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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16698 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee
SC 14, Space systems and operations.
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Introduction

This International Standard provides guidelines for specifying the process of estimating future
geomagnetic activity. Geomagnetic indices describe the variation of the geomagnetic field over a certain
time period and provide a measure of the disturbance of the magnetosphere.

The accuracy and method of predicting geomagnetic indices depends on the time scale of prediction.
This International Standard presents existing works based on three categories of time scale:

a) short-term prediction (1 h to a few days);
b) middle-term prediction (a few weeks to a few months);
c) long-term prediction (half year to one solar cycle).

These are required as input parameters for the magnetospheric magnetic field (ISO 22009), upper
atmosphere (ISO 14222), ionosphere, plasmasphere (ISO/TS 16457), magnetosphere charged particles,
and other models of the near-Earth space environment. They also serve as the input parameters for
orbital lifetime prediction and worst-case environment analysis of electrostatic charging.

Three International Standards deal with the Earth’s magnetic field, including ISO 16695 on the internal
magnetic field, ISO 22009 on the magnetospheric magnetic field, and this International Standard.

A~ TAA Anan .
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INTERNATIONAL STANDARD IS0 16698:2013(E)

Space environment (natural and artificial) — Methods for
estimation of future geomagnetic activity

1 Scope

This International Standard specifies the methods used for estimating geomagnetic indices for time
intervals ranging from the short-term (hours to a few months) to the long-term (months to years).

Geomagnetic indices are used to describe the activity levels of the disturbance of the geomagnetic field.
These indices can be used to estimate upper atmospheric and plasmaspheric densities and many other
space environment models. They are also used as the input parameters for orbital lifetime prediction
and worst-case environment analysis of electrostatic charging.

ThisInternational Standardisintended foruseto predict future geomagneticindices and space environment.

2 Symbols and abbreviated terms

Bs Southward component of the interplanetary field (Bs = 0 when Bz = 0 and Bs = Bz when
Bz < 0)

Bz North-south component of the interplanetary field

F10.7 flux Measure of the solar radio flux at a wavelength of 10,7 cm at the earth’s orbit, given in

units of 10-22 W-m—2

GLat Geographic latitude

GLon Geographic longitude

IMF Interplanetary magnetic field

MLat Geomagnetic latitude

MLon Geomagnetic longitude

MHD Magnetohydrodynamics

Sq Daily geomagnetic field variations during quiet conditions (Solar quiet)
UT Universal time

3 General parameters

3.1 Geomagnetic field variations

The geomagnetic field consists of internal and external magnetic fields. The internal (main) magnetic
field is produced by source currents that are mostly inside the Earth’s core and by induced currents
present in the solid Earth and the ocean, caused by the temporal variation of external magnetic fields.
The external magnetic field is produced by magnetospheric and ionospheric currents.

The magnetosphere is highly dynamic with time scales ranging from minutes to days. Solar wind is
the ultimate source of magnetospheric dynamics. The role played by the IMF (interplanetary magnetic
field) north-south component, Bz, is particularly important, and its southward component, Bs, plays a

A~ TAA Anan .
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fundamental role in substorm and magnetic storm activity through the process of magnetic field line
reconnection. Solar wind speed also plays an essential role in these dynamics.

3.2 Quietlevel and disturbance fields

Five days of every month are selected as the Five International Quietest Days using the Kp index
(see 3.4.1). Note that the five quietest days are selected regardless of the absolute level of quietness.
Thus, in a disturbed month, the quietest days may not be very quiet.

Derivation: The quietest days (Q-days) of each month are selected using the Kp indices based on three
criteria for each day: (1) the sum of the eight Kp values, (2) the sum of squares of the eight Kp values,
and (3) the maximum of the eight Kp values. According to each of these criteria, a relative order number
is assigned to each day of the month; the three order numbers are then averaged and the days with the
first to fifth lowest mean order numbers are selected as the five international quietest days.

Reference: Website of the Deutsches GeoForschungsZentrum (http://www-app3.gfz-potsdam.
de/kp_index/qddescription.html).

Once the quiet level is determined using the Five International Quietest Days, disturbance fields can be
obtained as deviations from the quiet level of geomagnetic field.

