used for
communication between Front End and Back End, which might be line-based or an air-link, and can also
be used for the air-link between OBE and central communication server.

0.5 The parts of ISO 17575

Part 1: Charging, defines the attributes for the transfer of usage data from the Front End to the Back End.
The contents of charge reports might vary between toll regimes, hence, attributes for all requirements
are offered, ranging from attributes for raw localization data, for map-matched geographic objects and
for completely priced toll transactions. A toll regime comprises a set of rules for charging, including the
charged network, the charging principles, the liable vehicles and a definition of the required contents of
the charge report.

Part 2: Communication and connection to lower layers, defines basic communication services for data
transfer over the OBE air-link or between Front End and Back End. The data defined in ISO 17575-1 and
ISO 17575-3 can but need not be exchanged using the communication stack as defined in ISO 17575-2 .

Part 3: Context data, defines the data to be used for a description of individual charging systems in
terms of charged geographical objects and charging and reporting rules. For every toll charger’s system,
attributes as defined in ISO 17575-3 are used to transfer data to the Front End in order to instruct it on
which data to collect and report.

0.6 Application needs covered by ISO 17575

The ISO 17575 series of standards

— is compliant with the architecture defined in ISO 17573:2010,

— supports charges for use of road sections (including bridges, tunnels, passes, etc.) , passage of
cordons (entry/exit) and use of infrastructure within an area (distance, time) ,

— supports fee collection based on units of distance or duration, and based on occurrence of events,

— supports modulation of fees by vehicle category, road category, time of usage and contract type (e.g.
exempt vehicles, special tariff vehicles, etc.) ,

— supports limiting of fees by a defined maximum per period of usage,

— supports fees with different legal status (e.g. public tax, private toll) ,

— supports differing requirements of different toll chargers, especially in terms of

— geographic domain and context descriptions,

— contents and frequency of charge reports,

— feedback to the driver (e.g. green or red light) , and

— provision of additional detailed data on request, e.g. for settling of disputes,

— supports overlapping geographic toll domains,

— supports adaptations to changes in

— tolled infrastructure,

— tariffs, and

— participating regimes, and

— supports the provision of trust guarantees by the service provider to the toll charger for the data
originated from the Front End.

© ISO 2016 – All rights reserved vii

Electronic fee collection — Application interface definition
for autonomous systems —

Part 2 :
Communication and connection to the lower layers

1 Scope

This part of ISO 17575 defines how to convey all or parts of the data element structure defined in other
parts of ISO 17575 over any communication stack and media suitable for this application. It is applicable
only to mobile communication links (although wired links, i .e. back office connections, can use the same
methodology) .

To establish a link to a sequence of service calls initializing the communication channel, addressing the
reception of the message and forwarding the payload are required. The definition provided in this part
of ISO 17575 includes the required communication medium independent services, represented by an
abstract application programming interface (API) .

The communication interface is implemented as an API in the programming environment of choice for
the Front End (FE) system. The specification of the Back End (BE) API is outside the scope of this part
of ISO 17575.

The definition of this API in concrete terms is outside of the scope of this part of ISO 17575. This part
of ISO 17575 specifies an abstract API that defines the semantics of the concrete API as illustrated in
Figure 3 and its protocol implementation conformance statement (PICS) proforma (see Annex B) . An
example of a concrete API is presented in Annex C . Where no distinction is made between the abstract
and concrete communications APIs, the term “communications API” or just “API” can be used.

Front End Application

Communications

Subsystem

Underlying

Communications

Technology

Communications

API

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Datalink

1. Physical

Figure 3 — Scope of this part of ISO 17575

This part of ISO 17575 also provides a detailed specification for the structure of associated API
statements, an example on how to implement it and its role in a complex toll cluster such as the EETS
(see Annex A to Annex E) .

INTERNATIONAL STANDARD ISO 17575-2:2016(E)

© ISO 2016 – All rights reserved 1

ISO 17575-2:2016(E)

Media selection policies, certificate handling and encryption mechanisms are outside of the scope of
this part of ISO 17575.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1
attribute
addressable package of data consisting of a single data element or structured sequences of data elements

[SOURCE: ISO 17575-1:2016, 3 .2]

2.2
authenticator
data, possibly encrypted, that is used for authentication

[SOURCE: EN 15509:2014, 3 .3]

2.3
Back End
BE
part of a back office system interfacing to one or more Front Ends (2 .6)

[SOURCE: ISO 17575-1:2016, 3 .4]

2.4
data element
coded information, which might itself consist of lower level information structures

[SOURCE: ISO 17575-1:2016, 3 .9]

2.5
data integrity
property that data has not been altered or destroyed in an unauthorized manner

2.6
Front End
FE
part of a tolling system consisting of an OBE (2 .9) and possibly a proxy (2 .10) where road tolling
information and usage data are collected and processed for delivery to the Back End (2 .3)

[SOURCE: ISO/TS 19299:2015, 3 .17]

Note 1 to entry: The Front End comprises the on-board equipment (2 .9) and an optional proxy (2 .9) .

2.7
Front End application
part of the Front End above the API

2.8
interoperability
ability of systems to exchange information and to make mutual use of the information that has
been exchanged

[SOURCE: ISO/IEC/TR 10000-1:1998, 3 .2 .1, modified.]

2 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

2.9
on-board equipment
OBE
all required equipment on-board a vehicle for performing required EFC functions and
communication services

Note 1 to entry: Other sub-units should be considered optional.

2.10
proxy
optional part of a Front End (2 .6) that communicates with external equipment and processes the data
received into an agreed format to be delivered to the Back End (2 .3)

[SOURCE: ISO 17575-1:2016, 3 .13]

2.11
service primitive
elementary communication service provided by the application layer protocol to the application processes

Note 1 to entry: The invocation of a service primitive by an application process implicitly calls upon and uses
services offered by the lower protocol layers.

[SOURCE: ISO 14906:2011, 3 .18, modified — the subject has been deleted.]

2.12
toll service provider
entity providing toll services in one or more toll domains

[SOURCE: ISO 17573:2010, 3 .23, modified — the definition has been condensed.]

2.13
toll
charge, tax or duty levied in connection with using a vehicle in a toll domain

[SOURCE: ISO/TS 19299:2015, 3 .42 , modified — “any” has been deleted from before “charge”.]

