
Reference	number
ISO	16484‐5:2014(E)

© ISO 2014

INTERNATIONAL	
STANDARD

ISO
16484-5

Fifth	edition
2014‐05‐15

Building automation and control systems
(BACS) —

Part	5:
Data communication protocol

Systèmes d'automatisation et de gestion technique du bâtiment —
Partie 5: Protocole de communication de données

ISO 16484-5:2014(E)

PDF disclaimer

This	 PDF	 file	may	 contain	 embedded	 typefaces.	 In	 accordance	with	 Adobe's	 licensing	 policy,	 this	 file	may	 be	 printed	 or	
viewed	 but	 shall	 not	 be	 edited	 unless	 the	 typefaces	which	 are	 embedded	 are	 licensed	 to	 and	 installed	 on	 the	 computer	
performing	the	editing.	In	downloading	this	file,	parties	accept	therein	the	responsibility	of	not	infringing	Adobe's	licensing	
policy.	The	ISO	Central	Secretariat	accepts	no	liability	in	this	area.	

Adobe	is	a	trademark	of	Adobe	Systems	Incorporated.	

Details	of	the	software	products	used	to	create	this	PDF	file	can	be	found	in	the	General	Info	relative	to	the	file;	the	PDF‐
creation	parameters	were	optimized	for	printing.	Every	care	has	been	taken	to	ensure	that	the	file	is	suitable	for	use	by	ISO	
member	 bodies.	 In	 the	 unlikely	 event	 that	 a	 problem	 relating	 to	 it	 is	 found,	 please	 inform	 the	 Central	 Secretariat	 at	 the	
address	given	below.	

COPYRIGHT PROTECTED DOCUMENT	

©			ISO	2014	
All	rights	reserved.	Unless	otherwise	specified,	no	part	of	this	publication	may	be	reproduced	or	utilized	in	any	form	or	by	any	
means,	electronic	or	mechanical,	including	photocopying	and	microfilm,	without	permission	in	writing	from	either	ISO	at	the	
address	below	or	ISO's	member	body	in	the	country	of	the	requester.	

ISO	copyright	office	
Case	postale	56		CH‐1211	Geneva	20	
Tel.		+	41	22	749	01	11	
Fax		+	41	22	749	09	47	
E‐mail		copyright@iso.org	
Web		www.iso.org	

Published	in	Switzerland	

ii	 ©	ISO	2014	–	All	rights	reserved

ISO 16484-5:2014(E)

©	ISO	2014	–	All	rights	reserved iii

Foreword

ISO	 (the	 International	Organization	 for	 Standardization)	 is	 a	worldwide	 federation	of	national	 standards	
bodies	 (ISO	 member	 bodies).	 The	 work	 of	 preparing	 International	 Standards	 is	 normally	 carried	 out	
through	 ISO	 technical	 committees.	 Each	 member	 body	 interested	 in	 a	 subject	 for	 which	 a	 technical	
committee	 has	 been	 established	 has	 the	 right	 to	 be	 represented	 on	 that	 committee.	 International	
organizations,	 governmental	 and	 non‐governmental,	 in	 liaison	with	 ISO,	 also	 take	 part	 in	 the	work.	 ISO	
collaborates	 closely	 with	 the	 International	 Electrotechnical	 Commission	 (IEC)	 on	 all	 matters	 of	
electrotechnical	standardization.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	 in	 the	 ISO/IEC	 Directives,	 Part	 1.	 In	 particular	 the	 different	 approval	 criteria	 needed	 for	 the	
different	 types	 of	 ISO	 documents	 should	 be	 noted.	 This	 document	 was	 drafted	 in	 accordance	 with	 the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2.	www.iso.org/directives	

Attention	 is	 drawn	 to	 the	 possibility	 that	 some	 of	 the	 elements	 of	 this	 document	may	 be	 the	 subject	 of	
patent	rights.	ISO	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	Details	of	any	
patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	on	the	
ISO	list	of	patent	declarations	received.	www.iso.org/patents	

Any	 trade	 name	 used	 in	 this	 document	 is	 information	 given	 for	 the	 convenience	 of	 users	 and	 does	 not	
constitute	an	endorsement.	

For	an	explanation	on	the	meaning	of	ISO	specific	terms	and	expressions	related	to	conformity	assessment,	
as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:	Foreword	‐	Supplementary	information	

The	committee	responsible	for	this	document	is	ISO/TC	205,	Building environment design.	

This	fifth	edition	cancels	and	replaces	the	fourth	edition	(ISO	16484‐5:2012),	of	which	it	forms	the	subject	
of	a	minor	revision.	

ISO	16484	consists	of	the	following	parts,	under	the	general	title	Building automation and control systems
(BACS) — Data communication conformance testing:	

— Part 1: Project specification and implementation

— Part 2: Hardware

— Part 3: Functions

— Part 5: Data communication protocol

— Part 6: Data communication conformance testing

Applications	and	project	implementation	are	to	form	the	subjects	of	future	Parts	4	and	7.	

http://www.iso.org/patents
http://www.iso.org/patents
http://www.iso.org/patents
http://www.iso.org/patents

INTERNATIONAL STANDARD ISO 16484-5:2014(E)

©	ISO	2014	–	All	rights	reserved 1

Building automation and control systems (BACS) — Part 5: Data
communication protocol

1 Scope

This	 part	 of	 ISO	16484	 defines	 data	 communication	 services	 and	 protocols	 for	 computer	 equipment	
used	 for	monitoring	 and	 control	 of	 heating,	 ventilation,	 air‐conditioning	 and	 refrigeration	 (HVAC&R)	
and	 other	 building	 systems.	 It	 defines,	 in	 addition,	 an	 abstract,	 object‐oriented	 representation	 of	
information	 communicated	 between	 such	 equipment,	 thereby	 facilitating	 the	 application	 and	 use	 of	
digital	 control	 technology	 in	buildings.	The	scope	and	 field	of	application	are	 furthermore	detailed	 in	
Clause	2	of	the	enclosed	ANSI/ASHRAE	publication.	

2 Requirements

Requirements	 are	 the	 technical	 recommendations	made	 in	 the	 following	 publication	 (reproduced	 on	
the	fo dopted	as	an	International	Standard:	llowing	pages),	which	is	a

ANSI/ASHRAE	135‐2012,	 A Data Communication Protocol for Building Automation and Control
Networks	

The	text	on	the	back	of	the	title	page	of	the	ANSI/ASHRAE	standard	and	the	policy	statement	on	the	last	
page	are	not	relevant	for	the	purposes	of	international	standardization.	

The	following	 nternationa

ISO/IEC	7498	 (all	 parts),	 Information technology — Open Systems Interconnection — Basic Reference

I l	Standards	are	cited	in	the	text:	

Model	

nformation processing systems — Open Systems Interconnection — Service conventions	ISO/TR	8509,	I

ISO/IEC	8649,	 Information technology — Open Systems Interconnection — Service definition for the
ol Service Element	Association Contr

ISO/IEC	8802‐2,	 Information technology — Telecommunications and information exchange between
and metropolitan area networks — Specific requirements — Part 2: Logical link control	systems — Local

ISO/IEC	8802‐3,	 Information technology — Telecommunications and information exchange between
systems — Local and metropolitan area networks — Specific requirements — Part 3: Carrier sense

 with collision detection (CSMA/CD) access method and physical layer specifications multiple access

n technology — Open Systems Interconnection — Presentation se on	ISO/IEC	8822,	Informatio rvice definiti

Information technology — Abstract Syntax Notation One (ASN.1)	ISO/IEC	8824	(all	parts),	

l	parts),	Information technology — ASN.1 encoding rules	ISO/IEC	8825	(al

ISO/IEC	8859‐1,	Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1	

ISO 16484-5:2014(E)

2 © ISO 2014 – All rights reserved

ISO/IEC	9545,	Information technology — Open Systems Interconnection — Application Layer structure	

ISO/IEC	10646,	Information technology — Universal Multiple-Octet Coded Character Set (UCS)	

3 Revision of ANSI/ASHRAE 135

It	has	been	agreed	with	the	American	Society	of	Heating,	Refrigerating	and	Air‐Conditioning	Engineers	
(ASHRAE)	 that	 Technical	 Committee	 ISO/TC	205	 will	 be	 consulted	 in	 the	 event	 of	 any	 revision	 or	
amendment	of	ANSI/ASHRAE	135.	To	this	end,	ANSI	will	act	as	a	liaison	body	between	ASHRAE	and	ISO.	

ANSI/ASHRAE Standard 135-2012
(Supersedes ANSI/ASHRAE Standard 135-2010)

A Data Communication
Protocol for

Building Automation
and Control Networks

See the History of Revisions at the end of this standard for approval dates by the ASHRAE Standards Committee, the ASHRAE
Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Com-
mittee has established a documented program for regular publication of addenda or revisions, including procedures for timely,
documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and
deadlines may be obtained in electronic form from the ASHRAE website (www.ashrae.org) or in paper form from the Manager of
Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE website (www.ashrae.org) or from
ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478.
Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to
www.ashrae.org/permissions.

© 2012 ASHRAE ISSN 1041-2336

ASHRAE Standing Standard Project Committee 135
Cognizant TC: TC 1.4, Control Theory and Applications

SPLS Liaisons: Richard Hall and Mark Modera

*Denotes members of voting status when the document was approved for publication

The following persons served as consultants to the project committee:

Carl Neilson Chair* David G. Holmberg* Frank Schubert
Bernhard Isler, Vice-Chair Daniel Kollodge* Gregory M. Spiro*
Michael Osborne, Secretary* Thomas Kurowski* David B. Thompson*
Donald P. Alexander Bryan Meyers Klaus Wagner
Chandrashekhar Appanna H. Michael Newman* Grant N. Wichenko*
Coleman L. Brumley* Dana Petersen Christoph Zeller
Clifford H. Copass* Suresh Ramachandran Scott Ziegenfus
Sharon E. Dinges David Robin Andrey Golovin
Stuart G. Donaldson* Takeji Toyoda, Jr.
Seán Giblin Klaus Bruno Wächter

Tomohino Asazuma Robert L. Johnson Duffy O’Craven
Dave Bohlmann Chris Jones Hideya Ochiai
Barry B. Bridges René Kälin Bob Old
Ernest C. Bryant Stephen Karg Farhad Omar
Steve Bushby Koji Kimura Dave Oravetz
Jim Butler Duane L. King Bill Pienta
Ryan Bykowski Bruno Kloubert René Quirighetti
A.J. Capowski Roland Laird David Ritter
Howard Coleman Brett Leida William Roberts
Hu Dou Rick Leinen Carl J. Ruther
David Fisher Simon Lemaire David G. Shike
Nils-Gunnar Fritz Joe Lenart Atsushi Shimadate
Rokuro Fuji J. Damian Ljungquist Brad Spencer
Fumio Fujimura John Lundstedt Ted Sunderland
Noriaki Fujiwara James G. Luth William O. Swan, III
Craig Gemmill John J. Lynch Hans Symanczik
Daniel P. Giorgis Kerry Lynn Bob Thomas
Rod Harruff Graham Martin Daniel A. Traill
John Hartman Jerry Martocci Stephen J. Treado
Teemu T. Heikkil Hirotaka Masui Bruce Westphal
Masahiro Ishiyama Konni Mergner J. Michael Whitcomb
Hiroshi Ito Charles Miltiades Cam Williams
Kosuke Ito Venkatesh Mohan Ove Wiuff
Sudhir Jaiswal Tsuyoshi Momose Ming Zhu
John Rohde Jensen Hans-Joachim Mundt Rob Zivney

Masaharu Nakamura

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

SPECIAL NOTE
This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of ASHRAE.

Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this
standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence
of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an
effort be made toward their resolution.” Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance
mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.
ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project

Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all
must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project
Committees.

The Manager of Standards of ASHRAE should be contacted for:
a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER
ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and

accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components,
or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its
Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS
ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating

purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing
other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them,
and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied,
that the product has been approved by ASHRAE.

ASHRAE STANDARDS COMMITTEE 2012–2013

Kenneth W. Cooper, Chair Julie M. Ferguson Janice C. Peterson

William F. Walter, Vice-Chair Krishnan Gowri Heather L. Platt

Douglass S. Abramson Cecily M. Grzywacz Ira G. Poston
Karim Amrane Richard L. Hall Douglas T. Reindl
Charles S. Barnaby Rita M. Harrold James R. Tauby
Hoy R. Bohanon, Jr. Adam W. Hinge James K. Vallort
Steven F. Bruning Debra H. Kennoy Craig P. Wray
David R. Conover Jay A. Kohler Charles H. Culp, III, BOD ExO
Steven J. Emmerich Rick A. Larson Constantinos A. Balaras, CO

Mark P. Modera

Stephanie C. Reiniche, Manager of Standards

Contents

ANSI/ASHRAE Standard 135-2012 i

CONTENTS

FOREWORD ……….vii
1 PURPOSE .. 1
2 SCOPE ... 1
3 DEFINITIONS .. 1

3.1 Terms Adopted from International Standards .. 1
3.2 Terms Defined for this Standard .. 2
3.3 Abbreviations and Acronyms Used in this Standard .. 7

4 BACnet PROTOCOL ARCHITECTURE ... 10
4.1 The BACnet Collapsed Architecture .. 11
4.2 BACnet Network Topology ... 13
4.3 Security .. 15

5 THE APPLICATION LAYER .. 16
5.1 The Application Layer Model .. 16
5.2 Segmentation of BACnet Messages ... 20
5.3 Transmission of BACnet APDUs ... 21
5.4 Application Protocol State Machines ... 25
5.5 Application Protocol Time Sequence Diagrams .. 42
5.6 Application Layer Service Conventions ... 51

6 THE NETWORK LAYER .. 53
6.1 Network Layer Service Specification ... 53
6.2 Network Layer PDU Structure ... 55
6.3 Messages for Multiple Recipients .. 60
6.4 Network Layer Protocol Messages ... 61
6.5 Network Layer Procedures ... 64
6.6 BACnet Routers ... 66
6.7 Point-To-Point Half-Routers .. 71

7 DATA LINK/PHYSICAL LAYERS: ISO 8802-3 ("Ethernet") LAN... 76
7.1 The Use of ISO 8802-2 Logical Link Control (LLC) .. 76
7.2 Parameters Required by the LLC Primitives .. 76
7.3 Parameters Required by the MAC Primitives .. 76
7.4 Physical Media ... 76

8 DATA LINK/PHYSICAL LAYERS: ARCNET LAN .. 77
8.1 The Use of ISO 8802-2 Logical Link Control (LLC) .. 77
8.2 Parameters Required by the LLC Primitives .. 77
8.3 Mapping the LLC Services to the ARCNET MAC Layer ... 77
8.4 Parameters Required by the MAC Primitives .. 77
8.5 Physical Media ... 77

9 DATA LINK/PHYSICAL LAYERS: MASTER-SLAVE/TOKEN PASSING (MS/TP) LAN .. 79
9.1 Service Specification .. 79
9.2 Physical Layer .. 81
9.3 MS/TP Frame Format ... 92
9.4 Overview of the MS/TP Network .. 93
9.5 MS/TP Medium Access Control .. 94
9.6 Cyclic Redundancy Check (CRC) .. 111
9.7 Interfacing MS/TP LANs with Other BACnet LANs .. 112
9.8 Responding BACnet User Processing of Messages from MS/TP .. 112
9.9 Repeaters .. 112

10 DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT (PTP) ... 114
10.1 Overview .. 114
10.2 Service Specification .. 114
10.3 Point-to-Point Frame Format.. 119
10.4 PTP Medium Access Control Protocol ... 121

11 DATA LINK/PHYSICAL LAYERS: EIA/CEA-709.1 ("LonTalk") LAN ... 142
11.1 The Use of ISO 8802-2 Logical Link Control (LLC) .. 142
11.2 Parameters Required by the LLC Primitives .. 142

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Contents

ii ANSI/ASHRAE Standard 135-2012

11.3 Mapping the LLC Services to the LonTalk Application Layer .. 142
11.4 Parameters Required by the Application Layer Primitives .. 142
11.5 Physical Media ... 143

12 MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS ... 144
12.1 Accumulator Object Type .. 148
12.2 Analog Input Object Type .. 157
12.3 Analog Output Object Type ... 162
12.4 Analog Value Object Type ... 167
12.5 Averaging Object Type .. 172
12.6 Binary Input Object Type ... 175
12.7 Binary Output Object Type .. 181
12.8 Binary Value Object Type .. 187
12.9 Calendar Object Type ... 193
12.10 Command Object Type .. 195
12.11 Device Object Type .. 199
12.12 Event Enrollment Object Type ... 208
12.13 File Object Type ... 215
12.14 Group Object Type ... 218
12.15 Life Safety Point Object Type .. 220
12.16 Life Safety Zone Object Type .. 227
12.17 Loop Object Type... 234
12.18 Multi-state Input Object Type .. 242
12.19 Multi-state Output Object Type ... 247
12.20 Multi-state Value Object Type ... 252
12.21 Notification Class Object Type .. 257
12.22 Program Object Type ... 260
12.23 Pulse Converter Object Type ... 266
12.24 Schedule Object Type .. 274
12.25 Trend Log Object Type .. 280
12.26 Access Door Object Type... 289
12.27 Event Log Object Type .. 297
12.28 Load Control Object Type .. 304
12.29 Structured View Object Type ... 314
12.30 Trend Log Multiple Object Type ... 317
12.31 Access Point Object Type .. 326
12.32 Access Zone Object Type... 342
12.33 Access User Object Type ... 350
12.34 Access Rights Object Type .. 353
12.35 Access Credential Object Type .. 359
12.36 Credential Data Input Object Type... 368
12.37 CharacterString Value Object Type ... 373
12.38 DateTime Value Object Type ... 378
12.39 Large Analog Value Object Type... 381
12.40 BitString Value Object Type .. 386
12.41 OctetString Value Object Type .. 391
12.42 Time Value Object Type .. 394
12.43 Integer Value Object Type ... 397
12.44 Positive Integer Value Object Type ... 402
12.45 Date Value Object Type ... 407
12.46 DateTime Pattern Value Object Type .. 410
12.47 Time Pattern Value Object Type .. 413
12.48 Date Pattern Value Object Type ... 416
12.49 Network Security Object Type ... 419
12.50 Global Group Object Type ... 422
12.51 Notification Forwarder Object Type .. 429
12.52 Alert Enrollment Object Type .. 435
12.53 Channel Object Type .. 438

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Contents

ANSI/ASHRAE Standard 135-2012 iii

12.54 Lighting Output Object Type ... 447
13 ALARM AND EVENT SERVICES.. 460

13.1 Change of Value Reporting .. 461
13.2 Event Reporting ... 464
13.3 Event Algorithms ... 475
13.4 Fault Algorithms .. 504
13.5 AcknowledgeAlarm Service ... 509
13.6 ConfirmedCOVNotification Service .. 511
13.7 UnconfirmedCOVNotification Service .. 512
13.8 ConfirmedEventNotification Service ... 514
13.9 UnconfirmedEventNotification Service ... 517
13.10 GetAlarmSummary Service ... 519
13.11 GetEnrollmentSummary Service .. 521
13.12 GetEventInformation Service ... 524
13.13 LifeSafetyOperation Service .. 526
13.14 SubscribeCOV Service ... 528
13.15 SubscribeCOVProperty Service ... 531

14 FILE ACCESS SERVICES ... 534
14.1 AtomicReadFile Service .. 535
14.2 AtomicWriteFile Service .. 538

15 OBJECT ACCESS SERVICES ... 541
15.1 AddListElement Service .. 541
15.2 RemoveListElement Service .. 543
15.3 CreateObject Service .. 545
15.4 DeleteObject Service .. 547
15.5 ReadProperty Service ... 548
15.6 Deleted Clause ... 550
15.7 ReadPropertyMultiple Service ... 551
15.8 ReadRange Service .. 554
15.9 WriteProperty Service .. 559
15.10 WritePropertyMultiple Service .. 561
15.11 WriteGroup Service .. 564

16 REMOTE DEVICE MANAGEMENT SERVICES .. 566
16.1 DeviceCommunicationControl Service .. 566
16.2 ConfirmedPrivateTransfer Service ... 568
16.3 UnconfirmedPrivateTransfer Service ... 570
16.4 ReinitializeDevice Service ... 571
16.5 ConfirmedTextMessage Service .. 573
16.6 UnconfirmedTextMessage Service .. 575
16.7 TimeSynchronization Service .. 576
16.8 UTCTimeSynchronization Service .. 577
16.9 Who-Has and I-Have Services ... 578
16.10 Who-Is and I-Am Services ... 580

17 VIRTUAL TERMINAL SERVICES... 582
17.1 Virtual Terminal Model ... 582
17.2 VT-Open Service.. 586
17.3 VT-Close Service ... 588
17.4 VT-Data Service ... 589
17.5 Default-terminal Characteristics ... 591

18 ERROR, REJECT, and ABORT CODES .. 595
18.1 Error Class - DEVICE .. 595
18.2 Error Class - OBJECT .. 595
18.3 Error Class - PROPERTY .. 596
18.4 Error Class - RESOURCES ... 597
18.5 Error Class - SECURITY ... 597
18.6 Error Class - SERVICES .. 599
18.7 Error Class - COMMUNICATION .. 600

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Contents

iv ANSI/ASHRAE Standard 135-2012

18.8 Error Class - VT ... 602
18.9 Reject Reason ... 603
18.10 Abort Reason .. 603
18.11 Confirmed Service Common Errors ... 604

19 BACnet PROCEDURES ... 605
19.1 Backup and Restore .. 605
19.2 Command Prioritization ... 609
19.3 Device Restart Procedure ... 613

20 ENCODING BACnet PROTOCOL DATA UNITS .. 614
20.1 Encoding the Fixed Part of BACnet APDUs.. 614
20.2 Encoding the Variable Part of BACnet APDUs ... 625

21 FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS .. 639
22 CONFORMANCE AND INTEROPERABILITY .. 714

22.1 Conformance to BACnet .. 714
22.2 BACnet Interoperability ... 715

23 EXTENDING BACnet TO ACCOMMODATE VENDOR PROPRIETARY INFORMATION 717
23.1 Extending Enumeration Values .. 717
23.2 Using the PrivateTransfer Services to Invoke Non-Standardized Services .. 718
23.3 Adding Proprietary Properties to a Standardized Object .. 718
23.4 Adding Proprietary Object Types to BACnet... 719
23.5 Restrictions on Extending BACnet .. 719

24 NETWORK SECURITY ... 720
24.1 Overview .. 720
24.2 Security Wrapper.. 724
24.3 Security Messages .. 728
24.4 Securing an APDU ... 744
24.5 Securing an NPDU ... 745
24.6 Securing a BVLL ... 745
24.7 Securing Messages ... 747
24.8 Network Security Network Trust Levels .. 749
24.9 Network Security Policies .. 750
24.10 Network Security.. 751
24.11 End-to-End Security ... 752
24.12 Wrapping and Unwrapping Secure Messages .. 752
24.13 Authenticating Messages .. 754
24.14 User Authentication .. 757
24.15 Time Synchronization Requirements ... 758
24.16 Integrating the Security Layer into the BACnet Stack ... 759
24.17 BACnet Security In A NAT Environment ... 766
24.18 BACnet Security Proxy .. 766
24.19 Deploying Secure Device on Non-Security Aware Networks .. 766
24.20 Deploying Secure Single Network Installations ... 766
24.21 Security Keys ... 767
24.22 Key Server .. 768

25 REFERENCES .. 772
ANNEX A - PROTOCOL IMPLEMENTATION CONFORMANCE STATEMENT (NORMATIVE) 775
ANNEX B - GUIDE TO SPECIFYING BACnet DEVICES (INFORMATIVE) ... 778
ANNEX C - Removed ... 779
ANNEX D - Removed ... 780
ANNEX E - EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE) .. 781

E.1 Alarm and Event Services ... 781
E.2 File Access Services .. 785
E.3 Object Access Services.. 787
E.4 Remote Device Management Services .. 793
E.5 Virtual Terminal Services.. 796

ANNEX F - EXAMPLES OF APDU ENCODING (INFORMATIVE) ... 798
F.1 Example Encodings for Alarm and Event Services ... 798

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Contents

ANSI/ASHRAE Standard 135-2012 v

F.2 Example Encodings for File Access Services .. 807
F.3 Example Encodings for Object Access Services ... 809
F.4 Example Encodings for Remote Device Management Services .. 819
F.5 Example Encodings for Virtual Terminal Services ... 824

ANNEX G - CALCULATION OF CRC (INFORMATIVE) .. 827
G.1 Calculation of the Header CRC .. 827
G.2 Calculation of the Data CRC .. 833

ANNEX H - COMBINING BACnet NETWORKS WITH NON-BACnet NETWORKS (NORMATIVE) 838
H.1 Mapping Non-BACnet Networks onto BACnet Routers .. 838
H.2 Multiple "Virtual" BACnet Devices in a Single Physical Device ... 838
H.3 Using BACnet with the DARPA Internet Protocols ... 838
H.4 Using BACnet with the IPX Protocol ... 839
H.5 Using BACnet with EIB/KNX .. 841
H.6 Using BACnet with the BACnet/WS Web Services Interface (Annex N) .. 854
H.7 Virtual MAC Addressing .. 856

ANNEX I - COMMANDABLE PROPERTIES WITH MINIMUM ON AND OFF TIMES (INFORMATIVE) 857
ANNEX J - BACnet/IP (NORMATIVE).. 859

J.1 General.. 859
J.2 BACnet Virtual Link Layer ... 859
J.3 BACnet/IP Directed Messages .. 863
J.4 BACnet/IP Broadcast Messages .. 863
J.5 Addition of Foreign B/IP Devices to an Existing B/IP Network .. 865
J.6 Routing Between B/IP and non-B/IP BACnet Networks ... 867
J.7 Routing Between Two B/IP BACnet Networks ... 868
J.8 Use of IP Multicast within BACnet/IP .. 873
J.9 Sources for Internet Information .. 874

ANNEX K - BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE) .. 875
K.1 Data Sharing BIBBs .. 875
K.2 Alarm and Event Management BIBBs .. 882
K.3 Scheduling BIBBs ... 890
K.4 Trending BIBBs .. 893
K.5 Device and Network Management BIBBs .. 897

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE) 905
L.1 Operator Interfaces .. 905
L.2 BACnet Building Controller (B-BC) ... 907
L.3 BACnet Advanced Application Controller (B-AAC) .. 907
L.4 BACnet Application Specific Controller (B-ASC) ... 908
L.5 BACnet Smart Actuator (B-SA) .. 908
L.6 BACnet Smart Sensor (B-SS) ... 909
L.7 Profiles of the Standard BACnet Devices ... 910

ANNEX M - GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENTS (INFORMATIVE) 911
ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE) .. 915

N.1 Data Model ... 915
N.2 Paths .. 916
N.3 Normalized Points ... 916
N.4 Reference Nodes ... 917
N.5 Localization .. 917
N.6 Security ... 917
N.7 Sessions ... 918
N.8 Attributes .. 918
N.9 Standard Nodes ... 924
N.10 Encodings .. 925
N.11 Service Options ... 926
N.12 Services ... 929
N.13 Errors .. 947
N.14 Extending BACnet/WS ... 948

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE) .. 949

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Contents

vi ANSI/ASHRAE Standard 135-2012

O.1 General ... 949
O.2 ZigBee Overview ... 949
O.3 Definitions .. 950
O.4 Unicast Addressing ... 950
O.5 Broadcast Addressing ... 950
O.6 BACnet/ZigBee Data Link Layer (BZLL) .. 951
O.7 Maximum Payload Size .. 954
O.8 Vendor Specific Commands ... 954

ANNEX P - BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE) 955
ANNEX Q - XML DATA FORMATS (NORMATIVE) .. 962

Q.1 Introduction ... 962
Q.2 Document Structure .. 965
Q.3 Expressing BACnet Datatypes in XML .. 966
Q.4 Expressing BACnet Objects and Properties in XML .. 1000
Q.5 Definitions, Types, Instances, and Inheritance ... 1000
Q.7 Extensibility .. 1007

ANNEX R - MAPPING NETWORK LAYER ERRORS (NORMATIVE) ... 1010
ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE) ... 1012
HISTORY OF REVISIONS .. 1027

NOTE

Approved addenda, errata, or interpretations for this standard can be downloaded free of charge from the ASHRAE
Web site at www.ashrae.org/technology.

© 2012 ASHRAE
)*+)
,�����
������
�! · �������'
-�
./.0+ · ###����������$ · ���
��$���
�����1���

��� �!
��
�
��$�������
��������2
��
���
��������
������	
��
������$'
 ����$������$
���
���3�����������$
!�$������'
4���

���4
��
�
��$�������
��������2
��
���
��������
��������
���������
4���������

5�����
��
�
��$�������
��������2
��
���
6���
&�����
7
,�������2
�����'
�#���
�	

���
��������
������	
��
������$'
 ����$������$'
���
���3�����������$
!�$������'
4���

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

Foreword

ANSI/ASHRAE Standard 135-2012 vii

FOREWORD

BACnet, the ASHRAE building automation and control networking protocol, has been designed specifically to meet the
communication needs of building automation and control systems for applications such as heating, ventilating, and air-
conditioning control, lighting control, access control, and fire detection systems. The BACnet protocol provides mechanisms by
which computerized equipment of arbitrary function may exchange information, regardless of the particular building service it
performs. As a result, the BACnet protocol may be used by head-end computers, general-purpose direct digital controllers, and
application specific or unitary controllers with equal effect.

The motivation for this Standard was the widespread desire of building owners and operators for "interoperability," the ability
to integrate equipment from different vendors into a coherent automation and control system - and to do so competitively. To
accomplish this, the Standard Project Committee (SPC) solicited and received input from dozens of interested firms and
individuals; reviewed all relevant national and international data communications standards, whether de facto or the result of
committee activity; and spent countless hours in debate and discussion of the pros and cons of each element of the protocol.

What has emerged from the committee deliberations is a network protocol model with these principal characteristics:

(a) All network devices (except MS/TP slaves) are peers, but certain peers may have greater privileges and responsibilities than
others.

(b) Each network device is modeled as a collection of network-accessible, named entities called "objects." Each object is
characterized by a set of attributes or "properties." While this Standard prescribes the most widely applicable object types and
their properties, implementors are free to create additional object types if desired. Because the object model can be easily
extended, it provides a way for BACnet to evolve in a backward compatible manner as the technology and building needs
change.

(c) Communication is accomplished by reading and writing the properties of particular objects and by the mutually acceptable
execution of other protocol "services." While this Standard prescribes a comprehensive set of services, mechanisms are also
provided for implementors to create additional services if desired.

(d) Because of this Standard's adherence to the ISO concept of a "layered" communication architecture, the same messages may
be exchanged using various network access methods and physical media. This means that BACnet networks may be configured
to meet a range of speed and throughput requirements with commensurately varying cost. Multiple BACnet networks can be
interconnected within the same system forming an internetwork of arbitrarily large size. This flexibility also provides a way for
BACnet to embrace new networking technologies as they are developed.

BACnet was designed to gracefully improve and evolve as both computer technology and demands of building automation
systems change. Upon its original publication in 1995, a Standing Standards Project Committee was formed to deliberate
enhancements to the protocol under ASHRAE rules for "continuous maintenance." Much has happened since the BACnet
standard was first promulgated. BACnet has been translated into Chinese, Japanese, and Korean, and embraced across the
globe. BACnet devices have been designed, built and deployed on all seven continents. Suggestions for enhancements and
improvements have been continually received, deliberated, and, ultimately, subjected to the same consensus process that
produced the original standard. This publication is the result of those deliberations and brings together all of the corrections,
refinements, and improvements that have been adopted.

Among the features that have been added to BACnet are: increased capabilities to interconnect systems across wide area
networks using Internet Protocols, new objects and services to support fire detection and other life safety applications,
capabilities to backup and restore devices, standard ways to collect trend data, new tools to make specifying BACnet systems
easier, a mechanism for making interoperable extensions to the standard visible, and many others. The successful addition of
these features demonstrates that the concept of a protocol deliberately crafted to permit extension of its capabilities over time as
technology and needs change is viable and sound.

All communication protocols are, in the end, a collection of arbitrary solutions to the problems of information exchange and all
are subject to change as time and technology advance. BACnet is no exception. Still, it is the hope of those who have contributed
their time, energies, and talents to this work that BACnet will help to fulfill, in the area of building automation and control, the
promise of the information age for the public good!

1. PURPOSE

ANSI/ASHRAE Standard 135-2012 1

1 PURPOSE

The purpose of this standard is to define data communication services and protocols for computer equipment used for
monitoring and control of HVAC&R and other building systems and to define, in addition, an abstract, object-oriented
representation of information communicated between such equipment, thereby facilitating the application and use of digital
control technology in buildings.

2 SCOPE

2.1 This protocol provides a comprehensive set of messages for conveying encoded binary, analog, and alphanumeric data
between devices including, but not limited to:

 (a) hardware binary input and output values,
 (b) hardware analog input and output values,
 (c) software binary and analog values,
 (d) text string values,
 (e) schedule information,
 (f) alarm and event information,
 (g) files, and
 (h) control logic.

2.2 This protocol models each building automation and control computer as a collection of data structures called

"objects," the properties of which represent various aspects of the hardware, software, and operation of the device.
These objects provide a means of identifying and accessing information without requiring knowledge of the details of
the device's internal design or configuration.

3 DEFINITIONS

3.1 Terms Adopted from International Standards

The following terms used in this standard are defined by international standards or draft standards for open system
interconnection (OSI). The definitions are repeated here and a reference to the appropriate standard is provided. Clause 25
contains the titles of all national and international standards referenced in this clause and elsewhere in this standard. Words or
phrases in italics refer to terms defined elsewhere in this clause.

abstract syntax: the specification of application layer data or application-protocol-control-information by using notation rules
which are independent of the encoding technique used to represent them (ISO 8822).

application: a set of a USER's information processing requirements (ISO 8649).

application-entity: the aspects of an application-process pertinent to OSI (ISO 7498).

application-process: an element within a real open system which performs the information processing for a particular
application (ISO 7498).

application-protocol-control-information: information exchanged between application-entities, using presentation services, to
coordinate their joint operation (ISO 9545).

application-protocol-data-unit: a unit of data specified in an application protocol and consisting of application-protocol-
control-information and possibly application-user-data (ISO 9545).

application-service-element: that part of an application-entity which provides an OSI environment capability, using underlying
services when appropriate (ISO 7498).

concrete syntax: those aspects of the rules used in the formal specification of data which embody a specific representation of
that data (ISO 7498).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

2 ANSI/ASHRAE Standard 135-2012

confirm (primitive): a representation of an interaction in which a service-provider indicates, at a particular service-access-
point, completion of some procedure previously invoked, at that service-access-point, by an interaction represented by a request
primitive (ISO TR 8509).

indication (primitive): a representation of an interaction in which a service-provider either
 (a) indicates that it has, on its own initiative, invoked some procedure; or
 (b) indicates that a procedure has been invoked by the service-user at the peer service-access-point (ISO TR 8509).

peer-entities: entities within the same layer (ISO 7498).

real open system: a real system which complies with the requirements of OSI standards in its communication with other real
systems (ISO 7498).

real system: a set of one or more computers, the associated software, peripherals, terminals, human operators, physical
processes, information transfer means, etc., that forms an autonomous whole capable of performing information processing
and/or information transfer (ISO 7498).

request (primitive): a representation of an interaction in which a service-user invokes some procedure (ISO TR 8509).

response (primitive): a representation of an interaction in which a service-user indicates that it has completed some procedure
previously invoked by an interaction represented by an indication primitive (ISO TR 8509).

(N)-service-access-point: the point at which (N)-services are provided by an (N)-entity to an (N+1)-entity (ISO 7498).

(N)-service-data-unit: an amount of (N)-interface-data whose identity is preserved from one end of an (N)-connection to the
other (ISO 7498).

service-user: an entity in a single open system that makes use of a service through service-access-points (ISO TR 8509).

service-primitive; primitive: an abstract, implementation-independent representation of an interaction between the service-user
and the service-provider (ISO TR 8509).

service-provider: an abstract of the totality of those entities which provide a service to peer service-users (ISO TR 8509).

transfer-syntax: that concrete syntax used in the transfer of data between open systems (ISO 7498).

user element: the representation of that part of an application-process which uses those application-service-elements needed to
accomplish the communications objectives of that application-process (ISO 7498).

3.2 Terms Defined for this Standard

access control: a method for regulating or restricting access to network resources.

access rights (physical access control): the access privileges granted to a credential.

access user (physical access control): the person or asset holding one or more credentials.

alarm: 1. An annunciation, either audible or visual or both, that alerts an operator to an off-normal condition that may require
corrective action. 2. An abnormal condition detected by a device or controller that implements a rule or logic specifically
designed to look for that condition.

alarm-acknowledgment: the process of indicating that a human operator has seen and responded to an event notification.

algorithmic change reporting: the detection and reporting of an alarm or event, based on an algorithm specified in an Event
Enrollment object. See intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

ANSI/ASHRAE Standard 135-2012 3

authentication: the act of verifying identity

authentication factor: a data element of the credential which is used to verify a credential's identity.

authorization (network security): the control of access to network resources based on known identity and access rules.

authorization (physical access control): the process of determining whether the access user is permitted to enter a protected
zone through an access controlled point.

BACnet device: any device, real or virtual, that supports digital communication using the BACnet protocol.

BACnet-user: that portion of an application-process that is represented by the BACnet user element.

blink-warn: in lighting control, typically a method of notifying room occupants of an impending automated command to
turn off the lights whereby the lights may be blinked, once or multiple times, or an audible signal is generated. After the
warning occurs, the room lights are held on for a grace period to allow occupants to either safely leave the room or to initiate
a request to keep the room lights on. Also known as "flick warn" or "flash warn."

bridge: a device that connects two or more segments at the physical and data link layers. This device may also perform message
filtering based upon MAC layer addresses.

broadcast: a message sent as a single unit, which may apply to more than one device.

change of state: an event that occurs when a measured or calculated Boolean or discrete enumerated value changes.

change of value: an event that occurs when a measured or calculated analog value changes by a predefined amount.

client: a system or device that makes use of another device for some particular purpose via a service request instance. A client
requests service from a server.

configurable: a property, setting, or value in a device is configurable if it can be changed via BACnet services or some other
method. A property, setting, or value that is one-time writable or not changeable in situ is not considered to be configurable.

context: a set of data or information that completely describes a particular communication environment at a particular point in
time.

controller: a device for regulation or management of a system or component.

credential (physical access control): the combination of authentication factors and access rights.

data confidentiality: the property that information is not made available or disclosed to unauthorized individuals, entities, or
processes.

data integrity: the property that data has not been altered or destroyed in an unauthorized manner.

data origin authentication: the corroboration that the source of data received is as claimed.

date pattern: a date that may contain one or more unspecified octets or special date values.

directly connected network: a network that is accessible from a router without messages being relayed through an intervening
router. A PTP connection is to a directly connected network if the PTP connection is currently active and no intervening router is
used.

download: a particular type of file transfer that refers to the transfer of an executable program or database to a remote device
where it may be executed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

4 ANSI/ASHRAE Standard 135-2012

encrypted message: a message that is wrapped in a security header, signed, and encrypted.

entity: something that has a separate and distinct existence. An identifiable item that is described by a set or collection of
properties.

error detection: a procedure used to identify the presence of errors in a communication.

error recovery: a procedure invoked in response to a detected error that permits the information exchange to continue.

event algorithm: the rules that determine when an event-initiating object changes between normal and offnormal states. The
event algorithm has no impact on an event-initiating object's transition to or from fault.

event-initiating object: an object that is configured to monitor its event state and can report changes in its event state.

event-notification-distribution: the process that a notification-server performs in the determination of notification-clients and
in the sending of notifications to notification-clients when an event-initiating object changes the event or acknowledgment state.

event notification message: a ConfirmedEventNotification or UnconfirmedEventNotification service request used to indicate a
change in the event or acknowledgment state of an event-initiating object.

event-state-detection: the process of executing an event-initiating object's event algorithm and monitoring the object's
Reliability property to detect changes in the object's event state.

event-summarization: the querying of event-initiating objects in a device through one of the event summarization services to
determine those that meet specific event state or reporting conditions.

fading: the gradual increase or decrease of the actual output from one setting to another over a fixed period of time.

gateway: a device that connects two or more dissimilar networks, permitting information exchange between them.

global: pertaining to all devices or nodes on a communication internetwork.

global broadcast: a message addressed to all devices or nodes on all networks in a BACnet internet.

half router: a device or node that can participate as one partner in a PTP connection. The two half-router partners that form an
active PTP connection together make up a single router.

incapable device: a device that is inherently incapable, or has been configured to be appear to be incapable, of producing or
consuming secure BACnet messages. All incapable devices are plain devices.

initialization: the process of establishing a known state, usually from a power up condition. Initialization may require re-
establishment of a node's logical or physical address.

internetwork: a set of two or more networks interconnected by routers. In a BACnet internetwork, there exists exactly one
message path between any two nodes.

intrinsic reporting: the detection and reporting of an alarm or event, based on an algorithm defined as part of the object type
specification. No external reference to an Event Enrollment is involved. See algorithmic change reporting.

inverted network: a BACnet internetwork where two or more networks are connected by a network with an NPDU size smaller
than the networks it joins.

key: a sequence of symbols that controls the operations of encipherment and decipherment.

local: pertaining to devices on the same network as the referenced device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

ANSI/ASHRAE Standard 135-2012 5

local broadcast: a message addressed to all devices or nodes on the same network as the originator.

medium: the physical transmission entity. Typical media are twisted-pair wire, fiber optic cable, and coaxial cable.

medium access control: a process used to maintain order and provide access to the communication medium.

network: a set of one or more segments interconnected by bridges that have the same network address.

network resource: any physical or logical entity that may be accessed via a communication medium.

node: an addressable device connected to the communication medium.

notification-client: a BACnet device that receives and processes event notification messages.

notification-server: a BACnet device that contains event-initiating objects and performs event notification distribution.

object: a specific instance of an object type. While an object type is identified by a unique Object_Type property, an object is
identified by its Object_Identifier property.

object profile: an object profile is a means of defining objects beyond those defined in Clause 12. A profile defines the set of
properties, behavior, and/or requirements for a proprietary object, or for proprietary extensions to a standard object.

object type: a generic classification of data that is defined by a set of properties.

operator authentication: the corroboration that the operator logging on to a device is as claimed.

peer entity authentication: the corroboration that a peer entity in an association is the one claimed.

physical access control (PACS): an electronic system that controls the ability of people or vehicles to enter a protected area, by
means of authentication and authorization at access control points.

physical segment: a single contiguous medium to which BACnet nodes are attached.

physically insecure: not physically secure.

physically secure: a device or network that is protected from physical access by unauthorized individuals.

plain device: a device that does not normally produce or consume secure BACnet messages. All incapable devices are plain
devices. However, a plain device that is not an incapable device is capable of producing or consuming secure BACnet messages
when communicating with another device that requires it.

plain network: a network that does not require signed or encrypted traffic.

plain message: a message that is not secured by a BACnet security wrapper.

printable character: a character that represents a printable symbol as opposed to a device control character. Printable characters
include, but are not limited to, upper and lowercase letters, punctuation marks, and mathematical symbols. The exact set depends
upon the character set being used.

property: a particular characteristic of an object type.

proprietary: within the context of BACnet, any extension of or addition to object types, properties, PrivateTransfer services, or
enumerations specified in this standard.

ramping: the gradual increase or decrease of the actual output from one setting to another at a fixed rate of change.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

6 ANSI/ASHRAE Standard 135-2012

receiving BACnet-user: the BACnet-user that receives an indication or confirm service primitive.

reliability-evaluation: the process by which an object determines its reliability and thus the value to set into its Reliability
property.

remote: pertaining to devices or nodes on a different network than the referenced device.

remote broadcast: a message addressed to all devices or nodes on a different network than the originator.

repeater: a device that connects two or more physical segments at the physical layer.

requesting BACnet-user: the BACnet-user that assumes the role of a client in a confirmed service.

responding BACnet-user: the BACnet-user that assumes the role of a server in a confirmed service.

role-based access control (RBAC): access privileges that are assigned to specific roles. Access users acquire privileges through
their assigned role.

router: a device that connects two or more networks at the network layer.

secure network: a network on which all traffic is required to be signed or encrypted.

security: any of a variety of procedures used to ensure that information exchange is guarded to prevent disclosure to
unauthorized individuals. Security measures are intended to prevent disclosure of sensitive information even to those who have
valid access to the communication network. Security is distinct from access control, although some security can be provided by
limiting physical access to the communication medium itself.

segment: a segment consists of one or more physical segments interconnected by repeaters.

sending BACnet-user: the BACnet-user that issues a request or response service primitive.

server: a system or device that responds to a service request instance for some particular purpose. The server provides service to
a client.

signed message: a message that is wrapped in a security header, signed, and not encrypted.

special date value: a date value that is one of the special values such as "even months", "last day of month", etc. These special
date values are used in subcomponents (octets) of a value of type Date.

specific date: a fully specified date. For example, January 24, 1991, Day of week = Thursday. A specific date shall contain no
unspecified octets or Special Date Values.

specific datetime: a BACnetDateTime construct composed of a specific date and a specific time.

specific time: a fully specified time. For example, 17:35:45.17 (= 5:35:45.17 P.M.). A specific time shall contain no unspecified
octets.

standard object type: an object type defined by this standard where the numerical value is within the range reserved for
ASHRAE.

standard property: a required or optional property of a standard object type where the numerical value of the property
identifier is within the range reserved for ASHRAE and the property is listed in the object type's properties table in Clause 12.

stepping: the increase or decrease of an output value in discrete steps.
synchronization: a facility that allows processes to define and identify specific places in a transmission or exchange that can be
used to reset a communication session to a predefined state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

ANSI/ASHRAE Standard 135-2012 7

time pattern: a time that may contain one or more unspecified octets.

timestamp: the indication of the point in time recorded for and accompanying the record of an event or operation.

trusted: a term used to refer to devices or networks from which messages are believed to be authentic, either through the use of
secure messages or based on the physical security of that device or network.

unit_time: the length of time required to transmit one octet with a start bit and a single stop bit. Ten bit-times.

unspecified date: a date composed entirely of unspecified octets (A value of X'FF' = D'255').

unspecified datetime: a BACnetDateTime construct composed of an unspecified date and an unspecified time.

unspecified octet: an octet used in the context of date, time or BACnetWeekNDay values that contains the value X'FF' = D'255'.

unspecified time: a time composed entirely of unspecified octets (A value of X'FF' = D'255').

upload: the process of transferring an executable program image or a database from a remote device in such a manner as to
allow subsequent download.

3.3 Abbreviations and Acronyms Used in this Standard

A application layer (prefix)
ABA American Bankers Association
AE application entity
ANSI American National Standards Institute
APCI application protocol control information
APDU application layer protocol data unit
API application program interface
ARCNET attached resource computer network
ASE application service element
ASN.1 Abstract Syntax Notation One (ISO 8824)
B' ' denotes that binary notation is used between the single quotes
BAC building automation and control
BBMD BACnet/IP broadcast management device
BDT broadcast distribution table
B/IP BACnet/IP
B/IP-M BACnet/IP multicast
BVLC BACnet virtual link control
BVLCI BACnet virtual link control information
BVLL BACnet virtual link layer
C conditional
C(=) conditional (The parameter is semantically equivalent to the parameter in the service primitive to its immediate left

in the table.)
CNF confirm primitive
COV change of value
CRC cyclic redundancy check
D' ' denotes that decimal notation is used between the single quotes
DA local destination MAC layer address
DADR ultimate destination MAC layer address
DER data expecting reply
DES Data Encryption Standard (FIPS 46-1)
DESFire Data Encryption Standard Fast, Innovative, Reliable and Secure
DID ARCNET destination MAC address
DLEN 1-octet length of ultimate destination MAC layer address
DNET 2-octet ultimate destination network number

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

8 ANSI/ASHRAE Standard 135-2012

DSAP LLC destination service access point (X'82' for BACnet)
EIB European Installation Bus
EIBA European Installation Bus Association
EXEC capable of executing a service request
FDT foreign device table
ICI interface control information
IL ARCNET information length field
IND indication primitive
INF "Infinity", a unique binary pattern representing positive infinity (see ANSI/IEEE 754-1985)
-INF "Negative infinity", a unique binary pattern representing negative infinity (see ANSI/IEEE 754-1985)
IEEE Institute of Electrical and Electronics Engineers
INIT capable of initiating a service request
IP Internet Protocol - RFC 791
ISO International Organization for Standardization
KNX The Konnex System Specification: EIB is the core protocol of the Konnex standard. The Konnex System

Specification reflects the current status for EIB.
L data link (prefix)
LAN local area network
LLC logical link control (ISO 8802-2)
LPCI link protocol control information
LPDU link protocol data unit
LRC Longitudinal Redundancy Check
LSAP link service access point (X'82' for BACnet)
LSDU link service data unit
M mandatory
M(=) mandatory (The parameter is semantically equivalent to the parameter in the service primitive to its immediate left

in the table.)
MA medium access (prefix)
MAC medium access control
MPCI MAC protocol control information
MPDU MAC layer protocol data unit
MSDU MAC service data unit
MS/TP master-slave/token-passing
N network layer (prefix)
NaN "Not a Number", a unique binary pattern representing an invalid number (see ANSI/IEEE 754-1985)
NAT Network Address Translation - RFC 2663
NP network priority
NPCI network protocol control information
NPDU network layer protocol data unit
NRZ non-return to zero
NSAP network service access point
NSDU network service data unit
O indicates that support of a property is optional
OSI open systems interconnection
P physical layer (prefix)
PAC ARCNET data packet header octet
PCI protocol control information
PDU protocol data unit
PICS protocol implementation conformance statement
PK Private Key
PPCI physical layer protocol control information
PPDU physical protocol data unit
PPP Point-To-Point protocol - RFC 1661
PSDU physical service data unit
PTP point-to-point
R indicates that a property shall be supported and readable using BACnet services

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

3. DEFINITIONS

ANSI/ASHRAE Standard 135-2012 9

REQ request primitive
RFC request for comment
RSP response primitive
S selection
S(=) selection (The parameter is semantically equivalent to the parameter in the service primitive to its immediate left in

the table.)
SA local network source MAC layer address
SAP service access point
SC ARCNET system code (X'CD' for BACnet)
SDU service data unit
SIA Security Industry Association
SID ARCNET source MAC address
SK Session Key
SLEN 1-octet length of original source MAC layer address
SLIP Serial Line Internet Protocol -RFC 1055
SNET 2-octet original source network number
SPC standard project committee
SSAP LLC source service access point (X'82' for BACnet)
TSM transaction state machine
U user option
U(=) user option (The parameter is semantically equivalent to the parameter in the service primitive to its immediate left

in the table.)
UART universal asynchronous receiver/transmitter
UDP User Datagram Protocol - RFC 768
UTC Universal Time Coordinated
VT virtual terminal
W indicates that a property shall be supported, readable, and writable using BACnet services
X' denotes that hexadecimal notation is used between the single quotes
XID eXchange IDentification (ISO 8802-2)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

10 ANSI/ASHRAE Standard 135-2012

4 BACnet PROTOCOL ARCHITECTURE

The Open System Interconnection (OSI) - Basic Reference Model (ISO 7498) is an international standard that defines a
model for developing multi-vendor computer communication protocol standards. The OSI model addresses the general
problem of computer-to-computer communication and breaks this very complex problem into seven smaller, more
manageable sub-problems, each of which concerns itself with a specific communication function. Each of these sub-problems
forms a "layer" in the protocol architecture.

The seven layers are arranged in a hierarchical fashion as shown in Figure 4-1. A given layer provides services to the layers
above and relies on services provided to it by the layers below. Each layer can be thought of as a black box with carefully
defined interfaces on the top and bottom. An application process connects to the OSI application layer and communicates
with a second, remote application process. This communication appears to take place between the two processes as if they
were connected directly through their application layer interfaces. Minimal knowledge or understanding of the other layers is
required. In a similar manner, each layer of the protocol relies on lower layers to provide communication services and
establishes a virtual peer-to-peer communication with its companion layer on the other system. The only real connection
takes place at the physical layer.

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

USER1

Handles the actual interface with the user's application program
APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

Converts codes, encrypts/decrypts, or reorganizes data

Manages dialog, synchronizes data transfers with checkpoints

Provides end-to-end error checking and data segmentation

Establishes logical circuits and routing between two machines

Controls orderly access to the physical medium

Transmits and receives individual bits on the physical medium

Physical medium between the two machines

USER2

Figure 4-1. The ISO Open Systems Interconnection Basic Reference Model.

The OSI model addresses computer-to-computer communication from a very general perspective. It was designed to deal
with the problems associated with computers in large, complex networks communicating with other computers in networks
anywhere in the world. In this environment, computers can be separated by long distances and the messages might pass
through several intermediate points, each of which may have to make routing decisions or perform some type of translation.
Complex synchronization and error recovery schemes may also be needed.

The cost of implementing such a protocol today is prohibitively high for most building automation applications and is not
generally required. Nevertheless, the OSI model is a good one to use for a building automation protocol if consideration is
given to including only the OSI functionality that is actually needed, thereby collapsing the seven-layer architecture. In a

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

ANSI/ASHRAE Standard 135-2012 11

collapsed architecture, only selected layers of the OSI model are included. The other layers are effectively null, thus reducing
message length and communication processing overhead. Such a collapsed architecture permits the building automation
industry to take advantage of lower cost, mass-produced processor and local area network technologies such as have been
developed for the process control and office automation industries. The use of readily available, widespread technologies,
such as Ethernet,1 ARCNET,2 and LonTalk,3 will lower the cost, increase performance, and open new doors to system
integration.

4.1 The BACnet Collapsed Architecture

BACnet is based on a four-layer collapsed architecture that corresponds to the physical, data link, network, and application
layers of the OSI model as shown in Figure 4-2. The application layer and a simple network layer are defined in the BACnet
standard. BACnet provides seven options that correspond to the OSI data link and physical layers. Option 1 is the logical link
control (LLC) protocol defined by ISO 8802-2 Type 1, combined with the ISO 8802-3 medium access control (MAC) and
physical layer protocol. ISO 8802-2 Type 1 provides unacknowledged connectionless service only. ISO 8802-3 is the
international standard version of the well-known "Ethernet" protocol. Option 2 is the ISO 8802-2 Type 1 protocol combined
with ARCNET (ATA 878.1). Option 3 is a Master-Slave/Token-Passing (MS/TP) protocol designed specifically for building
automation and control devices as part of the BACnet standard. The MS/TP protocol provides an interface to the network
layer that looks like the ISO 8802-2 Type 1 protocol and controls access to an EIA-485 physical layer. Option 4, the Point-
To-Point protocol, provides mechanisms for hardwired or dial-up serial, asynchronous communication. Option 5 is the
LonTalk protocol. Option 6, BACnet/IP, permits BACnet devices to use standard Internet Protocols (UDP and IP) as a virtual
data link layer. Option 7, ZigBee, provides a wireless datalink. Collectively these options provide a master/slave MAC,
deterministic token-passing MAC, high-speed contention MAC, dial-up access, star and bus topologies, and a choice of
twisted-pair, coax, or fiber optic media, in addition to wireless connectivity. The details of these options are described in
Clauses 7 through 11 Annex J, and Annex O.

A four-layer collapsed architecture was chosen after careful consideration of the particular features and requirements of BAC
networks, including a constraint that protocol overhead needed to be as small as possible. The reasoning behind the selection
of the physical, data link, network, and application layers for inclusion in the BACnet architecture is outlined in this
subclause.

What layers are required for the proper operation of a BAC network? BAC networks function as local area networks, either
physically, as with MS/TP, or logically, as with BACnet/IP. This is true even though in some applications it is necessary to
exchange information with devices in a building that is very far away. This long-distance communication is done through the
telephone networks or across the Internet. The routing, relaying, and guaranteed delivery issues are handled by the telephone
and Internet systems and can be considered external to the BAC network. BAC devices are static. They don't move from
place to place and the functions that they are asked to perform do not change in the sense that a manufacturing device may
make one kind of part today and some very different part tomorrow. These are among the features of BAC networks that can
be used to evaluate the appropriateness of the layers in the OSI model.

Equivalent
OSI Layers

ARCNET EIA-485ISO 8802-3
(IEEE 802.3)

ISO 8802-2 (IEEE 802.2)
Type 1

EIA-232

MS/TP PTP
LonTalk

BACnet Network Layer

BACnet Application Layer

BACnet Layers

Application

Network

Data Link

Physical

BVLL

UDP/IP

BZLL

ZigBee

Figure 4-2. BACnet collapsed architecture.

1 Ethernet is a registered trademark of Digital Equipment Corporation, Intel, and Xerox and is the basis for international
standard ISO 8802-3.

2 ARCNET is a registered trademark of Datapoint Corporation.
3 LonTalk is a registered trademark of Echelon Corporation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

12 ANSI/ASHRAE Standard 135-2012

The physical layer provides a means of connecting the devices and transmitting the electronic signals that convey the data.
Clearly the physical layer is needed in a BAC protocol.

The data link layer organizes the data into frames or packets, regulates access to the medium, provides addressing, and
handles some error recovery and flow control. These are all functions that are required in a BAC protocol. The conclusion is
that the data link layer is needed.

Functions provided by the network layer include translation of global addresses to local addresses, routing messages through
one or more networks, accommodating differences in network types and in the maximum message size permitted by those
networks, sequencing, flow control, error control, and multiplexing. BACnet is designed so that there is only one logical path
between devices, thus eliminating the need for optimal path routing algorithms. A network is made up of one or more
physical segments connected by repeaters or bridges but with a single local address space. In the case of a single network,
most network layer functions are either unnecessary or duplicate data link layer functions. For some BACnet systems,
however, the network layer is a necessity. This is the case when two or more networks in a BACnet internet use different
MAC layer options. When this occurs, there is a need to recognize the difference between local and global addresses and to
route messages to the appropriate networks. BACnet provides this limited network layer capability by defining a network
layer header that contains the necessary addressing and control information.

The transport layer is responsible for guaranteeing end-to-end delivery of messages, segmentation, sequence control, flow
control, and error recovery. Most of the functions of the transport layer are similar to functions in the data link layer, though
different in scope. The scope of transport layer services is end-to-end whereas the scope of data link services is point-to-point
across a single network. Since BACnet supports configurations with multiple networks, the protocol must provide the end-to-
end services of the transport layer. Guaranteed end-to-end delivery and error recovery are provided in the BACnet application
layer via message retry and timeout capabilities. Message segmentation and end-to-end flow control is required for buffer and
processor resource management. This is because potentially large amounts of information may be returned for even simple
BACnet requests. These functions are provided in the BACnet application layer. Last, sequence control is required in order to
properly reassemble segmented messages. This is provided in the BACnet application layer within the segmentation
procedure. Since BACnet is based on a connectionless communication model, the scope of the required services is limited
enough to justify implementing these at a higher layer, thus saving the communication overhead of a separate transport layer.

The session layer is used to establish and manage long dialogues between communicating partners. Session layer functions
include establishing synchronization checkpoints and resetting to previous checkpoints in the event of error conditions to
avoid restarting an exchange from the beginning. Most communications in a BAC network are very brief. For example,
reading or writing one or a few values, notifying a device about an alarm or event, or changing a setpoint. Occasionally
longer exchanges take place, such as uploading or downloading a device. The few times when the services of this layer would
be helpful do not justify the additional overhead that would be imposed on the vast majority of transactions, which are very
brief and do not need them.

The presentation layer provides a way for communicating partners to negotiate the transfer syntax that will be used to
conduct the communication. This transfer syntax is a translation from the abstract user view of data at the application layer to
sequences of octets treated as data at the lower layers. If only one transfer syntax is permitted, then the presentation layer
function reduces to an encoding scheme for representing the application data. BACnet defines such a fixed encoding scheme
and includes it in the application layer, making an explicit presentation layer unnecessary.

The application layer of the protocol provides the communication services required by the applications to perform their
functions, in this case monitoring and control of HVAC&R and other building systems. Clearly an application layer is needed
in the protocol.

In summary:

(a) The resource and overhead costs for implementing a full OSI seven-layer architecture make it impractical for
current building automation devices.

(b) Following the OSI model offers advantages in terms of adopting existing computer networking technology. This
can result in cost savings and make integration with other computer network systems easier.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

ANSI/ASHRAE Standard 135-2012 13

(c) The expectations and environment of building automation systems permit simplification of the OSI model by
eliminating the functionality of some of the layers.

(d) A collapsed architecture made up of the physical, data link, network, and application layers is the optimum
solution for today's building automation systems.

4.2 BACnet Network Topology

In the interest of application flexibility, BACnet does not prescribe a rigid network topology. Rather, BACnet devices are
physically connected to one of five types of local area networks (LANs) or via dedicated or dial-up serial, asynchronous
lines. These networks may then be further interconnected by BACnet routers as described in Clause 6.