3.3 Kindex (local 3 h range index)

The K index is a number in the range 0 (quiet) to 9 (disturbed) that provides a local classification of
the variations of the geomagnetic field observed after subtraction of the regular daily variation (Sq).
Each activity level relates almost logarithmically to the corresponding disturbance amplitude of the
horizontal field component during a 3 h UT interval. In a day, eight K indices are given in successive 3 h
UT (universal time) intervals (O hto3h,3hto6h,.., 21 hto24 hUT).

Derivation: The ranges R for the H and D (or X and Y) components are defined as the expected difference
between the highestand lowest deviation, within the three-hour interval, from a smooth curve (aregular
daily variation) for that element on a magnetically quiet day. Only the larger value of R, i.e. R for the most
disturbed element, is taken as the basis of K. To convert from R to K, a permanent scale prepared for each
observatory is used. Table 1 is an example of the permanent scale for the Niemegk observatory.

References: Bartels et al. [1939], Mayaud [1980], Menvielle et al. [2011]

Table 1 — Permanent conversion scale from R to K for Niemegk observatory

Range (nT) 0-5 5-10 | 10-20 | 20-40 | 40-70 | 70-120 | 120-200 | 200-330 | 330-500 =500
Kvalue 0 1 2 3 4 5 6 7 8 9

3.4 Kp, ZKp, ap, and Ap indices (planetary indices)

The planetary indices, Kp, ZKp, ap, and Ap, are derived from 13 selected mid-latitude observatories (see
Table 2). The derivation scheme for each index is described in the corresponding subsection.

o) .
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Table 2 — Thirteen observatories that contributed to the Kp index

Observatory, country Code GLat (°N) | GLon (°E) | MLat(°) Notes
Meannook, Canada MEA 54.617 246.667 62.5
Sitka, USA SIT 57.058 224.675 60.0
Lerwick, Shetland Is.,UK LER 60.133 358.817 589
Ottawa, Canada OTT 45.400 284.450 58.9 Replaced Agincourt in 1969
Uppsala, Sweden UPS 59.903 17.353 58.5 Replaced Lovo in 2004
Eskdalemuir, UK ESK 55.317 356.800 54.3
Brorfelde, Denmark BJE 55.625 11.672 52.7 Replaced Rude Skov in 1984
Fredericksburg, USA FRD 38.205 282.627 51.8 Replaced Cheltenham in 1957
Wingst, Germany WNG 53.743 9.073 50.9
Niemegk, Germany NGK 52.072 12.675 48.8 Replaced Witteveen in 1988
Hartland, UK HAD 50.995 355.517 50.0 Replaced Abinger in 1957
Canberra, Australia CNB -35.317 149.367 -45.2 Replaced Toolangi in 1981
Eyrewell, New Zealand EYR -43.424 172.354 -50.2 Replaced Amberley in 1978

3.4.1 Kp index (planetary 3 h range index)

The Kp index is assigned to successive 3 h UT intervals (O hto3h,3hto6h,.., 21 hto 24 h UT), giving
eight values per UT day, and ranges in 28 steps from 0 (quiet) to 9 (disturbed) with intermediate values
denoted by -, o, or +, resulting in 0o, 0+, 1-,10, 1+, 2-, 20, 2+, ..., 8-, 80, 8+, 9-, and 9o.

Derivation: The K indices at the 13 observatories given in Table 2 are standardized by means of
conversion tables that have been established through the rather complicated procedure introduced by
Bartels [1949]. The standardized K indices, called the Ks index, are averaged using weighting factors to
derive the Kp index.

References: Bartels [1949], Mayaud [1980], Menvielle et al. [2011]

3.4.2 XKp index (planetary daily range index)

YKp is the sum of the eight Kp values of the day.

3.4.3 apindex (planetary 3 h equivalent amplitude index)

The Kp index is not linearly related to the geomagnetic disturbances measured in the unit of nT. Instead,
the ap index is introduced as it is roughly proportional to the geomagnetic disturbances. One ap unit
corresponds to approximately 2 nT of geomagnetic variations.

Derivation: The ap index is derived directly from the Kp index by using the conversion table shown in Table 3.