Note 1 to entry: The definition is the generalization of the classic definition of a toll as a charge, a tax, or a duty
for permission to pass a barrier or to proceed along a road, over a bridge, etc. The definition also includes fees
regarded as an (administrative) obligation, e.g. a tax or a duty.

2.14
toll charger
entity which levies toll for the use of vehicles in a toll domain

[SOURCE: ISO 17573:2010, 3 .16, modified — “legal” has been deleted from before “entity” and “the use
of” has been added.]

3 Abbreviated terms

For the purpose of this document, the following abbreviated terms apply unless otherwise specified.

ADU Application data unit (ISO 14906)

APDU Application protocol data unit (ISO 14906)

AP Application process (ISO 14906)

API Application programming interface

ASN.1 Abstract Syntax Notation One (ISO/IEC 8824-1)

© ISO 2016 – All rights reserved 3

ISO 17575-2:2016(E)

BE Back End

CN Cellular network

EID Element identifier (ISO 14906)

FE Front End

GNSS Global Navigation Satellite System

OBE On-board equipment (ISO 14906)

VAT Value added tax

4 EFC Front End communication architecture

4.1 General

A communications subsystem is required to establish the communication link between a Front End
(FE) and a Back End (BE) Application. It provides data transport for the tolling FE Application via the
communications session that takes part across the line shown in Figure 4. In cases where a proxy is
present in the FE system, the communications subsystem defines the communications between the BE
and the proxy. The link between the proxy and the on-board equipment (OBE) is out of the scope of
this part of ISO 17575. In cases where no proxy is present (the “smart client”) , the communications
subsystem defines the communications between the OBE and the BE.

Front End Application

Communications

Subsystem

Underlying

Communications

Technology

Communications

API

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Datalink

1. Physical

UP API
Indications

DOWN API
Requests

Figure 4 — Relationship between Application and Protocol Stack

The communications subsystem is further subdivided into two distinct components. The
communications API itself offers communications functionality to the FE Application. Below this is
the underlying communications technology, which provides the functionality that the API abstracts.
Although the API is independent of the underlying technology, it does place a number of functional
demands upon it. For this reason, the functional requirements on the underlying communications
technology are listed in 6.2 .

4 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Some underlying technologies are more capable than others. In cases where a very capable technology
is in use, the code interfacing the API to the underlying technology will serve little more function than
a simple pass through. For more simplistic transport layer technologies the communications subsystem
will have to do considerably more.

It is expected that these APIs will be “reflected” in the BE such that FEs and BEs can communicate over
arbitrary bearer infrastructures. Details of the abstract API definitions are specified in Annex A. The
specification of the BE API is outside the scope of this part of ISO 17575.

4.2 Relationship with the overall EFC architecture

The communications API provides the lower layers of the interface shown in Figure 5 . The API has no
semantic knowledge of the application data units (ADUs) it is carrying. It does differentiate between
“standard specific” and “arbitrary” ADUs but it has no semantic knowledge about what these mean
and simply carries them as transparent octet streams atop an arbitrary communication bearer that is
selected at runtime.

5 EFC communication services (functions)

5.1 General concept

The API carries two “types” of message (ADU): structured elements relating directly to the definitions
in other parts of ISO 17575, and unstructured elements, which are outside of the scope of this part of
ISO 17575 and receive no further consideration within it.

It is outside the scope of this part of ISO 17575 to identify the data elements for transmission and the
associated payload.

NOTE 1 The protocolVersion (part of ChargeReport) as defined in ISO 17575-1:2016 and
protocolVersion and tollContext (both part of aduHeader) as defined in ISO 17575-3:2016 can be useful
when implementing specific transaction(s) .

The abstract API for the communications services can be implemented in any programming environment
that defines the concept of event delivery, allowing the API to report information or to deliver results of
operations to the FE Application. The general sequence of events is

— initialize and parameterize the communications interface,

— establish a communications session,

— transfer data in the context of the session,

— terminate the communications session, and

— de-initialize the communications interface.

In a normal case, the FE Application will initialize (a number of) communications interfaces when it
first starts. An active session is then established either as a direct action by the FE Application or in
response to an incoming request for a session from the BE. The flow of events through the lifetime are
shown in 5 .2 to 5 .7 and relevant definitions are given in Annex A.

© ISO 2016 – All rights reserved 5

ISO 17575-2:2016(E)

Unknown

Instance

No

Session

Session

Starting

Errored

Session RX

ADUs

Sending

Unformatted ADU

Sending

ADU

Awaiting

ADU Conϐirm

Ending

Sending ADU

Request

InitialiseInstance/

DropInstance/

Error/

EndSession/

StartSession/
R: Ended/

EndSession/R: Started/

R: ReceiveADUsReq/

R: ReceiveADUsEnd/

SendUnformattedADU/

R: MessageSent/

ADUSent

SendADUSetStart/

R: Rej ect/

! ADUSendOK

R: Accept/

ADUSendOK

SendADUSetEnd/

R: ADUsReceived/

ADUSent

R: UnformattedADU/

UnformattedADUReceived
R: ADU/

ADUReceived

Session

Idle

R: ADURequest/

ADURequest

R: SesstionRequest/

SessionRequest

Figure 5 — Session state diagram

API calls down the communications stack fall into two classes: synchronous and asynchronous.
Synchronous calls giving results immediately are limited to those API calls that can quickly return a
result (InitialiseInstance and GetParameter) . Other API calls are asynchronous and return
their results via the event mechanism that is initialized during InitialiseInstance .

NOTE 2 This prevents threads from locking while waiting for information to be returned and so reduces the
requirement for multithreaded programming, which is often inappropriate for embedded applications such as
those typically seen in the field of application.

Figure 6 shows an example of the relationship and interactions between different states, which are
visible across the API.

EXAMPLE I llustration of message flow for cases where the FE Application wishes to establish a session,
exchange some information with the BE, and them terminate the session. The references to API Events refer to
the definition in Annex A.

