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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take Part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 17123-1 was prepared by Technical Committee ISO/TC 172, Optics and photonics, Subcommittee SC 6, 
Geodetic and surveying instruments. 

This second edition cancels and replaces the first edition (ISO 17123-1:2002), which has been technically 
revised. 

ISO 17123 consists of the following parts, under the general title Optics and optical instruments — Field 
procedures for testing geodetic and surveying instruments: 

⎯ Part 1: Theory 

⎯ Part 2: Levels 

⎯ Part 3: Theodolites 

⎯ Part 4: Electro-optical distance meters (EDM instruments) 

⎯ Part 5: Electronic tacheometers 

⎯ Part 6: Rotating lasers 

⎯ Part 7: Optical plumbing instruments 

⎯ Part 8: GNSS field measurement systems in real-time kinematic (RTK) 
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Introduction 

This part of ISO 17123 specifies field procedures for adoption when determining and evaluating the 
uncertainty of measurement results obtained by geodetic instruments and their ancillary equipment, when 
used in building and surveying measuring tasks. Primarily, these tests are intended to be field verifications of 
suitability of a particular instrument for the immediate task. They are not proposed as tests for acceptance or 
performance evaluations that are more comprehensive in nature. 

The definition and concept of uncertainty as a quantitative attribute to the final result of measurement was 
developed mainly in the last two decades, even though error analysis has already long been a part of all 
measurement sciences. After several stages, the CIPM (Comité Internationale des Poids et Mesures) referred 
the task of developing a detailed guide to ISO. Under the responsibility of the ISO Technical Advisory Group 
on Metrology (TAG 4), and in conjunction with six worldwide metrology organizations, a guidance document 
on the expression of measurement uncertainty was compiled with the objective of providing rules for use 
within standardization, calibration, laboratory, accreditation and metrology services. ISO/IEC Guide 98-3 was 
first published as an International Standard (ISO document) in 1995. 

With the introduction of uncertainty in measurement in ISO 17123 (all parts), it is intended to finally provide a 
uniform, quantitative expression of measurement uncertainty in geodetic metrology with the aim of meeting 
the requirements of customers. 

ISO 17123 (all parts) provides not only a means of evaluating the precision (experimental standard deviation) 
of an instrument, but also a tool for defining an uncertainty budget, which allows for the summation of all 
uncertainty components, whether they are random or systematic, to a representative measure of accuracy, i.e. 
the combined standard uncertainty. 

ISO 17123 (all parts) therefore provides, for defining for each instrument investigated by the procedures, a 
proposal for additional, typical influence quantities, which can be expected during practical use. The customer 
can estimate, for a specific application, the relevant standard uncertainty components in order to derive and 
state the uncertainty of the measuring result. 
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Optics and optical instruments — Field procedures for testing 
geodetic and surveying instruments — 

Part 1: 
Theory 

1 Scope 

This part of ISO 17123 gives guidance to provide general rules for evaluating and expressing uncertainty in 
measurement for use in the specifications of the test procedures of ISO 17123-2, ISO 17123-3, ISO 17123-4, 
ISO 17123-5, ISO 17123-6, ISO 17123-7 and ISO 17123-8. 

ISO 17123-2, ISO 17123-3, ISO 17123-4, ISO 17123-5, ISO 17123-6, ISO 17123-7 and ISO 17123-8 specify 
only field test procedures for geodetic instruments without ensuring traceability in accordance with 
ISO/IEC Guide 99. For the purpose of ensuring traceability, it is intended that the instrument be calibrated in 
the testing laboratory in advance. 

This part of ISO 17123 is a simplified version based on ISO/IEC Guide 98-3 and deals with the problems 
related to the specific field of geodetic test measurements. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in 
measurement (GUM:1995) 

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated 
terms (VIM) 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO/IEC Guide 99 and the following 
apply. 

3.1 General metrological terms 

3.1.1 
(measurable) quantity 
property of a phenomenon, body or substance, where the property has a magnitude that can be expressed as 
a number and a reference 

EXAMPLE 1 Quantities in a general sense: length, time, temperature. 

EXAMPLE 2 Quantities in a particular sense: length of a rod. 
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3.1.2 
value 
value of a quantity 
quantity value 
number and reference together expressing the magnitude of a quantity 

EXAMPLE Length of a rod: 3,24 m. 

3.1.3 
true value 
true value of a quantity 
true quantity value 
value consistent with the definition of a given quantity 

NOTE This is a value that would be obtained by perfect measurement. However, this value is in principle and in 
practice unknowable. 

3.1.4 
reference value 
reference quantity value 
quantity value used as a basis for comparison with values of quantities of the same kind 

NOTE A reference quantity value can be a true quantity value of the measurand, in which case it is normally 
unknown. A reference quantity value with associated measurement uncertainty is usually provided by a reference 
measurement procedure. 

3.1.5 
measurement 
process of experimentally obtaining one or more quantity values that can reasonably be attributed to a 
quantity 

NOTE Measurement implies comparison of quantities and includes counting of entities. 

3.1.6 
measurement principle 
phenomenon serving as the basis of a measurement (scientific basis of measurement) 

NOTE The measurement principle can be a physical phenomenon like the Doppler effect applied for length 
measurements. 

3.1.7 
measurement method 
generic description of a logical organization of operations used in a measurement 

NOTE Methods of measurement can be qualified in various ways, such as “differential method” and “direct 
measurement method”. 

3.1.8 
measurand 
quantity intended to be measured 

EXAMPLE Coordinate x determined by an electronic tacheometer. 

3.1.9 
indication 
quantity value provided by a measuring instrument or measuring system 

NOTE An indication and a corresponding value of the quantity being measured are not necessarily values of 
quantities of the same kind. 
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3.1.10 
measurement result 
result of measurement 
set of quantity values attributed to a measurand together with any other available relevant information 

NOTE A measuring result can refer to 

⎯ the indication, 

⎯ the uncorrected result, or 

⎯ the corrected result. 

A measurement result is generally expressed as a single measured quantity value and a measurement uncertainty. 

3.1.11 
measured quantity value 
quantity value representing a measurement result 

3.1.12 
error 
error of measurement 
measurement error 
measured quantity value minus a reference quantity value 

3.1.13 
random measurement error 
random error 
component of measurement error that in replicate measurements varies in an unpredictable manner 

NOTE Random measurement errors of a set of replicate measurements form a distribution that can be summarized 
by its expectation, which is generally assumed to be zero, and its variance. 

3.1.14 
systematic error 
systematic error of measurement 
component of measurement error that in replicate measurements remains constant or varies in a predictable 
manner 

NOTE Systematic error, and its causes, can be known or unknown. A correction can be applied to compensate for a 
known systematic measurement error. 

3.2 Terms specific to this International Standard 

3.2.1 
accuracy of measurement 
closeness of agreement between a measured quantity value and the true value of the measurand 

NOTE 1 “Accuracy” is a qualitative concept and cannot be expressed in a numerical value. 

NOTE 2 “Accuracy” is inversely related to both systematic error and random error. 

3.2.2 
experimental standard deviation 
estimate of the standard deviation of the relevant distribution of the measurements 

NOTE 1 The experimental standard deviation is a measure of the uncertainty due to random effects. 

NOTE 2 The exact value arising in these effects cannot be known. The value of the experimental standard deviation is 
normally estimated by statistical methods. 
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3.2.3 
precision 
measurement precision 
closeness of agreement between measured quantity values obtained by replicate measurements on the same 
or similar objects under specified conditions 

NOTE Measurement precision is usually expressed by measures of imprecision, such as experimental standard 
deviation under specified conditions of measurement. 

