

Reference number
ISO 17267:2009(E)

© ISO 2009

INTERNATIONAL
STANDARD

ISO
17267

First edition
2009-11-15

Intelligent transport systems —
Navigation systems — Application
programming interface (API)

Systèmes intelligents de transport — Systèmes de navigation —
Interface de programmation (API)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2009 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved iii

Contents Page

Foreword ..iv
Introduction...v
1 Scope ..1
2 Terms and definitions ...1
3 Abbreviated terms ...7
4 Architecture of the API..8
4.1 General ...8
4.2 Paradigm ..8
4.3 Minimum low level platform interface ...8
4.4 Forward compatibility ...8
4.5 Error handling..8
4.6 Memory allocation ...9
4.7 Prioritization and cancellation ...9
4.8 Byte ordering ...9
4.9 Generic data types ..9
4.10 Handling of large result sets ..10
4.10.1 Background..10
4.10.2 Requirements...11
4.10.3 Object-oriented example...11
4.11 Multimedia issues..13
4.12 Location of application software, DAL and data..13
4.12.1 Application software ...13
4.12.2 Data access library..14
4.12.3 Data ...14
4.12.4 Conclusions ...15
4.13 Base and extended APIs...21
4.13.1 Terms..21
4.13.2 Description...21
5 Functional specification of the API ...22
5.1 Introduction and level of API..22
5.1.1 General ...22
5.1.2 Functional definition of the API level ..23
5.1.3 ISO-API level policy...24
5.2 Specification convention..25
5.2.1 General ...25
5.2.2 Naming conventions ...25
5.2.3 Hungarian notation convention ...26
5.3 Application categories ..30
5.3.1 General ...30
5.3.2 Global module specification ..31
5.3.3 Definitions common to all functional categories ...31
5.3.4 Route planning ..70
5.3.5 Route guidance..87
5.3.6 Positioning ...92
5.3.7 Map display ..93
5.3.8 Address location ...100
5.3.9 Services/POIs...109
5.3.10 Utility functions ...114
Annex A (normative) Condition policy ...121
Annex B (normative) Attribute types ..129
Bibliography..139

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

iv © ISO 2009 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 17267 was prepared by Technical Committee ISO/TC 204, Intelligent transport systems.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved v

Introduction

The impetus for this International Standard was the recognition by the intelligent transport systems (ITS)
industry of the need for standardization with respect to data access for map databases used by navigation
applications. As the vehicle navigation industry has grown, so has incompatibility between navigation systems
and map databases. Both a standardized physical storage format (PSF) and a standardized navigation
application programming interface (API) can facilitate the interoperability between navigation systems and
map databases.

The purpose of this International Standard is to define and structure the model for data access for Vehicle
Navigation and Traveller Information Systems. This International Standard is not restricted to physical media
and will be independent of any underlying physical storage format. While this API is primarily targeted at self-
contained in-vehicle systems, it is expected to be usable by other applications that use map data results in
essentially the same way. For example, it may be usable by client/server or distributed navigation systems
and location-based services without further specialization.

This International Standard is the Application programming interface (API) specification. It represents the
comprehensive specification of the API standard for navigation applications. This International Standard builds
upon, and is consistent with, the other International Standards developed by ISO/TC 204/WG 3:

⎯ ISO 14825, Intelligent transport systems — Geographic Data Files (GDF) — Overall data specification;

⎯ ISO 17572 (all parts), Intelligent transport systems (ITS) — Location referencing for geographic
databases.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO 17267:2009(E)

© ISO 2009 – All rights reserved 1

Intelligent transport systems — Navigation systems —
Application programming interface (API)

1 Scope

This International Standard specifies an application programming interface (API) for navigation systems. It
specifies the data that may be retrieved from the map database and defines the interface for access. This
International Standard specifies a set of function calls. It also specifies the design of the API and gives
examples of its intended use. Furthermore, it gives the criteria to determine whether a data access library is in
accordance with this International Standard.

This International Standard is applicable to the following functional categories of navigation applications:

⎯ positioning;

⎯ route planning;

⎯ route guidance;

⎯ map display;

⎯ address location;

⎯ services and point of interest (POI) information access.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1
address location
application category that deals with the task of expressing a real world position in terms of the data
representation

NOTE Address location is one of the six application categories supported by the API.

2.2
address type
attribute of road section entity that specifies the type of house number ranges

EXAMPLE Distinction between base address, county address, commercial address, etc., or no address.

2.3
application category
basic sub-function within the set of functionality for vehicle navigation and traveller information system
applications

NOTE This International Standard identifies six application categories: positioning; route planning; route guidance;
map display; address location; services and POI information access.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

2 © ISO 2009 – All rights reserved

2.4
application programming interface
API
standard interface and set of function calls between application software and data access libraries of vehicle
navigation systems, in accordance with this International Standard

2.5
base map
all transportation elements and all services, including their relationships to transportation elements

2.6
branded third-party data
BTPD
information about services which is supplied by third-party data providers (e.g. tourist or motoring
organizations), who may impose proprietary restrictions on the use and presentation of the data

NOTE 1 Access is subject to authorization and licensing.

NOTE 2 BTPD is a subset of third party data (TPD); see 2.54.

2.7
cartographic feature
data model entity that represents geometrical information for display purposes

NOTE A cartographic feature has non-explicit topology; it has zero-, one- and two-dimensional types, i.e. Display
Point, Polyline, and Polygon.

2.8
cartographic text
data model entity that stores name text associated with all or part of a cartographic feature

NOTE Cartographic text is language dependent and may contain a suggested display location, orientation, language
code, priority (or importance), suggested scale range, and bounding box.

2.9
condition
information related to link(s) composed of condition type, condition modifiers, and condition scope

2.10
crossroad
data model entity that represents the single instance of the crossing of two named navigable features

NOTE Crossroad relates to the set of links and nodes which comprise the crossing, and to the crossing of the
navigable features to a place.

2.11
destination node
node at the end of the link toward which travel takes place

NOTE See also origin node (2.25), “from” node (2.14), “to” node (2.55), source node (2.50), and target node (2.53).
When a link is travelled in the direction of topological orientation, the destination node is the “to” node. When it is travelled
in the direction opposite topological orientation, the destination node is the “from” node.

2.12
display point
zero-dimensional type of cartographic feature

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 3

2.13
dummy point
optional entity that represents a position along a link where the link crosses a parcel boundary and does not
necessarily coincide with a shape point or node

2.14
“from” node
node at the end of a link away from which the link is topologically oriented

NOTE See also “to” node (2.55), origin node (2.25), destination node (2.11), source node (2.50), and target node
(2.54). When a link is travelled in the direction of topological orientation, the “from” node is the origin node. When it is
travelled in the direction opposite topological orientation, the “from” node is the destination node.

2.15
geocoding
determination of a link or node based on address information describing and/or naming a location

2.16
intersection
geographic data file (GDF) level 2 representation of a crossing which bounds a road or a ferry as a complex
feature composed of one or more GDF level 1 junctions, road elements and enclosed traffic areas

2.17
junction
data model entity that represents a navigable feature which is either a named GDF junction or named GDF
intersection, and that relates a named navigable feature to a set of links and nodes and a place

2.18
landmark
point, line, or area feature, possibly associated with a node or link, that can be used to clarify the directions
generated to describe a route

NOTE A landmark may not be in the Services, Administrative Areas, or Public Transportation feature themes of a
GDF; a facility in which a service is located may be a landmark.

2.19
layer
subset of map data resulting from a subdivision of data of the same coverage area based on contents and
which is typically related to one or only a few of the application categories

NOTE This is similar to an ISO-GDF layer.

EXAMPLE Route guidance data may be considered as one layer.

2.20
level
subset of map data resulting from a classification of data of the same semantic content based on the level of
detail or density, related to the concept of different map scales

NOTE Level 0 is considered the lowest level (greatest detail); higher levels are numbered level 1, level 2, etc.

EXAMPLE Map display data may be organised into 6 levels representing different zoom scales.

2.21
link
directed topological connection between two nodes, composed of an ordered sequence of one or more
segments and represented by an ordered sequence of zero or more shape points (2.48)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

4 © ISO 2009 – All rights reserved

2.22
map display
application category that deals with graphical information presentation

NOTE Map display is one of the six application categories supported by the API.

2.23
multilink
ordered aggregation of links which are at the same level, are connected in sequence, and share the same
functional classification, form of way, direction of travel, and perhaps additional characteristics

EXAMPLE Each link is contained in exactly one multilink.

2.24
navigable feature name
data model entity that represents the name for the transportation element, including GDF road element, GDF
ferry connection, GDF junction, GDF intersection

NOTE Navigable feature name is related to places, crossroads, junctions, and road sections.

2.25
node
data model entity for a topological junction of two or more links or for end-bounding a link

NOTE A node stores the coordinate value of the corresponding GDF junction.

2.26
origin node
node at the end of a link from which travel takes place

NOTE See also destination node (2.11), “from” node (2.14), “to” node (2.55), source node (2.50), and target node
(2.54). When a link is travelled in the direction of topological orientation, the origin node is the “from” node. When it is
travelled in the direction opposite topological orientation, the origin node is the “to” node.

2.27
parcel
database partitioning unit corresponding to a certain coverage area, associated with one level and containing
data of one or more layers

NOTE A parcel contains (at least) all nodes with positions enclosed by or located on the outline of its coverage area
plus (parts of) all links attached to these nodes; it can be partitioned so that the amount of data of a parcel may be nearly
the same as that of another.

2.28
place
named area which can be used as part of the address location

2.29
place class
attribute of place entity, classifying into highest administrative or geographic division, administrative
subdivision, postal, or colloquial (e.g. regions or neighbourhoods)

NOTE Place class can be partially ordered as “place class A is below place class B“. This does not imply strict or
complete containment.

2.30
place level
level associated with places of place classification “administrative subdivision”

NOTE Higher/lower level situations are constituted by the occurrence of a parent/child place relationship between
places.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 5

2.31
place relationship
bivalent relationship between place entities, constituting the place tree linking parent and child places

EXAMPLE Place A is in place B.

NOTE Place relationship does not imply strict or complete containment. It is attributed as: address significant, official,
postal or useful for reverse geocoding.

2.32
point of interest
POI
destination and/or site of interest to travellers, usually non-commercial by nature

2.33
polygon
two-dimensional type of cartographic feature

2.34
polyline
one-dimensional type of cartographic feature

2.35
positioning
application category that deals with the determination of vehicle location and map matching

NOTE Positioning is one of the six application categories supported by the API.

2.36
postal code
data model entity for a government-designated code used to specify regions for addressing

NOTE Postal code is related to link (2.21), navigable feature name (2.23), place (2.27), and POI (2.31).

2.37
rectangle
unit of geographic space defined by two parallels of min./max. latitude and by two meridians of min./max.
longitude and that represents the coverage area of the map data enclosed by or located on its outline

2.38
reverse geocoding
determination of the address description of a link or node, i.e. determination of an upwards path across the
place tree

2.39
road
GDF level 2 feature composed of one, many or no road elements and joining two intersections, serving as the
smallest independent unit of a road network at GDF level 2

2.40
road element side
RES
basic component of the road section entity that represents left or right side of a link and corresponds to one or
more unique combinations of a navigable feature and a house number range

2.41
road section
data model entity that represents the house number ranges of both sides of a street and that carries a
navigable feature name

NOTE Road section corresponds to a link (ID).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

6 © ISO 2009 – All rights reserved

2.42
route guidance
application category that deals with the generation of graphical, textual, and/or audio instructions for following
a planned route

NOTE Route guidance is one of the six application categories supported by the API.

2.43
route planning
application category that deals with the determination of routes between specified points

NOTE Route planning is one of the six application categories supported by the API.

2.44
segment
straight section of a link connecting two successive shape points, or a shape point and a node, or two nodes
where a link does not contain shape points

2.45
service
data model entity for a commercial activity of interest to travellers as a destination and/or orientation that is
associated with road element(s) by which it can be accessed and further described by attributes including (at
least) name and type

NOTE A service may be associated with other services by parent/child relationships (many to many). Service is used
synonymously with POI within the logical data model.

2.46
service attribute
item of descriptive information relating to a service

2.47
services and POI information access
application category that deals with the provision of POI information to the navigation application

NOTE Services and POI information access is one of the six application categories supported by the API.

2.48
shape point
position along a link used to more accurately represent its geometric course, bounded by exactly two
segments

2.49
signpost
data model entity for a directional sign that represents a logical relationship between signpost information and
two associated links

NOTE The first link (mandatory) represents the road element along which the signpost is located. The second link
(optional) is the first road element which directs exclusively to the destination indicated on the signpost. The position of the
signpost along the link and the link direction the signpost is facing is also stored.

2.50
source node
node at the end of a link from which exploration takes place for route calculation

NOTE See also target node (2.53), origin node (2.25), destination node (2.11), “from” node (2.14), and “to” node
(2.55). When forward exploration is taking place from the origin of the route, the source node of a link is its origin node.
When reverse exploration is taking place from the destination of the route, the source node of a link is its destination node.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 7

2.51
super link
aggregation of linearly connected regular links present in the lowest level as a simplified representation of the
road network in higher levels

2.52
symbol
data model entity that represents an icon associated with a cartographic feature

2.53
target node
node at the end of a link towards which exploration takes place for route calculation

NOTE See also source node (2.50), origin node (2.25), destination node (2.11), “from” node (2.14), and “to” node
(2.56). When forward exploration is taking place from the origin of the route, the target node of a link is its destination node.
When reverse exploration is taking place from the destination of the route, the target node of a link is its origin node.

2.54
third party data
TPD
information about services, which is supplied by third party data providers (e.g. tourist or motoring
organizations), typically with a rich content of descriptive data

2.55
“to” node
node at the end of a link towards which the link is topologically oriented

NOTE See also “from” node (2.14), origin node (2.25), destination node (2.11), source node (2.50), and target node
(2.54). When a link is travelled in the direction of topological orientation, the “to” node is the destination node. When it is
travelled in the direction opposite topological orientation, the “to” node is the origin node.

2.56
traffic location
data model entity that contains an external reference (e.g. VICS or RDS-TMC) and is linked to either place or
transportation entities

2.57
transportation element
feature from the Roads and Ferries feature theme of a GDF

3 Abbreviated terms

ANSI American National Standards Institute

CPU Central Processing Unit

DAL Data Access Library

DBID Database ID

DST Daylight Savings Time

EEPROM Electrically Erasable and Programmable Read-Only Memory

GDF Geographic Data File

GMT Greenwich Mean Time

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

8 © ISO 2009 – All rights reserved

HOV High Occupancy Vehicle

HTML HyperText Markup Language

IDL Interface Definition Language

MIME Multipurpose Internet Mail Extensions

OMG Open Management Group

OS Operating System

PSF Physical Storage Format

RDS-TMC Radio Data System-Traffic Message Channel

VICS Vehicle Information and Communication System

4 Architecture of the API

4.1 General

Subclauses 4.2 to 4.13 specify the architecture requirements for the design of the ISO-API. Implementation
details are not specified in this International Standard.

4.2 Paradigm

The ISO-API shall be specified in an object-oriented way.

4.3 Minimum low level platform interface

It is not necessary to define a minimum low level platform interface as long as a system-independent data
access library is not feasible.

4.4 Forward compatibility

The ISO-API shall support forward compatibility in such a way that

⎯ earlier versions of application software can use DALs corresponding to later ISO-API versions, and

⎯ earlier versions of DAL can use data in later PSFs.

The mechanism for forward compatibility shall be entirely hidden from the API.

4.5 Error handling

The application software shall be responsible for handling errors; more specifically, the DAL gives notification
of errors while the application software reacts on them.

The ISO-API shall specify a list of error conditions for each function call. The system designer can decide
which error mechanism to use for the implementation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 9

4.6 Memory allocation

The lifetime of the objects and structures shall be controlled by the application software. Memory for objects
and structures used internally by the DAL is managed by the DAL.

4.7 Prioritization and cancellation

The ISO-API shall support prioritization and cancellation to control input/output (I/O) operations, perform
intelligent caching, etc. This functionality shall be supported by the ISO-API in the following way: Each class
(object-orientation!) shall have two member functions "setPriority()" and "getPriority()". Due to this, the
application software is able to assign, query and change the priority for an instance of this class. If the
application software does not want to use this mechanism, it can assign the same value for each instance.
There is no mandated behaviour of the DAL based on the application-specified priorities. The behaviour of the
DAL is defined by the DAL supplier.

4.8 Byte ordering

Depending on the hardware (and operating system) of a navigation system, the data values will be physically
used in one of two ways.

⎯ Little endian: The least significant byte (LSB) of a value will be stored physically first, e.g. in systems with
Intel CPUs.

⎯ Big endian: The most significant byte (MSB) of a value will be stored physically first, e.g. in systems with
Motorola 68k CPUs.

Some CPUs are bi-endian, such as R3000 ff, PowerPC. In such a case, the byte order is defined by the
operating system.

The following data values are concerned:

⎯ integer values (16, 32, 64 bit);

⎯ floating point values (32, 64, 128 bit);

⎯ characters (16 bit, multibyte).

An ISO-API compliant DAL shall return the data values in the byte order being used by the CPU/OS of the
navigation system where the DAL is running. This shall happen regardless of whether a PSF is stored in little
endian or big endian byte order. Therefore, a conversion inside the DAL may be necessary. The performance
loss shall be minimized by doing the conversion on the lowest level.

4.9 Generic data types

Because the target systems are different it is necessary to define generic system-independent data types to
be used for the ISO-API. They are translated by the DAL into the data types of the target system. The generic
data types listed in Table 1 shall be defined for the ISO-API.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

10 © ISO 2009 – All rights reserved

Table 1 — Generic data types

Meta type IDL type Size/Format Description

MapBytea octet 8-bit two's complement Byte-length integer

MapShorta short 16-bit two's complement Short integer

MapLonga long 32-bit two's complement Integer

MapLongLongb longlong 64-bit two's complement Long integer

MapFloatb float 32-bit IEEE 754 Single-precision floating point

MapDoubleb double 64-bit IEEE 754 Double-precision floating point

MapCharc wchar
char

16-bit or less character
8-bit character

Single character
Single character

MapBoolean Boolean 8-bit; 0x00 is false, any other is true Boolean value: true or false

MapString string 16-bit or less characters; max. length
65 535 Zero-terminated string

a Unsigned and signed.

b These types may not be supported natively on some systems. Their inclusion here does not necessarily mean that they have to be
used.

c The size of the characters to be used depends on the definitions in the PSF. Variable length character sets are not necessarily
considered yet.

The column entitled “IDL type” in Table 1 establishes the reference between the well-defined and stable meta
type and the implementation in IDL.

4.10 Handling of large result sets

4.10.1 Background

For many API calls, the amount of data that will be returned will not be easy to predict in advance. For
example, a call to retrieve all road elements within a bounding box may return a very large amount of data if
the bounding box falls in a dense area.

On the other hand, DALs will be implemented on a wide variety of platforms. If memory for results is allocated
dynamically, returning very large results may pose problems for memory allocation on some platforms.

A flexible solution is required, so that the result can be returned in pieces if necessary. The proposal below
specifies such a solution. The general approach is as follows: One function is called to prepare for the return
of a possibly large result set. A second function is called as many times as necessary to return the entire
result set. A third function is called, perhaps before the entire result set has been returned, to "close" the
operation.

The first and second functions return an indication of the size of the result set to be expected, so that
applications which are capable of allocating large amounts of memory dynamically can allocate enough
memory to receive the whole result set at once, thereby improving efficiency. However, there are cases in
which it is computationally expensive to compute the exact size of the result set in advance; if the caller never
asks for the whole result set, such computation is wasted. Therefore, the proposal allows for an overestimate,
rather than an exact size, to be returned.

The following architectural requirement in 4.10.2 is therefore specified.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 11

4.10.2 Requirements

Calling sequences for functions that may return results of unpredictable size shall be structured as follows:

a) Functions to return such result sets shall come in sets of three:

1) The first function (the "opening" function) describes the request, initializing a data structure (herein
called a "handle"), which is used to store the state information for the request.

2) The second function (the "fetching" function) is called to return successive parts of the result.
However, this function need not be called enough times to return the entire result; indeed, it need not
be called at all.

3) The third function (the "closing" function) is called to notify the library that the application is finished
with the request. The use of handles allows more than one request to be in process at the same time.
The library may place a reasonable upper limit on the number of handles that are active at one time.
(The question of whether the memory for the handles is allocated by the library or by the application
must be decided but is not addressed here.)

b) The opening function shall return a value indicating the number of bytes expected to be necessary to hold
the result. Also, each call to the fetching function shall return a value indicating the number of bytes
expected to be necessary to hold the remainder of the result. In order to allow more efficient
implementation, these values may be overestimates, rather than exactly correct values. A special value is
also reserved to indicate that no good (over)estimate can be provided. (Using the maximum positive
integer as this special value is recommended but not required for conformance with this International
Standard.)

c) One argument to the fetching function is a pointer to the buffer in which the result is to be returned.
Another argument is the size of the buffer in bytes. This buffer (if necessary) shall be allocated and
de-allocated by the calling application, not by the functions described here. Also, the address and size of
the buffer need not be the same from call to call.

d) The fetching function shall return the number of objects returned with each call. In order to accommodate
objects of variable size, the function shall also return the number of bytes returned.

e) The opening function shall also return an indication of whether the result will be non-empty, and the
fetching function shall also return an indication of whether it has returned the entire result. (This can be
derived from whether the estimates of the number of bytes required for the result or for the remainder of
the result, respectively, is zero. However, that approach may be considered needlessly obscure, in which
case a separate return value, for example the function's return value, should be used.) However, for
purposes of efficiency, these indications must be allowed to give false positives, that is, to indicate that
return values exist when in fact none do; this allows the determination of whether the values actually exist
to be postponed to the next call to the fetching function.

f) The functions may defer disk reads, record unpacking, and similar operations until they are needed.
Since it is expected that, in many instances, the fetching function will be called to return only part of the
full result, this may result in substantial gains in efficiency.

4.10.3 Object-oriented example

The following example describes an object-oriented implementation of the same functionality. A class instead
of a handle is used to store the state information for the query, and the constructor and destructor methods for
the class serve as the "opening" and "closing" functions, respectively. The user-defined type "object_t" has
been replaced with the class MapObject. Exceptions are used instead of negative return values to indicate
failures. All other features of the design, including the allocation of memory by the application, are similar to
the procedural example above.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

12 © ISO 2009 – All rights reserved

//
// query interface
//
class MapQuery {
public:
 MapQuery([parameters specifying objects to return]) throw

(open_failed);
 ~MapQuery(void) throw (close_failed);
 bool fetch(void) throw (fetch_failed);
 void setBuf(MapObject* bp);
 void setBufSize(size_t s);
 size_t getResultSize(void);
 size_t getResultObjects(void);
 size_t getRemainderSize(void);
};

//
// sample application
//

void main()
{
 MapObject* buf;
 size_t numObjects;

try
{
 // query map
 MapQuery query([parameters specifying objects to return]);

 // obtain prospective number of matching objects
 numObjects = query.getResultObjects();

 // application allocates memory to hold query results
 buf = new MapObject[numObjects];

 // application tells object location of allocated memory
 query.setBuf(buf);
 query.setBufSize(size of(MapObject) * numObjects);

 // process query
 while (query.fetch())
 {
 for (int i=0; i<query.getResultObjects(); ++i)
 {
 buf[i].handleObject();
 }
 }
 }

 // handle failures in MapQuery methods
 catch (MapException e)
 {
 cerr << e.what() << endl;
 }
 // application deallocates memory
 delete [] buf;
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 13

4.11 Multimedia issues

In addition to the map data, the database may contain multimedia objects, e.g. an image of a POI. It shall be
possible to retrieve such information via the API.

The following types of multimedia object shall be supported:

⎯ text files;

⎯ HTML files;

⎯ sound;

⎯ still images;

⎯ motion images.

The set of multimedia types that are supported by the API is not fixed, i.e. it shall be extendible.

The API shall be able to identify the type of a multimedia object so that the application software is able to
associate it with the appropriate decoder/presentation subsystem. Therefore, a content type specifier shall be
supported in the API for each multimedia object. The content type specifier shall be compliant with the MIME
(Multipurpose Internet Mail Extensions).

Furthermore, the API shall allow the use of stream I/O for multimedia objects on platforms which support it.

Multimedia decoders and presentation subsystems are outside of the scope of this International Standard.

4.12 Location of application software, DAL and data

4.12.1 Application software

The application software implements

⎯ the complete user interface of the navigation software (i.e. map display, user interaction elements), and

⎯ the system-dependent parts (i.e. O/S level memory management, input/output).

There are four possibilities for the location of the application software within a certain navigation system:

1) Stored permanently in the system (i.e. EEPROM):

⎯ it can be easily accessed;

⎯ application updates are non-trivial, especially for the large number of systems on the market.

2) Stored together with the data on removable media (generally on CD-ROM):

⎯ requires that the application be pre-loaded into the system before execution;

⎯ allows easy updating of the application software (and data);

⎯ not suitable for PSF-compatible systems.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

14 © ISO 2009 – All rights reserved

3) Stored separately on removable media (i.e. flash EEPROM card):

⎯ requires that the application be pre-loaded into the system before execution;

⎯ applications can be updated independently of data.

4) Any combination of 1) to 3):

⎯ combines the disadvantages of the used possibilities.

4.12.2 Data access library

The data access library consists of all functions (presently 6 application categories) that are accessing data.
For the DAL location there are the following cases:

1) Stored permanently in the system:

⎯ can be easily accessed;

⎯ DAL updates are complicated.

2) Stored together with the data on removable media:

⎯ requires that the DAL be pre-loaded into the system;

⎯ DAL and PSF are always compatible;

⎯ DAL updates at the same time as the data.

3) Stored separately on removable media:

⎯ requires that the DAL be pre-loaded into the system;

⎯ DAL updates can be done independently of data.

4) Any combination of 1) to 3):

⎯ combinations of 2) and 3) will raise the flexibility of the whole system.

4.12.3 Data

Data in the context of this International Standard is the summary of all geographical data that are required for
certain functional categories. There are the following possible locations for the data:

1) Stored permanently in the system:

⎯ data updates are non-trivial due to the high update rate of the data and the large amount of data.

2) Stored on removable data media:

⎯ data updates are much easier;

⎯ the approach generally used for navigation systems.

3) Combination of 1) and 2):

⎯ combines the disadvantages of 1 with 2.

4) Accessible over the Internet or another network, either wired or wireless.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 15

4.12.4 Conclusions

This International Standard does not place restrictions on the locations of any component. A more flexible
solution allows for competition between the systems.

Figures 1 to 3 display examples showing several possibilities for the location of components.

Figure 1 a) shows how two different systems (hardware A with application software A, and hardware B with
application software B) can be serviced by a single data medium. It is assumed that each navigation system
can interface to

⎯ any industry-wide OPEN PSF (by having a proper DAL built into its application software),

⎯ the ISO-API (by having the ISO-API functions defined in its application software), and

⎯ its own proprietary API-A or its proprietary PSF-A, both of which are outside the scope of this
International Standard.

Hardware A (or system A) refers to both the operating system and the computing hardware. Should either
change, it would no longer be system A.

The medium on the right-hand side consists of data only, and it is in an OPEN PSF format. Both navigation
systems can read an OPEN PSF via their built-in OPEN PSF DALs.

The medium on the left-hand side delivers its data in some proprietary PSF-P. The same medium has a DAL,
which reads the proprietary PSF-P and returns that data in a format in accordance with this International
Standard. The DAL is either in Java or in compiled binary code for hardware A or hardware B. In this scenario,
the DALs are supplied on the medium along side the data. In Figures 2 and 3, the DALs are supplied
independently of the data media. Given that the DAL software is much smaller in size than the actual data,
there can be as many versions of it as there are known navigation systems. While this method is not forward
compatible, neither is the quality and content of the data. Should new navigation systems come into existence,
compiled versions of the DAL for PSF-P can be delivered the next time the data is updated and a new set of
media is released.

In Figures 1 b) and 1 c) the specific situation of forward compatibility is explored. Upon release of the medium
with the set of DALs for all known systems at that time, the medium is fully interoperable. However, if the DAL
is not a Java DAL (or a new system C shows up which cannot support Java), then the only means of
interoperability with the future system C is via an OPEN PSF.

Figure 1 b) shows the situation of forward compatibility. A new system (system C) is introduced into the
market. The medium does not contain the ISO-API compiled for system C. There are only two ways, given
that medium, to be able to operate on system C: either the Java DAL is on the medium (and system C can
make use of it), or an OPEN PSF is on the medium (which would have to be the case in order to be able to
claim that medium compliant with a particular OPEN PSF). In this particular situation the ISO-API would not
be (forward) compatible with the new system C. Figure 1 c) shows one possible remedy.