References: Bartels and Veldkamp [1954], Mayaud [1980], Menvielle et al. [2011]

Table 3 — Conversion table from the Kp index to the ap index

Kp 0o 0+ 1- 1o 1+ 2- 20 2+ 3- 30 3+ 4- 40 4+
ap 0 2 3 4 5 6 7 9 12 15 18 22 27 32
Kp 5- 50 5+ 6- 60 6+ 7- 70 7+ 8- 80 8+ 9- 90
ap 39 48 56 67 80 94 | 111 | 132 | 154 | 179 207 | 236 | 300 | 400

A YA Anan .
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3.4.4 Ap index (planetary daily equivalent amplitude index)

The Ap index is the average of the eight values of the ap index in a UT day.

3.5 aaindex (antipodal amplitude index)

The aa index is a simple measure of global geomagnetic activity, which can be traced back
continuously to 1868.

Derivation: The aa index is produced from the K indices of two nearly antipodal magnetic observatories
in England and Australia, which arelisted in Table 4. The Kindices at the two observatories are converted
back to amplitudes using Table 5. The aa index is computed as an average of the northern and southern
values of amplitude using the weighting factors, A, shown in Table 4.

References: Mayaud [1971]

Table 4 — Observatories in England and Australia contributing to the aa index

Observatory, country Code Period GLat (°N) GLon (°E) MLat (°) A
Greenwich, England 1868-1925 1,007
Ablinger, England ABN 1926-1956 51.18 359.62 53.4 0,934
Hartland, England HAD 1957- 50.97 355.52 54.0 1,059
Melbourne, Australia 1868-1919 0,967
Toolangi, Australia TOO 1920-1979 -37.53 145.47 -45.6 1,033
Canberra, Australia CNB 1979- -35.30 149.00 -42.9 1,084

Table 5 — Conversion table from the K index at the aa observatories to amplitudes

Kindex 0 1 2 3 4 5 6 7 8 9
2,3 7,3 15 30 55 95 160 265 415 667

Amplitude

3.6 Dstindex (storm time disturbance index)

The Dst index is a measure of the axially symmetric part of the H component along the geomagnetic
equator on the ground, and the main physical source is a combination of the equatorial ring current, the
plasma sheet current and the magnetopause current.

Derivation: The Dst index is defined as the average of the disturbance variations of the H component,
D;, at the four observatories (i = 1 to 4) listed in Table 6, divided by the average of the cosines of the
dipole latitudes at the observatories for normalization to the dipole equator. Dst is computed for each
UT hourly interval from the four observatories.

References: Sugiura [1964], Sugiura and Kamei [1991]

Table 6 — Four observatories contributing to the Dst index

A
Copyright International Organization for Standardization
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Observatory, country Code GLat (°N) GLon (°E) Dipole Lat (°)
Kakioka, Japan KAK 36.230 140.190 26.0
San Juan, USA SJG 18.113 293.850 29.6
Honolulu, USA HON 21.320 201.998 211
Hermanus, South Africa HER -34.425 19.225 -33.3
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3.7 ASY and SYM indices (mid-latitude disturbance indices)

The disturbance fields in mid- and low latitudes are generally not axially symmetric, in particular in the
developing phase of a magnetic storm. To describe the asymmetric and symmetric disturbance fields
in mid-latitudes with a high time resolution of 1 min, longitudinally asymmetric (ASY) and symmetric
(SYM) disturbance indices were introduced and derived for both the H and D components. The SYM-H
index is approximately the same as the Dst index, while its time resolution is 1 min.

Derivation: The ASY/SYM indices are derived from six selected mid-latitude observatories (see Table 7)
in the following four steps: (1) subtraction of the geomagnetic main field and the Sq field to obtain the
disturbance field component, (2) coordinate transformation to a dipole coordinate system, (3) calculation
of the longitudinally symmetric indices, SYM-H and SYM-D, by taking averages of disturbance fields
of the six stations, and (4) calculation of the asymmetric disturbance indices, ASY-H and ASY-D, by
computing the range between the maximum and the minimum asymmetric fields.