6 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Application

Activity

I n i t i a l i s e I n s t a n c e (A.2.1)

S e t P a r a me t e r (A.2.2)

Communications

Subsystem

Back End

Events
(Informative)

Initialisation

Session

Setup

Data

Transfer

Session

Termination

S t a r t S e s s i o n (A.2.7)

I n s t a n c e S t a t e C h a n g e (A.3 .1)

ADURe c e i v e d (A.3 .4)

ADURe c e i v e d (A.3.4)

ADURe c e i v e d (A.3.4)

E n d S e s s i o n (A.2 .8)

S e n d ADUS e t S t a r t (A.2.10)

ADUS e n d OK (A.3 .6)

S e n d ADU (A.2.11)

ADUS e n t (A.3.5)

Start Session

ACK

Set of ADUs

SendADUSetStart

ACK

Set of ADUs

ACK

End Session

Idle

API

Events

Back End

Activity
(Informative)

Session
Active

Send ADUs

Receive ADUs

Idle

Figure 6 — Example message flow and session state chart

5.2 Initialization phase

5.2.1 General

The FE Application shall initialize the communications interfaces that it wishes to make use of by means of
calls to InitialiseInstance . For each instance created, the FE Application defines which underlying
communications stack is to be used. More than one interface may be used at the same time and the choice
between interfaces is the decision of the FE Application. The FE Application also provides a set of event
reception capabilities, which are used by the API to inform the FE Application of status changes.

Any additional parameterization of the instance that is required is performed by repeated calls to
SetParameter . A set of parameters are recognised by the communications API itself and those which
are not are passed through transparently to the underlying stack. Queries for the existing state of
parameters may be made via calls to GetParameter .

Once this process has been completed, the FE Application now has access to a (set of) communication
instances. State changes for events that occur on any of these interfaces will be delivered by means of
an InstanceStateChange event notification.

A chart showing the relationship and interactions between each of these states is shown in the example
given in Figure 6.

5.2.2 Incoming (BE to FE Application) session request

The BE may wish to establish communications with the FE. In this case, it performs whatever actions
are appropriate for the particular communications technology concerned. This will result in the FE
Application being informed of the request at some point in time by means of a SessionRequested

© ISO 2016 – All rights reserved 7

ISO 17575-2:2016(E)

event with a datum SessionHandle indicating the identifier that the FE Application should use for the
session. From here, the process is the same as for an outgoing session establishment, as shown in 5 .2 .3 .

NOTE The FE Application might defer a session request for an arbitrary length of time, subj ect to
operational constraints.

5.2.3 Outgoing (FE Application to BE) session establishment

The FE Application, either asynchronously or via the process in 5.2 .2 , requests a session within the
chosen communication context by means of StartSession , parameterized with information about
the session to be established. This returns immediately while also starting the process of creating the
session within the communications technology layers below.

Once the session is established, an InstanceStateChange event informs the FE Application. The
session is now active and communications between the FE Application and the BE can take place
within its context.

5.3 Point-to-point communication service primitives

5.3.1 General

Once the session is active, ADUs can be sent to the BE by the FE Application. Both structured (i.e.
context aware) and unstructured (context unaware) communications capabilities are provided. All
ADUs (structured and unstructured) are opaque to the communications layers and the distinction is
only made to avoid the overhead of higher layer demultiplexing.

Within the context of the communication session the FE Application is considered the master and has
control of the session.

5.3.2 Unstructured messages (ADUs)

A facility is provided to transit unformatted ADUs over the communications infrastructure. This
facility is typically used for the purpose of software upgrades and various other manufacturer-specific
information exchanges.

ADUs are sent via calls to SendUnformattedADU . The maximum size of ADU that can be sent via
this mechanism is available via a parameter from the API. Once the message has been transmitted, an
indication shall be provided (ADUSent) that it has been received successfully by the remote end and
that further transactions are possible.

5.3.3 Structured messages (ADUs)

Structured ADUs shall be sent in sets. A set shall be constructed for transmission via a call to
SendADUSetStart . This requests a permission to enter into structured ADU-sending mode from the
far end. ADUs are added to the set to be sent via calls to SendADU, which shall return the amount of
space remaining in the transmit buffer. The set shall be closed with a call to SendADUSetEnd. Once
transmission has been competed the FE Application shall be informed via an ADUSent event.

This is an implementation optimization option as ADUs are transmitted while the set is still being
assembled. This means that the available buffer space indicated by the return from SendADU should be
trusted more than local calculations in the FE Application as more space can be made available when
elements are transmitted.

5.4 Session end

When it is time for a session to end, the FE Application shall make a call to EndSession and provide
a suitable reason code. This shall start the process of ending the session within the underlying
communications technology. Session termination may not be immediate and transactions that
are in process will be completed before closure occurs . FE Application implementers shall expect

8 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

to have to handle activities from the open session until an I nstanceStateChange to state
STNoSession is received.

5.5 Session failure

A session may end through no fault of the BE or the FE Application by means of intervening
communications infrastructure failure. In this instance, the FE Application shall be informed of the
fact by means of an InstanceStateChange to STErrored. Any ADUs sent by the FE Application for
which it has not received an ADUSent confirmation shall be assumed to have failed.

The communications technology shall not attempt to automatically re-establish the session; that is the
responsibility of the FE Application. If the communications session was as a result of the BE request
then the session shall be re-established at the first convenient opportunity. If the session was as a result
of an FE Application event then the decision to re-establish is left to the FE Application.

Note that some communications technologies are, by their nature, intermittently available. To support
these a StackAvail call is provided to allow the FE Application to make intelligent choices between
available infrastructures. If a medium fails during a session this shall be indicated according to the
processes noted above.

5.6 Security considerations

All communications should be encrypted. Certificate handling and encryption mechanisms are outside
of the scope of this part of ISO 17575.

5.7 Media selection options

Media may be selected between means of having several instances instantiated with independent
communication technologies. The capabilities of each medium can be determined via GetParameter
calls, and the local availability of any specific medium in an active instance can be determined through
calls to StackAvail .

6 The use of a communication stack

6.1 General

This part of ISO 17575 allows for multiple communications technologies to be used at the same time,
and for the FE Application to be able to select amongst them the one most appropriate for the specific
communication to take place. Implementations shall use this capability for “multi-mode” OBEs to allow
for the use of different technologies depending upon the urgency of the communication, their capability
and the extent of the available infrastructures.