In Figure 1 c) a remedy to the failure of total forward compatibility of the ISO-API is proposed. Via
collaboration between data supplier P (presumably the owner or licenser of PSF format P), the ISO-DAL
creator (data supplier P or related to data supplier P), and the new system maker C, a supplemental DAL is
made available, either with or without the data published in PSF P. If map data is supplied, potentially it is a
newer and better version than that supplied originally.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

16 © ISO 2009 – All rights reserved

Application software A

API A DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

ISO DAL -SYS A
 PSF P

ISO DAL -SYS B
 PSF P

Data
PSF P

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

a) As supplied

Application software A

API A DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

Application software C
Hardware C

API C DAL
OPEN PSF

ISO API

Outside
present
scope

ISO DAL - HW B
 PSF P

Data
PSF P

ISO DAL -HW A
PSF P

b) A new system C is introduced into the market

Figure 1 — (DAL on the medium)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 17

Application software A

API A DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

Application software C
Hardware C

API C DAL
OPEN PSF

ISO API

Outside
present
scope

ISO DAL -HW B
 PSF P

Data
PSF P

ISO DAL -HW A
PSF P

Data
PSF P

ISO DAL -HW C
PSF P

Supplemental
DAL distribution

c) A supplement goes out to address the new system

Figure 1 (continued)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

18 © ISO 2009 – All rights reserved

In Figure 2 a) the DALs are supplied independently of the data. Each system vendor supplies the DALs for the
PSFs that it chooses to support using an access mechanism in accordance with this International Standard.
The DALs are pre-loaded and therefore part of the application software by the time the data arrives. By having
the data delivered in an ISO-API access mechanism, the application software can access the data in a
uniform way, regardless of the delivery mechanism.

Similarly to the case of the DAL on medium, Figure 2 b) explores the situation of forward compatibility upon
introduction of a new system C into the market. In this case forward compatibility is sustained.

In this scenario, the data on the medium is independent of the DAL which reads it, so, similarly to system
providers A and B, it is the responsibility of the new system provider C to provide DALs for its own system
which can read PSFs Q and R, and any other ones which are to be served under the ISO-API. The advantage
of this scenario is that there is no market lag between the introduction of new system C and the availability of
DALs for ISO-APIs that can read all the data media available in the market place. The disadvantage of this
scenario is that it is necessary to expose the PSFs Q and R (and any other ones) to system vendor C.

Application software A

API A

Data
PSF R

Data
PSF Q

DAL HW A
ISO API -PSF Q

DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

DAL HW A
ISO API -PSF R

DAL HW B
ISO API -PSF Q

DAL HW B
ISO API -PSF R

DALs presumably
supplied by system

vendor

a) As supplied

Figure 2 — DAL not on medium, supplied by system maker

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 19

Application software A
API A

Data
PSF R

Data
PSF Q

DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

DALs
presumably
supplied by

system
vendor

Application software C
Hardware C

API C DAL
OPEN PSF

ISO API

Outside
present
scope

DAL HW C
ISO API -PSF Q

DAL HW C
ISO API -PSF R

DAL HW B
ISO API -PSF Q

DAL HW B
ISO API -PSF R

DAL HW A
ISO API -PSF Q

DAL HW A
ISO API -PSF R

b) A new system C is introduced into the market

Figure 2 (continued)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

20 © ISO 2009 – All rights reserved

In Figure 3 a) the situation is similar to the situation of Figure 2 a), except for one aspect: The DALs are
supplied by a data supplier of a proprietary PSF, rather than by the system vendors themselves. Each PSF
supplier implements the DAL for any navigation system they wish to support. Figure 3 b) shows what happens
when a new system C is introduced.

In this scenario, the data on the medium is, also, independent of the DAL which reads it, except here it is the
responsibility of the data (or PSF) providers to provide for system C, as they did for systems A and B, DALs
for their own PSF which would deploy also on system C in a manner that does not conflict with with this
International Standard. The disadvantage of this scenario is that there is potentially a market lag between the
introduction of new system C and the availability of DALs for APIs that comply with this International Standard
which can read all the data media available in the market place. Even if some data providers release quick
updates for system C, others might lag and leave system C in a somewhat vulnerable position, as its
interoperability to all data on the market would be initially only partial. The advantage of this scenario is that no
PSFs need be exposed to system maker C.

Application software A

API A

Data
PSF R

Data
PSF Q

DAL HW A
ISO API -PSF Q

DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

DAL HW A
ISO API -PSF R

DAL HW B
ISO API -PSF Q

DAL HW B
ISO API -PSF R

DALs presumably
supplied by data or

PSF supplier

a) As supplied

Figure 3 — DAL not on medium, supplied by PSF provider

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 21

Application software A

API A

Data
PSF R

Data
PSF Q

DAL
OPEN PSF

ISO API

Application software B

Data
OPEN PSF

Outside
present
scope

Hardware A Hardware B

API B DAL
OPEN PSF

ISO API

Outside
present
scope

DAL HW A
ISO API -
PSF R

DALs
presumably
supplied by
data or PSF

supplier

Application software C
Hardware C

API C DAL
IOPEN PSF

ISO API

Outside
present
scope

DAL HW C
ISO API -PSF R

DAL HW B
ISO API - PSF R

DAL HW A
ISO API -PSF RDAL HW C

ISO API -PSF Q
DAL HW B

ISO API -PSF Q
DAL HW A

ISO API -PSF Q

b) A new system C is introduced into the market

Figure 3 (continued)

4.13 Base and extended APIs

4.13.1 Terms

A Base API contains all required functions, and no extending functions. Functions are classified as required or
extending according to Clause 5.

An Extended API contains all Base API functions plus all extending functions. Only functions explicitly tagged
as extending in Clause 5 are considered extending.

4.13.2 Description

The application shall be able easily to determine whether a DAL supports a base or extended API.

The underlying rule for extending functions is that every parcel exposing function is an extending function. A
function that takes either a parcel or a parcel ID as input, or gives a parcel or a parcel ID as output, is
considered a “parcel exposing function”.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

22 © ISO 2009 – All rights reserved

5 Functional specification of the API

5.1 Introduction and level of API

5.1.1 General

The purpose of this subclause is to establish a framework and an understanding upon which to base the API
level in this International Standard.

It was determined that ISO-API level should be defined within the combination layer and the instruction layer
levels. To define the API level more clearly, the upper and lower API levels should also be defined as follows.
Definition of API levels is shown in Figure 4 below. In this definition, API-5 and API-6 are internal API levels of
the application software.

The decision to recommend the ISO-API layer at mostly the combination layer is based on the following
criteria:

a) A higher level API lends itself to a smaller number of more complex functions and therefore to more rapid
development.

b) A sufficiently high API allows the location of the actual map database to be independent of the
application's ability to access the content, be it on-board or off-board.

c) Where necessary, lower level extensions are provisioned for small granularity access (MapDisplay and
RoutePlanning).

The problem with the placement of the ISO-API at too low a level (API level 2 and below) is that there is no
benefit to an extremely low-level common interface. At the very least, the ISO-API should isolate the
application software from the PSF and media, and in addition, should not depend upon a given hardware
configuration.

API- 6

API- 5

API-4

API-3

API-2

API-1

PSF

Task

Application layer

Combination layer

Instruction layer

Logical layer

Physical layer

Stream I/O

Database

Figure 4 — API levels

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 23

5.1.2 Functional definition of the API level

Name of layer Function of layer

API-6

Application layer

This layer is responsible for high-level system functionality.

Examples:

Route Planning

Vehicle Positioning

Route Guidance

Map Display

API-5

Combination layer

API-6 layer functions are insulated from lower layers by the API-5 layer. API-5 shades the
origin and method of data retrieval. The data returned from the functions in this layer
consist of merged lower-level data, and they are returned transparently to the calling
function.

Examples:

Combine data of different types.

Get the position of the vehicle on a given link.

Return landmark icon codes around a given intersection node.

Project map display data for a geodetic coordinate system into the display coordinate
system.

API-4

Instruction layer
(High logical layer)

API-4 hides data division and data layout from higher layers.

Examples:

Process data of similar types with multiple access to the physical storage.

Process large (memory intensive) data sets.

Process data that require multiple searches on the physical media. In such instances, the
functions of this particular layer will call the lower level functions multiple times.

API-3

Logical layer
(Low logical layer)

API-3 insulates higher layers from the PSF, such as the physical layout of the data
structures, like bit fields or word alignment. Functions from this layer convert API-2 PSF
into logical structures. Complex operations are done at higher layers.

Examples:

Return the bounding box of the entire data set.

Convert PSF-bytes to structures, including possible byte reordering.

Optional data decompression.

Convert positions of points from internal representation to latitude/longitude-based values.

API-2

Physical layer

API-2 insulates higher layers from absolute sector addresses.

Examples:

Read data blocks starting from the specified sector address, up to a given data length.

Differentiate according to the file system used.

API-1

Stream I/O layer

Open, read, seek, close.

Example: ANSI C file operating functions

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

24 © ISO 2009 – All rights reserved

5.1.3 ISO-API level policy

The ISO-API functions can be found either at level 5 or at level 4 (see Figure 5).

There are three categories of functions at level 4:

⎯ functions which are visible through the ISO-API but are not used by any ISO-API level 5 functions
(category A);

⎯ functions which are visible through the ISO-API and are used by ISO-API level 5 functions (category B);

⎯ functions which are used by ISO-API level 5 functions but are not visible through the ISO-API
(category C).

Each function will be placed at the level and category deemed most appropriate.

Any function which reveals any physical detail of the PSF shall not be visible through the API interface. That is,
it may only be of category (C).

API Level 5

 API Level 4

A B C

1

1

Key
1 API interface
A level 4 functions which are not used by any level 5 functions
B visible level 4 functions which are used by level 5 functions
C hidden level 4 functions which are used by level 5 functions

Figure 5 — ISO-API level policy

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 25

5.2 Specification convention

5.2.1 General

The functional specification of the API is described in the specification for IDL, ISO/IEC 14750. IDL is a
system- and implementation-independent description language for software interfaces. Constructs described
in this language can be easily implemented by several programming languages, e.g. Java, C++, C.

NOTE This International Standard defines functions and supporting structures, error codes and constants. The
structures have been ordered to achieve IDL conformance. The order is therefore not alphabetical.

5.2.2 Naming conventions

5.2.2.1 Additional conventions for the use of IDL to describe the API are specified in 5.2.2.2 to 5.2.2.14.

5.2.2.2 The names of

⎯ classes,

⎯ data types,

⎯ exceptions,

⎯ constants

shall have the prefix "Map".

5.2.2.3 The format of a name is dependent on the type of language element and can be described as
follows:

⎯ <ISO-API class name> ::= Map<any class name>

⎯ <ISO-API data type name> ::= Map<any data type name>Type

⎯ <ISO-API exception name> ::= Map<any exception name>Exception

⎯ <ISO-API constant name> ::= Map<any constant name>Const

EXAMPLE class MapRoadElement{...}

5.2.2.4 The name of a member function of a class shall have a prefix and shall start with a capitalized
character, e.g. MapGetNode(...).

5.2.2.5 A class member (instance variable) shall start with a capitalized character.

5.2.2.6 Global variables shall be avoided. If really needed they shall be named in the same manner as
instances.

5.2.2.7 The single enumerators of an enumeration type shall have a three-digit prefix identifying the
enumeration type they belong to.

EXAMPLE

// IDL

typedef enum {AngStraight, AngRight, ... } MapAngleType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

26 © ISO 2009 – All rights reserved

5.2.2.8 In names which consist of more than one word, the words shall be written together and each word
that follows the prefix shall begin with an uppercase letter.

5.2.2.9 Whenever possible, entire words or syllables shall be preferred instead of abbreviations.

5.2.2.10 For data elements representing any kind of collection, plurals shall be used rather than inventing
new names.

5.2.2.11 Member function names shall be created by using the order Verb/Object, e.g. GetNodeList().

5.2.2.12 The maximum length of a name shall be less than or equal to 32 characters.

5.2.2.13 IDL templates may not be used for the ISO-API because they cannot easily be ported to
programming languages such as Java.

5.2.2.14 Multiple inheritance may not be used for the ISO-API because it is not supported by most
programming languages.

5.2.3 Hungarian notation convention

Each function argument in this International Standard begins with a prefix which indicates the argument’s type.
(The practice of using such prefixes is called “Hungarian notation” after the nationality of its inventor, Charles
Simonyi.) Implementers and users of this International Standard are encouraged to use these prefixes as well.

Table 2 lists the Hungarian prefixes of the basic data types.

Table 2 — Hungarian prefixes of basic data types

Data type Prefix

Any a

Boolean b

Char c

Long l

Octet o

Short s

Unsigned long ul

Unsigned short us

Table 3 lists, alphabetically by data type, the Hungarian prefixes of the data types defined in this International
Standard.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 27

Table 3 — Hungarian prefixes of data types defined in this International Standard

Data type Prefix

MapAbsoluteDateType dta

MapAccessVehicleType av

AddressFieldStatusEnum afse

MapConditionAndDirectionType cod

MapConditionAttrType ca

MapConditionCategoryType cc

MapConditionLinkAndNodeType cln

MapConditionModifierEnum cme

MapConditionModifierType cm

MapConditionType cnd

MapCursorInfoType ci

MapCursorOriginEnum coe

MapCursorReturnTypeEnum crte

MapCursorType cu

MapDateAttrType da

MapDateTimeType dtt

MapDateType dt

MapDateTypeEnum dte

MapDayOfMonthOfYearType dmy

MapDayOfWeekEnum dwe

MapDayOfWeekOfMonthOfYearType dwmy

MapDayOfWeekOfMonthType dwm

MapDayOfWeekOfYearType dwy

MapDBIDType dbid

MapEntityEnum ee

MapEntityIDType eid

FeatureTypeEnum fte

MapFetchDirectionEnum fde

MapLaneCategoryType lc

MapLinkAttrType la

MapLinkCharacteristicsType lch

MapLinkSubattrType ls

MapLinkType lk

MapNodeAttrType na

MapNodeType nd

MapOrientationDirectionEnum ode

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

28 © ISO 2009 – All rights reserved

Table 3 (continued)

Data type Prefix

MapParcelIDType pid

MapPosition2Dtype p2

MapPosition3Dtype p3

MapPriorityType pr

MapRectangleType rect

MapReturnType ret

MapRouteControlType rc

MapRouteCostModelType rcm

MapRouteUsageEnum rue

MapRouteLinkAndCostType rlc

MapRouteMinimizeOptionEnum rmoe

MapRoutePointType rp

MapRoutePointSequenceType rps

MapRouteDynamicTrafficUsageEnum rtue

MapSectionIDType sid

MapSpeedCategoryType sc

MapSuccessorLinkAndNodeType sln

MapSuccNodeCostEnum snce

MapTimeZoneType tz

MapTollType tol

Table 4 lists, alphabetically by prefix, the data types corresponding to all Hungarian prefixes used in this
International Standard.

Table 4 — Hungarian prefixes used in this International Standard

Prefix Data type

a any

afse AddressFieldStatusEnum

av MapAccessVehicleType

b boolean

c char

ca MapConditionAttrType

cc MapConditionCategoryType

ci MapCursorInfoType

cln MapConditionLinkAndNodeType

cm MapConditionModifierType

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 29

Table 4 (continued)

Prefix Data type

cme MapConditionModifierEnum

cnd MapConditionType

cod MapConditionAndDirectionType

coe MapCursorOriginEnum

crte MapCursorReturnTypeEnum

cu MapCursorType

da MapDateAttrType

dbid MapDBIDType

dmy MapDayOfMonthOfYearType

dt MapDateType

dta MapAbsoluteDateType

dte MapDateTypeEnum

dtt MapDateTimeType

dwe MapDayOfWeekEnum

dwm MapDayOfWeekOfMonthType

dwmy MapDayOfWeekOfMonthOfYearType

dwy MapDayOfWeekOfYearType

ee MapEntityEnum

eid MapEntityIDType

fde MapFetchDirectionEnum

fte FeatureTypeEnum

l long

la MapLinkAttrType

lc MapLaneCategoryType

lch MapLinkCharacteristicsType

lk MapLinkType

ls MapLinkSubattrType

na MapNodeAttrType

nd MapNodeType

o octet

ode MapOrientationDirectionEnum

p2 MapPosition2Dtype

p3 MapPosition3Dtype

pid MapParcelIDType

pr MapPriorityType

rc MapRouteControlType

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

30 © ISO 2009 – All rights reserved

Table 4 (continued)

Prefix Data type

rcm MapRouteCostModelType

rect MapRectangleType

ret MapReturnType

rue MapRouteUsageEnum

rlc MapRouteLinkAndCostType

rmoe MapRouteMinimizeOptionEnum

rp MapRoutePointType

rps MapRoutePointSequenceType

rtue MapRouteDynamicTrafficUsageEnum

s short

sc MapSpeedCategoryType

sid MapSectionIDType

sln MapSuccessorLinkAndNodeType

snce MapSuccNodeCostEnum

tol MapTollType

tz MapTimeZoneType

ul unsigned long

us unsigned short

The following principles were followed in defining the Hungarian prefixes listed above:

⎯ All (and only) basic data types not containing the word “unsigned” have single-letter prefixes.

⎯ All (and only) basic data types containing the word “unsigned” have prefixes beginning with the letter “u”.
The prefixes of these types consist of the letter “u” followed by the prefix of the corresponding signed type.

⎯ All (and only) enumerated types (“enums”) have prefixes ending with the letter “e”.

⎯ Prefixes have been kept as short as possible, consistent with reasonable clarity. No prefix is more than
four characters long.

5.3 Application categories

5.3.1 General

The global structure of the API will be specified by using the IDL entities module and interface.

A module is used to group a related set of definitions, e.g. the module "MapRoutePlanning" contains all
interfaces of the application area Route Planning.

An interface describes the set of access functions for accessing a logical data model entity and its
relationships to other entities. For example, the interface MapLink contains all access functions that provide
the information on a given Link as specified in the requirements drafts, e.g. the requirements starting with "For
a given Link ...".

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 31

5.3.2 Global module specification

The sub-modules of the API are specified below. Initially, for each application area, a sub-module is specified.
In a later stage some modules may be merged depending on the definition of conceptual data sets in the
Logical Data Model.

module MapAPI {

 module MapRoutePlanning;

 module MapRouteGuidance;

 module MapPositioning;

 module MapDisplay;

 module MapAddressLocation;

 module MapService;

 module MapGeneral;

}

5.3.3 Definitions common to all functional categories

5.3.3.1 Constants

5.3.3.1.1 Vehicle access type constants

The following constants are to be used as components of a 32-bit long mask indicating which vehicles are
being addressed. The left-most bit is the “tone” designator. If it is set, then the tone of the mask is “all but
some vehicle”; if it is not set, then the tone is “some vehicle”. When the “all but” tone is set, the vehicles whose
bits are “0” are the ones that are referred to. The second bit from the left is the “all” bit. If it is set, then there is
no need to look at individual vehicular bits, it simply states that all entities are selected (or on). Bits 12 through
15 are reserved for additional vehicle types and bits 26 through 29 are reserved for additional control uses in
future versions of this International Standard. These 8 bits shall not be used in conjunction with the current
version of this International Standard.

typedef unsigned long LONG_BITMASK;

typedef LONG_BITMASK V_BITMASK;

 // 1000 0000 0000 0000 0000 0000 0000 0000
 // (0x1 << 31)
const V_BITMASK ALL_BUT_MASK = 0x80000000;

 // 0100 0000 0000 0000 0000 0000 0000 0000
 // (0x1 << 30)
const V_BITMASK ALL_ENTITIES_MASK = 0x40000000;

 // 0000 0000 0000 0000 0000 0000 0000 0001
 // (0x1 << 0)
const V_BITMASK AUTOMOBILES = 0x00000001;

 // 1011 1111 1111 1111 1111 1111 1111 1110
 // (~ALL_ENTITIES_MASK) & (~AUTOMOBILES)
const V_BITMASK ALL_BUT_AUTOMOBILES = 0xbffffffe;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

32 © ISO 2009 – All rights reserved

 // 0000 0000 0000 0000 0000 0000 0000 0010
 // (0x1 << 1)
const V_BITMASK BUSES = 0x00000002;

 // 1011 1111 1111 1111 1111 1111 1111 1101
 // (~ALL_ENTITIES_MASK) & (~BUSES)
const V_BITMASK ALL_BUT_BUSES = 0xbffffffd;

 // 0000 0000 0000 0000 0000 0000 0000 0100
 // (0x1 << 2)
const V_BITMASK TAXIS = 0x00000004;

 // 1011 1111 1111 1111 1111 1111 1111 1011
 // (~ALL_ENTITIES_MASK) & (~TAXIS)
const V_BITMASK ALL_BUT_TAXIS = 0xbffffffb;

 // 0000 0000 0000 0000 0000 0000 0000 1000
 // (0x1 << 3)
const V_BITMASK HOVS = 0x00000008; // Carpools

 // 1011 1111 1111 1111 1111 1111 1111 0111
 // (~ALL_ENTITIES_MASK) & (~HOVS)
const V_BITMASK ALL_BUT_HOVS = 0xbffffff7;

 // 0000 0000 0000 0000 0000 0000 0001 0000
 // (0x1 << 4)
const V_BITMASK PEDESTRIANS = 0x00000010;

 // 1011 1111 1111 1111 1111 1111 1110 1111
 // (~ALL_ENTITIES_MASK) & (~PEDESTRIANS)
const V_BITMASK ALL_BUT_PEDESTRIANS = 0xbfffffef;

 // 0000 0000 0000 0000 0000 0000 0010 0000
 // (0x1 << 5)
const V_BITMASK BICYCLES = 0x00000020;

 // 1011 1111 1111 1111 1111 1111 1101 1111
 // (~ALL_ENTITIES_MASK) & (~BICYCLES)
const V_BITMASK ALL_BUT_BICYCLES = 0xbfffffdf;

 // 0000 0000 0000 0000 0000 0000 0100 0000
 // (0x1 << 6)
const V_BITMASK TRUCKS = 0x00000040;

 // 1011 1111 1111 1111 1111 1111 1011 1111
 // (~ALL_ENTITIES_MASK) & (~TRUCKS)
const V_BITMASK ALL_BUT_TRUCKS = 0xbfffffbf;

 // 0000 0000 0000 0000 0000 0000 1000 0000
 // (0x1 << 7)
const V_BITMASK RESIDENT_AND_GUESTS = 0x00000080;

 // 1011 1111 1111 1111 1111 1111 0111 1111
 // (~ALL_ENTITIES_MASK) & (~RESIDENT_AND_GUESTS);
const V_BITMASK ALL_BUT_RESIDENT_AND_GUESTS
 = 0xbfffff7f;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 33

 // 0000 0000 0000 0000 0000 0001 0000 0000
 // (0x1 << 8)
const V_BITMASK DELIVERIES = 0x00000100;

 // 1011 1111 1111 1111 1111 1110 1111 1111
 // (~ALL_ENTITIES_MASK) & (~DELIVERIES)
const V_BITMASK ALL_BUT_DELIVERIES = 0xbffffeff;

 // 0000 0000 0000 0000 0000 0010 0000 0000
 // (0x1 << 9)
const V_BITMASK SCHOOL_BUSES = 0x00000200;

 // 1011 1111 1111 1111 1111 1101 1111 1111
 // (~ALL_ENTITIES_MASK) & (~SCHOOL_BUSES)
const V_BITMASK ALL_BUT_SCHOOL_BUSES = 0xbffffdff;
 // 0000 0000 0000 0000 0000 0100 0000 0000
 // (0x1 << 10)
const V_BITMASK MOTORCYCLES = 0x00000400;

 // 1011 1111 1111 1111 1111 1011 1111 1111
 // (~ALL_ENTITIES_MASK) & (~MOTORCYCLES)
const V_BITMASK ALL_BUT_MOTORCYCLES = 0xbffffbff;

 // 0000 0000 0000 0000 0000 1000 0000 0000
 // (0x1 << 11)
const V_BITMASK AUTHORIZED_VEHICLES = 0x00000800;

 // 1011 1111 1111 1111 1111 0111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~AUTHORIZED_VEHICLES)
const V_BITMASK ALL_BUT_AUTHORIZED_VEHICLES
 = 0xbffff7ff;

 // 0000 0000 0000 0001 0000 0000 0000 0000
 // (0x1 << 16)
const V_BITMASK Reserved_VEHICLES_01 = 0x00010000;

 // 1011 1111 1111 1110 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_01
 = 0xbffeffff;

 // 0000 0000 0000 0010 0000 0000 0000 0000
 // (0x1 << 17)
const V_BITMASK Reserved_VEHICLES_02 = 0x00020000;

 // 1011 1111 1111 1101 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_02
 = 0xbfffdffff;

 // 0000 0000 0000 0100 0000 0000 0000 0000
 // (0x1 << 18)
const V_BITMASK Reserved_VEHICLES_03 = 0x00040000;

 // 1011 1111 1111 1011 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_03
 = 0xbffbffff;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

34 © ISO 2009 – All rights reserved

 // 0000 0000 0000 1000 0000 0000 0000 0000
 // (0x1 << 19)
const V_BITMASK Reserved_VEHICLES_04 = 0x00080000;

 // 1011 1111 1111 0111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_04
 = 0xbff7ffff;

 // 0000 0000 0001 0000 0000 0000 0000 0000
 // (0x1 << 20)
const V_BITMASK Reserved_VEHICLES_05 = 0x00100000;

 // 1011 1111 1110 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_05
 = 0xbfefffff;

 // 0000 0000 0010 0000 0000 0000 0000 0000
 // (0x1 << 21)
const V_BITMASK Reserved_VEHICLES_06 = 0x00200000;

 // 1011 1111 1101 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~RESERVED_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_06
 = 0xbfdfffff;

 // 0000 0000 0100 0000 0000 0000 0000 0000
 // (0x1 << 22)
const V_BITMASK Reserved_VEHICLES_07 = 0x00400000;

 // 1011 1111 1011 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~OPTION_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_07
 = 0xbfbfffff;

 // 0000 0000 1000 0000 0000 0000 0000 0000
 // (0x1 << 23)
const V_BITMASK Reserved_VEHICLES_08 = 0x00800000;

 // 1011 1111 0111 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~OPTION_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_08
 = 0xbf7fffff;

 // 0000 0001 0000 0000 0000 0000 0000 0000
 // (0x1 << 24)
const V_BITMASK Reserved_VEHICLES_09 = 0x01000000;

 // 1011 1110 1111 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~OPTION_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_09
 = 0xbeffffff;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 35

 // 0000 0010 0000 0000 0000 0000 0000 0000
 // (0x1 << 25)
const V_BITMASK Reserved_VEHICLES_10 = 0x02000000;

 // 1011 1101 1111 1111 1111 1111 1111 1111
 // (~ALL_ENTITIES_MASK) & (~OPTION_VEHICLES)
const V_BITMASK ALL_BUT_ Reserved_VEHICLES_10
 = 0xbdffffff;

 // 0011 1111 1111 1111 1111 1111 1110 1111
const V_BITMASK ALL_MOTOR_VEHICLES = 0x3fffffef; // Without pedestrians

 // 1000 0000 0000 0000 0000 0000 0001 0000
const V_BITMASK ALL_BUT_ALL_MOTOR_VEHICLES // Same as pedestrians (except tone)
 = 0x80000010;

 // 0111 1111 1111 1111 1111 1111 1111 1111
const V_BITMASK ALL_VEHICLE_TYPES = 0x7fffffff; // Includes pedestrians!