References: lyemori et al. [1992], Menvielle et al. [2011]

Table 7 — Six observatories contributing to the SYM/ASY indices

Observatory, country Code GLat (°N) | GLon (°E) | MLat (°) | MLon (°E) | Rotation angle (°)
Memambetsu, Japan MMB 439 144.2 34.6 210.2 -16.1
Honolulu, USA HON 21.3 202.0 21.5 268.6 0.5
Tuscon, USA TUC 32.3 249.2 40.4 314.6 2.7
Fredericksburg, USA FRD 38.2 282.6 49.1 352.2 0.4
Hermanus, South Aflica HER -34.4 19.2 -33.7 82.7 -10.1
Urmuqu, China WMQ 43.8 87.7 34.3 162.5 7.7

3.8 AU, AL, AE, and AO indices (auroral electrojet indices)

The auroral electrojet indices are measures of the intensity of the auroral electrojets and consist of
four indices, AU, AL, AE and AO. The AU and AL indices are intended to express the strongest current
intensity of the eastward and westward auroral electrojets, respectively. The AE index represents the
overall activity of the electrojets, and the AO index provides a measure of the equivalent zonal current.

Derivation: The auroral electrojet indices are derived from geomagnetic variations in the H component
observed at 12 selected observatories along the auroral zone in the northern hemisphere (see Table 8).
The AU and AL indices are respectively defined by the largest and the smallest values thus selected. The
symbols, AU and AL, derive from the fact that these values form the upper and lower envelopes of the
superposed plots of all the data from these stations as functions of UT. The difference, AU minus AL,
defines the AE index, and the mean value of the AU and AL, i.e. (AU+AL)/2, defines the AO index.

References: Davis and Sugiura [1966], Kamei and Maeda [1981]
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Table 8 — Twelve (and obsolete three) observatories contributing to the AE index

Observatory, country Code | GLat(°N) | GLon (°E) | MLat (°) | MLon (°E) Notes
Abisko, Sweden ABK 68.36 18.82 66.06 114.66
Dixon Island, Russia DIK 73.55 80.57 64.04 162.53
Cape Chelyuskin, Russia CCS 77.72 104.28 67.48 177.82
Tixie Bay, Russia TIK 71.58 129.00 61.76 193.71
Pebek, Russia PBK 70.09 170.93 63.82 223.31 Opened in 2001/04
Barrow, USA BRW 71.30 203.25 69.57 246.18
College, USA CMO 64.87 212.17 65.38 261.18
Yellowknife, Canada YKC 62.40 245.60 68.87 299.53
F§rt Churchill, Canada FCC 58.80 265.90 67.98 328.36
S;’;lnikiluaq, Canada SNK 56.5 280.8 66.6 349.7 Opened in 2007/12
Nérssarssuaq, Denmark NAQ 61.20 314.16 69.96 3795
L'éirvogur, Iceland LRV 64.18 338.30 69.32 71.04
Cﬁépe Wellen, Russia CWE 66.17 190.17 62.88 241.36 Closed in 1996
G;feat Whale River, Russia GWR 55.27 282.22 65.45 351.77 Closed in 1984/07
Opened in 1984/09
Poste-de-la-Baleine, Canada PBQ 55.27 282.22 65.45 351.77
Closed in 2007/11

3.9 Time lagin the derivation and temporal resolution (sampling)

Some of the indices mentioned above have different classes (generations) for operational use. That is,
for quasi-real-time derivation, a different naming convention is used to distinguish from the original
definition with quality-controlled data. For example, in the case of the Dst index, there are Real-Time
(Quick-Look) Dst, Provisional Dst and Final Dst. There are also attempts to increase the temporal
resolution of the indices (e.g. Gannon and Love, 2011). (See Annex A.)

4 (Classification of prediction

The accuracy and method of predicting geomagnetic indices depends on the time scale of prediction.
Subclauses 4.1 to 4.3 introduce some of the existing works which are based on a classification of three
time-scale categories: short-term (1 h to a few days), middle-term (a few weeks to a few months), and
long-term (half year to one solar cycle). Some of them are actually used and the results made available
online (see Annex B).