In terms of LAN topology, each BACnet device is attached to an electrical medium or physical segment. A BACnet segment
consists of one or more physical segments connected at the physical layer by repeaters. A BACnet network consists of one or
more segments interconnected by bridges, devices that connect the segments at the physical and data link layers and may
perform message filtering based upon MAC addresses; a network forms a single MAC address domain. Multiple networks,
possibly employing different LAN technologies, may be interconnected by BACnet routers to form a BACnet internetwork.
In a BACnet internetwork, there exists exactly one message path between any two nodes. These concepts are shown
graphically in Figure 4-3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

14 ANSI/ASHRAE Standard 135-2012

��$����

)

 &�	�����
��$���� &�	�����
��$���� &�	�����
��$���� &�	�����
��$����

5 &�	�����
��$���� &�	�����
��$����

��$����

0

 ,

5
��$����

.

&�	�����
��$���� &�	�����
��$����

��$����
8

)�0 ,

)�0 ,

 ,

 &�	�����
��$���� &�	�����
��$���� &�	�����
��$����

��$����

9

5�����
4�������#��2

5
:
5���$�

:
 �������
 ,
:
 �����
)�0 ,
:
����
 �����

�
��

#
��

2

)

�
��

#
��

2

0

&
,&

�
��

��
��

��
�

�
��

#
��

2

.

Figure 4-3. A BACnet internetwork illustrating the concepts of Physical Segments, Repeaters, Segments, Bridges, Networks,
Half Routers, and Routers.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

4. BACnet PROTOCOL ARCHITECTURE

ANSI/ASHRAE Standard 135-2012 15

4.3 Security

The principal security threats to BACnet systems are people who, intentionally or by accident, modify a device's
configuration or control parameters. Problems due to an errant computer are outside the realm of security considerations. One
important place for security measures is the operator-machine interface. Since the operator-machine interface is not part of
the communication protocol, vendors are free to include password protection, audit trails, or other controls to this interface as
needed. In addition, write access to any properties that are not explicitly required to be "writable" by this standard may be
restricted to modifications made only in virtual terminal mode or be prohibited entirely. This permits vendors to protect key
properties with a security mechanism that is as sophisticated as they consider appropriate. BACnet also defines services that
can be used to provide peer entity, data origin, and operator authentication. See Clause 24.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

16 ANSI/ASHRAE Standard 135-2012

5 THE APPLICATION LAYER

5.1 The Application Layer Model

This clause presents a model of the BACnet application layer. The purpose of the model is to describe and illustrate the
interaction between the application layer and application programs, the relationship between the application layer and lower
layers in the protocol stack, and the peer-to-peer interactions with a remote application layer. This model is not an
implementation specification.

An Application Process is that functionality within a system that performs the information processing required for a
particular application. All parts of the Application Process outside the Application Layer, (i.e., those that do not concern the
communication function) are outside the scope of BACnet. The part of the Application Process that is within the Application
Layer is called the Application Entity. In other words, an Application Entity is that part of the Application Process related to
the BACnet communication function. An application program interacts with the Application Entity through the Application
Program Interface (API). This interface is not defined in BACnet, but it would probably be a function, procedure, or
subroutine call in an actual implementation. These concepts are illustrated in Figure 5-1. The shaded region indicates the
portion of the Application Process that is within the BACnet Application Layer.

Application
Process

API

BACnet
User Element

Application
Program

NSAP

Application
Entity

A
pp

lic
at

io
n-

La
ye

r

BACnet
ASE

Figure 5-1. Model of a BACnet Application Process.

The Application Entity is itself made up of two parts: the BACnet User Element and the BACnet Application Service
Element (ASE). The BACnet ASE represents the set of functions or application services specified in Clauses 13 through 17
and Clause 24. The BACnet User Element carries out several functions in addition to supporting the local API. It represents
the implementation of the "service procedure" portion of each application service. It is responsible for maintaining
information about the context of a transaction, including generating invoke IDs and remembering which invoke ID goes with
which application service request (response) to (from) which device. It is also responsible for maintaining the time-out
counters that are required for the retrying of a transmission. The BACnet User Element also presides over the mapping of a
device's activities into BACnet objects.

Information exchanged between two peer application processes is represented in BACnet as an exchange of abstract service
primitives, following the ISO conventions contained in the OSI technical report on service conventions, ISO TR 8509. These
primitives are used to convey service-specific parameters that are defined in Clauses 13 through 17 and Clause 24. Four

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 17

service primitives are defined: request, indication, response, and confirm. The information contained in the primitives is
conveyed using a variety of protocol data units (PDUs) defined in this standard. In order to make clear which BACnet PDU is
being used, the notation will be as follows:

CONF_SERV.request CONF_SERV.indication CONF_SERV.response CONF_SERV.confirm
UNCONF_SERV.request UNCONF_SERV.indication
SEGMENT_ACK.request SEGMENT_ACK.indication
REJECT.request REJECT.indication
ABORT.request ABORT.indication
 SEC_ERR.indication

The designation CONF_SERV indicates that BACnet confirmed service PDUs are being used. Similarly, the designations
UNCONF_SERV, SEGMENT_ACK, ERROR, REJECT, and ABORT indicate that unconfirmed service PDUs, segment
acknowledge PDUs, error PDUs, reject PDUs, and abort PDUs, respectively, are being used. The designation SEC_ERR
indicates that an error occurred in the BACnet security layer and is being indicated up to the BACnet application program.
The format of a SEC_ERR.indication is a local matter.

An application program that needs to communicate with a remote application process accesses the local BACnet User
Element through the API. Some of the API parameters, such as the identity (address) of the device to which the service
request is to be sent and protocol control information, is passed directly down to the network or data link layers. The
remainder of the parameters make up an application service primitive that is passed from the BACnet User Element to the
BACnet ASE. Conceptually, the application service primitive results in the generation of an APDU that becomes the data
portion of a network service primitive, which is passed to the network layer through the Network Service Access Point
(NSAP). Similarly this request passes down through the lower layers of the protocol stack in the local device. This process is
illustrated in Figure 5-2. The message is then transmitted to the remote device, where it is passed up through the protocol
stack in the remote device, eventually appearing as an indication primitive passed from the remote BACnet ASE to the
remote BACnet User Element. The response from the remote device, if any, returns to the initiator of the service in a similar
fashion (see Clause 5.5).

In addition to the service primitives and the service specific parameters, the application entity exchanges interface control
information (ICI) parameters with the application program via the API. The content of the ICI is dependent upon the service
primitive type. The ICI parameters received by the application entity provide the information that is passed on to the lower
layers (as ICI across layer interfaces) to help them construct their PDUs. The ICI parameters that are provided by the
application entity to the application programs contain information recovered by the lower layers from their respective PDUs.

The following ICI parameters are exchanged with the various service primitives across an API:

'destination_address' (DA): the address of the device(s) intended to receive the service primitive. Its format (device name,
network address, etc.) is a local matter. This address may also be a multicast, local broadcast or global broadcast type.

'source_address' (SA): the address of the device from which the service primitive was received. Its format (device name,
network address, etc.) is a local matter.

'network_priority' (NP): a four-level network priority parameter described in 6.2.2.

'data_expecting_reply' (DER): a Boolean parameter that indicates whether (TRUE) or not (FALSE) a reply service primitive
is expected for the service being issued.

'security_parameters' (SEC): The optional security parameters for the request to send, or from the received request. It
indicates the level of security (Key Id, Plain/Signed/Encrypted, User Authentication data, End-To-End, etc.) and its format is
a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

18 ANSI/ASHRAE Standard 135-2012

BACnet Protocol Stack and Data Flow

�����������
&��$���
5�����
���1���
 �;����

�35���!,���;����

�&�4

���1���3�������
���� �&<6

���1 ���3�������
����������

���#��23'
���3
���
=��3�������
����������

�����������

�36�4,<�,����;����

���#��2 ���3
���
=��3�������
���������� �&<6

<�36�4,<�,����;����

��� =��3�������
���������� �&�4 ��<6 �&<6

<���
���2

=�36�4,<�,����;����

=�� =&�4 =�<6 =&<6

&36�4,<�,����;����

&�	����� &&�4 &�<6 &&<6

�&�4 ��<6

Figure 5-2. BACnet protocol stack and data flow.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 19

Table 5-1 describes the applicability of the ICI parameters to the service primitives.

Table 5-1. Applicability of ICI Parameters for Abstract Service Primitives
Service Primitive DA SA NP DER SEC

CONF_SERV.request Yes No Yes Yes Yes

CONF_SERV.indication Yes Yes Yes Yes Yes

CONF_SERV.response Yes No Yes Yes Yes

CONF_SERV.confirm Yes Yes Yes No Yes

UNCONF_SERV.request Yes No Yes No Yes

UNCONF_SERV.indication Yes Yes Yes No Yes

REJECT.request Yes No Yes No Yes

REJECT.indication Yes Yes Yes No Yes

SEGMENT_ACK.request Yes No Yes No Yes

SEGMENT_ACK.indication Yes Yes Yes No Yes

ABORT.request Yes No Yes No Yes

ABORT.indication Yes Yes Yes No Yes

SEC_ERR.indication Yes Yes No No Yes

A "BACnetDevice" is any device, real or virtual, that supports digital communication using the BACnet protocol. Each
BACnet Device contains exactly one Device object, as defined in 12.11. A BACnet Device is uniquely located by an NSAP,
which consists of a network number and a MAC address.

In most cases, a physical device will implement a single BACnet Device. It is possible, however, that a single physical device
may implement a number of "virtual" BACnet Devices. This is described in Annex H.

5.1.1 Confirmed Application Services

BACnet defines confirmed application services based on a client and server communication model. A client requests service
from a server via a particular service request instance. The server provides service to a client and responds to the request.
This relationship is illustrated in Figure 5-3. The BACnet-user that assumes the role of a client is called the "requesting
BACnet-user" and the BACnet-user that assumes the role of the server is called the "responding BACnet-user."

Client

 !>6!�,4�-

������$

 ����1��$

Server

 !�&�<4�-

 ����1��$

������$ �������
&<6

 �;����
&<6

Figure 5-3. Relationship of a client and server.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

20 ANSI/ASHRAE Standard 135-2012

A requesting BACnet-user issues a CONF_SERV.request primitive, which causes a request PDU to be sent. When a response
PDU arrives, the requesting BACnet-user receives a CONF_SERV.confirm primitive. When a request PDU arrives, the
responding BACnet-user receives a CONF_SERV.indication primitive. The responding BACnet-user issues a
CONF_SERV.response primitive, which causes a response PDU to be sent. Thus, the requesting BACnet-user and the
responding BACnet-user play a role in both sending and receiving PDUs. The term "sending BACnet-user" applies to a
BACnet user that initiates the sending of a PDU. The term "receiving BACnet-user" applies to a BACnet-user that receives
an indication that a PDU has arrived.

5.1.2 Unconfirmed Application Services

The client and server model, and the terms "requesting BACnet-user" and "responding BACnet-user," do not apply to
unconfirmed services. The terms "sending BACnet-user" and "receiving BACnet-user" do apply, however, and they are used
to define the service procedure for unconfirmed services.

In some cases, errors will be encountered when sending unconfirmed requests. While the standard does not provide a
mechanism for reporting such errors to the application program, it is acceptable for an implementation to provide such a
mechanism, if desired.

5.2 Segmentation of BACnet Messages

To provide for messages that are longer than the maximum length supported by a communications network, or by the sending
or receiving device, BACnet provides a method to perform application layer segmentation. In BACnet, only Confirmed-
Request and ComplexACK messages may be segmented. Segmentation is an optional feature of BACnet.

5.2.1 Message Segmentation Rules

This subclause prescribes rules for dividing a message into segments.

5.2.1.1 Rules for Segmenting APDU Data Streams

Each BACnet message is encoded into a sequence of tags and values according to the relevant ASN.1 definitions in Clause
21 and the encoding rules of Clause 20. The following rules apply to segmenting this data stream:

(a) If possible, an entire message shall be sent in a single APDU.

(b) If an entire message cannot be sent in a single APDU, the message shall be segmented into the minimum number of

APDUs possible.

(c) Messages shall be segmented only at octet boundaries.

5.2.1.2 Maximum APDU Length

The maximum length of a BACnet APDU shall be the smallest of

(a) the maximum APDU size transmittable by a device, which may be restricted by local buffer limitations and is a
local matter;

(b) the maximum APDU size conveyable by the internetwork to the remote device, which is constrained by the

maximum NPDU length permitted by the data links used by the local, remote, and any intervening networks, as
specified in Clause 6;

(c) the maximum APDU size accepted by the remote peer device, which must be at least 50 octets.

If the sending device is the requesting BACnet-user, i.e., the APDU to be sent is a BACnet-Confirmed-Request-PDU or a
BACnet-Unconfirmed-Request-PDU, then the maximum APDU size accepted by the remote peer is specified by the
Max_APDU_Length_Accepted property of the remote peer's Device object. The value of this property may be read using the
read property services described in Clause 15 or the value may be obtained from the 'Max APDU Length Accepted'
parameter of an I-Am service request received from the remote device. The remote peer may be solicited to transmit an I-Am
service request by sending it a Who-Is service request, as described in 16.9

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 21

If the sending device is not the requesting BACnet-user, i.e., the APDU to be sent is a BACnet-ComplexACK-PDU, then the
maximum APDU size accepted by the remote peer is specified in the 'Max APDU Length Accepted' parameter of the
BACnet-Confirmed-Request-PDU for which this is a response.

The value determined by the above constraints will be designated the maximum-transmittable-length. Note that maximum-
transmittable-length will in general not be a constant unless minimum values are used for each constraint.

5.2.1.3 Maximum Segments Accepted

The maximum number of segments transmitted in a Confirmed-Request or ComplexACK message shall be the smallest of:

(a) the maximum number of segments transmittable by a device, which may be restricted by local limitations and is a
local matter;

(b) the maximum number of segments accepted by the remote peer device.

If the sending device is the requesting BACnet-user, i.e., the message to be sent is a Confirmed-Request, then the maximum
number of segments accepted by the remote peer device is specified in the Max_Segments_Accepted property of the remote
peer's Device object.

If the sending device is not the requesting BACnet-user, i.e., the message to be sent is a ComplexACK, then the maximum
number of segments accepted by the remote peer device is specified in the 'Max Segments Accepted' parameter of the
BACnet-Confirmed-Request-PDU for which this is a response.

5.2.2 Segmentation Protocol Control Information (PCI)

To provide for the possibility of segmented messages, the headers of the BACnet-Confirmed-Request-PDU and BACnet-
ComplexACK-PDU contain two Boolean parameters called 'Segmented Message' and 'More Follows.'

If the length of a fully encoded message of the type conveyed by one of the above APDUs results in an APDU whose length
is less than or equal to the maximum-transmittable-length as determined according to 5.2.1, the 'Segmented Message' and
'More Follows' parameters shall both be set to FALSE.

If, however, the encoded length of a message would result in an APDU length greater than the maximum-transmittable-
length as determined according to 5.2.1, the 'Segmented Message' parameter shall be set to TRUE for all segments, and the
'More Follows' parameter shall be set to TRUE for all segments except the last.

Two additional parameters are also present, conditionally, in the header of each APDU carrying a segment of a Confirmed-
Request message or a ComplexACK message. The first conditional parameter is the 'Sequence Number.' This one-octet
unsigned integer is used by the segment transmitter to indicate the position of the current segment in the series of segments
composing the complete message. The second conditional parameter is the 'Proposed Window Size.' This one-octet unsigned
integer is used by the segment transmitter to indicate the maximum number of message segments that it is prepared to
transmit before it must receive a SegmentACK. The use of these parameters in the transmission of segmented messages is
described in 5.3 and 5.4.

The 'Sequence Number' of the initial segment shall be zero. The segment receiver may request the transmission of the next
segment or group of segments by sending a SegmentACK-PDU containing the 'Sequence Number' parameter of the last
successfully received segment. Such a request shall also serve as an acknowledgment of this segment. If the Window Size is
greater than one, such a SegmentACK-PDU shall also serve to acknowledge any previously transmitted but unacknowledged
segments.

If either party in a segmented transaction wishes to terminate the transaction, that party may issue an Abort-PDU.

5.3 Transmission of BACnet APDUs

The formal description of the transmission and reception protocol for BACnet APDUs is contained in the Transaction State
Machine description given in 5.4. This subclause is intended only as an overview of the protocol.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

22 ANSI/ASHRAE Standard 135-2012

5.3.1 Confirmed-Request Message Transmission

Upon transmitting a complete unsegmented Confirmed-Request message or upon receiving the SegmentACK acknowledging
the final segment of a segmented Confirmed-Request message, a client device shall start a timer that indicates the length of
time the message has been outstanding. The timer shall be canceled upon the receipt of an Error, Reject, Abort, SimpleACK,
or ComplexACK APDU for the outstanding Confirmed-Request message, and the client application shall be notified. If the
timer exceeds the value of the APDU_Timeout property in the client's Device object, then the complete Confirmed-Request
message shall be retransmitted and the timer shall be reset to zero. All retransmitted Confirmed-Request messages shall
follow this same procedure until the message has been retransmitted the number of times indicated in the
Number_Of_APDU_Retries property of the client's Device object. If, after the Confirmed-Request message is retransmitted
the appropriate number of times, a response is still not received, the message shall be discarded and the client application
shall be notified.

5.3.2 Segmented Confirmed-Request Message Transmission

Before sending the first segment of a segmented Confirmed-Request-PDU, a client device shall choose a Proposed Window
Size to indicate the maximum number of message segments it is prepared to transmit before it must receive a SegmentACK.
The means of choosing the Proposed Window Size are a local matter, except that the value shall be in the range 1 to 127,
inclusive. The Proposed Window Size shall be carried by the parameter of that name in each segment of the Confirmed-
Request-PDU. The value of Proposed Window Size shall be the same in each segment of the Confirmed-Request-PDU.

Upon transmitting the first segment of a Confirmed-Request message, a client device shall start a timer that indicates the
length of time this message segment has been outstanding. The timer shall be canceled upon the receipt of a Reject, Abort, or
SegmentACK APDU for the outstanding Confirmed-Request message segment. If the timer exceeds the value of the
APDU_Segment_Timeout property in the client's Device object, then the segment shall be retransmitted and the timer shall
be reset to zero. All retransmitted segments shall follow this same procedure until the message segment has been
retransmitted the number of times indicated in the Number_Of_APDU_Retries property of the client's Device object. If, after
the message segments are retransmitted the appropriate number of times, a response is still not received, the message shall be
discarded and the client application shall be notified.

Upon receipt of the first segment of a segmented Confirmed-Request-PDU, the server device shall choose an Actual Window
Size to indicate the number of sequential message segments it expects to receive before it transmits a SegmentACK. The
means of choosing the Actual Window Size are a local matter, except that the value shall be less than or equal to the
'proposed-window-size' parameter contained in the Confirmed-Request-PDU and shall be in the range 1 to 127, inclusive.
The value of Actual Window Size shall be the same in each SegmentACK sent in response to a given Confirmed-Request.
Regardless of the value of Actual Window Size, a SegmentACK shall be sent in response to the first segment of a
Confirmed-Request.

Upon receipt of a SegmentACK APDU, the client device shall set its Actual Window Size equal to the value associated with
the 'actual-window-size' parameter in the SegmentACK APDU. After this point, the client has authorization to send as many
segments as the 'actual-window-size' parameter indicates before waiting for a SegmentACK APDU. No more than Tseg may
be allowed to elapse between the receipt of a SegmentACK APDU and the transmission of a segment. No more than Tseg may
be allowed to elapse between the transmission of successive segments of a group. After transmitting a set of segments that
fills the window or completes the message, a client device shall start a timer that indicates the length of time these message
segments have been outstanding. The timer shall be canceled upon receipt of a Reject, Abort, or SegmentACK APDU for
some or all of the outstanding Confirmed-Request message segments. If the timer exceeds the value of the
APDU_Segment_Timeout property in the client's Device object, then the segments shall be retransmitted and the timer shall
be reset to zero. All retransmitted segments shall follow this same procedure until the message segments have been
retransmitted the number of times indicated in its Device object's Number_Of_APDU_Retries property. If, after the
Confirmed-Request message segments are retransmitted the appropriate number of times, a response is still not received, the
message shall be discarded and the client application shall be notified.

It is possible to receive a Reject, Abort, or SegmentACK APDU during the sending of a sequence of Confirmed-Request
segments even though the number of outstanding segments is less than indicated by the Actual Window Size. In this case,
receipt of a Reject or Abort APDU shall terminate the Confirmed-Request transaction. Receipt of a SegmentACK APDU
shall be considered as an acknowledgment for the segments up to and including the number indicated in the 'sequence-
number' parameter of the SegmentACK APDU. Any unacknowledged segments shall be retransmitted following the above
procedure.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 23

It is recognized that in some cases where a Reject, Abort, or SegmentACK APDU is received, the client device may have
sent, or irretrievably queued for sending, one or more (but less than Actual Window Size) additional Confirmed-Request-
PDU segments.

5.3.3 Segmented ComplexACK Message Transmission

Before sending the first segment of a segmented ComplexACK-PDU, a server device shall choose a Proposed Window Size
to indicate the maximum number of message segments it is prepared to transmit before it must receive a SegmentACK. The
means of choosing the Proposed Window Size are a local matter, except that the value shall be in the range 1 to 127,
inclusive. The Proposed Window Size shall be carried by the parameter of that name in each segment of the Confirmed-
Request-PDU. The value of Proposed Window Size shall be the same in each segment of the ComplexACK-PDU.

Upon transmitting the first segment of a ComplexACK message, a server device shall start a timer that indicates the length of
time this message segment has been outstanding. The timer shall be canceled upon the receipt of an Abort or SegmentACK
APDU for the outstanding ComplexACK message segment. If the timer exceeds the value of the APDU_Segment_Timeout
property in the server's Device object, then the segment shall be retransmitted and the timer shall be reset to zero. All
retransmitted segments shall follow this same procedure until the message segment has been retransmitted the number of
times indicated in the Number_Of_APDU_Retries property of the server's Device object. If, after the message segments are
retransmitted the appropriate number of times, a response is still not received, the message shall be discarded.

Upon receipt of the first segment of a segmented ComplexACK-APDU, the client device shall choose an Actual Window
Size to indicate the number of sequential message segments it expects to receive before it transmits a SegmentACK. The
means of choosing the Actual Window Size are a local matter, except that the value shall be less than or equal to the
'proposed-window-size' parameter contained in the ComplexACK-PDU and shall be in the range 1 to 127, inclusive. The
value of Actual Window Size shall be the same in each SegmentACK sent in response to a given ComplexACK. Regardless
of the value of Actual Window Size, a SegmentACK shall be sent in response to the first segment of a ComplexACK.

Upon receipt of a SegmentACK APDU, the server device shall set its Actual Window Size equal to the value associated with
the 'actual-window-size' parameter in the SegmentACK APDU. After this point, the server has authorization to send as many
segments as the 'actual-window-size' parameter indicates before waiting for a SegmentACK APDU. No more than Tseg may
be allowed to elapse between the receipt of a SegmentACK APDU and the transmission of a segment. No more than Tseg may
be allowed to elapse between the transmission of successive segments of a group. After transmitting a set of segments that
fills the window or completes the message, a server device shall start a timer that indicates the length of time these message
segments have been outstanding. The timer shall be canceled upon receipt of an Abort or SegmentACK APDU for some or
all of the outstanding ComplexACK message segments. If the timer exceeds the value of the APDU_Segment_Timeout
property in the server's Device object, then the segments shall be retransmitted and the timer shall be reset to zero. All
retransmitted segments shall follow this same procedure until the message segments have been retransmitted the number of
times indicated in the Number_Of_APDU_Retries property of the server's Device object. If, after the ComplexACK message
segments are retransmitted the appropriate number of times, a response is still not received, the message shall be discarded.

It is possible to receive an Abort or SegmentACK APDU during the sending of a sequence of ComplexACK segments even
though the number of outstanding segments is less than indicated by the Actual Window Size. In this case, receipt of an
Abort APDU shall terminate the ComplexACK transaction. Receipt of a SegmentACK APDU shall be considered as an
acknowledgment for the segments up to and including the number indicated in the 'sequence-number' parameter of the
SegmentACK APDU. Any unacknowledged segments shall be retransmitted following the above procedure.

It is recognized that in some cases where an Abort or SegmentACK APDU is received, the server device may have sent, or
irretrievably queued for sending, one or more (but less than Actual Window Size) additional ComplexACK segments.

5.3.4 SegmentACK APDU Transmission

A device shall transmit a SegmentACK upon any of the following conditions:

(a)
 The device receives the initial segment of a segmented message. In this case, the 'negative-ACK' parameter of the
SegmentACK shall have a value of FALSE, indicating that this is a positive acknowledgment, and the 'sequence-
number' parameter of the SegmentACK shall have a value of zero, indicating that the first segment has been

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

24 ANSI/ASHRAE Standard 135-2012

acknowledged and that the segment transmitter may continue sending, commencing with the next sequential
segment.

(b)
 The device receives a quantity of unacknowledged, sequentially numbered segments for this transaction equal to the
Actual Window Size. In this case, the 'negative-ACK' parameter of the SegmentACK shall have a value of FALSE,
indicating that this is a positive acknowledgment, and the 'sequence-number' parameter of the SegmentACK shall
have a value equal to the 'sequence-number' parameter of the last received segment, indicating that all segments up
to and including 'sequence-number' have been acknowledged and that the segment transmitter may continue
sending, commencing with the next sequential segment.

(c)
 The device receives a segment out of order (possibly indicating that a segment has been missed). In this case, the
segment receiver shall discard the out-of-order segment. In this context, "out of order" means a segment whose
'sequence-number' is not equal to the next expected 'sequence-number.' The 'negative-ACK' parameter of the
SegmentACK shall have a value of TRUE, indicating that this is a negative acknowledgment. The 'sequence-
number' parameter of the SegmentACK shall have a value equal to the 'sequence-number' parameter of the last
received correctly ordered segment, indicating that all segments up to and including 'sequence-number' have been
acknowledged and that the segment transmitter should resend, commencing with the next sequential segment after
that indicated by the 'sequence-number' parameter contained in the SegmentACK.

(d)
 The device receives the final segment of a message. In this case, the 'negative-ACK' parameter of the SegmentACK
shall have a value of FALSE, indicating that this is a positive acknowledgment, and the 'sequence-number'
parameter of the SegmentACK shall have a value equal to the 'sequence-number' parameter of the final message
segment, indicating that all segments up to and including the final segment have been acknowledged.

5.3.5 Duplicate APDUs and Message Segments

5.3.5.1 Terminating Client TSMs

When using the BACnet error recovery procedures there is a possibility of the reception of duplicate messages or message
segments during a transaction. At the client, a transaction begins, and a Transaction State Machine is created, when the first
or only segment of a Confirmed-Request APDU is sent. The transaction ends when the client discards the Transaction State
Machine due to one of the following circumstances:

(a)
 after reception from the server of a SimpleACK, unsegmented ComplexACK, Error, Reject, or Abort APDU
containing the transaction's invokeID;

(b)
 after transmission to the server of a SegmentACK APDU for the final segment of a segmented ComplexACK APDU
received from the server;

(c)
 after exhausting the timeout and retry logic described in the previous subclauses;

(d)
 after transmission to the server of an Abort APDU containing the transaction's invokeID (i.e., the client aborts the
transaction).

5.3.5.2 Terminating Server TSMs

At the server, a transaction begins, and a Transaction State Machine is created when the first or only segment of a Confirmed-
Request APDU is received. The transaction ends when the server discards the Transaction State Machine due to one of the
following circumstances:

(a)
 after transmission to the client of a SimpleACK, unsegmented ComplexACK, Error, Reject, or Abort APDU
containing the transaction's invokeID;

(b)
 after reception from the client of a SegmentACK APDU for the final segment of a segmented ComplexACK APDU
transmitted by the server;

(c)
 after reception from the client of an Abort APDU containing the transaction's invokeID;

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 25

(d)
 after exhausting the timeout and retry logic described in the previous subclauses during the transmission of a
segmented ComplexACK APDU.

5.3.5.3 Duplicate Message Procedures

The procedure for handling duplicate messages and message segments is as follows:

(a)
 The server receives a duplicate Confirmed-Request message. If the server has the capability of detecting a duplicate
Confirmed-Request message, the message shall be discarded. If the server cannot distinguish between duplicate and
non-duplicate messages, then the Confirmed-Request message shall be serviced. In this case, the client shall discard
the server's response since the Invoke ID of the response will not bind to an active state transaction state machine.

(b)
 The server receives a duplicate Confirmed-Request message segment, that is, one that has already been
acknowledged with a SegmentACK. In this case, the server shall discard the duplicate segment but shall return an
appropriate SegmentACK APDU. A segment can be identified uniquely by the peer address, Invoke ID, and
Sequence Number of the segment.

(c)
 The client receives a duplicate ComplexACK segment, that is, one that has already been acknowledged with a
SegmentACK. In this case, the client shall discard the duplicate segment but shall return an appropriate
SegmentACK APDU. A segment can be identified uniquely by the peer address, Invoke Id, and Sequence Number
of the segment.

(d)
 A Device receives a duplicate SegmentACK APDU. In this case, the device shall discard the duplicate
SegmentACK APDU. Other actions, including the possible re-sending of message segments, shall occur as specified
in 5.4.

5.3.6 Stale Resource Disposal

The error recovery procedure described here requires resources from both the server and the client. In the event that the error
recovery process fails, the resources dedicated to this process need to be freed. In general, the resources that need to be freed
are transaction specific and consist of a Transaction State Machine (TSM), timers, and APDU or APDU segment buffers. The
exact time period before the resources should be freed is a local matter dependent upon the system design. As a design
suggestion, it is recommended that resources should be considered stale and consequently freed:

(a)
 at the client, when a complete response to the Confirmed-Request APDU is received;

(b)
 at the client, when a Confirmed-Request APDU has been retransmitted the number of times specified in the
Number_Of_APDU_Retries property without success;

(c)
 at the client, when a Confirmed-Request APDU segment has been retransmitted the number of times specified in the
Number_Of_APDU_Retries property without success;

(d)
 at the server, when a complete response to a Confirmed-Request APDU has been transmitted and any associated
SegmentACK received;

(e)
 at the server, when a ComplexACK APDU segment has been retransmitted the number of times specified in the
Number_Of_APDU_Retries property without success;

(f)
 at any device, when a SegmentACK APDU has been transmitted and additional segments have not been received
before the segment timeout expires.

5.4 Application Protocol State Machines

BACnet APDUs may be divided into two classes: those sent by requesting BACnet-users (clients) and those sent by
responding BACnet-users (servers). All BACnet devices shall be able to act as responding BACnet-users and therefore shall
be prepared to receive APDUs sent by requesting BACnet-users. Many devices will also be able to act as requesting BACnet-
users, and such devices shall be prepared to receive APDUs sent by responding BACnet-users.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

26 ANSI/ASHRAE Standard 135-2012

APDUs sent by requesting BACnet-users (clients):

 BACnet-Unconfirmed-Request-PDU
 BACnet-Confirmed-Request-PDU
 BACnet-SegmentACK-PDU with 'server' = FALSE
 BACnet-Abort-PDU with 'server' = FALSE

APDUs sent by responding BACnet-users (servers):

 BACnet-SimpleACK-PDU
 BACnet-ComplexACK-PDU
 BACnet-Error-PDU
 BACnet-Reject-PDU
 BACnet-SegmentACK-PDU with 'server' = TRUE
 BACnet-Abort-PDU with 'server' = TRUE

Both the requesting and the responding BACnet-user shall create and maintain a Transaction State Machine (TSM) for each
transaction. The TSM shall be created when the transaction begins and shall be disposed of when the transaction ends. In the
state machine descriptions that follow, the creation of a TSM is represented by a transition out of the IDLE state, and the
disposal of a TSM is represented by a transition into the IDLE state. A transaction is uniquely identified by the client
BACnetAddress, the server BACnetAddress, and the Invoke ID (if any).

When a PDU is received from the network layer, the PDU type, the source and destination BACnetAddresses, and the Invoke
ID (if any) of the PDU shall be examined to determine the type (requesting BACnet-user or responding BACnet-user) and the
identity of the TSM to which the PDU shall be passed. If no such TSM exists, one shall be created.

When a request is received from the application program, the request type, the source and destination BACnetAddresses, and
the Invoke ID (if any) of the request shall be examined to determine the type (requesting BACnet-user or responding
BACnet-user) and the identity of the TSM to which the request shall be passed. If no such TSM exists, one shall be created.

In order to simplify the state machine description, only the case of segmentation by the Application Entity is shown.
Segmentation by the Application Program is possible as well. In this case, wherever the current TSM receives a segment or
group of segments and sends SegmentACK, the modified TSM would instead pass the segments to the Application Program,
and SegmentACK would be sent only upon direction from the Application Program via the SEGMENT_ACK.request
primitive. Reception by the modified state machine of a SegmentACK-PDU would cause it to pass a
SEGMENT_ACK.indication primitive to the Application Program.

5.4.1 Variables And Parameters

The following variables are defined for each instance of Transaction State Machine:

RetryCount used to count APDU retries

SegmentRetryCount used to count segment retries

DuplicateCount used to count duplicate segments

SentAllSegments used to control APDU retries and the acceptance of server replies

LastSequenceNumber stores the sequence number of the last segment received in order

InitialSequenceNumber stores the sequence number of the first segment of a sequence of segments that fill a window

ActualWindowSize stores the current window size

ProposedWindowSize stores the window size proposed by the segment sender

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 27

SegmentTimer used to perform timeout on PDU segments

RequestTimer used to perform timeout on Confirmed Requests

The following parameters are used in the description:

Tseg This parameter is the length of time a node shall wait for a SegmentACK-PDU after sending the final

segment of a sequence. Its value is the value of the APDU_Segment_Timeout property of the node's Device
object.

Twait_for_seg This parameter is the length of time a node shall wait after sending a SegmentACK-PDU for an additional

segment of the message. Its value is equal to four times the value of the APDU_Segment_Timeout property
of the node's Device object.

Tout This parameter represents the value of the APDU_Timeout property of the node's Device object.

Nretry This parameter represents the value of the Number_Of_APDU_Retries property of the node's Device

object.

Ndup This parameter represents the number of duplicates that will be silently dropped per window before a

negative segment ack is returned. This parameter shall be equal to ActualWindowSize.

5.4.2 Window Query Functions

5.4.2.1 Function InWindow

The function "InWindow" performs a modulo 256 compare of two unsigned eight-bit sequence numbers. All computations
and comparisons are modulo 256 operations on unsigned eight-bit quantities.

function InWindow(seqA, seqB)

(1)
 if seqA minus seqB, modulo 256, is less than ActualWindowSize, then return TRUE
(2)
 else return FALSE.

Example (not normative): if ActualWindowSize is equal to 4, then
 InWindow(0, 0) returns TRUE
 InWindow(1, 0) returns TRUE
 InWindow(3, 0) returns TRUE
 InWindow(4, 0) returns FALSE
 InWindow(4, 5) returns FALSE (since the modulo 256 difference 4 - 5 = 255)
 InWindow(0, 255) returns TRUE (since the modulo 256 difference 0 - 255 = 1)

5.4.2.2 Function DuplicateInWindow

The function "DuplicateInWindow" determines whether a value, seqA, is within the range firstSeqNumber through
lastSequenceNumber, modulo 256. All computations and comparisons are modulo 256 operations on unsigned eight-bit
quantities.

function DuplicateInWindow(seqA, firstSeqNumber, lastSequenceNumber)

(1)
 Set local variable receivedCount to lastSeqNumber minus firstSeqNumber, modulo 256.
(2)
 If receivedCount is greater than ActualWindowSize, then return FALSE.
(3)
 If seqA minus firstSeqNumber, modulo 256, is less than or equal to receivedCount, then return TRUE.
(4)
 Else return FALSE.

Example (not normative): if ActualWindowSize is equal to 4, then

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

28 ANSI/ASHRAE Standard 135-2012

 DuplicateInWindow(0, 0, 1) returns TRUE
 DuplicateInWindow(1, 0, 1) returns TRUE
 DuplicateInWindow(2, 0, 1) returns FALSE
 DuplicateInWindow(3, 0, 1) returns FALSE

5.4.3 Function FillWindow

The function "FillWindow" sends PDU segments either until the window is full or until the last segment of a message has
been sent. No more than Tseg may be allowed to elapse between the receipt of a SegmentACK APDU and the transmission of
a segment. No more than Tseg may be allowed to elapse between the transmission of successive segments of a sequence.

function FillWindow(sequenceNumber)

(a)
 Set local variable ix to zero.

(b)
 If the next segment to transmit (the segment numbered sequenceNumber plus ix) is the final segment, goto step (g).

(c)
 Issue an N-UNITDATA.request with 'data_expecting_reply' = TRUE to transmit the next BACnet APDU segment,
with 'segmented-message' = TRUE, 'more-follows' = TRUE, 'proposed-window-size' equal to ProposedWindowSize,
and 'sequence-number' = sequenceNumber plus ix, modulo 256.

(d)
 Set ix equal to ix plus one.

(e)
 If ix is less than ActualWindowSize, goto step (b).

(f)
 Goto step (i).

(g)
 Issue an N-UNITDATA.request with 'data_expecting_reply' = TRUE to transmit the final BACnet APDU segment

with 'segmented-message' = TRUE, 'more-follows' = FALSE, 'proposed-window-size' = ProposedWindowSize, and
'sequence-number' = sequenceNumber plus ix, modulo 256.

(h)
 Set SentAllSegments to TRUE, indicating that all segments have been transmitted at least once.

(i)
 Return to the caller.

5.4.4 State Machine for Requesting BACnet User (client)

5.4.4.1 IDLE

In the IDLE state, the device waits for the local application program to request a service.

SendUnconfirmed
 If UNCONF_SERV.request is received from the local application program,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Unconfirmed-
Request-PDU, and enter the IDLE state.

SendConfirmedUnsegmented

If CONF_SERV.request is received from the local application program and the length of the APDU is less than or
equal to maximum-transmittable-length as determined according to 5.2.1,

then assign an 'invokeID' to this transaction; set SentAllSegments to TRUE; set RetryCount to zero; start
RequestTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = TRUE to transmit a BACnet-
Confirmed-Request-PDU with 'segmented-message' = FALSE; and enter the AWAIT_CONFIRMATION state to
await a reply.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 29

CannotSend
If CONF_SERV.request is received from the local application program and the length of the APDU is greater than
maximum-transmittable-length as determined according to 5.2.1 and the Max_Segments_Accepted property of the
destination's Device object is known and the total APDU cannot be transmitted without exceeding the maximum
number of segments accepted,

then send an ABORT.indication with 'server' = FALSE and 'abort-reason' =APDU_TOO_LONG to the local
application program and enter the IDLE state.

SendConfirmedSegmented

If CONF_SERV.request is received from the local application program and the length of the APDU is greater than
maximum-transmittable-length as determined according to 5.2.1, and the Max_Segments_Accepted property of the
destination's Device object is not known, or Max_Segments_Accepted is known and the total APDU can be
transmitted without exceeding the maximum number of segments accepted,

then assign an 'invokeID' to this transaction; set SentAllSegments to FALSE; set RetryCount to zero; set
SegmentRetryCount to zero; set InitialSequenceNumber to zero; set ProposedWindowSize to whatever value is
desired; set ActualWindowSize to 1; start SegmentTimer; issue an N-UNITDATA.request with
'data_expecting_reply' = TRUE to transmit a BACnet-Confirmed-Request-PDU containing the first segment of the
message, with 'segmented-message' = TRUE, 'more-follows' = TRUE, 'sequence-number' = zero, and 'proposed-
window-size' = ProposedWindowSize; and enter the SEGMENTED_REQUEST state to await an acknowledgment.
(The method used to determine ProposedWindowSize is a local matter, except that the value shall be in the range 1
to 127, inclusive.)

UnexpectedSegmentInfoReceived

If an unexpected PDU indicating the existence of an active server TSM (BACnet-ComplexACK-PDU with
'segmented-message' = TRUE or BACnet-SegmentACK-PDU with 'server' = TRUE) is received from the network
layer,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = FALSE and 'abort-reason' = INVALID_APDU_IN_THIS_STATE and enter the IDLE state.

UnexpectedPDU_Received

If an unexpected PDU not indicating the existence of an active server TSM (BACnet-SimpleACK-PDU, BACnet-
ComplexACK-PDU with 'segmented-message' = FALSE, BACnet-Error-PDU, BACnet-Reject-PDU, or BACnet-
Abort-PDU with 'server' = TRUE) is received from the network layer,

then enter the IDLE state. (There is no reason to issue REJECT.indication, ABORT.indication, etc., as the client has
no knowledge of the transaction in question.)

SecurityError_Received
If a security error is received via an N-REPORT.indication from the network layer for which there is no active TSM
associated with it,

then enter the IDLE state.

5.4.4.2 SEGMENTED_REQUEST

In the SEGMENTED_REQUEST state, the device waits for a BACnet-SegmentACK-PDU for one or more segments of a
BACnet-Confirmed-Request-PDU.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then stop SegmentTimer; send SEC_ERR.indication with the appropriate security error information to the local
application program; and enter the IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

30 ANSI/ASHRAE Standard 135-2012

InsufficientSecurity_Received

If a PDU is received from the network layer and the security parameters do not match the initial request,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE and an 'abort-reason' = INSUFFICIENT_SECURITY describing the
security error; send SEC_ERR.indication indicating insufficient security to the local application program; and enter
the IDLE state.

DuplicateACK_Received
If a BACnet-SegmentACK-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is
received from the network layer and InWindow ('sequence-number' parameter of the BACnet-SegmentACK-PDU,
InitialSequenceNumber) returns a value of FALSE,

then restart SegmentTimer and enter the SEGMENTED_REQUEST state to await an acknowledgment.

NewACK_Received

If a BACnet-SegmentACK-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is
received from the network layer and InWindow ('sequence-number' parameter of the BACnet-SegmentACK-PDU,
InitialSequenceNumber) returns a value of TRUE and there is at least one segment remaining to send,

then set InitialSequenceNumber equal to the 'sequence-number' parameter of the BACnet-SegmentACK-PDU plus
one, modulo 256; set ActualWindowSize equal to the 'actual-window-size' parameter of the BACnet-SegmentACK-
PDU; set SegmentRetryCount to zero; call FillWindow (InitialSequenceNumber) to transmit one or more BACnet-
Confirmed-Request-PDUs containing the next ActualWindowSize segments of the message; restart SegmentTimer;
and enter the SEGMENTED_REQUEST state to await an acknowledgment.

FinalACK_Received

If a BACnet-SegmentACK-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is
received from the network layer and InWindow ('sequence-number' parameter of the BACnet-SegmentACK-PDU,
InitialSequenceNumber) returns a value of TRUE and there are no more segments to send,

then stop SegmentTimer; start RequestTimer; and enter the AWAIT_CONFIRMATION state to await a reply.

Timeout

If SegmentTimer becomes greater than Tseg and SegmentRetryCount is less than Nretry,

then increment SegmentRetryCount; call FillWindow(InitialSequenceNumber) to retransmit one or more BACnet-
Confirmed-Request-PDUs containing the next ActualWindowSize segments of the message; restart SegmentTimer;
and enter the SEGMENTED_REQUEST state to await an acknowledgment.

FinalTimeout

If SegmentTimer becomes greater than Tseg and SegmentRetryCount is greater than or equal to Nretry,

then stop SegmentTimer; send ABORT.indication with 'server' = FALSE and 'abort-reason' = TSM_TIMEOUT to
the local application program; and enter the IDLE state.

AbortPDU_Received

If a BACnet-Abort-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is received
from the network layer,

 then stop SegmentTimer; send ABORT.indication to the local application program; and enter the IDLE state.

SimpleACK_Received

If a BACnet-SimpleACK-PDU that has sufficient security parameters is received from the network layer and
SentAllSegments is TRUE,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 31

 then stop SegmentTimer; send CONF_SERV.confirm(+) to the local application program; and enter the IDLE state.

UnsegmentedComplexACK_Received

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is FALSE and SentAllSegments is TRUE,

 then stop SegmentTimer; send CONF_SERV.confirm(+) to the local application program; and enter the IDLE state.

SegmentedComplexACK_Received

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE and whose 'sequence-number' parameter is zero and this device supports
segmentation and SentAllSegments is TRUE,

then save the BACnet-ComplexACK-PDU segment; stop SegmentTimer; compute ActualWindowSize based on the
'proposed-window-size' parameter of the received BACnet-ComplexACK-PDU and on local conditions; issue an N-
UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with
'negative-ACK' = FALSE, 'server' = FALSE, and 'actual-window-size' = ActualWindowSize; start SegmentTimer;
set LastSequenceNumber to zero; set InitialSequenceNumber to zero; set DuplicateCount to zero; and enter the
SEGMENTED_CONF state to receive the remaining segments. (The method used to determine ActualWindowSize
is a local matter, except that the value shall be less than or equal to the 'proposed-window-size' parameter of the
received BACnet-ComplexACK-PDU and shall be in the range 1 to 127, inclusive.)

ErrorPDU_Received

If a BACnet-Error-PDU that has sufficient security parameters is received from the network layer and
SentAllSegments is TRUE,

 then stop SegmentTimer; send CONF_SERV.confirm(-) to the local application program; and enter the IDLE state.

RejectPDU_Received

If a BACnet-Reject-PDU that has sufficient security parameters is received from the network layer,

 then stop SegmentTimer; send REJECT.indication to the local application program; and enter the IDLE state.

UnexpectedPDU_Received

If a BACnet-SimpleACK-PDU, BACnet-ComplexACK-PDU, or BACnet-Error-PDU that has sufficient security
parameters is received from the network layer and SentAllSegments is FALSE,

or if a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE and this device does not support segmentation,

or if a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE and whose 'sequence-number' parameter is not zero,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; send ABORT.indication with 'server' = FALSE and 'abort-reason' =
INVALID_APDU_IN_THIS_STATE to the local application program; and enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; and enter the IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

32 ANSI/ASHRAE Standard 135-2012

5.4.4.3 AWAIT_CONFIRMATION

In the AWAIT_CONFIRMATION state, the device waits for a response to a BACnet-Confirmed-Request-PDU.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then stop RequestTimer; send SEC_ERR.indication with the appropriate security error information to the local
application program; and enter the IDLE state.

InsufficientSecurity_Received
If a PDU is received from the network layer and the security parameters do not match the initial request,

then stop RequestTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE and an 'abort-reason' = INSUFFICIENT_SECURITY; send
SEC_ERR.indication indicating insufficient security to the local application program; and enter the IDLE state.

SimpleACK_Received
 If a BACnet-SimpleACK-PDU that has sufficient security parameters is received from the network layer,

 then stop RequestTimer; send CONF_SERV.confirm(+) to the local application program; and enter the IDLE state.

UnsegmentedComplexACK_Received

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is FALSE,

 then stop RequestTimer; send CONF_SERV.confirm(+) to the local application program; and enter the IDLE state.

SegmentedComplexACK_Received

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE and whose 'sequence-number' parameter is zero and this device supports
segmentation,

then stop RequestTimer; compute ActualWindowSize based on the 'proposed-window-size' parameter of the
received BACnet-ComplexACK-PDU and on local conditions; issue an N-UNITDATA.request with
'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = FALSE, 'server'
= FALSE, and 'actual-window-size' = ActualWindowSize; start SegmentTimer; set LastSequenceNumber to zero;
set InitialSequenceNumber to zero; set DuplicateCount to zero; and enter the SEGMENTED_CONF state to receive
the remaining segments. (The method used to determine ActualWindowSize is a local matter, except that the value
shall be less than or equal to the 'proposed-window-size' parameter of the received BACnet-ComplexACK-PDU and
shall be in the range 1 to 127, inclusive.)

ErrorPDU_Received
 If a BACnet-Error-PDU that has sufficient security parameters is received from the network layer,

 then stop RequestTimer; send CONF_SERV.confirm(-) to the local application program; and enter the IDLE state.

RejectPDU_Received
 If a BACnet-Reject-PDU that has sufficient security parameters is received from the network layer,

 then stop RequestTimer; send REJECT.indication to the local application program; and enter the IDLE state.

AbortPDU_Received

If a BACnet-Abort-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is received
from the network layer,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 33

 then stop RequestTimer; send ABORT.indication to the local application program; and enter the IDLE state.

SegmentACK_Received

If a BACnet-SegmentACK-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is
received from the network layer,

 then discard the PDU as a duplicate, and re-enter the current state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-ComplexACK-PDU with 'segmented-message' = TRUE and 'sequence-number' not
equal to zero or 'segmented-message' = TRUE and this device does not support segmentation) that has sufficient
security parameters is received from the network layer,

then stop RequestTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; send ABORT.indication with 'server' = FALSE and 'abort-reason' =
INVALID_APDU_IN_THIS_STATE to the local application program; and enter the IDLE state.

TimeoutUnsegmented

If RequestTimer becomes greater than Tout and RetryCount is less than Number_Of_APDU_Retries and the length
of the Confirmed Request APDU is less than or equal to maximum-transmittable-length as determined according to
Clause 5.2.1,

then stop RequestTimer; increment RetryCount; issue an N-UNITDATA.request with 'data_expecting_reply' =
TRUE to transmit a BACnet-Confirmed-Request-PDU with 'segmented-message' = FALSE; start RequestTimer;
and enter the AWAIT_CONFIRMATION state to await a reply.

TimeoutSegmented

If RequestTimer becomes greater than Tout and RetryCount is less than Number_Of_APDU_Retries and the length
of the Confirmed-Request APDU is greater than maximum-transmittable-length as determined according to Clause
5.2.1,

then stop RequestTimer; increment RetryCount; set SegmentRetryCount to zero; set SentAllSegments to FALSE;
start SegmentTimer; set InitialSequenceNumber to zero; set ActualWindowSize to 1; issue an N-
UNITDATA.request with 'data_expecting_reply' = TRUE to transmit a BACnet-Confirmed-Request-PDU
containing the first segment of the message, with 'segmented-message' = TRUE, 'more-follows' = TRUE, and
'sequence-number' = zero; and enter the SEGMENTED_REQUEST state to await an acknowledgment.

FinalTimeout
 If RequestTimer becomes greater than Tout and RetryCount is greater than or equal to Number_Of_APDU_Retries,

 then stop RequestTimer; send ABORT.indication with 'server' = FALSE and 'abort-reason' = TSM_TIMEOUT to
the local application program; and enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop RequestTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; and enter the IDLE state.

5.4.4.4 SEGMENTED_CONF

In the SEGMENTED_CONF state, the device waits for one or more segments in response to a BACnet-SegmentACK-PDU.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

34 ANSI/ASHRAE Standard 135-2012

then stop SegmentTimer; send SEC_ERR.indication with the appropriate security error information to the local
application program; and enter the IDLE state.

InsufficientSecurity_Received

If a PDU is received from the network layer and the security parameters that do not match the initial request,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE and an 'abort-reason' = INSUFFICIENT_SECURITY; send
SEC_ERR.indication indicating insufficient security to the local application program; and enter the IDLE state.

NewSegmentReceived_NoSpace

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE; whose 'sequence-number' parameter is equal to LastSequenceNumber plus
1, modulo 256; and the segment cannot be saved due to local conditions,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE and 'abort-reason' = BUFFER_OVERFLOW; send ABORT.indication
with 'server' = FALSE and 'abort-reason' = BUFFER_OVERFLOW to the local application program; and enter the
IDLE state.

NewSegmentReceived

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE; whose 'more-follows' parameter is TRUE; whose 'sequence-number'
parameter is equal to LastSequenceNumber plus 1, modulo 256; and whose 'sequence-number' parameter is not
equal to InitialSequenceNumber plus ActualWindowSize, modulo 256,

then save the BACnet-ComplexACK-PDU segment; increment LastSequenceNumber, modulo 256; restart
SegmentTimer; and enter the SEGMENTED_CONF state to receive additional segments.

LastSegmentOfGroupReceived

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE; whose 'sequence-number' parameter is equal to LastSequenceNumber plus
1, modulo 256; whose 'more-follows' parameter is TRUE; and whose 'sequence-number' parameter is equal to
InitialSequenceNumber plus ActualWindowSize, modulo 256,

then save the BACnet-ComplexACK-PDU segment; increment LastSequenceNumber, modulo 256; set
InitialSequenceNumber to LastSequenceNumber; set DuplicateCount to zero; issue an N-UNITDATA.request with
'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = FALSE, server =
FALSE, and 'actual-window-size' = ActualWindowSize; restart SegmentTimer; and enter the SEGMENTED_CONF
state to receive additional segments.

LastSegmentOfComplexACK_Received

If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE; whose 'sequence-number' parameter is equal to LastSequenceNumber plus
1, modulo 256; and whose 'more-follows' parameter is FALSE (i.e., the final segment),

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-SegmentACK-PDU with 'negative-ACK' = FALSE, 'server = FALSE', and 'actual-window-size' =
ActualWindowSize; send CONF_SERV.confirm(+) containing all of the received segments to the local application
program; and enter the IDLE state.

DuplicateSegmentReceived

If a BACnet-ComplexACK-PDU is received from the network layer whose 'segmented-message' parameter is TRUE
and whose 'sequence-number' parameter is not equal to LastSequenceNumber plus 1, modulo 256, and

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 35

DuplicateInWindow('sequence-number' parameter of the BACnet-SegmentACK-PDU, InitialSequenceNumber+1
modulo 256, LastSequenceNumber) returns a value of TRUE and DuplicateCount is less than Ndup,

then discard the BACnet-ComplexACK-PDU segment; restart SegmentTimer; increment DuplicateCount, and enter
the SEGMENTED_CONF state to receive the remaining segments.

TooManyDuplicateSegmentsReceived

If a BACnet-ComplexACK-PDU is received from the network layer whose 'segmented-message' parameter is TRUE
and whose 'sequence-number' parameter is not equal to LastSequenceNumber plus 1, modulo 256, and
DuplicateInWindow('sequence-number' parameter of the BACnet-SegmentACK-PDU, InitialSequenceNumber+1
modulo 256, LastSequenceNumber) returns a value of TRUE and DuplicateCount is equal to Ndup,

then discard the BACnet-ComplexACK-PDU segment; issue an N-UNITDATA.request with 'data_expecting_reply'
= FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = TRUE, 'server' = FALSE, 'sequence-
number' = LastSequenceNumber, and 'actual-window-size' = ActualWindowSize; restart SegmentTimer; set
DuplicateCount to zero; and enter the SEGMENTED_CONF state to receive the remaining segments.

SegmentReceivedOutOfOrder
If a BACnet-ComplexACK-PDU that has sufficient security parameters is received from the network layer whose
'segmented-message' parameter is TRUE and whose 'sequence-number' parameter is not equal to
LastSequenceNumber plus 1, modulo 256, and DuplicateInWindow('sequence-number' parameter of the BACnet-
SegmentACK-PDU, InitialSequenceNumber+1 modulo 256, LastSequenceNumber) returns a value of FALSE,

then discard the BACnet-ComplexACK-PDU segment; issue an N-UNITDATA.request with 'data_expecting_reply'
= FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = TRUE, 'server' = FALSE, 'sequence-
number' = LastSequenceNumber, and 'actual-window-size' = ActualWindowSize; restart SegmentTimer; set
InitialSequenceNumber = LastSequenceNumber; set DuplicateCount to zero; and enter the SEGMENTED_CONF
state to receive the remaining segments.

AbortPDU_Received

If a BACnet-Abort-PDU that has sufficient security parameters and whose 'server' parameter is TRUE is received
from the network layer,

 then stop SegmentTimer; send ABORT.indication to the local application program; and enter the IDLE state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-SimpleACK-PDU, BACnet-ComplexACK-PDU with 'segmented-message' =
FALSE, BACnet-Error-PDU, BACnet-Reject-PDU, or BACnet-SegmentACK-PDU with 'server' = TRUE) that has
sufficient security parameters is received from the network layer,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; send ABORT.indication with 'server' = FALSE and 'abort-reason' =
INVALID_APDU_IN_THIS_STATE to the local application program; and enter the IDLE state.

Timeout
 If SegmentTimer becomes greater than Tseg times four,

then stop SegmentTimer; send ABORT.indication with 'server' = FALSE and 'abort-reason' = TSM_TIMEOUT to
the local application program; and enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = FALSE; and enter the IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

36 ANSI/ASHRAE Standard 135-2012

5.4.5 State Machine for Responding BACnet User (server)

5.4.5.1 IDLE

In the IDLE state, the device waits for a PDU from the network layer.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then enter the IDLE state.

UnconfirmedReceived
 If a BACnet-Unconfirmed-Request-PDU is received from the network layer,

 then send an UNCONF_SERV.indication to the local application program, and enter the IDLE state.

ConfirmedBroadcastReceived

If a BACnet-Confirmed-Request-PDU whose destination address is a multicast or broadcast address is received
from the network layer,

 then enter the IDLE state.

ConfirmedUnsegmentedReceived

If a BACnet-Confirmed-Request-PDU whose 'segmented-message' parameter is FALSE is received from the
network layer,

 then send a CONF_SERV.indication to the local application program, start RequestTimer; and enter the

AWAIT_RESPONSE state.

ConfirmedSegmentedReceivedNotSupported

If a BACnet-Confirmed-Request-PDU whose 'segmented-message' parameter is TRUE is received from the network
layer, and this device does not support the reception of segmented messages,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE and 'abort-reason' = SEGMENTATION_NOT_SUPPORTED, and enter the IDLE state.

ConfirmedSegmentedReceived

If a BACnet-Confirmed-Request-PDU whose 'segmented-message' parameter is TRUE, whose 'sequence-number'
parameter is zero, and whose 'proposed-window-size' is greater than zero and less than or equal to 127 is received
from the network layer and the local device supports the reception of segmented messages,

then save the BACnet-ComplexACK-PDU segment; compute ActualWindowSize based on the 'proposed-window-
size' parameter of the received BACnet-Confirmed-Request-PDU and on local conditions; issue an N-
UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with
'negative-ACK' = FALSE, 'server' = TRUE, and 'actual-window-size' = ActualWindowSize; start SegmentTimer; set
LastSequenceNumber to zero; set InitialSequenceNumber to zero; set DuplicateCount to zero; and enter the
SEGMENTED_REQUEST state to receive the remaining segments. (The method used to determine
ActualWindowSize is a local matter, except that the value shall be less than or equal to the 'proposed-window-size'
parameter of the received BACnet-Confirmed-Request-PDU and shall be in the range 1 to 127, inclusive.)

ConfirmedSegmentedReceivedWindowSizeOutOfRange

If a BACnet-Confirmed-Request-PDU whose 'segmented-message' parameter is TRUE, whose 'sequence-number'
parameter is zero, and whose 'proposed-window-size' is zero or greater than 127 is received from the network layer
and the local device supports the reception of segmented messages,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE and 'abort-reason' = WINDOW_SIZE_OUT_OF_RANGE, and enter the IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 37

AbortPDU_Received
 If a BACnet-Abort-PDU whose 'server' parameter is FALSE is received from the network layer,

 then enter the IDLE state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-Confirmed-Request-PDU with 'segmented-message' = TRUE and 'sequence-
number' not equal to zero or BACnet-SegmentACK-PDU with 'server' = FALSE) is received from the network
layer,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE; and enter the IDLE state.

5.4.5.2 SEGMENTED_REQUEST

In the SEGMENTED_REQUEST state, the device waits for segments of a BACnet-Confirmed-Request-PDU.

IncorrectSecurityPdu_Received

If a PDU is received that is not secured with the same settings as the original PDU,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE and 'abort-reason' = INSUFFICIENT_SECURITY; and enter the IDLE state.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then stop SegmentTimer and enter the IDLE state.

NewSegmentReceived

If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU is received from
the network layer whose 'segmented-message' parameter is TRUE; whose 'more-follows' parameter is TRUE; whose
'sequence-number' parameter is equal to LastSequenceNumber plus 1, modulo 256; and whose 'sequence-number'
parameter is not equal to InitialSequenceNumber plus ActualWindowSize, modulo 256,

then save the BACnet-Confirmed-Request-PDU segment; increment LastSequenceNumber, modulo 256; restart
SegmentTimer; and enter the SEGMENTED_REQUEST state to receive the remaining segments.

LastSegmentOfGroupReceived

If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU is received from
the network layer whose 'segmented-message' parameter is TRUE; whose 'sequence-number' parameter is equal to
LastSequenceNumber plus 1, modulo 256; whose 'more-follows' parameter is TRUE; and whose 'sequence-number'
parameter is equal to InitialSequenceNumber plus ActualWindowSize, modulo 256,

then save the BACnet-Confirmed-Request-PDU segment; increment LastSequenceNumber, modulo 256; issue an
N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with
'negative-ACK' = FALSE, 'server' = TRUE, 'sequence-number' = LastSequenceNumber, and 'actual-window-size' =
ActualWindowSize; restart SegmentTimer; set InitialSequenceNumber = LastSequenceNumber; set DuplicateCount
to zero; and enter the SEGMENTED_REQUEST state to receive the remaining segments.