3.2.4 
repeatability condition 
repeatability condition of measurement 
condition of measurement, out of a set of conditions 

NOTE Conditions of measurement include 

⎯ the same measurement procedure, 

⎯ the same observer(s), 

⎯ the same measuring system, 

⎯ the same meteorological conditions, 

⎯ the same location, and 

⎯ replicate measurements on the same or similar objects over a short period of time. 

3.2.5 
repeatability 
measurement repeatability 
measurement precision under a set of repeatability conditions of measurement 

3.2.6 
reproducibility conditions of measurement 
condition of measurement, out of a set of conditions 

NOTE Conditions of measurement include 

⎯ different locations, 

⎯ different observers, 

⎯ different measuring systems, and 

⎯ replicate measurements on the same or similar objects. 

3.2.7 
reproducibility 
measurement reproducibility 
measurement precision under reproducibility conditions of measurement  

3.2.8 
influence quantity 
quantity, which in a direct measurement does not affect the quantity that is actually measured, but affects the 
relation between the indication of a measuring system and the measurement result 

EXAMPLE Temperature during the length measurement by an electronic tacheometer. 
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3.3 The term “uncertainty” 

3.3.1 
uncertainty 
uncertainty of measurement 
measurement uncertainty 
non-negative parameter characterizing the dispersion of quantity values attributed to a measurand, based on 
the information used 

NOTE Measurement uncertainty comprises, in general, many components. Some of these components can be 
evaluated by a Type A evaluation of measurement uncertainty from the statistical distribution of the quantity values from 
series of measurements and can be characterized by an experimental standard deviation. The other components, which 
can be evaluated by a Type B evaluation of measurement uncertainty, can also be characterized by an approximation to 
the corresponding standard deviations, evaluated from assumed probability distributions based on experience or other 
information. 

3.3.2 
Type A evaluation 
Type A evaluation of measurement uncertainty 
evaluation of a component of measurement uncertainty (standard uncertainty) by a statistical analysis of 
quantity values obtained by measurements under defined measurement conditions 

NOTE For information about statistical analysis, see 4.1 and ISO/IEC Guide 98-3. 

3.3.3 
Type B evaluation of measurement uncertainty 
evaluation of a component of measurement uncertainty (standard uncertainty) determined by means other 
than a Type A evaluation of measurement uncertainty 

EXAMPLE The component of measurement uncertainty can be based on 

⎯ previous measurement data, 

⎯ experience with, or general knowledge of, the behaviour and property of relevant instruments or materials, 

⎯ manufacturer's specifications, 

⎯ data provided in calibration and other reports, 

⎯ uncertainties assigned to reference data taken from handbooks, and 

⎯ limits deduced through personal experiences. 

NOTE For more information see 4.3 and ISO/IEC Guide 98-3. 

3.3.4 
standard uncertainty 
standard uncertainty of measurement 
standard measurement uncertainty 
measurement uncertainty expressed as a standard deviation 

NOTE Standard uncertainty can be estimated either by a Type A evaluation or by a Type B evaluation. 

3.3.5 
combined standard uncertainty 
combined standard measurement uncertainty 
standard (measurement) uncertainty, obtained by using the individual standard uncertainties (and covariances 
as appropriate), associated with the input quantities in a measurement model 

NOTE The procedure for combining standard uncertainties is often called the “law of propagation of uncertainties” 
and in common parlance the “root-sum-of-squares” (RSS) method. 
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3.3.6 
coverage factor 
numerical factor larger than one, used as a multiplier of the (combined) standard uncertainty in order to obtain 
the expanded uncertainty 

NOTE The coverage factor, which is typically in the range of 2 to 3, is based on the coverage probability or level of 
confidence required of the interval. 

3.3.7 
expanded uncertainty 
expanded measurement uncertainty 
half-width of a symmetric coverage interval, centred around the estimate of a quantity with a specific coverage 
probability 

NOTE A fraction can be viewed as the coverage probability or level of confidence of the interval. 

3.3.8 
coverage interval 
interval containing the set of true quantity values of a measurand with a stated probability, based on the 
information available 

NOTE It is intended that a coverage interval not be termed “confidence interval” in order to avoid confusion with the 
statistical concept. To associate an interval with a specific level of confidence requires explicit or implicit assumptions 
regarding the probability distribution, characterized by the measurement result. 

3.3.9 
coverage probability 
probability that the set of true quantity values of a measurand is contained within a specific coverage interval 

NOTE The probability is sometimes termed “level of confidence” (see ISO/IEC Guide 98-3). 

3.3.10 
uncertainty budget 
statement of a measurement uncertainty, of the components of that measurement uncertainty, and of their 
calculation and combination 

NOTE It is intended that an uncertainty budget include the measurement model, estimates, measurement 
uncertainties associated with the quantities in the measurement model, type of applied probability density functions and 
type of evaluation of measurement uncertainty. 

3.3.11 
measurement model 
mathematical relation among all quantities known to be involved in a measurement 
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3.4 Symbols 

Table 1 — Symbols and definitions 

a Half-width of a rectangular distribution of possible values of input quantity Xi:a = (a+ − a−)/2 

a+ Upper bound or upper limit of input quantity Xi 

a− Lower bound or lower limit of input quantity Xi 

A Design or Jacobian matrix (N × n) 

ci Partial derivates or sensitive coefficient: i
i

fc
x

∂=
∂

 (i = 1, 2, ..., N) 

c Vector of sensitive coefficients ci (i = 1, 2, ..., N) 

e Unit vector 

fk 
Functional relationship between a measurand, Yk, and the input quantity, Xj, and between output 
estimate, yk, and input estimates, xj 

f Vector with elements fk (xT ) (k = 1, 2, ..., n) 

F1 − α /2 (v, v) Fisher's F (or Fisher-Snedecor) distribution with degrees of freedom (v, v) and confidence level of 
(1 − α) % 

gj Functional relationship between the estimate of input quantity, xj, and the observables, li 

k Coverage factor used to calculate expanded uncertainty U = k × uc(y) of the output estimate y from its 
combined uncertainty uc(y) 

li Observables, random variables (i = 1, 2, ..., m) 

m Number of observations, li 

M Number of input quantities, whose uncertainties can be estimated by a Type A evaluation 

n Number of output quantities, measurands 

N Number of input quantities 

N − M Number of input quantities, whose uncertainties can be estimated by a Type B evaluation 

N Normal equation matrix (n × n) 

pj Weight of the input estimates xj ( j = 1, 2, ..., N) 

P Weight matrix of pj (N × N) 

Qykyk Cofactor of the output estimate, yk 

Qy Cofactor matrix of the output estimates, yk (n × n) 

rj Residual of input estimates, xj ( j = 1, 2, ..., N) 

r Vector of residuals, rj 

r (xi, xj) Correlation coefficient between the input estimates, xi and xj 

s Experimental standard deviation (general notation) 

s(yk) Experimental standard deviation of the output estimate yk 

tα(v) Student's t-distribution with the degree of freedom, v, and a confidence level of (1 − α) % 

u Standard uncertainty (general notation) 

u(yk) Standard uncertainty of the output estimate yk 

u(xj) Standard uncertainty of the input estimate xj 

uc(yk) Combined standard uncertainty of the output estimate yk 

U Expanded uncertainty (general notation) 
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Table 1 (continued) 

xj Estimate of input quantity, input estimate ( j = 1, 2, ..., N) 

x Vector of the estimates of input quantities xj 

Xj j th input quantity on which the measurand Yk depends 

X Vector of input quantities Xj 

yk Estimate of measurand Yk, output estimate; (k = 1, 2, ..., n) 

y Vector of output estimates of measurands yk 

Yk k th measurand (k = 1, 2, ..., n) 

Y Vector of measurands Yk 

α Probability of error, as a percentage 

(1 − α) Confidence level 

v Degrees of freedom 

σ Standard deviation of the normal distribution 
2
1 ( )αχ ν−  Chi-squared distribution with the degree of freedom, v, and a confidence level of (1 − α) % 

 

4 Evaluating uncertainty of measurement 

4.1 General 

The general concept is documented in ISO/IEC Guide 98-3, which represents the international view of how to 
express uncertainty in measurement. It is just a rigorous application of the variance-covariance law, which is 
very common in geodetic and surveying data analysis. However, the philosophy behind it has been extended 
in order to consider not only random effects in measurements, but also systematic errors in the quantification 
of an overall measurement uncertainty. 