There are, however, a number of underlying capabilities that any communication technology (or rather,
stack that sits on top of the technology) needs to provide.

6.2 Requirements for an underlying communication technology

This part of ISO 17575 allows for a wide range of underlying communications technologies. However,
the following list of properties for these stacks shall be provided:

— capability of supporting or emulating a “session”;

— capability of reliably transferring ADUs, in sequence, bidirectionally across the link;

— capability of reporting the safe receipt of ADUs at the remote end of the link;

— capability of transporting data elements of arbitrary length between the FE and the BE;

© ISO 2016 – All rights reserved 9

ISO 17575-2:2016(E)

— capability of establishing a session from the FE to the BE;

— some means of signalling a demand from the BE to the FE Application that the BE wishes a session
to be established;

— capability of reliably detecting the loss of a session and of delivering that information to the
communications API;

— delivery of ADUs across the link in a timely fashion;

— capability of carrying an appropriate amount of data.

6.3 Mobile terminated calls

The approach taken within this part of ISO 17575 never requires an incoming, in-band communication
port to be open. If a BE wishes to make a connection to an FE Application for any purpose, it can use
out-of-band signalling; these mechanisms are outside the scope of this part of ISO 17575. The range of
out-of-band signalling options is considerable (e.g. SMS messages, push button on the unit, broadcast
signal, etc.) . A consequence of this approach, to use out-of-band signalling, is that there is never any
requirement for an IP addressable end point for a mobile terminated call. This avoids security issues
and also simplifies issues of network address translation and private subnets, since the FE Application
will only ever need to make an outgoing connection.

NOTE A consequence of this approach is that there is never any requirement for an IP addressable end
point for a mobile terminated call. This avoids the security issues discussed above but also simplifies issues
of network address translation and private subnets, since the FE Application will only ever need to make an
outgoing connection.

10 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Annex A
(normative)

Abstract API definition

A.1 General

This annex defines the properties of commands and data flow at the API between the EFC specific
software – the Front End (FE) Application – and the interface layer of the communications subsystem
of the platform used to run the EFC application, see also Figure 4. Examples of how this interface can be
realized are provided in Annex C and Annex D.

The communications API consists of a “down” API, from the FE Application to the communications stack,
and an “up” API, from the communications stack to the FE Application. Each will be considered in turn.

A.2 Down API (FE Application to communications stack)

A.2.1 InitialiseInstance

Purpose: Initialize the communications API for use. The interface is initialized in
STNoSession condition.

Takes: StackID Underlying communications stack to be employed

Callbacks Reference to the event handlers to be used for this instance, see
5 .2

Precondition: The interface must not have been previously initialized

Returns: A handle to the instance of the API. This handle is used for all communications

Errors: Returns an invalid instance if it was not possible to create the instance

A.2.2 SetParameter

Purpose: Set a parameter for this instance of the API . All parameters and values are ex-
pressed as strings.

Takes: Instance The instance to which this parameter relates

Parameter The parameter to be set

value The value to give to the parameter

Precondition: A valid instance is required

Returns: Error code

Errors: ERNoError, ERNotSet

A.2.3 GetParameter

Purpose: Get a parameter value for this instance of the API

© ISO 2016 – All rights reserved 11

ISO 17575-2:2016(E)

Takes: Instance The instance to which this parameter relates

Parameter The parameter to be set

Precondition: A valid instance is required

Returns: The specified parameter value as a string

Errors: Invalid string if the parameter is not known

A.2.4 DeleteParameter

Purpose: Delete a parameter from this instance of the API

Takes: Instance The instance to which this parameter relates

Parameter The parameter to be deleted

Precondition: A valid instance is required

Returns: Error code

Errors: ERNoError, ERNotSet

A.2.5 StackAvail

Purpose: Indicate if the communications stack is currently available

Takes: Instance The instance to which this check relates

Precondition: A valid instance is required

Returns: Boolean indicating if the stack is currently available

Errors: Will return FALSE in the case of an error

A.2.6 DropInstance

Purpose: Delete an API interface

Takes: Instance The instance to which this drop request relates

Severity Speed with which this interface should be removed (SENormal ,
SEUrgent , SEUnconditional)

Precondition: A valid instance in the STNoSession state (for SENormal and SEUrgent) is
required

Returns: Error code

Errors: ERUnknownInstance, ERBadState, ERNoError

A.2.7 StartSession

Purpose: Start the process to establish a session in the context of this interface (i.e. using the
established communications channel and parameters) . Session establishment is
defined by an event indicating a change to STSessionIdle when the session is in
place. Parameterization of the session is via the SetParameter/GetParameter
methods.

12 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Takes: Instance The instance within which this session request should be met

Reason Reason for this session establishment

SessionHandle Any session handle information that is required

Precondition: Active instance and no active session already. Correct parameterization in place

Returns: Error code

Errors: ERInSession, ERNoInstance, ERUnknownEndpoint, ERInSession,

ERSessionFailed, ERNoError

A.2.8 EndSession

Purpose: To start the process to end an active session in the context of this instance. Session
end is confirmed via the state change event to state STNoSession . Under normal
conditions any outstanding transactions in the context of the session will be com-
pleted before the close is performed.

Takes: Instance The instance within which this session is to be terminated

Reason The reason for this session termination

Precondition: Existence of an active session

Returns: Error code

Errors: ERInSession, ERNoInstance, ERNoError

A.2.9 SendUnformattedADU

Purpose: To send an unformatted ADU to the other end of the communication link. In the
context of this document an unformatted ADU is one that has no special meaning to
the communications API and is processed by vendor specific code. Confirmation of
receipt at the far end is by means of an event indication.

Takes: Instance The instance within which this message is to be sent

MessageLen The length of the message, in octets, to be sent

Message The message itself

Precondition: Existence of an active session with no transaction in progress

Returns: Error code

Errors: ERBadState, ERNoInstance, ERSessionFailed, ERNoError

A.2.10 SendADUSetStart

Purpose: To send a request to start sending a set of structured ADUs to the remote end of the
communication link. Confirmation of acceptance of transfer is by means of an event
ADUSendOK.