LastSegmentOfMessageReceived

If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU is received from
the network layer whose 'segmented-message' parameter is TRUE; whose 'sequence-number' parameter is equal to
LastSequenceNumber plus 1, modulo 256; and whose 'more-follows' parameter is FALSE (i.e., the final segment),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

38 ANSI/ASHRAE Standard 135-2012

then save the BACnet-Confirmed-Request-PDU segment; increment LastSequenceNumber, modulo 256; stop
SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-
SegmentACK-PDU with 'negative-ACK' = FALSE, 'server' = TRUE, 'sequence-number' = LastSequenceNumber,
and 'actual-window-size' = ActualWindowSize; set InitialSequenceNumber = LastSequenceNumber; send
CONF_SERV.indication(+) containing all of the received segments to the local application program; start
RequestTimer; and enter the AWAIT_RESPONSE state.

DuplicateSegmentReceived

If a BACnet-Confirmed-Request-PDU is received from the network layer whose 'segmented-message' parameter is
TRUE and whose 'sequence-number' parameter is not equal to LastSequenceNumber plus 1, modulo 256, and
DuplicateInWindow('sequence-number' parameter of the BACnet-SegmentACK-PDU, InitialSequenceNumber+1
modulo 256, LastSequenceNumber) returns a value of TRUE and DuplicateCount is less than Ndup,

then discard the BACnet-Confirmed-Request-PDU segment; restart SegmentTimer; increment DuplicateCount; and
enter the SEGMENTED_REQUEST state to receive the remaining segments.

TooManyDuplicateSegmentsReceived
If a BACnet-Confirmed-Request-PDU is received from the network layer whose 'segmented-message' parameter is
TRUE and whose 'sequence-number' parameter is not equal to LastSequenceNumber plus 1, modulo 256, and
DuplicateInWindow('sequence-number' parameter of the BACnet-SegmentACK-PDU, InitialSequenceNumber+1
modulo 256, LastSequenceNumber) returns a value of TRUE and DuplicateCount is equal to Ndup,

then discard the BACnet-Confirmed-Request-PDU segment; issue an N-UNITDATA.request with
'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = TRUE, 'server' =
TRUE, 'sequence-number' = LastSequenceNumber, and 'actual-window-size' = ActualWindowSize; restart
SegmentTimer; set InitialSequenceNumber = LastSequenceNumber; set DuplicateCount to zero; and enter the
SEGMENTED_REQUEST state to receive the remaining segments.

SegmentReceivedOutOfOrder
If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU is received from
the network layer whose 'segmented-message' parameter is TRUE and whose 'sequence-number' parameter is not
equal to LastSequenceNumber plus 1, modulo 256, and DuplicateInWindow('sequence-number' parameter of the
BACnet-SegmentACK-PDU, InitialSequenceNumber+1 modulo 256, LastSequenceNumber) returns a value of
FALSE,

then discard the BACnet-Confirmed-Request-PDU segment; issue an N-UNITDATA.request with
'data_expecting_reply' = FALSE to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = TRUE, 'server' =
TRUE, 'sequence-number' = LastSequenceNumber, and 'actual-window-size' = ActualWindowSize; restart
SegmentTimer; set InitialSequenceNumber = LastSequenceNumber; set DuplicateCount to zero; and enter the
SEGMENTED_REQUEST state to receive the remaining segments.

AbortPDU_Received

If a BACnet-Abort-PDU that is secured with the same settings as the original PDU and whose server parameter is
FALSE is received from the network layer,

 then stop SegmentTimer and enter the IDLE state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-Confirmed-Request-PDU with 'segmented-message' = FALSE or BACnet-
SegmentACK-PDU with 'server' = FALSE) that is secured with the same settings as the original PDU is received
from the network layer,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = TRUE; and 'abort-reason' = INVALID_APDU_IN_THIS_STATE and enter the
IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 39

Timeout
 If SegmentTimer becomes greater than Tseg times four,

 then stop SegmentTimer and enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop SegmentTimer, issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = TRUE, and enter the IDLE state.

5.4.5.3 AWAIT_RESPONSE

In the AWAIT_RESPONSE state, the device waits for the local application program to respond to a BACnet-Confirmed-
Request-PDU. See 9.8 for specific considerations in MS/TP networks.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then send SEC_ERR.indication with the appropriate security error information to the local application program; and
enter the IDLE state.

IncorrectSecurityPdu_Received

If a PDU is received that is not secured with the same settings as the original PDU,

then discard the PDU, and re-enter the current state.

SendSimpleACK

If a CONF_SERV.response(+) is received from the local application program, which is to be conveyed via a
BACnet-SimpleACK-PDU,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-SimpleACK-PDU
and enter the IDLE state.

SendUnsegmentedComplexACK

If a CONF_SERV.response(+) is received from the local application program, which is to be conveyed via a
BACnet-ComplexACK-PDU, and the length of the APDU is less than or equal to maximum-transmittable-length as
determined according to 5.2.1,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-ComplexACK-
PDU with 'segmented-message' = FALSE and enter the IDLE state.

CannotSendSegmentedComplexACK

If a CONF_SERV.response(+) is received from the local application program, which is to be conveyed via a
BACnet-ComplexACK-PDU, and the length of the APDU is greater than maximum-transmittable-length as
determined according to 5.2.1, and either

(a) this device does not support the transmission of segmented messages or

(b) the client will not accept a segmented response (the 'segmented-response-accepted' parameter in BACnet-

ConfirmedRequest-PDU is FALSE), or

(c) the client's max-segments-accepted parameter in the BACnet-ConfirmedRequest-PDU is fewer than required to

transmit the total APDU when total size is known or,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

40 ANSI/ASHRAE Standard 135-2012

(d) the number of segments transmittable by this device is fewer than required to transmit the total APDU when
total size is known,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE and 'abort-reason' = SEGMENTATION_NOT_SUPPORTED for case (a) and (b), or
BUFFER_OVERFLOW for case (c) and (d), and enter the IDLE state.

SendSegmentedComplexACK

If a CONF_SERV.response(+) is received from the local application program that is to be conveyed via a BACnet-
ComplexACK-PDU, and the length of the APDU is greater than maximum-transmittable-length as determined
according to 5.2.1, and the device supports the transmission of segmented messages, and the client will accept a
segmented response ('segmented-response-accepted' parameter in BACnet-ConfirmedRequest-PDU is TRUE),

then set SegmentRetryCount to zero; set InitialSequenceNumber to zero; set ProposedWindowSize to whatever
value is desired; set ActualWindowSize to 1; start SegmentTimer; issue an N-UNITDATA.request with
'data_expecting_reply' = TRUE to transmit a BACnet-ComplexACK-PDU containing the first segment of the
message, with 'segmented-message' = TRUE, 'more-follows' = TRUE, 'sequence-number' = zero, and 'proposed-
window-size' = ProposedWindowSize; and enter the SEGMENTED_RESPONSE state to await an acknowledgment.

SendErrorPDU
 If a CONF_SERV.response(-) is received from the local application program,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Error-PDU and
enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = TRUE; and enter the IDLE state.

SendReject
 If REJECT.request is received from the local application program,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Reject-PDU; and enter the IDLE state.

AbortPDU_Received

If a BACnet-Abort-PDU that is secured with the same settings as the original PDU and whose 'server' parameter is
FALSE is received from the network layer,

 then send ABORT.indication to the local application program; and enter the IDLE state.

DuplicateRequestReceived

If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU and whose
'segmented-message' parameter is FALSE is received from the network layer,

 then discard the PDU as a duplicate request, and re-enter the current state.

DuplicateSegmentReceived

If a BACnet-Confirmed-Request-PDU that is secured with the same settings as the original PDU and whose
'segmented-message' parameter is TRUE is received from the network layer,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 41

then discard the PDU as a duplicate segment; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE
to transmit a BACnet-SegmentACK-PDU with 'negative-ACK' = FALSE, 'server' = TRUE, 'sequence-number' =
LastSequenceNumber, and 'actual-window-size' = ActualWindowSize; and re-enter the current state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-SegmentACK-PDU that is secured with the same settings as the original PDU and
whose 'server' parameter is FALSE) is received from the network layer,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE; send ABORT.indication with 'server' = TRUE and 'abort-reason' =
INVALID_APDU_IN_THIS_STATE to the local application program; and enter the IDLE state.

Timeout
 If RequestTimer becomes greater than Tout,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE and 'abort-reason' = APPLICATION_EXCEEDED_REPLY_TIME; send ABORT.indication with
'server' = TRUE and 'abort-reason' = APPLICATION_EXCEEDED_REPLY_TIME to the local application
program; and enter the IDLE state.

5.4.5.4 SEGMENTED_RESPONSE

In the SEGMENTED_RESPONSE state, the device waits for a BACnet-SegmentACK-PDU for a segment or segments of a
BACnet-ComplexACK-PDU.

SecurityError_Received

If a security error is received via an N-REPORT.indication from the network layer,

then stop SegmentTimer; send SEC_ERR.indication with the appropriate security error information to the local
application program; and enter the IDLE state.

IncorrectSecurityPdu_Received

If a PDU is received that is not secured with the same settings as the original PDU,

then issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a BACnet-Abort-PDU with
'server' = TRUE; and enter the IDLE state.

DuplicateACK_Received

If a BACnet-SegmentACK-PDU that is secured with the same settings as the original PDU and whose 'server'
parameter is FALSE is received from the network layer and InWindow('sequence-number' parameter of the
BACnet-SegmentACK-PDU, InitialSequenceNumber) returns a value of FALSE,

 then restart SegmentTimer and enter the SEGMENTED_RESPONSE state to await an acknowledgment or timeout.

NewACK_Received

If a BACnet-SegmentACK-PDU that is secured with the same settings as the original PDU and whose 'server'
parameter is FALSE is received from the network layer and InWindow('sequence-number' parameter of the
BACnet-SegmentACK-PDU, InitialSequenceNumber) returns a value of TRUE and there is at least one segment
remaining to send,

then set InitialSequenceNumber equal to the 'sequence-number' parameter of the BACnet-SegmentACK-PDU plus
one, modulo 256; set ActualWindowSize equal to the 'actual-window-size' parameter of the BACnet-SegmentACK-
PDU; set SegmentRetryCount to zero; call FillWindow(InitialSequenceNumber) to issue an N-UNITDATA.request
with 'data_expecting_reply' = TRUE to transmit one or more BACnet-ComplexACK-PDUs containing the next
ActualWindowSize segments of the message; restart SegmentTimer; and enter the SEGMENTED_RESPONSE state
to await an acknowledgment.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

42 ANSI/ASHRAE Standard 135-2012

FinalACK_Received

If a BACnet-SegmentACK-PDU that is secured with the same settings as the original PDU and whose 'server'
parameter is FALSE is received from the network layer and InWindow('sequence-number' parameter of the
BACnet-SegmentACK-PDU, InitialSequenceNumber) returns a value of TRUE and there are no more segments to
send,

then stop SegmentTimer and enter the IDLE state.

Timeout
 If SegmentTimer becomes greater than Tseg and SegmentRetryCount is less than Number_Of_APDU_Retries,

then increment SegmentRetryCount; call FillWindow(InitialSequenceNumber) to reissue an N-UNITDATA.request
with 'data_expecting_reply' = TRUE to transmit one or more BACnet-ComplexACK-PDUs containing the next
ActualWindowSize segments of the message; restart SegmentTimer; and enter the SEGMENTED_RESPONSE state
to await an acknowledgment.

FinalTimeout

If SegmentTimer becomes greater than Tseg and SegmentRetryCount is greater than or equal to
Number_Of_APDU_Retries,

 then stop the SegmentTimer, and enter the IDLE state.

AbortPDU_Received

If a BACnet-Abort-PDU that is secured with the same settings as the original PDU and whose 'server' parameter is
FALSE is received from the network layer,

 then stop SegmentTimer; send ABORT.indication to the local application program; and enter the IDLE state.

UnexpectedPDU_Received

If an unexpected PDU (BACnet-Confirmed-Request-PDU) that is secured with the same settings as the original
PDU is received from the network layer,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = TRUE; and enter the IDLE state.

SendAbort
 If ABORT.request is received from the local application program,

then stop SegmentTimer; issue an N-UNITDATA.request with 'data_expecting_reply' = FALSE to transmit a
BACnet-Abort-PDU with 'server' = TRUE; and enter the IDLE state.

5.5 Application Protocol Time Sequence Diagrams

The flow sequence of service primitives can be represented by time-sequence diagrams. Each diagram is partitioned into
three or four fields. The field labeled "Provider" represents the service-provider and the two fields labeled "User" represent
the two service-users. The fourth field, if present, represents an application program. For the application layer, the vertical
lines between user and provider represent the interface between the BACnet User Element and the BACnet ASE. For lower
layers these vertical lines represent the service-access-points between the service-users and the service-provider. Moving
from top to bottom in the diagram represents the passage of time. Arrows, placed in the areas representing the service-user,
indicate the main flow of information during the execution of an interaction described by a service-primitive (i.e., to or from
the service-user). Figures 5-4 through 5-13 illustrate the various sequences of application service primitives defined in
BACnet.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 43

������
6����������
���1���

User Provider User

6���?@�! A���; 5�����36����������3 �;����3&<6
6���?@�! A����

Figure 5-4. Time sequence diagram for a normal unconfirmed service.

��������
6����������
���1���

User Provider User

6���?@�! A���; 5�����36����������3 �;����3&<6
B

Figure 5-5. Time sequence diagram for an abnormal unconfirmed service. Unconfirmed service requests that are in some
way flawed are ignored by the receiving user as indicated by the symbol "?".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

44 ANSI/ASHRAE Standard 135-2012

������
���������
���1���
"��
��$���������%

User Provider User

��?@�! A���; 5�����3���������3 �;����3&<6
��?@�! A����

��?@�! A����
" �����"C%%��?@�! A����

5�����3������
��D3&<6

��

5�����3������E��D3&<6

Figure 5-6. Time sequence diagram for normal confirmed services.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 45

������
���������
���1���
"��$������
 �;����%

User Provider User

��?@�! A���;
5�����3���������3 �;����3&<6"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'��;�����
������
:
/%

��?@�! A����

�!-=!�,@��D���;

5�����3���������3 �;����3&<6

5�����3��$������D3&<6

"�!-
:
)'
=
:
/'
4�1�2�
4<
:
�'��;�����
������
:
)%

"4�1�2�
4<
:
�'

��;�����
������
:
/'� A
:)%

"4�1�2�
4<
:
�'

��;�����
������
:
)'� A
:)%

��?@�! A����

�!-=!�,@��D���;
5�����3��$������D3&<6

5�����3��������D3&<6

��

5�����3������E��D3&<6

��?@�! A����
" �����"C%%

�!-=!�,@��D����

��?@�! A���;

�!-=!�,@��D����

��?@�! A����

Figure 5-7. Time sequence diagram for a normal confirmed service with a segmented request.

Figure 5-7 illustrates two separate, interleaved exchanges of service primitives. One exchange is the usual confirmed service
request, indication, response, and confirm sequence. Because the request is segmented it takes several CONF_SERV.request
primitives to convey the entire request. The segment acknowledge service primitives, which are an independent exchange, are
used to signal the client that the server is ready for the next segment.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

46 ANSI/ASHRAE Standard 135-2012

������
���������
���1���
"��$������
 �������%

User Provider User

��?@�! A���;

�!-=!�,@��D����

��?@�! A����

�!-=!�,@��D����

��?@�! A����
" �����"C%%

��?@�! A!����

�!-=!�,@��D���;

�!-=!�,@��D���;

��?@�! A����

5�����3���������3 �;����3&<6

"�!-
:
)'
=
:
/'
4�1�2�
4<
:
�'

��;�����
������
:
)%

"4�1�2�
4<
:
�'��;�����
������
:
)'� A
:/%

5�����3��$������D3&<6

5�����3��$������D3&<6

5�����3������E��D3&<6

"4�1�2�
4<
:
�'��;�����
������
:
/'� A
:/%

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
/%

5�����3������E��D3&<6

"�!-
:
/'4�1�2�
4<
:�%

��?@�! A����
" �����"C%%

Figure 5-8. Time sequence diagram for a normal confirmed service with segmented response.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 47

User Provider User

��?@�! A���;

��?@�! A����

�!-=!�,@��D����

��?@�! A����
" �����"C%%

��?@�! A����

�!-=!�,@��D���;

5�����3���������3 �;����3&<6

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
)%

5�����3��$������D3&<6

5�����3������E��D3&<6

"4�1�2�
4<
:
�'��;�����
������
:
/'� A
:/%

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
/%

5�����3������E��D3&<6

"�!-
:
/'4�1�2�
4<
:�%

��?@�! A����
" �����"C%%

Ap. Prog.

���������
���1���
 �;����

��?@�! A����

���������
���1���
 �������
"=���
?����#�%

5�����3��$������D3&<6

5�����3������E��D3&<6

"�!-
:
)'
=
:
/'
4�1�2�
4<
:
�'

��;�����
������
:
0%

5�����3��$������D3&<6

"4�1�2�4<:�'��;�����
������
:
)'� A:/%

4�1�2�
4<:�'��;�����
������
:
0'� A:/

�!-=!�,@��D���;

�!-=!�,@��D���;

��?@�! A����

��������
 �;����

���������
���1���
 �������
"��
=���
?����#�%

������
���������
���1���
"��$������
 �������'
#���
�����������
&��$���
?��#
�������%

�!-=!�,@��D����

��?@�! A����
" �����"C%%

�!-=!�,@��D����

Figure 5-9. Time sequence diagram for a normal confirmed service with application flow control.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

48 ANSI/ASHRAE Standard 135-2012

User Provider User

��?@�! A���;

��?@�! A����

�!-=!�,@��D����

��?@�! A����
" �����"C%%

��?@�! A!����

�!-=!�,@��D���;

5�����3���������3 �;����3&<6

"�!-
:
)'
=
:
/'
4�1�2�
4<
:
�'

��;�����
������
:
)%

5�����3��$������D3&<6

5�����3������E��D3&<6

"4�1�2�
4<
:
�'��;�����
������
:
/'� A
:/%

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
/%

5�����3������E��D3&<6

"�!-
:
/'4�1�2�
4<
:�%

��?@�! A����
" �����"C%%

Ap. Prog.

���������
���1���
 �;����

��?@�! A����

���������
���1���
 �������
"=���
?����#�%

������
���
 ������� �5 ,���;

�5 ,����

5�����3�����3&<6"4�1�2�
4<
:
�'� A:/%

������
���������
���1���
"��$������
 �������'
#���
�����������
&��$���
?��#

�������
���
 �;������
�����%

Figure 5-10. Time sequence diagram for a normal confirmed service with segmented response, application program flow
control, and response cancellation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 49

User Provider User

��?@�! A���;

��?@�! A����

�!-=!�,@��D����

��?@�! A����
" �����"C%%

��?@�! A!����

�!-=!�,@��D���;

5�����3���������3 �;����3&<6

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
)%

5�����3��$������D3&<6

5�����3������E��D3&<6

"4�1�2�
4<
:
�'��;�����
������
:
/'� A
:/%

"�!-
:
)'
=
:
)'
4�1�2�
4<
:
�'

��;�����
������
:
/%

5�����3������E��D3&<6

"�!-
:
/'4�1�2�
4<
:�%

��?@�! A����
" �����"C%%

Ap. Prog.

���������
���1���
 �;����

��?@�! A����

������
���
 ������� �5 ,����

�5 ,���;

��������
���������
���1���
"��$������
 �������
���
 �;������
�����%

5�����3�����3&<6

"4�1�2�
4<
:
�'� A:/%

Figure 5-11. Time sequence diagram for an abnormal confirmed service.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

50 ANSI/ASHRAE Standard 135-2012

��������
���������
���1���
"��
��$���������'
���1���
!����%

User Provider User

��?@�! A���; 5�����3���������3 �;����3&<6
��?@�! A����

��?@�! A����
" �����"3%%

5�����3!����3&<6 ��?@�! A����
" �����"3%%

Figure 5-12. Time sequence diagram for an abnormal confirmed service.

��������
���1���
 �;����
��
 �������
"&�������
!����%

User Provider User

��?@�! A���;
��

��?@�! A����
��

�!-=!�,@��D���;

��?@�! A����
��

��?@�! A����
��

�!-=!�,@��D����

 !F!�,����

 !F!�,���;

5�����3���������3 �;����3&<6��5�����3��������D3&<6��5�����������E��D3&<6

5�����3 �G���3&<6

5�����3��$������D3&<6��5�����3!����3&<6

Figure 5-13. Time sequence diagram for an abnormal service request or response with a protocol error.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 5. THE APPLICATION LAYER

ANSI/ASHRAE Standard 135-2012 51

5.6 Application Layer Service Conventions

This standard uses the descriptive conventions contained in the OSI technical report on service conventions, ISO TR 8509.
The OSI conventions define the interactions between a protocol service user and a protocol service provider. Information
passed between the protocol service user and the protocol service provider is represented abstractly as an exchange of
"service primitives." The service primitives are an abstraction of the functional specification and the user-layer interaction.
The abstract definition does not contain local detail of the user/provider interaction. Each primitive has a set of zero or more
parameters, representing data elements that are passed to qualify the functions invoked by the primitive. Parameters indicate
information available in a user/provider interaction; in any particular interface, some parameters may be explicitly stated
(even though not explicitly defined in the primitive) or implicitly associated with the service access point. Similarly, in any
particular protocol specification, functions corresponding to a service primitive may be explicitly defined or implicitly
available.

Clauses 13 through 17 and 24 use a tabular format to describe the component parameters of the BACnet service primitives.
Each table consists of five columns, containing the name of the service parameter and a column each for the request ("Req"),
indication ("Ind"), response ("Rsp"), and confirm ("Cnf") primitives. The "Rsp" and "Cnf" columns are absent for
unconfirmed services. Each row of the table contains one parameter or subparameter. Under the appropriate service primitive
columns, a code is used to specify the type of use of the parameter on the primitive specified in the vertical column. These
codes follow the conventions suggested in the ISO technical report on conventions, ISO TR 8509, namely:

 M - parameter is Mandatory for the primitive.
 U - parameter is a User option and may not be provided.
 C - parameter is Conditional upon other parameters.
 S - parameter is a Selection from a collection of two or more possible parameters. The parameters that
 make up this collection are indicated in the table as follows:

(a)
 each parameter in the collection is specified with the code "S";

(b)
 the name of each parameter in the collection is at the same table indentation from the beginning of the
parameter column in the table; and

(c)
 either

1.
 each parameter is at the leftmost (outer) indentation in the table or

2.
 each parameter is part of the same parameter group. A parameter group is a collection of
parameters where each member has a common parent parameter. The parent parameter for
any group member is the first parameter above the member that is not indented as far as that
member. In the following example, ParameterA and ParameterB form a parameter group:

 ParameterX
 ParameterA
 ParameterB
 ParameterY
 ParameterC

Informally, for parameters involved in a selection, the indentation in the service tables signifies which
parameters are involved in a selection. All parameters at the same level of indentation under a common
"higher level" parameter are part of the same selection.

The code "(=)" following one of the codes M, U, C, or S indicates that the parameter is semantically equivalent to the
parameter in the service primitive to its immediate left in the table. For instance, an "M(=)" code in the indication service
primitive column and "M" in the request service primitive column means that the parameter in the indication primitive is
semantically equivalent to that in the request primitive.

Some parameters may contain subparameters. Subparameters are indicated by indenting them with respect to the parent
parameter. The presence of subparameters is always dependent on the presence of the parent parameter. In the example
above, ParameterA and ParameterB are subparameters of ParameterX and ParameterC is a subparameter of ParameterY. If

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

5. THE APPLICATION LAYER

52 ANSI/ASHRAE Standard 135-2012

ParameterX is optional and is not supplied in a service primitive, then the subparameters (ParameterA and ParameterB) shall
not be supplied.

Some service parameters are named using a "List of ..." convention. Unless otherwise noted, all parameters whose name
begins with "List of ..." specify a list of zero or more of the item specified after the "List of" keyword phrase.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 53

6 THE NETWORK LAYER

The purpose of the BACnet network layer is to provide the means by which messages can be relayed from one BACnet
network to another, regardless of the BACnet data link technology in use on that network. Whereas the data link layer
provides the capability to address messages to a single device or broadcast them to all devices on the local network, the
network layer allows messages to be directed to a single remote device, broadcast on a remote network, or broadcast globally
to all devices on all networks. A BACnet Device is uniquely located by a network number and a MAC address.

Devices that interconnect two disparate BACnet LANs, e.g., ISO 8802-3 and ARCNET, and provide the relay function
described in this clause are called "BACnet routers." Devices that interconnect two disparate BACnet networks through a point-
to-point (PTP) connection (see Clause 10) are also BACnet routers. BACnet routers build and maintain their routing tables
automatically using the network layer protocol messages defined in this clause. Network layer protocol messages facilitate both
the auto-configuration of routers and the flow of messages to, and between, routers. BACnet routing capability may be
implemented in stand-alone devices or, alternatively, in devices that carry out other building automation and control functions.

Some functions assigned to the network layer by the OSI Basic Reference Model are not required in BACnet. One such function
involves selecting a communications path between source and destination machines based on an optimization algorithm. This is
not required because BACnet internetworks shall be designed and installed with at most a single, active path between any two
devices, a constraint that greatly reduces the complexity of the network layer. Another common network layer function is
message segmentation and reassembly. To obviate the need for these capabilities at the network layer, BACnet imposes a
limitation on the length of the NPDU in messages passed through a BACnet router. The maximum NPDU length shall not
exceed the capability of any data link technology encountered along the path from source to destination. A list of the maximum
NPDU lengths for BACnet data link technologies is given in Table 6-1.

Table 6-1. Maximum NPDU Lengths When Routing Through Different BACnet Data Link Layers

Data Link Technology Maximum NPDU Length

ISO 8802-3 ("Ethernet"), as defined in Clause 7 1497 octets

ARCNET, as defined in Clause 8 501 octets

MS/TP, as defined in Clause 9 501 octets

Point-To-Point, as defined in Clause 10 501 octets

LonTalk, as defined in Clause 11 228 octets

BACnet/IP, as defined in Annex J 1497 octets

ZigBee, as defined in Annex O 501 octets

6.1 Network Layer Service Specification

Conceptually, the BACnet network layer provides an unacknowledged connectionless form of data unit transfer service to the
application layer. The primitives associated with the interaction are the N-UNITDATA request and indication, and the N-
REPORT indication. These primitives provide parameters as follows:

N-UNITDATA.request (

destination_address,
data,
network_priority,
data_expecting_reply,

 security_parameters
)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

54 ANSI/ASHRAE Standard 135-2012

N-UNITDATA.indication (
source_address,
destination_address,
data,
network_priority,
data_expecting_reply,

 security_parameters
)

N-REPORT.indication (
 peer_address,
 error_condition,
 error_parameters,
 security_parameters
)

The 'destination_address' and 'source_address' parameters provide the logical concatenation of 1) an optional network
number, 2) the MAC address appropriate to the underlying LAN technology, and the 3) the link service access point. A
network number of X'FFFF' indicates that the message is to be broadcast "globally" to all devices on all currently reachable
networks. Currently reachable networks are those networks to which an active connection is already established within the
BACnet internet. In particular, a global broadcast shall not trigger any attempts to establish PTP connections. The 'data'
parameter is the network service data unit (NSDU) passed down from the application layer and is composed of a fully
encoded BACnet APDU. The 'network_priority' is a numeric value used by the network layer in BACnet routers to determine
any possible deviations from a first-in-first-out approach to managing the queue of messages awaiting relay. The
data_expecting_reply parameter indicates whether (TRUE) or not (FALSE) a reply data unit is expected for the data unit
being transferred. The optional parameter 'security_parameters' contains the security information used to secure the request
and context information required for security related N-REPORT.indication primitives to be related to application TSMs.

Upon receipt of an N-UNITDATA.request primitive from the application layer, the network layer shall attempt to send an
NSDU using the procedures described in this clause. Upon receipt of an NSDU from a peer network entity, a network entity
shall either 1) send the NSDU to its destination on a directly connected network, 2) send the NSDU to the next BACnet
router en route to its destination, and/or 3) if the destination address matches that of one of its own application entities, issue
an N-UNITDATA.indication primitive to the appropriate entity in its own application layer to signal the arrival of the NSDU.

The N-REPORT.indication primitive is used by the local network layer to indicate failures to transmit N-
UNITDATA.requests to peer devices. The errors may be locally detected error conditions, or error conditions reported by a
peer device via a network layer message. This primitive is used extensively by the network security wrapper to indicate
security errors up the stack. The 'peer_address' parameter is of the same form as the 'destination_address' or 'source_address'
parameters of the N-UNITDATA primitives and indicates the peer with which the error condition arose. The optional
parameter 'security_parameters' conveys information describing the security failure and context required to relate the error to
a previous N-UNITDATA.request or N-UNITDATA.indication primitive.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 55

6.2 Network Layer PDU Structure

6.2.1 Protocol Version Number

Each NPDU shall begin with a single octet that indicates the version number of the BACnet protocol, encoded as an 8-bit
unsigned integer. The present version number of the BACnet protocol is one (1).

6.2.2 Network Layer Protocol Control Information

The second octet in an NPDU shall be a control octet that indicates the presence or absence of particular NPCI fields. Figure
6-1 shows the order of the NPCI fields in an encoded NPDU. Use of the bits in the control octet is as follows.

Bit 7: 1 indicates that the NSDU conveys a network layer message. Message Type field is present.
 0 indicates that the NSDU contains a BACnet APDU. Message Type field is absent.

Bit 6: Reserved. Shall be zero.

Bit 5: Destination specifier where:
 0 = DNET, DLEN, DADR, and Hop Count absent
 1 = DNET, DLEN, and Hop Count present
 DLEN = 0 denotes broadcast MAC DADR and DADR field is absent
 DLEN > 0 specifies length of DADR field

Bit 4: Reserved. Shall be zero.

Bit 3: Source specifier where:
 0 = SNET, SLEN, and SADR absent
 1 = SNET, SLEN, and SADR present
 SLEN = 0 Invalid
 SLEN > 0 specifies length of SADR field

Bit 2: The value of this bit corresponds to the data_expecting_reply parameter in the N-UNITDATA primitives.

1 indicates that a BACnet-Confirmed-Request-PDU, a segment of a BACnet-ComplexACK-PDU, or a network
layer message expecting a reply is present.

0 indicates that other than a BACnet-Confirmed-Request-PDU, a segment of a BACnet-ComplexACK-PDU, or a

network layer message expecting a reply is present.

Bits 1,0: Network priority where:
 B'11' = Life Safety message
 B'10' = Critical Equipment message
 B'01' = Urgent message
 B '00' = Normal message

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

56 ANSI/ASHRAE Standard 135-2012

In this standard:

DNET = 2-octet ultimate destination network number.
DLEN = 1-octet length of ultimate destination MAC layer
address
 (A value of 0 indicates a broadcast on the
destination
 network.)
DADR = Ultimate destination MAC layer address.
DA = Local network destination MAC layer address.
SNET = 2-octet original source network number.
SLEN = 1-octet length of original source MAC layer
address.
SADR = Original source MAC layer address.
SA = Local network source MAC layer address.

Message Type

APDU

Vendor ID

Hop Count

SADR

SLEN

SNET

DADR

DLEN

Control

Version

DNET

1 octet

1 octet

2 octets

1 octet

variable

2 octets

1 octet

variable

1 octet

1 octet

2 octets

N octets

 Figure 6-1. NPDU field format. Which fields are
present is determined by the bits in the control octet.

Figures 6-2(a) - 6-2(e) provide examples of NPDUs containing APDUs for various combinations of addressing information.

APDU

Control = X'04'

Version = X'01' 1 octet

1 octet

N octets

APDU

Hop Count

DADR

DLEN = M

Control = X'24'

Version = X'01'

DNET

1 octet

1 octet

2 octets

1 octet

M octets

1 octet

N octets

Figure 6-2(a). Example of a typical "Local" BACnet
NPDU for which a reply is expected.

 Figure 6-2(b). Example of a typical "Remote"
BACnet NPDU directed to a router. Network
Priority is NORMAL and a reply is expected.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 57

APDU

Hop Count

SADR

SLEN = 6

SNET

DADR

DLEN

Control = X'29'

Version = X'01'

DNET

1 octet

1 octet

2 octets

1 octet

1 octet

2 octets

1 octet

6 octets

1 octet

N octets

APDU

SADR

SLEN = 6

SNET

Control = X'0B'

Version = X'01' 1 octet

1 octet

2 octets

1 octet

6 octets

N octets

Figure 6-2(c). Example of a typical BACnet NPDU
as passed between routers. Network Priority is
URGENT, original MAC Address is 6 octets, and the
ultimate Destination MAC Address is 1 octet.

 Figure 6-2(d). Example of a typical "Remote"
BACnet NPDU as sent from a Router to its
ultimate destination on a directly connected
network. Network Priority is LIFE SAFETY.

APDU

Hop Count

SADR

SLEN

SNET

DLEN = 0

Control = X'28'

Version =X'01'

DNET = X'FFFF'

1 octet

1 octet

2 octets

1 octet

2 octets

1 octet

1 octet

1 octet

N octets

SrcSubnet

SLEN = 2

SrcNode

1 octet

1 octet

1 octet
SADR

Figure 6-2(e). Example of a typical Broadcast
message of NORMAL Network Priority as broadcast
by a Router.

 Figure 6-3. Encoding of the SLEN and SADR for
NPDUs originating from LonTalk devices being
routed through BACnet.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

58 ANSI/ASHRAE Standard 135-2012

6.2.2.1 DNET, SNET, and Vendor ID Encoding

The multi-octet fields, DNET, SNET, and Vendor ID, shall be conveyed with the most significant octet first. Allowable
network number values for DNET shall be from 1 to 65535 and for SNET from 1 to 65534.

6.2.2.2 DADR and SADR Encoding

The DADR and SADR fields are encoded as shown in Table 6-2, Figure 6-3, and Figure 6-4.

Table 6-2. BACnet DADR and SADR Encoding Rules Based Upon Data Link Layer Technology
BACnet Data Link Layer DLEN SLEN Encoding Rules

ISO 8802-3 ("Ethernet"), as defined
in Clause 7 6 6 Encoded as in their MAC layer representations

ARCNET, as defined in Clause 8 1 1 Encoded as in their MAC layer representations
MS/TP, as defined in Clause 9 1 1 Encoded as in their MAC layer representations
LonTalk domain wide broadcast 2 2 The encoding for the SADR is shown in Figure 6-3
LonTalk multicast 2 2
LonTalk unicast 2 2 The encoding for the DADR is shown in Figure 6-4
LonTalk, unique Neuron_ID 7 2
BACnet/IP, as defined in Annex J 6 6 Encoded as specified in J.1.2

ZigBee, as defined in Annex O 3 3 A VMAC Address encoded as a device instance as shown in
Annex H.7 Virtual MAC Addressing

Octet #1

DLEN = 2

Octet #2

1 octet

1 octet

1 octet
DADR

1 octet

1 octet

 6 octets
DADR

DstSubnet

DLEN = 7

Neuron ID

<�<
���
���,��2
�������
?������
/'
)'
���
0�
���
5��������'
=��������'
���
6������
���������$

<�<
���
���,��2
�������
?�����
.'
6��;��
������@4<
���������$

Address Format Encoding for Octet #1 Encoding for Octet #2

?�����
/
"5��������%

?�����
)
"=��������%

?�����
0�
"6������%

H(//(

H(??(

<��������
"H(/)(
��
H(?!(%

<��������
"H(/)(
��
H(?!(%

<��-����
"H(//(
��
H(??(%

<������
"H(//(
��
H(*?(%

<�<
�������$
���
���,��2
?������
/'
)'
���
0�

Figure 6-4. Encoding of the DLEN and DADR for NPDUs destined for LonTalk devices
being routed through BACnet. The different LonTalk address formats are encoded as shown.

6.2.3 Hop Count

The Hop Count is a decrementing counter value used to ensure that a message cannot be routed in a circular path indefinitely.
Such a circular path can only occur if the configuration rule that allows only a single path between any two BACnet nodes is
violated. See 4.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 59

The Hop Count field shall be present only if the message is destined for a remote network, i.e., if DNET is present. This is a
one-octet field that is initialized to a value of X'FF'. Each router the message passes through shall decrement the Hop Count
by at least one but not more than the current value of Hop Count. If the Hop Count reaches a value of zero, the router shall
discard the message and not forward it to the next router.

6.2.4 Network Layer Message Type

If Bit 7 of the control octet described in Clause 6.2.2 is 1, a message type octet shall be present as shown in Figure 6-1. The
following message types are indicated:

X'00': Who-Is-Router-To-Network
X'01': I-Am-Router-To-Network
X'02': I-Could-Be-Router-To-Network
X'03': Reject-Message-To-Network
X'04': Router-Busy-To-Network
X'05': Router-Available-To-Network
X'06': Initialize-Routing-Table
X'07': Initialize-Routing-Table-Ack
X'08': Establish-Connection-To-Network
X'09': Disconnect-Connection-To-Network
X'0A': Challenge-Request
X'0B': Security-Payload
X'0C': Security-Response
X'0D': Request-Key-Update
X'0E': Update-Key-Set
X'0F': Update-Distribution-Key
X'10': Request-Master-Key
X'11': Set-Master-Key
X'12': What-Is-Network-Number
X'13': Network-Number-Is
X'14' to X'7F': Reserved for use by ASHRAE
X'80' to X'FF': Available for vendor proprietary messages

Figures 6-5 through 6-10 provide examples of NPDUs containing network layer messages.

6.2.5 Vendor Proprietary Network Layer Messages

If Bit 7 of the control octet is 1 and the Message Type field contains a value in the range X'80' - X'FF', then a Vendor ID field
shall be present as shown in Figure 6-1. Otherwise, the Vendor ID shall be omitted. The Vendor ID is defined in Clause 23.
The Vendor ID shall be encoded in two octets.

Message Type = X'00'

DNET

Control = X'80'

Version = X'01' 1 octet

1 octet

1 octet

2 octets (optional)

Message Type = X'08'

DNET

Control = X'80'

Version = X'01' 1 octet

1 octet

1 octet

2 octets

Termination Time Value 1 octet

Figure 6-5. Example of a Who-Is-Router-To-Network
message. If DNET is omitted, a router receiving this
message shall return a list of all reachable DNETs.

 Figure 6-6. Example of an Establish-Connection-
To-Network message directed to a local router.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

60 ANSI/ASHRAE Standard 135-2012

Message Type = X'03'

DNET

Rejection Reason

NPCI = X'80'

Version = X'01' 1 octet

1 octet

1 octet

1 octet

2 octets

Message Type = X'05'

List of DNETs

Control = X'80'

Version = X'01' 1 octet

1 octet

1 octet

2N octets (optional)

Figure 6-7. Example of a Reject-Message-To-Network
DNET.

 Figure 6-8. Example of a Router-Available-To-Network
for one or more DNETs. If the list of DNETs is not
present, flow control is being eased on all networks
normally reached through the router.

Message Type = X'04'

List of DNETs

Control = X'80'

Version = X'01' 1 octet

1 octet

1 octet

2N octets (optional)

Message Type = X'02'

DNET

Control = X'80'

Version = X'01' 1 octet

1 octet

1 octet

2 octets

Performance Index 1 octet

Figure 6-9. Example of a Router-Busy-To-Network for
one or more DNETs. If the list of DNETs is not present,
flow control is being imposed on all networks normally
reachable through the router.

 Figure 6-10. Example of an I-Could-Be-Router-To-
Network Message.

6.2.6 Network Layer Messages Conveying Data

If there are data octets to be conveyed for the message type specified in 6.2.4, these data octets shall follow the message type
octet in the manner prescribed for each message type.

6.3 Messages for Multiple Recipients

BACnet supports the transmission of messages to multiple recipients through the use of multicast and broadcast addresses.
Multicasting results in a message being processed by a group of recipients. Broadcasting results in a message being processed
by all of the BACnet Devices on the local network, a remote network, or all networks. The use of broadcast or multicast
addressing for network layer protocol messages is described in 6.5. Of the BACnet APDUs, only the BACnet-Unconfirmed-
Request-PDU may be transmitted using a multicast or broadcast address.

6.3.1 Multicast Messages

At present, only ISO 8802-3, LonTalk, ZigBee (as defined in Annex O), and BACnet/IP (as defined in Annex J) support
multicast addresses. The method by which a BACnet Device is assigned to a specific multicast group shall be a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 61

6.3.2 Broadcast Messages

Three forms of broadcast transmission are provided by BACnet: local, remote, and global. A local broadcast is received by
all stations on the local network. A remote broadcast is received by all stations on a single remote network. A global
broadcast is received by all stations on all networks comprising the BACnet internetwork.

A local broadcast makes use of the broadcast MAC address appropriate to the local network's LAN technology, i.e.,
X'FFFFFFFFFFFF' for ISO 8802-3, X'00' for ARCNET, X'FF' for MS/TP, or X'00' in the DstSubnet field of Address Format
0 in LonTalk, X'FFFF' for Zigbee, and an IP address with all ones in the host portion for BACnet/IP.

A remote broadcast is made on behalf of the source device on a specific distant network by a router directly connected to that
network. In this case, DNET shall specify the network number of the remote network and DLEN shall be set to zero.

A global broadcast, indicated by a DNET of X'FFFF', is sent to all networks through all routers. Upon receipt of a message
with the global broadcast DNET network number, a router shall decrement the Hop Count. If the Hop Count is still greater
than zero, then the router shall broadcast the message on all directly connected networks except the network of origin, using
the broadcast MAC address appropriate for each destination network. If the Hop Count is zero, then the router shall discard
the message. In order for the message to be disseminated globally, the originating device shall use a broadcast MAC address
on the originating network so that all attached routers may receive the message and propagate it further.

If a router has one or more ports that represent PTP connections as defined in Clause 10, global broadcasts shall be processed
as follows. If the PTP connection is currently established, that is, the Connection State Machine is in the Connected state (see
10.4.9), then the global broadcast message shall be transmitted through the PTP connection. If the PTP connection is not
currently established, then no action shall be taken by the router to transmit the broadcast message through the PTP
connection.

6.4 Network Layer Protocol Messages

This subclause describes the format and purpose of the ten BACnet network layer protocol messages. These messages
provide the basis for router auto-configuration, router table maintenance, and network layer congestion control.

6.4.1 Who-Is-Router-To-Network

This message is indicated by a Message Type of X'00' optionally followed by a 2-octet network number. Who-Is-Router-To-
Network is used by both routing and non-routing nodes to ascertain the next router to a specific destination network or, in the
case of routers, as an aid in building an up-to-date routing table. See Figure 6-5.

6.4.2 I-Am-Router-To-Network

This message is indicated by a Message Type of X'01' followed by one or more 2-octet network numbers. It is used to
indicate the network numbers of the networks accessible through the router generating the message. It shall always be
transmitted with a broadcast MAC address.

6.4.3 I-Could-Be-Router-To-Network

This message is used to respond to a Who-Is-Router-To-Network message containing a specific 2-octet network number
when the responding half-router has the capability of establishing a PTP connection that can be used to reach the desired
network but this PTP connection is not currently established.

This message is indicated by a Message Type of X'02'. The complete format of the NPDU is shown in Figure 6-10. The 2-
octet network number indicates the DNET that could be reached by this half-router. The 1-octet "Performance Index" is a
locally determined number that gives an indication of the quality and performance of this proposed connection. A low value
in this field indicates a high performance index. Typically, the Performance Index would be established at installation time
and set relative to the performance of other PTP half-routers in the system.

6.4.4 Reject-Message-To-Network

This message is indicated by a Message Type of X'03' followed by an octet indicating the reason for the rejection and a 2-
octet network number (see Figure 6-7). It is directed to the node that originated the message being rejected, as indicated by
the source address information in that message. The rejection reason octet shall contain an unsigned integer with one of the
following values:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

62 ANSI/ASHRAE Standard 135-2012

0: Other error.

1: The router is not directly connected to DNET and cannot find a router to DNET on any directly connected network using

Who-Is-Router-To-Network messages.

2: The router is busy and unable to accept messages for the specified DNET at the present time.

3: It is an unknown network layer message type. The DNET returned in this case is a local matter.

4: The message is too long to be routed to this DNET.

5. The source message was rejected due to a BACnet security error and that error cannot be forwarded to the source device.

See Clause 24.12.1.1 for more details on the generation of Reject-Message-To-Network messages indicating this reason.

6. The source message was rejected due to errors in the addressing. The length of the DADR or SADR was determined to be

invalid.

6.4.5 Router-Busy-To-Network

This message is indicated by a Message Type of X'04' optionally followed by a list of 2-octet network numbers. It shall
always be transmitted with a broadcast MAC address appropriate to the network on which it is broadcast. Router-Busy-To-
Network is used by a router to curtail the receipt of messages for specific DNETs or all DNETs. See Figure 6-9.

6.4.6 Router-Available-To-Network

This message is indicated by a Message Type of X'05' optionally followed by a list of 2-octet network numbers. It shall
always be transmitted with a broadcast MAC address. Router-Available-To-Network is used by a router to enable or re-
enable the receipt of messages for a specific list of DNETs or all DNETs. See Figure 6-8.

6.4.7 Initialize-Routing-Table

This message is indicated by a Message Type of X'06'. It is used to initialize the routing table of a router or to query the
contents of the current routing table.

The format of the data portion of the Initialize-Routing-Table message is shown in Figure 6-11.

The Number of Ports field of this NPDU indicates how many port mappings are being provided in this NPDU. This field
permits routing tables to be incrementally updated as the network changes. Valid entries in this field are 0-255. Following
this field are sets of data indicating the DNET directly connected to this port or accessible through a dial-up PTP connection,
Port ID, Port Info Length, and, in the case Port Info Length is non-zero, Port Info. If an Initialize-Routing-Table message is
sent with the Number of Ports equal to zero, the responding device shall return its complete routing table in an Initialize-
Routing-Table-Ack message without updating its routing table. If the Port ID field has a value of zero, then all table entries
for the specified DNET shall be purged from the table. If the Port ID field has a non-zero value, then the routing information
for this DNET shall either replace any previous entry for this DNET in the routing table or, if no such entry exists, be
appended to the routing table.

The Port Info Length is an unsigned integer indicating the length of the Port Info field.

The Port Info field, if present, shall contain an octet string. A typical use would be to convey modem control and dial
information for accessing a remote network via a dial-up PTP connection.

The Initialize-Routing-Table message shall be transmitted with the DER = TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 63

Port ID

Port Info Length

Connected DNET

Number of Ports 1 octet

1 octet

1 octet

2 octets

Port Info J octets
.
.
.

Connected DNET

Port ID

Port Info Length

Port Info

.

.

.

2 octets

1 octet

1 octet

K octets

 Figure 6-11. Format of the data portion of an
 Initialize-Routing-Table or Initialize-Routing-Table-Ack.

6.4.8 Initialize-Routing-Table-Ack

This message is indicated by a Message Type of X'07'. It is used to indicate that the routing table of a router has been
changed or the table has been queried through the receipt of an Initialize-Routing-Table message with the Number of Ports
field set equal to zero. The data portion of this message, returned only in response to a routing table query, conveys the
routing table information, and it has the same format as the data portion of an Initialize-Routing-Table message. See 6.4.7
and Figure 6-11.

6.4.9 Establish-Connection-To-Network

This message is used to instruct a half-router to establish a new PTP connection that creates a path to the indicated network.

This message is indicated by a Message Type of X'08'. The complete format of the NPDU is shown in Figure 6-6. The 2-
octet network number indicates the DNET that should be connected to by this half-router. The 1-octet "Termination Time
Value" specifies the time, in seconds, that the connection shall remain established in the absence of NPDUs being sent on this
connection. A value of 0 indicates that the connection should be considered to be permanent. See 6.7.1.4.

6.4.10 Disconnect-Connection-To-Network

This message is indicated by a Message Type of X'09' followed by a 2-octet network number. This message is used to
instruct a router to disconnect an established PTP connection. The disconnection process shall follow the procedures
described in Clause 10.

6.4.11 Challenge-Request

This message is indicated by a Message Type of X'0A'. It is described in Clause 24.

6.4.12 Security-Payload

This message is indicated by a Message Type of X'0B'. It is described in Clause 24.

6.4.13 Security-Response

This message is indicated by a Message Type of X'0C'. It is described in Clause 24.

6.4.14 Request-Key-Update

This message is indicated by a Message Type of X'0D'. It is described in Clause 24.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

64 ANSI/ASHRAE Standard 135-2012

6.4.15 Update-Key-Set

This message is indicated by a Message Type of X'0E'. It is described in Clause 24.

6.4.16 Update-Distribution-Key

This message is indicated by a Message Type of X'0F'. It is described in Clause 24.

6.4.17 Request-Master-Key

This message is indicated by a Message Type of X'10'. It is described in Clause 24.

6.4.18 Set-Master-Key

This message is indicated by a Message Type of X'11'. It is described in Clause 24.

6.4.19 What-Is-Network-Number

This message is indicated by a Message Type of X'12'. It is used to request the local network number from other devices on
the local network. This message may be transmitted with a local broadcast or a local unicast address. This message shall
never be routed. Devices shall ignore What-Is-Network-Number messages that contain SNET/SADR or DNET/DADR
information in the NPCI.

Upon receipt of a What-Is-Network-Number message, a device that knows the local network number shall transmit a local
broadcast Network-Number-Is message back to the source device. If the What-Is-Network-Number message was broadcast,
then a non-routing device may optionally wait for up to 10 seconds before sending the Network-Number-Is message. If
during that time, a different device broadcasts the Network-Number-Is message, the non-routing device may choose to not
send a Network-Number-Is message.

Upon receipt of a What-Is-Network-Number message, a device that does not know the local network number shall discard the
message.

A device shall cache its local network number, and not repeatedly issue this service.

6.4.20 Network-Number-Is

This message is indicated by a Message Type of X'13' followed by a 2-octet network number (most significant octet first),
followed by a 1-octet flag, where a value of 1 indicates that the network number was configured, and a value of 0 indicates
that the network number was learned by receipt of a previous Network-Number-Is message. This message is used to indicate
the local network number to other devices on the local network. It shall be transmitted with a local broadcast address, and
shall never be routed. Devices shall ignore Network-Number-Is messages that contain SNET/SADR or DNET/DADR
information in the NPCI or that are sent with a local unicast address.

For a device that has not been configured to know its network number, when it receives this message indicating a configured
network number, it shall set its network number from this message. If it receives this message indicating a learned network
number, then it shall set its network number only if it has not previously received a message indicating a configured network
number. If a device resets, it shall reduce the quality of its last received network number to "learned".

For a device that has been configured to know its network number, when it receives this message indicating a configured
network number that is in conflict with its configuration, it should report the conflict to a local or remote management entity.

Upon startup, routers that have been configured to know their network numbers shall broadcast out each port a Network-
Number-Is message containing the network number for the port and indicate that this number is configured, not learned.

6.5 Network Layer Procedures

This subclause describes the network layer procedures to be followed by BACnet router and non-router nodes for both local
and remote data transfer. "Local" means that the source and destination devices are on the same BACnet network. "Remote"
means that the source and destination devices are on different BACnet networks. The source and destination networks are
interconnected by zero or more intervening networks joined by BACnet routers to form a BACnet internetwork. See Figure
4-3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 65

6.5.1 Network Layer Procedures for the Transmission of Local Traffic

Upon receipt of an N-UNITDATA.request primitive, the network entity (NE) shall inspect the DNET portion of the
'destination_address' parameter. The absence of DNET indicates that the destination device resides on the same BACnet
network as the device issuing this transmission request. The value of the 'network_priority' parameter shall be included in the
NPCI control octet although its use by receiving non-router entities is unspecified. The NE shall prepare a control NPCI octet
indicating the absence of DNET, DADR, HOP COUNT, SNET, and SADR, concatenate it with the 'data' parameter
conveyed in the N-UNITDATA.request primitive, and issue a DL-UNITDATA data link request primitive. The
concatenation of the NPCI and the NSDU (the 'data' parameter from the N-UNITDATA.request), the NPDU, is passed as the
'data' parameter of the data link primitive.

6.5.2 Network Layer Procedures for the Receipt of Local Traffic

Upon receipt of an NPDU from the data link layer (conveyed by the 'data' parameter of the DL-UNITDATA data link
indication primitive) whose first octet indicates BACnet version one, the destination NE shall interpret the second octet of the
NPDU as control NPCI. If bit 7 of the control NPCI indicates that the message contains an APDU, then the procedure in
6.5.2.1 is followed. Otherwise, a network layer message is being conveyed and the procedure in 6.5.2.2 applies.

6.5.2.1 Receipt of Local APDUs

If the control NPCI octet indicates the absence of a DNET field or a DNET field is present and contains the global broadcast
address X'FFFF', the NE shall attempt to locate a BACnet application entity. If a BACnet application entity is found, the NE
shall issue an N-UNITDATA.indication primitive with the portion of the data link data following the NPCI as the 'data'
parameter. If the application entity is not found and the NE resides in a non-routing node, the data link data shall be
discarded. If the DNET is present and not equal to the global broadcast address X'FFFF' and the NE resides in a non-routing
node, the data link data shall likewise be discarded and no further action taken. If the DNET is present and the NE resides in
a BACnet router, the NE shall take the actions specified in 6.5.4.

6.5.2.2 Receipt of Local Network Layer Messages

If the control NPCI octet indicates the absence of a DNET field or a DNET field is present and contains the global broadcast
address X'FFFF', the NE shall attempt to interpret the network layer message. If the DNET field is absent and the message
cannot be interpreted and the message was directed specifically at the router, a Reject-Message-To-Network shall be returned
to the device that sent the message.

If the DNET is present and not equal to the global broadcast address X'FFFF' and the NE resides in a non-routing node, the
data link data shall be discarded and no further action taken. If the DNET is present and the NE resides in a BACnet router,
the NE shall take the actions specified in 6.5.4.

6.5.3 Network Layer Procedures for the Transmission of Remote Traffic

Upon receipt of an N-UNITDATA.request primitive, the NE shall inspect the DNET portion of the 'destination_address'
parameter. The presence of a DNET signifies that the destination device resides on a different BACnet network than the
device issuing this transmission. A DNET value of X'FFFF' signifies a global broadcast and indicates that the message is to
be directed to all local routers via a broadcast message on the local network. The NE shall prepare an NPCI control octet
indicating the presence of DNET, DADR, and Hop Count but the absence of SNET and SADR. The NE shall also fill in the
network priority field using the supplied parameter. The resulting control, priority, and address information shall then be
concatenated with the 'data' parameter conveyed in the N-UNITDATA.request primitive and issued as a DL-UNITDATA
data link request primitive. The concatenation of the NPCI and the 'data' parameter from the N-UNITDATA.request (the
NSDU), the NPDU, is passed as the 'data' parameter of the data link primitive. The DA portion of the 'destination_address'
parameter passed to the data link layer shall be the MAC address of the BACnet router corresponding to the DNET parameter
or the appropriate broadcast DA if the address of the router is initially unknown. The broadcast DA is also to be used if the
DNET global broadcast network number is present.

Note that five methods exist for establishing the address of a BACnet router for a particular DNET: 1) the address may be
established manually at the time a device is configured, 2) the address may be learned by issuing a Who-Is request and noting
the SA associated with the subsequent I-Am message (assuming the device specified in the Who-Is is located on a remote
DNET and the I-Am message was handled by a router on the local network), 3) by using the network layer message Who-Is-
Router-To-Network, 4) by using the local broadcast MAC address in the initial transmission to a device on a remote DNET
and noting the SA associated with any subsequent responses from the remote device, and 5) by noting the SA associated with

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

66 ANSI/ASHRAE Standard 135-2012

any requests received from the remote DNET. Which method is used shall be a local matter; however, devices shall not rely
solely on method 1.

The local broadcast MAC address may be used in response messages, although it is discouraged. It is preferable that a device
note the SA associated with the original request and reuse that SA in the response. For MS/TP networks, in order for MS/TP
master devices to use the local broadcast MAC address in a response, a Reply Postponed MAC frame shall be sent in
response to the BACnet Data Expecting Reply frame and the response may then be sent when the MS/TP master device
receives the token. MS/TP slave devices are unable to use the local broadcast MAC address for responses because they never
receive the token.

6.5.4 Network Layer Procedures for the Receipt of Remote Traffic

Upon receipt of an NPDU from the data link layer (conveyed by the 'data' parameter of the DL-UNITDATA indication
primitive) whose first octet indicates BACnet version one, the NE shall interpret the second octet of the NPDU as control
NPCI. If the NPCI control octet indicates the presence of a DNET field whose value is not X'FFFF' and the NE resides in a
BACnet device that is not a router, the message shall be discarded. If the NPCI control octet indicates the presence of a
DNET field and the NE resides in a BACnet router, it shall place the NPDU in its message queue (or queues, if separate
queues are maintained for each DNET), arranged in order by priority. Within each priority, the messages shall be arranged in
first-in-first-out order. If the NPCI control octet indicates that the NPDU contains a network layer message, the NE shall, in
addition, inspect the Message Type field. If this field indicates the presence of a Reject-Message-To-Network message, the
NE shall carry out the processing specified in 6.6.3.5. If the SNET and SADR fields are present, the message has arrived
from a peer router. If the SNET and SADR fields are absent, the message originated on a network directly connected to the
router. In the latter case, the router shall add the SNET and SADR to the NPCI based on the router's knowledge of the
network number of the network from which the message arrived, alleviating the requirement that the originating station know
its own network number. The SADR field shall be set equal to the SA of the incoming NPDU.

Three possibilities exist: either the router is directly connected to the network referred to by DNET, the message must be
relayed to another router for further transmission, or a global broadcast is required. In the first case, DNET, DADR, and Hop
Count shall be removed from the NPCI and the message shall be sent directly to the destination device with DA set equal to
DADR. The control octet shall be adjusted accordingly to indicate only the presence of SNET and SADR. In the second case,
if the Hop Count is greater than zero, the message shall be sent to the next router on the path to the destination network. If the
next router is unknown, an attempt shall be made to identify it using a Who-Is-Router-To-Network message. If the Hop
Count is zero, then the message shall be discarded. If the DNET global broadcast network number is present and the Hop
Count is greater than zero, the router shall broadcast the message on each network to which the router is directly connected,
except the network of origin, using the broadcast address appropriate to each data link. If the DNET global broadcast network
number is present and the Hop Count is zero, then the message shall be discarded.

6.6 BACnet Routers

BACnet routers are devices that interconnect two or more BACnet networks to form a BACnet internetwork. A router may,
or may not, provide BACnet application layer functionality. BACnet routers make use of BACnet network layer protocol
messages to maintain their routing tables. Routers perform the routing tasks described in 6.5. See Figure 6-12 for a flow chart
of router operation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 67

�#���
�����$�

���&���
��
�#�
�����������
��	��

��

��

��� ��

&������
���#��2
��	��
�����$�

��������
��!,
���
��<
��
�&�4

���

��

 ���1�
<�!,
���
<�<
� ���
� &� 4 '
 � �
�� �����'
 ���
 ����
�����$�
 ��
�����������
����
��'
 ��
$�����
���������
<�!,
��
�������'
�� �������
��
���
���#��2�
�E����
���#��2
��
���$���

���
����
�����$�
��

��E�
������

�� ���

���

��

 �����
 �G���3=����$�3,�3���#��2

�������
��
������
������
���
<�!,

��

4�
�����$�
���
����
������(�

�����������
��	��B

4�
$�����
���������
<�!,
�������B

4�
�����$�
�
���#��2
��	��

��������
�����$�B

<��
�����$�
����
����
�
�������	

���������
���#��2B

<���
�����$�
����
��
��
����	��B

4�
�����$�
��������
���
�
�������	
���������
���#��2B

4�
�������	
��
������
���
<�!,
��
�������	

���������
���
2��#�B

<��
�������
��
������
������
���
<�!,
�������B

���

Figure 6-12. BACnet message routing.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

68 ANSI/ASHRAE Standard 135-2012

6.6.1 Routing Tables

By definition, a router is a device that is connected to at least two BACnet networks. Each attachment is through a "port." A
"routing table" consists of the following information for each port:

(a)
 the MAC address of the port's connection to its network;

(b)
 the 2-octet network number of the directly connected network;

(c)
 a list of network numbers reachable through the port along with the MAC address of the next router on the path to each

network number and the reachability status of each such network.

The "reachability status" is an implementation-dependent value that indicates whether the associated network is able to
receive traffic. The reachability status shall be able to distinguish, at a minimum, between "permanent" failures of a route,
such as might result from the failure of a router, and "temporary" unreachability due to the imposition of a congestion control
restriction.

6.6.2 Start-up Procedures

Upon start-up, each router shall broadcast out each port an I-Am-Router-To-Network message containing the network
numbers of each accessible network except the networks reachable via the network on which the broadcast is being made.
This enables routers to build or update their routing table entries for each of the network numbers contained in the message.

6.6.3 Router Operation

This subclause describes the operation of BACnet routers.

6.6.3.1 BACnet NPDUs - General

If a BACnet NPDU is received with NPCI indicating that the message should be relayed by virtue of the presence of a non-
broadcast DNET, the router shall search its routing table for the indicated network number. Normal routing procedures are
described in 6.5. If, however, the network number cannot be found in the routing table or through the use of the Who-Is-
Router-To-Network message, the router shall generate a Reject-Message-To-Network message and send it to the node that
originated the BACnet NPDU. If the NPCI indicates either a remote or global broadcast, the message shall be processed as
described in 6.3.2.