In principle, the result of a measurement is only an approximation or estimate of the value of the specific 
quantity subject to a measurement; that is the measurand. Thus, the result is complete only when 
accompanied by a quantitative statement of its quality, the uncertainty. 

The uncertainty of the measurement result generally consists of several components, which may be grouped 
into two categories according to the method used to estimate their numerical values: 

a) those which are evaluated by statistical methods; 

b) those which are evaluated by other means. 

Basic to this approach is that each uncertainty component, which contributes to the uncertainty of a measuring 
result by an estimated standard deviation, is termed standard uncertainty with the suggested symbol u. 

The uncertainty component in category A is represented by a statistically estimated experimental standard 
deviation, si, and the associated number of degrees of freedom, vi. For such a component, the standard 
uncertainty ui = si. The evaluation of uncertainty components by the statistical analysis of observations is 
termed a Type A evaluation of measurement uncertainty (see 4.2). 

In a similar manner, an uncertainty component in category B is represented by a quantity, uj, which may be 
considered an approximation of the corresponding standard deviation and which may be attributed an 
assumed probability distribution based on all available information. Since the quantity uj is treated as a 
standard deviation, the standard uncertainty of category B is simply uj. The evaluation of uncertainty by means 
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other than statistical analysis of series of observations is termed a Type B evaluation of measurement 
uncertainty (see 4.3). 

Correlation between components of either category are characterized by estimated covariances or estimated 
correlation coefficients. 

Input: 
vector x , Ux 

 
input quantity  xj  and its 

uncertainty  u(xj)  
 
 
 
 
 
 
 
 
 
 
 

 

Type B: 
previous, external 

measurement data analysed 
by other means 

xB , U x(B)  

Type A: 
observations, measurement 
data analysed by statistical 

methods 
xA , U x(A)  

x, Ux 

 
 

Model 
of evaluation: 

 
y = f (xT) 

 

Output: 
vector y and uy 

 
output quantity  yk and its 

standard uncertainty  u(yk)  
 

expanded uncertainty 
 U(yk) 

 
 
 
 
 
 
 
 
 
 
 

Final result: 
 

yk ± U(yk) 

Can be used as input 
quantity in further 

applications 

y, uy 

 

Figure 1 — Universal mathematical model and uncertainty evaluation 

 

4.2 Type A evaluation of standard uncertainty 

4.2.1 General mathematical model 

In most cases, a measurand, Y, is not measured directly, but is determined by N other quantities x1, x2, ..., xN 
through the functional relationship given as Equation (1): 

Y = f (X1, X2, ..., XN) (1) 

An estimate of the measurand, Y, the output estimate, y, is obtained from Equation (1) by using the input 
estimates, x1, x2, ..., xN, thus the output estimate, y, which is the result of measurements, is given by 
Equation (2): 

y = f (x1, x2, ..., xN) (2) 

In most cases, the measurement result (output estimate, y) is obtained by this functional relationship. 

But in some cases, especially in geodetic and surveying applications, the measurement result is composed of 
several output estimates, y1, y2, ..., yn which are obtained by multiple, e.g. N, measurements (input estimates). 

From this follows the general model function (see Figure 1) given as Equation (3): 

y = f (xT) (3) 
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Assuming that 

x is a vector (N × 1) of input quantities xj ( j = 1, 2, ..., N); 

y is a vector (n × 1) of output quantities yk (k = 1, 2, ..., n); 

f is a vector (n × 1) with the elements fk(xT) (k = 1, 2, ..., n); 

f can be understood as a suitable algorithm to determine the output quantities y (see Annex C). 

4.2.2 General law of Type A uncertainty propagation 

Often in geodetic measuring processes, the input quantity, xj, is a function of several observables, the random 
variables: 

lT = (l1, l2, l3, ..., lm) (4) 

The reason for this can be, for example, internal measuring processes of the instrument, correction 
parameters obtained by calibration or even multiple measurements of the same observable. 

The associated uncertainty matrix may be given by Equation (5): 

2
1

2

0

0
l

m

u

u

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

U  (5) 

Assuming the general function 

xj = gj(l) (j = 1, 2, ..., N) (6) 

the linearized model 

xj = 0
T
jg + g l  (7) 

with 

1 2
1 2

( , , , ) ( ,  , , )j j jT
j j j jm

m

g g g
g g g

l l l
∂ ∂ ∂

= … = …
∂ ∂ ∂

g  (8) 

yields the standard uncertainty of the input quantity, xj, as given by Equation (9): 

( ) T
j j l ju x = g U g  (9) 

Under the assumption that the observables are random, 

u(xj) = s(xj) (10) 

which is called the experimental standard deviation of xj. 

Of course, ujk can also be introduced in Equation (5) covariances such that Ul becomes a fully occupied 
matrix. 

The numerical example in C.1 illustrates this approach of a Type A evaluation for calculating the standard 
uncertainty. 

If there are N functions of X, all dependent on the observables l, they are treated according to Equation (7): 

0= +x g Gl  (11) 
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With the Jacobian matrix: 

11

1

lm

N Nm

g g

g G

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

G  (12) 

Finally, Equation (9) can be written in the general form of the known law of error propagation: 

2
1 1 2 1

2
2 1 2 2

2
1 2

( ) ( , ) ( , )
( , ) ( ) ( , )

( , ) ( , ) ( )

N
T Nx l

M M N

u x u x x u x x
u x x u x u x x

u x x u x x u x

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U GU G  (13) 

From the diagonal elements, the standard uncertainties can be derived as given by Equation (14): 

1 2( ), ( ), ..., ( ) T
x Nu x u x u x= ⎡ ⎤⎣ ⎦u  (14) 

Respectively, the empirical standard deviations are 

1 2( ), ( ), ..., ( ) T
x Ns x s x s s= ⎡ ⎤⎣ ⎦s  (15) 

Following the flowchart of Figure 1 in which the output quantities are obtained from the input estimates x by a 
linear transformation, then 

y = f(xT) = h0 + H(x) (16) 

Taking Equation (11) into account, 

0 0 0= + ( + ) = +y h H g Gl h HGl  (17) 

and, according to Equation (13), the uncertainty matrix becomes: 

Uy = HUxHT  = HGUlGTHT  (18) 

The diagonal elements of the matrix Uy incorporate the standard uncertainty vector given as Equation (19): 

1 2= ( ), ( ),  ...,  ( ) T
y Nu y u y u y⎡ ⎤⎣ ⎦u  (19) 

of the output estimates y1, y2, ..., yN. 

Again, if the input quantities vary randomly, the standard uncertainties in Equation (19) match the empirical 
standard deviations of the output estimate y. 

uy = sy or u(yk) = s(yk)   (k = 1, 2, ..., n) (20) 

The nesting in Equation (18) can be arbitrarily enhanced for further applications (see Figure 1), e.g. z = M(y). 