4.1 Short-term prediction

Stimulated by the space weather programmes, there are many proposed methods and related research
papers for predicting geomagneticindices in a time scale of 1 hto a few days. These fall into four categories:
(1) linear prediction technique, (2) neural network model, (3) probabilistic prediction with solar wind
data, and (4) MHD (magnetohydrodynamics) simulation. Most of the recent techniques need real-time
solar wind parameters and near-real-time geomagnetic observations as the input. Predicting solar wind
disturbance from solar surface observation may be a key to improving geomagnetic index predictions.

r .
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Examples of prediction:
Kp, ap, and Ap indices

McPherron R.L., Predicting the Ap index from past behavior and solar wind velocity, Phys. Chem.
Earth (C), 24, pp. 45-56, 1999. (Type 1)

Boberg F. et al., Real time Kp predictions from solar wind data using neural networks, Phys. Chem.
Earth (C), 25, pp. 275-280, 2000. (Type 2)

Costello K.A., Moving the Rice MSFM into a real-time forecast mode using solar wind driven
forecast models, Ph.D. dissertation, Rice Univ.,, Houston, Texas, 1998 (http://hdl.handle.
net/1911/19251). (Type 2)

Thomson A.W.P,, Nonlinear predictions of Ap by activity class and numerical value, Pure Appl.
Geophys., 146, pp. 163-193, 1996. (Type 2)

Wing S. et al,, Kp forecast models, J. Geophys. Res., 110, A04203, doi:10.1029/2004JA010500,
2005. (Type 2)

Detman T. and Joselyn J., Real-time Kp predictions from ACE real time solar wind, Solar Wind Nine,
edited by Habbal et al., AIP Conf. Proc., 271, pp. 729-732, 1999. (Type 2)

McPherron R.L. et al.,, Probabilistic forecasting of the 3-h ap index, IEEE Trans. Plasma Sci., 32,
pp. 1425-1438, 2004. (Type 3)

Dst index

Balikhin M.A. et al.,, Terrestrial magnetosphere as a nonlinear resonator, Geophys. Res. Lett., 28,
pp. 1123-1126, 2001. (Type 1)

Boaghe O.M. et al., Identification of nonlinear processes in the magnetospheric dynamics and
forecasting of Dst index, J. Geophys. Res., 106, pp. 30047-30066, 2001. (Type 1)

Iyemori, T.and Maeda H., Prediction of geomagnetic activities from solar wind parameters based on
the linear prediction theory, in Solar-Terrestrial Predictions Proceedings, Vol. IV, ed. by R.F. Donnelly,
Apr.23-27, 1979, Boulder, 1980. (Type 1)

Lundstedt H., Solar origin of geomagnetic storms and prediction of storms with the use of neural
networks, Surv. Geophys., 17, pp. 561-573, 1996. (Type 2)

Stepanova M.L. et al., Prediction of Dst variations from polar cap indices using time-delay neural
network, J. Atmos. Sol.-Terr. Phys., 67, pp. 1658-1664, 2005. (Type 2)

Burton R.K. et al., Empirical relationship between interplanetary conditions and Dst, J. Geophys.
Res., 80, pp. 4204-4214, 1975. (Type 3)

O’Brien T.P. and McPherron R.L., Forecasting the ring current Dst in real time, J. Atmos. Sol.-Terr.
Phys., 62, pp. 1295-1299, 2000. (Type 3)

Temerin M. and Li X., A new model for the prediction of Dst on the basis of the solar wind, J. Geophys.
Res., 107, p. 1472, doi:10.1029/2001JA007532, 2002. (Type 3)

Fok M.-C. et al., Comprehensive computational model of the Earth’s ring current, J. Geophys. Res.,
106, pp. 8417-8424, 2001. (Type 4)
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AE indices

Iyemori, T.and Maeda H., Prediction of geomagnetic activities from solar wind parameters based on
the linear prediction theory, in Solar-Terrestrial Predictions Proceedings, Vol. 1V, ed. by R.F. Donnelly,
Apr.23-27,1979, Boulder, 1980. (Type 1)

Pallocchia G. et al., AE index forecast at different time scales through an ANN algorithm based on L1
IMF and plasma measurements, J. Atmos. Sol.-Terr. Phys., 70, pp. 663-668, 2008. (Type 2)

Takalo J. and Timonen ]., Neural network prediction of the AE index from the PC index, Phys. Chem.
Earth (C), 24, pp. 89-92, 1999. (Type 2)

Li X. et al,, Prediction of the AL index using solar wind parameters, J. Geophys. Res., 112, A06224,
doi:10.1029/2006JA011918, 2007. (Type 3)

KitamuraK.etal.,Propertiesof AEindicesderived fromreal-time global simulationand theirimplications
for solar wind-magnetosphere coupling, /. Geophys. Res., 113, A03S10, doi:10.1029/2007]JA012514,
2008. (Type 4)

4.2 Middle-term prediction

There are only a few research papers that use recurrences of geomagnetic disturbances in a time scale
of a few weeks to a few months.