6.6.3.2 Who-Is-Router-To-Network

This message may be generated by a non-routing BACnet node or by a BACnet router. If the message is broadcast with a
specific network number, one I-Am-Router-To-Network message should be returned at most, originating at the router on the
local network that is the next router to the specified destination network. If the 2-octet network number is omitted, each
responding router shall reply with an I-Am-Router-To-Network message containing all networks reachable through it,
including those that may be temporarily unreachable due to the imposition of a congestion control restriction and excluding
the networks reachable through the port from which the Who-Is-Router-To-Network message was received. Who-Is-Router-
To-Network will generally be broadcast but may be directed to a specific router to learn the contents of its router table. In the
event a router receives multiple I-Am-Router-To-Network messages pertaining to the same network, the router shall assume
that each new I-Am-Router-To-Network message represents a modification in the system configuration and shall update its
routing information. If the router has an established PTP connection (see Clause 10) that conflicts with this new information,
the PTP connection shall be terminated using the disconnect procedures defined in Clause 10. Thus the last message received
shall take precedence over all previous messages.

When a router receives a Who-Is-Router-To-Network message specifying a particular network number, it shall search its
routing table for the network number contained in the message. If the specified network number is found in its table and the
port through which it is reachable is not the port from which the Who-Is-Router-To-Network message was received, the
router shall construct an I-Am-Router-To-Network message containing the specified network number and send it to the node
that generated the request using a broadcast MAC address, thus allowing other nodes on this network to take advantage of the
routing information.

If the network number is not found in the routing table, the router shall attempt to discover the next router on the path to the
indicated destination network by generating a Who-Is-Router-To-Network message containing the specified destination
network number and broadcasting it out all its ports other than the one from which the Who-Is-Router-To-Network message

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 69

arrived. Two cases are possible. In case one the received Who-Is-Router-To-Network message was from the originating
device. For this case, the router shall add SNET and SADR fields before broadcasting the subsequent Who-Is-Router-To-
Network. This permits an I-Could-Be-Router-To-Network message to be directed to the originating device. The second case
is that the received Who-Is-Router-To-Network message came from another router and it already contains SNET and SADR
fields. For this case, the SNET and SADR shall be retained in the newly generated Who-Is-Router-To-Network message.

If the Who-Is-Router-To-Network message does not specify a particular destination network number, the router shall
construct an I-Am-Router-To-Network message containing a list of all the networks it is able to reach through other than the
port from which the Who-Is-Router-To-Network message was received and transmit it in the same manner as described
above. The message shall list all networks not flagged as permanently unreachable, including those that are temporarily
unreachable due to the imposition of congestion control restrictions. Networks that may be reachable through a PTP
connection shall be listed only if the connection is currently established.

6.6.3.3 I-Am-Router-To-Network

At router start-up, each router shall broadcast locally an I-Am-Router-To-Network message on each directly connected
network as specified in 6.6.2. Each such message shall list each accessible network number except the number of the network
on which the broadcast is being made. This broadcast allows other routers to update their routing tables whenever a new
router joins the internetwork. In addition, an I-Am-Router-To-Network message shall be broadcast locally upon the receipt of
a Who-Is-Router-To-Network message containing a network number matching a network number contained in the router's
routing table, provided that the port through which it is reachable is not the port from which the Who-Is-Router-To-Network
message was received.

If one or more of the reachable networks listed in the I-Am-Router-To-Network message is reached through a directly
connected PTP connection, transmitting the I-Am-Router-To-Network message shall start or restart a connection termination
delay timer. The PTP connection shall not be terminated before this delay timer expires. The connection termination delay
timer shall be configurable with a default value of sixty seconds.

Upon receipt of an I-Am-Router-To-Network message, the router shall search its routing table for entries corresponding to
each network number contained in the message. If no entry is found for a particular network number, a new entry shall be
created. If an entry is found but the MAC address or port of the next router on the path to the indicated network differs from
that found in the table, the MAC address in the table shall be replaced with that of the router originating the I-Am-Router-To-
Network message. This ensures that all routers will have the most current information in their tables. Whether the router table
was updated or not, the router shall then generate an I-Am-Router-To-Network message for all the network numbers
contained in the received I-Am-Router-To-Network message and broadcast the new message, using the local broadcast MAC
address, out all ports other than the one from which the previous message was received.

6.6.3.4 I-Could-Be-Router-To-Network

This message is generated by a half-router in response to a Who-Is-Router-To-Network message containing a specific 2-octet
network number when the responding half-router has the capability of establishing a PTP connection that can be used to
reach the desired network but this PTP connection is not currently established. In the event that a Who-Is-Router-To-Network
message is received in which the 2-octet network number field is absent, such as is used to determine lists of networks
reachable through active routers, the I-Could-Be-Router-To-Network message shall not be returned. The I-Could-Be-Router-
To-Network message shall be directed to the device that originated the Who-Is-Router-To-Network message. The procedures
to be used to establish a PTP connection are described in 6.7 and Clause 10.

6.6.3.5 Reject-Message-To-Network

Reject-Message-To-Network is generated by a router when it receives a message that it is unable to relay to the DNET
specified in the NPCI or if it receives an unknown network layer message directed specifically to that router. The reasons for
rejecting the message are set forth in 6.4.4.

When a router receives a Reject-Message-To-Network message with a rejection reason octet containing a value of 1 or 2, it
shall search its routing table for the network number specified in the Reject-Message-To-Network message. If the network
number is found, the status information for this network number shall be updated to indicate that the network is permanently
unreachable if the reject reason was 1 or unreachable due to flow control if the reject reason was 2. In addition, regardless of
the contents of the rejection reason octet, the router shall relay the message in the normal manner to the originating node

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

70 ANSI/ASHRAE Standard 135-2012

specified in the NPCI using the procedures of 6.5. A rejection reason of 1 is to be considered a serious error condition and
should be reported to a local or remote network management entity. The nature of this reporting procedure is a local matter.

6.6.3.6 Router-Busy-To-Network

If a router wishes to curtail the receipt of messages for specific DNETs or all DNETs, it shall generate a Router-Busy-To-
Network message.

If a router temporarily wishes to receive no more traffic for one or more specific DNETs, it shall broadcast a Router-Busy-
To-Network message with a list of the 2-octet network numbers corresponding to these DNETs. If the 2-octet network
numbers are omitted, it means the router wishes to stop the flow of messages to all the networks it normally serves.

Each router receiving a Router-Busy-To-Network message shall update its routing table to indicate that the specified DNETs
are not reachable, set or reset a 30-second timer for this status, and broadcast a Router-Busy-To-Network message out each
port other than the one on which it was received so that all routers may learn of the congestion control restriction. The
congestion control indication shall be cleared upon expiration of the 30-second timer. Upon receiving a message whose
destination is on one of the temporarily unreachable DNETs, a router shall send a Reject-Message-To-Network message with
a reject reason of 2 to the originating node.

Normally, a Router-Busy-To-Network message should be followed in a short time by a Router-Available-To-Network
message indicating that the congestion control restriction has been lifted. In the event that a router receives a message while it
is still requiring congestion control and the router is able to accept the message, it shall do so and, at its discretion, again
broadcast a Router-Busy-To-Network message for the benefit of this node and any others that may not have received the
previous transmission. If the router is unable to accept the message, it shall immediately return a Reject-Message-To-
Network to the sender. It may then also broadcast another Router-Busy-To-Network message for the reasons cited above.

6.6.3.7 Router-Available-To-Network

When a router wishes to re-enable the receipt of messages for a specific list of DNETs, or all DNETs, previously curtailed by
a Router-Busy-To-Network message, it shall broadcast a Router-Available-To-Network message. If the message is broadcast
with a list of 2-octet network numbers, it means that the router is now able to receive traffic for these specific DNETs. If the
2-octet network numbers are omitted, the router wishes to re-enable the flow of messages to all the networks it serves.

Each router receiving a Router-Available-To-Network message shall update its routing table to indicate that the specified
DNETs are now reachable and broadcast a Router-Available-To-Network message out each port other than the one on which
it arrived so that all routers may learn of the lifting of the congestion control restriction.

6.6.3.8 Initialize-Routing-Table

The Initialize-Routing-Table message is generated by any node that has been programmed to provide the initial routing table
information to one or more BACnet routers or wishes to query the contents of the current routing tables. The establishment of
the contents of the routing table and the circumstances under which Initialize-Routing-Table messages are generated are local
matters. In addition, an Initialize-Routing-Table message with Number of Ports set equal to zero shall cause the responding
device to return its complete routing table in an Initialize-Routing-Table-Ack message without updating its routing table.

When a router receives this message containing a routing table, indicated by a non-zero value in the Number of Ports field, it
shall update its current port-to-network-number mappings for each network specified in the NPDU with the information
contained in the NPDU and return an Initialize-Routing-Table-Ack message without any routing table data to the source.
When a router receives this message in the form of a routing table query, indicated by a zero value in the Number of Ports
field, it shall return an Initialize-Routing-Table-Ack message to the source containing a complete copy of its routing table as
described in 6.6.3.9.

6.6.3.9 Initialize-Routing-Table-Ack

This message is sent by a router after the reception and servicing of an Initialize-Router-Table message. If the router is
acknowledging a table update message, signified by a non-zero value in the Number of Ports field, it shall return an Initialize-
Routing-Table-Ack without data. If the router is acknowledging a table query message, indicated by a zero value in the
Number of Ports field, it shall return a complete copy of its routing table. If a complete copy of the table cannot be returned
in a single acknowledgment, the router shall send multiple acknowledgments, each containing a portion of the routing table
until the entire table has been sent.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 71

6.6.3.10 Establish-Connection-To-Network

Upon receipt of an Establish-Connection-To-Network message, a half-router shall attempt to establish a PTP connection
using the procedures described in 6.7 and Clause 10.

6.6.3.11 Disconnect-Connection-To-Network

Upon receipt of a Disconnect-Connection-To-Network message, a half-router shall terminate an established PTP connection
using the procedures described in 6.7 and Clause 10.

6.6.4 Router Congestion Control

Routers may wish to temporarily suspend the receipt of messages destined for a specific network or, possibly, all networks.
Normally, this would be the result of impending buffer overflow in the router itself but could also occur because of a buffer
problem with a downstream router on the path to a particular network. The messages used to impose and remove congestion
control restrictions are Router-Busy-To-Network and Router-Available-To-Network. The algorithm for determining that
congestion control should be imposed or removed is not specified in this standard but would most likely involve such factors
as the percentage of buffer space currently occupied and, possibly, the rate at which new messages have been arriving at the
router.

6.7 Point-To-Point Half-Routers

In BACnet networks that are interconnected across PTP connections (as defined in Clause 10), the procedures for half-router
establishment and synchronization are different from those for normal routers. This is due to two unique characteristics of
this type of connection. First, since a PTP connection may be established over a wide area network, such as the public
telephone network, it is sometimes advantageous to limit the duration of these connections. This causes temporary half-router
connections that must be controlled by BACnet. Secondly, PTP connections are always established between two half-routers
that together form a single router. A diagram of this router architecture is shown in Figure 6-13. When a connection is
established, both half-routers also need to update their routing tables to reflect any new or updated routing information stored
by the partner half-router.

To control the link establishment, link termination, and route-learning functions of a PTP half-router, BACnet has defined
five network layer messages. The I-Could-Be-Router-To-Network message announces that a half-router has the capability to
connect to a requested network but does not have an active connection. The Establish-Connection-To-Network message
requests that a connection be established. The Disconnect-Connection-To-Network message requests that an active
connection be disconnected. Routing table initialization may be performed using the Initialize-Routing-Table and Initialize-
Routing-Table-ACK messages. Thereafter, the half-router maintains its table using the same procedures as other active
routers regardless of whether any active PTP connections exist.

����
 �����

&����3,�3&����

����������

����
 �����

���#��2
H

���#��2
�

���#��2
I

��$����
������
���������$
��
�#�
����
�������

Figure 6-13. Upon a PTP connection, two half-routers combine to become a router.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

72 ANSI/ASHRAE Standard 135-2012

6.7.1 Procedures for Establishing a New PTP Connection Between Two Half-Routers

As specified in 6.5.3, one of the methods of establishing the address of a BACnet router for a particular DNET is by having
the initiating Network Entity (NE) send a Who-Is-Router-To-Network message for the DNET. A router that has an active
connection to the DNET, either directly connected or over an established PTP connection, shall respond with an I-Am-
Router-To-Network message. A half-router that does not have an active connection but could initiate a PTP connection to the
requested DNET shall respond with an I-Could-Be-Router-To-Network message.

6.7.1.1 Initiating Network Entity (NE) Procedure

To determine a new route, the NE shall issue a Who-Is-Router-To-Network message for the unknown DNET. After a locally
specified time period, the initiating NE shall determine the most suitable half-router to the DNET. The algorithm for selecting
the most suitable half-router is a local matter. As an aid to help select the most suitable half-router, each I-Could-Be-Router-
To-Network message has a 1-octet field to indicate the expected performance of the half router's PTP connection. Upon
selection of a suitable half-router, the initiating NE shall send an Establish-Connection-To-Network message to this half-
router and wait to receive an I-Am-Router-To-Network message for this DNET. When the I-Am-Router-To-Network
message is received, the initiating NE may send NPDUs for this DNET. If, after a locally specified time period, an I-Am-
Router-To-Network message is not received by the initiating NE, the initiating NE shall send a Disconnect-Connection-To-
Network to the selected half-router and may try this procedure again to find another half-router.

6.7.1.2 Initiating Half-Router Procedure

Upon receipt of an Establish-Connection-To-Network message, a half-router shall try to establish the requested connection. If
the connection is established, the initiating half-router shall forward the Establish-Connection-To-Network message to the
answering half-router, synchronize its routing table with the routing table of the answering half-router partner using the
procedures in 6.7.3, broadcast an I-Am-Router-To-Network message containing all of the DNETs accessible through the
answering half-router to all directly connected networks, and start an activity timer (Tactive).

When the connection is established, the initiating half-router shall adjust its routing table to indicate that any DNETs
accessible from the answering half-router have a "reachability status" that is "reachable" and continue with other normal
operations.

If the connection cannot be established, the initiating half-router shall adjust its routing table to indicate that any DNETs
accessible from the answering half-router have a "reachability status" that is "temporarily unreachable" and continue with
other normal operations. If a Disconnect-Connection-To-Network message is received, the half-router shall ignore the
message.

If the connection is in the process of being established and a Disconnect-Connection-To-Network message is received, the
half-router shall immediately end the connection establishment procedure.

If the connection is in the process of being established and a Who-Is-Router-To-Network message is received for a DNET
accessible through the PTP connection, the half-router shall respond with an I-Am-Router-To-Network, followed by a
Router-Busy-To-Network message. If a message is received for the DNET before the connection is established, it shall be
rejected with a rejection reason = 2. When the connection is established, the initiating half-router shall issue a Router-
Available-To-Network message. If the connection cannot be established, the half-router shall issue a Router-Available-To-
Network message but reject, with a rejection reason = 1, any message received for the DNET. The reason for rejecting the
message is to expedite error handling.

If the connection is in the process of being established and a I-Am-Router-To-Network message is received for the DNET to
which the initiating half-router is attempting a connection, the connection establishment shall be immediately terminated.

If the connection is in the process of being established and an Establish-Connection-To-Network message to the same DNET
is received, the Termination Time Value shall be evaluated. If the new Termination Time Value is greater than the
Termination Time Value of the original Establish-Connection-To-Network message, the new Termination Time Value shall
be used by the Activity Timer. The connection process shall then proceed normally.

6.7.1.3 Answering Half-Router Procedure

Upon connection establishment from a PTP half-router, the answering half-router shall set an activity timer (Tactive) based
upon a received Establish-Connection-To-Network message from the initiating half-router, synchronize its routing table with

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 73

the routing table of the initiating half-router partner using the procedures in 6.7.3, and broadcast an I-Am-Router-To-Network
message containing all of the DNETs accessible through the initiating half-router to all directly connected networks. If the
connection is terminated, the answering half-router's routing table shall be adjusted to indicate that any DNET accessible
from the initiating half-router has a "reachability status" that is "temporarily unreachable," if the answering half-router is able
to re-establish the connection or "permanently unreachable" if the answering half-router is unable to re-establish the
connection. If the connection is established, the answering half-router's routing table shall be adjusted to indicate that any
DNET accessible from the initiating half-router has a "reachability status" that is "reachable."

6.7.1.4 Activity Timer (Tactive)

The activity timer (Tactive) is the time that a half-router shall wait for the absence of any messages being routed over its PTP
connection before it attempts to automatically disconnect the connection. This timer shall be set to the Termination Time
Value field from the Establish-Connection-To-Network message. If the Termination Time Value is set to zero, the activity
time shall be considered infinite.

6.7.1.4.1 Initiating Half-Router Procedure

Upon receipt of an Establish-Connection-To-Network message, an initiating half-router shall set the activity timer (Tactive) to
the Termination Time Value field from the Establish-Connection-To-Network message. If the Termination Time Value is set
to zero, the activity time shall be considered infinite.

6.7.1.4.2 Answering Half-Router Procedure

Upon receipt of an Establish-Connection-To-Network message from the initiating half-router, the answering half-router shall
set the activity timer (Tactive) to the Termination Time Value field from the Establish-Connection-To-Network message. If the
Termination Time Value is set to zero, the activity time shall be considered infinite.

6.7.2 Procedures for Disconnecting a PTP Connection in a Half-Router

There are three bases for disconnecting a PTP connection established by a half-router. The first is by a Network Entity (NE)
initiating a Disconnect-Connection-To-Network message. The second is by a timer expiration indicating that the connection
has been inactive for an abnormal period of time. The third basis for disconnecting a connection is to compensate for a
configuration error. The specification of this procedure is given in 6.7.4.

6.7.2.1 Active Disconnection of a PTP Connection

6.7.2.1.1 Initiating Network Entity (NE) Procedure

If the initiating NE determines that the half-router connection is no longer needed, it may send a Disconnect-Connection-To-
Network message to the half-router. The routing table entry for this DNET shall be immediately set to "disconnected."

6.7.2.1.2 Initiating/Answering Half-Router Procedure

Upon receipt of a Disconnect-Connection-To-Network message, a half-router shall disconnect the PTP connection as
specified in Clause 10. When the connection is terminated, the half-router shall adjust its routing table to indicate that any
DNETs accessible from the previously connected half-router have a "reachability status" that is "temporarily unreachable" if
the half-router is able to re-establish the connection, or "permanently unreachable" if the half-router is unable to re-establish
the connection.

6.7.2.2 Timed Disconnection of a PTP Connection

If the activity timer (Tactive) expires, a half-router shall disconnect the PTP connection as specified in Clause 10. When the
connection is terminated, the half-router shall adjust its routing table to indicate that any DNETs accessible from the
previously connected half-router have a "reachability status" that is "temporarily unreachable" if the half-router is able to re-
establish the connection, or "permanently unreachable" if the half-router is unable to re-establish the connection.

6.7.2.3 Restarting of the Activity Timer (Tactive)

The Activity Timer (Tactive) in each half-router shall be restarted to its original value contained in the initiating Establish-
Connection-To-Network whenever an NPDU is transferred over the PTP link.

6.7.3 Procedures for Synchronizing Half-Router Routing Tables

Upon the establishment of a PTP connection between two half-routers, the routing tables of the half-routers shall be
synchronized. This is accomplished using the I-Am-Router-To-Network message.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

74 ANSI/ASHRAE Standard 135-2012

Upon connection establishment, the two half-routers shall exchange I-Am-Router-To-Network messages. Each message shall
contain all of the reachable (before the connection was established) DNETs connected through this router. In the event that a
duplicate network connection is discovered by the procedure specified in 6.7.4.2, synchronization of routing tables shall fail,
causing the routing table entry for any DNET accessible from the peer half-router to have a reachability status of
"temporarily unreachable."

6.7.4 Error Recovery Procedures

6.7.4.1 Recovering from Routing Requests to Unconnected Networks

Since PTP connections may be temporary in nature, there is a possibility that a half-router may receive a message bound for a
DNET connection that has been disconnected. If another route is not in place through a different port than the one from
which the message was received, this is considered an error. To recover from this situation, the receiving half-router shall
reject this message with a Reject-Message-To-Network message using rejection reason = 1. The initiating Network Entity
shall recover from this error by initiating the procedure for establishing a new PTP connection through a half-router as
described in 6.7.1.

6.7.4.1.1 Disconnected Half-Router Procedure

Upon receipt of a message that is requested to be routed across a PTP connection that is disconnected, the half-router shall
determine if another route is in place. If no other route is in place or if the next hop of this route is identical to the path from
which the message was received, the half-router shall issue a Reject-Message-To-Network for this message with a rejection
reason = 1 and discard the message. If another acceptable route is in place, the message shall be forwarded on this route.

6.7.4.1.2 Initiating Network Entity (NE) Procedure

If the initiating NE receives a Reject-Message-To-Network, it shall attempt to determine a new route to the DNET after
waiting for a random back-off period. The random back-off period, in seconds, is determined by the initiating NE through the
generation of a random number of either 0 or 1 and then multiplying this number by 40. The initiating NE shall not try to re-
establish the network connection until the back-off period has expired. If during the back-off period the initiating NE learns
of a valid route to the required DNET, the initiating NE shall use this path and consider the network connection re-
established. Upon expiration of the back-off period, if the network connection has not been re-established, the initiating NE
shall attempt to determine a new route to the DNET using the procedure for establishing a new PTP connection through a
half-router as described in 6.7.1.

6.7.4.2 Recovering from Duplicate Network Connections

In the unlikely event that two or more PTP connections are made to single DNET, at least one of the connections shall be
terminated and the routing tables in all routers shall be made consistent. The procedure to ensure that no loop exists consists
of having every half-router examine each received I-Am-Router-To-Network message for another path to any of the half-
router's directly connected networks. The existence of a second path to a directly connected network indicates that a loop is
formed. If a loop is detected, the half-router shall disconnect its PTP connection thereby breaking the loop.

6.7.4.2.1 Half-Router Procedure for Receipt of Conflicting I-Am-Router-To-Network Messages

If during the initialization or lifetime of a PTP connection a half-router hears an I-Am-Router-To-Network message from the
PTP connection containing a DNET to one of the half-router's directly connected networks, the half-router shall immediately
terminate the connection.

6.7.4.2.2 Half-Router Procedure for Initiation of I-Am-Router-To-Network Messages

As an added safety measure to ensure that duplicate paths are discovered in a timely manner, a half-router shall broadcast one
or more I-Am-Router-To-Network message(s) once every five minutes when a PTP connection is in place. The DNETs in
this message shall be all of the DNETs accessible through the PTP connection. In the event this list of DNETs would exceed
the maximum NPDU length of the network being utilized, the list shall be divided into segments that fit on the network and
sent in consecutive I-Am-Router-To-Network messages.

6.7.4.2.3 Half-Router Procedure for Decrementing the Hop Count

To reduce the number of circularly routed messages in a misconfigured system, BACnet NPDUs contain a hop count that
limits the number of routers that shall forward the NPDU. In routers that provide the capability to configure the amount that
the Hop Count field shall be decremented when an NPDU is forwarded, a network administrator may optimize the damping
of looping messages. One method to do this is to find the path in the network that requires the maximum number of router
hops. The amount to decrement the NPDU Hop Count field in every router on the network is then calculated as the integer

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

6. THE NETWORK LAYER

ANSI/ASHRAE Standard 135-2012 75

division of 255/(maximum number of router hops). On a PTP connection, the half of the router that forwards the NPDU onto
a non-PTP network shall decrement the Hop Count field.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

7. DATA LINK/PHYSICAL LAYERS: ISO 8802-3 ("Ethernet") LAN

76 ANSI/ASHRAE Standard 135-2012

7 DATA LINK/PHYSICAL LAYERS: ISO 8802-3 ("Ethernet") LAN

This clause describes the transport of BACnet LSDUs using the services of the data link and physical mechanisms described
in International Standards ISO 8802-2: Information processing systems- Local area networks- Part 2: Logical link control
and ISO/IEC 8802-3: Information processing systems- Local area networks- Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications. The clauses of ISO 8802-2 pertaining to
Class I LLC and Type 1 Unacknowledged Connectionless-Mode Service as well as all of ISO/IEC 8802-3, as amended and
extended by the International Organization for Standardization, are deemed to be included in this standard by reference.

7.1 The Use of ISO 8802-2 Logical Link Control (LLC)

Standard BACnet networks may pass BACnet link service data units (LSDUs) using the data link services of ISO 8802-2
Logical Link Control (LLC). A BACnet LSDU consists of an NPDU constructed as described in Clause 6. BACnet devices
using ISO 8802-3 LAN technology shall conform to the requirements of LLC Class I, subject to the constraints specified in
this clause. Class I LLC consists of Type 1 LLC - Unacknowledged Connectionless-Mode service. LLC parameters shall be
conveyed using the DL-UNITDATA primitives as described in the referenced standards.

All BACnet devices conforming to this section shall be capable of accepting properly formed Unnumbered Information (UI)
commands and responding to XID Exchange Identification and TEST commands.

7.2 Parameters Required by the LLC Primitives

The DL-UNITDATA primitive requires source address, destination address, data, and priority parameters. The source and
destination addresses each consist of the logical concatenation of a medium access control (MAC) address and a link service
access point (LSAP). The MAC address is a 6-octet value determined by the network interface hardware. The LSAP is the
single-octet value X'82' and is used to indicate that an LSDU contains BACnet data. The data parameter is the NPDU from the
network layer. Since the ISO 8802-3 MAC layer only operates at a single priority with only one class of service, the value of the
priority parameter is not specified in this standard.

7.3 Parameters Required by the MAC Primitives

The ISO/IEC 8802-3 MAC layer primitives are the MA-DATA.request and MA-DATA.indication. These convey the encoded
LLC data using the source and destination MAC addresses described above. Again, since only one class of service is provided,
the value of the 'service_class' parameter is unspecified. See Figure 7-1.

7.4 Physical Media

The physical media specified by ISO 8802-3 and subsequent addenda are equally acceptable.

NSDU

NPCI

LLC Control = UI = X'03'

SSAP = X'82'

DSAP = X'82'

SA

DA

LLC Length

6 octets

6 octets

2 octets

1 octet

1 octet

1 octet

M octets

N octets
NPDU

LPDU

MPDU

Figure 7-1. Format of an MPDU on an ISO 8802-3 LAN.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

8. DATA LINK/PHYSICAL LAYERS: ARCNET LAN

ANSI/ASHRAE Standard 135-2012 77

8 DATA LINK/PHYSICAL LAYERS: ARCNET LAN

This clause describes the transport of BACnet LSDUs using the services of the data link and physical mechanisms described
in ATA 878.1, ARCNET Local Area Network Standard. The ARCNET Local Area Network Standard, as amended and
extended by the ARCNET Trade Association, is deemed to be included in this standard by reference.

8.1 The Use of ISO 8802-2 Logical Link Control (LLC)

Standard BACnet networks may pass BACnet link service data units (LSDUs) using the data link services of ISO 8802-2 LLC.
A BACnet LSDU consists of an NPDU constructed as described in Clause 6. BACnet devices using ARCNET LAN technology
shall conform to the requirements of LLC Class I, subject to the constraints specified in this clause. Class I LLC service consists
of Type 1 LLC - Unacknowledged Connectionless-Mode service. LLC parameters shall be conveyed using the DL-UNITDATA
primitives as described in the referenced standards.

The mapping of these primitives onto the ARCNET MAC layer primitives is described in 8.3.

All BACnet devices conforming to this section shall be capable of accepting and responding to XID Exchange Identification and
TEST commands.

8.2 Parameters Required by the LLC Primitives

The DL-UNITDATA primitive requires source address, destination address, data, and priority parameters. The source and
destination addresses each consist of the logical concatenation of a medium access control (MAC) address, link service access
point (LSAP), and a system code (SC). The MAC address is a 1-octet value determined by the network interface hardware; the
LSAP used to indicate that an LSDU contains BACnet data is the single octet value X'82'; and the SC used to indicate a BACnet
frame is the single-octet value X'CD'. The data parameter is the NPDU from the network layer. Since the ARCNET MAC
sublayer only operates at a single priority with only one class of service, the value of the priority parameter is not specified in
this standard.

BACnet ARCNET devices shall support a settable MAC address and shall be able to be set to any valid unicast MAC address.
Where a device has multiple ARCNET ports, each port shall be settable to any valid value regardless of the MAC address
settings of the other ARCNET ports.

8.3 Mapping the LLC Services to the ARCNET MAC Layer

The Type 1 Unacknowledged Connectionless LLC service shall map directly onto the ARCNET MA_DATA request primitive.
Although a successful transmission results in an acknowledgment from the destination MAC sublayer, no indication is expected,
or provided, to the LLC sublayer.

ARCNET does not permit MSDUs of length 253, 254, or 255 octets. A BACnet LPDU of length 0 to 252 octets shall be
conveyed as the entire MSDU of an ARCNET MPDU (frame) with a single Information length (IL) octet. A BACnet LPDU of
length 253 to 504 octets shall be conveyed as the initial octets of the MSDU of an ARCNET MPDU with two Information
length (IL) octets. In this case, the LPDU shall be followed by three octets of unspecified value, such that the net length of the
MSDU is 256 to 507 octets. When an ARCNET MPDU with two Information length octets is received, the final 3 octets of the
MSDU shall be ignored.

An LPDU longer than 504 octets cannot be conveyed via ARCNET.

8.4 Parameters Required by the MAC Primitives

The ARCNET MAC layer primitives are MA-DATA.request, MA-DATA.indication, and MA-DATA.confirmation. These
convey the encoded LLC data (MSDU) using the source and destination MAC addresses described above in conjunction with
the BACnet system code. See Figure 8-1.

8.5 Physical Media

The physical media specified by the ARCNET standard are equally acceptable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

8. DATA LINK/PHYSICAL LAYERS: ARCNET LAN

78 ANSI/ASHRAE Standard 135-2012

APDU

NPCI

DSAP = X'82'

SC = X'CD'

IL

SID

PAC

DID

1 octet

1 octet

2 octets

1 or 2 octets

1 octet

1 octet

M octets

N octets
NPDU

LPDU

MPDU

SSAP = X'82'

LLC Control = UI = X'03'

1 octet

1 octet

Figure 8-1. Format of an MPDU on an ARCNET LAN.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 79

9 DATA LINK/PHYSICAL LAYERS: MASTER-SLAVE/TOKEN PASSING (MS/TP) LAN

This clause describes a Master-Slave/Token-Passing (MS/TP) data link protocol, which provides the same services to the
network layer as ISO 8802-2 Logical Link Control. It uses services provided by the EIA-485 physical layer. Relevant clauses of
EIA-485 are deemed to be included in this standard by reference. The following hardware is assumed:

 (a) A UART (Universal Asynchronous Receiver/Transmitter) capable of transmitting and receiving eight data bits with

one stop bit and no parity.

 (b) An EIA-485 transceiver whose driver may be disabled.

 (c) A timer with a resolution of five milliseconds or less.

9.1 Service Specification

MS/TP is not intended to be a general purpose LAN under ISO 8802-2. Instead, MS/TP includes a data link layer sufficient to
provide to the BACnet network layer the same services as are offered by ISO 8802-2 Type 1.

This subclause describes the primitives and parameters associated with the provided services. The parameters are described in an
abstract sense, which does not constrain the implementation method. Primitives and their parameters are described in a form that
echoes their specification in ISO 8802-2. This is intended to provide a consistent interface to the BACnet network layer.

9.1.1 DL-UNITDATA.request

9.1.1.1 Function

This primitive is the service request primitive for the unacknowledged connectionless-mode data transfer service.

9.1.1.2 Semantics of the Service Primitive

The primitive shall provide parameters as follows:

DL-UNITDATA.request (
 source_address,
 destination_address,
 data,
 priority,
 data_expecting_reply
)

Each source and destination address consists of the logical concatenation of a medium access control (MAC) address and a link
service access point (LSAP). For the case of MS/TP devices, since MS/TP supports only the BACnet network layer, the LSAP is
omitted and these parameters consist of only the device MAC address.

The 'data' parameter specifies the link service data unit (LSDU) to be transferred by the MS/TP entity.

The 'priority' parameter specifies the priority desired for the data unit transfer. The priority parameter is ignored by MS/TP.

The 'data_expecting_reply' parameter specifies whether or not the data unit to be transferred expects a reply.

9.1.1.3 When Generated

This primitive is passed from the network layer to the MS/TP entity to request that a network protocol data unit (NPDU) be
sent to one or more remote LSAPs using unacknowledged connectionless-mode procedures.

9.1.1.4 Effect on Receipt

Receipt of this primitive causes the MS/TP entity to attempt to send the NPDU using unacknowledged connectionless-mode
procedures.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

80 ANSI/ASHRAE Standard 135-2012

9.1.2 DL-UNITDATA.indication

9.1.2.1 Function

This primitive is the service indication primitive for the unacknowledged connectionless-mode data transfer service.

9.1.2.2 Semantics of the Service Primitive

DL-UNITDATA.indication (
 source_address,
 destination_address,
 data,
 priority,
 data_expecting_reply
)

Each source and destination address consists of the logical concatenation of a medium access control (MAC) address and a link
service access point (LSAP). For the case of MS/TP devices, since MS/TP supports only the BACnet network layer, the LSAP is
omitted and these parameters consist of only the device MAC address.

The 'data' parameter specifies the link service data unit that has been received by the MS/TP entity.

The 'priority' parameter specifies the priority desired for the data unit transfer. The priority parameter is ignored by MS/TP.

The 'data_expecting_reply' parameter specifies whether or not the data unit that has been received expects a reply.

9.1.2.3 When Generated

This primitive is passed from the MS/TP entity to the network layer to indicate the arrival of an NPDU from the specified
remote entity.

9.1.2.4 Effect on Receipt

The effect of receipt of this primitive by the network layer is unspecified.

9.1.3 Test_Request and Test_Response

ISO 8802-2 Type 1 defines XID and TEST PDUs and procedures but does not define an interface to invoke them from the
network layer. Test_Request and Test_Response PDUs and procedures have been defined for MS/TP to accomplish the same
functions. Because MS/TP supports only the equivalent of a single LSAP, these PDUs are sufficient to implement the relevant
aspects of XID as well.

The response with Test_Response to a received Test_Request PDU is mandatory for all MS/TP nodes. The origination of a
Test_Request PDU is optional.

9.1.3.1 Use of Test_Request and Test_Response for ISO 8802-2 TEST Functions

The TEST function provides a facility to conduct loopback tests of the MS/TP to MS/TP transmission path. Successful
completion of the test consists of sending a Test_Request PDU with a particular information field to the designated destination
and receiving, in return, the identical information field in a Test_Response PDU.

If a receiving node can successfully receive and return the information field, it shall do so. If it cannot receive and return the
entire information field but can detect the reception of a valid Test_Request frame (for example, by computing the CRC on
octets as they are received), then the receiving node shall discard the information field and return a Test_Response containing no
information field. If the receiving node cannot detect the valid reception of frames with overlength information fields, then no
response shall be returned.

9.1.3.2 Use of Test_Request and Test_Response for ISO 8802-2 XID Functions

ISO 8802-2 describes seven possible uses of XID:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 81

 (a) XID can be used with a null DSAP and null SSAP as an "Are You There" test. Since MS/TP supports only the
equivalent of a single LSAP, the Test_Request PDU with no data can perform this function.

 (b) XID can be used with a group or global DSAP to identify group members or all active stations. Since MS/TP supports

only the equivalent of a single LSAP, the Test_Request PDU with no data can perform this function.

 (c) XID can be used for a duplicate address check. This function is not applicable to MS/TP. EIA-485 token bus networks

such as MS/TP will generally not achieve reliable operation if multiple nodes exist with the same address, since
collisions will occur during token passing.

 (d) Class II LLCs may use XID to determine window size. MS/TP does not support Class II operation.

 (e) XID may be used to identify the class of each LLC. Since MS/TP supports only Class I operation, this is a trivial

operation.

 (f) XID may be used to identify the service types supported by each LSAP. Since MS/TP supports only Class I operation,

this is a trivial operation.

(g)
 An LLC can announce its presence by broadcasting an XID with global DSAP. Since MS/TP supports only one LSAP,
the equivalent may be accomplished by broadcasting a Test_Response PDU.

9.2 Physical Layer

9.2.1 Medium

An MS/TP EIA-485 network shall use shielded, twisted-pair cable for data signaling with characteristic impedance between 100
and 130 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot). Distributed
capacitance between conductors and shield shall be less that 200 pF per meter (60 pF per foot). Foil or braided shields are
acceptable. The maximum recommended length of an MS/TP segment with AWG 18 (0.82 mm2 conductor area) cable is
specified in Clause 9.2.3. The use of greater distances and/or different wire gauges shall comply with the electrical specifications
of EIA-485.

9.2.2 Connections and Terminations

The maximum number of nodes per segment shall be 32 (as specified by the EIA-485 standard). Additional nodes may be
accommodated by the use of repeaters, as described in 9.9.

Because MS/TP uses NRZ encoding, the polarity of the connection to the cable is important. The non-inverting input of the
EIA-485 transceiver is designated in this specification as "plus" or "+" and the inverting input as "minus" or "-". It is
recommended, but not required, that the black or red insulated wire of the twisted pair be designated as "plus" and the white,
clear, or green insulated wire be designated as "minus." The method of connection between the interface and the cable is not
part of this specification.

An MS/TP EIA-485 network shall have no T connections. A termination resistance of 120 ohms plus or minus 5% shall be
connected at each of the two ends of the segment medium. No other termination resistors are allowed at intermediate nodes.

Each MS/TP segment shall be provided with network bias resistors, connected as shown in Figure 9-1, such that an undriven
communications line will be held in a guaranteed logical one state. The bias provides a reliable way for stations to detect the
presence or absence of signals on the line. An unbiased line will take an indeterminate state in the absence of any driving node.
Under some conditions, noise or cross-talk might result in some nodes receiving spurious octets from the undriven idle line.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

82 ANSI/ASHRAE Standard 135-2012

)0/)0/

9)/ 8*D 8*D

C9

 ,�,E E

9)/

C9

 ,�,E E ,�,E E

C C C

3 3 3

����
#���
���#��2
����
���������

����
#���
�����
����
���������

����
#������
����
���������

At least one set, and no more than two sets, of network bias resistors shall exist for each segment. Each set of network bias
resistors shall consist of two resistors, each having a value of 510 ohms, plus or minus 5%, connected as shown in Figure 9-1. If
two sets of network bias resistors are provided, they shall be placed at two distinct nodes, preferably at the ends of the segment,
so that proper bias levels can be maintained even if one of the bias nodes loses power. Other nodes may be provided with local
bias resistors as long as each local bias resistor value is 47K ohms or greater. The use of local bias resistors is optional.

For any physical segment that runs between buildings there shall be at least 1500 V of electrical isolation between the EIA-485
signal conductors and the digital ground of any node on that physical segment.

The shield shall be grounded at one end only to prevent ground currents from being created.

9.2.2.1 Device Wiring

There are a variety of permitted device wiring arrangements, depending on the particular needs of the devices used and the
installation requirements. Some MS/TP devices are designed with a third-wire Reference connection in addition to the
signaling connections and some are two-wire only, depending on the particular application being addressed. All device
wiring arrangements shall meet the Connections and Terminations restrictions and requirements described in Clause 9.2.2.

9.2.2.1.1 Single Buildings

Within a single building, there is generally a limited ground voltage offset from one MS/TP device to another, thus
permitting a simple installation in most cases. The following clauses describe several common methods for wiring devices
within a single building using different device wiring arrangements.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 83

9.2.2.1.1.1 Twisted-pair Only with Non-isolated Devices

For many installations, a simple twisted pair wire with shield is sufficient to allow reliable communications. In Figure 9-1.1,
all of the devices use two-wire connections with the reference level between devices established by an internal earth ground
connection made through some impedance (Z) at each device. This is generally the lowest cost solution and is sufficient for
installations where electrical noise, ground noise, and stray fields are low. EIA-485 is designed to operate with voltages on
the signaling wires between -7 and +12 volts. If the voltage between any two earth ground connections combined with the
noise picked up by the twisted pair signaling wire is well within this range, the EIA-485 requirements for signaling levels
have been met.

C 3

4�������

<���

C 3

4�������

<���

C 3

4�������

<���

Z Z Z

,#�����
&���

������

Figure 9-1.1. Simple Twisted Pair with Shield.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

84 ANSI/ASHRAE Standard 135-2012

9.2.2.1.1.2 Twisted-pair Only with Mixed Devices

Some EIA-485 devices provide a third-wire reference connection and use internal isolation. The third-wire reference shall be
electrically connected to the other devices' reference to meet EIA-485 requirements. When such a device is used in a low-
electrical-noise installation, it is sufficient to connect the third-wire reference to earth using a 100 ohm current limiting
resistor (R) as shown in Figure 9-1.2. The earth connection may be made using either the shield of the communication cable
since it is tied to earth ground at one point (this is the preferred approach) or a local earth grounding point such as the device
case. This type of connection does not take full advantage of the electrical noise rejection capability of the third-wire
reference.

C 3

4�������

<���

C 3

4�������

<���

Z

C 3

4�������

<���

Z

,#�����
&���

������

R

4���,!<

Figure 9-1.2. Mixed Devices on Twisted Pair with Shield.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 85

9.2.2.1.1.3 Twisted-pair and Reference with Isolated Devices

If the installation exclusively uses EIA-485 devices with third-wire reference connections, electrical noise rejection is best if
a third conductor in the same cable is used to connect all of the reference connections together as shown in Figure 9-1.3. This
nearly eliminates earth-ground voltage differences and allows the differential input of each EIA-485 device to float with the
electrical noise and stray fields picked up by the signal cable, resulting in better noise rejection. If there are more than three
wires in the cable chosen, the third conductor shall be made up of all of the extra wires (outside of the twisted pair used for
signaling) connected together. If desired, the third-wire reference conductor may be tied to earth ground at one point where
electrical noise is low through a 100-ohm current-limiting resistor in order to limit voltage excursions and to simplify adding
two-wire devices in the future.

C 3

4�������

<���

,#�����
&���

������

C 3

4�������

<���

C 3

4�������

<���

 !?

4���,!< 4���,!< 4���,!<

Figure 9-1.3. All Isolated Devices on 3-Conductor Cable with Shield.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

86 ANSI/ASHRAE Standard 135-2012

9.2.2.1.1.4 Twisted-pair and Reference with Mixed Devices

If the installation includes a mixture of two-wire non-isolated devices and three-wire isolated devices, they may be used
together in the configuration of Figure 9-1.4 if the two-wire devices are installed in areas with low electrical noise or if high
levels of electrical noise are generated locally at the three-wire isolated devices and the remainder of the installation is
electrically quiet. In this installation, a third conductor in the same cable is used to connect all of the reference connections
together. Three-wire devices with a reference connection shall be directly tied to the third conductor and two-wire device
reference connections are made indirectly through a single 100-ohm current-limiting resistor tied between the reference
conductor and earth ground in a low-noise area, preferably near the supervisory controller.

,#�����
&���

������

C 3

4�������

<���

C 3

4�������

<���

4���,!<

C 3

4�������

<���

4���,!<

Z

R

 !?�
.��
#���

Figure 9-1.4. Mixed Devices on 3-Conductor Cable with Shield.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 87

9.2.2.1.1.5 Extending Twisted-pair with Reference

If the installation includes existing two-wire non-isolated devices that are to be extended with three-wire isolated devices,
they may be connected together in the configuration of Figure 9-1.5. In this installation, a third conductor in the extended
cable is used to connect all of the reference connections together. Three-wire devices with a reference connection shall be
directly tied to the third conductor and two-wire device reference connections are made indirectly through a single 100-ohm
current-limiting resistor tied between the reference conductor and earth ground in a low noise area, preferably where the
extended cable is connected to the existing twisted-pair cable.

,#�����
&���

������

C 3

4�������

<���

4���,!<

C 3

4�������

<���

Z

 !?

C 3

4�������

<���

Z

R

Figure 9-1.5. Extending Existing Twisted-pair with Isolated Devices.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

88 ANSI/ASHRAE Standard 135-2012

9.2.2.1.2 Multiple Buildings

Connecting multiple buildings using MS/TP shall have at least 1500 V of electrical isolation as specified in Clause 9.2.2. The
following clauses describe ways to provide the required isolation.

9.2.2.1.2.1 Isolated Devices

Installations that connect multiple buildings using a single cable are permitted if the secondary buildings contain only three-
wire isolated devices with 1500-volt electrical isolation capability and there are no earth ground connections in the secondary
buildings to the reference conductor or the shield as shown in Figure 9-1.6. When the primary building contains only two-
wire non-isolated devices, the reference conductor shall be connected to earth ground at one location through a 100-ohm
current-limiting resistor (R) in that building and the shield shall be tied to earth ground in a single location in the same
building. The use of surge arrestors near each building's cable entrance to protect all of the conductors is recommended.

,#�����
&���

������

C 3

4�������

<���

4���,!<

C 3

4�������

<���

Z

 !?

C 3

4�������

<���

Z

R

���$�
��������

564�<4�-

� ��4�-

Figure 9-1.6. Two Buildings with All Isolated Devices in One Building.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 89

9.2.2.1.2.2 Isolated Repeater

If the installation includes a mixture of three-wire isolated and two-wire non-isolated devices in each of two buildings on a
single communications line, it is possible to connect the buildings using an isolated repeater so that each building is
electrically isolated from the other building as shown in Figure 9-1.7. The isolated repeater must provide complete three-way
electrical isolation between the wiring on either side and ground. In this case, the communication wiring within each building
is configured like that of a single building since the isolated repeater provides the required 1500-volt electrical isolation. The
cable connecting the buildings is an extension of the cable in one of the buildings and shall be electrically isolated from the
other building by the isolated repeater and shall not have any connections to other devices or to ground within the other
building.

An isolated repeater may also be used on both sides of the cable connecting the buildings. This may be needed for extra
isolation or for cable length. In this case the cable connecting the buildings shall be separately shielded, terminated, and
biased and shall not have any connections to other devices within either building. If the pair of isolated repeaters provides a
reference connection, the two reference connections shall be joined by a third conductor within the cable connecting the
buildings and shall not be connected to any other device or to ground.

The use of surge arrestors near each building's cable entrance to protect all of the conductors is recommended.

,#�����

&���

 !?

564�<4�-

� ��4�-

C 3

4�������

<���

4���,!<

C 3

4�������

<���

Z

C 3

4�������

<���

Z

C 3

4�������

<���

4���,!<

4�

��
,!

<

!

&
!

�
,!

���$�
��������

 !?

,#�����

&���

RR ������ ��
���

��$����

Figure 9-1.7. Isolated Repeater between Two Buildings with Surge Arresters.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

90 ANSI/ASHRAE Standard 135-2012

9.2.2.1.2.3 Fiber Optic Isolation

If the installation includes a mixture of three-wire isolated and two-wire non-isolated devices in each of two buildings on a
single communications line, it is best to connect the buildings using EIA-485 half-duplex compatible fiber optic modems so
that each building is electrically isolated from the other building and there are no conductors outside the buildings as shown
in Figure 9-1.8. In this case, the communication wiring within each building is configured like that of a single building since
the fiber optic modems provide the required 1500-volt electrical isolation.

,#�����

&���

 !?

564�<4�-

� ��4�-

C 3

4�������

<���

4���,!<

C 3

4�������

<���

Z

C 3

4�������

<���

Z

C 3

4�������

<���

4���,!<

 !?

,#�����

&���

RR ������ ��
���

��$����

?�
��

�

��

��

=
��

��

?�
��

�

��

��

=
��

��
������

Figure 9-1.8. Fiber Optic Modems between Two Buildings.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 91

Figure 9-2. Octet framing.

9.2.2.1.2.4 No Isolation (not permitted)

Directly connecting two buildings with a single EIA-485 communications cable where there are two-wire non-isolated
devices in each building shall not be permitted since the required 1500-V electrical isolation between signal conductors and
digital ground cannot be maintained. Device wiring such as that shown in Figure 9-1.9 is not allowed.

564�<4�-

� ��4�-

C 3

4�������

<���

4���,!<

C 3

4�������

<���

Z

C 3

4�������

<���

Z

C 3

4�������

<���

4���,!<

 !?

,#�����

&���

R
��
���

��$����

������

���$�
��������

Figure 9-1.9. Two Buildings with Mixed Devices - No Isolation (Not Allowed).

9.2.3 Timing

Octets shall be transmitted using non-return to zero (NRZ) encoding with one start bit, eight data bits, no parity, and one stop bit.
The start bit shall have a value of zero, while the stop bit shall have a value of one. The data bits shall be transmitted with the
least significant bit first. This is illustrated in Figure 9-2.

Although asynchronous framing is used, there shall be no more than
Tframe_gap of idle line (logical ones or stop bits) between any two octets of
a frame.

'The standard baud rates are shown in the table below. The required baud
rates, plus or minus 1%, shall be supported. Any or all of the optional
baud rates, plus or minus 1%, may be supported at the vendor's option.

Baud Rate Requirement Recommended Maximum Distance
9600 Required 1200 meters (4000 feet)
19200 Optional 1200 meters (4000 feet)
38400 Required 1200 meters (4000 feet)
57600 Optional 1200 meters (4000 feet)
76800 Optional 1200 meters (4000 feet)
115200 Optional 1000 meters (3280 feet)

Transmitter enable: A node shall enable its EIA-485 driver before it generates the leading edge of the first start bit of a frame.
The node shall drive the line to the logical one state during the time between the enable and the leading edge of the first start bit
of a frame.

/) 0 . 8 9 J *

)/
���
�����

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

92 ANSI/ASHRAE Standard 135-2012

Transmitter disable: A node shall not disable its EIA-485 driver until the stop bit of the final octet of a frame has been generated.
The node shall disable its EIA-485 driver within Tpostdrive after the beginning of the stop bit of the final octet of a frame in order
that it not interfere with any subsequent frame transmitted by another node. This specification allows, but does not encourage,
the use of a "padding" octet after the final octet of a frame in order to facilitate the use of common UART transmit interrupts for
driver disable control. If a "padding" octet is used, its value shall be X'FF'. The "padding" octet is not considered part of the
frame, that is, it shall be included within Tpostdrive.

Receive to Transmit turn-around: A node shall not enable its EIA-485 driver for at least Tturnaround after the node receives the
final stop bit of any octet.

9.3 MS/TP Frame Format

All frames are of the following format:

 Preamble two octet preamble: X'55', X'FF'
 Frame Type one octet
 Destination Address one octet address
 Source Address one octet address
 Length two octets, most significant octet first
 Header CRC one octet
 Data (present only if Length is non-zero)
 Data CRC (present only if Length is non-zero) two octets, least significant octet first
 (pad) (optional) at most one octet of padding: X'FF'

The Frame Type is used to distinguish between different types of MAC frames. Defined types are:

 00 Token
 01 Poll For Master
 02 Reply To Poll For Master
 03 Test_Request
 04 Test_Response
 05 BACnet Data Expecting Reply
 06 BACnet Data Not Expecting Reply
 07 Reply Postponed

Frame Types 8 through 127 are reserved by ASHRAE. Frame Types 128 through 255 are available to vendors for proprietary
(non-BACnet) frames. Use of proprietary frames might allow a Brand-X controller, for example, to send proprietary frames to
other Brand-X controllers that do not implement BACnet while using the same medium to send BACnet frames to a Brand-Y
panel that does implement BACnet. Token, Poll For Master, and Reply To Poll For Master frames shall be understood by both
proprietary and BACnet master nodes.

The Destination and Source Addresses are one octet each. A Destination Address of 255 (X'FF') denotes broadcast. A Source
Address of 255 is not allowed. Addresses 0 to 127 are valid for both master and slave nodes. Addresses 128 to 254 are valid only
for slave nodes.

MS/TP devices shall support configurable MAC addresses, and each shall be able to be set to any valid unicast address (0..127
for masters and 0..254 for slaves). Where a device has multiple MS/TP ports, the MAC address of each port shall be settable to
any valid value regardless of the MAC address settings of the other MS/TP ports.

The Length field specifies the length in octets of the Data field.

The Data and Data CRC fields are conditional on the Frame Type and the Length, as specified in the description of each Frame
Type. If the Length field is zero, that is, if both length octets are zero, then the Data and Data CRC fields shall not be present.

The length of the Data field shall be between 0 and 501 octets.

Subclause 9.6 and Annex G describe in detail the generation and checking of the Header and Data CRC octets.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 93

9.3.1 Frame Type 00: Token

The Token frame is used to pass network mastership to the destination node. The use of the Token frame is described in detail in
9.5.

There are no data octets in Token frames.

9.3.2 Frame Type 01: Poll For Master

The Poll For Master frame is transmitted by master nodes during configuration and periodically during normal network
operation. It is used to discover the presence of other master nodes on the network and to determine a successor node in the
token ring. The use of the Poll For Master frame in the token network is described in detail in 9.5.

There are no data octets in Poll For Master frames.

Both master and slave nodes shall expect to receive Poll For Master frames. Master nodes shall respond to Poll For Master
Frames as described in 9.5.6.2. Slave nodes shall ignore Poll For Master frames, as described in 9.5.7.2.

9.3.3 Frame Type 02: Reply To Poll For Master

This frame is transmitted as a reply to the Poll For Master frame. It is used to indicate that the node sending the frame wishes
to enter the token ring. The use of this frame in the token network is described in detail in 9.5.

There are no data octets in Reply To Poll For Master frames.

9.3.4 Frame Type 03: Test_Request

This frame is used to initiate a loopback test of the MS/TP to MS/TP transmission path. The use of this frame in the token
network is described in detail in 9.1.3. The length of the data portion of a Test_Request frame may range from 0 to 501
octets.

9.3.5 Frame Type 04: Test_Response

This frame is used to reply to Test_Request frames. The use of this frame in the token network is described in detail in 9.1.3. The
length of the data portion of a Test_Response frame may range from 0 to 501 octets. The data, if present, shall be that which was
present in the initiating Test_Request.

9.3.6 Frame Type 05: BACnet Data Expecting Reply

This frame is used by master nodes to convey the data parameter of a DL_UNITDATA.request whose DER parameter is
TRUE. The length of the data portion of a BACnet Data Expecting Reply frame may range from 0 to 501 octets.

9.3.7 Frame Type 06: BACnet Data Not Expecting Reply

This frame is used to convey the data parameter of a DL_UNITDATA.request whose DER parameter is FALSE. The length
of the data portion of a BACnet Data Not Expecting Reply frame may range from 0 to 501 octets.

9.3.8 Frame Type 07: Reply Postponed

This frame is used by master nodes to defer sending a reply to a previously received BACnet Data Expecting Reply frame. The
use of this frame in the token network is described in detail in 9.5.6.

There are no data octets in Reply Postponed frames.

9.3.9 Frame Types 128 through 255: Proprietary Frames

These frames are available to vendors as proprietary (non-BACnet) frames. The first two octets of the Data field shall specify
the unique vendor identification code, most significant octet first, for the type of vendor-proprietary frame to be conveyed.
The length of the data portion of a Proprietary frame shall be in the range of 2 to 501 octets.

9.4 Overview of the MS/TP Network

MS/TP uses a token to control access to a bus network. A master node may initiate the transmission of a data frame when it
holds the token. Both master and slave nodes may transmit data frames in response to requests from master nodes. After
sending at most Nmax_info_frames data frames (and awaiting any expected replies), a master node shall pass the token to the next
master node.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

94 ANSI/ASHRAE Standard 135-2012

It is generally easier to deal with a lost token than with the presence of two tokens in a ring: a simple timeout will detect token
loss, and regeneration of the token and recovery of the ring may proceed in an orderly fashion. If more than one token exists,
however, collisions are likely. These will disrupt communications and slow throughput but may not be severe enough to cause
loss of the tokens. In such a case, a persistent reduction in throughput might result. For this reason, the ring maintenance rules in
this clause favor the loss of the token over the creation of a second token.

Token frames are not acknowledged. If the acknowledgment of a token were lost, the token's sender might retry, resulting in
the creation of two tokens. Instead, after a node passes the token, it listens to see if the intended receiver node begins using
the token. Usage in this case is defined as the reception of Nmin_octets octets from the network within Tusage_timeout after the final
octet of the Token frame is transmitted.

Most token bus networks, such as ARCNET, do not distinguish between requests and replies: both are passed in the same type
of frames, which are sent only when the sending node has the token. Since MS/TP defines slave nodes that never hold the token,
a means must be provided to allow replies to be returned from slave devices. For simplicity, the same mechanism is used for
replies returned from master nodes.

When a request that expects a reply is sent to an MS/TP node, the sender shall wait for the reply to be returned before passing
the token. If the responding node is a master, it may return the reply or it may return a Reply Postponed frame, indicating that
the actual reply will be returned later, when the replying node holds the token.

9.5 MS/TP Medium Access Control

The description that follows defines variables and procedures that may in some ways resemble the variables and procedures used
in various computer languages. This description is in no way intended to prescribe the method of implementation. An
implementation may be constructed in any fashion desired as long as it matches the behavior described by this standard. The
description that follows is intended only to specify that behavior clearly and precisely.

9.5.1 UART Receiver Model

In this subclause, we present a model of the receiver interface to a UART as a data register and two Boolean flags. These are
intended to closely resemble the functions of commercial UART chips but in a generic and non-prescriptive fashion. The model
is used by the procedural and state machine descriptions.

9.5.1.1 DataRegister

The DataRegister holds the octet most recently received. The contents of this register after the occurrence of a framing or
overrun error are not specified.

9.5.1.2 DataAvailable

The flag DataAvailable is TRUE if an octet is available in DataRegister. A means of setting this flag to FALSE when the
associated data have been read from DataRegister shall be provided. Many common UARTs set DataAvailable FALSE
automatically when DataRegister is read.

9.5.1.3 ReceiveError

The flag ReceiveError is TRUE if an error is detected during the reception of an octet. Many common UARTs detect several
types of receive errors, in particular framing errors and overrun errors. ReceiveError shall be TRUE if any of these errors is
detected.

A framing error occurs if a logical zero is received when a stop bit (logical one) is expected.

An overrun error occurs if an octet is received before an earlier octet is read from DataRegister. In general, the occurrence of
overrun errors is evidence of improper design. However, it is recognized that critical system events may cause overrun errors to
occur from time to time. The inclusion of this error in the state machine processing ensures that such errors are handled in a
well-defined fashion.

A means of setting ReceiveError to FALSE when the associated error has been recognized shall be provided.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 95

9.5.2 Variables

A number of variables and timers are used in the descriptions that follow:

DataCRC Used to accumulate the CRC on the data field of a frame.

DataLength Used to store the data length of a received frame.

DestinationAddress Used to store the destination address of a received frame.

EventCount Used to count the number of received octets or errors. This is used in the detection of link activity.

FrameType Used to store the frame type of a received frame.

FrameCount The number of frames sent by this node during a single token hold. When this counter reaches the

value Nmax_info_frames, the node must pass the token.

HeaderCRC Used to accumulate the CRC on the header of a frame.

Index Used as an index by the Receive State Machine, up to the value of DataLength+1.

InputBuffer[] An array of octets, used to store octets as they are received. InputBuffer is indexed from 0 to

InputBufferSize-1. The maximum size of a frame is 501 octets. A smaller value for InputBufferSize
may be used by some implementations.

InputBufferSize The number of elements in the array InputBuffer[].

NS "Next Station," the MAC address of the node to which This Station passes the token. If the Next

Station is unknown, NS shall be equal to TS.

PS "Poll Station," the MAC address of the node to which This Station last sent a Poll For Master. This is

used during token maintenance.

ReceivedInvalidFrame A Boolean flag set to TRUE by the Receive State Machine if an error is detected during the reception

of a frame. Set to FALSE by the main state machine.

ReceivedValidFrame A Boolean flag set to TRUE by the Receive State Machine if a valid frame is received. Set to

FALSE by the main state machine.

RetryCount A counter of transmission retries used for Token and Poll For Master transmission.

SilenceTimer A timer with nominal 5 millisecond resolution used to measure and generate silence on the medium

between octets. It is incremented by a timer process and is cleared by the Receive State Machine
when activity is detected and by the SendFrame procedure as each octet is transmitted. Since the
timer resolution is limited and the timer is not necessarily synchronized to other machine events, a
timer value of N will actually denote intervals between N-1 and N.

SoleMaster A Boolean flag set to TRUE by the master machine if this node is the only known master node.

SourceAddress Used to store the Source Address of a received frame.

TokenCount The number of tokens received by this node. When this counter reaches the value Npoll, the node

polls the address range between TS and NS for additional master nodes. TokenCount is set to one at
the end of the polling process.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

96 ANSI/ASHRAE Standard 135-2012

TS "This Station," the MAC address of this node. TS is generally read from a hardware DIP switch, or
from nonvolatile memory. Valid values for TS are 0 to 254. The value 255 is used to denote
broadcast when used as a destination address but is not allowed as a value for TS.