 // 1100 0000 0000 0000 0000 0000 0000 0000
const V_BITMASK ALL_BUT_ALL_VEHICLE_TYPES // Same as none (except for tone)

= 0xc0000000;

typedef V_BITMASK MapAccessVehicleType; // (Hungarian av)

5.3.3.1.2 Condition type constants

typedef LONG_BITMASK C_BITMASK;

// Prohibited/Allowed single link access or prohibited/mandatory multiple links
// maneuver.
const C_BITMASK TRAFFIC_COND = 0x00000001;

// Information as to whether road is open or closed during construction.
const C_BITMASK CONSTRUCTION_STATUS_COND = 0x00000002;

// Describe monetary cost requirement for travel.
const C_BITMASK TOLL_COND = 0x00000004;

// Travel blocked by physical gate.
const C_BITMASK GATE_COND = 0x00000008;

// Resident and guest regulation.
const C_BITMASK RES_AND_GUEST_COND = 0x00000010;

// This value is defined to be used by the MapGetLinkConditions() function for
// requesting conditions of any type.
const C_BITMASK ANY_COND = 0xFFFFFFFF;

typedef C_BITMASK MapConditionCategoryType; // (Hungarian cc)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

36 © ISO 2009 – All rights reserved

5.3.3.2 Data structures

5.3.3.2.1 LocusType (Hungarian: loc)

This structure defines a position along a link (it can also be just the link).

typedef struct locusType_s {

MapEntityIDType link;

// normalized [0.0, 1.0] fraction
// “< 0” means “the entire link” or “unknown”,
// whichever means something in the context.
FractionType positionAlongLink;

// [LHS, RHS, both/either, unspecified]
SideTypeEnum side;

} LocusType;

5.3.3.2.2 LocusList

This structure defines a list of loci for use as an origin, destination, or crisp waypoint. The order of elements in
this list is not significant.

typedef struct locusList_s {

int nLoci;

// list of loci (or set of pointers to loci)
LocusType <sequence> loci;

} LocusList;

5.3.3.2.3 bbox3PtType

This structure defines a bounding box using 3 points. A bounding box is used to frame requests of data. It is
assumed to be a rectangle in some orientation and is described as 3 points (topLeft, bottomLeft, bottomRight).
If the 3 points are not corners of the rectangle, the result will be the smallest rectangle such that one edge of
the rectangle contains the “bottomLeft” point and the “bottomRight” point and the rectangle contains the
“topLeft” point.

typedef struct bbox3PtType_s {

MapPosition2DType lowerLeftCorner;
MapPosition2DType upperLeftCorner;
MapPosition2DType lowerRightCorner;

} bbox3PtType;

5.3.3.2.4 GeometryTypeEnum

This structure defines geometry types.

typedef enum GeometryTypeEnum_e {

Shape = -1,
Point = 0,
Line = 1,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 37

Area = 2,
Complex = 3

} GeometryTypeEnum;

5.3.3.2.5 FeatureNameType

This structure defines a single name.

typedef struct FeatureNameType_s {
char[3] charset; // charset of the name Marc code

string name; // the name itself

 short symbol; // a symbol associated with the name
 // like a highway shield
} FeatureNameType;

5.3.3.2.6 PointDimensionEnum

If shape points have 2 or 3 dimensions of data.

typedef enum pointDimensionEnum_e {

D2,
D3

} pointDimensionEnum;

5.3.3.2.7 MapPositionType

If shape points have 2 or 3 dimensions of data.

typedef struct mapPositionType_s {

union dimensionType switch (pointDimensionEnum) {
case D2: MapPosition2Dtype point;
case D3: MapPosition3Dtype point;

 };
} mapPositionType;

5.3.3.2.8 ComponentBoundaryType

This structure defines a single component boundary.

typedef struct ComponentBoundaryType_s {

short nPts; // how many points in the boundaries

 MapPositionType <sequence> point; // the actual list of points

} ComponentBoundaryType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

38 © ISO 2009 – All rights reserved

5.3.3.2.9 FeatureComponentType

This structure defines a single feature component.

typedef struct FeatureComponentType_s {

short nBnds; // how many boundaries
ComponentBoundaryType <sequence>

boundary; // the boundaries

 GeometryTypeEnum componentDimension;
// dimension of the

component
} FeatureComponentType;

5.3.3.2.10 MapFeatureType

This structure defines a single mapFeature.

typedef struct MapFeatureType_s {

short nCmps; // how many components

FeatureComponentType <sequence>

component; // the components

 GeometryTypeEnum dimension; // feature geometrical type

 featureTypeEnum featureType;

 short featureClass;

 unsigned long flags; // various encodings (more later)

// (like 1-way)

 FeatureNameType name; // name structure

 MapIDtype mapID; // which map is the feature from?

} MapFeatureType;

5.3.3.2.11 FeatureTypeEnum (Hungarian: fte)

Structure containing feature information. This type is used to reverse-geocode non-street and non-intersection
map features such as landmarks, POIs, parks, lakes, etc.

typedef enum featureTypeEnum_e {

SupraNationalArea = 1110,

Country = 1111,

Order-1Area = 1112,

Order-2Area = 1113,

Order-3Area = 1114,

Order-4Area = 1115,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 39

Order-5Area = 1116,

Order-6Area = 1117,

Order-7Area = 1118,

Order-8Area = 1119,

Order-9Area = 1120,

AdministrativePlaceA = 1165,

AdministrativePlaceB = 1166,

AdministrativePlaceC = 1167,

AdministrativePlaceD = 1168,

AdministrativePlaceE = 1169,

AdministrativePlaceF = 1170,

AdministrativePlaceG = 1171,

AdministrativePlaceH = 1172,

AdministrativePlaceI = 1173,

AdministrativePlaceJ = 1174,

AdministrativePlaceK = 1175,

AdministrativePlaceL = 1176,

AdministrativePlaceM = 1177,

AdministrativePlaceN = 1178,

AdministrativePlaceO = 1179,

AdministrativePlaceP = 1180,

AdministrativePlaceQ = 1181,

AdministrativePlaceR = 1182,

AdministrativePlaceS = 1183,

AdministrativePlaceT = 1184,

AdministrativePlaceU = 1185,

AdministrativePlaceV = 1186,

AdministrativePlaceW = 1187,

AdministrativePlaceX = 1188,

AdministrativePlaceY = 1189,

AdministrativePlaceZ = 1190,

AdministrativeBoundaryJunction = 1198,

AdministrativeBoundaryElement = 1199,

BuiltUpArea = 3110,

NamedArea = 3120,

PoliceDistrict = 3131,

EmergencyMedicalDispatchDistrict = 3132,

SchoolDistrict = 3133,

CensusDistrict = 3134,

FireDispatchDistrict = 3135,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

40 © ISO 2009 – All rights reserved

PostalDistrict = 3136,

PhoneDistrict = 3137,

ElectiveDistrict = 3138,

BoundaryJunction = 3198,

BoundaryElement = 3199,

RoadElement = 4110,

Junction = 4120,

FerryConnection = 4130,

EnclosedTrafficArea = 4135,

Road = 4140,

Intersection = 4145,

Ferry = 4150,

AddressArea = 4160,

AddressAreaBoundaryElement = 4165,

AggregatedWay = 4170,

Interchange = 4180,

Roundabout = 4190,

RailwayElement = 4210,

RailwayElementJunction = 4220,

WaterBody = 4310,

WaterBoundaryElement = 4330,

WaterBoundaryJunction = 4335,

InlandWater = 4350,

Reservoir = 4351,

Lake = 4352,

WaterCourse = 4353,

Canal = 4354,

River = 4355,

MarineWater = 4370,

CoastalLagoon = 4371,

Estuary = 4372,

SeaandOcean = 4373,

ChainageReferencingSection = 4910,

ReferencePoint = 4920,

RouteLink = 5010,

PublicTransportJunction = 5015,

StopPoint = 5020,

PublicTransportPoint = 5025,

StopArea = 5030,

Route = 5040,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 41

Line = 5050,

Building = 7110,

ArtificialSurface = 7111,

UrbanFabric = 7112,

IndustrialCommercialandTransportUnit = 7113,

MineDumpandConstructionSite = 7114,

ArtificialNonAgriculturalVegetationArea = 7115,

ContinuousUrbanFabric = 7116,

DiscontinuousUrbanFabric = 7117,

IndustrialorCommercialUnit = 7118,

RoadAndRailNetAndAssociatedLand = 7119,

PortArea = 7130,

Airport = 7131,

MineralExtractionSite = 7132,

DumpSite = 7133,

ConstructionSite = 7134,

GreenUrbanArea = 7135,

SportAndLeisureFacility = 7136,

AgriculturalArea = 7137,

ArableLand = 7138,

PermanentCrop = 7139,

Pasture = 7140,

HeterogeneousAgriculturalArea = 7142,

NonIrrigatedArableLand = 7143,

PermanentlyIrrigatedLand = 7144,

RiceField = 7145,

Vineyard = 7146,

FruitTreeAndBerryPlantation = 7147,

OliveGrove = 7148,

AnnualCropAssociatedWithPermCrop = 7149,

ComplexCultivationPattern = 7150,

LandPrincipallyAgWithSignifNaturalVeg = 7152,

AgroForestryArea = 7153,

ForestAndSemiNaturalArea = 7154,

Forest = 7155,

ScrubAndOrHerbaceousVegetation = 7156,

OpenSpaceWithLittleOrNoVegetation = 7157,

BroadLeavedForest = 7158,

ConiferousForest = 7159,

MixedForest = 7160,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

42 © ISO 2009 – All rights reserved

NaturalGrassland = 7161,

MoorAndHeathland = 7162,

SclerophyllousVegetation = 7163,

TransitionalWoodlandScrub = 7164,

BeachDuneAndSandPlain = 7165,

BareRock = 7166,

SparselyVegetatedArea = 7167,

BurntArea = 7168,

GlaciersAndPerpetualSnow = 7169,

ParkGarden = 7170,

Island = 7180,

Signpost = 7210,

TrafficSign = 7220,

TrafficLight = 7230,

PedestrianCrossing = 7240,

EnvironmentalEquipment = 7251,

Lighting = 7252,

MeasurementDevice = 7253,

RoadMarkings = 7254,

SafetyEquipment = 7255,

EntryPointofService = 7300,

Structure = 7500,

CentrePointOfFeature = 8000,

TrafficLocation = 8001,

UserDefined_000 = 9000,

UserDefined_001 = 9001,

// fill in the blanks in between…

UserDefined_999 = 9999

} FeatureTypeEnum;

5.3.3.2.12 FractionType

This type is used to denote a point a fraction of the way down a link. Because some platforms provide much
faster computation with integers than with floating-point values, a long integer is used, with the value n
denoting n/224. For example, the value 0 denotes 0/224 of the way down the link (the beginning of the link); the
value 0x1 000 000 = 224 denotes 224/224 of the way down the link (the end of the link); and the value
0x400 000 = 222 denotes 222/224 = 1/4 of the way down the link.

Twenty-four of the available 32 bits are used because using 24 bits allows enough accuracy for any purpose,
since links are divided into 224 = 16 777 216 parts (if the link is 40 000 km long, the circumference of the earth,
1/224 of the link is still only 2,38 m). Allowing eight bits of room at the top makes it easy to construct integer
computations without concern for overflow.

// interpreted in units of 1/2^24
typedef long int FractionType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 43

5.3.3.2.13 featureFilterType

This structure specifies a complex list of features and/or attribute values to be included in (+) or excluded from
(-) a search.

Filters shall support a wide variety of selections of feature types, classes, and attributes. Rather than defining
a complex language for specifying such selections, this International Standard specifies simple data structures
which can be combined in a variety of complex ways.

The data structures used to define filters consist of “operands” and “operators”. An operand can be a basic
specification, such as one meaning “feature type = 4110” — this kind of atomic specification is called a “leaf”,
because all leaves of the tree specifying a filter are of this type — or it can be the result of an operation. Three
operations are supported to combine or negate operands, namely AND, OR, and NOT.

Specifically, an operandType is a union which contains as a subordinate structure either a leafType or an
operatorType. A leafType describes a basic filtering operation. An operatorType contains an operator, which is
either AND, OR, or NOT, and pointers to one or two operands (two for AND and OR, one for NOT). The
semantics of these operators are exactly as one would expect, as shown in Table 5.

Table 5 — operatorType

If operatorType = … … then the feature passes the test if and only if …

AND … it passes the tests of both leftOperand and rightOperand.

OR … it passes the test of either leftOperand or rightOperand (or both).

NOT … it does not pass the test of rightOperand. (The field leftOperand is not used.)

A leafType, which describes a basic filtering operation, has several fields. One of the fields,
valueTypeFromFeature, determines with which property of the feature each feature is tested, as shown in
Table 6.

Table 6 — valueTypeFromFeature

If valueTypeFromFeature = … … then the following is compared:

FT feature type

FC feature class

AV attribute value specified by the attributeType field

Another field is valueTypeForComparison. This determines what kind of value the property of the feature is to
be compared to, and which field(s) of the leafType are used for the comparison, as shown in Table 7.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

44 © ISO 2009 – All rights reserved

Table 7 — valueTypeForComparison

If valueTypeForComparison = … … which stands
for … … then the comparison is to …

NUM numeric num1

STR string stringValue

NUM_INT numeric interval interval from num1 through num2 inclusive

NUM_SET numeric set intSet (which contains setCount elements)

STR_SET string set stringSet (which contains setCount elements)

NO not used no comparison value (valid only when testType = EX,
“exists” — see below)

Another field is testType. This field specifies what kind of comparison is to be performed between the property
of the feature, f, and the value type for comparison, v, as shown in Table 8.

Table 8 — testType

If testType = … … which stands for … … then the feature passes the filter
if and only if … Valid types for v

EQ equal to f = v NUM, STR

NE not equal to f ≠ v NUM, STR

LT less than f < v NUM, STR

LE less than or equal to f ≤ v NUM, STR

GE greater than or equal to f ≥ v NUM, STR

GT greater than f > v NUM, STR

CS contains substring f contains v as a substring STR

SS starts with substring f begins with v STR

EO element of f is an element of v NUM_SET,
STR_SET

NO not element of f is not an element of v NUM_SET,
STR_SET

EX exists f (which must be an attribute) exists NO

This is sufficiently complex that it is useful to show some examples. Because the leaf data structures require a
lot of information, the tree structures are shown schematically in the figures and the leaf data structures are
shown in the text. Fields not used in a given leaf data structure are omitted.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 45

EXAMPLE 1 All features with feature type 4110. See Figure 6. Leaf L1 is as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

EXAMPLE 2 All features with feature type 4110 or 4120. See Figure 6. Leaf L1 is as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM_SET
setCount 2
intSet {4110, 4120}
testType EO

EXAMPLE 3 All features except those with feature type 4110. See Figure 6. Leaf L1 is as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType NE

EXAMPLE 4 All features except those with feature type 4110 or 4120. See Figure 6. Leaf L1 is as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM_SET
setCount 2
intSet {4110, 4120}
testType NO

L1

Figure 6 — All features with feature type 4110

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

46 © ISO 2009 – All rights reserved

EXAMPLE 5 All features with feature type 4110 and feature class 3. See Figure 7. Operator O1 is AND. Leaves L1
and L2 are as follows:

L1

Field Value

valueTypeFromFeature FT

valueTypeForComparison NUM

num1 4110

testType EQ

L2

Field Value

valueTypeFromFeature FC

valueTypeForComparison NUM

num1 3

testType EQ

EXAMPLE 6 All features with feature type 4110 and feature class 3 or 4. See Figure 7. Operator O1 is AND. Leaves
L1 and L2 are as follows:

L1

Field Value

valueTypeFromFeature FT

valueTypeForComparison NUM

num1 4110

testType EQ

L2

Field Value

valueTypeFromFeature FC

valueTypeForComparison NUM_SET

setCount 2

intSet {3, 4}

testType EO

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 47

EXAMPLE 7 All features with feature type 4110 and feature class 3 through 6. See Figure 7. Operator O1 is AND.
Leaves L1 and L2 are as follows:

L1

Field Value

valueTypeFromFeature FT

valueTypeForComparison NUM

num1 4110

testType EQ

L2

Field Value

valueTypeFromFeature FC

valueTypeForComparison NUM_INT

num1 3

num2 6

testType EO

O1

L2 L1

Figure 7 — All features with feature type 4110 and feature class 3

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

48 © ISO 2009 – All rights reserved

EXAMPLE 8 All features with feature type 4110 and feature class 1 through 3 or 5 through 7. See Figure 8. Operand
O1 is AND; operator O2 is OR. Leaves L1, L2, and L3 are as follows:

L1

Field Value

valueTypeFromFeature FT

valueTypeForComparison NUM

num1 4110

testType EQ

L2

Field Value

valueTypeFromFeature FC

valueTypeForComparison NUM_INT

num1 1

num2 3

testType EO

L3

Field Value

valueTypeFromFeature FC

valueTypeForComparison NUM_INT

num1 5

num2 7

testType EO

O1

O2

L3 L2

L1

Figure 8 — All features with feature type 4110 and feature class 1 through 3, or 5 through 7

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 49

EXAMPLE 9 All features with feature type 4110 and feature class other than 3. See Figure 7. Operator O1 is AND.
Leaves L1 and L2 are as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

L2
Field Value
valueTypeFromFeature FC
valueTypeForComparison NUM
num1 3
testType NE

EXAMPLE 10 All features with feature type 4110 and feature class other than 1 through 3 or 5 through 7. See Figure 8.
Operators O1 and O2 are both AND. Leaves L1, L2, and L3 are as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

L2
Field Value
valueTypeFromFeature FC
valueTypeForComparison NUM_INT
num1 1
num2 3
testType NO

L3
Field Value
valueTypeFromFeature FC
valueTypeForComparison NUM_INT
num1 5
num2 7
testType NO

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

50 © ISO 2009 – All rights reserved

EXAMPLE 11 All features with either feature type 4110 (road) and feature class 3 or feature type 4210 (rail) and feature
class 5. See Figure 9. Operator O1 is OR; operators O2 and O3 are both AND. Leaves L1, L2, L3, and L4 are as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

L2
Field Value
valueTypeFromFeature FC
valueTypeForComparison NUM
num1 3
testType EQ

L3
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4210
testType EQ

L4
Field Value
valueTypeFromFeature FC
valueTypeForComparison NUM
num1 5
testType EQ

O1

O3

L4 L3

O2

L2 L1

Figure 9 — All features with either feature type 4110 and feature class 3 or
feature type 4210 and feature class 5

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 51

EXAMPLE 12 All features with feature type 4110 and attribute “SP” (speed category), having attribute values 25
through 70. See Figure7. Operand O1 is AND. Leaves L1 and L2 are as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

L2
Field Value
valueTypeFromFeature AV
attributeType “SP”
valueTypeForComparison NUM_INT
num1 25
num2 70
testType EO

EXAMPLE 13 All features with feature type 4110 and attribute “DF” (direction of traffic flow) present. See Figure 7.
Operand O1 is AND. Leaves L1 and L2 are as follows:

L1
Field Value
valueTypeFromFeature FT
valueTypeForComparison NUM
num1 4110
testType EQ

L2
Field Value
valueTypeFromFeature AV
attributeType “DF”
valueTypeForComparison NO
testType EX

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

52 © ISO 2009 – All rights reserved

5.3.3.2.14 featureFilterLeafType

Structure of a leaf.

typedef struct featureFilterLeafType_s {

 featureFilterValueTypeFromFeatureEnum valueTypeFromFeature;
 char[2] attributeType;

// Values for attributeType are defined in the tables 8.2

 valueTypeForComparisonEnum valueTypeForComparison;
 int num1;
 int num2;
 string stringValue;
 int setCount;
 int <sequence> intSet;
 string <sequence> stringSet;
 featureFilterTestTypeEnum testType;
} featureFilterLeafType;

5.3.3.2.15 featureFilterOperandType

An item on which an operation, such as AND, OR, or NOT, is performed. It can be either an operator or a leaf.
This structure is used both for the root of the tree specifying feature filtering and for operand nodes lower in
the tree.

typedef struct featureFilterOperandType_s {

union operType switch (operandTypeEnum) {
case LEAF: featureFilterLeafType leaf;
case OPERATOR: featureFilterOperatorType operator;

 };
} featureFilterOperandType;

5.3.3.2.16 featureFilterOperandTypeEnum

Type of operand (leaf/left side or operator/right side) for a filter comparison.

typedef enum featureFilterOperandTypeEnum_e {

LEAF,
OPERATOR

} featureFilterOperandTypeEnum;

5.3.3.2.17 featureFilterOperatorType

Structure of an operator for a filter comparison. For negation the operator is NOT and leftOperand is set to
NULL.

typedef struct featureFilterOperatorType_s {

featureFilterOperatorTypeEnum operatorType;
featureFilterOperandType node;
featureFilterOperandType leftOperand;
featureFilterOperandType rightOperand;

} featureFilterOperatorType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 53

5.3.3.2.18 featureFilterOperatorTypeEnum

Type of operator for a filter comparison.

typedef enum featureFilterOperatorTypeEnum_e {

AND,
OR,
NOT

} featureFilterOperatorTypeEnum;

5.3.3.2.19 featureFilterTestTypeEnum

Type of test to be applied in a filter operation.

typedef enum featureFilterTestTypeEnum_e {

EQ, // Equal
NE, // Not Equal
LT, // Less Than
LE, // Less than or Equal
GT, // Greater Than
GO, // Greater than or Equal
CS, // Contains Substring
SS, // Starts with Substring
EO, // Element Of
NO, // Not element Of
EX // EXists

} featureFilterTestTypeEnum;

5.3.3.2.20 featureFilterValueTypeForComparisonEnum

Type of value for comparison. Right-hand side of a filter test.

typedef enum featureFilterValueTypeForComparisonEnum_e {

NUM, // Number
STR, // String
NUM_INT, // Number of Intervals
NUM_SET, // Number of Sets
STR_SET, // String Set
NO // Not Used

} featureFilterValueTypeForComparisonEnum;

5.3.3.2.21 featureFilterValueTypeFromFeatureEnum

Type of value derived from a feature. Left-hand side of a filter test.

typedef enum featureFilterValueTypeFromFeatureEnum_e {

FT, // Feature Type
FC, // Feature Class
AV // Attribute Value

} featureFilterValueTypeFromFeatureEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

54 © ISO 2009 – All rights reserved

5.3.3.2.22 featureSortOrderEnum

This enumeration defines the ordering of the selected service(s) or POI(s) returned. Not every case of these
enumerations applies when using this enumeration.

typedef enum featureSortOrderEnum_e {

UNORDERED,
ALPHA,
EUCLID_DIST,
DRIVE_DIST,
DRIVE_TIME,
LIKELIHOOD_BASED // in order of likelihood (where appropriate)

} featureSortOrderEnum;

5.3.3.2.23 namedAreaType

Structure defining an input named area. It includes a name string and a feature code to help disambiguate it.
Disambiguating context is supported, for example, to distinguish Chuo-ku in Tokyo from Chuo-ku in Sapporo,
or to distinguish Springfield, Massachusetts from Springfield, Illinois. More than one such area context may be
needed; consequently, a recursive structure can be formed.

This namedAreaType is of the same kind as addressType, rather than of the same kind as FeatureNameType.

typedef struct namedAreaType_s {
int AddressStructureID; // which address structure is this

 int LevelInStructure; // numbering starts at bottom as “1” and
grows

 FeatureTypeEnum featureType;

 string AreaName; // for simplicity, use string even for

// numeric value;
namedAreaType parentArea; // set NULL for no parent

} namedAreaType;

5.3.3.2.24 radiusDistanceEnum

Type of radius/distance desired for the search.

typedef enum radiusDistanceEnum_e {

EUCLID_DIST,
DRIVE_DIST,
DRIVE_TIME

} radiusDistanceEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 55

5.3.3.2.25 sideTypeEnum

Side of road (left hand, right hand, both, or unspecified).

typedef enum sideTypeEnum_e {

SIDE_TYPE_LEFT,
SIDE_TYPE_RIGHT,
SIDE_TYPE_BOTH,
SIDE_TYPE_UNSPECIFIED

} sideTypeEnum;

5.3.3.2.26 MapConditionAttrType (Hungarian: ca)

This structure modifies a condition type.

typedef struct MapConditionAttrType_s {

boolean bTimeDependent; // Date and/or time information exists

boolean bMultipleLinks; // Condition applies to more than one

// link
} MapConditionAttrType;

5.3.3.2.27 MapConditionModifierEnum (Hungarian: cme)

This enumeration defines a condition modifier.

typedef enum MapConditionModifierEnum_e {

//
// Used for conditions which do not require modifier.
//
NOT_APPLICABLE,

//
// Additional information for TRAFFIC_COND.
//
POSITIVE_CONDITION, // Mandatory multiple-link maneuver (such as
 // all traffic must turn right or taxis must
 // turn left followed by another left) or
 // single-link access permission

NEGATIVE_CONDITION, // Prohibited multiple-link maneuver (such as
 // no right turn or vehicles may not turn left
 // followed by another left on weekdays) or a
 // single-link access prohibition

//
// Additional information for TOLL_COND.
//
SIMPLE_TOLL, // Toll is dependent only on the link
COMPLEX_TOLL, // Toll is dependent on destination link
COMPLEX_TOLL_INSTANCE, // Toll is one element of a complex toll
 // structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

56 © ISO 2009 – All rights reserved

//
// Additional information for CONSTRUCTION_STATUS_COND.
//
OPEN_TO_TRAFFIC, // Open to traffic during the construction
 // period
CLOSED_TO_TRAFFIC, // Closed to traffic during the construction
 // period

} MapConditionModifierEnum;

5.3.3.2.28 MapTollType (Hungarian: tol)

This structure contains toll cost information.

typedef struct MapTollType_s {

//
// Examples:
// 1) 2.25 Euros is represented as usTollAmount = 225,
// oTollExponent = -2, and strTollCurrency = “EUR”.
//
// 2) 700 yen can be represented as usTollAmount = 700,
// oTollExponent = 0, and strTollCurrency = “JPY”
// or as usTollAmount = 7, oTollExponent = 2, and
// strTollCurrency = “JPY”.
//
// 3) 75000 Italian Lire is represented as usTollAmount = 75,
// oTollExponent = 3, and strTollCurrency = “ITL”.
//
unsigned short usTollAmount;
octet oTollExponent;
char cTollCurrency[4]; // ISO 4217 currency code

} MapTollType;

5.3.3.2.29 MapConditionModifierType (Hungarian: cm)

This structure contains additional information for the condition type.

typedef struct MapConditionModifierType_s {

//
// NOTE: Implement a union switch on MapConditionEnum when there is
more
// than one data field in this structure.
//

MapTollType tolTollCost; // Toll cost information

// Resident and guest area code.
unsigned long ulResidentAndGuestCode;

// When a condition applies to HOVs, the following field specifies the
// minimum number of passengers for an HOV:
octet oHOVMin;

} MapConditionModifierType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 57

5.3.3.2.30 MapCursorInfoType (Hungarian: ci)

This structure contains information about a large result set cursor.

typedef struct MapCursorInfoType_s {

// Number of the gap before the set of records in the DAL’s buffer,
// ready to be returned.
long lCursorBufferStart;

// Number of the gap after the set of records in the DAL’s buffer,
// ready to be returned.
long lCursorBufferEnd;

// Indication of whether the last result record is ready to be
// returned. This field is true if and only if lCursorBufferEnd
// describes the gap after the last record.
boolean bResultSetComplete;

// Current cursor position, as a gap number. Reading forward will
// start after this gap; reading backward will start before this gap.
Long lCurrentCursorPosition;
} MapCursorInfoType;

5.3.3.2.31 MapCursorOriginEnum (Hungarian: coe)

This enumeration is used for location-relative positioning.

typedef enum MapCursorOriginEnum_e {

CURRENT_POSITION, // From the current cursor position.
RESULT_SET_START, // Relative to the first gap, which is number 0.
RESULT_SET_END // Relative to the last gap,
 // whose number is the total number of results.

} MapCursorOriginEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

58 © ISO 2009 – All rights reserved

5.3.3.2.32 MapCursorReturnTypeEnum (Hungarian: crte)

This enumeration lists all the possible cursor return types – nothing else is allowed.