Example of prediction:

Zhou X.-Y. and Wei F.-S., Prediction of recurrent geomagnetic disturbances by using adaptive filtering,
Earth Planets Space, 50, pp. 839-845, 1998. (prediction of the Kp index)

4.3 Long-term prediction

There are very few proposed techniques and/or research papers on predicting geomagnetic indices in
a time scale of half a year to one solar cycle, as compared with those on solar activities such as sun spot
numbers or F10.7 flux. However, the sun spot number or F10.7 flux indicates quite different behaviour
from geomagnetic indices such as the aa index during some solar cycles. Therefore, the long-term
prediction method of geomagnetic indices is necessary.

Examples of prediction:

Niehuss K.O. et al., Statistical technique for intermediate and long-range estimation of 13-month
smoothed solar flux and geomagnetic index, NASA Technical Memorandum 4759, 1996. (prediction
of the Ap index)

Cliver EW. et al,, A prediction of geomagnetic activity for solar cycle 23, J. Geophys. Res., 104,
pp. 6871-6876, 1999. (prediction of the aa index).

Long-term prediction of solar activities (sun spot number and F10.7 flux) is presented by NOAA/Space
Weather Prediction Center (see Annex B). The possibility of combining the technique of solar activity
prediction with the solar-geomagnetic disturbance relationship has been examined in a number of studies.

Examples of solar-geomagnetic disturbance relationship:

Clilverd M.A. et al., Increased magnetic storm activity from 1868 to 1995, J. Atom. Sol.-Terr. Phys., 60,
pp. 1047-1056, 1998.

Stamper R. et al., Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104,
pp. 28325-28342, 1999.
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5 Methods of prediction

The prediction methods can be split into two broad categories: (1) those based on a statistical model,
and (2) those based on a physical principle.

5.1 Prediction based on statistical models

5.1.1 Prediction filter

This method of prediction uses data from a preceding interval of similar (or longer) length to that of the
period to be predicted. Precision of prediction generally depends on the temporal distance between the
most recent data and the period to be predicted. There are two types of prediction: one uses the index
of the preceding interval as the input data (see Zhou and Wei, 1998) and the other uses the solar wind
parameters (see Iyemori and Maeda, 1980; McPherron et al., 2004; Li et al., 2007).

5.1.2 Neural network model

There are several neural-network models. This method is applicable for time scales of several days to
one sunspot cycle. It has been concluded that the interplanetary magnetic field and solar wind plasma
data are significant components for any of the models (see Thomson, 1996; Wing et al., 2005).

5.1.3 Regression analysis

This method is based on the periodicity of geomagnetic disturbances such as the sun spot cycle, annual
or semi-annual variation (see Joselyn, 1995). Predictions made over long time scales (one to ten years)
require the prediction of a sunspot number (see Feynman and Gu, 1986). Similar techniques used to
predict the F10.7 flux and Ap index (e.g. Niehuss et al.,1996) are also available.

5.2 Prediction based on physical principle

This type of prediction is based on numerical MHD simulation of the magnetospheric process or energy
principle. These methods need the solar wind parameters as the input. See, for example, Burton et al.
(1975) and Kitamura et al. (2008).

6 Evaluation of prediction efficiency

6.1 Definition of prediction error

For a simple time series, the most popular definition of prediction error is as the average of the square
of the differences between the predicted values and the observed values. This provides a reasonable
measure of prediction error.

6.2 Methods of evaluation

It has been reported that the accuracy of prediction is different for the sunspot maximum and minimum
period. It has also been reported that the accuracy is different for different solar cycles (see Feynman
and Gu, 1986). Accuracy is also different depending on the time scale of prediction. The prediction
efficiency should therefore be given together with the conditions applied for its evaluation.