Takes: Instance The instance within which this message is to be sent

Precondition: Existence of an active session with no transaction in progress

Returns: Error code

© ISO 2016 – All rights reserved 13

ISO 17575-2:2016(E)

Errors: ERNoInstance, ERBadState, ERSessionFailed, ERNoError

A.2.11 SendADU

Purpose: To add an ADU to the set to be sent to the remote end of the communication link

Takes: Instance The instance within which this message is to be sent

ElementLen The length of the element, in octets, to be sent

Element The element itself

Precondition: An active session exists with no transaction in progress and an element set is open
for construction (see A.2 .10)

Returns: Number of octets remaining in the transmission buffer

Errors: Returns 0 in case of error

A.2.12 SendADUSetEnd

Purpose: To conclude the set of structured ADUs (as defined in other parts of ISO 17575) to be
sent to the remote end of the communication link. Far end reception of the elements
is confirmed by means of the event ADUSent.

Takes: Instance The instance within which this message is to be sent

Precondition: An active session exists with no transaction in progress and an element set is open
for construction (See A.2 .10)

Returns: Error code

Errors: ERBadState, ERSessionFailed, ERNoError

A.2.13 CommsQuery

Purpose: To poll for the current state of the communications instance

Takes: Instance The instance to which this poll request relates

Precondition: A valid instance is required

Returns: The current state of the session:

STUnknownInstance The instance is invalid

STNoSession No session is in progress

STStarting The session is starting

STSessionIdle Session open and idle

STSendingADU Sending ADUs

STSendingADURequest Requesting permission to send ADUs

STSendingUnformattedADU Sending an unformatted ADU

STAwaitingADUConfrm Awaiting confirmation of ADU reception

14 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

STSessionRxADU Receiving ADUs from far end

STErrored In error state

STEnding In the process of ending

Errors: STUnknownInstance

NOTE The error STUnknownInstance is reported as a state.

A.3 Up API (communications stack to FE Application)

A.3.1 InstanceStateChange

Purpose: To indicate to the FE Application that a change has occurred in the state of a
communications instance

Receives: Instance The instance to which this indication relates

OldState The old state of the instance (as per A.2 .13)

NewState The new state of the instance (as per A.2 .13)

A.3.2 UnformattedADUReceived

Purpose: To indicate to the FE Application that an unformatted ADU has been received. After
reception of this event the Back End (BE) will automatically be informed that the FE
Application has received the ADU satisfactorily.

Receives: Instance The instance to which this indication relates

UnformattedMessageLen The length of the incoming message

UnformattedMessage The message itself

A.3.3 ADURequest

Purpose: To indicate to the FE Application that the BE is requesting specific element(s) from
it. The FE Application should start the processes required to send an ADU set to
deliver the requested elements to the BE.

Receives: Instance The instance to which this indication relates

Elements Elements to be returned to the BE

A.3.4 ADUReceived

Purpose: To deliver to the FE Application an element from the BE structured in accordance
with other parts of ISO 17575. After reception of this event the BE will automatical-
ly be informed that the FE Application has received the ADU satisfactorily.

Receives: Instance The instance to which this indication relates

Element The element received

NOTE If several elements are combined into a single communications layer message then an indication of
successful receipt will only be sent when the final element is delivered. This could result in re-transmission of
some elements when communications are lost.

© ISO 2016 – All rights reserved 15

ISO 17575-2:2016(E)

A.3.5 ADUSent

Purpose: To confirm to the FE Application that an ADU or ADU set has been successfully re-
ceived by the BE

Receives: Instance The instance to which this indication relates

A.3.6 ADUSendOK

Purpose: To confirm to the FE Application that it may now proceed to send a set of elements

Receives: Instance The instance to which this indication relates

CanSend Flag indicating if send request was accepted

A.3.7 SessionRequest

Purpose: To alert the FE Application that this instance has detected a session request. Param-
eters for the session may be claimed via GetParameter.

Receives: Instance The instance that generated this request

Handle The handle to be used for establishing the session

16 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Annex B
(normative)

Protocol implementation conformance statement (PICS) proforma

B.1 General

This annex contains the Protocol Implementation Conformance Statements (PICS) proforma to be
used for on-board equipment (OBE) implementation of the communication services as defined in
Clauses 4, 5 and 6.

NOTE Media selection policies are outside the scope of this part of ISO 17575.

B.2 Transactions support

B.2.1 General

This clause applies to implementations for Front End communications APIs, see Tables B.1 and B.2 . The
appropriate communication services for the Back End shall use the same statements with the view
from the Back End.

B.2.2 Support of the down API

Table B.1 — Support of the down API

Description Dispensation

API supports InitialiseInstance Yes/No

 StackID is supported Yes/No

 Instance handle will be provided Yes/No

 Invalid Instance returned when not possible to create an instance Yes/No

API supports SetParameter Yes/No

 Instance is applied Yes/No

 ERNoError returned on successful parameter setting Yes/No

 ERNotSet returned on failure to set parameter Yes/No

 Maximum length of parameter handles Number

 Maximum length of value strings Number

 Parameter is stored following call Yes/No

API supports GetParameter Yes/No

 Instance is applied Yes/No

 Parameter is applied Yes/No

 Value is returned as a string when input parameters are valid Yes/No

 An invalid string is returned when input parameters are not valid Yes/No

API supports DeleteParameter Yes/No

 Instance is applied Yes/No

 Parameter is applied Yes/No

© ISO 2016 – All rights reserved 17

ISO 17575-2:2016(E)

Description Dispensation

 ERNoError is returned when parameter is successfully deleted Yes/No

 ERNotSet is returned when parameter is not successfully deleted Yes/No

 ERNotSet is returned when Instance is not valid Yes/No

 ERNotSet is returned when parameter is not found/invalid Yes/No

API supports DropInstance Yes/No

 Instance is applied Yes/No

 Severity is considered Yes/No

 ERUnknown instance is returned when an unknown instance is provided Yes/No

 ERBadState is returned when Severity is not SEUnconditional and not in
STNoSession state