Table 9 associates the enum member with the data type:

Table 9 — MapCursorReturnTypeEnum

enum entry data type calling function(s)

MAP_CONDITION MapConditionType MapGetComplexToll()

MAP_CONDITION_AND_DIRECTION MapConditionAndDirectionType MapGetLinkConditions()

MAP_CONDITION_LINK_AND_NODE MapConditionLinkAndNodeType MapGetConditionLinksAndNodes()

MAP_DATE_TIME MapDateTimeType MapGetConditionDateTime()

MAP_FEATURE MapFeatureType GetNearbyMapFeatures() GetFeatures()
GetFeaturesFiltered()

MAP_LINK MapLinkType MapGetIntersectionLinks()
MapSearchLinks()
MapSearchNearestLinks()
MapGetTollDestinations()

MAP_MANEUVER_DESCRIPTION MapManeuverDescriptionType MapGuidePath()

FEATURE_NAME FeatureNameType ScrollerHelper()

MAP_NODE MapNodeType MapSearchNodes()

POI POIType GetPOIsByBBox() GetPOIsByPointRad()
GetPOIsFromPath()
GetPOIsFromNamedArea()

MAP_ROUTE_LINK_AND_COST MapRouteLinkAndCostType checkMapGetLinksAndCostsFromPath()
and therefore indirectly via a pathHandle
MapComputePath()
MapComputePathWithFuzzyWaypoints()
MapComputePathWithWaypointSets()
MapComputePathMultipleRoutes()
MapComputePathsMultipleDestinations()

MAP_SUCCESS_LINK_AND_NODE MapSuccessLinkAndNodeType MapGetSuccessors()

typedef enum MapCursorReturnTypeEnum_e {

MAP_CONDITION, // returned by MapGetComplexToll()
MAP_CONDITION_AND_DIRECTION, // returned by MapGetLinkConditions()
MAP_CONDITION_LINK_AND_NODE, // returned by MapGetConditionLinksAndNodes()
MAP_DATE_TIME, // returned by MapGetConditionDateTime()
MAP_FEATURE, // returned by GetNearbyMapFeatures() ,
 // GetFeatures() , and GetFeaturesFiltered()
MAP_LINK, // returned by MapGetIntersectionLinks(),
 // MapSearchLinks(),
 // MapSearchNearestLinks(), and
 // MapGetTollDestinations()
MAP_MANEUVER_DESCRIPTION, // returned by MapGuidePath()
FEATURE_NAME, // returned by ScrollerHelper()
MAP_NODE, // returned by MapSearchNodes()
POI, // returned by GetPOIsByBBox(),
 // GetPOIsByPointRad(),
 // GetPOIsFromPath(), and
 // GetPOIsFromNamedArea()
MAP_ROUTE_LINK_AND_COST, // returned by

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 59

 // checkMapGetLinksAndCostsFromPath()
 // and therefore indirectly via a pathHandle
 // MapComputePath() ,
 // MapComputePathWithFuzzyWaypoints() ,
 // MapComputePathWithWaypointSets(),
 // MapComputePathMultipleRoutes() , and
 // MapComputePathsMultipleDestinations()
MAP_SUCCESS_LINK_AND_NODE // returned by MapGetSuccessors()

} MapCursorReturnTypeEnum;

5.3.3.2.33 MapCursorType (Hungarian: cu)

This structure defines a unique handle to a cursor. A cursor maintains an arbitrary-sized query result set
obtained through a database search operation. This handle identifies a cursor for subsequent manipulation,
allowing the application to specify how much of the result set to fetch in a single operation.

typedef unsigned long MapCursorType;

5.3.3.2.34 MapFetchDirectionEnum (Hungarian: fde)

This enumeration defines the result-set retrieval direction.

This enumeration is not to be confused with MapOrientationDirectionEnum, which is used to specify the
direction(s) relative to the topological orientation of a link for which conditions are to be returned.

typedef enum MapFetchDirectionEnum_e {

MapFetchForward, // Next set of data records
MapFetchBackward // Previous set of data records

} MapFetchDirectionEnum;

5.3.3.2.35 MapDateAttrType (Hungarian: da)

This structure is used to modify a date. It is possible to use multiple Booleans to denote a composite date, for
instance an exclusive date from dawn to dusk during the spring and summer would require four such
Booleans.

typedef struct MapDateAttrType_s {

boolean bSpring;
boolean bSummer;
boolean bFall;
boolean bWinter;
boolean bHoliday;
boolean bExcludeDate; // Exclude the date range specified by
StartDate

// and EndDate
boolean bDawnToDusk; // Time period is from dawn to dusk
boolean bDuskToDawn; // Time period is from dusk to dawn

} MapDateAttrType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

60 © ISO 2009 – All rights reserved

5.3.3.2.36 MapDateTypeEnum (Hungarian: dte)

This enumeration specifies date formats.

typedef enum MapDateTypeEnum_e {

MAP_DAY_OF_WEEK,
MAP_ABSOLUTE_DATE,
MAP_DAY_OF_YEAR,
MAP_DAY_OF_MONTH,
MAP_DAY_OF_WEEK_OF_MONTH,
MAP_DAY_OF_WEEK_OF_YEAR,
MAP_WEEK_OF_MONTH,
MAP_WEEK_OF_YEAR,
MAP_MONTH_OF_YEAR,
MAP_DAY_OF_MONTH_OF_YEAR,
MAP_DAY_OF_WEEK_OF_MONTH_OF_YEAR

} MapDateTypeEnum;

5.3.3.2.37 MapDayOfWeekEnum (Hungarian: dwe)

This enumeration specifies days of the week.

typedef enum MapDayOfWeekEnum_e {

MAP_DAY_OF_WEEK_SUNDAY,
MAP_DAY_OF_WEEK_MONDAY,
MAP_DAY_OF_WEEK_TUESDAY
MAP_DAY_OF_WEEK_WEDNESDAY,
MAP_DAY_OF_WEEK_THURSDAY,
MAP_DAY_OF_WEEK_FRIDAY,
MAP_DAY_OF_WEEK_SATURDAY

} MapDayOfWeekEnum;

5.3.3.2.38 MapDateType (Hungarian: dt)

This structure can specify a date in one of many formats. Some auxiliary structures are pre-defined for
utilization within the MapDateType structure.

typedef struct MapAbsoluteDateType_s {

unsigned short usMonthOfYear;
unsigned short usDayOfMonth;
unsigned short usYear;

} MapAbsoluteDateType; // (Hungarian dta)

typedef struct MapDayOfWeekOfMonthType_s {

MapDayOfWeekEnum dweDayOfWeek;
unsigned short usWeekOfMonth;

} MapDayOfWeekOfMonthType; // (Hungarian dwm)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 61

typedef struct MapDayOfWeekOfYearType_s {
MapDayOfWeekEnum dweDayOfWeek;
unsigned short usWeekOfYear;

} MapDayOfWeekOfYearType; // (Hungarian dwy)

typedef struct MapDayOfMonthOfYearType_s {

unsigned short usDayOfMonth;
unsigned short usMonthOfYear;

} MapDayOfMonthOfYearType; // (Hungarian dmy)

typedef struct MapDayOfWeekOfMonthOfYearType_s {

MapDayOfWeekEnum dweDayOfWeek;
unsigned short usWeekOfMonth;
unsigned short usMonthOfYear;

} MapDayOfWeekOfMonthOfYearType; // (Hungarian dwmy)

 typedef struct MapDateType_s {

union MapDateDataType switch (MapDateTypeEnum) {
 case MAP_DAY_OF_WEEK: MapDayOfWeekEnum dweDayOfWeek;

 case MAP_ABSOLUTE_DATE: MapAbsoluteDateType dtaAbsoluteDate;

 case MAP_DAY_OF_YEAR: unsigned short usDayOfYear;

 case MAP_DAY_OF_MONTH: unsigned short usMonth;

 case MAP_DAY_OF_WEEK_OF_MONTH:
 MapDayOfWeekOfMonthType

 dwmDayOfWeekOfMonth;

 case MAP_DAY_OF_WEEK_OF_YEAR:
 MapDayOfWeekOfYearType

 dwyDayOfWeekOfYear;

 case MAP_WEEK_OF_MONTH: unsigned short usWeekOfMonth;

 case MAP_WEEK_OF_YEAR: unsigned short usWeekOfYear;

 case MAP_MONTH_OF_YEAR: unsigned short usMonthOfYear;

 case MAP_DAY_OF_MONTH_OF_YEAR:
 MapDayOfMonthOfYearType

 dmyDayOfMonthOfYear;

 case MAP_DAY_OF_WEEK_OF_MONTH_OF_YEAR:
 MapDayOfWeekOfMonthOfYearType

 dwmyDayOfWeekOfMonthOfYear;
 } x;

 } MapDateType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

62 © ISO 2009 – All rights reserved

5.3.3.2.39 MapTimeZoneType (Hungarian: tz)

This structure represents a time zone.

typedef struct MapTimeZoneType_s {

long lCode; /* Reference data code */
short sMinutesFromGMT; /* Offset from GMT in minutes */
char cDescription[4]; /* Time zone description */

} MapTimeZoneType;

5.3.3.2.40 MapDateTimeType (Hungarian: dtt)

This structure contains date and time information used to specify the operating hours for POIs or the time
period during which a condition is in effect, or the starting or ending time of a route computation. For the latter
purpose, the time may be unspecified.

typedef struct MapDateTimeType_s {

MapDateType dtStartDate;
MapDateType dtEndDate;
unsigned short usStartTime; // elapsed seconds from midnight
unsigned short usEndTime; // elapsed seconds from midnight
MapTimeZoneType tzTimeZone;
octet oDaylightSavingsTimeCode;
MapDateAttrType daDateAttributes;
Boolean bUnspecified;

} MapDateTimeType;

5.3.3.2.41 MapOrientationDirectionEnum (Hungarian: ode)

This enumeration is used to select the direction(s), relative to the topological orientation of a link, for which it is
wished to retrieve conditions. It is possible to request conditions for the forward direction of a link, for the
reverse direction, or for both directions.

This enumeration is not to be confused with MapFetchDirectionEnum, which is used to specify the direction
relative to a cursor in which parts of a large result set are to be returned.

typedef enum MapOrientationDirectionEnum_e {

MAP_DIRECTION_FORWARD, // Direction of topological orientation
MAP_DIRECTION_REVERSE, // Direction against topological orientation
MAP_DIRECTION_BOTH // Both directions

} MapOrientationDirectionEnum;

5.3.3.2.42 MapSectionIDType (Hungarian: sid)

This is a section’s ID. A section is a collection of parcels.

typedef struct MapSectionIDType_s {

unsigned long ulSectionID;

} MapSectionIDType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 63

5.3.3.2.43 MapParcelIDType (Hungarian: pid)

This is a parcel’s ID.

typedef struct MapParcelIDType_s {

unsigned long ulParcelID;

} MapParcelIDType;

5.3.3.2.44 MapEntityIDType (Hungarian: eid)

This is an entity’s ID. It might not be unique across all open databases.

typedef struct MapEntityIDType_s {

unsigned long ulPartOne;
unsigned long ulPartTwo;
unsigned long ulPartThree;
unsigned long ulPartFour;
unsigned long ulPartFive;

} MapEntityIDType;

5.3.3.2.45 MapDBIDType (Hungarian: dbid)

This is an entity’s full ID. This type must provide a unique ID across all databases accessible by a DAL during
any open session.

typedef struct MapDBIDType_s {

MapSectionIDType sidSectionID;
MapParcelIDType pidParcelID;
MapEntityIDType eidEntityID;

} MapDBIDType;

5.3.3.2.46 MapEntityEnum (Hungarian: ee)

This enumeration lists all entity types.

typedef enum MapEntityEnum_e {

MapConditionEntity,
MapNodeEntity,
MapLinkEntity

} MapEntityEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

64 © ISO 2009 – All rights reserved

5.3.3.2.47 MapLaneCategoryType (Hungarian: lc)

This structure classifies a road’s lane category. If oMinimumLaneCount and oMaximumLaneCount both
equal zero, the lane information is either unknown or not applicable.

typedef struct MapLaneCategoryType_s {

octet oMinimumLaneCount; // Lower lane count bound.
octet oMaximumLaneCount; // Upper lane count bound.

} MapLaneCategoryType;

5.3.3.2.48 MapLinkCharacteristicsType (Hungarian: lch)

This structure contains link characteristics.

typedef MapLinkCharacteristicsType_s {

// The following fields’ values are as defined in GDF:
octet oRoadClass;
octet oNationalRoadClass;
octet oFormOfWay;

} MapLinkCharacteristicsType;

5.3.3.2.49 MapSpeedCategoryType (Hungarian: sc)

This structure classifies a road’s speed category. If oMinimumSpeed and oMaximumSpeed both equal zero,
the speed information is either unknown or not applicable.

typedef struct MapSpeedCategoryType_s {

octet oMinimumSpeed; // Minimum speed in km/hour
octet oMaximumSpeed; // Maximum speed in km/hour

} MapSpeedCategoryType;

5.3.3.2.50 MapLinkAttrType (Hungarian: la)

This contains various real-world link attributes.

typedef struct MapLinkAttrType_s {

MapAccessVehicleType
 avForwardVehicleAccessTypes;

MapAccessVehicleType
 avReverseVehicleAccessTypes;

unsigned long ulLinkLength; // meters

// Link traversal time, in tenths of seconds
unsigned long ulEstLinkTraversalTime;

// Maximum legal speed limit in km/hour where 0 means data not
available

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 65

// and 255 means limit does not apply
octet oLegalSpeedLimit;

// Observed speed in km/hour where 0 means data not available
MapSpeedCategoryType

 scActualSpeedCategory;

octet oToBearing; // clockwise angle from north at “to”
node
octet oFromBearing; // clockwise angle from north at “from”
 // node

// Link classification based on available lanes in a single direction
MapLaneCategoryType
 lcLaneCategory;

MapLinkCharacteristicsType
 lchLinkCharacteristics;

boolean bLinkHasCondition;

} MapLinkAttrType;

5.3.3.2.51 MapLinkType (Hungarian: lk)

This structure contains information related to a link. The oEndToEndHiliteLevel provides the lowest level
at which the link can be drawn with just the end points.

typedef struct MapLinkType_s {

MapDBIDType dbidLinkID;
MapDBIDType dbidToNodeID;
MapDBIDType dbidFromNodeID;
MapLinkAttrType laLinkAttrs;

// Highest RP level at which the link appears
octet oLinkLevel;

// Number of navigable feature names associated with this link
octet oAssocNameCount;

// Entity ID of the first two navigable feature names associated with
// this link
sequence <MapEntityIDType, 2>

eidAssocNames;

octet oEndToEndHiliteLevel;

} MapLinkType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

66 © ISO 2009 – All rights reserved

5.3.3.2.52 MapLinkSubattrType (Hungarian: ls)

This structure contains link attributes that are only rarely used.

typedef struct MapLinkSubattrType_s {

boolean bLinkHasMedian; // Link has a median strip
MapTimeZoneType tzTimeZone; // Time zone of link
octet oDSTCode; // Daylight savings time
code
octet oHOVMin; // Minimum number of
 // passengers
unsigned long ulResidentAndGuestCode; // Code identifying
resident
 // and guest area

} MapLinkSubattrType;

5.3.3.2.53 MapPosition2DType (Hungarian: p2)

This structure specifies a longitude/latitude position.

typedef struct MapPosition2DType_s {

long lLongitude;
long lLatitude;

} MapPosition2DType;

5.3.3.2.54 MapPosition3DType (Hungarian: p3)

This structure specifies a longitude/latitude position and an elevation.

typedef struct MapPosition3DType_s {

MapPosition2DType p2LatLong;
short sElevation; // in meters

} MapPosition3DType;

5.3.3.2.55 MapNodeAttrType (Hungarian: na)

This structure contains information about the attributes for a Node type.

typedef struct MapNodeAttrType_s {

 // Is the node aggregated into an intersection?
boolean bIsNodeAggregatedIntoIntersection;

 // Does the node correspond to an intersection?
boolean bDoesNodeRepresentIntersection;

boolean bIsNodeNamed; // Is the node named?

} MapNodeAttrType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 67

5.3.3.2.56 MapNodeType (Hungarian: nd)

This structure contains information related to a node.

typedef struct MapNodeType_s {

MapDBIDType dbidNodeID;
MapPosition3DType p3Position3D;
MapNodeAttrType naNodeAttrs;
octet oNodeLevel; // Greatest level of attached link

// Highest level of unaggregated node
octet oNodeMaxSignificantLevel;

} MapNodeType;

5.3.3.2.57 MapSuccessorLinkAndNodeType (Hungarian: sln)

This structure identifies a link connected to a node, the link’s “other” node, and the cost of travelling through
the “current” node to the link. This structure is returned by MapGetSuccessors().

typedef struct MapSuccessorLinkAndNodeType_s {

MapLinkType lkLink;
MapNodeType ndTargetNode;

// This is the time, in tenths of seconds, to travel through a
// node from the “entry” link (specified as a parameter to
// MapGetSuccessors()), to the exit link (identified in this
// structure)
unsigned short usEstNodeTraversalTime;

} MapSuccessorLinkAndNodeType;

5.3.3.2.58 MapPriorityType (Hungarian: pr)

This type is used to tell the DAL what the priority of the executable is.

typedef unsigned long MapPriorityType;

5.3.3.2.59 MapRectangleType (Hungarian: rect)

This structure defines a bounding box.

typedef struct MapRectangleType_s {

MapPosition2DType p2LowerLeftCorner;
MapPosition2DType p2UpperRightCorner;

} MapRectangleType;

5.3.3.2.60 MapReturnType (Hungarian: ret)

This type is an API’s return type.

typedef long MapReturnType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

68 © ISO 2009 – All rights reserved

5.3.3.2.61 MapSuccNodeCostEnum (Hungarian: snce)

This enumeration specifies the types of node cost information that can be provided.

typedef enum MapSuccNodeCostEnum_e {

NO_NODE_COST = 0, // Do not return node cost information.

NODE_COST_TO_SUCCESSOR, // Return node cost travelling from the

input
 // link to the successor.

NODE_COST_FROM_SUCCESSOR // Return node cost travelling from the
 // successor to the input link.

} MapSuccNodeCostEnum;

5.3.3.2.62 MapConditionType (Hungarian: cnd)

This structure contains information about conditions associated with a link.

A condition may be associated with multiple links. For example, a “no left turn” condition is associated with the
links just before and just after the prohibited turn. However, a single condition shall not be associated with
multiple unrelated links. For example, unrelated links that are under construction shall not be associated with
the same condition identifier.

typedef struct MapConditionType_s {

MapDBIDType dbidConditionID;

// e.g. Traffic condition
MapConditionCategoryType ccConditionCategory;

// Attributes of condition (e.g. time dependency)
MapConditionAttrType caConditionAttrs;

// e.g. Toll cost
MapConditionModifierType cmConditionModifier;

// Vehicles to which condition applies
MapAccessVehicleType avVehicleScope;

// The vehicle scope above is expressed as a set of prohibited
// vehicles (i.e., negative flavour). This field is true if the
// road sign listed a set of allowed vehicles, which was complemented
// to get the above list. It is important to note, that the correct
// interpretation of the above vehicle access mask occurs regardless
// of this Boolean. This Boolean is for informational purposes only
// (mostly to allow the application to know what the actual sign said).
boolean bVehicleExpressionReversed;

} MapConditionType;

A condition caused by a “no left turn” sign is encoded as follows: ConditionCategory = TRAFFIC_COND and
ConditionModifier = NEGATIVE_CONDITION indicates a negative restriction; ConditionAttrs.bMultipleLinks =
TRUE indicates a condition that applies to the starting and ending link of the “no left turn”; avVehicleScope
describes all vehicles.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 69

A sign indicating that all vehicles must either go straight or turn right is encoded by two conditions, both with
ConditionCategory = TRAFFIC_COND and ConditionModifier = POSITIVE_CONDITION. The semantics of
positive restrictions is defined such that, when multiple positive restrictions start with the same link, it is
sufficient to satisfy one of them. This means that one positive restriction for going straight and another for
turning right, taken together, mean not that one must both go straight and turn right, but rather that one must
either go straight or turn right. Aside from ConditionModifier, all fields of the ConditionType data structure are
the same as in the previous example.

When a link is closed to traffic due to construction, that fact is represented as follows: ConditionCategory =
CONSTRUCTION_STATUS_COND; ConditionModifier = CLOSED_TO_TRAFFIC;
ConditionAttrs.bMultipleLinks = FALSE; and avVehicleScope describes all vehicles.

When there is a toll of 2,25 US dollars for all vehicles traversing a link, the condition is encoded as follows:
ConditionCategory = TOLL_COND; ConditionAttrs.bMultipleLinks = FALSE; and avVehicleScope describes all
vehicles. In addition, the fields of ConditionModifier.TollCost are set as follows: usTollAmount = 225;
oTollExponent = –2; and strTollCurrency = “USD”. This indicates that the toll is 225×10–2 and is measured in
USD, i.e., US dollars.

By comparison, suppose the toll is zero for high-occupancy vehicles, USD 2,25 for all vehicles except trucks,
and USD 4,00 for trucks. Then, there are two toll conditions (not three — the zero toll for HOVs does not
require a condition at all). For both, ConditionCategory = TOLL_COND and ConditionAttrs.bMultipleLinks =
FALSE. For one condition, avVehicleScope lists all vehicles except HOV and trucks, and the fields of
ConditionModifier.TollCost are as in the example above. For the other condition, avVehicleScope lists only
trucks, ConditionModifier.strTollCurrency = “USD”, and the other fields of ConditionModifier.TollCost may be
set with usTollAmount = 400 and oTollExponent = –2, or with usTollAmount = 4 and oTollExponent = 0 (or,
less usefully, with usTollAmount = 40 and oTollExponent = –1).

5.3.3.2.63 MapConditionAndDirectionType (Hungarian: cod)

This structure is returned by the function MapGetLinkConditions() to describe each condition associated with a
link, along with the direction (forward or reverse, with respect to topological orientation) in which the condition
applies.

typedef struct MapConditionAndDirectionType_s {

MapConditionType cndCondition; // condition description
boolean bForward; // applies to forward direction of link
boolean bReverse; // applies to reverse direction of link
} MapConditionAndDirectionType;

5.3.3.2.64 MapConditionLinkAndNodeType (Hungarian: cln)

This structure contains the maneuver link ID and the link’s destination node ID. A cursor for retrieving these
structures is returned by MapGetConditionLinksAndNodes().

typedef struct MapConditionLinkAndNodeType_s {

MapDBIDType dbidLinkID;
MapDBIDType dbidDestinationNodeID;

} MapConditionLinkAndNodeType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

70 © ISO 2009 – All rights reserved

5.3.3.2.65 PointAndRadiusType

This structure specifies a point and a radius from the point; this is one form of geographic context.

typedef struct PointAndRadiusType_s {

// specified long/lat for a radius search
MapPosition2DType referencePoint;

// distance from addressed point (meters)
// Negative radius means no filtering by distance
int distance;

} PointAndRadiusType;

5.3.3.3 Error codes

Error codes are returned as the return values of functions. All error codes are negative integers. Likewise, any
negative function return value is an error code. To facilitate the distinction of an empty result set from more
serious errors, the error code MapNoRecordsFound has the value –1. Other error codes are consecutive
negative integers starting at –2.

This definition of error codes notwithstanding, implementations may raise exceptions on platforms on which
exception handling is supported.

Error code Description
MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.4 Route planning

5.3.4.1 General

This subclause specifies the route planning module that shall be provided by the API. Route computation is
the process of determining one or more routes to be suggested to a traveller for travelling from a starting point
(origin) to an ending point (destination), perhaps by way of one or more intermediate points (waypoints). In
various instances of route computation, the traveller may specify various desired characteristics for the route
or routes to be suggested. For example, the traveller may specify a criterion to be optimized, such as travel
time or travel distance. Also, the traveller may specify a set of one or more vehicle types by which the route
should be traversable. (For this purpose, pedestrian travel is considered a type of vehicle.) Further, the
traveller may also specify types of road to be preferred, avoided, or disallowed. If there are to be waypoints,
the traveller may specify the order in which the waypoints are to be visited or may leave the order unspecified.

Route computation does not include the process of presenting the suggested route to the traveller, whether
pictorially, verbally, or in any other way. The presentation of the route is part of the application area of route
guidance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 71

5.3.4.2 Constants

5.3.4.3 Data structures

5.3.4.3.1 WaypointCandidate

One choice for a crisp waypoint, for example the sets of loci representing entrances and exits of a restaurant
that is one of the set of alternative waypoints.

typedef struct waypointCandidate_s {
union waypointCandidateDataType switch (distBetweenOrigAndDestP) {

 case distBetweenOrigAndDest:
 LocusList destinationLoci, originLoci;

 // some implementations may not be able to handle this level of
 // specificity.

 case distNotBetweenOrigAndDest:
 LocusList destinationOriginLoci;
}

} WaypointCandidate;

5.3.4.3.2 WaypointCandidateList

This data structure is used in two different ways in different function calls. In some cases it is used as a set of
alternatives for a (crisp) waypoint in which order is not significant. For example, if the user is saying “take me
to a bank near here, but I don’t care which one”, there would be one waypointCandidate for each bank and
one waypointCandidateList representing the whole set. In other function calls, it is used as a sequence of
successive individual waypoints in which order is significant. For example, it may be used to say “take me to
this specific POI, then this other specific POI, then this third specific POI.” The function being called
determines which meaning is used.

typedef struct waypointCandidateList_s {

int nWaypointCandidates

WaypointCandidate <sequence> waypointCandidates;

} WaypointCandidateList;

5.3.4.3.3 WaypointSetList

List of waypoints (or waypoint sets) to visit. For example, if the user is saying “take me to a bank from this list
(but I don’t care which one) and to a restaurant from this list (but I don’t care which one), there would be one
WaypointCandidateList for the banks and another for the restaurants. The set would be encapsulated in this
data structure.

typedef struct waypointSetList_s {

int nWaypoints

WaypointCandidateList <sequence> waypoints;

} WaypointSetList;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

72 © ISO 2009 – All rights reserved

5.3.4.3.4 WaypointChoice

Specifies a choice of waypoint and a choice of candidate for the waypoint.

typedef struct waypointChoice_s {

int waypointNo, candidateNo;
} WaypointChoice;

5.3.4.3.5 WaypointChoiceList

List of choices made. With three waypoint sets, in the case of a request to optimize waypoint order, there
might be the result {{1, 2}, {2, 2}, {0, 1}}. This would mean “the path visits candidate number 2 of waypoint set
number 1, then candidate number 2 of waypoint set number 2, then candidate number 1 of waypoint set
number 0.” Note that waypoint sets and candidates are numbered from 0, so that the first waypoint set is
number 0, the second waypoint set is number 1, and so on.

typedef struct waypointChoiceList_s {

int nWaypoints;

WaypointChoice <sequence> waypointChoice;

} WaypointChoiceList;

5.3.4.3.6 FuzzyWaypoint

A fuzzy waypoint is represented by a disc, i.e., by a point and a radius.

typedef struct fuzzyWaypoint_s {
MapPosition2DType point;

// radius around the point, in meters
int radius;

} FuzzyWaypoint;

5.3.4.3.7 FuzzyWaypointList

This represents a list of fuzzy waypoints.

typedef struct fuzzyWaypointList_s {

int nFuzzyWaypoints;

FuzzyWaypoint <sequence> waypoints;

} FuzzyWaypointList;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 73

5.3.4.3.8 MapPathHandle

A MapPathHandle is an opaque handle that is used to retrieve a MapRouteLinkAndCostType sequence (i.e.,
a path structure).

typedef struct mapPathHandle_s {

unsigned long ulPartOne;
unsigned long ulPartTwo;
unsigned long ulPartThree;
unsigned long ulPartFour;

} MapPathHandle;

5.3.4.3.9 MapRouteUsageEnum (Hungarian: rue)

This enumeration is used for highway usage preference.

typedef enum MapRouteUsageEnum_e {

// (e.g., motorway in UK, freeway or turnpike in US, and
// expressway in Japan and Korea).
PROHIBIT, // Never use even if it means

 // returning a failure
AVOID, // Avoid when possible (the degree of

 // avoidance is left to the implementation)
PREFER, // Use when possible (the degree of

 // preference is left to the implementation)
NO_PREFERENCE // No preference as to usage

} MapRouteUsageEnum;

5.3.4.3.10 MapRouteDynamicTrafficUsageEnum (Hungarian: rtue)

This enumeration is used for dynamic traffic usage preference.

typedef enum MapRouteDynamicTrafficUsageEnum_e {

TRAFFIC_DYNAMIC, // No historical usage
TRAFFIC_HISTORICAL, // Only historical usage
TRAFFIC_BOTH,
TRAFFIC_NONE // [default state]

} MapRouteDynamicTrafficUsageEnum;

5.3.4.3.11 MapRouteMinimizeOptionEnum (Hungarian: rmoe)

This enumeration is used for route minimization options.

typedef enum MapRouteMinimizeOptionEnum_e {

SHORTEST_DISTANCE, // shortest road distance
SHORTEST_TIME // shortest road travel time
SIMPLE_ROUTE, // Short road travel time, but biased
 // toward few maneuvers

} MapRouteMinimizeOptionEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

74 © ISO 2009 – All rights reserved

5.3.4.3.12 MapRouteCostModelType (Hungarian: rcm)

This structure contains information about the cost criteria. It contains information about how to assign
“exchange rate” cost to:

⎯ road distance,

⎯ road travel time,

⎯ highway usage preference,

⎯ toll road usage preference,

⎯ dirt road usage preference,

⎯ U-turn maneuver preference,

⎯ scenic route preference, and

⎯ dynamic traffic usage. This indicates whether static cost values or dynamic cost values based on traffic
are to be used. If dynamic values are to be used, it indicates whether historical values and/or actual
current values are to be used.