The numerical example in C.2 illustrates this approach of a Type A evaluation for calculating the standard 
uncertainty. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO 17123-1:2010(E) 

12  © ISO 2010 – All rights reserved
 

4.2.3 Least squares approach 

Often, more model equations according to Equation (3) are given than output quantities, yk, have to be 
determined. In such a case (N > n), it is suitable to solve the equation system by the known method of a least-
squares adjustment. For this, it is necessary to restate the model function of Equation (3) in a system of (non-
linear) observation equations: 

x + r = F(y) (21) 

or in a linearized notation (neglecting higher-order terms): 

0 0( ) ( )∂+ = + −
∂
Fx r F y y y
y

 (22) 

where 

x is the vector (N × 1) of the observations or measurable input quantities; 

r is the vector (N × 1) of the residuals; 

y is the vector (n × 1) of unknowns, output estimates; 

y0 is the vector (n × 1) of the approximate values of y. 

Substituting in Equation (22): 

0− =y y y , 

0( )− =x F y l  (23) 

and 

1 1

1

1

n

N N

n

F F
y y

F F
y y

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟∂ = =⎜ ⎟

∂ ⎜ ⎟∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

F A
y

 (24) 

yields Equation (25): 

= −r Ay l  (25) 

Often, it is necessary to introduce a stochastic model by the weight matrix of the measurable input quantities: 

1 0

0 N

p

p

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

P  with 
2
0
2j
j

s
p

s
=  (26) 

The weights, pj, can be determined under consideration of Equation (13), respectively Equation (15). 

Following the Gauß-Markov model, the solution vector is: 

1 1( )T T− −= =y A PA A Pl N n  (27) 
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With the results of Equation (27), the residuals can be calculated from Equation (25). Thus, the a posteriori 
variance factor can be derived from Equation (28): 

2
0

T
s

v
= r Pr  (28) 

where 

v = N − n (degree of freedom). 

From this, the experimental standard deviation of the output estimates, y, can be calculated by the known 
relationships 

0( )
k kk y yy s=s Q  k = 1, 2, ..., n (29) 

with 

Qykyk = diagQy and Qy = N−1 (30) 

Finally, the standard uncertainties, Type A evaluation, of all output estimates yk can be stated as 
Equation (31): 

uy = sy or u(yk) = s(yk) k = 1, 2, ..., n (31) 

But, the adjusted input values can also be quoted by Equation (32): 

= +x l r  (32) 

and the estimated variance covariance matrix of x  by Equation (33): 

2 1
0

T
x s −=S AN A  (33) 

Finally, from its diagonal elements, the experimental standard deviations is given by Equation (34): 

1 2
( , , ..., )

Nx x x x xs s s diag= =s S  (34) 

Thus, the standard uncertainty of the adjusted input estimates, x , yields Equation (35): 

x x=u s  or ( ) ( )j ju x s x=  ( j = 1, 2, ..., N) (35) 

The numerical example in C.3 illustrates this approach of a Type A evaluation for calculating the standard 
uncertainty. 

4.2.4 Special cases 

4.2.4.1 Calculation of the standard uncertainty, ( ),iu x  of the arithmetic mean or average ix  for the ith 
series of measurements. 

Often, the input quantity Xi is estimated from j = 1, 2, ..., n independent repeated observations xi, j. Following 
Equation (27), the best available estimate is Equation (36): 

1( )T T
i ix −= e Pe e P x  (36) 
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With its experimental standard deviation, given as Equation (37): 

0 0( )i T
i j

s s
s x

p
= =

∑e Pe
 (37) 

For uncorrelated equal accurate input estimates, xi, j, the average yields Equation (38): 

1

1 n

i ij
j

x x
n =

= ∑  (38) 

and the experimental standard deviation yields Equation (39): 

0( )
( 1)

T

i
s r rs x

n nn
= =

−
, with i ir ex x= −  (39) 

Then, the standard uncertainty is given by Equation (40): 

( ) ( )i iu x s x=  (40) 

4.2.4.2 Calculation of the standard uncertainty, ( ),iu y  of the arithmetic mean or average iy  for the i th 
series of double measurements. 

Often the output quantities, Yi, are estimated by the mean ( 1, 2, ..., )iy i n=  of pairs of measurements (two 
measurements with the same measurand): 

( l1, l2) with 1 2( , , ..., )T
j j j jnl l l=l  and j = 1, 2. (41) 

The vector of the output estimates reads as Equation (42): 

1 2
1 ( )
2

= +y l l  (42) 

The following evaluation implies that the measurement procedure eliminates systematic errors; this means 
that, for the expectation of the difference vector, it follows that: 

2 1( ) ( )= − =E d E L L 0  (43) 

Furthermore, it is assumed that the same standard uncertainty ul, j, with j = 1, 2, can be attributed to all pairs of 
measurements. Therefore 

1 2l l= =P P P  (44) 

and 

2
0 2

T
s

n
= d Pd  

where 

d = ( l2 − l1) (45) 
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If the same weight can be allocated to all observations, the experimental standard deviation reads as given in 
Equations (46), (47) and (48): 

for the measurements lj, i: 

2

T

ls
n

= d d  (46) 

for the differences di: 

T

ds
n

= d d  (47) 

and 

for the output estimates iy : 

( )
4

T

is y
n

= d d  (48) 

To check if the assumption in Equation (43) is fulfilled, the following rule should be applied. 

If Equation (49) 

2( )T T<e d d d  (49) 

is true, it can be expected that ( ) =E d 0 . In this case, the standard uncertainty is given as Equation (50): 

( ) ( )i iu y s y=  (50) 

4.2.4.3 Calculation of the overall standard uncertainty, u, for m series of measurements. 

The experimental standard deviation obtained for each of the m series of measurements is considered to be a 
separate estimate of the overall experimental standard deviation of the measurements. It is assumed that 
each of these estimates is of the same order of reliability, vi = v1 = v2 = ... = vm. Equations (51) and (52) 
indicate how the individual experimental standard deviations are combined to give one overall experimental 
standard deviation which takes equal account of the experimental standard deviations calculated for each 
series of measurements. 

2 2 2 2 2
1 2 ...

m

i m
i l

s s s s s
=

= = + + +∑ ∑  (51) 

where 

m is the number of series of measurements; 

si is the experimental standard deviation of a single measured value within the i th series of 
measurements; 

2s∑  is the sum of squares of all standard deviations, si, of the m series of measurements. 
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The overall experimental standard deviation, s, of m series of measurements yields Equation (52): 

2s
s

m
= ∑  (52) 

The number of degrees of freedom of all m series of measurements is obtained by Equation (53): 

1

m

i i
i

v v m v
=

= = ×∑  (53) 

Finally, the overall standard uncertainty can be written as Equation (54): 

u = s (54) 

Numerical examples in C.4 and C.5 illustrate these approaches of a Type A evaluation for calculating 
standard uncertainties. 

4.3 Type B evaluation of standard uncertainty 

4.3.1 General 

Often, not all uncertainties of the N input quantities can be estimated by a Type A evaluation; this number of 
uncertainties, obtained by the Type A evaluation, is therefore assumed, M, so that the uncertainties of N − M 
input quantities have to be determined by other means, namely by a Type B evaluation. 

For an estimate xj, M < j u N of an input quantity, which has not been obtained from repeated observations or 
was derived from small samples, the evaluation of the standard uncertainty u(xj) is usually based on scientific 
judgment using all available information, which may include 

⎯ previous measurement data, 

⎯ experience with, or general knowledge of, the behaviour and properties of relevant materials and 
instruments, 

⎯ manufacturer's specifications, 

⎯ data provided in calibration reports, 

⎯ uncertainties assigned to reference data taken from handbooks. 

Examples of such a Type B evaluation, which can be very helpful for practical use, are given in the following 
subclauses. 