Yes/No

 ERNoError is returned when instance is successfully dropped Yes/No

API supports StartSession Yes/No

 Instance is applied Yes/No

 Reason is applied Yes/No

 SessionHandle is applied Yes/No

 ERInSession is returned if already in a session Yes/No

 ERNoInstance is returned if the instance is invalid Yes/No

 ERUnknownEndpoint is returned if the parameterised endpoint is not known Yes/No

 ERSessionFailed is returned if session establishment fails immediately Yes/No

 ERNoError is returned if session establishment starts correctly Yes/No

API supports EndSession Yes/No

 Instance is applied Yes/No

 Reason is applied Yes/No

 ERInSession is returned if the session is not in STSessionIdle and Reason is
not RERemoteDrop

Yes/No

 ERNoInstance is returned if the instance is invalid Yes/No

 ERNoError is returned if the EndSession starts correctly Yes/No

API supports SendUnformattedADU Yes/No

 Instance is applied Yes/No

 MessageLen is applied Yes/No

 Message is considered Yes/No

 ERBadState is returned if the session is not in the state STSessionIdle Yes/No

 ERNoInstance is returned if the instance is invalid Yes/No

 ERSessionFailed is returned if the session has failed Yes/No

 ERNoError is returned if progress is normal Yes/No

API supports SendADUSetStart Yes/No

 Instance is supported Yes/No

 ERNoInstance is returned if the instance is invalid Yes/No

 ERBadState is returned if the instance is not in the state STSessionIdle Yes/No

 ERSessionFailed is returned if the session has failed Yes/No

 ERNoError is returned if the progress is normal Yes/No

Table B.1 (continued)

18 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Description Dispensation

API supports SendADU Yes/No

 Instance is applied Yes/No

 ElementLen is considered Yes/No

 Element is considered Yes/No

 0 is returned in case of error Yes/No

 Remaining space in the transmit buffer is returned in case of no error Yes/No

API supports SendADUSetEnd Yes/No

 Instance is considered Yes/No

 ERBadState is returned if the session is not in the state STSendingElements Yes/No

 ERSessionFailed is returned if the session has failed Yes/No

 ERNoError is returned if the progress is normal Yes/No

API supports CommsQuery Yes/No

 Instance is considered Yes/No

 STUnknownInstance is returned if the instance is unknown Yes/No

 The current state of the instance is returned in normal progress Yes/No

API supports StackAvail Yes/No

 Instance is considered Yes/No

 FALSE is returned if the instance is invalid Yes/No

 FALSE is returned if the stack is not available Yes/No

 TRUE is returned if the stack is available Yes/No

B.2.3 Support of the up API

Table B.2 — Support of the up API

Description Dispensation

API supports InstanceStateChange event Yes/No

 Instance is delivered Yes/No

 OldState is delivered Yes/No

 NewState is delivered Yes/No

 Event is generated whenever an externally visible state change is generated Yes/No

API supports UnformattedADUReceived event Yes/No

 Instance is delivered Yes/No

 UnformattedMessageLen is delivered Yes/No

 UnformattedMessage is delivered Yes/No

 Event is generated whenever an UnformattedMessage is received Yes/No

API supports ADUReceived event Yes/No

 Instance is delivered Yes/No

 Element is delivered Yes/No

 Event is generated whenever an element is received Yes/No

API supports ADUSent event Yes/No

 Instance is delivered Yes/No

Table B.1 (continued)

© ISO 2016 – All rights reserved 19

ISO 17575-2:2016(E)

Description Dispensation

 Event is generated whenever a message has been acknowledged by the far end Yes/No

API supports ADUSendOK event Yes/No

 Instance is delivered Yes/No

 CanSend is delivered Yes/No

 Event is generated whenever far end has indicated its ability to receive elements Yes/No

 CanSend is TRUE when far end is able to receive elements, FALSE otherwise Yes/No

API supports SessionRequest event Yes/No

 Instance is delivered Yes/No

 Handle is delivered Yes/No

 Event is generated when a stimulus is detected to indicate remote end wants to
establish a session

Yes/No

B.3 Use of communication stacks

B.3.1 General

This clause applies to both Front End and Back End, see Table B.3 .

B.3.2 Supported communication stacks

Table B.3 — Supported communication stacks

Description Value(s)

Communication supports the use of TCP/IP v4 Yes/No

Communication supports the use of TCP/IP v6 Yes/No

Communication originates on IP port number Any/Specify

Communication terminates on IP port number Specify

The Front End accepts fully qualified domain names as end point Yes/No

The Front End closes logical session automatically after Specify in seconds

B.4 Front End storage capacity

B.4.1 General

This clause only applies to Front End see Tables B.4, B .5 and Table B.6.

B.4.1 Storage capacity for modules and contact details

Table B.4 — Storage capacity for modules and contact details

Description Maximum value or range

Maximum single message size

Maximum number of instances communication sessions in parallel

Maximum storage available for queuing of messages

Maximum number of keys/trust certificates available

Maximum number of elements that can be transmitted in a single transaction

Table B.2 (continued)

20 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

B.4.2 Generic values

Table B.5 — Generic values

Description Maximum value or range

Integers (minimum and maximum value)

Strings (maximum size)

Parameter maximum length

Parameter value maximum length

B.4.3 Security of communication

Table B.6 — Security of communication

Description Dispensation

All communication is over encrypted channels Yes/No

Specify key length for encryption Number

Specify encryption technology used Text

Symmetric or Asymmetric keys? Symmetric/Asymmetric

© ISO 2016 – All rights reserved 21

ISO 17575-2:2016(E)

Annex C
(informative)

API requirements

C.1 General

This annex presents an example of a concrete API. It outlines the requirements that drive the definition
of the communications API.

C.2 Non-functional requirements

The communications subsystem is required, in a standards-oriented manner, to address how a link is
established, data is transferred over it and it is cleared at the end of the transaction.

The communications subsystem shall establish a session asynchronously when suitable network
connectivity is available and when a request for a session is outstanding.

The communications subsystem API shall be communications technology independent. The API places
requirements upon the underlying technology, as presented in 6.2 .

C.3 Functional requirements

The link shall be established on demand by the Front End (FE) Application to the Back End (BE) .

A means shall be provided by which the BE can establish a connection to the FE Application.

NOTE The connection establishment time is undefined (e.g. the FE might be powered down) .

The link shall be organized on a “session” paradigm. There will be distinct phases of activity relating to
link setup, operation and teardown.

The API shall provide positive indication to the FE Application of the current link state.