It is not required that every implementation support every combination of these parameters. For example, an
implementation might not have access to historical traffic information and therefore may not support routing
based on it. Similarly, an implementation might not support preferring dirt roads or U-turns. Such an
application shall accept the statement of the preference but need not heed it.

typedef struct MapRouteCostModelType_s {

MapRouteMinimizeOptionEnum rmoeMinimizerGoal;
MapRouteUsageEnum rueHighwayAffinity;
MapRouteUsageEnum rueTollroadAffinity;
MapRouteUsageEnum rueDirtRoadAffinity;
MapRouteUsageEnum rueUTurnAffinity;
MapRouteUsageEnum rueScenicRouteAffinity;
MapRouteDynamicTrafficUsageEnum rtueDynamicTrafficUsage;

} MapRouteCostModelType;

5.3.4.3.13 MapRoutePointType (Hungarian: rp)

This structure contains a set of links associated with a route point.

typedef struct MapRoutePointType_s {

unsigned short usNumLinks;
sequence <MapDBIDType> dbidLinkIDs;

} MapRoutePointType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 75

5.3.4.3.14 MapRoutePointSequenceType (Hungarian: rps)

This structure contains the origin, intermediate waypoints (should there be any), and the destination for the
MapComputePath function. These points are traversed in order; that is, they are a true sequence.

typedef struct MapRoutePointSequenceType_s {

// There must be at least two points, one for the origin and one
// for the destination. They are the first and the last point in
// this sequence. Intermediate waypoints, if there are any, are
// defined in the middle of the sequence.
unsigned short usNumPoints;
sequence <MapRoutePointType> rpRoutepoints;

} MapRoutePointSequenceType;

5.3.4.3.15 MapRouteLinkAndCostType (Hungarian: rlc)

This structure contains the link and the travel node cost information returned by the MapComputePath
function. The node traversal cost value for the first MapComputePath result record should be zero.

typedef struct MapRouteLinkAndCostType_s {

MapDBIDType dbidComputePathLinkID;

// Link traversal time, in tenths of seconds
unsigned long ulEstLinkTravelTime;

 // Estimated node travel cost to the link above, units of
// measurement are in tenths of seconds.
unsigned short usNodeTravelTime;

} MapRouteLinkAndCostType;

5.3.4.3.16 MapRouteControlType (Hungarian: rc)

This structure contains the criteria to be used by the MapComputePath function for computing a path.

The cost criteria include the following information:

⎯ Should travel time or travel distance be minimized?

⎯ Should highways be used?

⎯ Should toll roads be used?

⎯ Should a scenic route be preferred?

⎯ For which vehicle type(s)?

⎯ For what starting and/or end times?

typedef struct MapRouteControlType_s {

// Cost criteria
MapRouteCostModelType rcmCostCriteria;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

76 © ISO 2009 – All rights reserved

// Vehicle type(s)
MapAccessVehicleType avVehicleTypes;

// Planned departure date and time
MapDateTimeType dttRouteStartDateTime;
// Planned arrival date and time
MapDateTimeType dttRouteEndDateTime;
// Note: If both departure and arrival dates and times are specified,
// the computed route should be navigable for the entire specified
// interval.

} MapRouteControlType;

5.3.4.4 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.4.5 Route planning functions

5.3.4.5.1 MapComputePath

This function returns a handle to an ordered list of links and node travel costs for the computed path. The
computed path is the path for the specified compute control values.

The bRelaxConstraint input parameter allows the caller to specify whether all the specified compute control
values must be met, or whether the DAL has permission to relax one or more. If the specified compute control
values would result in no route being found because highways or toll roads are prohibited then, if
bRelaxConstraint is TRUE, the function may relax one or more control values so that a route can be found. If
the specified compute control values do allow a result to be found, then bRelaxConstraint has no effect. The
bConstraintRelaxed output parameter shows whether one or more compute control values has been relaxed.
The cursor (which is obtainable form the pathHandle output parameter) contains
MapRouteLinkAndCostType elements.

Although the application uses rcComputeControl to specify the type of route requested, the exact choice of
route is up to the DAL, and is outside the scope of this International Standard.

MapReturnType MapComputePath (
in LocusList originLoci,
in LocusList destinationLoci,

in MapRouteControlType rcComputeControl,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 77

in boolean bRelaxConstraint,

in MapPriorityType prPriority,

out boolean bConstraintRelaxed,
// pathHandle is a data structure containing information about the
// computed route, which can be used as input to other functions. The
// actual large result set containing a list of path elements can be
// obtained by calling MapGetCursorInfo, which returns a cursor
// containing MapRouteLinkAndCostType elements.

out MapPathHandle pathHandle)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

The following examples clarify the use of compute control values and bRelaxConstraint. In the examples, for
clarity we will assume that rcComputeControl.rcmCostCriteria.rmoeMinimizerGoal is set to
SHORTEST_DISTANCE, i.e., that distance is being minimized.

Consider case 1 in Figure 10. If rcComputeControl.rcmCostCriteria.rtueTollroadAffinity is set to
NO_PREFERENCE, route A will be chosen. If it is set to AVOID_TOLLROADS, route B will be chosen. If it is
set to PROHIBIT_TOLLROADS, route C will be chosen. In all of these cases, bConstraintsRelaxed will be set
to FALSE because no constraint has been relaxed.

Origin

Toll Road Route A

Route B

Route C

Destination

Figure 10 — Case 1

Next consider case 2 (Figure 11), in which the destination is actually on a toll road. If
rcComputeControl.rcmCostCriteria.rtueTollroadAffinity is set to NO_PREFERENCE, route A will be chosen.
If it is set to AVOID_TOLLROADS, route B will be chosen. If it is set to PROHIBIT_TOLLROADS, then if
bRelaxConstraints is FALSE, the computation will fail and the function will return MapRouteNotFound; but
if bRelaxConstraints is TRUE, then the function will relax PROHIBIT_TOLLROADS to AVOID_TOLLROADS,
route B will be chosen, and bConstraintsRelaxed will be set to TRUE.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

78 © ISO 2009 – All rights reserved

Origin

Toll Road
Destination

Route A

Route B

Figure 11 — Case 2

5.3.4.5.2 MapComputePathWithFuzzyWaypoints

This function differs from MapComputePath() in the preceding section only by adding a list of “fuzzy
waypoints” as an input parameter. A fuzzy waypoint is not a specific point at which the driver wishes to stop;
rather, it is a general area through which the driver wishes to go. It is anticipated that this function will be used
primarily to allow a driver to modify a route by pointing at a general area through which to pass. For example,
there might be two highways, Highway 1 and Highway 2, between an origin city and a destination city. The
first route computed for the driver might be along Highway 1, but the driver knows that she likes Highway 2
better. If the user interface allows it, the driver could tap her finger on the map somewhere near Highway 2
and the application could then use the finger-tap to specify a fuzzy waypoint for a second computation.

MapReturnType MapComputePathWithFuzzyWaypoints(
in LocusList originLoci,
in FuzzyWaypointList waypoints,
in LocusList destinationLoci,

in MapRouteControlType rcComputeControl,

in boolean bRelaxConstraint,

in MapPriorityType prPriority,

out boolean bConstraintRelaxed,

// one per step, i.e., if there are n waypoints there are (n + 1)
// MapPathHandles
out MapPathHandle pathHandle)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 79

5.3.4.5.3 MapComputePathWithWaypointSets

This function differs from MapComputePath() by adding as inputs a set of waypoints and a Boolean option
regarding whether the order of waypoints is to be optimized. There is also an additional output which returns
the set of waypoints actually chosen.

Each waypoint is specified not as a single waypoint but rather as a set of candidates. The set of candidates
can contain a single element when a single, unique waypoint is specified. However, the set can contain
multiple candidates. In that case, the function chooses one of the candidates as a waypoint and ignores the
rest. This can be used when there are multiple possible stops all of which are equally acceptable to the driver.
For example, a driver who wants to stop at an automatic teller machine may not care which of his bank’s
machines he visits. In that case it is natural to use multiple candidates.

Each waypoint candidate, in turn, is specified with sets of destination and origin loci, which represent entry
points to, and exit points from, the waypoint stop. In most cases, there will be only one destination locus and
one origin locus per waypoint, and they will be the same locus. Still, the function supports multiple loci
because some waypoints will be accessible from loci on multiple links. The function also supports destination
loci distinct from origin loci because, for some waypoints, the entry point from a road and the exit point to a
road may be substantially different.

The Boolean parameter optimizeWaypointOrder specifies whether the order in which the waypoints are visited
is to be optimized by the function or is to be the same as the order in which the waypoints are listed in the
function call. If the order is to be optimized by the function, this amounts to solving the “travelling salesman
problem” (TSP), which is known to be computationally difficult for large numbers of waypoints. There is
therefore no guarantee that an implementation will produce a result quickly when more than a few waypoints
are specified; conversely, there is no guarantee that an implementation will produce an optimal result when
speed is chosen as more important than optimality. As a result, the order of the WaypointCandidateLists in the
WaypointSetList is significant if optimizeWaypointOrder is false and insignificant if optimizeWaypointOrder is
true. However, the order of the waypoints in each WaypointCandidateList is not significant in either case.

This function also has two output parameters that differ from those of MapComputePath(). The parameter
waypointChoices specifies which waypoint from each set was chosen and the order in which the waypoints
were chosen. Also, the output parameter pathHandle returns a set of path handles, one per step of the route
(origin to waypoint, waypoint to waypoint, or waypoint to destination), in order.

MapReturnType MapComputePathWithWaypointSets(
in LocusList originLoci,
in WaypointSetList waypoints,
in LocusList destinationLoci,

// true => optimize order of waypoints; false => use stated order
in boolean optimizeWaypointOrder,

in MapRouteControlType rcComputeControl,

in boolean bRelaxConstraint,

in MapPriorityType prPriority,

out boolean bConstraintRelaxed,

out waypointChoiceList waypointChoices,

// one per step, i.e., if there are n waypoints there are (n + 1)
// MapPathHandles
out MapPathHandle <sequence> pathHandle)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

80 © ISO 2009 – All rights reserved

5.3.4.5.4 MapComputePathMultipleRoutes

This function differs from MapComputePath() by allowing a single call to return multiple alternative routes. To
allow this, there is an additional parameter nRoutesDesired, which specifies the number of alternative routes
desired. The input parameter rcComputeControl is a set of MapRouteControlTypes, one per desired route, to
support, for example, simultaneous requests for shortest, fastest, and pedestrian routes, which require
different control parameters.

In this function, the output parameter pathHandle is a sequence of n sequences of w + 1 MapPathHandles,
where n is the number of routes desired and w is the number of waypoints supplied. Each of the n sequences
is for one of the multiple routes computed; each route is returned as w + 1 steps, one per step of the route
(origin to waypoint, waypoint to waypoint, or waypoint to destination), in order.

The order of waypoints in the WaypointCandidateList is significant. The computed routes will visit the
waypoints in the order in which they are supplied.

MapReturnType MapComputePathMultipleRoutes(
in LocusList originLoci,
in WaypointCandidateList waypoints,
in LocusList destinationLoci,

in int nRoutesDesired, // how many routes?
in MapRouteControlType <sequence>
 rcComputeControl, // nRoutesDesired many.
// This is a set of nRoutesDesired MapRouteControlTypes.
// This way the caller could ask for, e.g., two different short-time
// routes and one short-distance route, or for one short-time route,
// one short-distance route, and one scenic route, or for three
// different short-time routes.

in boolean bRelaxConstraint,

in MapPriorityType prPriority,

out boolean bConstraintRelaxed,

// one per route, i.e., a total of nRoutesDesired MapPathHandles are
// returned
out MapPathHandle <sequence> of <sequence>
 pathHandle)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.4.5.5 MapComputePathsMultipleDestinations

This function differs from MapComputePath() by allowing a single call to compute routes from a single origin
to multiple destinations at once, without waypoints. To allow this, there is an additional input parameter
nDestinations, and the destinations are specified by a sequence of LocusLists, rather than a single LocusList.

In addition, the output parameter pathHandle is a sequence of MapPathHandles, one per destination, in the
order in which the destinations were specified.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 81

MapReturnType MapComputePathsMultipleDestinations(
in LocusList originLoci,
// Note: No waypoints in this parameterization.
in int nDestinations,
in LocusList <sequence> destinationLoci,

in MapRouteControlType rcComputeControl,

in boolean bRelaxConstraint,

in MapPriorityType prPriority,

out boolean bConstraintRelaxed,

// one per destination, i.e., a total of nDestinations MapPathHandles
// are returned
out MapPathHandle <sequence> pathHandle)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.4.5.6 MapGetLinksAndCostsFromPath

A MapPathHandle is an opaque handle that is used to retrieve a MapRouteLinkAndCostType sequence (i.e.,
a path structure).

MapReturnType MapGetLinksAndCostsFromPath (
in MapPathHandle pathHandle,
out MapCursorReturnTypeEnum crteCursorType = MAP_ROUTE_LINK_AND_COST,
out MapCursorType cuMapRouteLinkAndCost)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.4.6 Route planning optional extended low level interface

5.3.4.6.1 MapGetComplexToll

This function returns a cursor containing MapConditionType data structures representing the possible tolls
from one link (the “origin link”) to another (the “destination link”) for a certain vehicle type. The argument
avVehicle is used to specify the vehicle or set of vehicles for which tolls are desired.

The MapConditionType data structures contained by the cursor have condition category TOLL_CONDITION
and condition modifier COMPLEX_TOLL_INSTANCE.

When there is a single toll from the origin link to the destination link, the cursor will contain a single
MapConditionType data structure. When there are multiple toll values from the origin link to the destination
link — whether for different vehicle types, different time periods, different routes, different currencies (e.g., US
dollars versus Canadian dollars), or some combination of these — one MapConditionType data structure will
be returned for each toll value.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

82 © ISO 2009 – All rights reserved

As for other uses of MapConditionType, a time dependency is denoted by the Boolean bTimeDependent, and
the times for which it applies are retrieved with the function MapGetConditionDateTime().

When a toll depends on the route taken, the route to which the MapConditionType structure applies is
conveyed to the caller as follows: The Boolean bMultipleLinks is set to indicate the presence of a route to
which the toll applies. The function MapGetConditionLinksAndNodes() is used to retrieve a sequence of links
and associated (destination) nodes. The sequence of links is not required to be consecutive. The first is the
origin link for the toll price; the last is the destination link for the toll price; and the intermediate links are links
such that, if the route traverses them in order, the toll price in the MapConditionType data structure is correct.
To allow for cases in which the toll is bi-directional, the DAL is allowed to return the list of links in reverse
order (in which case the “destination” nodes will be destination nodes in the order in which the list is returned,
and origin nodes when the list is traversed in the order originally described by the caller).

MapReturnType MapGetComplexToll(
in MapDBIDType dbidOriginLinkID,
in MapDBIDType dbidDestinationLinkID,
in MapAccessVehicleType avVehicle,
in MapPriorityType prPriority,
out MapCursorType cuTollInstances)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.4.6.2 MapGetCondition

This function retrieves the specified condition record.

MapReturnType MapGetCondition(
in MapDBIDType dbidConditionID,
in MapPriorityType prPriority,
out MapConditionType cndRetrievedCondition)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,

 MapNoRecordsFound);

5.3.4.6.3 MapGetConditionDateTime

This function creates a result set containing all of the date/time information for the specified condition. The
cursor contains MapDateTimeType elements.

MapReturnType MapGetConditionDateTime(
in MapDBIDType dbidConditionID,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_DATE_TIME,
out MapCursorType cuMapDateTime)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 83

5.3.4.6.4 MapGetConditionLinksAndNodes

This function creates a result set containing a list of the link IDs and the intermediate node IDs associated with
the specified condition in the order in which the condition applies. The cursor contains
MapConditionLinkAndNodeType elements. Note that, despite the fact that the function’s name refers to
links and nodes in the plural, the result set contains only one link-and-node pair if the condition applies only to
a single link.

MapReturnType MapGetConditionLinksAndNodes(
in MapDBIDType dbidConditionID,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_CONDITION_LINK_AND_NODE,
out MapCursorType cuMapConditionLinkAndNode)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory);

5.3.4.6.5 MapGetContainingIntersection

This function retrieves the DBID of the intersection containing a particular node or link.

MapReturnType MapGetContainingIntersection(
in MapDBIDType dbidNodeORLinkID,
in MapEntityEnum eeEntityType,
in MapPriorityType prPriority,
out MapDBIDType dbidIntersectionID)

raises(MapInvalidArgument,
MapInvalidRequest);

5.3.4.6.6 MapGetIntersectionLinks

This function creates a result set containing all of the links (that is, both internal links and links that are
attached to the intersection) associated with the specified intersection. The cursor contains MapLinkType
elements.

MapReturnType MapGetIntersectionLinks(
in MapDBIDType dbidIntersectionID,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_LINK,
out MapCursorType cuMapLink)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory);

5.3.4.6.7 MapGetLink

This function retrieves the specified link.

MapReturnType MapGetLink(
in MapDBIDType dbidLinkID,
in MapPriorityType prPriority,
out MapLinkType lkRetrievedLink)

raises(MapInvalidArgument);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

84 © ISO 2009 – All rights reserved

5.3.4.6.8 MapGetLinkSubattr

This function gets the rarely used link attribute information for a link.

MapReturnType MapGetLinkSubattr(
in MapDBIDType dbidLinkID,
in MapPriorityType prPriority,
out MapLinkSubattrType lsRetrievedLinkSubattr)

raises(MapInvalidArgument, MapInvalidRequest);

5.3.4.6.9 MapGetLinkConditions

This function creates a result set containing any condition associated with the specified link. The cursor
contains MapConditionAndDirectionType elements.

Note that this function can return a “no record found” result for a link to which conditions apply, if all the
conditions apply to one direction and the request is limited to the other direction.

A condition applicable to multiple links is retrievable from any of its participating individual links.

MapReturnType MapGetLinkConditions(
in MapDBIDType dbidLinkID, // link for which conditions

// are desired
in MapConditionCategoryType

ccConditionTypes; // type(s) of condition
// desired

in MapOrientationDirectionEnum
odeDirection, // direction(s) for which

// conditions are desired
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_CONDITION_AND_DIRECTION,
out MapCursorType cuMapConditionAndDirection)

raises(MapInvalidArgument,
MapNoRecordsFound,
MapCursorNotAvailable,
MapInvalidRequest,
MapNoMemory);

5.3.4.6.10 MapGetMultLinks

This function retrieves the requested link records. The links are specified by entity ID.

MapReturnType MapGetMultLinks(
in sequence <MapEntityIDType> eidLinkIDs,
in long lNumOfEntityIDs,
in MapPriorityType prPriority,
out sequence <MapLinkType> lkRetrievedLinks)

raises(MapInvalidArgument);

5.3.4.6.11 MapGetNode

This function retrieves the specified node.

MapReturnType MapGetNode(
in MapDBIDType dbidNodeID,
in MapPriorityType prPriority,
out MapNodeType ndRetrievedNode)

raises(MapInvalidArgument);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 85

5.3.4.6.12 MapGetSuccessors

This function creates a result set containing the links connected to the specified node. The cursor contains
MapSuccessorLinkAndNodeType elements, one for each successor link. snceSuccNodeCostType
specifies whether node traversal costs between dbidLinkID and the successor link should be calculated in
the forward or reverse direction of travel. It is possible to set dbidLinkID to NULL, but dbidLinkID shall
not be NULL when node travel cost values are to be returned.

MapReturnType MapGetSuccessors(
in MapDBIDType dbidNodeID,
in MapDBIDType dbidLinkID,
in long lTargetLevel,
in boolean bIncludeInputLink,
in MapSuccNodeCostEnum snceSuccNodeCostType,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_SUCCESS_LINK_AND_NODE,
out MapCursorType cuMapSuccessLinkAndNode)

raises(MapInvalidArgument,
MapInvalidRequest,
MapNoRecordsFound,
MapCursorNotAvailable,
MapNoMemory);

5.3.4.6.13 MapGetTimeZone

This function retrieves the time zone information for a particular time zone code. Time zones required for the
PSF are contained in metadata.

MapReturnType MapGetTimeZone(
in unsigned long ulTimeZoneCode, // From metadata
in MapPriorityType prPriority,
out MapTimeZoneType tzRetrievedTimeZone)

raises(MapInvalidArgument,
MapNoRecordsFound);

5.3.4.6.14 MapGetTollDestinations

For a given link, this function returns a cursor which returns a list of IDs of other links to or from which there is
toll information. If the Boolean bIsOrigin is TRUE, the cursor returns the list of links to which tolls are known. If
it is FALSE, the cursor returns the list of links from which tolls are known.

MapReturnType MapGetTollDestinations(
in MapDBIDType dbidLinkID,
in boolean bIsOrigin,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_LINK,
out MapCursorType cuLinkIDs)

raises(MapInvalidArgument,
MapInvalidRequest);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

86 © ISO 2009 – All rights reserved

5.3.4.6.15 MapSearchLinks

This function creates a result set containing the link records satisfying the specified criteria. The cursor
contains MapLinkType elements.

This function searches for links only at level 0 and returns all links whose geometry lies completely or partially
within the specified set of rectangles.

MapReturnType MapSearchLinks(
in unsigned short usNumOfRectangles,
in sequence <MapRectangleType> rectSearchAreas,
in MapReturnType(any, any) retUserDefineFilterFunc,
in any aFilterFuncParam,
in unsigned long ulFilterFuncParamSize,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_LINK,
out MapCursorType cuMapLink)

raises(MapInvalidArgument,
MapSearchOutsideRegion,
MapNoRecordsFound,
MapCallbackFailed,
MapCursorNotAvailable,
MapNoMemory);

5.3.4.6.16 MapSearchNearestLinks

This function creates a result set containing the link records whose geometry is nearest to the search points
which satisfy the specified criteria. The cursor contains MapLinkType elements.

This function searches for links only at level 0.

This function’s search area is considered to be the disk centred at the search point with the specified radius.
The error MapSearchOutsideRegion is raised only if there is no intersection between the database
coverage area and the search area.

MapReturnType MapSearchNearestLinks(
in MapPosition2DType p2SearchPoint,
in long lMaxDistance, // meters
in MapReturnType(any, any) retUserDefineFilterFunc,
in any aFilterFuncParam,
in unsigned long ulFilterFuncParamSize,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_LINK,
out MapCursorType cuMapLink)

raises(MapInvalidArgument,
MapSearchOutsideRegion,
MapNoRecordsFound,
MapCallbackFailed,
MapCursorNotAvailable,
MapNoMemory);

5.3.4.6.17 MapSearchNodes

This function creates a result set containing the node records satisfying the specified criteria. The cursor
contains MapNodeType elements.

MapReturnType MapSearchNodes(

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 87

in unsigned short usSearchLevel,
in unsigned short usNumOfRectangles,
in sequence <MapRectangleType> rectSearchAreas,
in MapReturnType(any, any) retUserDefineFilterFunc,
in any aFilterFuncParam,
in unsigned long ulFilterFuncParamSize,
in MapPriorityType prPriority,
out MapCursorReturnTypeEnum crteCursorType = MAP_NODE,
out MapCursorType cuMapNode)

raises(MapInvalidArgument,
MapSearchOutsideRegion,
MapNoRecordsFound,
MapCallbackFailed,
MapCursorNotAvailable,
MapNoMemory);

5.3.5 Route guidance

5.3.5.1 Data structures

5.3.5.1.1 MapManeuverDescription

This is the structure in the cursor. There is one per reported maneuveror, one per component of an
aggregated maneuver.

typedef struct mapManeuverDescription_s {

 // Code indicating the maneuver type. There must be a whole

catalogue,
 // to be collected from the group. For example:
 // 0 = continue straight on <name>
 // 1 = turn sharp right onto <name>
 // 2 = turn right onto <name>
 // 3 = turn slight right onto <name>
 // 4 = turn slight left onto <name>
 // 5 = turn left onto <name>
 // 6 = turn sharp left onto <name>
 // 7 = bear right onto <name>
 // 8 = bear left onto <name>
 // 9 = make U turn onto <name>
 // 10 = name becomes <name>
 // 11 = exit on right onto <name>
 // 12 = exit on left onto <name>
 // 13 = merge on right onto <name>
 // 14 = merge on left onto <name>
 // 15 = follow signs to <name>
 // 16 = cross <name>
 // ...
 // 17 = street/road curves
 // 18 = enter ramp
 // 19 = exit ramp
 // 20 = enter roundabout
 // 21 = exit roundabout at <Nth> exit
 // note that <Nth> is to be treated as <name>
 // above, it is passed by the same argument
 // 22 =
 //

 int maneuverCode;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

88 © ISO 2009 – All rights reserved

 // name of street being joined, or destination on signage
 string targetName;

 boolean aggregatedToNext; // TRUE if aggregated to next

maneuver

 // distance from previous maneuver, in meters
 int distance;

// Estimated driving time from previous maneuver, in seconds.
// How time is estimated is up to the implementation.
int time;

} MapManeuverDescription;

5.3.5.1.2 MapRouteGuidanceControl

This structure contains the criteria to be used by the MapGuidePath function for guiding a path.

Each of the data members of the structure is set to indicate whether a maneuver is to be reported based on
the conditions described.

typedef struct MapRouteGuidanceControl_s {

// Should an instruction for name change be issued when the road
// changes name and there is no opportunity for maneuver?
boolean nameChangeNoManeuver;

// 0 => Just crossing a road does not constitute a reportable maneuver.
// 1 => Crossing a more important road constitutes a reportable
// maneuver.
// 2 => Crossing a more important or equally important road
// constitutes a reportable maneuver.
// 3 => Crossing any road constitutes a reportable maneuver.
int continueAcrossRoad;

// The following two Booleans cover the case when the driver can either
// continue straight (but on a road with a different name) or continue
// on the same road name (but by turning).

// Should an instruction be reported when the route does not turn,
// but the road name changes, and it would be possible to keep the same
// road name by turning?
boolean continueButNameTurns;

// Should an instruction be reported when the route stays on the same
// name, and the road turns, but another road continues straight?
boolean turnWithName;

// Should an instruction be reported when the road turns but a
// lower-priority road goes straight. This is separate form the
// case where a same- or higher-priority road goes straight.
boolean turnWithNameLowerPriorityContinues;

// 0 => There are no administrative boundaries for which crossings
// constitute reportable instructions.
// 1 => Crossing a national boundary constitutes a reportable
// instruction.
// 2 => Crossing the boundary of a GDF level 1 administrative area,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 89

// i.e., the boundary of a prefecture, province, state, or the
// equivalent, or a more important boundary, constitutes a
// reportable instruction.
// 3 => Crossing the boundary of a county or the equivalent, or a
// more important boundary, constitutes a reportable instruction.
// 4 => Crossing the boundary of a city or the equivalent, or a
// more important boundary, constitutes a reportable instruction.
// 5 => Crossing any administrative boundary constitutes a reportable
// instruction.
int crossAdminBoundary;
 // Crossing a (non-road) feature constitutes a reportable maneuver.
 boolean bCrossFeature;
 int lowestLevel;

 // Features below this level don’t get announced. Range of [0..10]
 // where 10 is highest priority and 0 is lowest. So, Mississippi
 // River might be a 10, while the smallest of tiny creeks would be
 // 0. If the data isn’t stored in a 10 level system, the proper
 // “translation” from such a value system is made by the DAL.
 // This parameter is relevant only if the previous boolean is

‘true’.

 boolean formOfWayChange; // The form of way changes.

 // Should a maneuver be reported at the start/end of the trip?
 boolean startOfTrip;
 boolean endOfTrip;

 // Preferences for name use in descending order of preference.
 // If there are fewer than 16 preferences--the normal case--
 // trailing values should be set to negative numbers. Possible
 // values are:
 // 0 => Top-level highway number
 // (e.g., E-roads in EU outside UK, Interstates in US,
 // M-roads in UK)
 // 1 => Second-level highway numbers
 // (e.g., US routes in US, A-roads in UK)
 // 2 => Third-level highway numbers
 // (e.g., state routes in US, B-roads in UK)
 // 3 => Fourth-level highway numbers
 // (e.g., county routes in US)
 //
 // 8 => Text names
 // 9 => Name with longest extent along the computed route
 //

// For example, if the user prefers text names, then US highway
// numbers, then Interstate highway numbers, then state highway
// numbers, the first four elements in the array would be 8, 1, 0, 2.
//
// namePreferenceHighway[] applies to true highways, not to ordinary
// roads that also have highway numbers. namePreferenceHighway[]
// applies to highways in both urban and rural areas.
// namePreferenceUrban[] applies to roads in urban areas other than
// highways. namePreferenceRural[] applies to roads in rural areas
// other than highways. The definitions of exactly what constitutes
// “true highways”, urban areas, and rural areas is left to the DAL
// implementation.

 int namePreferenceHighway[16],
namePreferenceUrban[16],
namePreferenceRural[16];

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

90 © ISO 2009 – All rights reserved

 // When we don’t know whether we are in an urban area or a rural
 // area, we use the following default: If ‘true’ then we assume
 // Urban when we don’t know where we are.