4.3.2 Quantity in question modelled by a normal distribution (see Annex A). 

⎯ Lower and upper limits are estimated by a− and a+. 

⎯ Estimated value of the quantity: (a+ + a−)/2. 

⎯ 50 % probability that the value lies in the interval a− to a+. 

Then, the standard uncertainty yields Equation (55): 

1,48ju a≈  (55) 
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where a = (a+ − a−)/2 

4.3.3 Quantity in question modelled by a normal distribution (see Annex A). 

⎯ Lower and upper limits are estimated by a− and a+. 

⎯ Estimated value of the quantity: (a+ + a−)/2. 

⎯ 67 % probability that the value lies in the interval a− to a+. 

Then, the standard uncertainty yields Equation (56): 

ju a≈  (56) 

where a = (a+ − a−)/2 

4.3.4 Quantity in question modelled by a uniform or rectangular probability distribution (see Annex A). 

⎯ Lower and upper limits are estimated by a− and a+. 

⎯ Estimated value of the quantity: (a+ + a−)/2. 

⎯ 100 % probability that the values lies in the interval a− to a+. 

Then, the standard uncertainty yields Equation (57): 

0,58
3j

au a= ≈  (57) 

where a = (a+ − a−)/2 

4.3.5 Quantity in question modelled by a triangular probability distribution (see Annex A). 

⎯ Lower and upper limits are estimated by a− and a+. 

⎯ Estimated value of the quantity: (a+ + a−)/2. 

⎯ 100 % probability that the values lies in the interval a− to a+. 

Then, the standard uncertainty yields Equation (58): 

0,41
6j

au a= ≈  (58) 

where a = (a+ − a−)/2 

The numerical Examples in C.6 illustrate these approaches of a Type B evaluation for calculating standard 
uncertainties. 
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4.4 Law of propagation of uncertainty and combined standard uncertainty 

The combined standard uncertainty, uc(yk), of a measurement result yk is taken to represent the estimated 
standard deviation of the final result. It is obtained by combining the individual standard uncertainties, u(xi), 
and, if available, the covariances u(xi,  xj) of the input estimates x1, x2, ..., xM, xM+1, xM+2, ..., xN, whether 
arising from a Type A evaluation or a Type B evaluation. This method is called the law of propagation of 
uncertainty or in the parlance of geodetic metrology the root-sum-squares method of combining standard 
deviations. 

It is assumed that for the input estimates 

1 2( , , ..., ) T
M Ax x x = x  (59) 

the standard uncertainties are from a Type A evaluation and given by Equation (60): 

2
1

2
2( )

2

( ) 0 0
0 ( )

0 ( )

x A

M

u x
u x

u x

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U  (60) 

and for the input estimates 

1 2( , , ..., ) T
M M N Bx x x+ + = x  (61) 

the standard uncertainties are from a Type B evaluation and given by Equation (62): 

2
1

2
2( )

2

( ) 0 0
0 ( )

0 ( )

M

Mx B

N

u x
u x

u x

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U  (62) 

Hence 

( )

( )

0
0
x A

x
x B

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

U
U U  (63) 

and, according to Equations (7) to (9), 

0
T A

k k
B

y c ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

xc x  (64) 

with 

1 2
1 2

, , ..., ( , , ..., )T k k k
k k k kN

N

df df df
c c c

dx dx dx
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

c  (65) 

The values cki, with i = 1, ..., N, are often called sensitivity coefficients and are determined either by the 
derivatives of the function fk or, sometimes measured experimentally by an empirical first-order Taylor series 
expansion. 
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Finally, the combined standard uncertainty for the output estimate, yk [see Equation (3)] yields Equation (66): 

( ) T
c k k x ku y = c U c  (66) 

If the estimated covariance between xi and xj the u(xi, xj) = u(xj, xi) are known, they can be regarded easily in 
Equations (60), (62) and (63). 

In this case, the degree of correlation is characterized by the estimated correlation coefficient 

( , )
( , )

( ) ( )
i j

i j
i j

u x x
r x x

u x u x
=

⋅
 (67) 

where −1 u r(xi, xj) u +1. If u(xi) and u(xj) are independent, r(xi, xj) = 0. 

The numerical examples in C.6 illustrate these approaches of calculating the combined standard uncertainties. 

4.5 Expanded uncertainty 

Although the combined standard uncertainty, uc(y), can be universally used, in some commercial, industrial 
applications, it is often necessary to give a measure of uncertainty that defines an interval about the 
measurement result, y, within which the value of the measurand, Y, is confidently believed to lie. The measure 
of uncertainty that meets the requirements of providing an interval is termed expanded uncertainty with the 
suggested symbol U and is obtained by multiplying the combined standard uncertainty by the coverage 
factor k as given by Equation (68): 

U = k × uc(y) (68) 

It is confidently believed that 

y − U u Y u y + U (69) 

which is conveniently expressed as Equation (70): 

Y = y ± U (70) 

In general, the value of the coverage factor, k, is chosen on the basis of the desired level of confidence 
intended to be associated with the interval defined by ±U and is typically in the range of 2 to 3. 

If 

U = 2 × uc(y) (71) 

the interval corresponds to a particular level of confidence of approximately p = 95 %, which is used typically 
in this series of standards and assumes for the output estimate a normal distribution. 

Under the same precondition, 

U = 3 × uc(y) (72) 

defines an interval having a level greater than p = 99 %. 

However, for specific applications, k may be outside the stated range. Extensive experiences with full 
knowledge of the use to which the measurement result is intended to be put can facilitate the proper selection 
of the value k. For more information, see ISO/IEC Guide 98-3:2008, 6.3, and Annex G. 
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5 Reporting uncertainty 

When reporting a measurement result and its uncertainty, the following information should be given: 

⎯ a clear description of the mathematical models and methods used to calculate the measurement result 
and its uncertainty (Type A and Type B evaluations) from the experimental observations and input data; 

⎯ a list of all uncertainty components together with their degrees of freedom and the resulting uc; 

⎯ a detailed description of how each component of standard uncertainty was evaluated; 

⎯ a description of how k was chosen, if k is not taken equal to 2. 

When the measure of uncertainty is uc(y), the numerical result of measurement should be stated in the 
following way: 

D = 12 345,678 m uc = 9,1 mm 

If the expanded uncertainty, U, is reported, the following notation is recommended: 

D = 12 345,678 m U = ±18 mm (k = 2) 

or 

D = (12 345,678 ± 0,018) m (k = 2) 

6 Summarized concept of uncertainty evaluation 

The following summary can be understood as a stepwise instruction for calculating the uncertainty in practice. 

a) Clear description of measurands and measuring method: the relationship between the input quantities 
and output quantities, and the evaluation model shall be correctly described mathematically. 

b) All corrections should be ascertained and, as far as possible, applied. 

c) Detection of all causes (influence quantities) for evaluating uncertainty. 

d) Calculation of the standard uncertainties applying the statistical procedures of a Type A evaluation. 

e) Determination of the standard uncertainties of a Type B evaluation. For this, 

1) the knowledge of the probability distribution of the input quantity, 

2) information to estimate the distribution of the input quantity, 

3) upper and lower bounds of the variability of the limits of the input quantity, and 

4) any other information, knowledge to quote the required standard uncertainty should be considered. 

f) For each input quantity, the quantitative contribution of the standard uncertainty shall be calculated. Thus 
all sensitivity coefficients shall be determined according to the measuring model (mathematical model to 
calculate the output estimate). 

g) Hereinafter, the law of propagation of the uncertainty can be applied; the result is the combined standard 
uncertainty of the output estimate. 
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h) Multiplication of the combined standard uncertainty by the coverage factor yields after all the expanded 
uncertainty. 

i) Report of the final result by quoting the output estimate, the expanded uncertainty and the coverage 
factor. 