9.5.3 Parameters

Parameter values used in the description:

Nmax_info_frames This parameter represents the value of the Max_Info_Frames property of the node's Device object. The value

of Max_Info_Frames specifies the maximum number of information frames the node may send before it must
pass the token. Max_Info_Frames may have different values on different nodes. This may be used to allocate
more or less of the available link bandwidth to particular nodes. If Max_Info_Frames is not writable in a node,
its value shall be 1.

Nmax_master This parameter represents the value of the Max_Master property of the node's Device object. The value of

Max_Master specifies the highest allowable address for master nodes. The value of Max_Master shall be less
than or equal to 127. If Max_Master is not writable in a node, its value shall be 127.

Npoll The number of tokens received or used before a Poll For Master cycle is executed: 50.

Nretry_token The number of retries on sending Token: 1.

Nmin_octets The minimum number of DataAvailable or ReceiveError events that must be seen by a receiving node in order

to declare the line "active": 4.

Tframe_abort The minimum time without a DataAvailable or ReceiveError event within a frame before a receiving node

may discard the frame: 60 bit times. (Implementations may use larger values for this timeout, not to exceed
100 milliseconds.)

Tframe_gap The maximum idle time a sending node may allow to elapse between octets of a frame the node is

transmitting: 20 bit times.

Tno_token The time without a DataAvailable or ReceiveError event before declaration of loss of token: 500 milliseconds.

Tpostdrive The maximum time after the end of the stop bit of the final octet of a transmitted frame before a node must

disable its EIA-485 driver: 15 bit times.

Treply_delay The maximum time a node may wait after reception of a frame that expects a reply before sending the first

octet of a reply or Reply Postponed frame: 250 milliseconds.

Treply_timeout The minimum time without a DataAvailable or ReceiveError event that a node must wait for a station to begin

replying to a confirmed request: 255 milliseconds. (Implementations may use larger values for this timeout,
not to exceed 300 milliseconds.)

Troff Repeater turnoff delay. The duration of a continuous logical one state at the active input port of an MS/TP

repeater after which the repeater will enter the IDLE state: 29 bit times < Troff < 40 bit times.

Tslot The width of the time slot within which a node may generate a token: 10 milliseconds.

Tturnaround The minimum time after the end of the stop bit of the final octet of a received frame before a node may enable

its EIA-485 driver: 40 bit times.

Tusage_delay The maximum time a node may wait after reception of the token or a Poll For Master frame before sending

the first octet of a frame: 15 milliseconds.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 97

Tusage_timeout The minimum time without a DataAvailable or ReceiveError event that a node must wait for a remote node to
begin using a token or replying to a Poll For Master frame: 20 milliseconds. (Implementations may use larger
values for this timeout, not to exceed 100 milliseconds.)

9.5.4 Receive Frame Finite State Machine

This section describes the reception of an MS/TP frame by a BACnet device. The description of operation is as a finite state
machine. Figure 9-3 shows the Receive Frame state machine, which is described fully in this clause. Each state is given a
name, specified in all capital letters. Transitions are also named, in mixed upper- and lowercase letters. Transitions are
described as a series of conditions followed by a series of actions to be taken if the conditions are met. The final action in
each transition is entry into a new state, which may be the same as the current state.

IDLEDATA
CRC

Bad CRC

Good CRC

EatAnOctet

EatAnError

Preamble 1

Timeout

NotPreamble

PREAMBLEError

HEADER
CRC

B
ad

C
R

C
N

oD
at

a

HEADER

Frame Type

Destination

Source

Length 1

Length 2

DATA

P
re

am
bl

e
2

CRC 1

Data Octet

Data

Timeout

Erro
r

HeaderCRC

Tim
eout

Error

Repeated
Preamble 1

C
R

C
2

FrameTooLong

SKIP DATA

Data Octet

Data Not
For Us

Ti
m

eo
ut

Er
ro

r
Do

ne N
ot

Fo
rU

s

Figure 9-3. Receive Frame State Machine.

The Receive Frame state machine operates independently from the MS/TP Master Node or Slave Node machine,
communicating with it by means of flags and other variables. The description assumes that the Master Node or Slave Node state
machine can process received frames and other indications from the Receive Frame state machine before the next frame begins.
The means by which this behavior is implemented are a local matter.

This description assumes that the node will not receive its own transmissions. If a given implementation does receive its own
transmissions, then the implementation shall be constructed so that the Receive Frame machine will ignore the transmissions.

9.5.4.1 IDLE

In the IDLE state, the node waits for the beginning of a frame.

EatAnError
 If ReceiveError is TRUE,

 then set ReceiveError to FALSE; set SilenceTimer to zero; increment EventCount; and enter the IDLE state to wait for

the start of a frame.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

98 ANSI/ASHRAE Standard 135-2012

EatAnOctet
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is not X'55',

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; and enter the IDLE state to wait

for the start of a frame.

Preamble1
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is X '55',

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; and enter the PREAMBLE state to

receive the remainder of the frame.

9.5.4.2 PREAMBLE

In the PREAMBLE state, the node waits for the second octet of the preamble.

Timeout
 If SilenceTimer is greater than Tframe_abort,

 then a correct preamble has not been received. Enter the IDLE state to wait for the start of a frame.

Error
 If ReceiveError is TRUE,

 then set ReceiveError to FALSE; set SilenceTimer to zero; increment EventCount; and enter the IDLE state to wait for

the start of a frame.

RepeatedPreamble1
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is X'55',

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; and enter the PREAMBLE state to

wait for the second preamble octet.

NotPreamble
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is not X'FF' or X '55',

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; and enter the IDLE state to wait

for the start of a frame.

Preamble2
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is X'FF',

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; set Index to zero; set HeaderCRC

to X'FF'; and enter the HEADER state to receive the remainder of the frame.

9.5.4.3 HEADER

In the HEADER state, the node waits for the fixed message header.

Timeout
 If SilenceTimer is greater than Tframe_abort,

 then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and

enter the IDLE state to wait for the start of a frame.

Error
 If ReceiveError is TRUE,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 99

then set ReceiveError to FALSE; set SilenceTimer to zero; increment EventCount; set ReceivedInvalidFrame to
TRUE to indicate that an error has occurred during the reception of a frame; and enter the IDLE state to wait for the
start of a frame.

FrameType
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 0,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; save the contents of DataRegister as FrameType; set Index to 1; and enter the
HEADER state.

Destination
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 1

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; save the contents of DataRegister as DestinationAddress; set Index to 2; and enter the
HEADER state.

Source
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 2,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; save the contents of DataRegister as SourceAddress; set Index to 3; and enter the
HEADER state.

Length1
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 3,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; multiply the contents of DataRegister by 256 and save the result as DataLength; set
Index to 4; and enter the HEADER state.

Length2
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 4,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; add the contents of DataRegister to DataLength and save the result as DataLength; set
Index to 5; and enter the HEADER state.

HeaderCRC
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 5,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment EventCount; accumulate the contents of

DataRegister into HeaderCRC; and enter the HEADER_CRC state.

9.5.4.4 HEADER_CRC

In the HEADER_CRC state, the node validates the CRC on the fixed message header.

BadCRC
 If the value of HeaderCRC is not X '55',

 then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and

enter the IDLE state to wait for the start of the next frame.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

100 ANSI/ASHRAE Standard 135-2012

NotForUs
 If the value of the HeaderCRC is X '55' and DataLength is zero and the value of DestinationAddress is not equal to

either TS (this station) or 255 (broadcast),

 then enter the IDLE state to wait for the start of the next frame.

DataNotForUs
 If the value of the HeaderCRC is X '55' and DataLength is not zero and the value of DestinationAddress is not equal to

either TS (this station) or 255 (broadcast),

 then set Index to zero and enter the SKIP_DATA state to consume the data and data CRC portions of the frame.

FrameTooLong
 If the value of the HeaderCRC is X '55' and the value of DestinationAddress is equal to either TS (this station) or 255

(broadcast) and DataLength is greater than InputBufferSize,

 then set ReceivedInvalidFrame to TRUE to indicate that a frame with an illegal or unacceptable data length has been

received, set Index to zero, and enter the SKIP_DATA state to consume the data and data CRC portions of the frame.

NoData
 If the value of HeaderCRC is X '55' and the value of DestinationAddress is equal to either TS (this station) or 255

(broadcast) and DataLength is zero,

 then set ReceivedValidFrame to TRUE to indicate that a frame with no data has been received, and enter the IDLE

state to wait for the start of the next frame.

Data
 If the value of HeaderCRC is X'55' and the value of DestinationAddress is equal to either TS (this station) or 255

(broadcast) and DataLength is not zero and DataLength is less than or equal to InputBufferSize,

 then set Index to zero; set DataCRC to X'FFFF'; and enter the DATA state to receive the data portion of the frame.

9.5.4.5 DATA

In the DATA state, the node waits for the data portion of a frame.

Timeout
 If SilenceTimer is greater than Tframe_abort,

 then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and

enter the IDLE state to wait for the start of the next frame.

Error
 If ReceiveError is TRUE,

 then set ReceiveError to FALSE; set SilenceTimer to zero; set ReceivedInvalidFrame to TRUE to indicate that an error

has occurred during the reception of a frame; and enter the IDLE state to wait for the start of the next frame.

DataOctet
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is less than DataLength,

then set DataAvailable to FALSE; set SilenceTimer to zero; accumulate the contents of DataRegister into DataCRC;
save the contents of DataRegister at InputBuffer[Index]; increment Index by 1; and enter the DATA state.

CRC1
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is equal to DataLength,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 101

 then set DataAvailable to FALSE; set SilenceTimer to zero; accumulate the contents of DataRegister into DataCRC;
increment Index by 1; and enter the DATA state.

CRC2
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is equal to DataLength plus 1,

 then set DataAvailable to FALSE; set SilenceTimer to zero; accumulate the contents of DataRegister into DataCRC;

and enter the DATA_CRC state.

9.5.4.6 DATA_CRC

In the DATA_CRC state, the node validates the CRC of the message data.

BadCRC
 If the value of DataCRC is not X'F0B8',

then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and
enter the IDLE state to wait for the start of the next frame.

GoodCRC
 If the value of DataCRC is X'F0B8',

 then set ReceivedValidFrame to TRUE to indicate the complete reception of a valid frame, and enter the IDLE state to

wait for the start of the next frame.

9.5.4.7 SKIP_DATA

In the SKIP_DATA state, the node waits for the data portion of a frame to be received so that its contents can be ignored.

Timeout
 If SilenceTimer is greater than Tframe_abort,

 then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and

enter the IDLE state to wait for the start of the next frame.

Error
 If ReceiveError is TRUE,

 then set ReceiveError to FALSE; set SilenceTimer to zero; set ReceivedInvalidFrame to TRUE to indicate that an error

has occurred during the reception of a frame; and enter the IDLE state to wait for the start of the next frame.

DataOctet
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is less than DataLength+1,

 then set DataAvailable to FALSE; set SilenceTimer to zero; increment Index by 1; and enter the SKIP_DATA state.

Done
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is equal to DataLength+1,

 then set DataAvailable to FALSE; set SilenceTimer to zero; and enter the IDLE state to wait for the start of the next

frame.

9.5.5 The SendFrame Procedure

The transmission of an MS/TP frame proceeds as follows:

Procedure SendFrame

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

102 ANSI/ASHRAE Standard 135-2012

 (a) If SilenceTimer is less than Tturnaround, wait (Tturnaround - SilenceTimer).

 (b) Disable the receiver, and enable the transmit line driver.

 (c) Transmit the preamble octets X'55', X'FF'. As each octet is transmitted, set SilenceTimer to zero.

 (d) Initialize HeaderCRC to X'FF'.

 (e) Transmit the Frame Type, Destination Address, Source Address, and Data Length octets. Accumulate each octet into

HeaderCRC. As each octet is transmitted, set SilenceTimer to zero.

 (f) Transmit the ones-complement of HeaderCRC. Set SilenceTimer to zero.

 (g) If there are data octets, initialize DataCRC to X'FFFF'.

 (h) Transmit any data octets. Accumulate each octet into DataCRC. As each octet is transmitted, set SilenceTimer to zero.

 (i) Transmit the ones-complement of DataCRC, least significant octet first. As each octet is transmitted, set SilenceTimer to

zero.

 (j) Wait until the final stop bit of the most significant CRC octet has been transmitted but not more than Tpostdrive.

 (k) Disable the transmit line driver.

 (l) Return.

9.5.6 Master Node Finite State Machine

The description of operation is as a finite state machine. Figure 9-4 shows the Master Node state machine, which is described
fully in this clause. Each state is given a name, specified in all capital letters. Transitions are also named, in mixed upper- and
lowercase letters. Transitions are described as a series of conditions followed by a series of actions to be taken if the
conditions are met. The final action in each transition is entry into a new state, which may be the same as the current state.

A master node that supports segmentation shall not use a segmentation window size greater than one.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 103

POLL
FOR

MASTER

DONE
WITH

TOKEN

INITIALIZE

USE
TOKEN

PASS
TOKEN

WAIT
FOR

REPLY

IDLENO
TOKEN

ANSWER
DATA

REQUEST

SendMaintenancePFM
NothingToSend

SendNoWait

SendAnotherFrame

SoleMaster
SoleMaster

DeclareSoleMaster
SendNextPFM

SendAndW
aitRe

ce
ive

dR
ep

ly

Re
pl

yT
im

eO
ut

In
va

lid
Fr

am
e

Re
ce

iv
ed

Po
st

po
ne

SendToken

ResetM
aintenancePFM

Re
ce

iv
ed

Re
pl

yT
oP

FM

Do
ne

W
ith

PF
M

Fi
nd

Ne
w

Su
cc

es
so

r

G
en

er
at

eT
ok

en

SawFrame
LostToken

Re
ce

iv
ed

Un
ex

pe
ct

ed
Fr

am
e

RetrySendToken

Sa
wTo

ke
nU

se
r

ReceivedUnexpectedFram
e

ReceivedToken

DeferredReply

Reply

ReceivedDataNeedingReply

DoneInitializing

ReceivedPFM

ReceivedDataNoReplyReceivedInvalidFrame

ReceivedUnwantedFrame

SoleMasterRestartMaintenancePFM

NextStationUnknown

BroadcastDataNeedingReply

Figure 9-4. Master Node State Machine.

9.5.6.1 INITIALIZE

When a master node is powered up or reset, it shall unconditionally enter the INITIALIZE state.

DoneInitializing
 Unconditionally,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

104 ANSI/ASHRAE Standard 135-2012

set TS to the node's station address, set NS equal to TS (indicating that the next station is unknown), set PS equal to
TS, set TokenCount to Npoll (thus causing a Poll For Master to be sent when this node first receives the token), set
SoleMaster to FALSE, set ReceivedValidFrame and ReceivedInvalidFrame to FALSE, and enter the IDLE state.

9.5.6.2 IDLE

In the IDLE state, the node waits for a frame.

LostToken
 If SilenceTimer is greater than or equal to Tno_token,

 then assume that the token has been lost. Set EventCount to zero and enter the NO_TOKEN state.

ReceivedInvalidFrame
 If ReceivedInvalidFrame is TRUE,

 then an invalid frame was received. Set ReceivedInvalidFrame to FALSE, and enter the IDLE state to wait for the next

frame.

ReceivedUnwantedFrame
 If ReceivedValidFrame is TRUE and either

 (a) DestinationAddress is not equal to either TS (this station) or 255 (broadcast) or

 (b) DestinationAddress is equal to 255 (broadcast) and FrameType has a value of Token, Test_Request, or a proprietary

type known to this node that expects a reply (such frames may not be broadcast) or

 (c) FrameType has a value that indicates a standard or proprietary type that is not known to this node,

 then an unexpected or unwanted frame was received. Set ReceivedValidFrame to FALSE, and enter the IDLE state to

wait for the next frame.

ReceivedToken
 If ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this station) and FrameType is equal to

Token,

 then set ReceivedValidFrame to FALSE; set FrameCount to zero; set SoleMaster to FALSE; and enter the

USE_TOKEN state.

ReceivedPFM
 If ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this station) and FrameType is equal to Poll

For Master,

 then call SendFrame to transmit a Reply To Poll For Master frame to the node whose address is specified by

SourceAddress (Source Address of the Poll); set ReceivedValidFrame to FALSE; and enter the IDLE state.

ReceivedDataNoReply

If ReceivedValidFrame is TRUE and DestinationAddress is equal to either TS (this station) or 255 (broadcast) and
FrameType is equal to BACnet Data Not Expecting Reply, Test_Response, or a proprietary type known to this node
that does not expect a reply,

 then indicate successful reception to the higher layers; set ReceivedValidFrame to FALSE; and enter the IDLE state.

ReceivedDataNeedingReply

If ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this station) and FrameType is equal to
BACnet Data Expecting Reply, Test_Request, or a proprietary type known to this node that expects a reply,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 105

 then indicate successful reception to the higher layers (management entity in the case of Test_Request); set
ReceivedValidFrame to FALSE; and enter the ANSWER_DATA_REQUEST state.

BroadcastDataNeedingReply

If ReceivedValidFrame is TRUE and DestinationAddress is equal to 255 (broadcast) and FrameType is equal to
BACnet Data Expecting Reply,

 then indicate successful reception to the higher layers; set ReceivedValidFrame to FALSE; and enter the IDLE state

to wait for the next frame.

9.5.6.3 USE_TOKEN

In the USE_TOKEN state, the node is allowed to send one or more data frames. These may be BACnet Data frames or
proprietary frames.

NothingToSend
 If there is no data frame awaiting transmission,

 then set FrameCount to Nmax_info_frames and enter the DONE_WITH_TOKEN state.

SendNoWait
 If the next frame awaiting transmission is of type Test_Response, BACnet Data Not Expecting Reply, a proprietary

type that does not expect a reply, or a frame of type BACnet Data Expecting Reply with a DestinationAddress that is
equal to 255 (broadcast),

 then call SendFrame to transmit the frame; increment FrameCount; and enter the DONE_WITH_TOKEN state.

SendAndWait
 If the next frame awaiting transmission is of type Test_Request, a proprietary type that expects a reply, or a frame of

type BACnet Data Expecting Reply with a DestinationAddress that is not equal to 255 (broadcast),

 then call SendFrame to transmit the data frame; increment FrameCount; and enter the WAIT_FOR_REPLY state.

9.5.6.4 WAIT_FOR_REPLY

In the WAIT_FOR_REPLY state, the node waits for a reply from another node.

ReplyTimeout
 If SilenceTimer is greater than or equal to Treply_timeout,

 then assume that the request has failed. Set FrameCount to Nmax_info_frames and enter the DONE_WITH_TOKEN state.

Any retry of the data frame shall await the next entry to the USE_TOKEN state. (Because of the length of the timeout,
this transition will cause the token to be passed regardless of the initial value of FrameCount.)

InvalidFrame
 If SilenceTimer is less than Treply_timeout and ReceivedInvalidFrame is TRUE,

then there was an error in frame reception. Set ReceivedInvalidFrame to FALSE and enter the
DONE_WITH_TOKEN state.

ReceivedReply

If SilenceTimer is less than Treply_timeout and ReceivedValidFrame is TRUE and DestinationAddress is equal to TS
(this station) and FrameType is equal to Test_Response, BACnet Data Not Expecting Reply, or a proprietary type
that indicates a reply,

 then indicate successful reception to the higher layers; set ReceivedValidFrame to FALSE; and enter the

DONE_WITH_TOKEN state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

106 ANSI/ASHRAE Standard 135-2012

ReceivedPostpone
 If SilenceTimer is less than Treply_timeout and ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this

station) and FrameType is equal to Reply Postponed,

 then the reply to the message has been postponed until a later time. Set ReceivedValidFrame to FALSE and enter the

DONE_WITH_TOKEN state.

ReceivedUnexpectedFrame
 If SilenceTimer is less than Treply_timeout and ReceivedValidFrame is TRUE and either

 (a) DestinationAddress is not equal to TS (the expected reply should not be broadcast) or

 (b) FrameType has a value other than Test_Response, BACnet Data Not Expecting Reply, or proprietary reply frame,

 then an unexpected frame was received. This may indicate the presence of multiple tokens. Set ReceivedValidFrame to

FALSE, and enter the IDLE state to synchronize with the network. This action drops the token.

9.5.6.5 DONE_WITH_TOKEN

The DONE_WITH_TOKEN state either sends another data frame, passes the token, or initiates a Poll For Master cycle.

SendAnotherFrame
 If FrameCount is less than Nmax_info_frames,

 then this node may send another information frame before passing the token. Enter the USE_TOKEN state.

NextStationUnknown
 If FrameCount is greater than or equal to Nmax_info_frames, SoleMaster is FALSE and NS is equal to TS,

 then the next station to which the token should be sent is unknown. Set PS to (TS+1) modulo (Nmax_master+1); call

SendFrame to transmit a Poll For Master frame to PS; set RetryCount to zero; and enter the POLL_FOR_MASTER
state.

SoleMaster

If FrameCount is greater than or equal to Nmax_info_frames and TokenCount is less than Npoll-1 and SoleMaster is
TRUE,

 then there are no other known master nodes to which the token may be sent (true master-slave operation). Set

FrameCount to zero, increment TokenCount, and enter the USE_TOKEN state.

SendToken
 If FrameCount is greater than or equal to Nmax_info_frames and TokenCount is less than Npoll-1 and SoleMaster is FALSE,

or if NS is equal to (TS+1) modulo (Nmax_master+1),

then increment TokenCount; call SendFrame to transmit a Token frame to NS; set RetryCount and EventCount to
zero; and enter the PASS_TOKEN state. (The comparison of NS and TS+1 eliminates the Poll For Master if there
are no addresses between TS and NS, since there is no address at which a new master node may be found in that
case).

SendMaintenancePFM
 If FrameCount is greater than or equal to Nmax_info_frames and TokenCount is greater than or equal to Npoll-1 and (PS+1)

modulo (Nmax_master+1) is not equal to NS,

 then set PS to (PS+1) modulo (Nmax_master+1); call SendFrame to transmit a Poll For Master frame to PS; set

RetryCount to zero; and enter the POLL_FOR_MASTER state.

ResetMaintenancePFM

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 107

 If FrameCount is greater than or equal to Nmax_info_frames and TokenCount is greater than or equal to Npoll-1 and (PS+1)
modulo (Nmax_master+1) is equal to NS, and SoleMaster is FALSE,

 then set PS to TS; call SendFrame to transmit a Token frame to NS; set RetryCount and EventCount to zero; set

TokenCount to one; and enter the PASS_TOKEN state.

SoleMasterRestartMaintenancePFM
 If FrameCount is greater than or equal to Nmax_info_frames, and TokenCount is greater than or equal to Npoll-1, and (PS+1)

modulo (Nmax_master+1) is equal to NS, and SoleMaster is TRUE,

 then set PS to (NS +1) modulo (Nmax_master+1) ; call SendFrame to transmit a Poll For Master to PS; set NS to TS (no

known successor node); set RetryCount and TokenCount to zero; set TokenCount to one; and enter the
POLL_FOR_MASTER state to find a new successor to TS.

9.5.6.6 PASS_TOKEN

The PASS_TOKEN state listens for a successor to begin using the token that this node has just attempted to pass.

SawTokenUser
 If SilenceTimer is less than Tusage_timeout and EventCount is greater than Nmin_octets,

 then assume that a frame has been sent by the new token user. Enter the IDLE state to process the frame.

RetrySendToken
 If SilenceTimer is greater than or equal to Tusage_timeout and RetryCount is less than Nretry_token,

 then increment RetryCount; call SendFrame to transmit a Token frame to NS; set EventCount to zero; and re-enter the

current state to listen for NS to begin using the token.

FindNewSuccessor
 If SilenceTimer is greater than or equal to Tusage_timeout and RetryCount is greater than or equal to Nretry_token,

then assume that NS has failed. Set PS to (NS+1) modulo (Nmax_master+1); call SendFrame to transmit a Poll For
Master frame to PS; set NS to TS (no known successor node); set RetryCount and TokenCount to zero; and enter the
POLL_FOR_MASTER state to find a new successor to TS.

9.5.6.7 NO_TOKEN

The NO_TOKEN state is entered if SilenceTimer becomes greater than Tno_token, indicating that there has been no network
activity for that period of time. The timeout is continued to determine whether or not this node may create a token.

SawFrame
 If SilenceTimer is less than Tno_token+(Tslot*TS) and EventCount is greater than Nmin_octets,

 then some other node exists at a lower address. Enter the IDLE state to receive and process the incoming frame.

GenerateToken
 If SilenceTimer is greater than or equal to Tno_token+(Tslot*TS) and SilenceTimer is less than Tno_token+(Tslot*(TS+1)),

 then assume that this node is the lowest numerical address on the network and is empowered to create a token. Set PS

to (TS+1) modulo (Nmax_master+1); call SendFrame to transmit a Poll For Master frame to PS; set NS to TS (indicating
that the next station is unknown); set RetryCount and TokenCount to zero; and enter the POLL_FOR_MASTER state
to find a new successor to TS.

9.5.6.8 POLL_FOR_MASTER

In the POLL_FOR_MASTER state, the node listens for a reply to a previously sent Poll For Master frame in order to find a
successor node.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

108 ANSI/ASHRAE Standard 135-2012

ReceivedReplyToPFM

If ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this station) and FrameType is equal to
Reply To Poll For Master,

 then set SoleMaster to FALSE; set NS equal to SourceAddress; set EventCount to zero; call SendFrame to transmit a

Token frame to NS; set PS to the value of TS; set TokenCount and RetryCount to zero; set ReceivedValidFrame to
FALSE; and enter the PASS_TOKEN state.

ReceivedUnexpectedFrame
 If ReceivedValidFrame is TRUE and either

 (a) DestinationAddress is not equal to TS or

 (b) FrameType is not equal to Reply To Poll For Master,

 then an unexpected frame was received. This may indicate the presence of multiple tokens. Set ReceivedValidFrame to

FALSE and enter the IDLE state to synchronize with the network. This action drops the token.

SoleMaster
 If SoleMaster is TRUE and either

 (a) SilenceTimer is greater than or equal to Tusage_timeout or

 (b) ReceivedInvalidFrame is TRUE,

 then there was no valid reply to the periodic poll by the sole known master for other masters. Set FrameCount to zero,

set ReceivedInvalidFrame to FALSE, and enter the USE_TOKEN state.

DoneWithPFM
 If SoleMaster is FALSE and NS is not equal to TS and either:

 (a) SilenceTimer is greater than or equal to Tusage_timeout or

 (b) ReceivedInvalidFrame is TRUE,

then there was no valid reply to the maintenance poll for a master at address PS. Set EventCount to zero; call
SendFrame to transmit a Token frame to NS; set RetryCount to zero; set ReceivedInvalidFrame to FALSE; and
enter the PASS_TOKEN state.

SendNextPFM

If SoleMaster is FALSE and NS is equal to TS (no known successor node) and (PS+1) modulo (Nmax_master+1) is not
equal to TS and either:

 (a) SilenceTimer greater than or equal to Tusage_timeout or

 (b) ReceivedInvalidFrame is TRUE,

 then set PS to (PS+1) modulo (Nmax_master+1); call SendFrame to transmit a Poll For Master frame to PS; set

RetryCount to zero; set ReceivedInvalidFrame to FALSE; and re-enter the current state.

DeclareSoleMaster

If SoleMaster is FALSE and NS is equal to TS (no known successor node) and (PS+1) modulo (Nmax_master+1) is
equal to TS and either

 (a) SilenceTimer is greater than or equal to Tusage_timeout or

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 109

 (b) ReceivedInvalidFrame is TRUE,

then set SoleMaster TRUE to indicate that this station is the only master; set FrameCount to zero; set
ReceivedInvalidFrame to FALSE; and enter the USE_TOKEN state.

9.5.6.9 ANSWER_DATA_REQUEST

The ANSWER_DATA_REQUEST state is entered when a BACnet Data Expecting Reply, a Test_Request, or a proprietary
frame that expects a reply is received.

Reply
 If a reply is available from the higher layers within Treply_delay after the reception of the final octet of the requesting

frame (the mechanism used to determine this is a local matter),

 then call SendFrame to transmit the reply frame and enter the IDLE state to wait for the next frame.

DeferredReply

If no reply will be available from the higher layers within Treply_delay after the reception of the final octet of the
requesting frame (the mechanism used to determine this is a local matter),

 then an immediate reply is not possible. Any reply shall wait until this node receives the token. Call SendFrame to

transmit a Reply Postponed frame, and enter the IDLE state.

9.5.7 Slave Node Finite State Machine

The state machine for a slave node is similar to, but considerably simpler than, that for a master node. A slave node shall neither
transmit nor receive segmented messages. If a slave node receives a segmented BACnet-Confirmed-Request-PDU, the node
shall respond with a BACnet-Abort-PDU specifying abort-reason "segmentation not supported." Figure 9-5 shows the Slave
Node state machine, which is described fully in the following text.

INITIALIZE

Do
ne

 In
iti

al
iz

in
g

ANSWER
DATA

REQUEST

ReceivedDataNeedingReply

Reply

Cannot Reply

ReceivedUnwantedFrame

ReceivedInvalidFrame

ReceivedDataNoReply

IDLE

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

110 ANSI/ASHRAE Standard 135-2012

Figure 9-5. Slave Node State Machine

9.5.7.1 INITIALIZE

When a slave node is powered up or reset, it shall unconditionally enter the INITIALIZE state.

DoneInitializing
 Unconditionally,

set TS to the node's station address; set ReceivedValidFrame and ReceivedInvalidFrame to FALSE; and enter the
IDLE state.

9.5.7.2 IDLE

In the IDLE state, the node waits for a frame.

ReceivedInvalidFrame
 If ReceivedInvalidFrame is TRUE,

 then an invalid frame was received. Set ReceivedInvalidFrame to FALSE, and enter the IDLE state to wait for the next

frame.

ReceivedUnwantedFrame
 If ReceivedValidFrame is TRUE and either

(a) DestinationAddress is not equal to either TS (this station) or 255 (broadcast) or

(b) DestinationAddress is equal to 255 (broadcast) and FrameType has a value of BACnet Data Expecting Reply,
Test_Request, or a proprietary type known to this node that expects a reply (such frames may not be broadcast) or

(c) FrameType has a value of Token, Poll For Master, Reply To Poll For Master, Reply Postponed, or a standard or

proprietary frame type not known to this node,

 then an unexpected or unwanted frame was received. Set ReceivedValidFrame to FALSE, and enter the IDLE state to

wait for the next frame.

ReceivedDataNoReply

If ReceivedValidFrame is TRUE and DestinationAddress is equal to either TS (this station) or 255 (broadcast) and
FrameType is equal to BACnet Data Not Expecting Reply, Test_Response, or a proprietary type known to this node
that does not expect a reply,

 then indicate successful reception to the higher layers, set ReceivedValidFrame to FALSE, and enter the IDLE state.

ReceivedDataNeedingReply

If ReceivedValidFrame is TRUE and DestinationAddress is equal to TS (this station) and FrameType is equal to
BACnet Data Expecting Reply, Test_Request, or a proprietary type known to this node that expects a reply,

then indicate successful reception to the higher layers (management entity in the case of Test_Request), set
ReceivedValidFrame to FALSE, and enter the ANSWER_DATA_REQUEST state.

9.5.7.3 ANSWER_DATA_REQUEST

The ANSWER_DATA_REQUEST state is entered when a BACnet Data Expecting Reply, a Test_Request, or a proprietary
frame that expects a reply is received.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 111

Reply
If a reply is available from the higher layers within Treply_delay after the reception of the final octet of the requesting
frame (the mechanism used to determine this is a local matter),

 then call SendFrame to transmit the reply frame, and enter the IDLE state to wait for the next frame.

CannotReply

If no reply will be available from the higher layers within Treply_delay after the reception of the final octet of the
requesting frame (the mechanism used to determine this is a local matter),

 then no reply is possible. Enter the IDLE state.

9.6 Cyclic Redundancy Check (CRC)

MS/TP uses Cyclic Redundancy Checks (CRC) to provide error-detection. CRCs have a number of advantages over simpler
error detection methods, such as parity or checksums, which are commonly used with UART-based networks. The major
drawbacks of parity are that it adds one bit of overhead to each transmitted octet and that it will not detect an even number of
errors within one octet. Exclusive OR checksums, sometimes called longitudinal parity, offer reduced overhead over octet parity
but suffer from the same inability to detect an even number of errors in a given bit position. Additive checksums are similar but
the exact error detection characteristics are dependent on bit position.

ISO 8802-3, ARCNET, and many other standard and proprietary communications systems use more robust CRCs.
Mathematically, a CRC is the remainder that results when a data stream (such as a frame) taken as a binary number is divided
modulo two by a generator polynomial. The proof of the error-detecting properties of the CRC and the selection of appropriate
polynomials are beyond the scope of this document.

The MS/TP frame header CRC uses the polynomial

G(X) = X8 + X7 + 1

In operation, at the transmitter, the initial content of the CRC register of the device computing the remainder of the division is
preset to all ones. The register is then modified by division by the generator polynomial G(x) of the Frame Type, Destination
Address, Source Address, and Length fields. The ones-complement of the resulting remainder is transmitted as the 8-bit Header
CRC.

At the receiver, the initial content of the CRC register of the device computing the remainder of the division is preset to all
ones. The register is then modified by division by the generator polynomial G(x) of the Frame Type, Destination Address,
Source Address, Length, and Header CRC fields of the incoming message. In the absence of transmission errors, the resultant
remainder will be:

0101 0101 (x0 through x7, respectively).

The MS/TP data CRC uses the CRC-CCITT polynomial

G(X) = X16 + X12 + X5 + 1

In operation, at the transmitter, the initial content of the CRC register of the device computing the remainder of the division is
preset to all ones. The register is then modified by division by the generator polynomial G(x) of the Data field. The ones-
complement of the resulting remainder is transmitted, least significant octet first, as the 16 bit Data CRC.

At the receiver, the initial content of the CRC register of the device computing the remainder of the division is preset to all ones.
The register is then modified by division by the generator polynomial G(x) of the Data and Data CRC fields of the incoming
message. In the absence of transmission errors, the resultant remainder will be

1111 0000 1011 1000 (x0 through x15, respectively).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

112 ANSI/ASHRAE Standard 135-2012

NOTE: The initialization of the CRC register to all ones and the complementing of the register before transmission prevent the
CRC from having a value of zero if the covered field is all zeros.

Annex G describes the implementation of the CRC algorithms in software.

9.7 Interfacing MS/TP LANs with Other BACnet LANs

9.7.1 Routing of Messages from MS/TP

When a network entity with routing capability receives from a directly connected MS/TP data link an NPDU whose
'data_expecting_reply' parameter is TRUE and the NPDU is to be routed to another network according to the procedures of
Clause 6, the network entity shall direct the MS/TP data link to transmit a Reply Postponed frame before attempting to route
the NPDU. This allows the routing node to leave the ANSWER_DATA_REQUEST state and the sending node to leave the
WAIT_FOR_REPLY state before the potentially lengthy process of routing the NPDU is begun.

9.7.2 Routing of Messages to MS/TP

When a network entity issues a DL_UNITDATA.request to a directly connected MS/TP data link, it shall set the
'data_expecting_reply' parameter of the DL-UNITDATA.request equal to the value of the 'data_expecting_reply' parameter of
the network protocol control information of the NPDU, which is transferred in the 'data' parameter of the request.

9.8 Responding BACnet User Processing of Messages from MS/TP

In 5.4.5.3, AWAIT_RESPONSE, the following transition shall be added:

PostponeReply
 If a CONF_SERV.response will not be received from the local application layer early enough that a reply MS/TP

frame would be received by the remote node within Treply_timeout (defined in 9.5.3) after the transmission of the original
BACnet-Confirmed-Request-PDU (the means of this determination are a local matter),

 then direct the MS/TP data link to transmit a Reply Postponed frame and enter the AWAIT_RESPONSE state.

In 5.4.5.3, AWAIT_RESPONSE, in the transition SendSegmentedComplexACK, the text "transmit a BACnet-ComplexACK-
PDU..." shall be replaced by "direct the MS/TP data link to transmit a Reply Postponed frame; transmit a BACnet-
ComplexACK-PDU...." (It is necessary to postpone the reply because transmission of the segmented ComplexACK cannot
begin until the node holds the token.)

9.9 Repeaters

If any of the limits in 9.2.1 and 9.2.2 are exceeded, one or more repeaters is required. An MS/TP EIA-485 Repeater is defined as
an active device that provides selective interconnection between two or more segments of MS/TP cable. The repeater contains
logic that detects and passes signals received from one segment onto all other segments. The segment from which signals are
received is determined according to a priority algorithm.

The method used by a repeater to detect signals and to distinguish them from noise is a local matter, subject to the following
constraints:

(a) The repeater may not lengthen or shorten the duration of any bit of the output data stream by more than 2% relative to the

input data stream.

(b) The repeater may not delay the output data stream by more than two bit times relative to the input data stream.

No more than 10 bit times of delay shall exist in the path between any two nodes of an MS/TP network. This corresponds to five
repeaters with worst-case delays (if delay by the medium is negligible, as it will be at all except the highest baud rates) or a
greater number of repeaters with smaller delays.

The minimum value of repeater turnoff delay Troff is dictated by the maximum amount of idle line allowed during a single
frame, Tframe_gap. If the value of the octet immediately preceding the idle is X'FF', then there may be up to 9+Tframe_gap = 29 bit
times of one state between zero (start) bits. Thus, Troff must be larger than 29 bit times if it is not to turn off during the
transmission of a frame.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

9. DATA LINK/PHYSICAL LAYERS: MS/TP LAN

ANSI/ASHRAE Standard 135-2012 113

In order to avoid contention between repeater turnoff and the beginning of the next frame, the repeater turnoff delay Troff may be
no larger than Tturnaround bit times, and a node may not enable its driver until a minimum of Tturnaround after the end of the
previous frame. Thus

 29 bit times < Troff < 40 bit times.

An N-way repeater may be represented by an N+1 state finite state machine. One state is the IDLE state, and the others each
receive from one segment and re-transmit on all other segments. The repeater state machine uses the timer PortIdle to control the
return to the IDLE state. PortIdle shall have a resolution of one bit time or finer.

9.9.1 IDLE

In the IDLE state, all receivers are enabled and all transmitters are disabled. The repeater remains in the IDLE state until a
logical zero (i.e., the beginning of a start bit) is detected on some port.

When a zero is detected, the repeater disables all receivers, except the one on which the zero was detected, and enables all
transmitters, except the one associated with the port on which the zero was detected. The repeater then enters the state associated
with the active receiver port. If a zero is detected simultaneously on more than one port, the method used to arbitrate between
them is a local matter.

Port1Active
 If a zero is detected on Port 1,

 then disable all receivers except Port 1; enable all transmitters except Port 1; pass the zero to all enabled transmitters;

set PortIdle to zero; and enter the PORT_1_ACTIVE state.

Port2Active
 If a zero is detected on Port 2,

 then disable all receivers except Port 2; enable all transmitters except Port 2; pass the zero to all enabled transmitters;

set PortIdle to zero; and enter the PORT_2_ACTIVE state.

This may be extended to as many ports as desired simply by adding transitions and PORT_N_ACTIVE states.

9.9.2 PORT_i_ACTIVE

In the PORT_i_ACTIVE state, the Repeater passes signals from Port i to all other ports. The Repeater will remain in this
state until Port i becomes idle. Idleness is defined as the absence of the logical zero state at Port i for more than Troff bit times.

When idleness is detected, all transmitters are disabled, all receivers are enabled, and the Repeater enters the IDLE state to await
renewed activity.

PortActive0
 If a zero is detected on Port i,

 then pass the zero to all other ports, set PortIdle to zero, and re-enter the current state.

PortActive1
 If PortIdle is less than Troff and a one is detected at Port i,

 then pass the one to all other ports and re-enter the current state.

PortInactive
 If PortIdle is greater than or equal to Troff,

 then disable all transmitters, enable all receivers, and enter the IDLE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

114 ANSI/ASHRAE Standard 135-2012

10 DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT (PTP)

This clause defines a data link layer protocol by which two BACnet devices may communicate using a variety of point-to-point
(PTP) communication mechanisms. These mechanisms may be accessed through an EIA-232 or bus-level interface to modems,
line drivers, or other data communication equipment. The specific physical connection composing the PTP connection is a local
matter.

This clause does not attempt to specify the means by which the virtual or physical connection is established. Rather, it specifies a
protocol that allows two BACnet network layer entities to establish a BACnet PTP data link connection, reliably exchange
BACnet PDUs, and perform an orderly termination of a BACnet PTP connection using an already established physical
connection.

This data link layer protocol addresses the particular characteristics associated with a PTP connection. A PTP connection differs
from other BACnet data link/physical layer options in several ways: it is capable of full duplex operation, it may be temporary in
nature, and it may be significantly slower. The PTP protocol is only used between devices that are half- routers. See 6.7.

This protocol does not assume that the answering device is in a state where it can accept BACnet PDUs containing binary
information. For instance, the same serial device port that is dialed into by a BACnet device may also be dialed into and logged
onto by a human operator using a simple ANSI X3.4 terminal. Therefore, the connection establishment procedure is initiated
using an ANSI X3.4 printable character sequence.

The connection process also provides for optional password protection. The configuration and checking of the password
parameter is considered to be a local matter.

10.1 Overview

Once a physical connection has been established between the calling device and the answering device, a sequence of frames are
exchanged to establish a BACnet connection. If the connection is established, the two devices may freely exchange BACnet
PDUs. Either the calling device or the answering device may initiate a termination of the connection. The connection remains
until a request for termination has been issued by either device, either device determines that the physical layer connection has
been lost, or until a local timer expires, indicating that the peer device is no longer active. Unlike other BACnet data link
protocols, the PTP protocol is acknowledged using an alternating bit approach. It should be noted that the protocol allows PDUs
to be exchanged between the two devices simultaneously to take advantage of full duplex operation.

Note that it is also possible that two devices are permanently connected at the physical layer in which case the BACnet
connect sequence is performed only once, at initialization time. In this case both devices would be running the PTP data link
layer and would always be capable of sending and receiving BACnet PTP data link frames.

10.2 Service Specification

PTP includes a data link layer sufficient to provide to the BACnet network layer the same services as are offered by ISO
8802-2 Type 1. Because PTP is a connection-oriented data link layer, additional primitives are needed to manage the
connection establishment and termination phases. PTP does not provide all of the functionality of ISO 8802-2 Type 2.

This subclause describes the primitives and parameters associated with the provided services. The parameters are described in an
abstract sense, which does not constrain the implementation method. These primitives provide an interface to the BACnet
network layer consistent with the other BACnet data link options except for the addition of connection management primitives.

10.2.1 DL-UNITDATA.request

10.2.1.1 Function

This primitive is the service request primitive for the unacknowledged connectionless-mode data transfer service.

10.2.1.2 Semantics of the Service Primitive

The primitive shall provide parameters as follows:

DL-UNITDATA.request (
 source_address,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 115

 destination_address,
 data,
 priority
)

Each source and destination address consists of the logical concatenation of a medium access control (MAC) address and a link
service access point (LSAP). However, since PTP does not define or use MAC addresses and since it supports only the BACnet
network layer, the 'source_address' and 'destination_address' parameters are ignored.

The 'data' parameter specifies the link service data unit (LSDU) to be transferred by the PTP entity.

The 'priority' parameter specifies the priority desired for the data unit transfer. The priority parameter is ignored by PTP.

10.2.1.3 When Generated

This primitive is passed from the network layer to the PTP entity to request that a network protocol data unit (NPDU) be sent
to one or more remote LSAPs using unacknowledged connectionless-mode procedures.

10.2.1.4 Effect on Receipt

Receipt of this primitive causes the PTP entity to attempt to send the NPDU using unacknowledged connectionless-mode
procedures.

10.2.2 DL-UNITDATA.indication

10.2.2.1 Function

This primitive is the service indication primitive for the unacknowledged connectionless-mode data transfer service.

10.2.2.2 Semantics of the Service Primitive

The primitive shall provide the following parameters:

DL-UNITDATA.indication (
 source_address,
 destination_address,
 data,
 priority
)

Each source and destination address consists of the logical concatenation of a medium access control (MAC) address and a
link service access point (LSAP). However, since PTP does not define or use MAC addresses, and since it supports only the
BACnet network layer, the 'source_address' and 'destination_address' parameters are ignored.

The 'data' parameter specifies the link service data unit that has been received by the PTP entity.

The 'priority' parameter specifies the priority desired for the data unit transfer. The priority parameter is ignored by PTP.

10.2.2.3 When Generated

This primitive is passed from the PTP entity to the network layer to indicate the arrival of an NPDU from the specified
remote entity.

10.2.2.4 Effect on Receipt

The effect of receipt of this primitive by the network layer is unspecified.

10.2.3 Test_Request and Test_Response

ISO 8802-2 Type 1 defines XID and TEST PDUs and procedures but does not define an interface to invoke them from the
network layer. Test_Request and Test_Response PDUs and procedures have been defined for PTP to accomplish the same
functions. Because PTP supports only the equivalent of a single LSAP, these PDUs are sufficient to implement the relevant
aspects of XID as well.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

116 ANSI/ASHRAE Standard 135-2012

The response with Test_Response to a Test_Request PDU is mandatory for all PTP nodes. The origination of a Test_Request
PDU is optional.

10.2.3.1 Use of Test_Request and Test_Response for ISO 8802-2 TEST Functions

The TEST function provides a facility to conduct loopback tests of the PTP to PTP transmission path. Successful completion
of the test consists of sending a Test_Request PDU with a particular information field to the designated destination, and
receiving, in return, the identical information field in a Test_Response PDU.

If a receiving node can successfully receive and return the information field, it shall do so. If it cannot receive and return the
entire information field but can detect the reception of a valid Test_Request frame (for example, by computing the CRC on
octets as they are received), then the receiving node shall discard the information field and return a Test_Response containing
no information field. If the receiving node cannot detect the valid reception of frames with overlength information fields, then
no response shall be returned.

10.2.3.2 Use of Test_Request and Test_Response for ISO 8802-2 XID functions

ISO 8802-2 describes seven possible uses of XID:

 (a) XID can be used with a null DSAP and null SSAP as an "Are You There" test. Since PTP supports only the equivalent

of a single LSAP, the Test_Request PDU with no data can perform this function.

 (b) XID can be used with a group or global DSAP to identify group members or all active stations. Since PTP supports

only the equivalent of a single LSAP, the Test_Request PDU with no data can perform this function.

 (c) XID can be used for a duplicate address check.

 (d) Class II LLCs may use XID to determine window size. PTP does not support Class II operation.

 (e) XID may be used to identify the class of each LLC. Since PTP supports only Class I operation, this is a trivial

operation.

 (f) XID may be used to identify the service types supported by each LSAP. Since PTP supports only Class I operation,

this is a trivial operation.

 (g) An LLC can announce its presence by transmitting an XID with global DSAP. Since PTP supports only one LSAP, the

equivalent can be accomplished by transmitting a Test_Response PDU.

10.2.4 DL-CONNECT.request

10.2.4.1 Function

This primitive is the service request primitive for the connection establishment service.

10.2.4.2 Semantics of the Service Primitive

The primitive shall provide the following parameters:

DL-CONNECT.request (
 destination_address,
 password
)

The 'destination_address' parameter specifies the information required by the PTP entity to initiate the establishment of a
physical connection between the local and remote BACnet devices. Although, as stated at the beginning of this clause, the
establishment of the physical connection is a local matter, it is likely that this parameter would convey information such as
contained in the Port Info field of the Initialize-Routing-Table network layer message and subsequently stored in a node's
routing table. See 6.4.7.

The 'password' parameter specifies the password to be used in the PTP connection process described in 10.4.8.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 117

10.2.4.3 When Generated

This primitive is passed from the network layer to the PTP entity to request that a logical link connection be established.

10.2.4.4 Effect on Receipt

The receipt of this primitive causes the PTP entity to initiate establishment of a connection with the remote PTP entity.

10.2.5 DL-CONNECT.indication

10.2.5.1 Function

This primitive is the service indication primitive for the connection establishment service.

10.2.5.2 Semantics of the Service Primitive

The primitive provides no parameters.

10.2.5.3 When Generated

This primitive is passed from the PTP entity to the network layer to indicate that a logical link connection has been
established.

10.2.5.4 Effect on Receipt

The network layer entity may use this connection for data unit transfer.

10.2.6 DL-CONNECT.confirm

10.2.6.1 Function

This primitive is the service confirmation primitive for the connection establishment service.

10.2.6.2 Semantics of the Service Primitive

The primitive shall provide the following parameter:

DL-CONNECT.confirm (
 status
)

The 'status' parameter specifies whether or the not the connection has been successfully established.

10.2.6.3 When Generated

This primitive is passed from the PTP entity to the network layer to indicate that a logical link connection has been
established.

10.2.6.4 Effect on Receipt

The network layer entity may use this connection for data unit transfer if the 'status' parameter indicates the successful
establishment of a PTP connection.

10.2.7 DL-DISCONNECT.request

10.2.7.1 Function

This primitive is the service request primitive for the connection termination service.

10.2.7.2 Semantics of the Service Primitive

The primitive shall provide the following parameters:

DL-DISCONNECT.request (
 destination_address
)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

118 ANSI/ASHRAE Standard 135-2012

The 'destination_address' parameter specifies the information required by the PTP entity to initiate the establishment of a
physical connection between the local and remote BACnet devices. The PTP entity uses this same information to identify the
particular PTP connection instance that is to be terminated.

10.2.7.3 When Generated

This primitive is passed from the network layer to the PTP entity to request that a logical link connection be terminated.

10.2.7.4 Effect on Receipt

The receipt of this primitive causes the PTP entity to initiate termination of a connection with the remote PTP entity.

10.2.8 DL-DISCONNECT.indication

10.2.8.1 Function

This primitive is the service indication primitive for the connection termination service.

10.2.8.2 Semantics of the Service Primitive

The primitive shall provide the following parameters:

DL-DISCONNECT.indication (
 reason
)

The 'reason' parameter specifies the reason for the disconnection. The reasons for disconnection may include a request by the
remote entity, loss of physical connection, or an error internal to the PTP sublayer.

10.2.8.3 When Generated

This primitive is passed from the PTP entity to the network layer to indicate that a logical link connection has been
terminated.

10.2.8.4 Effect on Receipt

The network layer entity may no longer use this connection for data unit transfer.

10.2.9 DL-DISCONNECT.confirm

10.2.9.1 Function

This primitive is the service confirmation primitive for the connection termination service.

10.2.9.2 Semantics of the Service Primitive

The primitive shall provide the following parameters:

DL-DISCONNECT.confirm (
 destination_address
)

The 'destination_address' parameter specifies the information required by the PTP entity to initiate the establishment of a
physical connection between the local and remote BACnet devices. The network layer entity uses this same information to
identify the particular PTP connection instance that has been terminated.

10.2.9.3 When Generated

This primitive is passed from the PTP entity to the network layer to indicate that a logical link connection has been
terminated.

10.2.9.4 Effect on Receipt

The network layer entity may no longer use this connection for data unit transfer.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 119

10.3 Point-to-Point Frame Format

All PTP data link frames, with the exception of the ANSI X3.4 sequence used to initiate a PTP connection, have the
following format:

 Preamble two octet preamble X'55FF'
 Frame Type one octet
 Length length of data field not including CRC, two octets, most significant octet first
 Header CRC one octet
 Data varies with frame type; variable length
 Data CRC (if data is present) two octets, least significant octet first

The Preamble, Frame Type, Length, and Header CRC are collectively known as the header segment of the frame. The Data
and Data CRC are collectively known as the data segment of the frame. The Frame Type is used to distinguish between
different types of MAC frames. Defined types are:

 X'00' Heartbeat XOFF
 X'01' Heartbeat XON
 X'02' Data 0
 X'03' Data 1
 X'04' Data Ack 0 XOFF
 X'05' Data Ack 1 XOFF
 X'06' Data Ack 0 XON
 X'07' Data Ack 1 XON
 X'08' Data Nak 0 XOFF
 X'09' Data Nak 1 XOFF
 X'0A' Data Nak 0 XON
 X'0B' Data Nak 1 XON
 X'0C' Connect Request
 X'0D' Connect Response
 X'0E' Disconnect Request
 X'0F' Disconnect Response
 X'14' Test_Request
 X'15' Test_Response

Frame Types X'00' through X'7F' are reserved by ASHRAE. Frame types X'10', X'11', and X '13' shall never be used for a
valid frame type because of the character transparency method described in 10.3.1. Frame Types X'80' through X'FF' are
available to vendors for proprietary (non-BACnet) frames. Proprietary PTP frames shall follow the same state machine
transitions defined for Data frames.

The Data field is conditional on the Frame Type, as specified in the description of each Frame Type. If there is no Data field,
then the length field shall be zero and the Data and Data CRC (data segment) shall be omitted.

The header CRC octet is the ones complement of the remainder that results when the Frame Type and Length fields are
divided by the CRC polynomial

G(X) = X8 + X7 + 1.

The data CRC octets are the ones complement of the remainder that results when the Data field is divided by the
CRC-CCITT polynomial

G(X) = X16 + X12 + X5 + 1.

Annex G describes in detail the generation and checking of the CRCs.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

120 ANSI/ASHRAE Standard 135-2012

10.3.1 Character Transparency and Flow Control

In order to support modems that respond to flow control or other control characters, character stuffing is used to prevent
transmission of these codes as part of the data. Where a value corresponding to a control character would appear in a frame, it
shall be prefixed with a data link escape code (X'10') and the high order bit shall be set in the value as transmitted. The
control characters listed below shall be encoded in this manner. Implementations shall be able to receive and decode all
encoded control characters.

X'10' (DLE) => X'10' X'90'
X'11' (XON) => X'10' X'91'
X'13' (XOFF) => X'10' X'93'

The characters X'11' (XON) and X'13' (XOFF) are never transmitted by the SendFrame procedure described in 10.4.4 and are
ignored by the Receive Frame state machine described in 10.4.7. The use of these characters or of Request To Send (RTS),
Clear To Send (CTS), or other EIA-232 control lines for flow control purposes is a local matter. The use of such methods of
flow control is allowed only between a PTP device and local equipment such as a modem. Flow control between PTP devices
shall be implemented using the flow control frames defined in 10.3.

10.3.2 Frame Types X'00' and X'01': Heartbeat Frames

A frame of one of these types is transmitted by each device periodically when no other data are ready to transmit, to indicate
to the peer device that the data link is still active. Heartbeat frames contain no data segment. A type X'00' frame is transmitted
to indicate to the peer device that the local device is not ready to accept Data frames. A type X'01' frame is transmitted to
indicate readiness to receive Data frames.

10.3.3 Frame Types X'02' and X'03': Data Frames

A frame of one of these types is transmitted to convey data (NPDUs) to the peer device. The length of the data field of a Data
frame may range from 0 to 501 octets. Successive transmissions alternate frame types; type X'02' corresponds to transmit
sequence number 0, and type X'03' corresponds to transmit sequence number 1.

10.3.4 Frame Types X'04' through X'07': Data Ack Frames

A frame of one of these types is transmitted to acknowledge a correctly received Data frame. Data Ack frames contain no
data segment. Frame types X'04' and X'06' acknowledge receipt of Data frames with sequence number 0 (type X'02'). Frame
types X'05' and X'07' acknowledge receipt of Data frames with sequence number 1 (type X'03'). Frame types X'04' and X'05'
indicate that the device is not ready to receive additional Data frames (XOFF). Frame types X'06' and X'07' indicate that the
device is ready to receive additional Data frames (XON).

10.3.5 Frame Types X'08' through X'0B': Data Nak Frames

A frame of one of these types is used to reject an incorrectly received Data frame. Data Nak frames are transmitted when the
header segment of a Data frame has been correctly received but the data segment of the frame contains an error or when a
Data frame cannot be accepted due to receiver buffer limitations. Data Nak frames contain no data segment. Frame types
X'08' and X'0A' reject Data frames with sequence number 0 (type X'02'). Frame types X'09' and X'0B' reject Data frames
with sequence number 1 (type X'03'). Frame types X'08' and X'09' indicate that the device is not ready to receive additional
Data frames (XOFF). Frame types X'0A' and X'0B' indicate that the device is ready to receive additional Data frames (XON).

10.3.6 Frame Type X'0C': Connect Request Frame

The Connect Request frame is issued by the answering device in an attempt to establish a BACnet connection. Connect
Request frames contain no data segment.

10.3.7 Frame Type X'0D': Connect Response Frame

The Connect Response frame is issued by a device in response to a received Connect Request frame. The data field of the
Connect Response frame, if present, contains a password. The length and content of the optional password field are a local
matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 121

10.3.8 Frame Type X'0E': Disconnect Request Frame

The Disconnect Request frame may be issued by either device when it wishes to discontinue the BACnet PTP dialogue. The
data field of the frame conveys the reason for requesting a disconnect and shall be one octet in length. The permissible values
for the data are:

 X'00' no more data needs to be transmitted,
 X'01' the peer process is being preempted,
 X'02' the received password is invalid,
 X'03' other.

10.3.9 Frame Type X'0F': Disconnect Response Frame

The Disconnect Response frame is used to acknowledge a previously received Disconnect Request frame. The Disconnect
Response frame indicates that the responding device accepts the request to disconnect. Disconnect Response frames contain
no data segment.

10.3.10 Frame Type X'14': Test_Request

This frame is used to initiate a loopback test of the PTP transmission path. The use of this frame is described in detail in
10.2.3. The length of the data field of a Test_Request frame may range from 0 to 501 octets.

10.3.11 Frame Type X'15': Test_Response

This frame is used to reply to a Test_Request frame. The use of this frame is described in detail in 10.2.3. The length of the
data field of a Test_Response frame may range from 0 to 501 octets. The data, if present, shall be those that were present in
the initiating Test_Request.

10.4 PTP Medium Access Control Protocol

This subclause defines the PTP protocol. The protocol definition has been broken into several discrete parts that collectively
describe and define the entire PTP protocol. The first part presents a universal asynchronous receiver transmitter (UART)
model of the hardware platform. This is followed by definitions of the variables and constants used to define the protocol. A
finite state machine is used to define in detail the process of receiving PTP frames (see 10.4.7). An informal procedure
describes in detail the process of transmitting a PTP frame (see 10.4.4). These details are referenced in subsequent
subclauses, which define the protocol at a higher level of abstraction.

The process of establishing a PTP connection and terminating a PTP connection is defined by a finite state machine called the
Connection State Machine (see 10.4.9). The PTP protocol is full duplex. Thus, when a PTP connection is active, each device
may simultaneously play the role of transmitting and receiving PTP messages. Two separate finite-state machines define the
aspects of the protocol that pertain to these two roles. These finite state machines are call the Transmission State Machine
(see 10.4.10) and the Reception State Machine (see 10.4.11). The Transmission State Machine and the Reception State
Machine are assumed to operate concurrently whenever the Connection State Machine is in the CONNECTED state. In this
model, the Reception State Machine and the Transmission State Machine exchange information through the use of shared
variables. The details of transmitting and receiving a PTP frame are described by the SendFrame, SendHeaderOctet, and
SendOctet procedures and the ReceiveFrame state machine respectively.

10.4.1 UART Receiver Model

The receiver interface to a UART is modeled as a data register and two Boolean flags. These are intended to closely resemble
the functions of commercial UART chips but in a generic and nonprescriptive fashion. The model is used by both the
procedural and state machine descriptions.

10.4.1.1 DataRegister

The DataRegister holds the octet most recently received. The contents of this register after the occurrence of a framing or
overrun error are not specified.

10.4.1.2 DataAvailable

The flag DataAvailable is TRUE if an octet is available in DataRegister. A means of setting this flag to FALSE when the
associated data have been read from DataRegister shall be provided. Many common UARTs set DataAvailable FALSE
automatically when DataRegister is read.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

122 ANSI/ASHRAE Standard 135-2012

10.4.1.3 ReceiveError

The flag ReceiveError is TRUE if an error is detected during the reception of an octet. Many common UARTs detect several
types of receive errors, in particular framing errors and overrun errors. ReceiveError shall be TRUE if any of these errors is
detected.

A framing error occurs if a logical zero is received when a stop bit (logical one) is expected.

An overrun error occurs if an octet is received before an earlier octet is read from DataRegister. In general, the occurrence of
overrun errors is evidence of improper design. However, it is recognized that critical system events may cause overrun errors
to occur from time to time. The inclusion of this error in the state machine processing ensures that such errors are handled in
a deterministic fashion.

A means of setting ReceiveError to FALSE when the associated error has been recognized shall be provided.

10.4.2 Variables

The variables and timers used by the PTP protocol are described in this subclause.

Ack0Received A Boolean flag indicating whether (TRUE) or not (FALSE) the Reception State Machine has

received an acknowledgment that a previous Data frame with a sequence number of 0 was correctly
received.

Ack1Received A Boolean flag indicating whether (TRUE) or not (FALSE) the Reception State Machine has

received an acknowledgment that a previous Data frame with a sequence number of 1 was correctly
received.