 Boolean bUrbanDefault;

 // When should name changes be announced?
 // 0 => Never.
 // 1 => Whenever the preferred name changes.
 // 2 => Whenever the set of names splits at a fork,

// or the preferred name changes.
 // 3 => Whenever the set of names changes.

 //
 int nameChangeAnnounce;

// As to what name(s) is (are) returned for maneuvers: When
// nameChangeAnnounce is 0 or 1, only the preferred name of a road
// (as determined by namePreferenceXxx[]) is returned. When
// nameChangeAnnounce is 2 or 3, all names of a road are returned, in
// the order of preference specified by namePreferenceXxx[]. The
// difference between nameChangeAnnounce = 2 and nameChangeAnnounce
// = 3 is as follows: nameChangeAnnounce = 3 triggers a maneuver
// description whenever any change to the set of names occurs.
// On the other hand, nameChangeAnnounce = 2 triggers a maneuver
// description only at a point at which either (i) the preferred
// name changes or else (ii) multiple different maneuvers are
// possible and at least one name (not necessarily the preferred
// name) proceeds along the road taken as part of the route and at
// least one other name (again, not necessarily the preferred name)
// proceeds along a road not taken as part of the route.

// If this value is n, aggregate maneuvers when the estimated time
// between them is less than n seconds. If this value is 0, never
// aggregate maneuvers based on estimated driving time between the
// maneuvers.
int maneuverAggregateMinimumTime;

// If this value is n, aggregate maneuvers when the distance
// between them is less than n meters. If this value is 0, never
// aggregate maneuvers based on distance. If this value is -1, aggregate
// at the intersection and interchange level, if this value is -2,
// aggregate at the interchange level only.
int maneuverAggregateMinimumDistance;

// Note: At most one of maneuverAggregateMinimumDistance and
// maneuverAggregateMinimumTime should be specified (i.e., nonzero).
// If both are nonzero, the result is determined by the DAL.

// Replace aggregated maneuvers with "follow signs to <destination>"
// when it is possible to do so. Do not aggregate if we are not within
// the number of meters listed in this parameter. If this value
// is zero (or negative) then we never aggregate. Use case for this
// parameter is as follows: For example even if the caller wants to
// aggregate maneuvers through an interchange, the caller may not want
// to say “follow signs to Phoenix” and then nothing else for hundreds
// of kilometres.
int maneuverAggregateToFollowSignage;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 91

// When a maneuver leads into an unnamed road, if the next maneuver is
// sufficiently close, but otherwise would not aggregate, then
// aggregate anyway. For example, for a series of ramps, rather than
// saying separately "turn right [onto unnamed road]", "turn left
// [onto unnamed road]", "turn right onto Main Street", one would
// aggregate the directions into a single instruction "turn right,
// followed by a left, then turn right again onto Main Street".
// As above, this is done if within the number of meters specified
// in the parameter, otherwise no aggregation. If value is zero
// or negative, then no aggregation is ever made.
int maneuverAggregateUnnamed;

// Aggregate two left turns (or two right turns) into a U turn.
// The decision as to when this is done is left to the implementer of
// the DAL. That is, it is up to the DAL implementer’s discretion
// whether to aggregate two consecutive left or right turns that would
// otherwise make up a U turn if the component turns are too far apart
// in either distance or driving time, or if the starting and ending
// carriageways have two different names. This Boolean merely
// authorizes the DAL implementer to perform the aggregation.
boolean maneuverAggregateUTurn;

// Should names be returned at all? If the following Boolean is true, the
// targetName field in the returned MapManeuverDescription will always be
// returned as the empty string, whether the road has a name or not.
// (This is of use for applications that will not display or announce road
// names in any case.)
boolean suppressRoadName;

} MapRouteGuidanceControl;

5.3.5.2 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

92 © ISO 2009 – All rights reserved

5.3.5.3 Route guidance functions — MapGuidePath

MapReturnType MapGuidePath (
in MapPathHandle pathHandle,

in MapRouteGuidanceControl rcComputeControl,

in MapPriorityType prPriority,

 // Cursor returns MapManeuverDescriptions.

out MapCursorReturnTypeEnum crteCursorType = MAP_MANEUVER_DESCRIPTION,
out MapCursorType cuMapRouteGuidanceSteps)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.6 Positioning

5.3.6.1 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.6.2 Positioning functions

5.3.6.2.1 GetPosition

Given a measured position, returns a corrected matched result.

MapReturnType GetPosition(
 // should some form of map matching based on history should be done?

in boolean useHistory,

// a measured position which is independent of the map, measured by an
// external position measuring device

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 93

in MapPosition2DType measuredCurrentPosition,

// matched map position
out locusType locus)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapNoRecordsFound);

5.3.6.2.2 GetNearbyMapFeatures

Get a set of nearby map features.

MapReturnType GetNearbyMapFeatures(
 // should some form of map matching based on history should be done?

in boolean useHistory,

// a measured position which is independent of the map, measured by an
// external position measuring device
in lat-longType measuredCurrentPosition,

// the features found should be no further away then this distance
// measured in centimetres?
in long delta,

// nearby features returned in a cursor of type MapFeatureType
out MapCursorReturnTypeEnum crteCursorType = MAP_FEATURE,
out MapCursorType cuFeatures)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.7 Map display

5.3.7.1 Data structures

5.3.7.1.1 mdDAL

typedef void * mdDAL;

5.3.7.1.2 mdParcelList

typedef void * mdParcelList;

5.3.7.1.3 mdFeatureList

typedef void * mdFeatureList;

5.3.7.1.4 mdNameList

typedef void * mdNameList;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

94 © ISO 2009 – All rights reserved

5.3.7.1.5 mdPointList

typedef void * mdPointList;

5.3.7.1.6 mdItemID

typedef void * mdItemID;

5.3.7.1.7 mdTypeList

typedef void * mdTypeList;

5.3.7.1.8 mdPoint

typedef struct mdPoint_t {

 long x, y;

} mdPoint;

5.3.7.2 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.7.3 Map display functions

5.3.7.3.1 GetFeatures

Gets a set of map features.

MapReturnType GetFeatures(
 // a handle to a set of maps from which to fetch. See mapHandleCreate()

in MapHandleType mapHandle,

// a bounding box to frame the request. Assumed to be a rectangle in
// some orientation. Described as 3 points (topLeft, bottomLeft,
// bottomRight). If the 3 points are not corners of a rectangle the

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 95

// result will be the smallest rectangle such that one edge of the
// rectangle contains the “bottomLeft” point and the “bottomRight”
point
// and the rectangle contains the “topLeft” point
in bbox3PtType bbox,

// an integer within the range of “published” set of levels available
// when not used should be < 0
in short genericGenLevel,
// an alternative to the previous parameter. Expressed in units of
// centimetres as an integer. When not used should be < 1.
// this and the previous parameter are alternative, really. If both
// are specified the DAL can decide how to “best” accommodate the
// request.
in long granularityExtent,

// language of the text strings (when appropriate) expressed as 3
// letter MARC Code (ISO 639-2, also available in a GDF annex).
// When not used should be an empty string (or NULL)
in char[3] language,

// priority of this function – relative to other calls
in MapPriorityType prPriority,

// a large result set of type MapFeatureType. Returns all features as
// described in the request
out MapCursorReturnTypeEnum crteCursorType = MAP_FEATURE,
out MapCursorType cuFeatures)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.7.3.2 GetFeaturesFiltered

Gets a set of map features. This version is with added filtering capabilities (beyond the regular getFeatures()
function).

MapReturnType GetFeaturesFiltered(
 // a handle to a set of maps from which to fetch. See mapHandleCreate()

in MapHandleType mapHandle,

// feature and/or attribute values to which the search
// applies + = include, - = exclude
in featureFilterType filter,

// a bounding box to frame the request. Assumed to be a rectangle in
// some orientation. Described as 3 points (topLeft, bottomLeft,
// bottomRight). If the 3 points are not corners of a rectangle the
// result will be the smallest rectangle such that one edge of the
// rectangle contains the “bottomLeft” point and the “bottomRight”
point
// and the rectangle contains the “topLeft” point
in bbox3PtType bbox,

// an integer within the range of “published” set of levels available
// when not used should be < 0
in short genericGenLevel,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

96 © ISO 2009 – All rights reserved

// an alternative to the previous parameter. Expressed in units of
// centimetres as an integer. When not used should be < 1.
// this and the previous parameter are alternative, really. If both
// are specified the DAL can decide how to “best” accommodate the
// request.
in long granularityExtent,

// language of the text strings (when appropriate) expressed as 3
// letter MARC Code (ISO 639-2, also available in a GDF annex).
// When not used should be an empty string (or NULL)
in char[3] language,

// priority of this function – relative to other calls
in MapPriorityType prPriority,

// a large result set of type MapFeatureType. Returns all features as
// described in the request
out MapCursorReturnTypeEnum crteCursorType = MAP_FEATURE,
out MapCursorType cuFeatures)

raises(MapSearchOutsideRegion,
MapNoMemory,
MapInvalidRequest,
MapInvalidArgument,
MapCursorNotAvailable,
MapNoRecordsFound);

5.3.7.3.3 Map handle functions

5.3.7.3.3.1 General

This section contains functions used to manage map handles.

5.3.7.3.3.2 mapHandleCreate

This creates a map handle from a list of maps.

(Schematically: M1 + M2 + M3 + … -> H)

MapReturnType mapHandleCreate(
in short nMaps,
in <sequence> MapIDtype mapID,
out MapHandleType mapHandle)

raises(MapNoMemory,
MapInvalidRequest,
MapInvalidArgument);

5.3.7.3.3.3 mapHandleCombine

Creates a map handle by combining a number of existing map handles.

(Schematically: H1 ∪ H2 ∪ H3 ∪ … -> H)

MapReturnType mapHandleCombine(
in short nHandles,
in <sequence> MapHandleType mapHandle,
out MapHandleType untionMapHandle)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 97

raises(MapNoMemory,
MapInvalidRequest,
MapInvalidArgument);

5.3.7.3.3.4 mapHandleAdd

Add extra maps to an existing map handle. If they are already there, continue as before.

(Schematically: H = M1 + M2 + M3)

MapReturnType mapHandleAdd(
in MapHandleType mapHandle,
in short nMaps,
in <sequence> MapIDtype mapID,
out MapHandleType mapHandle)

raises(MapNoMemory,
MapInvalidRequest,
MapInvalidArgument);

5.3.7.3.3.5 mapHandleRelease

Releases a map handle that is no longer necessary.

MapReturnType mapHandleRelease(
in MapHandleType mapHandle)

raises(MapNoMemory,
MapInvalidRequest,
MapInvalidArgument);

5.3.7.4 Map display extended low level interface

5.3.7.4.1 Informational functions

// tells us the map’s coordinate system
// example of precision: 6 digits (i.e. -6 power)
// example of precision: 7 digits (i.e. -7 power)
int GetCoordinateSystem (
 in MapIDtype mapID,
 out int decimalPrecision,
 out int coordType);

// tells us what is the geographic extent in the map
int GetRootBBox (
 in MapIDtype mapID,
 out long xmin,
 out long xmax,
 out long ymin,
 out long ymax);

// get the “highest” gen-level in this map
int GetMaxLevel (
 in MapIDtype mapID);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

98 © ISO 2009 – All rights reserved

// get the “lowest” gen-level in this map
int GetMinLevel (
 in MapIDtype mapID);

// Returns number of features
// input is bbox (in form of 4 longs)
// the features are then returned in a feature list
int GetFeatureListBBox (
 in MapIDtype mapID,
 in long xmin,
 in long xmax,
 in long ymin,
 in long ymax,
 out FeatureList featureList,
 out int featureCount);

5.3.7.4.2 Feature list functions

int FreeFeatureList (
 in FeatureList featureList,
 in MapIDtype mapID);

 // use featureIndex to “index” into the feature list
 // get the feature type

int GetFeatureType(
 in MapIDtype mapID,
 in FeatureList featureList,
 in int featureIndex,
 out int featureType);

 // use featureIndex to “index” into the feature list
 // get the feature class

int GetFeatureClass (
 in MapIDtype mapID,
 in FeatureList featureList,
 in int featureIndex,
 out int featureClass);

 // use featureIndex to “index” into the feature list
 // get the feature dimension

int GetDimension (
 in MapIDtype mapID,
 in FeatureList featureList,
 in int featureIndex,
 out GeometryTypeEnum featureDimension);

 // use component to “index” into the point list
 // get the component dimension

int GetComponentDim (
 in MapIDtype mapID,
 in PointList pointList,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 99

 in int component,
 out GeometryTypeEnum componentDim);

 // use featureIndex to “index” into the feature list
// Returns number of point components in list
int GetPointList (
 in MapIDtype mapID,
 in FeatureList featureList,
 in int featureIndex,
 out PointList pointList,
 out int numOfComponents);

 // use featureIndex to “index” into the feature list
// Returns number of names in list
int GetNameList (
 in MapIDtype mapID,
 in FeatureList featureList,
 in int index,
 out NameList nameList,
 out int numOfNames);

 // use featureIndex to “index” into the feature list
// Returns attribute mask
int GetAttributeMask (
 in MapIDtype mapID,
 in FeatureList featureList,
 in int featureIndex, // Index in featureList
 out int attributeValue);

5.3.7.4.3 Point list functions

int FreePointList (
 in PointList pointList,
 in MapIDtype mapID);

// how many boundaries does the nth component of the point list have?
// Returns number of boundaries in component
int GetNumBnds (
 in MapIDtype mapID,
 in PointList pointList,
 in int component,
 out int numOfBnds);

// how many points does the Nth component, Mth boundary of the point list

 // have?
// Returns number of points in boundary
int GetNumPoints (
 in MapIDtype mapID,
 in PointList pointList,
 in int component,
 in int bnd,
 out int numOfPoints);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

100 © ISO 2009 – All rights reserved

// get the points of the Nth component, Mth boundary of the point list
// Returns number of points placed in buffer
int GetPointArray (
 in MapIDtype mapID,
 in PointList pointList,
 in int component,
 in int bnd,
 out PointBuffer points, // put points here
 in int maxPts, // don’t want more than
 // this number
 out int actualNum); // how many actual returned

5.3.7.4.4 Name list functions

int FreeNameList (
 in NameList nameList,
 in MapIDtype mapID);

 // use index to “index” into the name list, i.e. Nth name
 // stuff the string of the Nth name into textBuffer

// Returns length of text string (not buffer), text buffer is NULL
// terminated and truncated if necessary
int GetNameText (
 in MapIDtype mapID,
 in NameList nameList,
 in int index,
 out char[3] charSet, // what charSet is it?
 out char textBuffer, // put text here
 in int textBufferSize, // no bigger than this
 out int symbol, // could also add symb

 out int actualStringLength); // how long was
 // string?

5.3.8 Address location

5.3.8.1 Data structures

5.3.8.1.1 AddressOutRequestType

Input specifying types of address output(s) from reverse geocoding.

Subsets may occur.

typedef struct AddressOutRequestType_s {

boolean bStreetAddressUnparsed; // return un-parsed street address
boolean bStreetAddressParsed; // return parsed street address
boolean bAreaUnparsed; // return un-parsed area-based
boolean bAreaParsed; // return parsed area-based
boolean bCrossStreet; // return nearest cross
 // street in each direction
boolean bDistance; // return distance to nearest
 // cross street in each
 // direction

} AddressOutRequestType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 101

5.3.8.1.2 AddressOutResponseType

This is the output from reverse geocoding. The elements are listed sequentially, rather than being made
members of a union, because more than one of them, or even all of them, may be requested.

typedef struct AddressOutResponseType_s {
AddressType parsedStreetBasedAddress;
string unparsedStreetBasedAddress;
AddressType parsedAreaBasedAddress;
string unparsedAreaBasedAddress;
AddressType forwardCrossStreet;
AddressType reverseCrossStreet;
int forwardDistance;
// distance along road to next intersection (meters)

int reverseDistance;
 // distance along road from previous intersection (meters)
 // Landmark name to be handled in a later release.

} AddressOutResponseType;

5.3.8.1.3 AddressLevelType

This structure is a generic definition that is used for street address context (in the West) and is the address in
many usages (in the East). It is the definition of which area entities are used and their respective generic
names. For instance, in the US, one most typically uses “city” and “state”. A typical usage in Japan would be
“prefecture”, “city”, “ward”, “chome”, “banchi”, “go”.

This data structure is used to describe the structure of an address submitted or returned using an
AddressType.

Names for corresponding address levels are to be chosen from a standardized list, so that applications can
know the semantics of the terms. Terms which are for internal use rather than to be shown to users are to be
in English, in cases where there is an English word, and otherwise in the language of origin.

The list so far includes the following: city (same as “Stadt” in Germany, same as “si” from Korea, also “town”,
“township” and other equivalents), county (same as “parish” from Louisiana and “borough” from Alaska),
ward (named in English instead of the local “ku”), province (same as “state” from the US and Australia,
“estado” from Mexico and Brazil, and “prefecture” from Japan), country, myan (from Korea), chome (from
Japan, same as “dong” from Korea), banchi (from Japan, same as bunji from Korea), go (from Japan, same
as “ho” from Korea), tang (from Korea), ban (from Korea).

typedef struct AddressLevelType_s {

 // number of address levels

int iNumAddrLevels;

string <sequence> sAddrLevelName; // name for corresponding address level

} AddressLevelType;

5.3.8.1.4 AddressType

This structure contains the parts of an address returned by reverse geocoding the functions
getAddressFromPoint(), getAddressFromLocus(), and getAddressFromFeatureID(). Depending on location,
some fields may be missing. This structure is also used as an input for the GetLocsFromParsedAddress()
function which geocodes from an address (either fully specified or somewhat partially specified).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

102 © ISO 2009 – All rights reserved

typedef struct AddressType_s {

 string sDirectionalPrefix; // e.g., “N”
 string sStreetTypePrefix; // e.g., “Rue”
 string sStreetNameBody; // e.g., “Main”
 string sStreetTypeSuffix; // e.g., “Street”, “Strasse”
 string sDirectionalSuffix; // e.g., “SW”
 boolean bBodyConcatenated;
 // indicates whether the street name body is concatenated to the
 // street type prefix/suffix (e.g., “Hauptstrasse”) or not
 // (e.g., “Main Street”)
 string sHouseNumber;
 // A string is used because not all house numbers are strictly
 // numeric (e.g., 123-45, 47A, 29 1/2)
 string sMinHouseNumber;
 string sMaxHouseNumber;
 // In reverse geocoding, the result may include an approximate
 // house number and a house number range in which the address is
 // known to be (“I think you’re around number 25, but I know
 // you’re between 1 and 100”)

 int AddressStructureID; // which address structure is this

 string <sequence> AddrLevelValue; // for simplicity, use string even for

// numeric values
string PostalCode; // of the local country
// In some uses, this data structure is used to specify
// a partial address. It is therefore necessary to
// distinguish between the case in which a field is
// specified as not present and the case in which a
// field is unspecified. The following indicate the
// status of each field.

 AddressFieldStatusEnum DirectionalPrefixState;
 AddressFieldStatusEnum StreetTypePrefixState;
 AddressFieldStatusEnum StreetNameBodyState;
 AddressFieldStatusEnum StreetTypeSuffixState;
 AddressFieldStatusEnum DirectionalSuffixState;

 AddressFieldStatusEnum HouseNumberState;
 // Note: BodyConcatenated, MinHouseNumber, and MaxHouseNumber are

not
 // specified in partial addresses and so have no state indicators

AddressFieldStatusEnum <sequence> AddrLevelStatus;

AddressFieldStatusEnum PostalCodeState;

} AddressType;

5.3.8.1.5 AddressTypeEnum

Type of address for an address input, whether parsed or unparsed.

typedef enum AddressTypeEnum_e {

ADDRESS_TYPE_STREET_ADDRESS,
ADDRESS_TYPE_INTERSECTION,
ADDRESS_TYPE_AREA_BASED,
ADDRESS_TYPE_NAMED_ADDRESS, // e.g., landmark
POSTAL_CODE

} AddressTypeEnum;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 103

5.3.8.1.6 CandidateLocType

Structure for return of one candidate location.

typedef struct CandidateLocType_s {

LocationType location;

int posError;
// estimate of positional accuracy in meters

// A complex structure returning parsed
// address fields, with associated status fields
AddressType fields;

} CandidateLocType;

5.3.8.1.7 GeoContextEnum

Type of geographic context for a geocoding/reverse geocoding request.

typedef enum GeoContextEnum_e {

GEO_CONTEXT_BBOX,
GEO_CONTEXT_POINT_AND_RADIUS,
GEO_CONTEXT_NAMED_AREA,
GEO_CONTEXT_NONE_EMPTY

} GeoContextEnum;

5.3.8.1.8 GeoContextType

Structure defining the geographic context for a geocoding/reverse geocoding request.

typedef struct GeoContextType_s {

union GeoContext switch (GeoContextEnum) {
 case GEO_CONTEXT_BBOX: bbox3PtType bBox;
 case GEO_CONTEXT_POINT_AND_RADIUS: pointAndRadiusType pointAndRadius;
 case GEO_CONTEXT_NAMED_AREA: namedAreaType namedArea;
 case GEO_CONTEXT_NONE_EMPTY: None_Empty_Type none_empty;

 }
} GeoContextType;

5.3.8.1.9 LocationType

Locations returned from geocoding, or input to reverse geocoding, consisting of longitude/latitude coordinates
and/or sets of loci.

typedef struct LocationType_s {

MapPosition2DType coord;
LocusList loci;

} LocationType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

104 © ISO 2009 – All rights reserved

5.3.8.1.10 PartialAddressCompletionType

Input specifying which parts of the address structure are either to be returned or being supplied from/to the
reverse geocoding functions.

More than one part can be set to “1”.

typedef struct PartialAddressCompletionType_s {

boolean bDirectional; // return “N” and such
boolean bStreetType; // return “Rue” and such
boolean bStreetName; // return street name
boolean bHouseNumber; // return
boolean bHouseNumberRange; // return
boolean bLandmarkName; // return house name and such

int AddressLevelID; // use this structure
boolean <sequence> bAddrLevelValue; // return the ones which are “1”

boolean bPostalCode; // return

} PartialAddressCompletionType;

5.3.8.1.11 SpellerOutType

Structure for return of chars and counts from a speller.

typedef struct SpellerOutType_s {

string <sequence> firstChars;
int count;

} SpellerOutType;

5.3.8.1.12 AddressFieldStatusEnum (Hungarian: afs)

In the address structures (either as input or output parameters), fields may be of the following statuses:

typedef enum AddressFieldStatusEnum_e {

ADDRESS_FIELD_SPECIFIED,
ADDRESS_FIELD_SPECIFIED_EMPTY, // known NULL value
ADDRESS_FIELD_UNKNOWN, // unknown value
ADDRESS_FIELD_NEAR_VALUE, // approximate value as input
ADDRESS_FIELD_NEAR_MATCH, // actual nearest value(s) as output

} AddressFieldStatusEnum;

5.3.8.1.13 FeatureNameType

Structure for the return of feature names and distances from the ScrollerHelper function.

typedef struct FeatureNameType_s {

AddressType <sequence> featureNames;
int distance; // in meters

} FeatureNameType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 105

5.3.8.2 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.8.3 Address location functions

5.3.8.3.1 GetLocsFromUnparsedAddress

Given an unparsed address, and a geographic context, gets geocoded locations.

MapReturnType GetLocsFromUnparsedAddress(

// Type of address for an address input
in AddressTypeEnum addressForm,

// Address string
in string address,
// This is an unparsed, human-understandable string. It can be an
// address, an intersection, a junction name, a landmark name, etc.

// Geographic Context
in GeoContextEnum geoContextSelect,
in GeoContextType geoContextInstance,

// ordering of candidates returned:
// It must be noted that alpha numeric sorting
// may depend on the language that is used. For
// example in Spanish “ch” comes right after “c”
in ReturnOrderEnum returnOrder,

// a set of type CandidateLocsType, ordered per returnOrder
out CandidateLocType <sequence> candidateLocs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

106 © ISO 2009 – All rights reserved

5.3.8.3.2 GetLocsFromParsedAddress

Given a parsed address, and a geographic context, gets geocoded locations.

MapReturnType GetLocsFromParsedAddress(
// Type of address for an address input
in AddressTypeEnum addressForm,

// Address structure
in AddressType parsedAddress,

// Geographic Context
in GeoContextEnum geoContextSelect,

// ordering of candidates returned:
// It must be noted that alpha numeric sorting
// may depend on the language that is used. For
// example in Spanish “ch” comes right after “c”
in ReturnOrderEnum returnOrder,

// a set of type CandidateLocsType, ordered per returnOrder
out CandidateLocType <sequence> candidateLocs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.8.3.3 GetAddressFromPoint

Given a point (longitude/latitude), gets reverse geocoded address.

MapReturnType GetAddressFromPoint(

// position to be reverse geocoded
in MapPosition2DType point,

// type(s) of address to be returned
in AddressOutRequestType addressOut,

// return address structure
out AddressOutResponseType candidateLocs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 107

5.3.8.3.4 GetAddressFromLocus

Given a locus, gets reverse geocoded address.

MapReturnType GetAddressFromLocus(

// position to be reverse geocoded
in LocusType locus,

// type(s) of address to be returned
in AddressOutRequestType addressOut,

// return address structure
out AddressOutResponseType candidateLocs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.8.3.5 GetAddressFromFeatureID

Given a GDF feature ID for a non-street and non-intersection map feature such as a landmark, POI, park, lake,
etc., gets reverse-geocoded address(es).

MapReturnType GetAddressFromFeatureID(

// feature type to be reverse geocoded
in FeatureTypeEnum featureType,

// type(s) of address to be returned
in AddressOutRequestType addressOut,

// return address structure
out AddressOutResponseType <sequence> candidateLocs)
// A sequence of answers is provided here because a large object such
as a park may front on multiple streets and have multiple addresses.

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.8.3.6 ScrollerHelper

Given an initial substring (possibly null) for a name, returns a list of candidates for that name.

Another use of this function is to get the list of all candidates for one part of a parsed address given
specifications of some or all of the other parts. For example, to get the list of all cities in a state containing a
specified street name, one would fill in the state and the street name and ask for all completions of the city
name starting with the empty string.

MapReturnType ScrollerHelper(
// partial address string
in string address,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

108 © ISO 2009 – All rights reserved

// Specify which part of the address is to be completed.
in PartialAddressCompletionType addressCategoriesRequested,

// Specify which part of the address is provided to the function.
// when specified values are “null” that is the actual value.
in PartialAddressCompletionType addressCategoriesSupplied,

// reference point and radius for a distance context
// Either NULL or radius < 0 means no filtering by distance
in PointAndRadiusType radius,

// large result set of names structures and distances
out MapCursorReturnTypeEnum crteCursorType = FEATURE_NAME,
out MapCursorType cuNames)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapCursorNotAvailable,
MapNoMemory,
MapRouteNotFound);

5.3.8.3.7 SpellerHelper

Given an initial substring (possibly null) for a name (of a city, state, street, etc.), returns the set of possible
values for the next character and a count (perhaps approximate) of possible names which complete the string.