7 Statistical tests 

7.1 General 

For the interpretation of the results, obtained from the full test procedure only, statistical tests shall be carried 
out using the experimental standard deviation, s, or the standard uncertainty, u, of a Type A evaluation. For 
tests, this Type A evaluation of standard uncertainty can be treated as an experimental standard deviation. 
For testing, the following questions shall be answered (see Table 2). 

a) Is the calculated experimental standard deviation (standard uncertainty of a Type A evaluation), s, smaller 
than or equal to the manufacturer's or some other predetermined value of σ? 

b) Do two experimental standard deviations (standard uncertainties of a Type A evaluation), s and ,s  as 
determined from two different samples of measurements belong to the same population, assuming that 
both samples have the same number of degrees of freedom, v (v being the number of degrees of freedom 
of all series of measurements)? 

c) Respectively, d) is a parameter yk obtained by adjustment equal to zero? 

Table 2 — Statistical tests 

Question Null hypothesis Alternative hypothesis 

a) s u σ s > σ 

b) σ σ=  σ σ≠  

c) respectively d) yk = 0 0ky ≠  

NOTE σ is used instead of s because the null hypothesis checks if the two 
experimental standard deviations belong to the same population. 

 

7.2 Question a): is the experimental standard deviation, s, smaller than or equal to a given 
value σ? 

Equations (1) to (54) allow only the determination of the (experimental) standard deviation, s, or the standard 
uncertainty of a Type A evaluation, u, of the measurements. Because of the small size of the sample, this 
value can differ more or less from the theoretical standard deviation, σ, of the whole population as stated by 
the manufacturer of the instrument or predetermined in any other way. 

The methods of mathematical statistics permit the decision whether an experimental standard deviation, s, is 
smaller than or equal to a given theoretical standard deviation, σ, on the confidence level 1 − α. 

The null hypothesis s = σ is not rejected if the following condition is fulfilled: 

2
1 ( )v

s
v
αχ

σ −×u  (73) 

Otherwise, the null hypothesis is rejected. 2
1 ( )vαχ −  may be taken from Table B.1. 

The theoretical standard deviation, σ, is a predetermined value. 
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7.3 Question b): Do two samples belong to the same population? 

The methods of mathematical statistics permit the decision as to whether two experimental standard 
deviations, s and ,s  or the standard uncertainties of a Type A evaluation, u and ,u  obtained from two different 
samples of measurements, belong to the same population on the confidence level 1 − α. The corresponding 
null hypothesis σ σ=  is not rejected if the following condition is fulfilled: 

2

1 / 22
1 / 2

1 ( , )
( , )

s F v v
F v v s

α
α

−
−

u u  (74) 

Otherwise, the null hypothesis is rejected. 

Two samples of measurements with the same number n n=  are taken to determine the experimental 
standard deviations, s and s . These experimental standard deviations, s and ,s  may be obtained from: 

⎯ two samples of measurements by the same equipment, but different observers; 

⎯ two samples of measurements by the same equipment, but at different times; 

⎯ two samples of measurements by different equipment. 

F1 − α /2 (v, v) may be taken from Table B.1. 

7.4 Question c) [respectively question d)]:Testing the significance of a parameter yk 

Equations (21) to (35), the equations of adjustment by least squares, allow the determination of parameters yk 
and their experimental standard deviations, s(yk), or standard uncertainties of a Type A evaluation, u(yk). 
Moreover, the methods of mathematical statistics permit the decision as to whether a parameter yk is not 
equal to zero on the confidence level 1 − α. The null hypothesis of yk = 0 is not rejected, if the following 
condition is fulfilled: 

1 / 2( ) ( )k ky s y t vα−×u  (75) 

Otherwise, the null hypothesis is rejected. 

yk is the parameter to be tested valid for all series of measurements. 

If m > 1, yk is calculated by the corresponding values yk,i for the m series of measurements: 

,
1

m

k i
i

k

y

y
m

==
∑

 (76) 

yk,i has to be estimated according to the equations for the full test procedure. 

In this case 

( )k
ss y
v

=  (77) 
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is the experimental standard deviation of the parameter yk valid for all series of measurements, where v is a 
constant according to the equations for the full test procedure. If m > 1, s(yk) is calculated by the 
corresponding values s(yk,i) for the m series of measurements: 

2
,

1
( )

( )

m

k i
i

k

s y
ss y

m v m
== =

×

∑
 (78) 

t1 − α /2 (v) may be taken from Table B.1. 
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Annex A 
(informative) 

 
Probability distributions 

Probability density distribution Density function Examples of application 

Rectangular(uniform) distribution 

 

µ − a   −σ   µ   +σ    µ + a 

Probability density function 

1( )
2

f x
a

=  

(µ − a u x u µ + a) 

Standard deviation 

3
aσ =  

Tolerances, e.g. digital display 
resolutions, intervals, deviations. 

Triangular distribution 

 

µ − a   −σ   µ   +σ    µ + a 

Probability density function 

1 1( ) 1 ( )f x x
a a

µ⎡ ⎤= − −⎢ ⎥
⎣ ⎦

 

(u − a u x u µ + a) 

Standard deviation 

6
aσ =  

Tolerances, the values of which show 
a high frequency in the middle and 

decrease linearly to both sides. 

 

Convolution of two rectangular 
distributions with the same half-width 

Normal (Gaussian) distribution 

 

−σ   µ   +σ 

Probability density function 
21

21( )
x

f x e
s

µ
σ

σ

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=

π
 

(−∞ < x < ∞,σ > 0) 

Standard deviation, σ, 

from statistical analysis 

Standard deviation derived from a 
sample of uncorrelated measurements
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Annex B 
(normative) 

 
χ2 distribution, Fisher's distribution and Student's t-distribution 

Table B.1 — χ2 distribution, Fisher's distribution and Student's t-distribution 

v 2
0,90( )vχ  0,95( , )F v v  0,95( )t v  2

0,95( )vχ  0,975( , )F v v 0,975( )t v  2
0,99( )vχ  0,995( , )F v v 0,995( )t v  

2 4,61 19,00 2,92 5,99 39,00 4,30 9,21 199,01 9,92 

3 6,25 9,28 2,35 7,81 15,44 3,18 11,34 47,47 5,84 

4 7,78 6,39 2,13 9,49 9,60 2,78 13,28 23,15 4,60 

5 9,24 5,05 2,02 11,07 7,15 2,57 15,09 14,94 4,03 

6 10,64 4,28 1,94 12,59 5,82 2,45 16,81 11,07 3,71 

7 12,02 3,79 1,89 14,07 4,99 2,36 16,48 8,89 3,50 

8 13,36 3,44 1,86 15,51 4,43 2,31 20,09 7,50 3,36 

9 14,68 3,18 1,83 16,92 4,03 2,26 21,67 6,54 3,25 

10 15,99 2,98 1,81 18,31 3,72 2,23 23,21 5,85 3,17 

14 21,06 2,48 1,76 23,68 2,98 2,14 29,14 4,30 2,98 

15 21,31 2,40 1,75 25,00 2,86 2,13 30,58 4,07 2,95 

16 23,54 2,33 1,75 26,30 2,76 2,12 32,00 3,87 2,92 

18 25,99 2,22 1,73 28,87 2,60 2,10 34,81 3,56 2,88 

19 27,20 2,17 1,73 30,14 2,53 2,09 36,19 3,43 2,86 

24 33,20 1,98 1,71 36,42 2,27 2,06 42,98 2,97 2,80 

27 36,74 1,90 1,70 40,11 2,16 2,05 46,96 2,78 2,77 

28 37,92 1,88 1,70 41,34 2,13 2,05 48,28 2,72 2,76 

30 40,26 1,86 1,70 43,77 2,07 2,04 50,89 2,63 2,75 

32 42,58 1,80 1,69 46,19 2,02 2,04 53,49 2,54 2,74 

36 47,21 1,74 1,69 51,00 1,94 2,03 58,62 2,41 2,72 

38 49,51 1,72 1,69 53,38 1,91 2,02 61,16 2,35 2,71 

42 54,09 1,67 1,68 58,12 1,85 2,02 66,21 2,25 2,70 

54 67,67 1,57 1,67 72,15 1,71 2,00 81,07 2,04 2,67 

72 87,74 1,48 1,67 92,81 1,59 1,99 102,82 1,85 2,65 

108 127,21 1,37 1,66 133,26 1,46 1,98 145,10 1,65 2,62 

The test values 2
1 1 / 2( ), ( , )v F v vα αχ − −  and t1 − α /2 (v) apply to the full test procedures of ISO 17123-2, ISO 17123-3, ISO 17123-4, 