DataCRC Used to accumulate the CRC on the data field of a frame.

DataLength An unsigned integer in the range from 0 to 501 that indicates the expected number of octets in the

Data field of a PTP frame. This value is derived from the Length field of the received PTP frame.
The value of DataLength excludes any data link escape octets (X'10') and the octets in the Data
CRC.

DLE_Mask A bit mask used to process received octets in order to account for the fact that they may be

encoded.

FrameType Used by the Receive State Machine to store the frame type of a received frame.

HeaderCRC Used to accumulate the CRC of the header of a frame.

HeartbeatTimer A timer used to initiate Heartbeat frames to keep the link active.

InactivityTimer A timer used to monitor the time since this station received a frame.

Index Indicates the location of the end of the data in the InputBuffer array.

InputBuffer[] An array of octets used to store data octets as they are received. InputBuffer is indexed from 0 to

InputBufferSize-1. The maximum size of the data field of a frame is 501 octets.

InputBufferSize The number of elements in the array InputBuffer[].

Nak0Received A Boolean flag indicating whether (TRUE) or not (FALSE) the Reception State Machine has

received a reject in response to a previous Data frame with a sequence number of 0.

Nak1Received A Boolean flag indicating whether (TRUE) or not (FALSE) the Reception State Machine has

received a reject in response to a previous Data frame with a sequence number of 1.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 123

ReceivedInvalidFrame A Boolean flag set to TRUE by the Receive Frame Machine if an error of any type is detected.
Errors include octet framing, overrun, CRC, and receive buffer overflow.

ReceivedValidFrame A Boolean flag set to TRUE by the Receive Frame Machine if a valid frame has been received.

ReceptionBlocked An enumerated variable indicating whether or not reception of Data frames is blocked. The values

of the enumeration are BLOCKED, ALMOST_BLOCKED, and NOT_BLOCKED. The value of
this variable is determined by a buffer manager. The buffer manager process is a local matter.

ResponseTimer A timer used to monitor the time spent waiting for a response from the remote device.

RetryCount A counter of transmission retries.

RxSequenceNumber An integer containing the sequence number (0 or 1) expected for the next Data frame to be

received.

SendingFrameNow A Boolean flag indicating whether (TRUE) or not (FALSE) an invocation of the SendFrame

procedure is currently in the process of transmitting octets.

SilenceTimer A timer used to monitor the time since this station received an octet.

TransmissionBlocked A Boolean flag indicating whether (TRUE) or not (FALSE) frame transmission has been blocked.

The value of this flag is determined by the receipt of XON and XOFF frames from the peer device.

TransmitDataCRC Used to accumulate the CRC on the data field of a frame being transmitted.

TransmitHeaderCRC Used to accumulate the CRC on the header of a frame being transmitted.

TxSequenceNumber An integer containing the sequence number (0 or 1) for the next Data frame to be transmitted.

10.4.3 Parameters

The following parameters are used in the PTP data link protocol.

Nretries The maximum number of times a frame shall be sent before an error is reported. The value of Nretries shall be 3.

Tconn_rqst The maximum time allowed by a calling device for an answering device to issue a PTP Connect Request frame

once the physical connection has been established and the ANSI X3.4 trigger sequence has been transmitted. The
value of Tconn_rqst shall be 15 seconds. This represents the processing time required for the answering device to
recognize the ANSI X3.4 trigger sequence, prepare the communication port for PTP protocol, and transmit the
Connect Request frame.

Tconn_rsp The maximum time allowed to respond to a PTP Connect Request frame with a PTP Connect Response frame.

The value of Tconn_rsp shall be 15 seconds. This represents the time required for the calling device to process the
Connect Request frame and the time required to transmit the Connect Response frame.

Tframe_abort The maximum time allowed between receipt of octets in a frame after which time the receiving device shall

assume a transmission error. The value of Tframe_abort shall be 2 seconds.

Theartbeat The maximum delay between frame transmissions before a heartbeat frame must be sent. The value of Theartbeat

shall be 15 seconds.

Tinactivity The maximum amount of time the InactivityTimer may attain, after which a device may assume that the PTP

connection has been disrupted. The value of Tinactivity shall be 60 seconds.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

124 ANSI/ASHRAE Standard 135-2012

Tresponse The maximum time allowed waiting for a Data Ack frame in response to a Data frame. The value of Tresponse shall
be 5 seconds.

10.4.4 SendFrame Procedure

This subclause describes the transmission of PTP data link frames. A mutual exclusion semaphore, SendingFrameNow,
synchronizes access to the functionality by multiple, asynchronous invocations. Frames are transmitted in two parts, the
header segment and the data segment.

NOTE: At the implementor's option, character-level flow control may be implemented by conditioning the transmission of
octets by this procedure based on the reception of the characters XOFF (X'13') and XON (X'11') or by the presence or
absence of active levels on certain EIA-232 control lines. Such character-level flow control is a local matter.

(a)
 If SendingFrameNow is TRUE, then wait for the other invocation of the SendFrame procedure to set
SendingFrameNow to FALSE.

(b)
 Set SendingFrameNow to TRUE.

(c)
 Transmit the preamble octets X'55' and X'FF'.

(d)
 Initialize TransmitHeaderCRC to X'FF'.

(e)
 Call SendHeaderOctet to transmit the frame type and the high and low data length octets.

(f)
 Call SendOctet to transmit the one's-complement of TransmitHeaderCRC.

(g)
 If the data length is zero, proceed to step (m). Otherwise, proceed to step (h).

(h)
 Initialize TransmitDataCRC to X'FFFF'.

(i)
 Accumulate each data octet into TransmitDataCRC.

(j)
 Call SendOctet to transmit each data octet.

(k)
 Call SendOctet to transmit the one's-complement of the least significant octet of TransmitDataCRC.

(l)
 Call SendOctet to transmit the one's-complement of the most significant octet of TransmitDataCRC.

(m)
Set HeartbeatTimer to zero; set SendingFrameNow to FALSE. Transmission is complete.

10.4.5 SendHeaderOctet Procedure

This subclause describes the transmission of the header octets of PTP frames.

 (a) Accumulate the header octet into TransmitHeaderCRC.

 (b) Call SendOctet to transmit the header octet.

10.4.6 SendOctet Procedure

This subclause describes the transmission of octets of PTP frames.

(a)
 If the value of the octet is not X'10', X'11', or X'13', then transmit the octet.

(b)
 If the value of the octet is X'10', X'11', or X'13', then transmit the value X'10', set the high order bit of the octet, and
transmit the modified octet.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 125

10.4.7 Receive Frame State Machine

This subclause describes the reception of a PTP frame by a BACnet device. The description of operation is as a finite state
machine. Figure 10-1 shows the Receive Frame state machine, which is described fully in this subclause. Each state is given
a name, specified in all capital letters. Transitions are also named, in mixed upper- and lowercase letters. Transitions are
described as a series of conditions followed by a series of actions to be taken if the conditions are met. The final action in
each transition is entry into a new state, which may be the same as the current state.

The Receive Frame state machine operates independently from the other PTP state machines, communicating with them by
means of flags and other variables. The description assumes that the other state machines can process received frames and
other indications from the Receive Frame state machine before the next frame begins. The means by which this behavior is
implemented are a local matter.

IDLEDATA
CRC

Bad CRC

Good CRC

EatAnOctet

EatAnError

Preamble 1

Timeout

NotPreamble

PREAMBLEError

HEADER
CRC

Ba
dC

RC

No
Da

ta

Fr
am

eT
oo

Lo
ng

HEADER

DLE_Received

FrameType

FlowControl

Length 1

Length 2

DATA

Pr
ea

m
bl

e
2

CRC 1

Data Octet

Data

Tim
eo

ut

Erro
r

HeaderCRC

Timeout
Error

FlowControl

Flow Control

Repeated
Preamble 1

DLE_Received

FlowControl

CRC2

Figure 10-1. Receive Frame State Machine.

10.4.7.1 IDLE

In the IDLE state, the node waits for the beginning of a frame.

EatAnError

If ReceiveError is TRUE,

then set SilenceTimer to zero; set ReceiveError to FALSE; and enter the IDLE state to wait for the start of a frame.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

126 ANSI/ASHRAE Standard 135-2012

FlowControl
If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is equal to either X'11' or
X'13',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the IDLE state.

EatAnOctet

If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is not equal to X'55', X'11',
or X'13',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the IDLE state to wait for the start of a frame.

Preamble1
If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is equal to X'55',

then set SilenceTimer to zero; set DataAvailable to FALSE; set ReceivedValidFrame to FALSE; set
ReceivedInvalidFrame to FALSE; and enter the PREAMBLE state to receive the remainder of the frame.

10.4.7.2 PREAMBLE

In the PREAMBLE state, the node waits for the second octet of the preamble.

Timeout
 If SilenceTimer is greater than Tframe_abort,

then a correct preamble has not been received. Enter the IDLE state to wait for the start of a frame.

Error
 If ReceiveError is TRUE,

 then set SilenceTimer to zero; set ReceiveError to FALSE; and enter the IDLE state to wait for the start of a frame.

FlowControl

If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is equal to either X'11' or
X'13',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the PREAMBLE state.

RepeatedPreamble1

If ReceiveError is FALSE and DataAvailable is TRUE and the contents of DataRegister is equal to X'55',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the PREAMBLE state to wait for the second
preamble octet.

NotPreamble

If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is not equal to X'FF', X'55',
X'11', or X'13',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the IDLE state to wait for the start of a frame.

Preamble2

If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is equal to X'FF',

then set SilenceTimer to zero; set DLE_Mask to X'00'; set HeaderCRC to X'FF'; set DataAvailable to FALSE; set
Index to zero; and enter the HEADER state to receive the remainder of the frame.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 127

10.4.7.3 HEADER

In the HEADER state, the node waits for the fixed frame header.

Timeout
 If SilenceTimer is greater than Tframe_abort,

 then enter the IDLE state to wait for the start of a frame.

Error
 If ReceiveError is TRUE,

 then set SilenceTimer to zero; set ReceiveError to FALSE; and enter the IDLE state to wait for the start of a frame.

FlowControl

If ReceiveError is FALSE and DataAvailable is TRUE and the contents of DataRegister is equal to either X'11' or
X'13',

then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the HEADER state.

DLE_Received
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of the DataRegister is equal to X'10',

 then set DLE_Mask to X'80' and enter the HEADER state.

FrameType

If ReceiveError is FALSE and DataAvailable is TRUE and Index is 0 and the content of DataRegister is not equal to
X'10', X'11', or X'13',

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister; save the
result as FrameType; accumulate the result into HeaderCRC; set DataAvailable to FALSE; set DLE_Mask to X'00';
set Index to 1; and enter the HEADER state.

Length1
If ReceiveError is FALSE and DataAvailable is TRUE and Index is 1 and the content of DataRegister is not equal to
X'10', X'11', or X'13',

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;
accumulate the result into HeaderCRC; multiply the result by 256 and save this result as DataLength; set
DataAvailable to FALSE; set DLE_Mask to X'00'; set Index to 2; and enter the HEADER state.

Length2
 If ReceiveError is FALSE and DataAvailable is TRUE and Index is 2 and the content of DataRegister is not equal to

X'10', X'11', or X'13',

 then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;

accumulate the result into HeaderCRC; add the result to DataLength and save this result as DataLength; set
DataAvailable to FALSE; set DLE_Mask to X'00'; set Index to 3; and enter the HEADER state.

HeaderCRC

If ReceiveError is FALSE and DataAvailable is TRUE and Index is 3 and the content of DataRegister is not equal to
X'10', X'11', or X'13',

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;
accumulate the result into HeaderCRC; set DataAvailable to FALSE; set DLE_Mask to X'00'; and enter the
HEADER_CRC state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

128 ANSI/ASHRAE Standard 135-2012

10.4.7.4 HEADER_CRC

In the HEADER_CRC state, the node validates the CRC on the fixed frame header.

BadCRC
 If the value of HeaderCRC is not X'55',

 then enter the IDLE state to wait for the start of the next frame.

FrameTooLong

If the value of HeaderCRC is X'55' and DataLength is greater than InputBufferSize,

then set ReceivedInvalidFrame to TRUE to indicate that a frame cannot be received, and enter the IDLE state to
wait for the start of the next frame.

NoData

If the value of HeaderCRC is X'55' and DataLength is zero,

then set ReceivedValidFrame to TRUE to indicate that a frame with no data has been received, and enter the IDLE
state to wait for the start of the next frame.

Data
If the value of HeaderCRC is X'55' and DataLength is greater than zero but less than or equal to InputBufferSize,

then set Index to zero; set DataCRC to X'FFFF'; and enter the DATA state to receive the data field of the frame.

10.4.7.5 DATA

In the DATA state, the node waits for the data field of a frame.

Timeout
 If SilenceTimer is greater than Tframe_abort,

then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and
enter the IDLE state to wait for the start of the next frame.

Error
 If ReceiveError is TRUE,

then set SilenceTimer to zero; set ReceiveError to FALSE; set ReceivedInvalidFrame to TRUE to indicate that an
error has occurred during the reception of a frame; and enter the IDLE state to wait for the start of the next frame.

FlowControl

If ReceiveError is FALSE and DataAvailable is TRUE and the content of DataRegister is equal to either X'11' or
X'13',

 then set SilenceTimer to zero; set DataAvailable to FALSE; and enter the DATA state.

DLE_Received
 If ReceiveError is FALSE and DataAvailable is TRUE and the content of the DataRegister is equal to X'10',

 then set DLE_Mask to X'80' and enter the DATA state.

DataOctet

If ReceiveError is FALSE and DataAvailable is TRUE and Index is less than DataLength and the content of
DataRegister is not equal to X'10', X'11', or X'13',

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 129

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;
accumulate the result into DataCRC; save the results at InputBuffer[Index]; increment Index by 1; set DataAvailable
to FALSE; set DLE_Mask to X'00'; and enter the DATA state.

CRC1

If ReceiveError is FALSE and DataAvailable is TRUE and Index is equal to DataLength and the content of
DataRegister is not equal to X'10', X'11', or X'13',

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;
accumulate the result into DataCRC; increment Index by 1; set DataAvailable to FALSE; set DLE_Mask to X'00';
and enter the DATA state.

CRC2

If ReceiveError is FALSE and DataAvailable is TRUE and Index is equal to DataLength plus 1 and the content of
DataRegister is not equal to X'10', X'11', or X'13',

then perform a bitwise AND of the ones-complement of the DLE_Mask and the contents of DataRegister;
accumulate the result into DataCRC; set DataAvailable to FALSE; set DLE_Mask to X'00'; and enter the
DATA_CRC state.

10.4.7.6 DATA_CRC

In the DATA_CRC state, the node validates the CRC on the frame data.

BadCRC
 If the value of DataCRC is not X'F0B8',

then set ReceivedInvalidFrame to TRUE to indicate that an error has occurred during the reception of a frame, and
enter the IDLE state to wait for the start of the next frame.

GoodCRC
 If the value of DataCRC is X'F0B8',

then set ReceivedValidFrame to TRUE to indicate the complete reception of a valid frame, and enter the IDLE state
to wait for the start of the next frame.

10.4.8 Data Link Connection Establishment and Termination Procedures

This subclause provides an overview of the protocol for establishing and terminating PTP connections. The details for this
protocol are defined by the Connection State Machine in 10.4.9.

Upon establishment of a physical connection between BACnet devices, the calling device shall transmit the seven character
ANSI X3.4 trigger sequence "BACnet<CR>", where "<CR>" denotes the ANSI X3.4 character X'0D', to inform the
answering device that it wishes to establish a BACnet PTP connection. The answering device shall then transmit a Connect
Request frame. The calling device shall respond by transmitting a Connect Response frame including a password, if
password protection is implemented. After successful completion of this process, including verification of the password, both
devices enter the data exchange phase.

Upon completion of the data link establishment procedure, each device shall assume that the other is not yet ready to receive
Data frames. When a Heartbeat XON frame is received from a device, data transmission to that device may begin. Upon
completion of the data link establishment procedure and when each device is ready to receive Data frames, it shall
immediately transmit a Heartbeat XON frame.

When either device wishes to terminate an active PTP connection, it shall transmit a Disconnect Request frame indicating the
reason for the disconnection. The peer device shall respond by transmitting a Disconnect Response frame to acknowledge the
request. Both devices shall then notify their respective network layers of data link termination.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

130 ANSI/ASHRAE Standard 135-2012

If no Disconnect Response is received in reply to the Disconnect Request, an assumption is made that the request was not
received by the peer device. The Disconnect Request is retransmitted up to three times. If a Disconnect Response is not
received after the third retry, the connection is unilaterally terminated.

If, following transmission of a Disconnect Request, a device receives a Disconnect Request frame from the peer device, the
device shall respond by transmitting a Disconnect Response frame and terminating the connection.

If, following transmission of a Disconnect Request, a device receives a Data frame from the peer device, the device shall not
acknowledge the Data frame. Thus, a Disconnect Request is an attempt to terminate the connection in an orderly manner, but
it is not negotiable. Once a Disconnect Request has been made, the connection shall be terminated. If the peer device needs to
continue the communication, a new connection must be established.

10.4.9 Connection State Machine

The operation of the connection establishment state machine is described in this subclause and is depicted in Figure 10-2. The
state machine models the actions taken to establish a BACnet PTP data link between two devices and includes the actions
required for both the calling and answering devices.

Disconnected

ConnectOutbound

Outbound

Inbound

Disconnecting

Connected

ConnectRequestFailure

DisconnectRequestReceiv ed
ConnectInbound

ConnectResponseFailure

Disconnect
Request
Received

Disconnect
Response

Failure
Disconnect
Response
Received

ConnectResponse
Timeout

UnwantedFrame
Received

Inv alidConnectResponse
Received

Disconnect
Response
Timeout

NetworkDisconnect

DisconnectRequestReceiv ed

Inactiv ityTimeout

ConnectionLost

Connect
Request
Received

ConnectRequestReceived

ConnectRequestTimeout

ValidConnect
Response
Recieved

Figure 10-2. Point-To-Point Connection State Machine

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 131

10.4.9.1 DISCONNECTED

In this state, the device waits for the network layer to initiate a PTP data link connection or for the physical layer to indicate
the occurrence of a physical layer connection.

ConnectOutbound
 If a DL-CONNECT.request is received,

then establish a physical connection; transmit the "BACnet<CR>" trigger sequence; set RetryCount to zero; set
ResponseTimer to zero; and enter the OUTBOUND state.

ConnectInbound
 If a physical layer connection has been made and the "BACnet<CR>" trigger sequence is received,

then call SendFrame to transmit a Connect Request frame; set RetryCount to zero; set ResponseTimer to zero; and
enter the INBOUND state.

10.4.9.2 OUTBOUND

In this state, the network layer has issued a request to start the data link as a caller, and the device is waiting for a Connect
Request frame from the answering device.

ConnectRequestReceived

If ReceivedValidFrame is TRUE and FrameType is equal to Connect Request,

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Connect Response frame containing the
password contained in the "data" parameter of the DL-CONNECT.request that initiated the connection; issue a DL-
CONNECT.confirm to notify the network layer that a connection has been established; and enter the CONNECTED
state.

ConnectRequestTimeout
 If ResponseTimer is greater than or equal to Tconn_rqst and RetryCount is less than Nretries,

then set RetryCount to RetryCount + 1; retransmit the "BACnet<CR>" trigger sequence; set the ResponseTimer to
zero; and enter the OUTBOUND state.

ConnectRequestFailure
 If ResponseTimer is greater than or equal to Tconn_rqst and RetryCount is greater than or equal to Nretries,

 then issue a DL-CONNECT.confirm to notify the network layer of the failure and enter the DISCONNECTED state.

10.4.9.3 INBOUND

In this state, the Connection State Machine has recognized that the calling device wishes to establish a BACnet connection,
and the local device is waiting for a Connect Response frame from the calling device.

ValidConnectResponseReceived

If ReceivedValidFrame is TRUE and FrameType is equal to Connect Response and a password is not needed or a
valid password is present in the data field of the frame,

then set ReceivedValidFrame to FALSE; issue a DL-CONNECT.indication to notify the network layer of the
connection; and enter the CONNECTED state.

InvalidConnectResponseReceived

If ReceivedValidFrame is TRUE and FrameType is equal to Connect Response and a password is needed but not
present or an invalid password is present in the data field of the frame,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

132 ANSI/ASHRAE Standard 135-2012

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Disconnect Request frame indicating the
receipt of an invalid password; set ResponseTimer to zero; set RetryCount to zero; and enter the
DISCONNECTING state.

ConnectResponseTimeout

If ResponseTimer is greater than or equal to Tconn_rsp and RetryCount is less than Nretries,

then set RetryCount to RetryCount + 1; call SendFrame to transmit a Connect Request frame; set ResponseTimer to
zero; and enter the INBOUND state.

ConnectResponseFailure
 If ResponseTimer is greater than or equal to Tconn_rsp and RetryCount is greater than or equal to Nretries,

 then enter the DISCONNECTED state.

DisconnectRequestReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Disconnect Request,

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Disconnect Response frame; and enter the
DISCONNECTED state.

10.4.9.4 CONNECTED

In this state, the connection procedure has been completed, and the two devices may exchange BACnet PDUs. The data link
remains in this state until termination.

NetworkDisconnect
 If a DL-DISCONNECT.request is received,

then call SendFrame to transmit a Disconnect Request frame; set ResponseTimer to zero; issue a DL-
DISCONNECT.confirm to notify the network layer of the disconnection; set RetryCount to zero; and enter the
DISCONNECTING state.

DisconnectRequestReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Disconnect Request,

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Disconnect Response frame; issue a DL-
DISCONNECT.indication to notify the network layer of the disconnection; and enter the DISCONNECTED state.

ConnectRequestReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Connect Request,

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Connect Response frame; issue a DL-
CONNECT.indication to notify the network layer of the connection; and enter the CONNECTED state.

InactivityTimeout
 If InactivityTimer is greater than Tinactivity and ReceivedValidFrame is FALSE,

then issue a DL-DISCONNECT.indication to notify the network layer of the disconnection and enter the
DISCONNECTED state.

ConnectionLost
 If the physical connection has been terminated, e.g., due to loss of carrier,

then issue a DL-DISCONNECT.indication to notify the network layer of the disconnection and enter the
DISCONNECTED state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 133

10.4.9.5 DISCONNECTING

In this state, the network layer has requested termination of the data link. The device is waiting for a Disconnect Response
frame from the peer device.

DisconnectResponseReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Disconnect Response,

 then set ReceivedValidFrame to FALSE and enter the DISCONNECTED state.

DisconnectRequestReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Disconnect Request,

then set ReceivedValidFrame to FALSE; call SendFrame to transmit a Disconnect Response frame; and enter the
DISCONNECTED state.

UnwantedFrameReceived
 If ReceivedValidFrame is TRUE and FrameType is not equal to either Disconnect Response or Disconnect Request,

then set ReceivedValidFrame to FALSE and enter the DISCONNECTING state. (Note that ResponseTimer is not
reset in this case.)

DisconnectResponseTimeout
 If ResponseTimer is greater than Tresponse and ReceivedValidFrame is FALSE and RetryCount is less than Nretries,

then increment RetryCount; call SendFrame to transmit a Disconnect Request frame; set ResponseTimer to zero;
and enter the DISCONNECTING state.

DisconnectResponseFailure

If ResponseTimer is greater than or equal to Tresponse and ReceivedValidFrame is FALSE and RetryCount is greater
than or equal to Nretries,

 then enter the DISCONNECTED state.

10.4.10 Transmission State Machine

The operation of the Transmission State Machine is described in this subclause and is depicted in Figure 10-3. The state
machine models the actions taken to transmit Data frames and receive corresponding acknowledgments.

10.4.10.1 TRANSMIT IDLE

In this state, the transmitter is waiting for the data link to be established between the local device and the peer device. The
transmitter waits to be notified that a peer device is ready to communicate.

ConnectionEstablishedXON
 If the Connection State Machine is in the CONNECTED state and ReceptionBlocked is equal to NOT_BLOCKED,

then call SendFrame to transmit a HeartbeatXON frame; set TxSequenceNumber to zero; set HeartbeatTimer to
zero; and enter the TRANSMIT BLOCKED state.

ConnectionEstablishedXOFF

If the Connection State Machine is in the CONNECTED state and ReceptionBlocked is equal to
ALMOST_BLOCKED or BLOCKED,

then call SendFrame to transmit a HeartbeatXOFF frame; set TxSequenceNumber to zero; and enter the
TRANSMIT BLOCKED state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

134 ANSI/ASHRAE Standard 135-2012

Transmit
IdleDisconnected

Transmit
Pending

Transmit
Ready

Transmit
Blocked

ConnectionEstablishedXOFF

ConnectionEstablishedXON

Disconnected

Heartbeat
Timer

ExpiredXON

Send
Request

TransmitMessage

Disconnected

Retry

Send
Request

ReceiveAcknowledgement

Retries Failed

SendRequest

Heartbeat
Timer

ExpiredXOFF

PeerReceiv erReady

RemoteBusyHeartbeat
Timer

ExpiredXON

Hearbeat
Timer

Expired XOFF

Figure 10-3. Point-To-Point Transmission State Machine.

10.4.10.2 TRANSMIT BLOCKED

In this state, the peer device has indicated that it is not ready to receive Data frames. The local device may have data ready to
transmit. The local device periodically transmits a Heartbeat frame to maintain the data-link and waits for the peer device to
become ready to receive data or for the termination of the data link.

SendRequest
 If a DL-UNITDATA.request primitive is received,

 then queue the request for later transmission and enter the TRANSMIT BLOCKED state.

PeerReceiverReady
 If TransmissionBlocked is equal to FALSE,

 then enter the TRANSMIT READY state.

Disconnected
 If the Connection State Machine is in the DISCONNECTED state,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 135

 then enter the TRANSMIT IDLE state.

HeartbeatTimerExpiredXON
 If HeartbeatTimer is greater than Theartbeat and ReceptionBlocked is equal to NOT_BLOCKED,

then call SendFrame to transmit a HeartbeatXON frame; set HeartbeatTimer to zero; and enter the TRANSMIT
BLOCKED state.

HeartbeatTimerExpiredXOFF
 If HeartbeatTimer is greater than Theartbeat and ReceptionBlocked is equal to BLOCKED or ALMOST_BLOCKED,

then call SendFrame to transmit a HeartbeatXOFF frame; set HeartbeatTimer to zero; and enter the TRANSMIT
BLOCKED state.

10.4.10.3 TRANSMIT READY

In this state, the peer device has indicated its readiness to receive Data frames, but the local device has no data ready to
transmit. The local device periodically transmits a Heartbeat frame to maintain the data link and waits for a local request to
transmit data or for the termination of the data link.

Disconnected
 If the Connection State Machine is in the DISCONNECTED state,

 then enter the TRANSMIT IDLE state.

SendRequest
 If a DL-UNITDATA.request primitive is received,

 then queue the request for later transmission and enter the TRANSMIT READY state.

TransmitMessage
 If the transmit queue is not empty and TransmissionBlocked is equal to FALSE,

then call SendFrame to transmit the frame at the head of the queue using a Data frame type (Data 0 or Data 1) that
indicates TxSequenceNumber; set RetryCount to zero; set ResponseTimer to zero; and enter the TRANSMIT
PENDING state.

RemoteBusy
 If TransmissionBlocked is equal to TRUE,

 then enter the TRANSMIT BLOCKED state.

HeartbeatTimerExpiredXON
 If HeartbeatTimer is greater than Theartbeat and ReceptionBlocked is equal to NOT_BLOCKED,

then call SendFrame to transmit a HeartbeatXON frame; set HeartbeatTimer to zero; and enter the TRANSMIT
READY state.

HeartbeatTimerExpiredXOFF
 If HeartbeatTimer is greater than Theartbeat and ReceptionBlocked is equal to BLOCKED or ALMOST_BLOCKED,

then call SendFrame to transmit a HeartbeatXOFF frame; set HeartbeatTimer to zero; and enter the TRANSMIT
READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

136 ANSI/ASHRAE Standard 135-2012

10.4.10.4 TRANSMIT PENDING

In this state, the local device has transmitted a Data frame to the peer device and is waiting for an acknowledgment from the
peer device.

Disconnected
 If the Connection State Machine is in the DISCONNECTED state,

 then enter the TRANSMIT IDLE state.

SendRequest
 If a DL-UNITDATA.request primitive is received,

 then queue the request for later transmission and enter the TRANSMIT PENDING state.

ReceiveAcknowledgment

If TxSequenceNumber is equal to 0 and Ack0Received is equal to TRUE or if TxSequenceNumber is equal to 1 and
Ack1Received is equal to TRUE,

then set TxSequenceNumber = 1 - TxSequenceNumber; set Ack0Received to FALSE; set Ack1Received to FALSE;
and enter the TRANSMIT READY state.

Retry
 If RetryCount is less than Nretries and either

 (a) TxSequenceNumber is equal to 0 and Nak0Received is equal to TRUE or

 (b) TxSequenceNumber is equal to 1 and Nak1Received is equal to TRUE or

 (c) ResponseTimer is greater than Tresponse,

then set RetryCount to RetryCount + 1; set Nak0Received to FALSE; set Nak1Received to FALSE; set
ResponseTimer to zero; call SendFrame to retransmit the Data frame; and enter the TRANSMIT PENDING state.

RetriesFailed
 If RetryCount is equal to Nretries, and either

 (a) TxSequenceNumber is equal to 0 and Nak0Received is equal to TRUE or

 (b) TxSequenceNumber is equal to 1 and Nak1Received is equal to TRUE or

 (c) ResponseTimer is greater than Tresponse,

then set RetryCount to 0; set Nak0Received to FALSE; set Nak1Received to FALSE; set ResponseTimer to zero;
and enter the TRANSMIT READY state.

10.4.11 Reception State Machine

The operation of the Reception State Machine is described in this subclause and is depicted in Figure 10-4.

10.4.11.1 RECEIVE IDLE

In this state, the receiver is waiting for the data link to be established between the local device and the peer device. The
receiver waits to be notified that a peer device is ready to communicate.

ConnectionEstablished
 If the Connection State Machine is in the CONNECTED state,

 then set RxSequenceNumber to zero and enter the RECEIVE READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 137

Data Receive
Idle

Receive
Ready

DataAckDataNak

Duplicate0_FullBuffers,
Duplicate1_FullBuffers,
Duplicate0,
Duplicate1,
Data0_FullBuffers,
Data1_FullBuffers,
NewData0,
NewData1,
LastData0,
LastData1

Duplicate_XON,
Duplicate_XOFF,
Nak0_XON,
Nak0_XOFF,
Nak1_XON,
Nak1_XOFF

DataNak

Data Received

Co
nn

ec
tio

nE
st

ab
lis

he
d

Di
sc

on
ne

ct
ed

Duplicate_XON,
Duplicate_XOFF,
Ack0_XON,
Ack0_XOFF,
Ack1_XON,
Ack1_XOFF

DataAck

HeartbeatXON,
HeartbeatXOFF,
TestRequest,
TestRepsonse,
BadData0_FullBuffers,
BadData1_FullBuffers,
BadData0,
BadData1,
BadFrame

Figure 10-4. Point-To-Point Reception State Machine.

10.4.11.2 RECEIVE READY

In this state, the device is ready to receive frames from the peer device.

DataReceived
 If ReceivedValidFrame is TRUE and FrameType is equal to Data 0 or Data 1,

 then set ReceivedValidFrame to FALSE; set InactivityTimer to zero; and enter the DATA state.

DataAck

If ReceivedValidFrame is TRUE and FrameType is equal to Data Ack 0 XOFF, Data Ack 0 XON, Data ACK 1
XOFF, or Data Ack 1 XON,

 then set ReceivedValidFrame to FALSE; set InactivityTimer to zero; and enter the DATA ACK state.

DataNak

If ReceivedValidFrame is TRUE and FrameType is equal to Data Nak 0 XOFF, Data Nak 0 XON, Data Nak 1
XOFF, or Data Nak 1 XON,

 then set ReceivedValidFrame to FALSE; set InactivityTimer to zero; and enter the DATA NAK state.

HeartbeatXON
 If ReceivedValidFrame is TRUE and FrameType is equal to Heartbeat XON,

then set TransmissionBlocked to FALSE; set InactivityTimer to zero; set ReceivedValidFrame to FALSE; and enter
the RECEIVE READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

138 ANSI/ASHRAE Standard 135-2012

HeartbeatXOFF
 If ReceivedValidFrame is TRUE and FrameType is equal to Heartbeat XOFF,

then set TransmissionBlocked to TRUE; set InactivityTimer to zero; set ReceivedValidFrame to FALSE; and enter
the RECEIVE READY state.

TestRequest
 If ReceivedValidFrame is TRUE and FrameType is equal to Test_Request,

then call SendFrame to transmit the Test_Response; set InactivityTimer to zero; set ReceivedValidFrame to FALSE;
and enter the RECEIVE READY state.

TestResponse
 If ReceivedValidFrame is TRUE and FrameType is equal to Test_Response,

then issue a DL-UNITDATA.indication conveying the Test_Response data; set InactivityTimer to zero; set
ReceivedValidFrame to FALSE; and enter the RECEIVE READY state.

BadData0_FullBuffers

If ReceivedInvalidFrame is TRUE and FrameType is equal to Data 0 and ReceptionBlocked is equal to BLOCKED,

then discard the frame; set InactivityTimer to zero; call SendFrame to transmit a Data Nak 0 XOFF frame; set
ReceivedInvalidFrame to FALSE; and enter the RECEIVE READY state.

BadData1_FullBuffers

If ReceivedInvalidFrame is TRUE and FrameType is equal to Data 1 and ReceptionBlocked is equal to BLOCKED,

then discard the frame; set InactivityTimer to zero; call SendFrame to transmit a Data Nak 1 XOFF frame; set
ReceivedInvalidFrame to FALSE; and enter the RECEIVE READY state.

BadData0

If ReceivedInvalidFrame is TRUE and FrameType is equal to Data 0 and ReceptionBlocked is equal to
NOT_BLOCKED or ALMOST_BLOCKED,

then discard the frame; set InactivityTimer to zero; call SendFrame to transmit a Data Nak 0 XON frame; set
ReceivedInvalidFrame to FALSE; and enter the RECEIVE READY state.

BadData1

If ReceivedInvalidFrame is TRUE and FrameType is equal to Data 1 and ReceptionBlocked is equal to
NOT_BLOCKED or ALMOST_BLOCKED,

then discard the frame; set InactivityTimer to zero; call SendFrame to transmit a Data Nak 1 XON frame; set
ReceivedInvalidFrame to FALSE; and enter the RECEIVE READY state.

BadFrame
 If ReceivedInvalidFrame is TRUE and FrameType is not equal to either Data 0 or Data 1,

then discard the frame; set InactivityTimer to zero; set ReceivedInvalidFrame to FALSE; and enter the RECEIVE
READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 139

Disconnected
 If the Connection State Machine is in the DISCONNECTED state,

 then enter the RECEIVE IDLE state.

10.4.11.3 DATA

In this state the device has received a Data frame for processing.

Duplicate0_FullBuffers

If FrameType is equal to Data 0 and RxSequenceNumber is equal to 1 and ReceptionBlocked is equal to
BLOCKED,

then discard the frame as a duplicate; call SendFrame to transmit a Data Ack 0 XOFF frame; and enter the
RECEIVE READY state.

Duplicate1_FullBuffers

If FrameType is equal to Data 1 and RxSequenceNumber is equal to 0 and ReceptionBlocked is equal to
BLOCKED,

then discard the frame as a duplicate; call SendFrame to transmit a Data Ack 1 XOFF frame; and enter the
RECEIVE READY state.

Duplicate0

If FrameType is equal to Data 0 and RxSequenceNumber is equal to 1 and ReceptionBlocked is equal to
NOT_BLOCKED or ALMOST_BLOCKED,

then discard the frame as a duplicate; call SendFrame to transmit a Data Ack 0 XON frame; and enter the RECEIVE
READY state.

Duplicate1

If FrameType is equal to Data 1 and RxSequenceNumber is equal to 0 and ReceptionBlocked is equal to
NOT_BLOCKED or ALMOST_BLOCKED,

then discard the frame as a duplicate; call SendFrame to transmit a Data Ack 1 XON frame; and enter the RECEIVE
READY state.

Data0_FullBuffers

If FrameType is equal to Data 0 and RxSequenceNumber is equal to 0 and ReceptionBlocked is equal to
BLOCKED,

then discard the frame for lack of space; call SendFrame to transmit a Data Nak 0 XOFF frame; and enter the
RECEIVE READY state.

Data1_FullBuffers

If FrameType is equal to Data 1 and RxSequenceNumber is equal to 1 and ReceptionBlocked is equal to
BLOCKED,

then discard the frame for lack of space; call SendFrame to transmit a Data Nak 1 XOFF frame; and enter the
RECEIVE READY state.

NewData0

If FrameType is equal to Data 0 and RxSequenceNumber is equal to 0 and ReceptionBlocked is equal to
NOT_BLOCKED,

then issue a DL-UNITDATA.indication conveying the data; call SendFrame to transmit a Data Ack 0 XON frame;
set RxSequenceNumber to 1; and enter the RECEIVE READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

140 ANSI/ASHRAE Standard 135-2012

NewData1

If FrameType is equal to Data 1 and RxSequenceNumber is equal to 1 and ReceptionBlocked is equal to
NOT_BLOCKED,

then issue a DL-UNITDATA.indication conveying the data; call SendFrame to transmit a Data Ack 1 XON frame;
set RxSequenceNumber to 0; and enter the RECEIVE READY state.

LastData0

If FrameType is equal to Data 0 and RxSequenceNumber is equal to 0 and ReceptionBlocked is equal to
ALMOST_BLOCKED,

then issue a DL-UNITDATA.indication conveying the data; call SendFrame to transmit a Data Ack 0 XOFF frame;
set RxSequenceNumber to 1; and enter the RECEIVE READY state.

LastData1

If FrameType is equal to Data 1 and RxSequenceNumber is equal to 1 and ReceptionBlocked is equal to
ALMOST_BLOCKED,

then issue a DL-UNITDATA.indication conveying the data; call SendFrame to transmit a Data Ack 1 XOFF frame;
set RxSequenceNumber to 0; and enter the RECEIVE READY state.

10.4.11.4 DATA ACK

In this state the device has received a Data Ack frame for processing.

Duplicate_XON

If FrameType is equal to Data Ack 0 XON and TxSequenceNumber is equal to 1, or if FrameType is equal to Data
Ack 1 XON and TxSequenceNumber is equal to 0,

 then set TransmissionBlocked to FALSE and enter the RECEIVE READY state.

Duplicate_XOFF

If FrameType is equal to Data Ack 0 XOFF and TxSequenceNumber is equal to 1, or if FrameType is equal to Data
Ack 1 XOFF and TxSequenceNumber is equal to 0,

 then set TransmissionBlocked to TRUE and enter the RECEIVE READY state.

Ack0_XON
 If FrameType is equal to Data Ack 0 XON and TxSequenceNumber is equal to 0,

 then set Ack0Received to TRUE; set TransmissionBlocked to FALSE; and enter the RECEIVE READY state.

Ack0_XOFF
 If FrameType is equal to Data Ack 0 XOFF and TxSequenceNumber is equal to 0,

 then set Ack0Received to TRUE; set TransmissionBlocked to TRUE; and enter the RECEIVE READY state.

Ack1_XON
 If FrameType is equal to Data Ack 1 XON and TxSequenceNumber is equal to 1,

 then set Ack1Received to TRUE; set TransmissionBlocked to FALSE; and enter the RECEIVE READY state.

Ack1_XOFF
 If FrameType is equal to Data Ack 1 XOFF and TxSequenceNumber is equal to 1,

 then set Ack1Received to TRUE; set TransmissionBlocked to TRUE; and enter the RECEIVE READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

10. DATA LINK/PHYSICAL LAYERS: POINT-TO-POINT

ANSI/ASHRAE Standard 135-2012 141

10.4.11.5 DATA NAK

In this state the device has received a Data Nak frame for processing.

Duplicate_XON

If FrameType is equal to Data Nak 0 XON and TxSequenceNumber is equal to 1, or if FrameType is equal to Data
Nak 1 XON and TxSequenceNumber is equal to 0,

then set TransmissionBlocked to FALSE and enter the RECEIVE READY state.

Duplicate_XOFF

If FrameType is equal to Data Nak 0 XOFF and TxSequenceNumber is equal to 1, or if FrameType is equal to Data
Nak 1 XOFF and TxSequenceNumber is equal to 0,

then set TransmissionBlocked to TRUE and enter the RECEIVE READY state.

Nak0_XON
 If FrameType is equal to Data Nak 0 XON and TxSequenceNumber is equal to 0,

 then set Nak0Received to TRUE; set TransmissionBlocked to FALSE; and enter the RECEIVE READY state.

Nak0_XOFF
 If FrameType is equal to Data Nak 0 XOFF and TxSequenceNumber is equal to 0,

 then set Nak0Received to TRUE; set TransmissionBlocked to TRUE; and enter the RECEIVE READY state.

Nak1_XON
 If FrameType is equal to Data Nak 1 XON and TxSequenceNumber is equal to 1,

 then set Nak1Received to TRUE; set TransmissionBlocked to FALSE; and enter the RECEIVE READY state.

Nak1_XOFF
 If FrameType is equal to Data Nak 1 XOFF and TxSequenceNumber is equal to 1,

 then set Nak1Received to TRUE; set TransmissionBlocked to TRUE; and enter the RECEIVE READY state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

11. DATA LINK/PHYSICAL LAYERS: EIA/CEA-709.1 ("LonTalk") LAN

142 ANSI/ASHRAE Standard 135-2012

11 DATA LINK/PHYSICAL LAYERS: EIA/CEA-709.1 ("LonTalk") LAN

This clause describes the transport of BACnet LSDUs using the services of the LonTalk protocol described in EIA/CEA-
709.1-B-2002 Control Network Protocol Specification. EIA/CEA-709.1-B-2002, as amended and extended by the Electronic
Industries Alliance, is deemed to be included in this standard by reference. Persons desiring to implement BACnet in
products containing the LonTalk Protocol may obtain an OEM license to do so, without cost, by contacting Echelon
Corporation, San Jose, California.

11.1 The Use of ISO 8802-2 Logical Link Control (LLC)

Standard BACnet networks may pass BACnet link service data units (LSDUs) using the data link services of ISO 8802-2
LLC. A BACnet LSDU consists of an NPDU constructed as described in Clause 6. BACnet devices using LonTalk LAN
technology shall conform to the requirements of LLC Class I, subject to the constraints specified in this clause. Class I LLC
service consists of Type 1 LLC - Unacknowledged Connectionless-Mode service. LLC parameters shall be conveyed using
the DL-UNITDATA primitives as described in the referenced standards.

In a LonTalk implementation, BACnet DL-UNITDATA primitives are mapped into the LonTalk Application Layer Interface.
The mapping of these primitives onto the LonTalk Application layer primitives is described in 11.3.

11.2 Parameters Required by the LLC Primitives

The DL-UNITDATA primitive requires source address, destination address, data, and priority parameters. Each source and
destination address consists of a LonTalk address, link service access point (LSAP), and a message code (MC). The LonTalk
address is a variable-length value determined by the configuration of the BACnet device, and the MC used to indicate a
BACnet frame is the single-octet value X'4E'. Since the LonTalk message code identifies the BACnet network layer, the
LSAP is not used. The data parameter is the NPDU from the network layer.

11.3 Mapping the LLC Services to the LonTalk Application Layer

The Type 1 Unacknowledged Connectionless LLC service, DL_UNITDATA.request shall map onto the LonTalk msg_send
request primitive, while the DL_UNITDATA.indication shall map to the LonTalk msg_receive request primitive.

An LPDU longer than 228 octets cannot be conveyed via LonTalk.

11.4 Parameters Required by the Application Layer Primitives

The LonTalk Application layer primitives are msg_send and msg_receive. These convey the encoded LLC data using the
destination LonTalk address described above in conjunction with the BACnet message code. The DL_UNITDATA.request
primitive contains the following parameters:

DL_UNITDATA.request (
 destination_address,
 data,
 priority,
 message_code
)
The 'destination_address' consists of any form of a LonTalk address except address format 2B (which is used exclusively for
multicast acknowledgments and multicast responses). See Figure 6-4. The 'data' parameter specifies the LSDU to be
transferred. The 'priority' parameter conveys the priority specified for the data unit. Any BACnet priority other than "Normal
message" shall be sent using the LonTalk priority mechanism. The 'message_code' parameter shall be X'4E' for BACnet
LPDUs.

LonTalk Authentication is not supported in BACnet.

LonTalk "UNACKD" and "UNACKD_RPT" are the only LonTalk services that shall be allowed within BACnet. The choice
between these two LonTalk services and the repeat count for the "UNACKD_RPT" service shall be considered a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

11. DATA LINK/PHYSICAL LAYERS: EIA/CEA-709.1 ("LonTalk") LAN

ANSI/ASHRAE Standard 135-2012 143

Figure 11-1. Format of an MPDU on a LonTalk network destined for a device
on the same LonTalk BACnet network.

The DL_UNITDATA.indication primitive contains the following parameters:

DL_UNITDATA.indication (
 source_address,
 destination_address,
 length,
 data,
 message_code,
 priority
)

Except as noted below, the parameters
in DL_UNITDATA.indication convey
the same information as the parameters
in DL_UNITDATA.request.

The 'source_address' always consists of
address format 2A.

The 'length' indicates the number of
octets contained in the 'data' parameter.

Figure 11-1 illustrates the format of a
MPDU on a LonTalk BACnet network
destined for a device on the same
LonTalk BACnet network.

11.5 Physical Media

Any of the "Standard Channel Types" defined in the LonMark� Layer 1-6 Interoperability Guidelines is acceptable.
Transceivers built for this network technology shall follow the guidelines specified in the LonMark� Layer 1-6
Interoperability Guidelines. The most recent version of the LonMark� Layer 1-6 Interoperability Guidelines as released by
the LonMark� Interoperability Association (currently version 3.3) shall apply.

APDU

Layer 4 Header or Layer 5 Header

Domain

Destination Address

Source Node

Layer 3 Header

Layer 2 Header

Source Subnet

MC = X'4E'

Version = 1

Control = X'00'
LPDU

MPDU

1 octet

1 octet

1 octet

1 octet

1, 2, 4, or 7 octets

0, 1, 3, or 6 octets

0 or 1 octet

N octets

1 octet

1 octet

1 octet
NPDU

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS

144 ANSI/ASHRAE Standard 135-2012

12 MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS

The data structures used in a device to store information are a local matter. In order to exchange that information with another
device using this protocol, there must be a "network-visible" representation of the information that is standardized. An object-
oriented approach has been adopted to provide this network-visible representation. This clause defines a set of standard
object types. These object types define an abstract data structure that provides a framework for building the application layer
services. The application layer services are designed, in part, to access and manipulate the properties of these standard object
types. Mapping the effect of these services to the real data structures used in the device is a local matter. The number of
instances of a particular object type that a device will support is also a local matter.

All objects are referenced by their Object_Identifier property. Each object within a single BACnet Device shall have a unique
value for the Object_Identifier property. When combined with the system-wide unique Object_Identifier of the BACnet
Device, this provides a mechanism for referencing every object in the control system network. No object shall have an
Object_Identifier with an instance number of 4194303. Object properties that contain BACnetObjectIdentifiers may use
4194303 to indicate that the property is not initialized.

Not all object types defined in this standard need to be supported in order to conform to the standard. In addition, some
properties of particular object types are optional. At the beginning of each standard object type specification that follows is a
summary of the properties of the object type. The summary includes the property identifier, the datatype of the property, and
one of the following : O, R, W

 where O indicates that the property is optional,

R indicates that the property is required to be present and readable using BACnet services,
W indicates that the property is required to be present, readable, and writable using BACnet services.

When a property is designated as required or R, this shall mean that the property is required to be present in all BACnet
standard objects of that type. When a property is designated as optional or O, this shall mean that the property is not required
to be present in all standard BACnet objects of that type. The value of R or O properties may be examined through the use of
one or more of the ReadProperty services defined in this standard. Such R or O properties may also be writable at the
implementor's option unless specifically prohibited in the text describing that particular standard object's property. When a
property is designated as writable or W, this shall mean that the property is required to be present in all BACnet standard
objects of that type and that the value of the property can be changed through the use of one or more of the WriteProperty
services defined in this standard. The value of W properties may be examined through the use of one or more of the
ReadProperty services defined in this standard. An O property, if present in a particular object, is not required to be writable
unless specifically identified as such in the text describing that particular standard object's property.

In some devices, property values may be stored internally in a different form than indicated by the property datatype. For
example, real numbers may be stored internally as integers. This may result in the situation where a property value is changed
by one of the WriteProperty services but a subsequent read returns a slightly different value. This behavior is acceptable as
long as a "best effort" is made to store the written value specified.

It is intended that the collection of object types and their properties defined in this standard be comprehensive, but
implementors are free to define additional nonstandard object types or additional nonstandard properties of standard object
types. This is the principal means for extending the standard as control technology develops. Innovative changes can be
accommodated without waiting for changes in the standard. This extensibility could also be used to adapt this standard to
other types of building services. See 23.3 and 23.4.

Nonstandard object types are required to support the following properties:

 � Object_Identifier BACnetObjectIdentifier
 � Object_Name CharacterString
 � Object_Type BACnetObjectType
 � Property_List BACnetARRAY of BACnetPropertyIdentifier

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS

ANSI/ASHRAE Standard 135-2012 145

These properties shall be implemented to behave as they would when present in standard BACnet objects. This means that
the Object_Identifier and Object_Name properties shall be unique within the BACnet device that maintains them. The
Object_Name string shall be at least one character in length and shall consist only of printable characters.

A BACnet standard object shall support all required properties specified in the standard. It may support, in addition to these
properties, any optional properties specified in the standard or properties not defined in the standard. A required property
shall function as specified in the standard for each object of that type. If properties that are defined as optional in the standard
are supported, then they shall function as specified in the standard. A required property shall be present in all objects of that
type. An optional property, if present in one object of a given type, need not be present in all objects of that type. A supported
property, whether required or optional, shall return the datatype specified in the standard. A supported property, whether
required or optional, is not required to be able to return the entire range of values for a datatype unless otherwise specified in
the property description. Supported properties, whether required or optional, which do not return the entire range of values
for a datatype when read or which restrict the range of values that may be written to the property, shall specify those
restrictions for each such property in the protocol implementation conformance statement (PICS).

Some of the properties of certain BACnet objects need to represent a collection of data elements of the same type, rather than
a single primitive data value or a complex datatype constructed from other datatypes. In some instances, the size of this
collection of data elements is fixed, while in other instances the number of elements may be variable. In some cases the
elements may need to be accessed individually or their order may be important. BACnet provides two forms of datatypes for
properties that represent a collection of data elements of the same type: "BACnetARRAY" and "BACnetLIST." Both
"BACnetARRAY" and "BACnetLIST" are encoded as a "Sequence-Of". Therefore, see the note about datatype restrictions in
Clause 20.2.17.

A "BACnetARRAY" datatype is a structured datatype consisting of an ordered sequence of data elements, each having the
same datatype. The components of an array property may be individually accessed (read or written) using an "array index,"
which is an unsigned integer value. An index of 0 (zero) shall specify that the count of the number of data elements be
returned. If the array index is omitted, it means that all of the elements of the array are to be accessed. An array index N,
greater than zero, shall specify the Nth element in the sequence. When array properties are used in BACnet objects, the
notation "BACnetARRAY[N] of datatype" shall mean an ordered sequence of N data elements, each of which has that
datatype. The datatype of array element 0 is Unsigned. If the size of an array may be changed by writing to the array, then
array element 0 shall be writable. If the value of array element 0 is decreased, the array shall be truncated and the elements of
the array with an index greater than the new value of array element 0 are deleted. If the value of array element 0 is increased,
the new elements of the array, those with an index greater than the old value of array element 0, shall be created; the values
that are assigned to those elements shall be a local matter except where otherwise specified. Where the size of an array is
allowed to be changed, writing the entire array as a single property with a different number of elements shall cause the array
size to be changed. An attempt to write to an array element with an index greater than the size of the array shall result in an
error and shall not cause the array to grow to accommodate the element. Arrays whose sizes are fixed by the Standard shall
not be resizable.

A "BACnetLIST" datatype is a structured datatype consisting of a sequence of zero or more data elements, each having the
same datatype. The length of each "BACnetLIST" may be variable. Unless specified for a particular use, no maximum size
should be assumed for any "BACnetLIST" implementation. The notation "BACnetLIST of datatype" shall mean a sequence
of zero or more data elements, each of which has the indicated type.

The difference between a "BACnetARRAY" property and a "BACnetLIST" property is that the elements of the array can be
uniquely accessed by an array index while the elements of the "BACnetLIST" property can only be positionally accessed
using the ReadRange service. Moreover, the number of elements in the BACnetARRAY may be ascertained by reading the
array index 0, while the number of elements present in a "BACnetLIST" property can only be determined by reading the
entire property value and performing a count.

The ordering of list elements when a list is written or modified is not required to be preserved upon subsequent reading of the
same list, even if the set of elements that make up the list has not changed.

In the context of ReadRange 'By Position', the ordering of "BACnetLIST" elements shall follow the conventions that the first
element of the "BACnetLIST" shall be position 1, and positions 2, 3, 4 and greater shall correspond to list elements in strict
sequence. The sequence of list elements shall follow the same ordering that those elements would appear in if the entire list

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS

146 ANSI/ASHRAE Standard 135-2012

was read using ReadProperty to read the entire list. Assuming that the list has not been written or modified, repeated reading
of list elements shall return those elements in the same order each time.

Several object types defined in this clause have one or more properties that are capable of referencing object properties. For
example, the Object_Property_Reference property of the Event Enrollment object contains such a reference. The property
identifier component of these references shall not be any of the special property identifiers ALL, REQUIRED, or
OPTIONAL. These are reserved for use in the ReadPropertyMultiple service or in objects and services not defined in this
standard.

Several object types defined in this clause have properties that are of type BACnetDateTime, and specify a specific point in
time. These properties shall have an unspecified datetime value if the point in time is undefined or a specific datetime value if
the point in time is specified.

There are a number of objects defined in this clause that have properties of the type BACnetDateRange, for example the
Date_List property in the Calendar object, whose construct includes a startDate and an endDate. Both startDate and endDate
may be an unspecified date or a specific date only. For purposes of comparing date ranges, the following logic shall be
applied.

The use of an unspecified date in the startDate means "any date up to and including the endDate." The use of an unspecified
date in the endDate means "any date after and including the startDate." The use of an unspecified date in both the startDate
and the endDate means "any date" or "always."

Several object types defined in this clause have properties that contain timestamp values. If no event or operation has yet
occurred, then timestamp values of type BACnetDateTime shall have an unspecified datetime value, timestamp values of
type Time shall have an unspecified time value, and timestamp values of type Unsigned shall have a value of zero. If the
event or operation has occurred, then the timestamp value shall have a specific datetime value, a specific time value, or a
value greater than zero, respectively. If a device supports the Local_Date and Local_Time properties, then all timestamps
created by the device shall use the BACnetDateTime form.

Several object types defined in this clause have a property called "Reliability" that indicates the existence of fault conditions
for the object. Reliability-evaluation is the process of determining the value for this property. The first stage of reliability-
evaluation is internal to the object and is completely defined by the device's vendor. The second stage, which is only found in
certain object types, is the application of a fault algorithm. See Clause 13.4 for fault algorithm definitions and see the object
type definitions to determine the fault algorithm supported by any particular object type. The different values that the
Reliability property can take on are described below. Note that not all values are applicable to all object types.

NO_FAULT_DETECTED The present value is reliable; that is, no other fault
(enumerated below) has been detected.

NO_SENSOR No sensor is connected to the Input object.

OVER_RANGE The sensor connected to the Input is reading a value higher
than the normal operating range. If the object is a Binary
Input, this is possible when the Binary state is derived from an
analog sensor or a binary input equipped with electrical loop
supervision circuits.

UNDER_RANGE The sensor connected to the Input is reading a value lower
than the normal operating range. If the object is a Binary
Input, this is possible when the Binary Input is actually a
binary state calculated from an analog sensor.

OPEN_LOOP The connection between the defined object and the physical
device is providing a value indicating an open circuit

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS

ANSI/ASHRAE Standard 135-2012 147

condition.

SHORTED_LOOP The connection between the defined object and the physical
device is providing a value indicating a short circuit
condition.

NO_OUTPUT No physical device is connected to the Output object.

PROCESS_ERROR A processing error was encountered.

MULTI_STATE_FAULT The FAULT_STATE, FAULT_LIFE_SAFETY or
FAULT_CHARACTERSTRING fault algorithm has
evaluated a fault condition. For details of this evaluation see
the respective fault algorithms in Clause 13.4.

CONFIGURATION_ERROR The object's properties are not in a consistent state.

COMMUNICATION_FAILURE Proper operation of the object is dependent on communication
with a remote sensor or device and communication with the
remote sensor or device has been lost.

MONITORED_OBJECT_FAULT Indicates that the monitored object is in fault.

UNRELIABLE_OTHER The controller has detected that the present value is
unreliable, but none of the other conditions describe the
nature of the problem. A generic fault other than those listed
above has been detected, e.g., a Binary Input is not cycling as
expected.

MEMBER_FAULT Indicates that the set of referenced member objects includes
one or more Status_Flags properties whose FAULT flag value
is equal to TRUE.

TRIPPED The end device, such as an actuator, is not responding to
commands, prevented by a tripped condition or by being
mechanically held open.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

148 ANSI/ASHRAE Standard 135-2012

12.1 Accumulator Object Type

The Accumulator object type defines a standardized object whose properties represent the externally visible characteristics of
a device that indicates measurements made by counting pulses.

This object maintains precise measurement of input count values, accumulated over time. The accumulation of pulses
represents the measured quantity in unsigned integer units. This object is also concerned with the accurate representation of
values presented on meter read-outs. This includes the ability to initially set the Present_Value property to the value currently
displayed by the meter (as when the meter is installed), and to duplicate the means by which it is advanced, including
simulating a modulo-N divider prescaling the actual meter display value, as shown in Figure 12-1.

Typical applications of such devices are in peak load management and in accounting and billing management systems. This
object is not intended to meet all such applications. Its purpose is to provide information about the quantity being measured,
such as electric power, water, or natural gas usage, according to criteria specific to the application.

)
�����
:
)
2#�

2K�
�����

/ //) 0 9

)
�����
:
)//
2K�

&������@A����L

�����������

/) 0 9

������3��=
��1����
"�
������
���
:
=
������
��%

&�������L)L)//

Figure 12-1. Example of an Accumulator object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

ANSI/ASHRAE Standard 135-2012 149

Accumulator objects that support intrinsic reporting shall apply the UNSIGNED_RANGE event algorithm.

The object and its properties are summarized in Table 12-1 and described in detail in this subclause.

Table 12-1. Properties of the Accumulator Object
Property Identifier Property Datatype Conformance

Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value Unsigned R1
Description CharacterString O
Device_Type CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Out_Of_Service BOOLEAN R
Scale BACnetScale R
Units BACnetEngineeringUnits R
Prescale BACnetPrescale O
Max_Pres_Value Unsigned R
Value_Change_Time BACnetDateTime O2
Value_Before_Change Unsigned O2,3
Value_Set Unsigned O2,3
Logging_Record BACnetAccumulatorRecord O
Logging_Object BACnetObjectIdentifier O
Pulse_Rate Unsigned O1,4,7
High_Limit Unsigned O4,6
Low_Limit Unsigned O4,6
Limit_Monitoring_Interval Unsigned O4,7
Notification_Class Unsigned O4,6
Time_Delay Unsigned O4,6
Limit_Enable BACnetLimitEnable O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6

Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,8
Time_Delay_Normal Unsigned O6
Reliability_Evaluation_Inhibit BOOLEAN O9
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 These properties are required if either Value_Before_Change or Value_Set is writable.
3 Either Value_Before_Change or Value_Set may be writable, but not both.
4 These properties are required if the object supports intrinsic reporting.
5 This property, if present, is required to be read-only.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

150 ANSI/ASHRAE Standard 135-2012

6 These properties shall be present only if the object supports intrinsic reporting.
7 If one of these properties is present, then both shall be present.
8 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
9 If this property is present, then the Reliability property shall be present.

12.1.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.1.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.1.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCUMULATOR.

12.1.4 Present_Value

This property, of type Unsigned, indicates the count of the input pulses, prescaled if the Prescale property is present, acquired
since the value was most recently set by writing to the Value_Set property.

The value of this property shall remain in the range from zero through Max_Pres_Value. All operations on the Present_Value
property are performed modulo (Max_Pres_Value+1).

This property shall be writable when Out_Of_Service is TRUE.

12.1.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.1.6 Device_Type

This property, of type CharacterString, is a text description of the physical device represented by the Accumulator object. It
will typically be used to describe the type of sensor represented by the Accumulator.