MapReturnType SpellerHelper(

// initial name substring
in string initSubstring,

// Specify which part of the address is to be completed.
in PartialAddressCompletionType addressCategoriesRequested,

// Specify which part of the address is provided to the function.
// when specified values are “null” that is the actual value.
in PartialAddressCompletionType addressCategoriesSupplied,

// reference point and radius for a distance context
// Either NULL or radius < 0 means no filtering by distance
in PointAndRadiusType radius,

// list of next characters (one each) for a name, and a count
// of possible names which complete the string
out SpellerOutType spellerOut)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 109

5.3.8.3.8 AddressLevelStructSet

Sets an address level structure with its values. The caller can specify an ID for it. If the value provided for that
ID is less than zero, the DAL will assign one on its own. If a requested ID is already in use (including pre
assignment by the DAL), an error condition will be raised.

int AddressLevelStructSet(

// The Structure with values provided
in AddressLevelType addressLevelStruct,

// An ID for that structure, if < 0, DAL will assign
in int addressLevelStructID,

// Address Level Struct ID
out int addressLevelStructIDassigned)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.8.3.9 AddressLevelStructGet

Gets the address level structure corresponding to a specified ID.

int AddressLevelStructGet(

// An ID for the requested structure
in int addressLevelStructID,

// The Structure with values provided
out AddressLevelType addressLevelStruct)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapNoMemory,
MapRouteNotFound);

5.3.9 Services/POIs

5.3.9.1 Data structures

5.3.9.1.1 POIRequestType

This structure contains the type(s) of information requested for returned POIs.

typedef struct POIRequestType_s {

boolean bPOIdescript; // get POIs
boolean bExtendedAttributes; // get extended POI attrs
boolean bLatLong; // get lat/longs
boolean bLoci; // get loci
boolean bFeatureID; // get Feature IDs

} POIRequestType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

110 © ISO 2009 – All rights reserved

5.3.9.1.2 POIAttrType (Hungarian: pat)

This structure contains the common/basic attributes of the POI or service.

typedef struct POIAttrType_s {
 FeatureNameType POIName; // name of feature

FeatureTypeEnum POIFeatureType; // type of POI

short sPOIFeatureClass; // class of POI

} POIAttrType;

5.3.9.1.3 POISubAttrType (Hungarian: psut)

This structure contains POI or service attributes.

that are only rarely used.

typedef struct POISubAttrType_s {

 MapDateTimeType dttPOIOpeningHours;

} POISubAttrType;

5.3.9.1.4 POIType (Hungarian pt)

This structure defines POIs and services.

This structure is closely related to the address location category.

typedef struct POIType_s {
 MapDBIDType dbidPOI_ID; // instance ID number

 FeatureTypeEnum POIFeatureType; // feature type of Service or POI

 POIAttrType paPOIAttrs; // basic attributes

 MapPosition2DType p2POILatLongLoc; lat/long location of feature

 LocusType POILocusLoc; // locus location of feature

 int orderOffset // when used in sorted order
 // this value is the offset
 // from the locus of the search
 // units of seconds or meters
 // (depending on the ordering)

} POIType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 111

5.3.9.2 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.9.3 Service and POI functions

5.3.9.3.1 GetPOIsByBBox

Given a bounding box, this function returns the services and POIs for the selected feature/attribute value filter,
ordered as selected.

MapReturnType GetPOIsByBBox(
// bounding box for search
in bbox3ptType bbox,

// feature and/or attribute values to which the search
// applies + = include, - = exclude
in featureFilterType filter,

// substring, which can occur anywhere in the name, of the
// name to which the search applies
in string substring,

// type(s) of information requested for returned POIs
in POIRequestType POIsRequest,

// ordering of POIs returned
in featureSortOrderEnum returnOrder,

// a large result set of type POIType
out MapCursorReturnTypeEnum crteCursorType = POI,
out MapCursorType cuPOIs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapCursorNotAvailable,
MapNoMemory,
MapRouteNotFound);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

112 © ISO 2009 – All rights reserved

5.3.9.3.2 GetPOIsByPointRad

Given a point and radius/distance, this function returns the services and POIs for the selected feature/attribute
value filter, ordered as selected.

MapReturnType GetPOIsByPointRad(
in mapPosition2DType point,

// type of radius or distance from point
in radiusDistanceEnum radiusDistance,

// radius or distance from point (meters for radius,
// distance; seconds for driving time)
in int radius,

// feature and/or attribute values to which the search
// applies + = include, - = exclude
in featureFilterType filter,

// substring, which can occur anywhere in the name, of the
// name to which the search applies
in string substring,

// (s) of information requested for returned POIs
in POIRequestType POIsRequest,

// ordering of POIs returned
// It must be noted that if sorting order is alphabetic
// the return ordering may differ from language to language.
// Spanish sorts its alphabet in ways different than English,
// for example.
in featureSortOrderEnum returnOrder,

// a large result set of type POIType
out MapCursorReturnTypeEnum crteCursorType = POI,
out MapCursorType cuPOIs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapCursorNotAvailable,
MapNoMemory,
MapRouteNotFound);

5.3.9.3.3 GetPOIsFromPath

Given a path and radius/distance/time, this function returns the services and POIs for the selected
feature/attribute value filter, ordered as selected.

MapReturnType GetPOIsFromPath(
// path for search
in MapPathHandle path,

// type of radius or distance from path
in RadiusDistanceEnum radiusDistance,

// radius or distance from point (meters for radius,
// distance; seconds for driving time)
in int radius,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 113

// feature and/or attribute values to which the search
// applies + = include, - = exclude
in featureFilterType filter,

// substring, which can occur anywhere in the name, of the
// name to which the search applies
in string substring,

// type of POIs requested
in POIRequestType POIsRequest,

// ordering of POIs returned
// It must be noted that alphabetic sorting order
// differs from one language to another.
in featureSortOrderEnum returnOrder,

// a large result set of type POIType
out MapCursorReturnTypeEnum crteCursorType = POI,
out MapCursorType cuPOIs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,
MapCursorNotAvailable,
MapNoMemory,
MapRouteNotFound);

5.3.9.3.4 GetPOIsFromNamedArea

Given a named area, this function returns the services and POIs for the selected feature/attribute value filter,
ordered as selected.

MapReturnType GetPOIsFromNamedArea(
// named area for search
in namedAreaType namedArea,

// feature and/or attribute values to which the search
// applies + = include, - = exclude
in featureFilterType filter,

// substring, which can occur anywhere in the name, of the
// name to which the search applies
in string substring,

// type of POIs requested
in POIRequestType POIsRequest,

// ordering of POIs returned
// when ordering is alphabetic the actual order
// is a function of the language used.
in featureSortOrderEnum returnOrder,

// a large result set of type POIType

out MapCursorReturnTypeEnum crteCursorType = POI,
out MapCursorType cuPOIs)

raises(MapSearchOutsideRegion,
MapInvalidArgument,
MapNoRecordsFound,
MapInvalidRequest,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

114 © ISO 2009 – All rights reserved

MapCursorNotAvailable,
MapNoMemory,
MapRouteNotFound);

5.3.9.3.5 GetPOISubattr

This function gets the rarely used attribute information for a service/POI.

MapReturnType GetPOISubattr(
in MapDBIDType dbidPOI_ID,
in MapPriorityType prPriority,
out MapPOISubattrType retrievedPOISubattr)

raises(MapInvalidArgument, MapInvalidRequest);

5.3.10 Utility functions

5.3.10.1 Error codes

Error code Description

MapCallbackFailed User-defined callback function failed.

MapCursorNotAvailable No more cursors can be allocated.

MapDataFormatError Unexpected media data format error.

MapInvalidArgument Invalid argument passed to API.

MapInvalidRequest Attempt to request something nonsensical.

MapNoMemory DAL has insufficient memory to complete the request.

MapNoRecordsFound Search yielded no results.

MapRouteNotFound Failed to compute a route.

MapSearchOutsideRegion Search area does not intersect the coverage area.

5.3.10.2 Map handle functions

5.3.10.2.1 General

This section contains functions used to manage map handles.

5.3.10.2.2 mapHandleCreate

This creates a map handle from a list of maps.

(Schematically: M1 + M2 + M3 + … -> H)

MapReturnType mapHandleCreate(
in short nMaps,
in <sequence> MapIDtype mapID,
out MapHandleType mapHandle)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 115

raises(MapInvalidArgument,
MapInvalidRequest,
MapNoMemory);

5.3.10.2.3 mapHandleCombine

This creates a map handle by combining a number of existing map handles.

(Schematically: H1 ∪ H2 ∪ H3 ∪ … -> H)

MapReturnType mapHandleCombine(
in short nHandles,
in <sequence> MapHandleType mapHandle,
out MapHandleType untionMapHandle)

raises(MapInvalidArgument,
MapInvalidRequest,
MapNoMemory);

5.3.10.2.4 mapHandleAdd

This adds extra maps to an existing map handle. If they are already there, continue as before.

(Schematically: H = M1 + M2 + M3)

MapReturnType mapHandleAdd(
in MapHandleType mapHandle,
in short nMaps,
in <sequence> MapIDtype mapID,
out MapHandleType mapHandle)

raises(MapInvalidArgument,
MapInvalidRequest,
MapNoMemory);

5.3.10.2.5 mapHandleRelease

This releases a map handle that is no longer necessary.

MapReturnType mapHandleRelease(
in MapHandleType mapHandle)

raises(MapInvalidArgument,
MapInvalidRequest);

5.3.10.3 Large result set functions

5.3.10.3.1 General

Subclauses 5.3.10.3.2 to 5.3.10.3.7 contain functions used to manage large result sets. A cursor is the
mechanism used by large result set handling code to return multiple result records. There is no limit on the
number of result records that a cursor can return. It is the task of the application program to allocate sufficient
memory to store the number of records resulting from each request. The cursor keeps only a small subset of
the result records in its internal cursor memory at any one time. When an application program requests more
records, the DAL gets more result records into the cursor as needed. The methodology used by the DAL to
build the result records is totally invisible to the application program. An application program can request some
or all of the result records at any time when sufficient memory is provided. It should always appear to the
application program that the cursor contains all the result records.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

116 © ISO 2009 – All rights reserved

Think of the large result set as a tape containing N records. The records are numbered 1 through N. One also
needs to describe the spaces between records. The gaps are numbered 0 (the gap before the first record)
through N (the gap after the last record). (The gap between records J and J+1 is gap number J.) Cursor
position will be described in terms of a gap number.

1 2 3 …..
N-1 NRecord

numbers

Gap

numbers

0 1 2 3 N-2 N-1 N

Figure 12 — Large result set

It is important to think of the tape containing all the results as a completed whole, even if in fact the results are
never all present simultaneously in the memory. The tape is an imaginary concept, not an actual program
construct.

A function that returns a large result set prepares this (imaginary) tape. To get part of the result set, the
application calls MapFetchCursor() to “read” (copy) some of the contents of the tape into the application’s
memory. At any one time, some consecutive part of the tape is ready to be read rather quickly. Continuing the
tape analogy, this is the part of the tape that is in the DAL’s buffer; it can be read without spinning the reels.

5.3.10.3.2 MapCloseCursor

This function frees the resources associated with the specified large result set cursor. Application programs
should close the large result set cursor as soon as they have completed processing the result records
associated with the cursor, so as not to tie up resources for an extended period of time.

MapReturnType MapCloseCursor(
in MapCursorType cuCursorID)

raises(MapInvalidCursor);

5.3.10.3.3 MapFetchCursor

This function stores the specified number of result records into the memory space provided by the application.
It returns the number of successfully fetched records as the function return value. This may be less than the
requested number specified in the lNumRecordsToFetch parameter value if the end of the file is reached.

MapReturnType MapFetchCursor(
in MapCursorType cuCursorID,
in MapFetchDirectionEnum fdeFetchDirection,
in long lNumRecordsToFetch,
out any aRetrievedRecords)

raises(MapInvalidArgument,
MapInvalidCursor,
MapNoMoreRecords);

Table 10 summarizes the record position and which record is fetched when one record is being fetched. There
are N records in the result set.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 117

Table 10 — MapFetchCursor

Cursor position
before call (gap
number)

FetchDirection
Position of the
fetched record
(record number)

Cursor position
after fetch (gap
number)

Cursor’s return
value (record count)

0 MapFetchBackward none 0 MapNoMoreRecords

0 MapFetchForward 1 1 1

1 MapFetchBackward 1 0 1

1 MapFetchForward 2 2 1

N–1 MapFetchBackward N–1 N–2 1

N–1 MapFetchForward N N 1

N MapFetchBackward N N–1 1

N MapFetchForward none N MapNoMoreRecords

A final issue is the order of the records returned. Whether the fetch direction is forward or backward, records
will be placed in the buffer in the order in which they are read — forward when reading forward, backward
when reading in reverse. For example, suppose the cursor is positioned in gap 10, between records 10 and 11.
Then a forward read will place record 11 in the first space in the buffer, record 12 in the second space, and so
on. A reverse read will place record 10 in the first space in the buffer, record 9 in the second space, and so
on.

5.3.10.3.4 MapGetCursorInfo

This function returns relevant information associated with the given large result set cursor.

MapReturnType MapGetCursorInfo(
in MapCursorType cuCursorID,
out MapCursorInfoType ciRetrievedCursorInfo)

raises(MapInvalidArgument,
MapInvalidCursor);

5.3.10.3.5 MapGetCursorPosition

The cursor is considered to be positioned in a gap between records. Gap number 0 is the gap before the first
record. Gap number J is the gap between the Jth and (J+1)th records. If there are N records in total, gap
number N is the gap after the last record. The value returned by this function is the current cursor position.

MapReturnType MapGetCursorPosition(
in MapCursorType cuCursorID)

raises(MapInvalidCursor);

5.3.10.3.6 MapPositionCursor

This function positions a large result set cursor in a specified record within the complete result set.

The action of this function can be described in two steps as follows, although there is no implication that the
function must be implemented in this way: First, if the “coeCursorStartPosition” argument is
RESULT_SET_START, the cursor is moved to the gap before the first record; if the “coeCursorStartPosition”
argument is RESULT_SET_END, the cursor is moved to the gap after the last record; and if the
“coeCursorStartPosition” argument is CURRENT_POSITION, the cursor is not moved. Second, if
lNumOfPositions is positive, the cursor is moved forward (toward the end of the result set) by lNumOfPositions

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

118 © ISO 2009 – All rights reserved

records; if lNumOfPositions is negative, the cursor is moved backward (toward the beginning of the result set)
by lNumOfPositions records; if lNumOfPositions is zero, the cursor is not moved. However, if this movement
would result in the cursor being before the gap at the beginning of the file or after the gap at the end of the file,
the cursor is instead left at that gap.

The return value of the function is the number of the gap at which the cursor is left.

MapReturnType MapPositionCursor(
in MapCursorType cuCursorID,
in MapCursorOriginEnum coeCursorStartPosition,
in long lNumOfPositions)

raises(MapInvalidCursor);

5.3.10.3.7 MapProcessCursor

This function processes all of the records in the result set starting with the first record, regardless of where the
cursor is currently positioned. Upon completion of this function, the cursor is positioned at the end of file of the
complete result set.

The action function’s first “any” parameter is a pointer to a structure of the type contained in the cursor. The
second is an application-defined structure, or NULL.

In processing each cursor element, the third argument of MapProcessCursor is passed in as the second
argument of retActionFunc. If retActionFunc returns a negative result value, processing will be aborted.

MapProcessCursor returns the number of records processed.

MapReturnType MapProcessCursor(
in MapCursorType cuCursorID,
in MapReturnType(any, any) retActionFunc,
in any aActionFuncParams)

raises(MapInvalidArgument,
MapInvalidCursor,
MapCallbackFailed);

5.3.10.4 Other utility functions

5.3.10.4.1 MapGetDaylightSavingsTimeDateRange

This function retrieves the date range for the specified daylight savings time code.

MapReturnType MapGetDaylightSavingsTimeDateRange(
in octet oDaylightSavingsTimeCode,
in MapPriorityType prPriority,
out MapDateTimeType dttRetrievedDateTime)

raises(MapInvalidArgument);

5.3.10.4.2 MapGetEntityLevel

This function extracts the routing level number from a node or link’s entity ID. It returns the routing level
number in the function return value or a negative value for an error condition. The routing level number
returned by this function is only meaningful for node or link entity IDs.

MapReturnType MapGetEntityLevel(
in MapEntityIDType eidNodeORLinkID,
in MapPriorityType prPriority)

raises(MapInvalidArgument);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 119

5.3.10.4.3 MapGetEntityLevelDBID

This function retrieves an associated database ID at the indicated level.

MapReturnType MapGetEntityLevelDBID(
in MapDBIDType dbidNodeORLinkID,
in MapEntityEnum eeEntityType,
in long lLevel,
in MapPriorityType prPriority,
out MapDBIDType dbidIDAtSpecifiedLevel)

raises (MapInvalidArgument);

5.3.10.5 Examples

5.3.10.5.1 General

The following code snippets show how the APIs can be used. The code is written in C, based on the OMG-IDL
examples above. For clarity, error conditions are (generally) not checked. Where open issues in the API exist,
implementation assumptions have been made.

5.3.10.5.2 Cursor-handling functions

This example intends to demonstrate some of the cursor operation functions and the MapCursorInfoType
structure values.

Suppose that there are 190 records in the list, and suppose that the DAL prepares 100 for quick retrieval at a
time.

For this example, suppose that the application reads 80 records at a time, for some unspecified reason. (This
may be inefficient in practice, but it helps to make the function use clearer.) The caller starts the retrieval by
calling, for example, MapSearchNodes.

 MapSearchNodes(…, &cursor);

The search has prepared 100 records for retrieval, but none has been retrieved. Suppose we get the cursor’s
state information:

MapGetCursorInfo(cursor, &curInfo);

Now the MapCursorInfoType structure curInfo contains the following values: lCursorBufferStart = 0 and
lCursorBufferEnd = 100, because records 1 through 100 have been prepared for quick retrieval;
lCurrentCursorPosition = 0 because no records have been read yet; and bResultSetComplete = FALSE
because the last record is not ready for quick retrieval by the DAL.

Now the application reads 80 records and checks the state again.

lRecordsRead = MapFetchCursor (cursor, MapFetchForward, 80, rsltPtr);
MapGetCursorInfo(cursor, &curInfo);

Now lRecordsRead contains 80, because 80 records have been read. Records 1 through 80 have been
transferred to rsltPtr. The DAL has not had to prepare more records for retrieval, so the MapCursorInfoType
contains the following values: lCursorBufferStart = 0 and lCursorBufferEnd = 100, because records 1 through
100 are still the ones prepared for quick retrieval; lCurrentCursorPosition = 80 because record 81 is the next
to be read; and bResultSetComplete = FALSE because the last record is not ready for quick retrieval by the
DAL.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

120 © ISO 2009 – All rights reserved

Now the application reads another 80 records and checks the state again.

 lRecordsRead = MapFetchCursor (cursor, MapFetchForward, 80, rsltPtr);
MapGetCursorInfo(cursor, &curInfo);

At this point lRecordsRead again contains 80, because again 80 records have been read. Records 81 through
160 have been transferred to rsltPtr. The DAL has had to prepare a new group of records for retrieval. The
assumption of the example is that it has tried to prepare 100. However, there are only 190 records in the data,
so it has only prepared 90. Therefore, the MapCursorInfoType contains the following values:
lCursorBufferStart = 100 and lCursorBufferEnd = 190, because records 100 through 190 are now the ones
prepared for quick retrieval; lCurrentCursorPosition = 160 because record 161 is the next to be read; and
bResultSetComplete = TRUE because the last record is now ready for quick retrieval by the DAL.

Suppose that now the application tries to read 80 records again, even though only 30 remain, and checks the
state again.

 lRecordsRead = MapFetchCursor (cursor, MapFetchForward, 80, rsltPtr);
MapGetCursorInfo(cursor, &curInfo);

Now lRecordsRead contains 30, because only 30 records have been read. Records 161 through 190 have
been transferred to rsltPtr. The DAL has not had to prepare more records for retrieval. Therefore, the
MapCursorInfoType still contains the same values: lCursorBufferStart = 100 and lCursorBufferEnd = 190,
because records 101 through 190 are still the ones prepared for quick retrieval; lCurrentCursorPosition = 190
because record 190 has already been read; and bResultSetComplete = TRUE because the last record is still
ready for quick retrieval by the DAL.

When it is done processing the results, the application shall close the cursor:

MapCloseCursor(cursor);

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 121

Annex A
(normative)

Condition policy

The semantics of the representation of conditions is defined as given in A.1 to A.8.

A.1 Default

If no conditions apply to a given link in a given direction, that link is accessible in that direction at all times by
all vehicle types allowed by its vehicle mask. (Note that one condition on a link can apply to both directions of
the link.)

If no conditions apply to a given maneuver, that maneuver is allowed for all vehicle types at all times.

This case is shown as example 0 in Table A.1.

A.2 Vehicle access on a single link

Vehicle access on a single link is indicated by the vehicle mask in the MapLinkType structure, not by a
condition at all.

One can tell whether a vehicle can use the link by examining the vehicle’s bit. A bit value of 0 indicates that
the vehicle cannot use the link. A bit value of 1 indicates that the vehicle can use the link.

A vehicle’s bit is “off” if that vehicle can never use the link and “on” if the vehicle can use the link sometimes or
always.

It is possible to determine from the API which vehicles are supported by the data. The “all vehicles” bit is “on”
if, and only if, the bits of all supported individual vehicle types are on. As a consequence, the “all vehicles” bit
is on if every supported vehicle can sometimes or always use the link, otherwise it is off.

See Table A.1 for examples. The examples show the four possible ways of expressing vehicle access
restrictions:

⎯ listing the only vehicles allowed (see example 1 in Table A.1: bus, taxi, bike only);

⎯ listing the vehicles allowed as “all but” the excluded ones (see example 2 in Table A.1: all but trucks
allowed);

⎯ listing the vehicles prohibited (see example 3 in Table A.1: bus, taxi, bike prohibited);

⎯ listing the vehicles prohibited as “all but” the allowed ones (see example 4 in Table A.1: all but trucks
prohibited).

Although the vehicle mask is provided to indicate that a link is always unavailable to certain vehicle types, it
would be possible to use conditions to indicate that fact as well. For the sake of efficiency, the use of the link’s
vehicle mask for this purpose is strongly recommended.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

122 © ISO 2009 – All rights reserved

A.3 Temporal access restrictions on a single link

Consider links that are available to all vehicles at some times and unavailable to all vehicles at other times.
Such closures are represented as conditions. These conditions are always stated in terms of making
unavailable a link which is by default available, even if physical signage describes when the link is available.
In order to indicate that the time domain on signage is reversed in the coding of the condition, a “time flipped”
bit is used.

First consider a link with signage that says “road closed Mon.–Fri. 5:00 a.m.–9:00 a.m., 3:00 p.m.–7:00 p.m.”,
implying that it is open to all traffic at all other times. (This is shown as example 5 in Table A.1.)

This is represented by a link with a vehicle mask that lists availability for all vehicles (the “all vehicles” bit is on
and all vehicles’ bits are on). Note that this mask describes the default state of the link, that is, the state
unmodified by the condition.

The link has a condition. The condition is encoded as a single-link traffic restriction (TRAFFIC_COND) marked
as negative (NEGATIVE_CONDITION). The condition’s time data structure describes the periods from 5:00 to
9:00 and from 15:00 to 19:00, Monday through Friday. The condition’s vehicle mask describes it as applying
to all vehicles (the “all vehicles” bit is on and all vehicles’ bits are on). The condition’s “time flipped” bit is off,
because the time specified in the regulation is the time when the condition is in effect, i.e., when the link is
closed.

Alternatively, consider a link with signage that says “road open Mon.–Fri. 5:00 a.m.–9:00 a.m., 3:00 p.m.–
7:00 p.m. only”, meaning that it is closed to all traffic at all other times. (This is shown as example 6 in
Table A.1.)

This link’s vehicle mask is the same as in the example above, since the default state of the link —
availability — is the same as in that example.

This link also has a condition. This condition is also encoded as a single-link traffic restriction
(TRAFFIC_COND) marked as negative (NEGATIVE_CONDITION). The condition’s time data structure
describes all times except 5:00 to 9:00 and 15:00 to 19:00, Monday through Friday. The condition’s vehicle
mask is the same as in the example above. The condition’s “time flipped” bit is on, because the time specified
in the regulation is the time when the condition is not in effect, i.e., when the link is open.

A.4 Temporal and vehicular access restrictions on a single link

When a restriction applies only to certain vehicles, and applies to those vehicles only at certain times, it is
encoded with a condition that has both a vehicle mask and a time specification. The link’s vehicle mask lists
all the vehicles which can sometimes or always use the link. The condition’s vehicle mask lists the vehicles to
which the condition applies.

Consider a link with signage that says “no trucks 4–6 p.m.”, implying that the link is available to all other
vehicles at all times. (This is shown as example 7 in Table A.1.)

This is represented by a link with a vehicle mask that lists availability for all vehicles. The link has a condition,
encoded as a single-link traffic restriction (TRAFFIC_COND) marked as negative (NEGATIVE_CONDITION).
The condition’s time data structure describes the interval from 16:00 to 18:00. The condition’s vehicle mask
has the “trucks” bit, and no other vehicle’s bit, on. The condition’s “time flipped” bit is off, because the time
specified in the regulation is the time when the condition is in effect.

By comparison, consider a link with signage that says “no trucks” (meaning trucks are never permitted on this
link) and “road closed 4–6 p.m.” (This is shown as example 8 in Table A.1.) This link does not have a
condition that combines temporal and vehicular restrictions. Rather, it is represented by a link with a vehicle
mask that lists it as available to all vehicles but trucks (the truck bit and the “all vehicles” bit are off and all
other vehicles’ bits are on), along with a condition that closes the link to all vehicles from 16:00 to 18:00. The
condition that closes the road from 16:00 to 18:00 is like those in A.3; it is independent of the vehicle type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 123

As another example, consider a link with signage that says “buses and carpools only, 4–6 p.m.”, meaning that
buses and carpools are allowed at any time, but vehicles other than buses and carpools are not allowed from
16:00 to 18:00. (This is shown as example 9 in Table A.1.) This link has a vehicle mask that shows availability
for all vehicles, since that is the default state. It also has a condition encoded as a single-link traffic restriction
(TRAFFIC_COND) marked as negative (NEGATIVE_CONDITION). The condition’s time data structure
describes the interval from 16:00 to 18:00. The condition’s vehicle mask has the bits for buses and carpools
off, and all other vehicles’ bits on, because the condition restricts all vehicles but buses and carpools. The
condition’s “time flipped” bit is off, because the time specified in the regulation is the time when the condition is
in effect, i.e., when the link is closed.

As a final example, consider a link with signage that says “buses and carpools only, 4–6 p.m.; road closed all
other times”. (This is shown as example 10 in Table A.1.) Note that while, in the previous example, all vehicles
could use the link outside the interval from 16:00 to 18:00, in this case no vehicles can use the link outside
that interval. Like the second example above, this link does not have a condition that combines temporal and
vehicular restrictions. Rather, it is represented by a link with a vehicle mask that lists it as available only to
buses and carpools (the bus and HOV bits are on, all other vehicles’ bits are off, and the “all vehicles” bit is
off), along with a condition that closes the link to all vehicles (or just to buses and carpools; the effect is the
same) outside the interval from 16:00 to 18:00. Note that, because the condition closes the road outside the
interval listed on the sign, the condition’s “time flipped” bit is on.

Clauses A.5 to A.8 all describe multiple-link maneuver restrictions. For the examples related to these clauses,
assume that the underlying links are available to all traffic. Then, every link has a vehicle bit mask that allows
all vehicles (that is, all vehicles’ bits are on, and the “all vehicles” bit is on). If there are maneuver restrictions
on links that are not available to all traffic, the links’ vehicle masks will represent that, but those restrictions are
orthogonal to the encoding of the conditions on the maneuvers. That is, the presence or absence of the
restrictions on the links has no effect on the maneuver conditions. The links’ vehicle masks are therefore not
discussed in the examples for these clauses.

A.5 Multiple-link maneuver restriction

Multiple-link maneuver restrictions are of two kinds, “negative” and “positive”.

“Negative” restrictions are those that prohibit a maneuver or a sequence of maneuvers, for example “no left
turn” or “no left turn followed by another left turn” (this is what a “no U turn” on a dual carriageway becomes).
These are represented by TRAFFIC_COND conditions marked as negative (NEGATIVE_CONDITION). If a
negative restriction applies to all vehicles (“no left turn” as opposed to “trucks: no left turn”), the condition’s
vehicle mask has all bits on and the “all vehicles” bit on. When multiple negative restrictions coincide, they are
all in force — a vehicle must follow all of them.

“Positive” restrictions are those that require that vehicles on a link perform some maneuver or sequence of
maneuvers, for example “all traffic must go straight” or “all traffic must turn right” or “all traffic must turn right
followed by another right”. These are represented by TRAFFIC_COND conditions marked as positive
(POSITIVE_CONDITION). If a positive restriction applies to all vehicles (“all traffic must go straight” as
opposed to “trucks must go straight”), the condition’s vehicle mask has all bits on and the “all vehicles” bit on.