ISO 17123-5, ISO 17123-6, ISO 17123-7 and ISO 17123-8, even if the number of series of measurements is less than provided there. 
If a different number of measurements is analysed, the number of degrees of freedom changes and the above-mentioned test values 
should be taken from a reference book on statistics. 
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Annex C 
(informative) 

 
Examples 

NOTE Calculations are done with full precision from beginning to end, but intermediate and final results are shown as 
rounded values. 

C.1 Example 1 

Measurands: 

Slope distance: l1 = 142,432 m with u1 = 12,0 mm 

Zenith angle: l2 = 78,412°  u2 = 0,055 mrad 

lT = (l1  l2) = (142,432   78,412)  [m, °] 

2
1

2
2

0 144 0
0 0,003 00l

u
u

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
U

2

2
mm

mrad

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Wanted: Horizontal distance and its standard uncertainty 

x = g(l) = ll × sinl2 = 142,432 × sin78,412° 

x = 142,432 × 0,97 962 = 139,529 m 

gT = (g1, g2) 

1 2
1

sin 0,979 62gg l
l

∂= = =
∂

 

2 1 2
2

cos 142,432 0,200 87 28,611gg l l m
l

∂= = = × = ⎡ ⎤⎣ ⎦∂
 

2 144 0 0,98( ) (0,98 28,61) 140,6460 0,003 28,61
T

lu x ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

g U g  

u(x) = s(x) = 11,9 mm 

C.2 Example 2 

By tacheometer measurements (measurands) the following input estimates were measured or manually 
entered: 

s = 345,746 m slope distance; 

z = 70,580 8° vertical angle; 

c = 32,6 mm additive constant; 

ka = 12 ppm1) athmospheric correction. 

                                                      

1) The equivalent of 0,001 2 % is 12 ppm; ppm is a deprecated unit. 
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As a result, it can be read from the display: 

D = 326,111 6 m horizontal distance; 

h = 114,964 9 m height. 

According to Figure 1, the model of evaluation is given by 

x = g(lT), respectively 

D = (s + c + s × ka)sinz 

h = (s + c + s × ka)cosz 

For further evaluations, the standard uncertainties of the quantities D and h are needed. 

For this, proceed according to 4.2.2. Following the notation in Equation (4), it is obtained: 

lT = (s   c   ka   z) = (345,746   32,6   12   70,580 8) [m   mm   ppm   °] 

From calibration certificate uncertainties (Type A evaluation) of l were taken out, given by the vector, 

( ) ( ) ( ) ( ) (3 0,5 2 0,003) mm mm ppm mradT
l au s u c u k u z= =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦u  

with 

2

2

2
62

( ) 0 9 0
0,25( )

4( )
0 9 100 ( )

l
a

u s
u c

u k
u z

−

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎝ ⎠⎝ ⎠

U  

D
h

⎛ ⎞= ⎜ ⎟
⎝ ⎠

x , g0 = 0 and 

(1 )sin sin sin cos
(1 )cos cos cos sin

a a
a

a

D D D D
s c k z k z z s z s z
h h h h k z z s z s z
s c k z

∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂ ∂ + × ×⎛ ⎞⎜ ⎟= = ⎜ ⎟∂ ∂ ∂ ∂ + × − ×⎜ ⎟ ⎝ ⎠
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

G  

where 

as s c s k= + + ×  

It can be written (in order to obtain the result in square millimetres): 

6

6

9 0 0,943 0,332
0,250,943 0,943 326 114,96 0,943 0,332

0,332 0,332 114,95 326 4 10 326 114,95
114,96 3260 9 10

T
x l

−

−

=

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟= × × ⎜ ⎟⎜ ⎟− ×⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠×⎝ ⎠

U GU G

 

and finally yields: 

2 2

2 2
( ) 8,772 mm

2,033( ) mmx
u D
u h

⎡ ⎤ ⎡ ⎤⎛ ⎞= =⎢ ⎥ ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U  

and 

u(D) = 3,0 mm and u(h) = 1,4 mm 
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C.3 Example 3 

By EDM measurements (measurands) the following horizontal distances between four points located on a 
straight line were measured: 

 

 
Observables: distances x 

1 − 2 = x1 = 117,342 m  1 − 3 = x4 = 185,811 m 

2 − 3 = x2 = 68,454 m   2 − 4 = x5 = 109,707 m 

3 − 4 = x3 = 41,265 m   1 − 4 = x6 = 227,058 m 

xT = (x1   x2   x3   x4   x5   x6) 

Unkowns: 

yT = (y1   y2   y3) 

According to Equation (21), the system of observation equations yields 

1 1

2 2

3 3

4 1 2

5 2 3

6 1 2 3

117,342
68,454
41,265

185,811
109,707
227,058

r y
r y
r y
r y y
r y y
r y y y

+ =
+ =
+ =
+ = +
+ = +
+ = + +

 

As there already is a linear equation system, this can immediately be written using the matrix [see 
Equations (24) and (23)]: 

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

A  and 

117,342
68,454
41,265
185,811
109,707
227,058

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

x l  

With P = E the normal matrix is obtained [see Equation (27)]: 

3 2 1
2 4 2
1 2 3

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

N  and the vector 
530,211
591,030
378,030

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

n  

The solution vector yields 

1
0,5 0,25 0 530,211 117,348 0
0,25 0,5 0,25 591,030 68,454 7
0 0,25 0,5 378,030 41,257 5

−
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − − × =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

y N n  
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Finally, the residuals can be calculated according to Equation (25) by 

A × y − x = r 

1 0 0 117,342 0,006 0
0 1 0 68,454 0,000 7117,348 00 0 1 41,265 0,007 568,454 71 1 0 185,811 0,008 341,257 50 1 1 109,707 0,005 2
1 1 1 227,058 0,002 2

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟× − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

From this, the following can be derived [see Equation (28)]: 

6

0
192,01 10 0,008

6 3

T
s

v

−×= = =
−

r r  

According to Equation (29), the following can be quoted: 

0 0,008 0,5
k k ky y ys s= = ×Q  

0,005 7
kys =  

Finally, the standard uncertainty (Type A evaluation) of the output estimates y1, y2, y3 yields 

k ky yu s= = 5,7 mm, k = 1, 2, 3 

With 

0

0,25 0,00 0,25 0,25 0,25
0,25 0,25 0,25 0,25 0,00
0,00 0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,00 0,25
0,25 0,25 0,25 0,00 0,25
0,25 0,00 0,25 0,25 0,25

x s

− −⎛ ⎞
⎜ ⎟− −
⎜ ⎟− −⎜ ⎟= −⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

S

0,50
0,50

0,50
0,50

0,50
0,50

 

and 

(5,7 5,7 5,7 5,7 5,7 5,7)T
x =s  [mm] 

the standard uncertainty of the adjusted input estimates x  

x x=u s , respectively 

( ) ( )j ju x s x=  = 5,7 mm, j = 1, 2, ..., 6 

C.4 Example 4 

As a measurand (input quantity), an angle was observed several times with two different instruments: 