12.1.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an Accumulator
object. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

ANSI/ASHRAE Standard 135-2012 151

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.1.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.1.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value property or the
operation of the physical input in question is "reliable" as far as the BACnet Device or operator can determine and, if not,
why.

12.1.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the physical input that
the object represents is not in service. This means that the Present_Value and Pulse_Rate properties are decoupled from the
physical input and will not track changes to the physical input when the value of Out_Of_Service is TRUE. In addition, the
Reliability property and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the
physical input when Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value, Pulse_Rate
and Reliability properties may be changed to any value as a means of simulating specific fixed conditions or for testing
purposes. Other functions that depend on the state of the Present_Value, Pulse_Rate or Reliability properties shall respond to
changes made to these properties while Out_Of_Service is TRUE, as if those changes had occurred in the physical input.

12.1.11 Scale

This property, of type BACnetScale, indicates the conversion factor to be multiplied with the value of the Present_Value
property to provide a value in the units indicated by Units. The choice of options for this property determine how the scaling
operation (which is performed by the client reading this object) is performed:

Option Datatype Indicated Value in Units

floatScale REAL Present_Value x Scale
integerScale INTEGER Present_Value x 10 Scale

12.1.12 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of the Present_Value when multiplied with
the scaling factor indicated by Scale. See the BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of
engineering units defined by this standard.

12.1.13 Prescale

This property, of type BACnetPrescale, presents the coefficients that are used for converting the pulse signals generated by
the measuring instrument into the value displayed by Present_Value. The conversions are performed using integer arithmetic
in such a fashion that no measurement-generated pulse signals are lost in the conversion.

These coefficients might simply document a conversion performed prior to the reception of the input pulses by the
Accumulator object, or they might actually be used by the Accumulator to convert input pulses into the value displayed by
Present_Value. Whichever is done is a local matter.

The coefficients are as follows:

multiplier The numerator of the conversion factor expressed as a ratio of integers.
moduloDivide The denominator of the conversion factor expressed as a ratio of integers.

The conversion algorithm is performed as follows, utilizing a non-displayed variable called an accumulator:

For each input pulse:
 Add the value of 'multiplier' to an accumulator and then,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

152 ANSI/ASHRAE Standard 135-2012

 while the accumulator is greater than or equal to the value of 'moduloDivide':
 Increment the value of Present_Value by one, and
 decrease the value of the accumulator by the value of 'moduloDivide'.

This procedure supports non-integral ratios of measurement pulses to Present_Value. For example, in an electrical metering
application, the output of the voltage- and current-measuring systems might be 9000/1200 (scale / voltage*current) pulses per
kWh, requiring the Accumulator object to accumulate 2/15 kWh/pulse. With this algorithm such pulses can be accurately
accumulated and displayed when the units of Present_Value are KILOWATT_HOURS.

12.1.14 Max_Pres_Value

This property, of type Unsigned, indicates the maximum value of the Present_Value property.

12.1.15 Value_Change_Time

This read-only property, of type BACnetDateTime, shall be present if the Present_Value property is adjustable by writing to
the Value_Before_Change or Value_Set properties. It represents the date and time of the most recent occurrence of such a
write operation. This property shall have an unspecified datetime to indicate that it is uninitialized; otherwise, it shall have a
specific datetime value.

12.1.16 Value_Before_Change

This property, of type Unsigned, indicates the value of the Present_Value property just prior to the most recent write to the
Value_Set or Value_Before_Change properties. If no such write has yet occurred, this property shall have the value zero. If
this property is writable, the Value_Set property shall be read-only.

If this property is writable, the following series of operations, for which the associated properties are present, shall be
performed atomically by the object when this property is written:

(1) The value of Present_Value shall be copied to the Value_Set property.
(2) The value written to Value_Before_Change shall be stored in the Value_Before_Change property.
(3) The current date and time shall be stored in the Value_Change_Time property.

While this series of operations is being performed, it is critical that any other process not change the Present_Value,
Value_Set and Value_Before_Change properties.

12.1.17 Value_Set

This property, of type Unsigned, indicates the value of the Present_Value property after the most recent write to the
Value_Set or Value_Before_Change properties. If no such write has yet occurred, this property shall have the value zero. If
this property is writable, the Value_Before_Change property shall be read-only.

If this property is writable, the following series of operations, for which the associated properties are present, shall be
performed atomically by the object when this property is written:

(1) The value of Present_Value shall be copied to the Value_Before_Change property.
(2) The value written to Value_Set shall be stored in both the Value_Set and Present_Value properties.
(3) The current date and time shall be stored in the Value_Change_Time property.

While this series of operations are being performed, it is critical that any other process not change the Present_Value,
Value_Set and Value_Before_Change properties.

12.1.18 Logging_Record

This read-only property, of type BACnetAccumulatorRecord, is a list of values that must be acquired and returned
"atomically" in order to allow proper interpretation of the data.

If the Logging_Object property is present, then, when Logging_Record is acquired by the object identified by
Logging_Object, this list of values shall be saved and returned when read by other objects or devices. If the Logging_Object
property is present and Logging_Record has not yet been acquired by the object identified by Logging_Object, 'timestamp'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

ANSI/ASHRAE Standard 135-2012 153

shall contain an unspecified datetime, 'present-value' and 'accumulated-value' shall contain the value zero, and 'accumulator-
status' shall indicate STARTING.

The list of values ('timestamp', 'present-value', 'accumulated-value', and 'accumulator-status') shall be acquired from the
underlying system when they reflect a stable state of the device (for example, they shall not be acquired when Present_Value
has just been incremented but the corresponding increment of 'accumulated-value' has not yet occurred).

The items returned in the list of values are:

timestamp The local date and time when the data was acquired.
present-value The value of the Present_Value property.
accumulated-value The short term accumulated value of the counter. The algorithm used to calculate accumulated-value is

a function of the value of accumulator-status. If this is the initial read, the value returned shall be zero.
accumulator-status An indication of the reliability of the data in this list of values.

The accumulator-status parameter may take on any of the following values:

{NORMAL, STARTING, RECOVERED, ABNORMAL, FAILED}

where the values are defined as follows:

NORMAL No event affecting the reliability of the data has occurred during the period from the

preceding to the current qualified reads of the Logging_Record property. In this case
'accumulated-value' shall be represented by the expression:

accumulated-value = Present_Valuecurrent - Present_Valueprevious

STARTING This value indicates that the data in Logging_Records is either the first data to be
acquired since startup by the object identified by Logging_Object (if 'timestamp' has
a specific datetime) or that no data has been acquired since startup by the object
identified by Logging_Object (in which case 'timestamp' has an unspecified
datetime).

RECOVERED One or more writes to Value_Before_Change or Value_Set have occurred since
Logging_Record was acquired by the object identified by Logging_Object. For the
case of a single write, 'accumulated-value' shall be represented by the expression:
accumulated-value = (Present_Valuecurrent - Value_Set) +

(Value_Before_Change - Present_Valueprevious)

ABNORMAL The accumulation has been carried out, but some unrecoverable event such as the
clock's time being changed by a significant amount since Logging_Record was
acquired by the object identified by Logging_Object. (How much time is considered
significant shall be a local matter.)

FAILED The 'accumulated-value' item is not reliable due to some problem. The criteria for

returning this value are a local matter.

Changes in the value of 'accumulator-status' shall occur only when the Logging_Record is acquired by the object identified
by Logging_Object.

12.1.19 Logging_Object

This property, of type BACnetObjectIdentifier, indicates the object in the same device as the Accumulator object which,
when it acquires Logging_Record data from the Accumulator object, shall cause the Accumulator object to acquire, present
and store the data from the underlying system.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

154 ANSI/ASHRAE Standard 135-2012

12.1.20 Pulse_Rate

This property, of type Unsigned, shall indicate the number of input pulses received during the most recent period specified by
Limit_Monitoring_Interval. The mechanism that associates the input signal with the value indicated by this property is a local
matter.

This property shall be writable when Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.1.21 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.1.22 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.1.23 Limit_Monitoring_Interval

This property, of type Unsigned, specifies the monitoring period in seconds for determining the value of Pulse_Rate. The use
of a fixed or sliding time window for detecting pulse rate is a local matter.

12.1.24 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.1.25 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.1.26 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

12.1.27 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.1.28 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.1.29 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.1.30 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

ANSI/ASHRAE Standard 135-2012 155

12.1.31 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.1.32 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.1.33 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.1.34 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.1.35 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.1.36 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.1.37 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.1.38 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Accumulator Object Type

156 ANSI/ASHRAE Standard 135-2012

12.1.39 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Input Object Type

ANSI/ASHRAE Standard 135-2012 157

12.2 Analog Input Object Type

The Analog Input object type defines a standardized object whose properties represent the externally visible characteristics of
an analog input.

Analog Input objects that support intrinsic reporting shall apply the OUT_OF_RANGE event algorithm.

The object and its properties are summarized in Table 12-2 and described in detail in this subclause.

Table 12-2. Properties of the Analog Input Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Update_Interval
Units
Min_Pres_Value
Max_Pres_Value
Resolution
COV_Increment
Time_Delay
Notification_Class
High_Limit
Low_Limit
Deadband
Limit_Enable
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
REAL
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
Unsigned
BACnetEngineeringUnits
REAL
REAL
REAL
REAL
Unsigned
Unsigned
REAL
REAL
REAL
BACnetLimitEnable
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R1

O
O
R
R
O
R
O
R
O
O
O
O2

O3,5

O3,5

O3,5

O3,5

O3,5

O3,5

O3,5

O3,5

O3,5

O3,5

O4,5

O5

O3,5

O5

O5,6

O5

O7

R
O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 This property is required if, and shall be present only if, the object supports COV reporting.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
7 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Input Object Type

158 ANSI/ASHRAE Standard 135-2012

12.2.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.2.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.2.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ANALOG_INPUT.

12.2.4 Present_Value

This property, of type REAL, indicates the current value, in engineering units, of the input being measured. The
Present_Value property shall be writable when Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.2.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.2.6 Device_Type

This property, of type CharacterString, is a text description of the physical device connected to the analog input. It will
typically be used to describe the type of sensor attached to the analog input.

12.2.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an analog input.
Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined
by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the
protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.2.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Input Object Type

ANSI/ASHRAE Standard 135-2012 159

property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.2.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical input in question is "reliable" as far as the BACnet Device or operator can determine and, if not, why.

12.2.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the physical input that
the object represents is not in service. This means that the Present_Value property is decoupled from the physical input and
will not track changes to the physical input when the value of Out_Of_Service is TRUE. In addition, the Reliability property
and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the physical input when
Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be
changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend
on the state of the Present_Value or Reliability properties shall respond to changes made to these properties while
Out_Of_Service is TRUE, as if those changes had occurred in the physical input.

12.2.11 Update_Interval

This property, of type Unsigned, indicates the maximum period of time between updates to the Present_Value in hundredths
of a second when the input is not overridden and not out-of-service.

12.2.12 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.2.13 Min_Pres_Value

This property, of type REAL, indicates the lowest number in engineering units that can be reliably obtained for the
Present_Value property of this object.

12.2.14 Max_Pres_Value

This property, of type REAL, indicates the highest number in engineering units that can be reliably obtained for the
Present_Value property of this object.

12.2.15 Resolution

This read-only property, of type REAL, indicates the smallest recognizable change in Present_Value in engineering units.

12.2.16 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.2.17 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.2.18 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Input Object Type

160 ANSI/ASHRAE Standard 135-2012

12.2.19 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.2.20 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.2.21 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.2.22 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

12.2.23 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.2.24 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.2.25 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.2.26 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.2.27 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.2.28 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.2.29 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Input Object Type

ANSI/ASHRAE Standard 135-2012 161

12.2.30 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.2.31 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.2.32 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.2.33 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.2.34 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.2.35 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Output Object Type

162 ANSI/ASHRAE Standard 135-2012

12.3 Analog Output Object Type

The Analog Output object type defines a standardized object whose properties represent the externally visible characteristics
of an analog output.

Analog Output objects that support intrinsic reporting shall apply the OUT_OF_RANGE event algorithm.

The object and its properties are summarized in Table 12-3 and described in detail in this subclause.

Table 12-3. Properties of the Analog Output Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Units
Min_Pres_Value
Max_Pres_Value
Resolution
Priority_Array
Relinquish_Default
COV_Increment
Time_Delay
Notification_Class
High_Limit
Low_Limit
Deadband
Limit_Enable
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
REAL
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
BACnetEngineeringUnits
REAL
REAL
REAL
BACnetPriorityArray
REAL
REAL
Unsigned
Unsigned
REAL
REAL
REAL
BACnetLimitEnable
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
W
O
O
R
R
O
R
R
O
O
O
R
R
O1

O2,4

O2,4

O2,4

O2,4

O2,4

O2,4

O2,4

O2,4

O2,4

O2,4

O3,4

O4

O2,4

O4

O4,5

O4

O6

R
O

1 This property is required if, and shall be present only if, the object supports COV reporting.
2 These properties are required if the object supports intrinsic reporting.
3 This property, if present, is required to be read-only.
4 These properties shall be present only if the object supports intrinsic reporting.
5 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
6 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Output Object Type

ANSI/ASHRAE Standard 135-2012 163

12.3.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.3.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.3.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ANALOG_OUTPUT.

12.3.4 Present_Value (Commandable)

This property, of type REAL, indicates the current value, in engineering units, of the output.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.3.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.3.6 Device_Type

This property, of type CharacterString, is a text description of the physical device connected to the analog output. It will
typically be used to describe the type of device attached to the analog output.

12.3.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an analog
output. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.3.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Output Object Type

164 ANSI/ASHRAE Standard 135-2012

property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.3.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical output in question is "reliable" as far as the BACnet Device or operator can determine and, if not, why.

12.3.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the physical point that
the object represents is not in service. This means that changes to the Present_Value property are decoupled from the physical
output when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the
FAULT flag of the Status_Flags property shall be decoupled from the physical output when Out_Of_Service is TRUE. While
the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may still be changed to any value as a
means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the
Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as
if those changes had occurred to the physical output. The Present_Value property shall still be controlled by the BACnet
command prioritization mechanism if Out_Of_Service is TRUE. See Clause 19.

12.3.11 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.3.12 Min_Pres_Value

This property, of type REAL, indicates the lowest number in engineering units that can be reliably used for the
Present_Value property of this object.

12.3.13 Max_Pres_Value

This property, of type REAL, indicates the highest number in engineering units that can be reliably used for the
Present_Value property of this object.

12.3.14 Resolution

This read-only property, of type REAL, indicates the smallest recognizable change in Present_Value in engineering units.

12.3.15 Priority_Array

This property is a read-only array of prioritized values. See Clause 19 for a description of the prioritization mechanism.

12.3.16 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.3.17 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.3.18 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.3.19 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Output Object Type

ANSI/ASHRAE Standard 135-2012 165

12.3.20 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.3.21 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.3.22 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.3.23 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

12.3.24 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.3.25 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.3.26 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.3.27 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.3.28 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.3.29 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.3.30 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Output Object Type

166 ANSI/ASHRAE Standard 135-2012

12.3.31 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.3.32 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.3.33 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.3.34 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.3.35 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.3.36 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 167

12.4 Analog Value Object Type

The Analog Value object type defines a standardized object whose properties represent the externally visible characteristics
of an analog value. An "analog value" is a control system parameter residing in the memory of the BACnet Device.

Analog Value objects that support intrinsic reporting shall apply the OUT_OF_RANGE event algorithm.

The object and its properties are summarized in Table 12-4 and described in detail in this subclause.

Table 12-4. Properties of the Analog Value Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Status_Flags
Event_State
Reliability
Out_Of_Service
Units
Priority_Array
Relinquish_Default
COV_Increment
Time_Delay
Notification_Class
High_Limit
Low_Limit
Deadband
Limit_Enable
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Min_Pres_Value
Max_Pres_Value
Resolution
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
REAL
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
BACnetEngineeringUnits
BACnetPriorityArray
REAL
REAL
Unsigned
Unsigned
REAL
REAL
REAL
BACnetLimitEnable
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
REAL
REAL
REAL
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R4
O
R
R
O
R
R
O1

O1

O2

O3,6

O3,6

O3,6

O3,6

O3,6

O3,6

O3,6

O3,6

O3,6

O3,6

O5,6

O6
O3,6

O6

O6,7

O6
O8
O
O
O
R
O

1 These properties are required if, and shall be present only if, Present_Value is commandable.
2 This property is required if, and shall be present only if, the object supports COV reporting.
3 These properties are required if the object supports intrinsic reporting.
4 If Present_Value is commandable, then it is required to be writable. This property is required to be

writable when Out_Of_Service is TRUE.
5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Value Object Type

168 ANSI/ASHRAE Standard 135-2012

12.4.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.4.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.4.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ANALOG_VALUE.

12.4.4 Present_Value

This property, of type REAL, indicates the current value, in engineering units, of the analog value. Present_Value shall be
optionally commandable. If Present_Value is commandable for a given object instance, then the Priority_Array and
Relinquish_Default properties shall also be present for that instance. The Present_Value property shall be writable when
Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.4.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.4.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an analog value.
Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined
by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the
protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.4.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 169

12.4.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value is "reliable" as far
as the BACnet Device can determine and, if not, why.

12.4.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of
the Analog Value object is prevented from being modified by software local to the BACnet device in which the object
resides. When Out_Of_Service is TRUE, the Present_Value property may be written to freely. If the Priority_Array and
Relinquish_Default properties are present, then writing to the Present_Value property shall be controlled by the BACnet
command prioritization mechanism. See Clause 19.

12.4.10 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.4.11 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.4.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.4.13 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.4.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.4.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.4.16 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.4.17 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.4.18 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.4.19 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

12.4.20 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Value Object Type

170 ANSI/ASHRAE Standard 135-2012

12.4.21 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.4.22 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.4.23 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.4.24 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.4.25 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.4.26 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.4.27 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.4.28 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 171

12.4.29 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.4.30 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.4.31 Min_Pres_Value

This property, of type REAL, indicates the lowest number in engineering units that can be reliably obtained or used for the
Present_Value property of this object.

12.4.32 Max_Pres_Value

This property, of type REAL, indicates the highest number in engineering units that can be reliably obtained or used for the
Present_Value property of this object.

12.4.33 Resolution

This property, of type REAL, indicates the smallest recognizable change in Present_Value in engineering units (read-only).

12.4.34 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.4.35 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Averaging Object Type

172 ANSI/ASHRAE Standard 135-2012

12.5 Averaging Object Type

The Averaging object type defines a standardized object whose properties represent the externally visible characteristics of a
value that is sampled periodically over a specified time interval. The Averaging object records the minimum, maximum and
average value over the interval, and makes these values visible as properties of the Averaging object. The sampled value may
be the value of any BOOLEAN, INTEGER, Unsigned, Enumerated or REAL property value of any object within the BACnet
Device in which the object resides. Optionally, the object property to be sampled may exist in a different BACnet Device.
The Averaging object shall use a "sliding window" technique that maintains a buffer of N samples distributed over the
specified interval. Every (time interval/N) seconds a new sample is recorded displacing the oldest sample from the buffer. At
this time, the minimum, maximum and average are recalculated. The buffer shall maintain an indication for each sample that
permits the average calculation and minimum/maximum algorithm to determine the number of valid samples in the buffer.

The Averaging object type and its properties are summarized in Table 12-5 and described in detail in this subclause.

Table 12-5. Properties of the Averaging Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Minimum_Value REAL R
Minimum_Value_Timestamp BACnetDateTime O
Average_Value REAL R
Variance_Value REAL O
Maximum_Value REAL R
Maximum_Value_Timestamp BACnetDateTime O
Description CharacterString O
Attempted_Samples Unsigned W1
Valid_Samples Unsigned R
Object_Property_Reference BACnetDeviceObjectPropertyReference R1
Window_Interval Unsigned W1
Window_Samples Unsigned W1
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If any of these properties are written to using BACnet services, then all of the buffer samples shall
become invalid, 'Attempted_Samples' shall become zero, 'Valid_Samples' shall become zero,
'Minimum_Value' shall become INF, 'Average_Value' shall become NaN and 'Maximum_Value' shall
become -INF.

12.5.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.5.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.5.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be AVERAGING.

12.5.4 Minimum_Value

This property, of type REAL, shall reflect the lowest value contained within the buffer window for the most recent
'Window_Samples' samples, or the actual number of samples ('Valid_Samples') if less than 'Window_Samples' samples have

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Averaging Object Type

ANSI/ASHRAE Standard 135-2012 173

been taken. After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference', 'Window_Samples' or
'Window_Interval' are written to using BACnet services, until a sample is taken, 'Minimum_Value' shall have the value INF.

12.5.5 Minimum_Value_Timestamp

This property, of type BACnetDateTime, indicates the date and time at which the value stored in Minimum_Value was
sampled.

12.5.6 Average_Value

This property, of type REAL, shall reflect the average value contained within the buffer window for the most recent
'Window_Samples' samples, or the actual number of samples ('Valid_Samples') if less than 'Window_Samples' samples have
been taken. The average shall be calculated by taking the arithmetic sum of all non-missed buffer samples and dividing by
the number of non-missed buffer samples. After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference',
'Window_Samples' or 'Window_Interval' are written to using BACnet services, until a sample is taken, 'Average_Value' shall
have the value NaN.

12.5.7 Variance_Value

This property, of type REAL, shall reflect the variance value contained within the buffer window for the most recent
'Window_Samples' samples, or the actual number of samples ('Valid_Samples') if less than 'Window_Samples' samples have
been taken. After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference', 'Window_Samples' or
'Window_Interval' are written to using BACnet services, until a sample is taken, 'Variance_Value' shall have the value NaN.

12.5.8 Maximum_Value

This property, of type REAL, shall reflect the highest value contained within the buffer window for the most recent
'Window_Samples' samples, or the actual number of samples ('Valid_Samples') if less than 'Window_Samples' samples have
been taken. After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference', 'Window_Samples' or
'Window_Interval' are written to using BACnet services, until a sample is taken, 'Maximum_Value' shall have the value
-INF.

12.5.9 Maximum_Value_Timestamp

This property, of type BACnetDateTime, indicates the date and time at which the value stored in Maximum_Value was
sampled.

12.5.10 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.5.11 Attempted_Samples

This property, of type Unsigned, indicates the number of samples that have been attempted to be collected for the current
window. The only acceptable value that may be written to this property shall be zero. If 'Attempted_Samples' is less than
'Window_Samples' then a period of time less than 'Window_Interval' has elapsed since a device restart, or
'Attempted_Samples', 'Object_Property_Reference', 'Window_Samples' or 'Window_Interval' have been written to using
BACnet services. The number of missed samples in the current window can be calculated by subtracting 'Valid_Samples'
from 'Attempted_Samples.' After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference',
'Window_Samples' or 'Window_Interval' are written to using BACnet services, until a sample is taken, 'Attempted_Samples'
shall have the value zero.

12.5.12 Valid_Samples

This read-only property, of type Unsigned, indicates the number of samples that have been successfully collected for the
current window. This value can be used to determine whether any of the samples in the current 'Window_Interval' are
missing. The number of missed samples in the current window can be calculated by subtracting 'Valid_Samples' from
'Attempted_Samples.' A result greater than zero indicates the number of samples that encountered an error when the sample
was being recorded. After a device restart, or after 'Attempted_Samples', 'Object_Property_Reference', 'Window_Samples' or
'Window_Interval' are written to using BACnet services until a sample is taken, 'Valid_Samples' shall have the value zero.

12.5.13 Object_Property_Reference

This property, of type BACnetDeviceObjectPropertyReference, shall identify the object and property whose value is to be
sampled during the 'Window_Interval'. The object referenced may be located within the device containing the Averaging

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Averaging Object Type

174 ANSI/ASHRAE Standard 135-2012

object, or optionally the Averaging object may support the referencing of object properties in other devices. External
references may be restricted to a particular set of BACnet devices. The referenced object property must have any of the
numeric datatypes BOOLEAN, INTEGER, Unsigned, Enumerated or REAL. All sampled data shall be converted to REAL
for calculation purposes. BOOLEAN FALSE shall be considered to be zero and TRUE shall be considered to be one.
Enumerated datatypes shall be treated as Unsigned values. If an implementation supports writing to
'Object_Property_Reference', then if 'Object_Property_Reference' is written to using BACnet services, then all of the buffer
samples shall become invalid, 'Attempted_Samples' shall become zero, 'Valid_Samples' shall become zero, 'Minimum_Value'
shall become INF, 'Average_Value' shall become NaN and 'Maximum_Value' shall become -INF.

12.5.14 Window_Interval

This property, of type Unsigned, shall indicate the period of time in seconds over which the minimum, maximum and average
values are calculated. The minimum acceptable value for 'Window_Interval' shall be a local matter. Every 'Window_Interval'
divided by 'Window_Samples' seconds a new sample shall be taken by reading the value of the property referenced by the
'Object_Property_Reference'. Whether the sample represents an instantaneous "snapshot" or a continuously calculated sample
shall be a local matter. If 'Window_Interval' is written to using BACnet services, then all of the buffer samples shall become
invalid, 'Attempted_Samples' shall become zero, 'Valid_Samples' shall become zero, 'Minimum_Value' shall become INF,
'Average_Value' shall become NaN and 'Maximum_Value' shall become -INF.

12.5.15 Window_Samples

This property, of type Unsigned, shall indicate the number of samples to be taken during the period of time specified by the
'Window_Interval' property. 'Window_Samples' must be greater than zero and all implementations shall support at least 15
samples. Every 'Window_Interval' divided by 'Window_Samples' seconds a new sample shall be taken by reading the value
of the property referenced by the 'Object_Property_Reference'. Whether the sample represents an instantaneous "snapshot" or
a continuously calculated sample shall be a local matter. If 'Window_Samples' is written to using BACnet services, then all of
the buffer samples shall become invalid, 'Attempted_Samples' shall become zero, 'Valid_Samples' shall become zero,
'Minimum_Value' shall become INF, 'Average_Value' shall become NaN and 'Maximum_Value' shall become -INF.

12.5.16 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.5.17 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

ANSI/ASHRAE Standard 135-2012 175

12.6 Binary Input Object Type

The Binary Input object type defines a standardized object whose properties represent the externally visible characteristics of
a binary input. A "binary input" is a physical device or hardware input that can be in only one of two distinct states. In this
description, those states are referred to as ACTIVE and INACTIVE. A typical use of a binary input is to indicate whether a
particular piece of mechanical equipment, such as a fan or pump, is running or idle. The state ACTIVE corresponds to the
situation when the equipment is on or running, and INACTIVE corresponds to the situation when the equipment is off or idle.

In some applications, electronic circuits may reverse the relationship between the application-level logical states ACTIVE
and INACTIVE and the physical state of the underlying hardware. For example, a normally open relay contact may result in
an ACTIVE state when the relay is energized, while a normally closed relay contact may result in an INACTIVE state when
the relay is energized. The Binary Input object provides for this possibility by including a Polarity property. See Clauses
12.6.4 and 12.6.11.

Binary Input objects that support intrinsic reporting shall apply the CHANGE_OF_STATE event algorithm.

The object and its properties are summarized in Table 12-6 and described in detail in this subclause.

Table 12-6. Properties of the Binary Input Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Polarity
Inactive_Text
Active_Text
Change_Of_State_Time
Change_Of_State_Count
Time_Of_State_Count_Reset
Elapsed_Active_Time
Time_Of_Active_Time_Reset
Time_Delay
Notification_Class
Alarm_Value
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
BACnetBinaryPV
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
BACnetPolarity
CharacterString
CharacterString
BACnetDateTime
Unsigned
BACnetDateTime
Unsigned32
BACnetDateTime
Unsigned
Unsigned
BACnetBinaryPV
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R1

O
O
R
R
O
R
R
O2

O2

O3

O3

O3

O4

O4

O5,7

O5,7

O5,7

O5,7

O5,7

O5,7

O5,7

O6,7
O7
O5,7

O7
O7,8
O7
O9
R
O

1 This property is required to be writable when Out_Of_Service is TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

176 ANSI/ASHRAE Standard 135-2012

2 If one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be
present.

3 If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

4 If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both
of these properties shall be present.

5 These properties are required if the object supports intrinsic reporting.
6 This property, if present, is required to be read-only.
7 These properties shall be present only if the object supports intrinsic reporting.
8 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
9 If this property is present, then the Reliability property shall be present.

12.6.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.6.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.6.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property
shall be BINARY_INPUT.

12.6.4 Present_Value

This property, of type BACnetBinaryPV, reflects the logical state of the Binary Input. The logical state of the Input shall be
either INACTIVE or ACTIVE. The relationship between the Present_Value and the physical state of the Input is determined
by the Polarity property. The possible states are summarized in Table 12-7.

Table 12-7. BACnet Polarity Relationships
Present_Value Polarity Physical State

of Input
Physical State
of Device

 INACTIVE NORMAL OFF or INACTIVE not running

 ACTIVE NORMAL ON or ACTIVE Running

 INACTIVE REVERSE ON or ACTIVE not running

 ACTIVE REVERSE OFF or INACTIVE running

The Present_Value property shall be writable when Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.6.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.6.6 Device_Type

This property, of type CharacterString, is a text description of the physical device connected to the binary input. It will
typically be used to describe the type of device attached to the binary input.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

ANSI/ASHRAE Standard 135-2012 177

12.6.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a binary input.
Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined
by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the
protocol. The four flags are
 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.6.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.6.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical input in question is "reliable" as far as the BACnet Device or operator can determine and, if not, why.

12.6.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the physical input the
object represents is not in service. This means that the Present_Value property is decoupled from the physical input and will
not track changes to the physical input when the value of Out_Of_Service is TRUE. In addition, the Reliability property and
the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the physical input when
Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be
changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend
on the state of the Present_Value or Reliability properties shall respond to changes made to these properties while
Out_Of_Service is TRUE, as if those changes had occurred in the physical input.

12.6.11 Polarity

This property, of type BACnetPolarity, indicates the relationship between the physical state of the Input and the logical state
represented by the Present_Value property. If the Polarity property is NORMAL, then the ACTIVE state of the
Present_Value property is also the ACTIVE or ON state of the physical Input as long as Out_Of_Service is FALSE. If the
Polarity property is REVERSE, then the ACTIVE state of the Present_Value property is the INACTIVE or OFF state of the
physical Input as long as Out_Of_Service is FALSE. See Table 12-7. Therefore, when Out_Of_Service is FALSE for a
constant physical input state, a change in the Polarity property shall produce a change in the Present_Value property. If
Out_Of_Service is TRUE, then the Polarity property shall have no effect on the Present_Value property.

12.6.12 Inactive_Text

This property, of type CharacterString, characterizes the intended effect of the INACTIVE state of the Present_Value
property from the human operator's viewpoint. The content of this string is a local matter, but it is intended to represent a

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

178 ANSI/ASHRAE Standard 135-2012

human-readable description of the INACTIVE state. For example, if the physical input is connected to a switch contact, then
the Inactive_Text property might be assigned a value such as "Fan 1 Off". If either the Inactive_Text property or the
Active_Text property is present, then both of them shall be present.

12.6.13 Active_Text

This property, of type CharacterString, characterizes the intended effect of the ACTIVE state of the Present_Value property
from the human operator's viewpoint. The content of this string is a local matter, but it is intended to represent a
human-readable description of the ACTIVE state. For example, if the physical input is a switch contact, then the Active_Text
property might be assigned a value such as "Fan 1 On". If either the Active_Text property or the Inactive_Text property is
present, then both of them shall be present.

12.6.14 Change_Of_State_Time

This property, of type BACnetDateTime, represents the date and time at which the most recent change of state occurred. A
"change of state" shall be defined as any event that alters the Present_Value property. When Out_Of_Service is FALSE, a
change to the Polarity property shall alter Present_Value and thus be considered a change of state. When Out_Of_Service is
TRUE, changes to Polarity shall not cause changes of state. If one of the optional properties Change_Of_State_Time,
Change_Of_State_Count, or Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.6.15 Change_Of_State_Count

This property, of type Unsigned, represents the number of times that the Present_Value property has changed state since the
Change_Of_State_Count property was most recently set to a zero value. The Change_Of_State_Count property shall have a
range of 0-65535 or greater. A "change of state" shall be defined as any event that alters the Present_Value property. When
Out_Of_Service is FALSE, a change to the Polarity property shall alter Present_Value and thus be considered a change of
state. When Out_Of_Service is TRUE, changes to Polarity shall not cause changes of state. If one of the optional properties
Change_Of_State_Time, Change_Of_State_Count, or Time_Of_State_Count_Reset is present, then all of these properties
shall be present.

12.6.16 Time_Of_State_Count_Reset

This property, of type BACnetDateTime, represents the date and time at which the Change_Of_State_Count property was
most recently set to a zero value. If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.6.17 Elapsed_Active_Time

This property, of type Unsigned32, represents the accumulated number of seconds that the Present_Value property has had
the value ACTIVE since the Elapsed_Active_Time property was most recently set to a zero value. If one of the optional
properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both of these properties shall be present.

12.6.18 Time_Of_Active_Time_Reset

This property, of type BACnetDateTime, represents the date and time at which the Elapsed_Active_Time property was most
recently set to a zero value. If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is
present, then both of these properties shall be present.

12.6.19 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.6.20 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.6.21 Alarm_Value

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

ANSI/ASHRAE Standard 135-2012 179

12.6.22 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.6.23 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.6.24 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.6.25 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.6.26 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.6.27 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.6.28 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.6.29 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.6.30 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Input Object Type

180 ANSI/ASHRAE Standard 135-2012

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.6.31 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.6.32 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.6.33 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.6.34 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

ANSI/ASHRAE Standard 135-2012 181

12.7 Binary Output Object Type

The Binary Output object type defines a standardized object whose properties represent the externally visible characteristics
of a binary output. A "binary output" is a physical device or hardware output that can be in only one of two distinct states. In
this description, those states are referred to as ACTIVE and INACTIVE. A typical use of a binary output is to switch a
particular piece of mechanical equipment, such as a fan or pump, on or off. The state ACTIVE corresponds to the situation
when the equipment is on or running, and INACTIVE corresponds to the situation when the equipment is off or idle.

In some applications, electronic circuits may reverse the relationship between the application-level logical states, ACTIVE
and INACTIVE, and the physical state of the underlying hardware. For example, a normally open relay contact may result in
an ACTIVE state (device energized) when the relay is energized, while a normally closed relay contact may result in an
ACTIVE state (device energized) when the relay is not energized. The Binary Output object provides for this possibility by
including a Polarity property. See 12.7.4 and 12.7.11.

Binary Output objects that support intrinsic reporting shall apply the COMMAND_FAILURE event algorithm.

The object and its properties are summarized in Table 12-8 and described in detail in this subclause.

Table 12-8. Properties of the Binary Output Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Polarity
Inactive_Text
Active_Text
Change_Of_State_Time
Change_Of_State_Count
Time_Of_State_Count_Reset
Elapsed_Active_Time
Time_Of_Active_Time_Reset
Minimum_Off_Time
Minimum_On_Time
Priority_Array
Relinquish_Default
Time_Delay
Notification_Class
Feedback_Value
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit

BACnetObjectIdentifier
CharacterString
BACnetObjectType
BACnetBinaryPV
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
BACnetPolarity
CharacterString
CharacterString
BACnetDateTime
Unsigned
BACnetDateTime
Unsigned32
BACnetDateTime
Unsigned32
Unsigned32
BACnetPriorityArray
BACnetBinaryPV
Unsigned
Unsigned
BACnetBinaryPV
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN

R
R
R
W
O
O
R
R
O
R
R
O1

O1

O2

O2

O2

O3

O3

O
O
R
R
O4,6

O4,6

O4

O4,6

O4,6

O4,6

O4,6

O5,6
O6
O4,6

O6
O6,7
O6
O8

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

182 ANSI/ASHRAE Standard 135-2012

Property_List
Profile_Name

BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
O

1 If one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be present.
2 If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or Time_Of_State_Count_Reset is

present, then all of these properties shall be present.
3 If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both of these

properties shall be present.
4 These properties are required if the object supports intrinsic reporting.
5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

12.7.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.7.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.7.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be BINARY_OUTPUT.

12.7.4 Present_Value (Commandable)

This property, of type BACnetBinaryPV, reflects the logical state of the Binary Output. The logical state of the output shall
be either INACTIVE or ACTIVE. The relationship between the Present_Value and the physical state of the output is
determined by the Polarity property. The possible states are summarized in Table 12-9.

Table 12-9. BACnet Polarity Relationships
Present_Value Polarity Physical State of Output Physical State of Device

INACTIVE

NORMAL OFF or INACTIVE not running

ACTIVE

NORMAL ON or ACTIVE running

INACTIVE

REVERSE ON or ACTIVE not running

ACTIVE

REVERSE OFF or INACTIVE running

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.7.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.7.6 Device_Type

This property, of type CharacterString, is a text description of the physical device connected to the binary output. It will
typically be used to describe the type of device attached to the binary output.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

ANSI/ASHRAE Standard 135-2012 183

12.7.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a binary output.
Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined
by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the
protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.7.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.7.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical output in question is "reliable" as far as the BACnet Device or operator can determine and, if not, why.

12.7.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the physical point the
object represents is not in service. This means that changes to the Present_Value property are decoupled from the physical
output when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the
FAULT flag of the Status_Flags property shall be decoupled from the physical output when Out_Of_Service is TRUE. While
the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may still be changed to any value as a
means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the
Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as
if those changes had occurred to the physical output. The Present_Value property shall still be controlled by the BACnet
command prioritization mechanism if Out_Of_Service is TRUE. See Clause 19.

12.7.11 Polarity

This property, of type BACnetPolarity, indicates the relationship between the physical state of the output and the logical state
represented by the Present_Value property. If the Polarity property is NORMAL, then the ACTIVE state of the
Present_Value property is also the ACTIVE or ON state of the physical output as long as Out_Of_Service is FALSE. If the
Polarity property is REVERSE, then the ACTIVE state of the Present_Value property is the INACTIVE or OFF state of the
physical output as long as Out_Of_Service is FALSE. See Table 12-9. If Out_Of_Service is TRUE, then the Polarity
property shall have no effect on the physical output state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

184 ANSI/ASHRAE Standard 135-2012

12.7.12 Inactive_Text

This property, of type CharacterString, characterizes the intended effect, from the human operator's viewpoint, of the
INACTIVE state of the Present_Value property on the final device that is ultimately controlled by the output. The content of
this string is a local matter, but it is intended to represent a human-readable description of the INACTIVE state. For example,
if the physical output is a relay contact that turns on a light, then the Inactive_Text property might be assigned a value such as
"Light Off". If one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be
present.

12.7.13 Active_Text

This property, of type CharacterString, characterizes the intended effect, from the human operator's viewpoint, of the
ACTIVE state of the Present_Value property on the final device that is ultimately controlled by the output. The content of
this string is a local matter, but it is intended to represent a human-readable description of the ACTIVE state. For example, if
the physical output is a relay contact that turns on a light, then the Active_Text property might be assigned a value such as
"Light On". If one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be
present.

12.7.14 Change_Of_State_Time

This property, of type BACnetDateTime, represents the date and time at which the most recent change of state occurred. A
"change of state" shall be defined as any event that alters the Present_Value property. Changes to Polarity shall not cause
changes of state. If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.7.15 Change_Of_State_Count

This property, of type Unsigned, represents the number of times that the Present_Value property has changed state since the
Change_Of_State_Count property was most recently set to a zero value. The Change_Of_State_Count property shall have a
range of 0-65535 or greater. A "change of state" shall be defined as any event that alters the Present_Value property. Changes
to Polarity shall not cause changes of state. If one of the optional properties Change_Of_State_Time,
Change_Of_State_Count, or Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.7.16 Time_Of_State_Count_Reset

This property, of type BACnetDateTime, represents the date and time at which the Change_Of_State_Count property was
most recently set to a zero value. If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.7.17 Elapsed_Active_Time

This property, of type Unsigned32, represents the accumulated number of seconds that the Present_Value property or the
Feedback_Value property has had the value ACTIVE since this property was most recently set to a zero value. If one of the
optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both of these properties shall be
present. Whether Present_Value or Feedback_Value is used as the indicator for the calculation of the Elapsed_Active_Time
is a local matter.

12.7.18 Time_Of_Active_Time_Reset

This property, of type BACnetDateTime, represents the date and time at which the Elapsed_Active_Time property was most
recently set to a zero value. If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is
present, then both of these properties shall be present.

12.7.19 Minimum_Off_Time

This property, of type Unsigned32, represents the minimum number of seconds that the Present_Value shall remain in the
INACTIVE state after a write to the Present_Value property causes that property to assume the INACTIVE state.

The mechanism by which this is accomplished is described in 19.2.3.

12.7.20 Minimum_On_Time

This property, of type Unsigned32, represents the minimum number of seconds that the Present_Value shall remain in the
ACTIVE state after a write to the Present_Value property causes that property to assume the ACTIVE state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

ANSI/ASHRAE Standard 135-2012 185

The mechanism by which this is accomplished is described in 19.2.3.

12.7.21 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.7.22 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.7.23 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.7.24 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.7.25 Feedback_Value

This property is an indication of the actual value of the entity controlled by Present_Value. The manner by which the
Feedback_Value is determined shall be a local matter.

If the object supports event reporting, then this property is the pFeedback parameter for the object's event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.7.26 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.7.27 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.7.28 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.7.29 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.7.30 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.7.31 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Output Object Type

186 ANSI/ASHRAE Standard 135-2012

12.7.32 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.7.33 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.7.34 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.7.35 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.7.36 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.7.37 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.7.38 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

ANSI/ASHRAE Standard 135-2012 187

12.8 Binary Value Object Type

The Binary Value object type defines a standardized object whose properties represent the externally visible characteristics of
a binary value. A "binary value" is a control system parameter residing in the memory of the BACnet Device. This parameter
may assume only one of two distinct states. In this description, those states are referred to as ACTIVE and INACTIVE.

Binary Value objects that support intrinsic reporting shall apply the CHANGE_OF_STATE event algorithm.

The Binary Value object and its properties are summarized in Table 12-10 and described in detail in this subclause.

Table 12-10. Properties of the Binary Value Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Status_Flags
Event_State
Reliability
Out_Of_Service
Inactive_Text
Active_Text
Change_Of_State_Time
Change_Of_State_Count
Time_Of_State_Count_Reset
Elapsed_Active_Time
Time_Of_Active_Time_Reset
Minimum_Off_Time
Minimum_On_Time
Priority_Array
Relinquish_Default
Time_Delay
Notification_Class
Alarm_Value
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
BACnetBinaryPV
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
CharacterString
CharacterString
BACnetDateTime
Unsigned32
BACnetDateTime
Unsigned32
BACnetDateTime
Unsigned32
Unsigned32
BACnetPriorityArray
BACnetBinaryPV
Unsigned
Unsigned
BACnetBinaryPV
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R1

O
R
R
O
R
O2

O2

O3

O3

O3

O4

O4

O
O
O5

O5
O6,8
O6,8
O6,8
O6,8
O6,8
O6,8

O6,8

O7,8
O8
O6,8

O8

O8,9

O8
O10
R
O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be writable
when Out_Of_Service is TRUE.

2 If one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall
be present.

3 If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

188 ANSI/ASHRAE Standard 135-2012

4 If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both of
these properties shall be present.

5 These properties are required if, and shall be present only if, Present_Value is commandable.
6 These properties are required if the object supports intrinsic reporting.
7 This property, if present, is required to be read-only.
8 These properties shall be present only if the object supports intrinsic reporting.
9 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
10 If this property is present, then the Reliability property shall be present.

12.8.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.8.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.8.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be BINARY_VALUE.

12.8.4 Present_Value

This property, of type BACnetBinaryPV, reflects the logical state of the Binary Value. The logical state shall be either
INACTIVE or ACTIVE. Present_Value shall be optionally commandable. If Present_Value is commandable for a given
instance, then the Priority_Array and Relinquish_Default properties shall also be present for that instance. The Present_Value
property shall be writable when Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.8.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.8.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a binary value
object. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

ANSI/ASHRAE Standard 135-2012 189

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.8.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.8.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value is "reliable" as far
as the BACnet Device or operator can determine.

12.8.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of
the Binary Value object is prevented from being modified by software local to the BACnet device in which the object resides.
When Out_Of_Service is TRUE, the Present_Value property may be written to freely. If the Priority_Array and
Relinquish_Default properties are present, then writing to the Present_Value property shall be controlled by the BACnet
command prioritization mechanism. See Clause 19.

12.8.10 Inactive_Text

This property, of type CharacterString, characterizes the intended effect of the INACTIVE state of the Binary Value. The
content of this string is a local matter, but it is intended to represent a human-readable description of the INACTIVE state. If
one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be present.

12.8.11 Active_Text

This property, of type CharacterString, characterizes the intended effect of the ACTIVE state of the Binary Value. The
content of this string is a local matter, but it is intended to represent a human-readable description of the ACTIVE state. If
one of the optional properties Inactive_Text or Active_Text is present, then both of these properties shall be present.

12.8.12 Change_Of_State_Time

This property, of type BACnetDateTime, represents the date and time at which the most recent change of state occurred. A
"change of state" shall be defined as any event that alters the logical state of the Binary Value. If one of the optional
properties Change_Of_State_Time, Change_Of_State_Count, or Time_Of_State_Count_Reset is present, then all of these
properties shall be present.

12.8.13 Change_Of_State_Count

This property, of type Unsigned32, represents the number of times that the state of the Binary Value has changed since this
property was most recently set to a zero value. The Change_Of_State_Count property shall have a range of 0-65535 or
greater. If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or Time_Of_State_Count_Reset
is present, then all of these properties shall be present.

12.8.14 Time_Of_State_Count_Reset

This property, of type BACnetDateTime, represents the date and time at which the Change_Of_State_Count property was
most recently set to a zero value. If one of the optional properties Change_Of_State_Time, Change_Of_State_Count, or
Time_Of_State_Count_Reset is present, then all of these properties shall be present.

12.8.15 Elapsed_Active_Time

This property, of type Unsigned32, represents the accumulated number of seconds that the Present_Value property has had
the value ACTIVE since this property was most recently set to a zero value. If one of the optional properties
Elapsed_Active_Time or Time_Of_Active_Time_Reset is present, then both of these properties shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

190 ANSI/ASHRAE Standard 135-2012

12.8.16 Time_Of_Active_Time_Reset

This property, of type BACnetDateTime, represents the date and time at which the Elapsed_Active_Time property was most
recently set to a zero value. If one of the optional properties Elapsed_Active_Time or Time_Of_Active_Time_Reset is
present, then both of these properties shall be present.

12.8.17 Minimum_Off_Time

This property, of type Unsigned32, represents the minimum number of seconds that the Present_Value shall remain in the
INACTIVE state after a write to the Present_Value property causes that property to assume the INACTIVE state.

If the Present_Value is commandable according to Clause 19, then the mechanism by which this is accomplished is described
in 19.2.3. Otherwise, the mechanism is a local matter.

12.8.18 Minimum_On_Time

This property, of type Unsigned32, represents the minimum number of seconds that the Present_Value shall remain in the
ACTIVE state after a write to the Present_Value property causes that property to assume the ACTIVE state.

If the Present_Value is commandable according to Clause 19, then the mechanism by which this is accomplished is described
in 19.2.3. Otherwise, the mechanism is a local matter.

12.8.19 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.8.20 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.8.21 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.8.22 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.8.23 Alarm_Value

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.8.24 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.8.25 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.8.26 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

ANSI/ASHRAE Standard 135-2012 191

12.8.27 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.8.28 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.8.29 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.8.30 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.8.31 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.8.32 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.8.33 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.8.34 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Binary Value Object Type

192 ANSI/ASHRAE Standard 135-2012

12.8.35 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.8.36 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
 Calendar Object Type

ANSI/ASHRAE Standard 135-2012 193

12.9 Calendar Object Type

The Calendar object type defines a standardized object used to describe a list of calendar dates, which might be thought of as
"holidays," "special events," or simply as a list of dates. The object and its properties are summarized in Table 12-11 and
described in detail in this subclause.

Table 12-11. Properties of the Calendar Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Description
Present_Value
Date_List
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
BOOLEAN
BACnetLIST of BACnetCalendarEntry
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
R
R
R
O

12.9.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.9.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.9.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be CALENDAR.

12.9.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.9.5 Present_Value

This property, of type BOOLEAN, indicates the current value of the calendar: TRUE if the current date is in the Date_List
and FALSE if it is not.

12.9.6 Date_List

This property is a BACnetLIST of BACnetCalendarEntry, each of which is either a specific date or date pattern (Date), range
of dates (BACnetDateRange), or month/week-of-month/day-of-week specification (BACnetWeekNDay). If the current date
matches the calendar entry criteria, the present value of the Calendar object is TRUE.

As an example, if the calendar entry is a BACnetWeekNDay with an unspecified octet in the month and week-of-month
fields but with a specific day-of-week, it means that the Calendar object is TRUE on that day-of-week all year long.

If a BACnet Device permits writing to the Date_List property, all choices and all allowed forms of values in the
BACnetCalendarEntry shall be supported.

12.9.7 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.9.8 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Calendar Object Type

194 ANSI/ASHRAE Standard 135-2012

subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Command Object Type

ANSI/ASHRAE Standard 135-2012 195

12.10 Command Object Type

The Command object type defines a standardized object whose properties represent the externally visible characteristics of a
multi-action command procedure. A Command object is used to write a set of values to a group of object properties, based on
the "action code" that is written to the Present_Value of the Command object. Whenever the Present_Value property of the
Command object is written to, it triggers the Command object to take a set of actions that change the values of a set of other
objects' properties.

The Command object would typically be used to represent a complex context involving multiple variables. The Command
object is particularly useful for representing contexts that have multiple states. For example, a particular zone of a building
might have three states: UNOCCUPIED, WARMUP, and OCCUPIED. To establish the operating context for each state,
numerous objects' properties may need to be changed to a collection of known values. For example, when unoccupied, the
temperature setpoint might be 65�F and the lights might be off. When occupied, the setpoint might be 72�F and the lights
turned on, etc.

The Command object defines the relationship between a given state and those values that shall be written to a collection of
different objects' properties to realize that state. Normally, a Command object is passive. Its In_Process property is FALSE,
indicating that the Command object is waiting for its Present_Value property to be written with a value. When Present_Value
is written, the Command object shall begin a sequence of actions. The In_Process property shall be set to TRUE, indicating
that the Command object has begun processing one of a set of action sequences that is selected based on the particular value
written to the Present_Value property. If an attempt is made to write to the Present_Value property through WriteProperty
services while In_Process is TRUE, then a Result(-) shall be returned with 'error class' = OBJECT and 'error code' = BUSY,
rejecting the write.

The new value of the Present_Value property determines which sequence of actions the Command object shall take. These
actions are specified in an array of action lists indexed by this value. The Action property contains these lists. A given list
may be empty, in which case no action takes place, except that In_Process is returned to FALSE and All_Writes_Successful
is set to TRUE. If the list is not empty, then for each action in the list the Command object shall write a particular value to a
particular property of a particular object in a particular BACnet Device. Note, however, that the capability to write to remote
devices is not required.

Note also that the Command object does not guarantee that every write will be successful, and no attempt is made by the
Command object to "roll back" successfully written properties to their previous values in the event that one or more writes
fail. If any of the writes fail, then the All_Writes_Successful property is set to FALSE and the Write_Successful flag for that
BACnetActionCommand is set to FALSE. If the Quit_On_Failure flag is TRUE for the failed BACnetActionCommand, then
all subsequent BACnetActionCommands in the list shall have their Write_Successful flag set to FALSE. If an individual
write succeeds, then the Write_Successful flag for that BACnetActionCommand shall be set to TRUE. If all the writes are
successful, then the All_Writes_Successful property is set to TRUE. Once all the writes have been processed to completion
by the Command object, the In_Process property is set back to FALSE and the Command object becomes passive again,
waiting for another command.

It is important to note that the particular value that is written to the Present_Value property is not what triggers the action, but
the act of writing itself. Thus if the Present_Value property has the value 5 and it is again written with the value 5, then the
5th list of actions will be performed again. Writing zero to the Present_Value causes no action to be taken and is the same as
invoking an empty list of actions.

The Command object is a powerful concept with many beneficial applications. However, there are unique aspects of the
Command object that can cause confusing or destructive side effects if the Command object is improperly configured. Since
the Command object can manipulate other objects' properties, it is possible that a Command object could be configured to
command itself. In such a case, the In_Process property acts as an interlock and protects the Command object from self-
oscillation. However, it is also possible for a Command object to command another Command object that commands the first
Command object and so on. The possibility exists for Command objects that command GROUP objects. In these cases of
"circular referencing," it is possible for confusing side effects to occur. When references occur to objects in other BACnet
Devices, there is an increased possibility of time delays, which could cause oscillatory behavior between Command objects
that are improperly configured in such a circular manner. Caution should be exercised when configuring Command objects
that reference objects outside the BACnet device that contains them.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Command Object Type

196 ANSI/ASHRAE Standard 135-2012

The Command object and its properties are summarized in Table 12-12 and described in detail in this subclause.

Table 12-12. Properties of the Command Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Description
Present_Value
In_Process
All_Writes_Successful
Action
Action_Text
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
Unsigned
BOOLEAN
BOOLEAN
BACnetARRAY[N] of BACnetActionList
BACnetARRAY[N] of CharacterString
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
W
R
R
R
O
R
O

12.10.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.10.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.10.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be COMMAND.

12.10.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.10.5 Present_Value

This property, of type Unsigned, indicates which action the Command object is to take or has already taken. Whenever the
Present_Value property is written to, it triggers the Command object to take a set of actions that change the values of a set of
other objects' properties.

The Present_Value may be written to with any value from 0 to the maximum number of actions supported by the Action
property. When the Present_Value is written to, the Command object begins a sequence of actions. The new value of the
Present_Value property determines which list of actions the Command object shall take. These actions are specified in the
Action property, which is an array of lists of actions to take. The array is indexed by the value being written. A given list may
be empty, in which case no action takes place. If the list is not empty, then for each action in the list, the Command object
shall write a particular value to a particular property of a particular object in a particular BACnet Device.

12.10.6 In_Process

This property, of type BOOLEAN, shall be set to TRUE when a value is written to the Present_Value property. This TRUE
value indicates that the Command object has begun processing one of a set of action sequences. Once all of the writes have
been attempted by the Command object, the In_Process property shall be set back to FALSE.

12.10.7 All_Writes_Successful

This property, of type BOOLEAN, indicates the success or failure of the sequence of actions that are triggered when the
Present_Value property is written to. At that time, In_Process is set to TRUE and All_Writes_Successful is set to FALSE. If
after the list has been executed, all of the writes have succeeded, then All_Writes_Successful is set to TRUE at the same time
that In_Process is set to FALSE. Therefore, while In_Process is TRUE, the value of All_Writes_Successful is not a valid
indication of the current or previous operation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Command Object Type

ANSI/ASHRAE Standard 135-2012 197

12.10.8 Action

This property, of type BACnetARRAY of BACnetActionList, specifies an array of "action lists." These action lists are
indexed by the value that is written to the Present_Value property. A given list may be empty, in which case no action takes
place, except that In_Process is returned to FALSE and All_Writes_Successful is set to TRUE. If the list is not empty, then
for each action in the list, the Command object shall write a particular value to a particular property of a particular object in a
particular BACnet Device based on the specifications in each BACnetActionCommand. Each write shall occur in the order
that BACnetActionCommand list elements would appear if the list was read using the ReadProperty service. The value zero
is a special case that takes no action and behaves like an empty list. The number of defined action lists may be found by
reading the Action property with an array index of zero. If the size of this array is changed, the size of the Action_Text array,
if present, shall also be changed to the same size.

Each BACnetActionCommand is a specification of a single value to be written to a single property of a single object.
BACnetActionCommands have nine parts: an optional BACnet device identifier, an object identifier, a property identifier, a
conditional property array index, a value to be written, a conditional priority, an optional post-writing delay time, a premature
quit flag, and a write success flag. The components and their datatypes are shown below.

 Component Datatype
 Device_Identifier BACnetObjectIdentifier (Optional)
 Object_Identifier BACnetObjectIdentifier
 Property_Identifier BACnetPropertyIdentifier
 Property_Array_Index Unsigned (Conditional)
 Property_Value Any
 Priority Unsigned (1..16) (Conditional)
 Post_Delay Unsigned (Optional)
 Quit_On_Failure BOOLEAN
 Write_Successful BOOLEAN

If the Device_Identifier is not present, then the write shall be performed on objects residing in the device that contains the
Command object. A device that supports the Command object type is not required to support writing outside the device. If
the Property_Identifier refers to an array property, then the Property_Array_Index shall also be present to specify the index
within the array of the property to be written. If the property being written is a commandable property, then a priority value
shall be supplied; otherwise it shall be omitted. If the Quit_On_Failure flag is TRUE, then if the write fails for any reason,
the device shall terminate the execution of the action list prematurely. Otherwise, writing shall continue after each failure
with the next element of the action list. In either case, All_Writes_Successful shall remain FALSE throughout the execution
of the list. After each write, whether successful or not, if the Post_Delay is present, it shall represent a delay in seconds prior
to the execution of the next write or the completion of all writing and the setting of In_Process to FALSE.

If the write fails for any reason, then the Write_Successful flag shall be set to FALSE. If the Quit_On_Failure flag is TRUE,
then the first write that fails shall also terminate the execution list prematurely. In this case, the Write_Successful flag in
subsequent entries in the same list shall be set to FALSE. If the write succeeds, then the Write_Successful flag shall be set to
TRUE.

12.10.9 Action_Text

This property, of type BACnetARRAY of CharacterString, shall be used to indicate a text string description for each of the
possible values of the Present_Value property. The content of these strings is not restricted. If the size of this array is
changed, the size of the Action array shall also be changed to the same size.

12.10.10 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.10.11 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Command Object Type

198 ANSI/ASHRAE Standard 135-2012

code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

ANSI/ASHRAE Standard 135-2012 199

12.11 Device Object Type

The Device object type defines a standardized object whose properties represent the externally visible characteristics of a
BACnet Device. There shall be exactly one Device object in each BACnet Device. A Device object is referenced by its
Object_Identifier property, which is not only unique to the BACnet Device that maintains this object but is also unique
throughout the BACnet internetwork. The Device object type and its properties are summarized in Table 12-13 and described
in detail in this subclause.

Table 12-13. Properties of the Device Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
System_Status
Vendor_Name
Vendor_Identifier
Model_Name
Firmware_Revision
Application_Software_Version
Location
Description
Protocol_Version
Protocol_Revision
Protocol_Services_Supported
Protocol_Object_Types_Supported
Object_List
Structured_Object_List
Max_APDU_Length_Accepted
Segmentation_Supported
Max_Segments_Accepted
VT_Classes_Supported
Active_VT_Sessions
Local_Time
Local_Date
UTC_Offset
Daylight_Savings_Status
APDU_Segment_Timeout
APDU_Timeout
Number_Of_APDU_Retries
Time_Synchronization_Recipients
Max_Master
Max_Info_Frames
Device_Address_Binding
Database_Revision
Configuration_Files
Last_Restore_Time
Backup_Failure_Timeout
Backup_Preparation_Time
Restore_Preparation_Time
Restore_Completion_Time
Backup_And_Restore_State
Active_COV_Subscriptions
Slave_Proxy_Enable
Manual_Slave_Address_Binding
Auto_Slave_Discovery
Slave_Address_Binding

BACnetObjectIdentifier
CharacterString
BACnetObjectType
BACnetDeviceStatus
CharacterString
Unsigned16
CharacterString
CharacterString
CharacterString
CharacterString
CharacterString
Unsigned
Unsigned
BACnetServicesSupported
BACnetObjectTypesSupported
BACnetARRAY[N] of BACnetObjectIdentifier
BACnetARRAY[N] of BACnetObjectIdentifier
Unsigned
BACnetSegmentation
Unsigned
BACnetLIST of BACnetVTClass
BACnetLIST of BACnetVTSession
Time
Date
INTEGER
BOOLEAN
Unsigned
Unsigned
Unsigned
BACnetLIST of BACnetRecipient
Unsigned(1..127)
Unsigned
BACnetLIST of BACnetAddressBinding
Unsigned
BACnetARRAY[N] of BACnetObjectIdentifier
BACnetTimeStamp
Unsigned16
Unsigned16
Unsigned16
Unsigned16
BACnetBackupState
BACnetLIST of BACnetCOVSubscription
BACnetARRAY[N] of BOOLEAN
BACnetLIST of BACnetAddressBinding
BACnetARRAY[N] of BOOLEAN
BACnetLIST of BACnetAddressBinding

R
R
R
R
R
R
R
R
R
O
O
R
R
R
R
R
O
R
R
O1
O2

O2

O3,4,15
O3,4,15
O4
O4
O1
R
R
O5

O6

O6
R
R
O7
O7

O8

O16
O16
O16
O7
O9

O10
O10,12
O10,11
O10,12

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

200 ANSI/ASHRAE Standard 135-2012

Last_Restart_Reason
Time_Of_Device_Restart
Restart_Notification_Recipients
UTC_Time_Synchronization_Recipients
Time_Synchronization_Interval
Align_Intervals
Interval_Offset
Serial_Number
Property_List
Profile_Name

BACnetRestartReason
BACnetTimeStamp
BACnetLIST of BACnetRecipient
BACnetLIST of BACnetRecipient
Unsigned
BOOLEAN
Unsigned
CharacterString
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

O13

O13

O17

O5

O14

O14

O14

O
R
O

1 These properties are required if, and shall be present only if, segmentation of any kind is supported.
2 These properties are required if, and shall be present only if, the VT Services are supported.
3 If the device supports the execution of the TimeSynchronization service, then these properties shall be present.
4 If the device supports the execution of the UTCTimeSynchronization service, then these properties shall be present.
5 If present, this property shall be writable.
6 These properties are required if the device is an MS/TP master node.
7 These properties are required if, and shall be present only if, the device supports execution of the backup and restore

procedures.
8 This property is required if, and shall be present only if, the device supports the backup and restore procedures. If present,

this property shall be writable.
9 This property is required if, and shall be present only if, the device supports execution of either the SubscribeCOV or

SubscribeCOVProperty service.
10 This property is required if, and shall be present only if, the device is capable of being a Slave-Proxy device.
11 This property is required if, and shall be present only if, the device is capable of being a Slave-Proxy device that

implements automatic discovery of slaves.
12 This property shall be writable if the device is directly connected to an MS/TP network.
13 These properties are required if the device supports the restart procedure as described in Clause 19.3.
14 These properties are required if, and shall be present only if, Time_Synchronization_Recipients or

UTC_Time_Synchronization_Recipients is present. If present, these properties shall be writable.
15 These properties shall be present if the device is capable of tracking date and time.
16 These properties are required if, and shall be present only if, the device supports execution of the backup and restore

procedures as described in Clause 19.1 and cannot respond to subsequent communications within the minimum value it
will accept in its APDU_Timeout property.