When multiple positive restrictions start on the same link, a vehicle must follow at least one of them. For
example, if there is a positive restriction for a going-straight maneuver and another for a left-turn maneuver,
the meaning is that a vehicle must either go straight or turn left — not that the vehicle must both go straight
and turn left, which would be impossible.

When both negative and positive maneuver restrictions apply at a link, a vehicle must follow all the negative
restrictions and at least one of the positive restrictions.

See Table A.1 for two examples, one showing a negative restriction (example 11,: “no left turn”) and one
showing a positive restriction (example 12,: “all vehicles must go straight”).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

124 © ISO 2009 – All rights reserved

A.6 Vehicle-based multiple-link maneuver restriction

Some multiple-link maneuver restrictions apply only to certain vehicles (“trucks: no left turn” or “no left turn
except buses”). Such restrictions are encoded similarly to those that apply to all vehicles. The only difference
is that the vehicles to which the restrictions apply are indicated by the condition’s vehicle mask (not the links’
vehicle masks). The condition’s vehicle mask has vehicle bits set for the vehicles to which the condition
applies — the vehicles whose drivers must take note of the restriction — regardless of whether the signage
describes the vehicles to which the restriction applies (“trucks: no left turn”) or those to which the restriction
does not apply (“no left turn except buses”).

See Table A.1 for four examples. Following the rules above, the conditions for example 13 (“buses: no left
turn”) and example 14 (“buses must turn right”) have a vehicle bit mask in which only the “bus” bit is on; the
conditions for example 15 (“no left turn except buses”) and example 16 (“right turn only except buses”) have a
vehicle bit mask in which all vehicle bits except the “bus” bit are on.

A.7 Time-based multiple-link maneuver restriction

Some multiple-link maneuver restrictions apply only at certain times. These restrictions are encoded similarly
to time-independent restrictions, except that the time fields of the condition are used to specify the times at
which the restrictions apply.

See Table A.1 for examples. The examples shown cover the four possible combinations of positive and
negative restrictions and signage that indicates when the restriction does or does not apply:

⎯ negative restriction, signage indicates when restriction applies (see example 17 in Table A.1, “no left turn
on Sunday”);

⎯ negative restriction, signage indicates when restriction does not apply (see example 18 in Table A.1, “no
left turn except on Sunday”);

⎯ positive restriction, signage indicates when restriction applies (see example 19 in Table A.1, “all traffic
must turn right on Sunday”);

⎯ positive restriction, signage indicates when restriction does not apply (see example 20 in Table A.1, “all
traffic must turn right except on Sunday”).

A.8 Vehicle- and time-based multiple-link maneuver restriction

When a multiple-link maneuver restriction applies only at certain times, and then only to certain vehicles, it is
encoded similarly to the cases above. The fact that the condition is limited to certain vehicles is encoded by
using the vehicle mask of the condition (not those of the underlying links), and the fact that the restriction is
limited to certain times is indicated using the condition’s time fields. The condition’s vehicle mask has bits set
for the vehicles to which the restriction applies — vehicles whose drivers must heed the restriction — even if
the signage indicates the vehicles to which the restriction does not apply (for example, “no left turn 4–6 p.m.,
except buses”). Similarly, the condition’s time fields indicate the times at which the restriction applies, even if
the signage lists the times at which it does not apply (for example, “bicycles must exit except Sunday”).

There are many possible ways to express restrictions that depend both on vehicle type and on time. Table A.1
lists eight examples:

⎯ example 21: buses: no left turn on Sunday;

⎯ example 22: buses: no left turn except on Sunday;

⎯ example 23: no left turn on Sunday except bus;

⎯ example 24: no left turn except on Sunday, except bus;

⎯ example 25: buses must turn right on Sunday;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 125

⎯ example 26: buses must turn right except on Sunday;

⎯ example 27: all traffic must turn right on Sunday, except buses;

⎯ example 28: all traffic must turn right except on Sunday, except buses.

Even with the expressive power of these rules, some restrictions will require multiple conditions. Consider
signage that says “no left turn — buses OK on Sunday”. This says that at some times no vehicles can turn left,
and at other times only buses can turn left. This cannot possibly be encoded as a single condition, because a
condition has only a single set of vehicles to which it applies, and we need to describe two different sets of
vehicles at different times. This restriction can, however, be encoded as two conditions in multiple ways. One
way (example 29a in Table A.1) is to have one condition encoding “no left turn except on Sunday” and another
encoding “no left turn except buses”. Another way (example 29b in Table A.1) is to have one condition
encoding “no left turn except on Sunday” and another encoding “no left turn on Sunday except buses”. Yet a
third way (example 29c in Table A.1) is to have one condition encoding “no left turn except buses” and
another encoding “buses: no left turn except on Sunday”.

Table A.1 — Examples

 Vehicle Bit Mask

No. Signage

al
l v

eh
-

ic
le

s

tr
uc

k

bi
-c

yc
le

ta
xi

bu
s

ca
r HOV Cond. type Cond. mod Time

Ti
m

e
fli

p

 A.1 Default
0 No signage Link 1 1 1 1 1 1 1 N/A

 A.2 Vehicle access on a single link
1 Bus, taxi, bike

only
Link 0 0 1 1 1 0 0 N/A

2 All but trucks
allowed

Link 0 0 1 1 1 1 1 N/A

3 Bus, taxi, bike
prohibited

Link 0 1 0 0 0 1 1 N/A

4 All but trucks
prohibited

Link 0 1 0 0 0 0 0 N/A

 A.3 Temporal access restrictions on a single link
Link 1 1 1 1 1 1 1 5 Road closed M-

F 5-9a, 3-7p
Cond. 1 1 1 1 1 1 1 TRAFFIC_

COND
NEGATIVE_
COND

5-9, 15-
19 M-F

0

Link 1 1 1 1 1 1 1 6 Road open M-F
5-9a, 3-7p only

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Complem
ent of 5-
9, 15-19
M-F

1

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

126 © ISO 2009 – All rights reserved

Table A.1 (continued)

 Vehicle Bit Mask

No. Signage

al
l v

eh
-ic

le
s

tr
uc

k

bi
-c

yc
le

ta
xi

bu
s

ca
r

HOV Cond. type Cond. mod Time

Ti
m

e
fli

p

 A.4 Temporal and vehicular access restrictions on a single link
Link 1 1 1 1 1 1 1 7 No trucks 4-6p

Cond. 0 1 0 0 0 0 0 TRAFFIC_
COND

NEGATIVE_
COND

16-18 0

Link 0 0 1 1 1 1 1 8 No trucks; road
closed 4-6p

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

16-18 0

Link 1 1 1 1 1 1 1 9 Buses and
carpools only, 4-
6p

(… open to all at
other times)

Cond. 0 1 1 1 0 1 0 TRAFFIC_
COND

NEGATIVE_
COND

16-18 0

Link 0 0 0 0 1 0 1 10 Buses and
carpools only,
4-6p; road
closed all other
times

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Complem
ent of 16-
18

1

 A.5 Multiple-link maneuver restriction
11 No left turn Cond. 1 1 1 1 1 1 1 TRAFFIC_

COND
NEGATIVE_
COND

No time
structure

0

12 All vehicles must
go straight

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

POSITIVE_
COND

No time
structure

0

 A.6 Vehicle-based multiple-link maneuver restriction
13 Buses: no left

turn
Cond. 0 0 0 0 1 0 0 TRAFFIC_

COND
NEGATIVE_
COND

No time
structure

0

14 Buses must turn
right

Cond. 0 0 0 0 1 0 0 TRAFFIC_
COND

POSITIVE_
COND

No time
structure

0

15 No left turn
except buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

No time
structure

0

16 Right turn only
except buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

POSITIVE_
COND

No time
structure

0

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 127

Table A.1 (continued)

 Vehicle Bit Mask

No. Signage

al
l v

eh
-ic

le
s

tr
uc

k

bi
-c

yc
le

ta
xi

bu
s

ca
r

HOV Cond. type Cond. mod Time

Ti
m

e
fli

p

 A.7 Time-based multiple-link maneuver restriction
17 No left turn on

Sunday
Cond. 1 1 1 1 1 1 1 TRAFFIC_

COND
NEGATIVE_
COND

Sunday 0

18 No left turn
except on
Sunday

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

19 All traffic must
turn right on
Sunday

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

POSITIVE_
COND

Sunday 0

20 All traffic must
turn right except
on Sunday

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

POSITIVE_
COND

Not
(Sunday)

1

 A.8 Vehicle- and time-based multiple-link maneuver restriction
21 Buses: no left

turn on Sunday
Cond. 0 0 0 0 1 0 0 TRAFFIC_

COND
NEGATIVE_
COND

Sunday 0

22 Buses: no left
turn except on
Sunday

Cond. 0 0 0 0 1 0 0 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

23 No left turn on
Sunday except
bus

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Sunday 0

24 No left turn
except on
Sunday, except
bus

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

25 Buses must turn
right on Sunday

Cond. 0 0 0 0 1 0 0 TRAFFIC_
COND

POSITIVE_
COND

Sunday 0

26 Buses must turn
right except on
Sunday

Cond. 0 0 0 0 1 0 0 TRAFFIC_
COND

POSITIVE_
COND

Not
(Sunday)

1

27 All traffic must
turn right on
Sunday except
buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

POSITIVE_
COND

Sunday 0

28 All traffic must
turn right except
on Sunday,
except buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

POSITIVE_
COND

Not
(Sunday)

1

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

128 © ISO 2009 – All rights reserved

Table A.1 (continued)

 Vehicle Bit Mask

No. Signage

al
l v

eh
-ic

le
s

tr
uc

k

bi
-c

yc
le

ta
xi

bu
s

ca
r

HOV Cond. type Cond. mod Time

Ti
m

e
fli

p

29 No left turn — buses OK on Sunday

29a No left turn
except on
Sunday

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

 No left turn
except buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

No time
structure

0

 Alternatively:

29b No left turn
except on
Sunday

Cond. 1 1 1 1 1 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

 No left turn on
Sunday except
buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

Sunday 0

 Alternatively:

29c No left turn
except buses

Cond. 0 1 1 1 0 1 1 TRAFFIC_
COND

NEGATIVE_
COND

No time
structure

0

 Buses: no left
turn except on
Sunday

Cond 0 0 0 0 1 0 0 TRAFFIC_
COND

NEGATIVE_
COND

Not
(Sunday)

1

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 129

Annex B
(normative)

Attribute types

Tables B.1 and B.2 show the allowable values that an attribute value of type char[2] may have in the structure
featureFilterLeafType. Of course, these tables may be augmented by user-defined attributes. The source of
these values is GDF. The tables have two columns: one showing the two-character code and the other the
attribute name. The information is presented twice, sorted by attribute name in Table B.1 and sorted by code
in Table B.2.

Table B.1 — Allowable values of featureFilterLeafType (sorted by attribute name)

AttributeType name AttributeType code
acceptedCreditCards CA

accidentDate AT

accidentIdentifier AC

administrativeBoundaryType BX

administrativeStructureIdentifier IA

airportCode AI

alternateNameText AN

alternateStreetNameText AL

associationType AY

averageVehicleSpeed AS

blockedPassageLocation BP

blockedPassageType BE

boundaryType BY

brandName BN

breakfastAvailable BA

buildingClassName BC

businessLunch BL

carDealerType CD

chainage CH

chainageOffset CO

cityCenterAdministrativeClass CC

commercialAirlineService CM

commonLanguage CL

commuter/RegionalRailwayStation CR

constructionStatus CS

containmentType CY

currency CU

departure/Arrival AD

destinationOfFlightConnection DC

destinationLocation DL

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

130 © ISO 2009 – All rights reserved

Table B.1 (continued)

AttributeType name AttributeType code
direction DI

directionOfTrafficFlow DF

directionalPrefix DP

directionalSuffix DS

displayClass DY

dividedRoadElement DR

dividerType DT

dividerWidth DW

domestic/International NI

emergencyVehicleLane EV

enclosedTrafficAreaType EA

entryPointType ET

equipmentIdentifier EQ

exitNumber EN

externalIdentifier EI

facilitiesEnSuite FS

ferryType FT

firstHouseNumber HF

formOfWay FW

freeway FY

frequencyOfATrafficConnection FR

functionalRoadClass FC

generalAviation GA

governmentType GT

heightOfPass HP

houseNumber HN

houseNumberStructure HS

IDofFlightConnection ID

importance IM

interchangeType IF

intermediateHouseNumber HI

internationalRailwayStation AR

ISOCountryCode IC

junctionType JT

laneDependentValidity LD

lastHouseNumber HL

lateralOffset LO

lengthOfARoadElement LR

locationReferenceCode LC

locationReferenceType LT

magneticAnomalies MA

mainRailwayStation MR

maximumHeightAllowed MH

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 131

Table B.1 (continued)

AttributeType name AttributeType code
maximumLengthAllowed ML

maximumNumberOfLanes XL

maximumTotalWeightAllowed MT

maximumWeightPerAxleAllowed AW

maximumWidthAllowed MW

measuredLength LM

militaryAirport MP

minimumNumberOfLanes MI

minimumNumberOfOccupants MO

multi-MediaAction MC

multi-MediaDescription MD

multi-MediaFileAttachmentName MN

multi-MediaFileAttachmentType MQ

multi-MediaTimeDomain MM

nameComponentLength NC

nameComponentOffset NO

nameComponentType NT

namePrefix NP

nationalRoadClass NR

numberOfLanes NL

numberOfRooms RO

officialCode OC

officialLanguage OL

officialNameText ON

officialStreetNameText OF

openingPeriod OP

otherTextualContentOnATrafficSign CT

ownership OW

parkAndRideFacility PK

parkType PT

parkingFacilitiesAvailable PF

parkingTypeCharged PY

pass PA

passingRestrictions RP

pavedRoadSurfaceType OA

pavementStatus PV

percentageOfInternationalTraffic PI

placeName PE

placeWithinPlaceClassification PL

population PO

populationClass PC

positionalAccuracy AP

postOfficeType PP

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

132 © ISO 2009 – All rights reserved

Table B.1 (continued)

AttributeType name AttributeType code
postalCode PS

priceband PR

pronunciation PB

pronunciationSystem PN

publicTransportMode PM

publiclyAccessible SR

railwayStationType RY

rating RA

regionCode RC

removableBlockage RB

restaurantFacilitiesAvailable RF

roadGradient RG

roadInclination IR

roadNumberOnSign RX

roadSurfaceCondition RR

routeDirection PD

routeNumberBody RN

routeTypePrefix RE

routeTypeSuffix RI

routingIdentifier RS

routingSequenceNumber RU

routingType RT

sandAreaType SA

separator SE

settlementType SM

scenicValue SV

slipRoadType SL

snackServed SS

speedRestrictions SP

streetName SN

streetSide SI

streetTypePrefix SX

streetTypeSuffix ST

structureCategory SC

structureIdentifier SF

structureType ST

suitableForDisabled SD

summerTime SU

symbolOnTrafficSign SY

telefaxNumber TX

telephoneNumber TL

timeOfArrivalOfFlightConnection TA

timeOfDepartureOfFlightConnection TD

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 133

Table B.1 (continued)

AttributeType name AttributeType code
timeDifferenceOfFlightConnection TF

timeZone TZ

tollCharge TC

tollPointType TB

tollRoad TR

trafficFlowMeasurement TM

trafficFlowMeasurementType TY

trafficFlowMeasurementUnit TU

trafficJamSensitivity TJ

trafficSignClass TS

trailingSpaces TI

travelTime TT

typeOfPublicTransportPoint TP

unpavedRoadSurfaceType UR

urbanRailwayStation BR

validityDirection VD

validityPeriod VP

valueOnReferencePoint VR

valueOnTrafficSign VA

vehicleType VT

waterBoundaryElementType WB

waterBodyType WT

width WI

Table B.2 — Allowable values of featureFilterLeafType (sorted by code)

AttributeType name AttributeType code

accidentIdentifier AC

departure/Arrival AD

airportCode AI

alternateStreetNameText AL

alternateNameText AN

positionalAccuracy AP

internationalRailwayStation AR

averageVehicleSpeed AS

accidentDate AT

maximumWeightPerAxleAllowed AW

associationType AY

breakfastAvailable BA

buildingClassName BC

blockedPassageType BE

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 17267:2009(E)

134 © ISO 2009 – All rights reserved

Table B.1 (continued)

AttributeType name AttributeType code

businessLunch BL

brandName BN

blockedPassageLocation BP

urbanRailwayStation BR

administrativeBoundaryType BX

boundaryType BY

acceptedCreditCards CA

cityCenterAdministrativeClass CC

carDealerType CD

chainage CH

commonLanguage CL

commercialAirlineService CM

chainageOffset CO

commuter/RegionalRailwayStation CR

constructionStatus CS

otherTextualContentOnATrafficSign CT

currency CU

containmentType CY

destinationOfFlightConnection DC

directionOfTrafficFlow DF

direction DI

destinationLocation DL

directionalPrefix DP

dividedRoadElement DR

directionalSuffix DS

dividerType DT

dividerWidth DW

displayClass DY

enclosedTrafficAreaType EA

externalIdentifier EI

exitNumber EN

equipmentIdentifier EQ

entryPointType ET

emergencyVehicleLane EV

functionalRoadClass FC

frequencyOfATrafficConnection FR

facilitiesEnSuite FS

ferryType FT

formOfWay FW

freeway FY

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 135

Table B.1 (continued)

AttributeType name AttributeType code

generalAviation GA

governmentType GT

firstHouseNumber HF

intermediateHouseNumber HI

lastHouseNumber HL

houseNumber HN

heightOfPass HP

houseNumberStructure HS

administrativeStructureIdentifier IA

ISOCountryCode IC

IDofFlightConnection ID

interchangeType IF

importance IM

roadInclination IR

junctionType JT

locationReferenceCode LC

laneDependentValidity LD

measuredLength LM

lateralOffset LO

lengthOfARoadElement LR

locationReferenceType LT

magneticAnomalies MA

multi-MediaAction MC

multi-MediaDescription MD

maximumHeightAllowed MH

minimumNumberOfLanes MI

maximumLengthAllowed ML

multi-MediaTimeDomain MM

multi-MediaFileAttachmentName MN

minimumNumberOfOccupants MO

militaryAirport MP

multi-MediaFileAttachmentType MQ

mainRailwayStation MR

maximumTotalWeightAllowed MT

maximumWidthAllowed MW

nameComponentLength NC

domestic/International NI

numberOfLanes NL

nameComponentOffset NO

namePrefix NP

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

136 © ISO 2009 – All rights reserved

Table B.1 (continued)

AttributeType name AttributeType code

nationalRoadClass NR

nameComponentType NT

pavedRoadSurfaceType OA

officialCode OC

officialStreetNameText OF

officialLanguage OL

officialNameText ON

openingPeriod OP

ownership OW

pass PA

pronunciation PB

populationClass PC

routeDirection PD

placeName PE

parkingFacilitiesAvailable PF

percentageOfInternationalTraffic PI

parkAndRideFacility PK

placeWithinPlaceClassification PL

publicTransportMode PM

pronunciationSystem PN

population PO

postOfficeType PP

priceband PR

postalCode PS

parkType PT

pavementStatus PV

parkingTypeCharged PY

rating RA

removableBlockage RB

regionCode RC

routeTypePrefix RE

restaurantFacilitiesAvailable RF

roadGradient RG

routeTypeSuffix RI

routeNumberBody RN

numberOfRooms RO

passingRestrictions RP

roadSurfaceCondition RR

routingIdentifier RS

routingType RT

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 137

Table B.1 (continued)

AttributeType name AttributeType code

routingSequenceNumber RU

roadNumberOnSign RX

railwayStationType RY

sandAreaType SA

structureCategory SC

suitableForDisabled SD

separator SE

structureIdentifier SF

streetSide SI

slipRoadType SL

settlementType SM

streetName SN

speedRestrictions SP

publiclyAccessible SR

snackServed SS

streetTypeSuffix ST

structureType ST

summerTime SU

scenicValue SV

streetTypePrefix SX

symbolOnTrafficSign SY

timeOfArrivalOfFlightConnection TA

tollPointType TB

tollCharge TC

timeOfDepartureOfFlightConnection TD

timeDifferenceOfFlightConnection TF

trailingSpaces TI

trafficJamSensitivity TJ

telephoneNumber TL

trafficFlowMeasurement TM

typeOfPublicTransportPoint TP

tollRoad TR

trafficSignClass TS

travelTime TT

trafficFlowMeasurementUnit TU

telefaxNumber TX

trafficFlowMeasurementType TY

timeZone TZ

unpavedRoadSurfaceType UR

valueOnTrafficSign VA

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

138 © ISO 2009 – All rights reserved

Table B.1 (continued)

AttributeType name AttributeType code

validityDirection VD

validityPeriod VP

valueOnReferencePoint VR

vehicleType VT

waterBoundaryElementType WB

width WI

waterBodyType WT

maximumNumberOfLanes XL

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 17267:2009(E)

© ISO 2009 – All rights reserved 139

Bibliography

[1] ISO/IEC 14750, Information technology — Open Distributed Processing — Interface Definition
Language

[2] IEEE 754, IEEE Standard for Binary Floating-Point Arithmetic

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://en.wikipedia.org/wiki/IEEE

ISO 17267:2009(E)

ICS 03.220.01; 35.240.60
Price based on 139 pages

© ISO 2009 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

	Scope
	Terms and definitions
	Abbreviated terms
	Architecture of the API
	General
	Paradigm
	Minimum low level platform interface
	Forward compatibility
	Error handling
	Memory allocation
	Prioritization and cancellation
	Byte ordering
	Generic data types
	Handling of large result sets
	Background
	Requirements
	Object-oriented example

	Multimedia issues
	Location of application software, DAL and data
	Application software
	Data access library
	Data
	Conclusions

	Base and extended APIs
	Terms
	Description

	Functional specification of the API
	Introduction and level of API
	General
	Functional definition of the API level
	ISO-API level policy

	Specification convention
	General
	Naming conventions
	Hungarian notation convention

	Application categories
	General
	Global module specification
	Definitions common to all functional categories
	Constants
	Vehicle access type constants
	Condition type constants

	Data structures
	LocusType (Hungarian: loc)
	LocusList
	bbox3PtType
	GeometryTypeEnum
	FeatureNameType
	PointDimensionEnum
	MapPositionType
	ComponentBoundaryType
	FeatureComponentType
	MapFeatureType
	FeatureTypeEnum (Hungarian: fte)
	FractionType
	featureFilterType
	featureFilterLeafType
	featureFilterOperandType
	featureFilterOperandTypeEnum
	featureFilterOperatorType
	featureFilterOperatorTypeEnum
	featureFilterTestTypeEnum
	featureFilterValueTypeForComparisonEnum
	featureFilterValueTypeFromFeatureEnum
	featureSortOrderEnum
	namedAreaType
	radiusDistanceEnum
	sideTypeEnum
	MapConditionAttrType (Hungarian: ca)
	MapConditionModifierEnum (Hungarian: cme)
	MapTollType (Hungarian: tol)
	MapConditionModifierType (Hungarian: cm)
	MapCursorInfoType (Hungarian: ci)
	MapCursorOriginEnum (Hungarian: coe)
	MapCursorReturnTypeEnum (Hungarian: crte)
	MapCursorType (Hungarian: cu)
	MapFetchDirectionEnum (Hungarian: fde)
	MapDateAttrType (Hungarian: da)
	MapDateTypeEnum (Hungarian: dte)
	MapDayOfWeekEnum (Hungarian: dwe)
	MapDateType (Hungarian: dt)
	MapTimeZoneType (Hungarian: tz)
	MapDateTimeType (Hungarian: dtt)
	MapOrientationDirectionEnum (Hungarian: ode)
	MapSectionIDType (Hungarian: sid)
	MapParcelIDType (Hungarian: pid)
	MapEntityIDType (Hungarian: eid)
	MapDBIDType (Hungarian: dbid)
	MapEntityEnum (Hungarian: ee)
	MapLaneCategoryType (Hungarian: lc)
	MapLinkCharacteristicsType (Hungarian: lch)
	MapSpeedCategoryType (Hungarian: sc)
	MapLinkAttrType (Hungarian: la)
	MapLinkType (Hungarian: lk)
	MapLinkSubattrType (Hungarian: ls)
	MapPosition2DType (Hungarian: p2)
	MapPosition3DType (Hungarian: p3)
	MapNodeAttrType (Hungarian: na)
	MapNodeType (Hungarian: nd)
	MapSuccessorLinkAndNodeType (Hungarian: sln)
	MapPriorityType (Hungarian: pr)
	MapRectangleType (Hungarian: rect)
	MapReturnType (Hungarian: ret)
	MapSuccNodeCostEnum (Hungarian: snce)
	MapConditionType (Hungarian: cnd)
	MapConditionAndDirectionType (Hungarian: cod)
	MapConditionLinkAndNodeType (Hungarian: cln)
	PointAndRadiusType

	Error codes

	Route planning
	General
	Constants
	Data structures
	WaypointCandidate
	WaypointCandidateList
	WaypointSetList
	WaypointChoice
	WaypointChoiceList
	FuzzyWaypoint
	FuzzyWaypointList
	MapPathHandle
	MapRouteUsageEnum (Hungarian: rue)
	MapRouteDynamicTrafficUsageEnum (Hungarian: rtue)
	MapRouteMinimizeOptionEnum (Hungarian: rmoe)
	MapRouteCostModelType (Hungarian: rcm)
	MapRoutePointType (Hungarian: rp)
	MapRoutePointSequenceType (Hungarian: rps)
	MapRouteLinkAndCostType (Hungarian: rlc)
	MapRouteControlType (Hungarian: rc)

	Error codes
	Route planning functions
	MapComputePath
	MapComputePathWithFuzzyWaypoints
	MapComputePathWithWaypointSets
	MapComputePathMultipleRoutes
	MapComputePathsMultipleDestinations
	MapGetLinksAndCostsFromPath

	Route planning optional extended low level interface
	MapGetComplexToll
	MapGetCondition
	MapGetConditionDateTime
	MapGetConditionLinksAndNodes
	MapGetContainingIntersection
	MapGetIntersectionLinks
	MapGetLink
	MapGetLinkSubattr
	MapGetLinkConditions
	MapGetMultLinks
	MapGetNode
	MapGetSuccessors
	MapGetTimeZone
	MapGetTollDestinations
	MapSearchLinks
	MapSearchNearestLinks
	MapSearchNodes

	Route guidance
	Data structures
	MapManeuverDescription
	MapRouteGuidanceControl

	Error codes
	Route guidance functions — MapGuidePath

	Positioning
	Error codes
	Positioning functions
	GetPosition
	GetNearbyMapFeatures

	Map display
	Data structures
	mdDAL
	mdParcelList
	mdFeatureList
	mdNameList
	mdPointList
	mdItemID
	mdTypeList
	mdPoint

	Error codes
	Map display functions
	GetFeatures
	GetFeaturesFiltered
	Map handle functions
	General
	mapHandleCreate
	mapHandleCombine
	mapHandleAdd
	mapHandleRelease

	Map display extended low level interface
	Informational functions
	Feature list functions
	Point list functions
	Name list functions

	Address location
	Data structures
	AddressOutRequestType
	AddressOutResponseType
	AddressLevelType
	AddressType
	AddressTypeEnum
	CandidateLocType
	GeoContextEnum
	GeoContextType
	LocationType
	PartialAddressCompletionType
	SpellerOutType
	AddressFieldStatusEnum (Hungarian: afs)
	FeatureNameType

	Error codes
	Address location functions
	GetLocsFromUnparsedAddress
	GetLocsFromParsedAddress
	GetAddressFromPoint
	GetAddressFromLocus
	GetAddressFromFeatureID
	ScrollerHelper
	SpellerHelper
	AddressLevelStructSet
	AddressLevelStructGet

	Services/POIs
	Data structures
	POIRequestType
	POIAttrType (Hungarian: pat)
	POISubAttrType (Hungarian: psut)
	POIType (Hungarian pt)

	Error codes
	Service and POI functions
	GetPOIsByBBox
	GetPOIsByPointRad
	GetPOIsFromPath
	GetPOIsFromNamedArea
	GetPOISubattr

	Utility functions
	Error codes
	Map handle functions
	General
	mapHandleCreate
	mapHandleCombine
	mapHandleAdd
	mapHandleRelease

	Large result set functions
	General
	MapCloseCursor
	MapFetchCursor
	MapGetCursorInfo
	MapGetCursorPosition
	MapPositionCursor
	MapProcessCursor

	Other utility functions
	MapGetDaylightSavingsTimeDateRange
	MapGetEntityLevel
	MapGetEntityLevelDBID

	Examples
	General
	Cursor-handling functions