Temporary outages of the link shall be transparent to the FE Application.

When a communications session is lost it shall not be automatically re-established by the
communications system.

The API shall provide mechanisms to allow the BE to request specific information elements (as defined
in other parts of ISO 17575 and using the definitions therein) from the FE Application.

The API shall provide mechanisms to deliver specific information elements (as defined in other parts of
ISO 17575 and using the definitions therein) to the BE.

The abstract API shall be capable of carrying manufacturer-specific information, which is outside of the
scope of this part of ISO 17575.

The API shall provide positive indication to the FE Application that an ADU has definitely been
delivered to the BE .

All communications to and from the remote end shall be encrypted.

22 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

Annex D
(informative)

Examples of definitions for appropriate languages

D.1 General

The API has been deliberately designed to be language neutral, because there are many different
environments in which it will be used. In general, the API should be implemented in a way that is
compatible with the general use and idioms of the language under consideration, while retaining the
general character and operation of the API.

The following example, written in the software language C , shows how the API specified in detail
in Annex A can be implemented. For each of the commands l isted in Annex A an appropriate C-code
is defined. Together, that provides the behaviour expected and il lustrated in the session state
diagram in Figure 5 .

D.2 API definition in C

#ifndef _ISO17575_

#defne _ISO17575_

#ifndef BOOL

#defne BOOL char
#endif

#ifndef FALSE

#defne FALSE 0
#defne TRUE ! FALSE
#endif

#ifndef BYTE

#defne BYTE char
#endif

#ifndef WORD

#defne WORD unsigned short int
#endif

/ / These macros allow us to reuse the Enums in string form for lookup

// Assumes that macros are indexed in order from 0

/ /

/ / For any enum AAA, these macros give you;

// typedef enum { x, y, z } AAAE

// const char *AAAS [] = { ”x”, ”y”, ”z”}

// const char *toStringAAA(AAAE x)

#defne MAKEstring(a) static const char *a ## S [] ={ a} ; const char *toString ##a(a ## E x)
{ return a ##S[x] ; }

#defne MAKEenum(a) typedef enum { a} a ## E; const char *toString ##a(a ## E x) ;
#defne E(x) x

/ / Errors returned from the API

#defne ISO175752Error \
 E(ERNoError) , \
 E(ERNoInstance) , \
 E(ERInterfacePreviouslyInitialised) , \
 E(ERInsuffcentPrivledge) , \
 E(ERSessionFailed) , \
 E(ERInProgress) , \
 E(ERUnknownStack) , \

© ISO 2016 – All rights reserved 23

ISO 17575-2:2016(E)

 E(ERNotActive) , \
 E(ERInSession) , \
 E(ERUnknownInstance) , \
 E(ERUnknownEndpoint) , \
 E(ERNoSession) , \
 E(EREndinProgress) , \
 E(ERHold) , \
 E(ERDropInProgress) , \
 E(ERMemoryError) , \
 E(ERBadState) , \
 E(ERNotSet) , \
 E(ERUnknownError)

MAKEenum(ISO175752Error) ;

/ / Reasons for a callback or drop

#defne ISO175752Reason \
 E(REUnknown) , \
 E(RENormal) , \
 E(RECallback) , \
 E(RERemoteDrop) , \
 E(RETimed)

MAKEenum(ISO175752Reason) ;

// Responses to a session state query, or via a state change notifcation
#defne ISO175752State \
 E(STUnknownInstance) , \
 E(STNoSession) , \
 E(STStarting) , \
 E(STSessionIdle) , \
 E(STSendingElements) , \
 E(STSendingElementsRequest) , \
 E(STSendingUnformattedMessage) , \
 E(STAwaitingElementsConfrm) , \
 E(STSessionRxElements) , \
 E(STErrored) , \
 E(STEnding)

MAKEenum(ISO175752State) ;

/ / Severity of a drop request

#defne ISO175752Severity \
 E(SENormal) , \
 E(SEUrgent) , \
 E(SEUnconditional)

MAKEenum(ISO175752Severity) ;

// This change in the defnition of E is needed for the MAKEstring macro. . which is used in
the C fle
#undef MAKEenum

#undef E

#defne E(x) #x

// Defnitions to simplify creation of up API
#defne ISO175752APICALLBACKInstanceStateChange(x) void (x) (ISO175752API *instance,
ISO175752StateE oldState, ISO175752StateE newState)
#defne ISO175752APICALLBACKUnformattedADUReceived(x) void (x) (ISO175752API *instance, WORD
unformattedMessageLen, BYTE *unformattedMessage)

#defne ISO175752APICALLBACKADURequest(x) void (x) (ISO175752API *instance, void
*elementReq)

#defne ISO175752APICALLBACKADUReceived(x) void (x) (ISO175752API *instance, void *element)
#defne ISO175752APICALLBACKADUSent(x) void (x) (ISO175752API *instance, BOOL sent)
#defne ISO175752APICALLBACKADUSend(x) void (x) (ISO175752API *instance, BOOL canSend)
#defne ISO175752APICALLBACKSessionRequest(x) void (x) (char *handle) ;

typedef void ISO175752API;

ISO175752ErrorE GetLastError(ISO175752API *instance) ;

24 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

ISO175752API *InitialiseInstance(char *stackID,

ISO175752APICALLBACKInstanceStateChange(*InstanceStateChangeSet) ,

ISO175752APICALLBACKUnformattedADUReceived(*UnformattedMessageReceivedSet) ,
 ISO175752APICALLBACKADURequest(*ElementRequestSet) ,
 ISO175752APICALLBACKADUReceived(*ElementReceivedSet) ,
 ISO175752APICALLBACKADUSent(*MessageSentSet) ,
 ISO175752APICALLBACKADUSend(*ElementSendSet) ,
 ISO175752APICALLBACKSessionRequest(*SessionRequestSet)) ;

ISO175752ErrorE DropInstance(ISO175752API *instance,
 ISO175752SeverityE severity) ;

ISO175752ErrorE SetParameter(ISO175752API *instance,
 char *param,

 char *val) ;

char *GetParameter(ISO175752API *instance,
 char *param) ;

ISO175752ErrorE DeleteParameter(ISO175752API *instance,
 char *param) ;