Instrument I: x1 = 124° 39′ 16′′ Instrument II: x4 = 124° 39′ 13′′ 

 x2 = 124° 39′ 04′′  x5 = 124° 39′ 09′′ 

 x3 = 124° 39′ 06′′  x6 = 124° 39′ 08′′ 
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The standard uncertainty of a single angle measurement was specified for instrument I with uI = 5′′ and for 
instrument II with uII = 2′′. With x0 = 124° 39′ 00′′ 

0x x x= + ∆  

and 

0 (16 4 6 13 9 8)T x∆ = − × =x x e  [′′] 

1( )T T−∆ = ∆x e P e e P x , 

with 

2 2
0 0

1 2 3 4 5 62 2,
I II

s s
p p p p p p

u u
= = = = = =  

where 2
0s  is chosen as 100. 

4 0
4

4
25

25
0 25

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

P  

Finally, 

1( ) 1/ 87T − =e P e  and 854T ∆ =e P x . 

From this result 

854 9,8
87

x∆ = = [′′] respectively 

x  = 124° 39′ 00′′ + 9,8′′ = 124° 39′ 10′′ 

The experimental standard deviation yields 

0( )
T

s
s x =

e P e
 with 2

0

T
s

v
= r P r  

with 

( 6,2 5,8 3,8 3,2 0,8 1,8)T = − −r [′′] and v = 5 

0
699,1 11,8

5
s = = ′′  and 11,8( ) 1,3

87
s x = = ′′  

For the standard uncertainty of the input quantity, the arithmetic mean x , the following is finally obtained: 

( ) ( )u x s x=  = 1,3′′ 
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C.5 Example 5 

From different levelling lines, the measurands are known for the forward and backward readings of levelling 
staffs. To calculate the uncertainty, Equations (41) to (50) can be applied. 

The given heights are 

1 (10,473 15,213 28,775 12,742 13,155 6,989)T = − −l  [m] 

and 

2 (10,466 15,211 28,780 12,732 13,155 6,986)T = − −l  [m]. 

Thus, the arithmetic mean ,iy  respectively the vector, is obtained: 

(10,469 5 15,212 0 28,777 5 12,737 0 13,155 0 6,987 5)T = − −y  [m] 

and the differences 

( 7 2 5 10 0 3)T = − + + − +d  [mm] 

As all observations lj, with j = 1, 2, are from the same uncertainty level, the experimental standard deviation 
for the heights 

187 3,9
12ls = =  [mm] 

and 

for the averages ,iy i = 1, 2, ..., 6 

187( ) 2,8
24is y = =  [mm] 

To check the condition E(d) = 0 the following is obtained from Equation (49): 

(7)2 < 187 

This means that the condition is true and that the standard uncertainties can be written: 

u(lj) = sl = 3,9 mm and ( ) ( )i iu y s y=  = 2,8 mm 

C.6 Example 6 

From a given Point Po(x, y, H), the coordinates (measurands) of a new point P were determined by the polar 
method using only face I observations (see Figure C.1). 

Given: 

Coordinates of Po: 

x0 = 12 345,678 m y0 = 87 654,321 m 
s(x0) = 1,8 cm s(y0) = 1,6 cm 
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Bearing: tA = 309,090 9° 
 s(tA) = 1,3′′ 

Measured: 

Angle: α = 89,999 9° s(α) = 1,7′′ 
Horizontal distance: D = 326,111 6 m 
 (taken from Example 2) 
 u(D) = 3,0 mm 

 

Figure C.1 — Polar survey 

For the uncertainty evaluation, the following mathematical model is used: 

y = f(xT) 

or 

0
0
0

x xx
y y y
H H h

∆
∆
∆

+⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = +
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 

Here only the calculation for the x-coordinate is exemplarily pursued: 

x(P) = x0 + ∆x = x0 + D × cos(α + tA) 

In consideration of the collimation error, c, and the tilting axis error, i, the model has to be extended by the 
equivalent correction kc and ki (here directly attributed to the horizontal angle α due to sightings under different 
zenith angles): 

x(P) = x0 + D × cos(α + kc + ki + tA) 

x(P) = 12 345,678 + 326,111 6 × cos(89,999 9° + 0,003 2° + 0,004 3° + 309,090 9°) 

x(P) = 12 345,678 + 253,084 = 12 598,762 m 

To calculate the uncertainty, it is convenient to use tabular form in analogy to 4.2.2 and 4.4. 
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Additional uncertainty influences can still be estimated using Type B evaluation according to 4.3. 

Centring excentricity, e, of the instrument: 

With e = ±3 mm and assuming a probability for this interval of 100 %, a standard uncertainty [see 
Equation (57)], is yielded: 

u(e) = 0,58 × e = 1,7 mm 

Sensitivity coefficient: c7 = 1 

Horizontal refraction: 

With an estimated influence of r = ±7′′ and assuming for this estimation a probability of 50 %, a standard 
uncertainty [see Equation (55)] is yielded: 

u(r) = 1,48 × r = 10,4′′ 

Sensitivity coefficient: c8 = D × sin(α + kc+ ki+ tA) = 206 

Applying the law of propagation of uncertainty according to 4.4, yields 
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With 

(1 0,78 206 206 206 206 1 206)T =c  

according to Equation (66), the combined standard uncertainty of the output estimate, the x-coordinate, can 
finally be stated: 

u[x(P)] = 21,1 mm 

The final result including the expanded uncertainty ±U (k = 2) is given by 

x(P) = (12 598,762 ± 0,042) m 

uc [x(P)] = 21,1 mm 

U[x(P)] = 2 × uc [x(P)] = ±42 mm 

NOTE Calculation is done always with full accuracy but intermediate results are shown as rounded numbers. 
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Table C.1 — Uncertainty budget 

Input 
quantity 

Input 
estimates 

Standard 
uncertainty Distribution Sensitivity 

coefficientsa u(xi) ∫ 
Type of evaluation,  

source of uncertainty 

Xi xi u(xj)  ci ∫ ∂ f /∂xi ci × u(xi)  

 [dim] [dim]  [dim] [mm]  

x0 12 345,678 m 18 mm normal 1 18 A, estimation from previous 
least-squares adjustment 

D 326,111 6 m 3,0 mm normal 0,78 2,3 A, combined standard 
uncertainty 

α 
89,999 9° 

1,570 795 rad 
1,7′′ 

0,008 2 mrad 
normal 206 m 1,7 B, random influences, 

experiences 

kc 
0,003 2° 

0,061 mrad 
1′′ 

0,004 8 mrad 
rectangular 206 m 1,0 B, general knowledge  

of the behaviour 

ki 
0,004 3° 

0,075 mrad 
1′′ 

0,004 8 mrad 
rectangular 206 m 1,0 B, general knowledge  

of the behaviour 

tA 
309,090 9° 

5,394 654 rad 
1,3′′ 

0,006 3 mrad 
normal 206 m 1,3 A, estimation from previous 

least-squares adjustment 

e 0 1,7 mm rectangular 1 1,7 B, centring eccentricity 

r 0 
10,4′′ 

0,050 2 mrad 
normal 206 m 10,3 B, horizontal refraction 

Output 
estimate, 

final result 
12 598,762 m    21,1 mm  

a The partial derivates used in Equations (12) or (17) are often called the sensitivity coefficients. 
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