A prediction can be evaluated using a skill score. In the case of a dichotomous forecast, the true skill
statistics, the Gilbert skill score, the Heidke skill score, and others can be used (see Detman and Joselyn,
1999). If predicting continuous-variables, the mean square skill score can be used (see Murphy, 1988).
These skill scores are detailed in Annex C.
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7 Compliance criteria

7.1 Rationale

The prediction principle and scheme should be described concisely and clearly. They should be published
as scientific articles in refereed/peer-review international journals and their references should be
available to the public. Otherwise, journal-style documents suitable for publication in international
journals should be accessible to the public.

7.2 Reporting

Prediction results of geomagnetic indices should be made public for evaluation and application by
third parties (e.g. individuals or institutes who are interested in the prediction results). As a minimum,
digital values of the prediction results should be given in the same data format as the corresponding
geomagnetic indices, such as the WDC exchange format.

7.3 Documenting
The following information relating to prediction should be clearly documented or displayed.
a) Input:
1) types of data;
2) source of data;
3) time resolution of data;
4) number of data points;
5) time of data acquisition.
b) Output:
1) types of predicting data;
2) time of predicting data;
3) time at which prediction was performed.
c) Miscellaneous:
| 1) typeofprediction method (choose from the four typeslisted in Clause 4, otherwise describe briefly);

2) point of contact.

74 Publishing

When the geomagnetic index becomes available, comparison should be made with the prediction results.
Comparison includes calculating the prediction error, skill score, correlation coefficients, and so on, as
listed in Clause 5.

7.5 Archiving

The results of prediction should be archived and available to the public for evaluation.
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Annex A
(informative)

Websites where geomagnetic indices are available

(1) GFZ-Potsdam

http://www-app3.gfz-potsdam.de/kp_index/ (Kp)

(2) Service International des Indices Géomagnetiques (ISGI)
http://isgi.latmos.ipsl.fr/lesdonne.htm (aa, am, Kp, AE, Dst, PC)
(3) WDC for Geomagnetism, Kyoto
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (AE, Dst, ASY/SYM, RT-AE, RT-Dst)
(4) Arctic and Antarctic Research Institute
http://www.aari.nw.ru/index_en.html (PCS)

(5) WDC for Geomagnetism, Copenhagen
ftp://ftp.space.dtu.dk/WDC/indices/pcn/ (PCN)

(6) US Geological Survey

http://geomag.usgs.gov/dst/ (RT-USGS-Dst)
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Annex B
(informative)

Websites where the space weather predictions and/or “now
casting” are presented

(1) NOAA Space Environment Center
http://www.swpc.noaa.gov/

(2) Magnetospheric Specification and Forecast model (MSFM)
http://space.rice.edu/ISTP/dials.html

(3) International Space Weather Service
http://www.ises-spaceweather.org/

(4) NiCT Space Environment Information Service
http://www2.nict.go.jp/y/y223/sw_portal/sw_portal-e.html

(5) Belgium SIDC

http://sidc.oma.be/

(6) The Australian Space Weather Agency
http://www.ips.gov.au/Space_Weather

(7) WINDMI model

http://orion.ph.utexas.edu/~windmi/

(8) Lund space weather model

http://www.lund.irf.se/rwc/

(9) CISM forecast model

http://www.bu.edu/cism/

http://lasp.colorado.edu/cism/

(10) Solar Cycle Progression, NOAA/Space Weather Prediction Center

http://www.swpc.noaa.gov/SolarCycle/
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Annex C
(informative)

Definition of various sKkill scores

C.1 Dichotomous forecast

In the following contingency table:

Forecast
Yes No
Observed Yes x (hits) y (misses)
No z (false alarm) w (correct negatives)

The true skill score (TSS) is defined as:

Xw—yz

TSS=————
(x+y)(z+w)

The Gilbert skill score (GSS) is defined as:

Gss=— 1“1

X+y+z—cq
o = (x+y)(x+2)
X+y+z+w

The Heidke skill score (HSS) is defined as:

HSS = X+W_C2

X+y+z+w—c,

o = x+y)(x+z)+(w+y)(w+2)
z- X+y+z+w

C.2 Continuous variables

The mean-square skill score (SS) is defined as:

_ MSE(f,x)

SS=1 =
MSE(x,x)

n 2
MSE(f,%)== (i ~x)
i=1

where MSE represents “mean square error”; f; and x; denote the ith forecast and ith observation,
respectively; x is the mean value of xoveri=1 - n.
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