ISO175752ErrorE StartSession(ISO175752API *instance,
 ISO175752ReasonE reason,
 char *handle) ;

ISO175752ErrorE EndSession(ISO175752API *instance,
 ISO175752ReasonE reason) ;

ISO175752ErrorE SendUnformattedADU(ISO175752API *instance,
 WORD messageLen,

 BYTE *message) ;

ISO175752ErrorE SendADUSetStart(ISO175752API *instance) ;

WORD SendADU(ISO175752API *instance,
 WORD messageLen,

 BYTE *message) ;

ISO175752ErrorE SendADUSetEnd(ISO175752API *instance) ;

ISO175752StateE CommsQuery(ISO175752API *instance) ;

BOOL StackAvail(ISO175752API *instance) ;

#endif

© ISO 2016 – All rights reserved 25

ISO 17575-2:2016(E)

Annex E
(informative)

Use of this part of ISO 17575 for the EETS

E.1 General

In 2004, EU Directive 2004/52/EC of the European parliament and of the council “on the interoperability
of electronic road toll systems in the community” was adopted. This EU Directive calls for the
establishment of a European Electronic Toll Service (EETS) .

In 2009, EC Decision 2009/750/EC “on the definition of the European Electronic Toll Service and its
technical elements” was adopted. It set out the necessary technical specifications and requirements
for that purpose, and contractual rules relating to EETS provision. The decision lays down rights and
obligations on EETS providers, toll chargers and EETS users.

Other requirements and other EU Directives may also be applicable to the product(s) falling within the
scope of this part of ISO 17575.

E.2 Overall relationship between European standardization and the EETS

EU Directive 2004/52/EC also triggered the establishment of a standardisation mandate (M/338,
“Standardisation mandate to CEN, CENELEC and ETSI in support of Interoperability of electronic road
toll systems in the Community”) that called for development of technical standards in support of the
EETS. Activities under M/338 are supervised by the “ITS co-ordination group” (ITS-CG, previously
ICTSB/ITSSG) .

M/338 does not explicitly call for the provision of harmonized standards (according to Directive 98/34/
EC on the new approach to technical harmonization and standards) , which means that this possibility is
not available for the European standards that are developed in support of the EETS. Instead, this brief
annex provides an outline of how this part of ISO 17575 could be used in the context of the EETS.

EC decisions can point out the use of specific standards, even if they are not formally harmonized. This
is also done in EC Decision 2009/750/EC for a few standards (i.e. those that were available at the time
of its approval) . In case there will be more EC decisions in support of the EC directive, further European
standards could be referenced there as well.

The European Commission has also published, in 2011, a “Guide for the Application of Directive on the
Interoperability of Electronic Road Toll Systems” (ISBN 978-92-79-18637-0) . This guide is intended
to be a reference manual for all parties directly or indirectly concerned by Directive 2004/52/EC and
Decision 2009/750/EC. It aims at providing help for the implementation of the EETS, including a list of
standards that might be of use. The guide is only informative (e.g. the document cannot notify certain
standards as “mandatory” for use in the EETS) and is intended to be updated on regular basis.

E.3 European standardization work supporting the EETS

Many of the standards developed by CEN/TC 278 have been drafted with the EETS-requirements in mind
(including the use of the results from European projects such as CARDME, PISTA, CESARE and RCI) . CEN
representatives have also taken part as observers in working groups etc., initiated by the EC for the EETS.
Hence, some work has been done in close co-operation between CEN working groups and the EC.

It should be noted that no CEN/ISO standards are “turnkey” solutions for the EETS. They are to be
used as “building blocks” for the EETS, supporting the EETS legal framework and agreements between

26 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

the parties concerned by the EETS. A precise EETS specification is not within the scope of CEN/ISO
standards, but remains that task of the owners of the EETS scheme.

It should also be noted that CEN/ISO has a wider scope than the EETS, which is a complementary service
to the national services of the Member States and optional for the users, whereas CEN/ISO standards
should be applicable to all EFC services worldwide.

E.4 Correspondence between this part of ISO 17575 and the EETS

This part of ISO 17575 defines how to connect the toll specific software of on-board equipment
(OBE) as well as the proxy or Back End to the lower layers of any mobile communication channel in
order to abstract the toll software from the specific properties of the communication channel. With
this, the toll specific-software can be developed and operated independently of the actual available
communication channel.

This supports the general requirement to allow GNSS/CN-based tolling systems in all regions where
at least one type of mobile communication network is available. This also supports the OBE—toll
service provider communication via different mobile communication networks when roaming across
regions or during several communication technology generations while this is transparent for the toll
specific software.

However, the communication interface defined in this standard is not visible in the EETS role model
and, hence, has no direct link to requirements in EC Decision 2009/750/EC.

© ISO 2016 – All rights reserved 27

ISO 17575-2:2016(E)

Bibliography

[1] ISO/IEC 9646-7, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 7: Implementation Conformance Statements

[2] ISO/IEC 8824-1, Information technology — Abstract Syntax Notation One (ASN.1): Specification of
basic notation

[3] ISO 14906:2011/Amd1:2015, Electronic fee collection — Application interface definition for
dedicated short-range communication

[4] ISO 17573:2010, Electronic fee collection — Systems architecture for vehicle-related tolling

[5] ISO 17575-1:2016 , Electronic fee collection — Application interface definition for autonomous
systems — Part 1: Charging

[6] ISO 17575-3:2016 , Electronic fee collection — Application interface definition for autonomous
systems — Part 3: Context data

[7] Directive 2004/52/EC of the European Parliament and of the Council of 29 April 2004 on the
interoperability of electronic road toll systems in the Community. OJ L. 2004, 166 pp. 124–143

[8] 2009/750/EC, Commission Decision of 6 October 2009 on the definition of the European
Electronic Toll Service and its technical elements (notified under document C(2009) 7547) . OJ L .
2009, 268 pp. 11–29

[9] EC – DG for mobility and transport. Guide for the application of the directive on the
interoperability of electronic road toll systems, ISBN 978-92-18637-0, 2011

28 © ISO 2016 – All rights reserved

ISO 17575-2:2016(E)

© ISO 2016 – All rights reserved

ICS 35.240.60; 03.220.20

Price based on 28 pages