17 This property is required if, and shall be present only if, the device supports execution of the restart procedure as described
in Clause 19.3.

12.11.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. For the Device object, the
object identifier shall be unique internetwork-wide.

12.11.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique internetwork-wide. The minimum
length of the string shall be one character. The set of characters used in the Object_Name shall be restricted to printable
characters.

12.11.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be DEVICE.

12.11.4 System_Status

This property, of type BACnetDeviceStatus, reflects the current physical and logical status of the BACnet Device. The values
that may be taken on by this property are:

{OPERATIONAL, OPERATIONAL_READ_ONLY, DOWNLOAD_REQUIRED,
DOWNLOAD_IN_PROGRESS, NON_OPERATIONAL, BACKUP_IN_PROGRESS}

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

ANSI/ASHRAE Standard 135-2012 201

The exact meaning of these states, except for BACKUP_IN_PROGRESS, in a given device and their synchronization with
other internal operations of the device or the execution of BACnet services by the device are local matters and are not defined
by this standard.

12.11.5 Vendor_Name

This property, of type CharacterString, identifies the manufacturer of the BACnet Device.

12.11.6 Vendor_Identifier

This read-only property, of type Unsigned16, is a unique vendor identification code, assigned by ASHRAE, which is used to
distinguish proprietary extensions to the protocol. See Clause 23.

12.11.7 Model_Name

This read-only property, of type CharacterString, is assigned by the vendor to represent the model of the BACnet Device.

12.11.8 Firmware_Revision

This property, of type CharacterString, is assigned by the vendor to represent the level of firmware installed in the BACnet
Device.

12.11.9 Application_Software_Version

This property, of type CharacterString, identifies the version of application software installed in the machine. The content of
this string is a local matter, but it could be a date-and-time stamp, a programmer's name, a host file version number, etc.

12.11.10 Location

This property, of type CharacterString, indicates the physical location of the BACnet Device.

12.11.11 Description

This property, of type CharacterString, is a string of printable characters that may be used to describe the application being
carried out by the BACnet Device or other locally desired descriptive information.

12.11.12 Protocol_Version

This property, of type Unsigned, represents the version of the BACnet protocol supported by this BACnet Device. Every
major revision of BACnet shall increase this version number by one. The initial release of BACnet shall be version 1.

12.11.13 Protocol_Revision

This property, of type Unsigned, shall indicate the minor revision level of the BACnet standard. This value shall start at 1 and
be incremented for any substantive change(s) to the BACnet standard that affect device communication or behavior. This
value shall revert to zero upon each change to the Protocol_Version property. Changes to the values for Protocol_Version
and Protocol_Revision are recorded in the History of Revisions at the end of this standard.

This property is required for all devices implementing BACnet Protocol_Version 1, Protocol_Revision 1 and above. Absence
of this property shall indicate a device implemented to a version of the standard prior to the definition of the
Protocol_Revision property.

12.11.14 Protocol_Services_Supported

This property, of type BACnetServicesSupported, indicates which standardized protocol services are executed by this
device's protocol implementation.

12.11.15 Protocol_Object_Types_Supported

This property, of type BACnetObjectTypesSupported, indicates which standardized object types can be present in this
device's protocol implementation. The list of properties present in a particular object may be acquired by use of the
ReadPropertyMultiple service with a property reference of ALL (see 15.7.3.1.2).

12.11.16 Object_List

This read-only property is a BACnetARRAY of BACnetObjectIdentifier, one Object_Identifier for each object within the
device that is accessible through BACnet services.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

202 ANSI/ASHRAE Standard 135-2012

12.11.17 Structured_Object_List

This property is a BACnetARRAY of BACnetObjectIdentifier. Entries in the array reference objects chosen for use as
starting points for the traversal of object hierarchies. The objects directly referenced by this property shall be restricted to
Structured View and Life Safety Zone objects.

12.11.18 Max_APDU_Length_Accepted

This property, of type Unsigned, is the maximum number of octets that may be contained in a single, indivisible application
layer protocol data unit. The value of this property shall be greater than or equal to 50. The value of this property is also
constrained by the underlying data link technology. See Clauses 6 through 11.

If the value of this property is not encodable in the 'Max APDU Length Accepted' parameter of a ConfirmedRequest-PDU,
then the value encoded shall be the highest encodable value less than the value of this property. In such cases, a responding
device may ignore the encoded value in favor of the value of this property, if it is known.

12.11.19 Segmentation_Supported

This property, of type BACnetSegmentation, indicates whether the BACnet Device supports segmentation of messages and,
if so, whether it supports segmented transmission, reception, or both:

{SEGMENTED_BOTH, SEGMENTED_TRANSMIT, SEGMENTED_RECEIVE, NO_SEGMENTATION}

12.11.20 Max_Segments_Accepted

The Max_Segments_Accepted property, of type Unsigned, shall indicate the maximum number of segments of an APDU that
this device will accept.

12.11.21 VT_Classes_Supported

The VT_Classes_Supported property is a BACnetLIST of BACnetVTClass each of which is an enumeration indicating a
particular set of terminal characteristics. A given BACnet Device may support multiple types of behaviors for differing types
of terminals or differing types of operator interface programs. At a minimum, such devices shall support the "Default-
terminal" VT-class defined in Clause 17.5.

12.11.22 Active_VT_Sessions

The Active_VT_Sessions property is a BACnetLIST of BACnetVTSession each of which consists of a Local VT Session
Identifier, a Remote VT Session Identifier, and Remote VT Address. This property provides a network-visible indication of
those virtual terminal sessions (VT-Sessions) that are active at any given time. Whenever a virtual terminal session is created
with the VT-Open service, a new entry is added to the Active_VT_Sessions list. Similarly, whenever a VT-session is
terminated, the corresponding entry shall be removed from the Active_VT_Sessions list.

12.11.23 Local_Time

The Local_Time property, of type Time, shall indicate the time of day to the best of the device's knowledge. If the BACnet
Device does not have any knowledge of time or date, then the Local_Time property shall be omitted. This property shall be
present if the BACnet Device is capable of tracking date and time. If the device restarts, and there is no local time available
yet, then the clock shall be initialized to the time 00:00:00.00 and the device shall commence tracking the time.

12.11.24 Local_Date

The Local_Date property, of type Date, shall indicate the date to the best of the device's knowledge. If the BACnet Device
does not have any knowledge of time or date, then the Local_Date property shall be omitted. This property shall be present if
the BACnet Device is capable of tracking date and time. If the device restarts, and there is no local date available yet, then
the clock shall be initialized to a date on or before January 1, 1990 and the device shall commence tracking the date.

12.11.25 UTC_Offset

The UTC_Offset property, of type INTEGER, shall indicate the number of minutes (-780 to +780) offset between local
standard time and Universal Time Coordinated. The time zones to the west of the zero degree meridian shall be positive
values, and those to the east shall be negative values. The value of the UTC_Offset property is subtracted from the UTC
received in UTCTimeSynchronization service requests to calculate the correct local standard time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

ANSI/ASHRAE Standard 135-2012 203

12.11.26 Daylight_Savings_Status

The Daylight_Savings_Status property, of type BOOLEAN, shall indicate whether daylight savings time is in effect (TRUE)
or not (FALSE) at the BACnet Device's location.

12.11.27 APDU_Segment_Timeout

The APDU_Segment_Timeout property, of type Unsigned, shall indicate the amount of time in milliseconds between
retransmission of an APDU segment. A suggested default value for this property is 5,000 milliseconds. This value shall be
non-zero if the Device object property called Number_Of_APDU_Retries is non-zero. See Clause 5.3.

In order to achieve reliable communication, it is recommended that the values of the APDU_Segment_Timeout properties of
the Device objects of all intercommunicating devices should contain the same value.

12.11.28 APDU_Timeout

The APDU_Timeout property, of type Unsigned, shall indicate the amount of time in milliseconds between retransmissions
of an APDU requiring acknowledgment for which no acknowledgment has been received. A suggested default value for this
property is 6,000 milliseconds for devices that permit modification of this parameter. Otherwise, the default value shall be
10,000 milliseconds. This value shall be non-zero if the Device object property called Number_Of_APDU_Retries is
non-zero. See Clause 5.3.

In order to achieve reliable communication, it is recommended that the values of the APDU_Timeout properties of the
Device objects of all intercommunicating devices should contain the same value.

12.11.29 Number_Of_APDU_Retries

The Number_Of_APDU_Retries property, of type Unsigned, shall indicate the maximum number of times that an APDU
shall be retransmitted. A suggested default value for this property is 3. If this device does not perform retries, then this
property shall be set to zero. If the value of this property is greater than zero, a non-zero value shall be placed in the Device
object APDU_Timeout property. See Clause 5.3.

12.11.30 Deleted Clause

This clause has been removed.

12.11.31 Time_Synchronization_Recipients

This property, of type BACnetLIST of BACnetRecipient, is used to control the restrictions placed on a device's use of the
TimeSynchronization service. The value of this property shall be a list of zero or more BACnetRecipients. If the list is of
length zero, or the property is not present, the device is prohibited from automatically sending a TimeSynchronization
request. If the list is of length one or more, the device may automatically send a TimeSynchronization request but only to the
devices or addresses listed. If this property is present, it shall be writable.

12.11.32 Max_Master

The Max_Master property, of type Unsigned, shall be present if the device is a master node on an MS/TP network. The value
of Max_Master specifies the highest possible address for master nodes and shall be less than or equal to 127. If the
Max_Master property is not writable via BACnet services, its value shall be 127. See Clause 9.5.3

12.11.33 Max_Info_Frames

The Max_Info_Frames property, of type Unsigned, shall be present if the device is a node on an MS/TP network. The value
of Max_Info_Frames specifies the maximum number of information frames the node may send before it must pass the token.
If Max_Info_Frames is not writable or otherwise user configurable, its value shall be one. See Clause 9.5.3.

12.11.34 Device_Address_Binding

The Device_Address_Binding property is a BACnetLIST of BACnetAddressBinding each of which consists of a BACnet
Object_Identifier of a BACnet Device object and a BACnet device address in the form of a BACnetAddress. Entries in the
list identify the actual device addresses that will be used when the remote device must be accessed via a BACnet service
request. A value of zero may be used for the network-number portion of BACnetAddress entries for other devices residing on
the same network as this device. The list may be empty if no device identifier-device address bindings are currently known to
the device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

204 ANSI/ASHRAE Standard 135-2012

12.11.35 Database_Revision

This property, of type Unsigned, is a logical revision number for the device's database. It is incremented when an object is
created, an object is deleted, an object's name is changed, an object's Object_Identifier property is changed, or a restore is
performed with the exception that the creation and deletion of temporary configuration files during a backup or restore
procedure shall not affect this property.

12.11.36 Configuration_Files

This property is a BACnetARRAY of BACnetObjectIdentifier. Entries in the array identify the files within the device that
define the device's image that can be backed up. The content of this property is only required to be valid during the backup
procedure. This property must be supported if the device supports the BACnet backup and restore procedure as described in
Clause 19.1.

12.11.37 Last_Restore_Time

This property, of type BACnetTimeStamp, is the time at which the device's image was last restored as described in Clause
19.1.

12.11.38 Backup_Failure_Timeout

This property, of type Unsigned16, is the time, in seconds, that the device being backed up or restored must wait before
unilaterally ending the backup or restore procedure. This property must be writable with the intent that the device performing
the backup, or the human operator, will configure this with an appropriate timeout.

12.11.39 Active_COV_Subscriptions

The Active_COV_Subscriptions property is a BACnetLIST of BACnetCOVSubscription, each of which consists of a
Recipient, a Monitored Property Reference, an Issue Confirmed Notifications flag, a Time Remaining value and an optional
COV Increment. This property provides a network-visible indication of those COV subscriptions that are active at any given
time. Whenever a COV Subscription is created with the SubscribeCOV or SubscribeCOVProperty service, a new entry is
added to the Active_COV_Subscriptions list. Similarly, whenever a COV Subscription is terminated, the corresponding entry
shall be removed from the Active_COV_Subscriptions list.

12.11.40 Slave_Proxy_Enable

This property, of type BACnetARRAY of BOOLEAN, is an indication whether (TRUE) or not (FALSE) the device will
perform Slave-Proxy functions for each of the MS/TP ports represented by each array element. The value of this property
shall be retained over a device reset.

12.11.41 Manual_Slave_Address_Binding

This property, of type BACnetLIST of BACnetAddressBinding, describes the manually configured set of slave devices for
which this device is acting as a Slave Proxy as described in 16.10.2.

This property is used to manually configure a set of slave devices for which this device will be a proxy. This property allows
a Slave Proxy that does not support automatic slave discovery be configured with a set of slaves for which this device will be
a proxy. It also allows a Slave-Proxy device to be a proxy for Slave devices that do not support the special object instance of
4194303 as described in Clause 12. The value of this property shall be retained over a device reset. When enabled, the Slave-
Proxy device shall periodically check each device that is in this list, and not in the Slave_Address_Binding list, by reading
the device's Protocol_Services_Supported property from the device's Device object using the ReadProperty service. If the
device responds and indicates that it does not execute the Who-Is service, it shall be added to the Slave_Address_Binding
property. The period at which the devices are checked is a local matter.

12.11.42 Auto_Slave_Discovery

This property, of type BACnetARRAY of BOOLEAN, is an indication whether (TRUE) or not (FALSE) the device will
perform automatic slave detection functions for each of the MS/TP ports represented by each array element. The value of this
property shall be retained over a device reset.

Slave detection shall be accomplished by the proxy device using ReadProperty services to read, at a minimum, the Device
object's Protocol_Services_Supported property for each MAC address on each port where Auto_Slave_Discovery for that
port is TRUE. The ReadProperty service shall use the special object instance of 4194303 as described in Clause 12. If the
device is found to support execution of the Who-Is service, it is ignored; otherwise, the device shall be added to the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

ANSI/ASHRAE Standard 135-2012 205

Slave_Address_Binding property. The slave detection algorithm shall be repeated periodically. The period at which it is
repeated is a local matter.

12.11.43 Slave_Address_Binding

This property, of type BACnetLIST of BACnetAddressBinding, describes the set of slave devices for which this device is
acting as a Slave-Proxy as described in Clause 16.10.2.

The set of devices described by the Slave_Address_Binding property consists of those devices described in the
Manual_Slave_Address_Binding and those devices that are automatically discovered. When enabled, the Slave-Proxy device
shall periodically check each device in this list by reading the device's Protocol_Services_Supported property from the
device's Device object using the ReadProperty service. If the device fails to respond, or indicates that it executes Who-Is, it
shall be removed from the list. The period at which the devices are checked is a local matter.

12.11.44 Last_Restart_Reason

This property, of type BACnetRestartReason, indicates the reason for the last device restart. See Clause 19.3 for a description
of the restart procedure. The possible values for this property are:

12.11.45 Time_Of_Device_Restart

This property, of type BACnetTimeStamp, is the time at which the device was last restarted. See Clause 19.3 for a
description of the restart procedure.

12.11.46 Restart_Notification_Recipients

This property, of type BACnetLIST of BACnetRecipient, is used to control the restrictions on which devices, if any, are to be
notified when a restart occurs. The value of this property shall be a list of zero or more BACnetRecipients. If the list is of
length zero, a device is prohibited from sending a device restart notification. The default value of the property shall be a
single entry representing a broadcast on the local network. If the property is not writable, then it shall contain the default
value. If the list is of length one or more, a device shall send a restart notification, but only to the devices or addresses listed.
See Clause 19.3 for a description of the restart procedure.

12.11.47 UTC_Time_Synchronization_Recipients

This property, of type BACnetLIST of BACnetRecipient, is used to control the restrictions placed on a device's use of the
UTCTimeSynchronization service. The value of this property shall be a list of zero or more BACnetRecipients. If the list is
of length zero, or the property is not present, the device is prohibited from automatically sending a UTCTimeSynchronization
request. If the list is of length one or more, the device may automatically send a UTCTimeSynchronization request but only
to the devices or addresses listed. If this property is present, it shall be writable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

206 ANSI/ASHRAE Standard 135-2012

12.11.48 Time_Synchronization_Interval

This property, of type Unsigned, specifies the periodic interval in minutes at which TimeSynchronization and
UTCTimeSynchronization requests shall be sent. If this property has a value of zero, then periodic time synchronization is
disabled. If this property is present, it shall be writable.

12.11.49 Align_Intervals

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) clock-aligned periodic time synchronization is
enabled. If periodic time synchronization is enabled and the time synchronization interval is a factor of (divides without
remainder) an hour or day, then the beginning of the period specified for time synchronization shall be aligned to the hour or
day, respectively. If this property is present, it shall be writable.

12.11.50 Interval_Offset

This property, of type Unsigned, specifies the offset in minutes from the beginning of the period specified for time
synchronization until the actual time synchronization requests are sent. The offset used shall be the value of Interval_Offset
modulo the value of Time_Synchronization_Interval; e.g., if Interval_Offset has the value 31 and
Time_Synchronization_Interval is 30, the offset used shall be 1. Interval_Offset shall have no effect if Align_Intervals is
FALSE. If this property is present, it shall be writable.

12.11.51 Backup_Preparation_Time

This property, of type Unsigned16, indicates the amount of time in seconds that the device might remain unresponsive after
the sending of a ReinitializeDevice-ACK at the start of a backup procedure. The device that initiated the backup shall either
wait the period of time specified by this property or be prepared to encounter communication timeouts during this period. The
use of this value is described in more detail in Clause 19.1.

This property is required if the device supports execution of the backup and restore procedures and cannot complete backup
preparation within the minimum value it will accept in its APDU_Timeout property.

12.11.52 Restore_Preparation_Time

This property, of type Unsigned16, indicates the amount of time in seconds that the device is allowed to remain unresponsive
after the sending of a ReinitializeDevice-ACK at the start of a restore procedure. The restoring device shall either wait or be
prepared to encounter communication timeouts during this period. The use of this value is described in more detail in Clause
19.1.

12.11.53 Restore_Completion_Time

This property, of type Unsigned16, indicates the amount of time in seconds that the device is allowed to remain unresponsive
after the sending of a ReinitializeDevice-ACK at the end of a restore procedure. The restoring device shall either wait or be
prepared to encounter communication timeouts during this period. The use of this value is described in more detail in Clause
19.1.

12.11.54 Backup_And_Restore_State

This property, of type BACnetBackupState, indicates a server device's backup and restore state. The use of this value is
described in more detail in Clause 19.1.

12.11.55 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.11.56 Serial_Number

This read-only property, of type CharacterString, is assigned by the vendor to represent the serial number in a vendor-specific
model series. The combination of Model_Name, Vendor_Identifier and Serial_Number uniquely identifies a device.

12.11.57 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Device Object Type

ANSI/ASHRAE Standard 135-2012 207

code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

208 ANSI/ASHRAE Standard 135-2012

12.12 Event Enrollment Object Type

The Event Enrollment object type defines a standardized object that represents and contains the information required for
algorithmic reporting of events. For the general event concepts and algorithmic event reporting, see Clause 13.2.

For the Event Enrollment object, detecting events is accomplished by performing particular event and fault algorithms on
monitored values of a referenced object. The parameters for the algorithms are provided by the Event Enrollment object. The
standard event algorithms are defined in Clause 13.3. The standard fault algorithms are defined in Clause 13.4. Event
Enrollment objects do not modify or otherwise influence the state or operation of the referenced object.

For the reliability indication by the Reliability property of the Event Enrollment object, internal unreliable operation such as
configuration error or communication failure takes precedence over reliability indication for the monitored object (i.e.,
MONITORED_OBJECT_FAULT). Fault indications determined by the fault algorithm, if any, have least precedence.

Clause 13.2 describes the interaction between Event Enrollment objects, the Notification Class objects, and the Alarm and
Event application services.

The Event Enrollment object and its properties are summarized in Table 12-14 and described in detail in this subclause.

Table 12-14. Properties of the Event Enrollment Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Description
Event_Type
Notify_Type
Event_Parameters
Object_Property_Reference
Event_State
Event_Enable
Acked_Transitions
Notification_Class
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Status_Flags
Reliability
Fault_Type
Fault_Parameters
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
BACnetEventType
BACnetNotifyType
BACnetEventParameter
BACnetDeviceObjectPropertyReference
BACnetEventState
BACnetEventTransitionBits
BACnetEventTransitionBits
Unsigned
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BACnetStatusFlags
BACnetReliability
BACnetFaultType
BACnetFaultParameter
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
R
R
R
R
R
R
R
R

R
O1
O
R
O
O2

O
R
R
O3
O3
O
R
O

1 This property, if present, is required to be read-only.
2 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is
3 These properties are required if, and shall be present only if, the object supports fault algorithms other

than NONE.

12.12.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

ANSI/ASHRAE Standard 135-2012 209

12.12.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.12.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be EVENT_ENROLLMENT.

12.12.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.12.5 Event_Type

This read-only property, of type BACnetEventType, indicates the type of event algorithm that is to be used to detect the
occurrence of events and the event value notification parameters conveyed in event notifications. The value of this property is
an enumerated type that may have any standard BACnetEventType value except CHANGE_OF_RELIABILITY.

There is a specific relationship between each event algorithm, the event algorithm parameters, and the event type The
Event_Type is determined by the chosen event parameters in the Event_Parameters property and reflects the event algorithm
that is used to determine the event state. The event algorithm for each Event_Type is specified in Clause 13.3. The
Event_Parameters property provides the parameters needed by the algorithm.

12.12.6 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.12.7 Event_Parameters

The Event_Parameters property, of type BACnetEventParameter, determines the algorithm used to monitor the referenced
object and provides the parameter values needed for this event algorithm. The parameter values specified in this property
serve as event algorithm parameters and as reference type parameters reference properties whose values are used as event
algorithm parameters, as defined by the respective event algorithm in Clause 13.3. The mapping to the event algorithm
parameters is defined in Table 12-15.

If the Event Enrollment object evaluates reliability only and does not apply an event algorithm, then the event algorithm
NONE shall be set in this property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

210 ANSI/ASHRAE Standard 135-2012

Table 12-15. Event Algorithm, Event Parameters and Event Algorithm Parameters
Event Algorithm Event Parameters Event Algorithm Parameters

NONE none none
ACCESS_EVENT List_Of_Access_Events

Access_Event_Time_Reference
pAccessEvents
Referent's value is pAccessEventTime

BUFFER_READY Notification_Threshold
Previous_Notification_Count

pThreshold
pPreviousCount

CHANGE_OF_BITSTRING Time_Delay
Bitmask
List_Of_Bitstring_Values

pTimeDelay
pBitmask
pAlarmValues

CHANGE_OF_CHARACTERSTRIN
G

Time_Delay
List_Of_Alarm_Values

pTimeDelay
pAlarmValues

CHANGE_OF_LIFE_SAFETY Time_Delay
List_Of_Alarm_Values
List_Of_Life_Safety_Alarm_Valu
es
Mode_Property_Reference

pTimeDelay
pAlarmValues
pLifeSafetyAlarmValues
Referent's value is pMode

CHANGE_OF_STATE Time_Delay
List_Of_Values

pTimeDelay
pAlarmValues

CHANGE_OF_STATUS_FLAGS Time_Delay
Selected_Flags

pTimeDelay
pSelectedFlags

CHANGE_OF_VALUE Time_Delay
Bitmask
Referenced_Property_Increment

pTimeDelay
pBitmask
pIncrement

COMMAND_FAILURE Time_Delay
Feedback_Property_Reference

pTimeDelay
Referent's value is pFeedbackValue

DOUBLE_OUT_OF_RANGE Time_Delay
Low_Limit
High_Limit
Deadband

pTimeDelay
pLowLimit
pHighLimit
pDeadband

EXTENDED Vendor_Id
Extended_Event_Type
Parameters

pVendorId
pEventType
pParameters

FLOATING_LIMIT Time_Delay
Setpoint_Reference
Low_Diff_Limit
High_Diff_Limit
Deadband

pTimeDelay
Referent's value is pSetpoint
pLowDiffLimit
pHighDiffLimit
pDeadband

OUT_OF_RANGE Time_Delay
Low_Limit
High_Limit
Deadband

pTimeDelay
pLowLimit
pHighLimit
pDeadband

SIGNED_OUT_OF_RANGE Time_Delay
Low_Limit
High_Limit
Deadband

pTimeDelay
pLowLimit
pHighLimit
pDeadband

UNSIGNED_OUT_OF_RANGE Time_Delay
Low_Limit
High_Limit
Deadband

pTimeDelay
pLowLimit
pHighLimit
pDeadband

UNSIGNED_RANGE Time_Delay
Low_Limit
High_Limit

pTimeDelay
pLowLimit
pHighLimit

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

ANSI/ASHRAE Standard 135-2012 211

12.12.8 Object_Property_Reference

This property, of type BACnetDeviceObjectPropertyReference, designates the particular object and property referenced by
this Event Enrollment object. The event algorithm specified by the Event_Type property is applied to the referenced property
in order to determine the Event_State of the event. The value of the referenced property is used as the value of the
pMonitoredValue parameter of the event algorithm. The value of the referenced property is also used as the value of the
pMonitoredValue parameter of the fault algorithm, if a fault algorithm is applied.

If this property is writable, it may be restricted to only support references to objects inside of the device containing the Event
Enrollment object. If the property is restricted to referencing objects within the containing device, an attempt to write a
reference to an object outside the containing device into this property shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Event Enrollment object, the method used for
acquisition of the referenced property value for the purpose of monitoring is a local matter. The only restriction on the
method of data acquisition is that the monitoring device be capable of using ReadProperty for this purpose so as to be
interoperable with all BACnet devices.

Depending on the event algorithm, the values of additional properties of the monitored object are used for particular event
algorithm parameters, as specified by Table 12-15.1.

Table 12-15.1. Additional Monitored Object Properties by Event Algorithm
Event Algorithm Additional Monitored Object Properties Event Algorithm

Parameters
NONE none none
ACCESS_EVENT Status_Flags

Access_Event_Tag
Access_Event_Credential
Access_Event_Authentication_Factor

pStatusFlags
pAccessEventTag
pAccessCredential
pAccessFactor

BUFFER_READY Log_Buffer pLogBuffer references the
Log_Buffer property

CHANGE_OF_BITSTRING Status_Flags pStatusFlags
CHANGE_OF_CHARACTERSTRING Status_Flags pStatusFlags
CHANGE_OF_LIFE_SAFETY Status_Flags

Operation_Expected
pStatusFlags
pOperationExpected

CHANGE_OF_STATE Status_Flags pStatusFlags
CHANGE_OF_STATUS_FLAGS Present_Value pPresentValue
CHANGE_OF_VALUE Status_Flags pStatusFlags
COMMAND_FAILURE Status_Flags pStatusFlags
DOUBLE_OUT_OF_RANGE Status_Flags pStatusFlags
EXTENDED Defined by vendor Defined by vendor
FLOATING_LIMIT Status_Flags pStatusFlags
OUT_OF_RANGE Status_Flags pStatusFlags
SIGNED_OUT_OF_RANGE Status_Flags pStatusFlags
UNSIGNED_OUT_OF_RANGE Status_Flags pStatusFlags
UNSIGNED_RANGE Status_Flags pStatusFlags

Depending on the fault algorithm, the values of additional properties of the monitored object are used for particular fault
algorithm parameters, as specified by Table 12-15.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

212 ANSI/ASHRAE Standard 135-2012

Table 12-15.2. Additional Monitored Object Properties by Fault Algorithm
Fault Algorithm Additional MonitoredObject Properties Fault Algorithm

Parameters
NONE none none
FAULT_CHARACTERSTRING none none
FAULT_EXTENDED Defined by vendor Defined by vendor
FAULT_LIFE_SAFETY none none
FAULT_STATE none none
FAULT_STATUS_FLAGS none none

12.12.9 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.12.10 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.12.11 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.12.12 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.12.13 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.12.14 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.12.15 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.12.16 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

ANSI/ASHRAE Standard 135-2012 213

12.12.17 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.12.18 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.12.19 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.12.20 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an object. Three
of the flags are associated with the values of other properties of the object. A more detailed status could be determined by
reading the properties that are linked to these flags. The relationship between individual flags is not defined by the protocol.
The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event_State property has a value of NORMAL, otherwise logical
TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical FALSE (0).

OUT_OF_SERVICE Logical FALSE (0).

This property is not the pStatusFlags parameter for the object's event algorithm. The Status_Flags property of the object
referenced by the Object_Property_Reference property shall be the pStatusFlags parameter for the event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.12.21 Reliability

This property, of type BACnetReliability, provides an indication of the reliability of the Event Enrollment object to perform
its monitoring function in addition to the reliability of the monitored object.

When determining the reliability of an Event Enrollment object, first the reliability of the Event Enrollment object itself shall
be checked, followed by the reliability of the monitored object, and finally the reliability conditions are checked by the fault
algorithm, if one is in use. If one of these evaluations encounters a value other than NO_FAULT_DETECTED, the sequence
of evaluations shall be stopped and that reliability value shall be stored in the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Enrollment Object Type

214 ANSI/ASHRAE Standard 135-2012

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.12.22 Fault_Type

This read-only property, of type BACnetFaultType, indicates the type of fault algorithm that is applied by the object.

There is a specific relationship between each fault algorithm, the fault algorithm parameters, and the fault type. The
Fault_Type is determined by the chosen fault parameters in the Fault_Parameters property and reflects the fault algorithm
that is used to monitor the referenced object for fault conditions. The fault algorithm for each Fault_Type is specified in
Clause 13.4. The Fault_Parameters property provides the parameters needed by the algorithm.

12.12.23 Fault_Parameters

This property, of type BACnetFaultParameter, determines the fault algorithm used to monitor the referenced object and
provides the parameter values needed for this fault algorithm. The mapping to the fault algorithm parameter values is defined
in Table 12-15.3.

If the Event Enrollment object does not apply a fault algorithm, then the fault parameter choice NONE shall be set in this
property.

Table 12-15.3. Fault Algorithm, Fault Parameters and Fault Algorithm Parameters
Fault Algorithm Fault Parameters Fault Algorithm Parameters

NONE none none
FAULT_CHARACTERSTRING List_Of_Fault_Values pFaultValues
FAULT_EXTENDED Vendor_Id

Extended_Fault_Type
Parameters

pVendorId
pFaultType
pParameters

FAULT_LIFE_SAFETY List_Of_Fault_Values
Mode_Property_Reference

pFaultValues
Referent's value is pMode

FAULT_STATE List_Of_Fault_Values pFaultValues
FAULT_STATUS_FLAGS Status_Flags_Property_Reference pMonitoredValue

12.12.24 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.12.25 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.12.26 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
File Object Type

ANSI/ASHRAE Standard 135-2012 215

12.13 File Object Type

The File object type defines a standardized object that is used to describe properties of data files that may be accessed using
File Services (see Clause 14). The file object type and its properties are summarized in Table 12-16 and described in detail in
this subclause.

Table 12-16. Properties of the File Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Description
File_Type
File_Size
Modification_Date
Archive
Read_Only
File_Access_Method
Record_Count
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
CharacterString
Unsigned
BACnetDateTime
BOOLEAN
BOOLEAN
BACnetFileAccessMethod
Unsigned
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
R
R1
R
W
R
R
O2

R
O

1 If the file size can be changed by writing to the file, and File_Access_Method is
STREAM_ACCESS, then this property shall be writable.

2 This property shall be present only if File_Access_Method is RECORD_ACCESS. If the
number of records can be changed by writing to the file, then this property shall be writable.

12.13.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.13.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.13.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be FILE.

12.13.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.13.5 File_Type

This property, of type CharacterString, identifies the intended use of this file.

12.13.6 File_Size

This property, of type Unsigned, indicates the size of the file data in octets. If the size of the file can be changed by writing to
the file, and File_Access_Method is STREAM_ACCESS, then this property shall be writable.

Writing to the File_Size property with a value less than the current size of the file shall truncate the file at the specified
position. Writing a File_Size of 0 shall delete all of the file data but not the File object itself. Writing to the File_Size
property with a value greater than the current size of the file shall expand the size of the file but the value of the new octets of
the file shall be a local matter.

Devices may restrict the allowed values for writes to the File_Size. Specifically, devices may allow deletion of the file
contents by writing a value of zero, but not necessarily allow arbitrary truncation or expansion.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
File Object Type

216 ANSI/ASHRAE Standard 135-2012

Any change to the File_Size property shall also update the Modification_Date property to reflect the date when the size was
changed.

If the size of the file is unknown, an attempt to read this property shall result in an Error Class of 'PROPERTY' and an Error
Code of 'UNKNOWN_FILE_SIZE'.

12.13.7 Modification_Date

This property, of type BACnetDateTime, indicates the last time this object's underlying file data or File_Size was modified.
A File object shall be considered modified when any of these conditions occur:

(a)
 the File object is created;
(b)
 the underlying file data that it represents is written using AtomicWriteFile or ConfirmedPrivateTransfer or

UnconfirmedPrivateTransfer services or is written by some internal process; or
(c)
 the File_Size property changes.

If the Local_Time and Local_Date properties are present, this property shall contain a specific datetime value; otherwise this
property shall contain either a specific or an unspecified datetime value.

12.13.8 Archive

This property, of type BOOLEAN, shall be set to FALSE when the Modification_Date property changes for any reason. It is
the responsibility of an archiving process to set the value of this property to TRUE when it completes. The mechanism by
which archiving occurs shall be a local matter.

12.13.9 Read_Only

This property, of type BOOLEAN, indicates whether (FALSE) or not (TRUE) the file data may be changed through the use
of a BACnet AtomicWriteFile service.

12.13.10 File_Access_Method

This property, of type BACnetFileAccessMethod, indicates the type(s) of file access supported for this object. The possible
values for File_Access_Method are:

{RECORD_ACCESS, STREAM_ACCESS}

12.13.11 Record_Count

This property, of type Unsigned, indicates the size of the file data in records. The Record_Count property shall be present
only if File_Access_Type is RECORD_ACCESS. If the number of records can be changed by writing to the file, then this
property shall be writable.

Writing to the Record_Count property with a value less than the current size of the file shall truncate the file at the specified
position. Writing a Record_Count of 0 shall delete all of the file data but not the File object itself. Writing to the
Record_Count property with a value greater than the current size of the file shall expand the size of the file but the value of
the new octets of the file shall be a local matter.

Devices may restrict the allowed values for writes to the Record_Count. Specifically, devices may allow deletion of the file
contents by writing a value of zero, but not necessarily allow arbitrary truncation or expansion.

12.13.12 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.13.13 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
File Object Type

ANSI/ASHRAE Standard 135-2012 217

by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Group Object Type

218 ANSI/ASHRAE Standard 135-2012

12.14 Group Object Type

The Group object type defines a standardized object whose properties represent a collection of other objects and one or more
of their properties. A group object is used to simplify the exchange of information between BACnet Devices by providing a
shorthand way to specify all members of the group at once. A group may be formed using any combination of object types.
The group object and its properties are summarized in Table 12-17 and described in detail in this subclause.

Table 12-17. Properties of the Group Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Description
List_Of_Group_Members
Present_Value
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
BACnetLIST of ReadAccessSpecification
BACnetLIST of ReadAccessResult
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
R
R
R
O

12.14.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.14.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.14.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be GROUP.

12.14.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.14.5 List_Of_Group_Members

This property, of type BACnetLIST of ReadAccessSpecification, is a list of one or more read access specifications, which
defines the members of the group that shall be referenced when this object is specified in a protocol transaction. Each read
access specification shall consist of two parts: 1) an Object_Identifier and 2) a List Of Property References. All members of
the group shall be objects that reside in the same device that maintains the Group object. See the ASN.1 production for
ReadAccessSpecification in Clause 21.

Nesting of group objects is not permitted; that is, the List_Of_Group_Members shall not refer to the Present_Value property
of a Group object or a Global Group object.

12.14.6 Present_Value

This property, of type BACnetLIST of ReadAccessResult, is a list that contains the values of all the properties specified in
the List_Of_Group_Members. This is a "read-only" property; it cannot be used to write a set of values to the members of the
group. The Present_Value list shall be reconstructed each time the property is read by fetching the member properties.
(NOTE: This requirement is to reduce concurrency problems that could result if the Present_Value were stored.)

12.14.7 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Group Object Type

ANSI/ASHRAE Standard 135-2012 219

12.14.8 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

220 ANSI/ASHRAE Standard 135-2012

12.15 Life Safety Point Object Type

The Life Safety Point object type defines a standardized object whose properties represent the externally visible
characteristics associated with initiating and indicating devices in fire, life safety and security applications. The condition of a
Life Safety Point object is represented by a mode and a state.

Mode changes determine the object's inner logic and, consequently, influence the evaluation of the state. Typically, the
operating mode would be under operator control.

The state of the object represents the condition of the controller according to the logic internal to the device. The
implementation of the logic applied to such controllers to determine the various possible states is a local matter.

Typical applications of the Life Safety Point object include automatic fire detectors, pull stations, sirens, supervised printers,
etc. Similar objects can be identified in security control panels.

Life Safety Point objects that support intrinsic reporting shall apply the CHANGE_OF_LIFE_SAFETY event algorithm.

For reliability-evaluation, the FAULT_LIFE_SAFETY fault algorithm can be applied.

The Life Safety Point object type and its properties are summarized in Table 12-18 and described in detail in this subclause.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

ANSI/ASHRAE Standard 135-2012 221

Table 12-18. Properties of the Life Safety Point Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value BACnetLifeSafetyState R
Tracking_Value BACnetLifeSafetyState R1
Description CharacterString O
Device_Type CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability R1
Out_Of_Service BOOLEAN R
Mode BACnetLifeSafetyMode W
Accepted_Modes BACnetLIST of BACnetLifeSafetyMode R
Time_Delay Unsigned O2,5
Notification_Class Unsigned O2,5
Life_Safety_Alarm_Values BACnetLIST of BACnetLifeSafetyState O2,5
Alarm_Values BACnetLIST of BACnetLifeSafetyState O2,5
Fault_Values BACnetLIST of BACnetLifeSafetyState O
Event_Enable BACnetEventTransitionBits O2,5
Acked_Transitions BACnetEventTransitionBits O2,5
Notify_Type BACnetNotifyType O2,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2,5

Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O2,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Time_Delay_Normal Unsigned O5
Reliability_Evaluation_Inhibit BOOLEAN O
Silenced BACnetSilencedState R
Operation_Expected BACnetLifeSafetyOperation R
Maintenance_Required BACnetMaintenance O
Setting Unsigned8 O
Direct_Reading REAL O3
Units BACnetEngineeringUnits O3
Member_Of BACnetLIST of BACnetDeviceObjectReference O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O
1 These properties are required to be writable when Out_Of_Service is TRUE.
2 These properties are required if the object supports intrinsic alarming.
3 If either of these properties is present, then both must be present.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

12.15.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

222 ANSI/ASHRAE Standard 135-2012

12.15.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.15.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be LIFE_SAFETY_POINT.

12.15.4 Present_Value

This property, of type BACnetLifeSafetyState, reflects the state of the Life Safety Point object. The means of deriving the
Present_Value shall be a local matter. Present_Value may latch non-NORMAL state values until reset.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, then this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for
fault algorithm parameter descriptions.

12.15.5 Tracking_Value

This property, of type BACnetLifeSafetyState, reflects the non-latched state of the Life Safety Point object. The means of
deriving the state shall be a local matter. Unlike Present_Value, which may latch non-NORMAL state values until reset,
Tracking_Value shall continuously track changes in the state. The Tracking_Value property shall be writable when
Out_Of_Service is TRUE.

12.15.6 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.15.7 Device_Type

This property, of type CharacterString, is a text description of the physical device that the Life Safety Point object represents.

12.15.8 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Life Safety
Point object. Three of the flags are associated with the values of other properties of this object. A more detailed status could
be determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined
by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

ANSI/ASHRAE Standard 135-2012 223

12.15.9 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.15.10 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical input(s) in question are "reliable" as far as the BACnet Device or operator can determine and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.15.11 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the input(s) or process
the object represents is not in service. This means that changes to the Tracking_Value property are decoupled from the
input(s) or process when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding
state of the FAULT flag of the Status_Flags property shall be decoupled when Out_Of_Service is TRUE. While the
Out_Of_Service property is TRUE, the Tracking_Value and Reliability properties may be changed to any value as a means
of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the Tracking_Value
or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as if those
changes had occurred to the input(s) or process.

12.15.12 Mode

This writable property, of type BACnetLifeSafetyMode, shall convey the desired operating mode for the object.

If the object supports event reporting, then this property shall be the pMode parameter of the object's event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.15.13 Accepted_Modes

This read-only property, of type BACnetLIST of BACnetLifeSafetyMode, shall specify all values the Mode property accepts
when written to using BACnet services. Even though a mode is listed in this property, the write may be denied by the object
due to the internal state of the object at that time. The value of the Accepted_Modes property does not depend on the internal
state of the object and shall not change when the internal state changes. If a write is denied, a Result(-) specifying an 'Error
Class' of PROPERTY and an 'Error Code' of VALUE_OUT_OF_RANGE shall be returned. Internal computation in the
object may set the Mode property to a value other than one of those listed in the Accepted_Modes property.

12.15.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.15.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.15.16 Life_Safety_Alarm_Values

This property, of type BACnetLIST of BACnetLifeSafetyState, is the pLifeSafetyAlarmValues parameter of the object's
event algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.15.17 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.15.18 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

224 ANSI/ASHRAE Standard 135-2012

12.15.19 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.15.20 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.15.21 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.15.22 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.15.23 Silenced

This property, of type BACnetSilencedState, shall indicate whether the most recently occurring transition for this object that
has produced an audible or visual indication has been silenced by the receipt of a LifeSafetyOperation service request or a
local process.

12.15.24 Operation_Expected

The Operation_Expected property, of type BACnetLifeSafetyOperation, shall specify the next operation expected by this
object to handle a specific life safety situation.

If the object supports event reporting, then this property shall be the pOperationExpected parameter of the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.15.25 Maintenance_Required

This property, of type BACnetMaintenance, shall indicate the type of maintenance required for the life safety point. This may
be periodic maintenance, or a "parameter-determined" maintenance, such as dirtiness value for an associated detector, and
shall be determined locally.

12.15.26 Setting

This property, of type Unsigned8, shall be used to convey the desired setting of the input(s) or process used to determine the
logical state of the Present_Value. The range of the Setting property shall be from 0 (least sensitive) to 100 (most sensitive).
The interpretation of the setting and the actual number of useful settings for a given Life Safety Point object shall be a local
matter.

12.15.27 Direct_Reading

This property, of type REAL, shall indicate an analog quantity that reflects the measured or calculated reading from an
initiating device. The manner in which this reading is used to determine the logical state of the object shall be a local matter.
If this property is present, then the Units property shall also be present.

12.15.28 Units

This property, of type BACnetEngineeringUnits, shall indicate the units of the quantity represented by the Direct_Reading
property. If this property is present, then the Direct_Reading property shall also be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

ANSI/ASHRAE Standard 135-2012 225

12.15.29 Member_Of

This property, of type BACnetLIST of BACnetDeviceObjectReference, shall indicate those Life Safety Zone objects of
which this Life Safety Point object is considered to be a zone member. Each object in the Member_Of list shall be a Life
Safety Zone object.

This property may be restricted to only support references to objects inside of the device containing the Life Safety Point
object. If the property is writable and is restricted to referencing objects within the containing device, an attempt to write a
reference to an object outside the containing device into this property shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

12.15.30 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.15.31 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.15.32 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.15.33 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.15.34 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.15.35 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.15.36 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Point Object Type

226 ANSI/ASHRAE Standard 135-2012

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.15.37 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.15.38 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

ANSI/ASHRAE Standard 135-2012 227

12.16 Life Safety Zone Object Type

The Life Safety Zone object type defines a standardized object whose properties represent the externally visible
characteristics associated with an arbitrary group of BACnet Life Safety Point and Life Safety Zone objects in fire, life safety
and security applications. The condition of a Life Safety Zone object is represented by a mode and a state.

Mode changes determine the object's inner logic and, consequently, influence the evaluation of the state. Typically, the
operating mode would be under operator control.

The state of the object represents the condition of the controller according to the logic internal to the device. The
implementation of the logic applied to such controllers to determine the various possible states is a local matter.

Typical applications of the Life Safety Zone object include fire zones, panel zones, detector lines, extinguishing controllers,
remote transmission controllers, etc. Similar objects can be identified in security control panels.

Life Safety Zone objects that support intrinsic reporting shall apply the CHANGE_OF_LIFE_SAFETY event algorithm.

For reliability-evaluation, the FAULT_LIFE_SAFETY fault algorithm can be applied.

The Life Safety Zone object type and its properties are summarized in Table 12-19 and described in detail in this subclause.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

228 ANSI/ASHRAE Standard 135-2012

Table 12-19. Properties of the Life Safety Zone Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value BACnetLifeSafetyState R
Tracking_Value BACnetLifeSafetyState R1
Description CharacterString O
Device_Type CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability R1
Out_Of_Service BOOLEAN R
Mode BACnetLifeSafetyMode W
Accepted_Modes BACnetLIST of BACnetLifeSafetyMode R
Time_Delay Unsigned O2,4
Notification_Class Unsigned O2,4
Life_Safety_Alarm_Values BACnetLIST of BACnetLifeSafetyState O2,4
Alarm_Values BACnetLIST of BACnetLifeSafetyState O2,4
Fault_Values BACnetLIST of BACnetLifeSafetyState O
Event_Enable BACnetEventTransitionBits O2,4
Acked_Transitions BACnetEventTransitionBits O2,4
Notify_Type BACnetNotifyType O2,4
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2,4

Event_Message_Texts BACnetARRAY[3] of CharacterString O3,4
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O4
Event_Detection_Enable BOOLEAN O2,4
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O4
Event_Algorithm_Inhibit BOOLEAN O4,5
Time_Delay_Normal Unsigned O4
Reliability_Evaluation_Inhibit BOOLEAN O
Silenced BACnetSilencedState R
Operation_Expected BACnetLifeSafetyOperation R
Maintenance_Required BOOLEAN O
Zone_Members BACnetLIST of BACnetDeviceObjectReference R
Member_Of BACnetLIST of BACnetDeviceObjectReference O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These properties are required to be writable when Out_Of_Service is TRUE.
2 These properties are required if the object supports intrinsic alarming.
3 This property, if present, is required to be read-only.
4 These properties shall be present only if the object supports intrinsic reporting.
5 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

12.16.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

ANSI/ASHRAE Standard 135-2012 229

12.16.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.16.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be LIFE_SAFETY_ZONE.

12.16.4 Present_Value

This property, of type BACnetLifeSafetyState, reflects the state of the Life Safety Zone object. The means of deriving the
Present_Value shall be a local matter. Present_Value may latch non-NORMAL state values until reset.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, then this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for
fault algorithm parameter descriptions.

12.16.5 Tracking_Value

This property, of type BACnetLifeSafetyState, reflects the non-latched state of the Life Safety Zone object. The means of
deriving the state shall be a local matter. Unlike Present_Value, which may latch non-NORMAL state values until reset,
Tracking_Value shall continuously track changes in the state. The Tracking_Value property shall be writable when
Out_Of_Service is TRUE.

12.16.6 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.16.7 Device_Type

This property, of type CharacterString, is a text description of the physical zone or area that the Life Safety Zone object
represents. It will typically be used to describe the locale of the Life Safety Point objects that are Zone_Members of the Life
Safety Zone object.

12.16.8 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Life Safety
Zone object. Three of the flags are associated with the values of other properties of this object. A more detailed status could
be determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined
by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

230 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.16.9 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.16.10 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical input(s) in question are "reliable" as far as the BACnet Device or operator can determine and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.16.11 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the input(s) or process
the object represents is not in service. This means that changes to the Tracking_Value property are decoupled from the
input(s) or process when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding
state of the FAULT flag of the Status_Flags property shall be decoupled when Out_Of_Service is TRUE. While the
Out_Of_Service property is TRUE, the Tracking_Value and Reliability properties may be changed to any value as a means
of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the Tracking_Value
or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as if those
changes had occurred to the input(s) or process.

12.16.12 Mode

This writable property, of type BACnetLifeSafetyMode, shall convey the desired operating mode for the object.

If the object supports event reporting, then this property shall be the pMode parameters of the object's event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.16.13 Accepted_Modes

This read-only property, of type BACnetLIST of BACnetLifeSafetyMode, shall specify all values the Mode property accepts
when written to using BACnet services. Even though a mode is listed in this property, the write may be denied by the object
due to the internal state of the object at that time. The value of the Accepted_Modes property does not depend on the internal
state of the object and shall not change when the internal state changes. If a write is denied, a Result(-) specifying an 'Error
Class' of PROPERTY and an 'Error Code' of VALUE_OUT_OF_RANGE shall be returned. Internal computation in the
object may set the Mode property to a value other than one of those listed in the Accepted_Modes property.

12.16.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.16.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.16.16 Life_Safety_Alarm_Values

This property, of type BACnetLIST of BACnetLifeSafetyState, is the pLifeSafetyAlarmValues parameter of the object's
event algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.16.17 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

ANSI/ASHRAE Standard 135-2012 231

12.16.18 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

12.16.19 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.16.20 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.16.21 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.16.22 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.16.23 Silenced

This property, of type BACnetSilencedState, shall indicate whether the most recently occurring transition for this object that
has produced an audible or visual indication has been silenced by the receipt of a LifeSafetyOperation service request or a
local process.

12.16.24 Operation_Expected

The Operation_Expected property, of type BACnetLifeSafetyOperation, shall specify the next operation expected by this
object to handle a specific life safety situation.

If the object supports event reporting, then this property shall be the pOperationExpected parameter of the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.16.25 Maintenance_Required

This property, of type BOOLEAN, shall indicate that maintenance is required for one or more of the life safety points that are
members of this zone.

12.16.26 Zone_Members

This property, of type BACnetLIST of BACnetDeviceObjectReference, shall indicate which Life Safety Point and Life
Safety Zone objects are members of the zone represented by this object.

This property may be restricted to only support references to objects inside of the device containing the Life Safety Zone
object. If the property is writable and is restricted to referencing objects within the containing device, an attempt to write a
reference to an object outside the containing device into this property shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

12.16.27 Member_Of

This property, of type BACnetLIST of BACnetDeviceObjectReference, shall indicate those Life Safety Zone objects of
which this Life Safety Zone object is considered to be a zone member. Each object in the Member_Of list shall be a Life
Safety Zone object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

232 ANSI/ASHRAE Standard 135-2012

This property may be restricted to only support references to objects inside of the device containing the Life Safety Zone
object. If the property is writable and is restricted to referencing objects within the containing device, an attempt to write a
reference to an object outside the containing device into this property shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

12.16.28 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.16.29 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.16.30 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.16.31 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.16.32 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.16.33 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.16.34 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Life Safety Zone Object Type

ANSI/ASHRAE Standard 135-2012 233

12.16.35 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.16.36 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

234 ANSI/ASHRAE Standard 135-2012

12.17 Loop Object Type

The Loop object type defines a standardized object whose properties represent the externally visible characteristics of any
form of feedback control loop. Flexibility is achieved by providing three independent gain constants with no assumed values
for units. The appropriate gain units are determined by the details of the control algorithm, which is a local matter.

Loop objects that support intrinsic reporting shall apply the FLOATING_LIMIT event algorithm.

The Loop object type and its properties are summarized in Table 12-20 and described in detail in this subclause. Figure 12-2
illustrates the relationship between the Loop object properties and the other objects referenced by the loop.

Table 12-20. Properties of the Loop Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Status_Flags
Event_State
Reliability
Out_Of_Service
Update_Interval
Output_Units
Manipulated_Variable_Reference
Controlled_Variable_Reference
Controlled_Variable_Value
Controlled_Variable_Units
Setpoint_Reference
Setpoint
Action
Proportional_Constant
Proportional_Constant_Units
Integral_Constant
Integral_Constant_Units
Derivative_Constant
Derivative_Constant_Units
Bias
Maximum_Output
Minimum_Output
Priority_For_Writing
COV_Increment
Time_Delay
Notification_Class
Error_Limit
Deadband
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit

BACnetObjectIdentifier
CharacterString
BACnetObjectType
REAL
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
Unsigned
BACnetEngineeringUnits
BACnetObjectPropertyReference
BACnetObjectPropertyReference
REAL
BACnetEngineeringUnits
BACnetSetpointReference
REAL
BACnetAction
REAL
BACnetEngineeringUnits
REAL
BACnetEngineeringUnits
REAL
BACnetEngineeringUnits
REAL
REAL
REAL
Unsigned
REAL
Unsigned
Unsigned
REAL
REAL
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN

R
R
R
R7
O
R
R
O7
R
O
R
R
R
R
R
R
R
R
O1

O1

O2

O2

O3

O3

O
O
O
R
O4

O5,8

O5,8

O5,8

O5,8

O5,8

O5,8

O5,8

O5,8

O6,8
O8
O5,8

O8

O8,9

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

ANSI/ASHRAE Standard 135-2012 235

Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

O8

O10

R
O

1 If one of these optional properties is present, then both of these properties shall be present.
2 If one of these optional properties is present, then both of these properties shall be present.
3 If one of these optional properties is present, then both of these properties shall be present.
4 This property is required if, and shall be present only if, the object supports COV reporting.
5 These properties are required if the object supports intrinsic reporting.
6 This property, if present, is required to be read-only.
7 These properties are required to be writable when Out_Of_Service is TRUE.
8 These properties shall be present only if the object supports intrinsic reporting.
9 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
10 If this property is present, then the Reliability property shall be present.

12.17.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.17.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.17.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property
shall be LOOP.

12.17.4 Present_Value

This property indicates the current output value of the loop algorithm in units of the Output_Units property. The
Present_Value property shall be writable when Out_Of_Service is TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.17.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.17.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the loop. Three
of the flags are associated with the values of other properties of this object. A more detailed status could be determined by
reading the properties that are linked to these flags. The relationship between individual flags is not defined by the protocol.
The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

236 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

Object_Identifier

 PID Algorithm

Setpoint_Reference

Setpoint

Proportional_Constant

Derivative_Constant

Integral_Constant

Priority_For_Writing

Present_Value
Manipulated_Variable_
Reference

Controlled_Variable_
value
Controlled_Variable_
Reference

Analog_Value

Object_Identifier

Present_Value

Analog_Input Analog_Output

Object_Identifier

Present_Value

Manipulated Variable Object

Object_Identifier

Present_Value
Controlled Variable Object

Process
(See Notes 1&2)

 Notes:
1. The use of Analog_Input and Analog_Output objects is for illustrative purposes only.
2. The process may include components other than the objects shown.
3. The Loop object diagram contains only a partial list of properties

Symbols

Object Reference

Property Value Flow

Object_Identifier

Present_Value

Referenced
Object

Setpoint Object

Figure 12-2. Loop object structure with its referenced objects.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

ANSI/ASHRAE Standard 135-2012 237

12.17.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.17.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value of the loop in
question is reliable as far as the BACnet Device or operator can determine and, if not, why.

12.17.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the algorithm this
object represents is or is not in service. The Present_Value property shall be decoupled from the algorithm when the value of
Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT flag of the
Status_Flags property shall be decoupled from the algorithm when Out_Of_Service is TRUE. While the Out_Of_Service
property is TRUE, the Present_Value and Reliability properties may be changed to any value as a means of simulating
specific fixed conditions or for testing purposes. The property referenced by Manipulated_Variable_Reference and other
functions that depend on the state of the Present_Value or Reliability properties shall respond to changes made to these
properties while Out_Of_Service is TRUE, as if those changes had been made by the algorithm.

12.17.10 Update_Interval

This property, of type Unsigned, indicates the interval in milliseconds at which the loop algorithm updates the output
(Present_Value property).

NOTE: No property that represents the interval at which the process variable is sampled or the algorithm is executed is part
of this object. The Update_Interval value may be the same as these other values but could also be different depending on the
algorithm utilized. The sampling or execution interval is a local matter and need not be represented as part of this object.

12.17.11 Output Units

This property, of type BACnetEngineeringUnits, indicates the engineering units for the output (Present_Value property) of
this control loop.

12.17.12 Manipulated_Variable_Reference

This property is of type BACnetObjectPropertyReference. The output (Present_Value) of the control loop is written to the
object and property designated by the Manipulated_Variable_Reference. It is normally the Present_Value of an Analog
Output object used to position a device, but it could also be another object or property, such as that used to stage multiple
Binary Outputs.

12.17.13 Controlled_Variable_Reference

This property is of type BACnetObjectPropertyReference. The Controlled_Variable_Reference identifies the property used to
set the Controlled_Variable_Value property of the Loop object. It is normally the Present_Value property of an Analog Input
object used for measuring a process variable, temperature, for example, but it could also be another object, such as an Analog
Value, which calculates a minimum or maximum of a group of Analog Inputs for use in discriminator control.

12.17.14 Controlled_Variable_Value

This property, of type REAL, is the value of the property of the object referenced by the Controlled_Variable_Reference
property. This control loop compares the Controlled_Variable_Value with the Setpoint to calculate the error.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.17.15 Controlled_Variable_Units

This property, of type BACnetEngineeringUnits, indicates the engineering units for the Controlled_Variable_Value property
of this object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

238 ANSI/ASHRAE Standard 135-2012

12.17.16 Setpoint_Reference

This property, of type BACnetSetpointReference, contains zero or one references. The absence of a reference indicates that
the setpoint for this control loop is fixed and is contained in the Setpoint property. The presence of a reference indicates that
the property of another object contains the setpoint value used for this Loop object and the reference specifies that property.

12.17.17 Setpoint

This property, of type REAL, is the value of the loop setpoint or of the property of the object referenced by the
Setpoint_Reference, expressed in units of the Controlled_Variable_Units property.

If the object supports event reporting, then this property shall be the pSetpoint parameter for the object's event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.17.18 Action

This property, of type BACnetAction, defines whether the loop is DIRECT or REVERSE acting.

12.17.19 Proportional_Constant

This property, of type REAL, is the value of the proportional gain parameter used by the loop algorithm. It may be used to
represent any of the various forms of gain for the proportional control mode, such as overall gain, throttling range, or
proportional band. If either the Proportional_Constant property or the Proportional_Constant_Units property are present, then
both of these properties shall be present.

12.17.20 Proportional_Constant_Units

This property, of type BACnetEngineeringUnits, indicates the engineering units of the Proportional_Constant property of this
object. If either the Proportional_Constant_Units property or the Proportional_Constant property are present, then both of
these properties shall be present.

12.17.21 Integral_Constant

This property, of type REAL, is the value of the integral gain parameter used by the loop algorithm. It may be used to
represent any of the various forms of gain for the integral control mode, such as reset time or rate. If either the
Integral_Constant property or the Proportional_Constant_Units property are present, then both of these properties shall be
present.

12.17.22 Integral_Constant_Units

This property, of type BACnetEngineeringUnits, indicates the engineering units of the Integral_Constant property of this
object. If either the Integral_Constant_Units property or the Proportional_Constant property are present, then both of these
properties shall be present.

12.17.23 Derivative_Constant

This property, of type REAL, is the value of the derivative gain parameter used by the loop algorithm. It may be used to
represent any of the various forms of gain for the derivative control mode, such as derivative time or rate time. If either the
Derivative_Constant property or the Derivative_Constant_Units property are present, then both of these properties shall be
present.

12.17.24 Derivative_Constant_Units

This property, of type BACnetEngineeringUnits, indicates the engineering units of the Derivative_Constant property of this
object. If either the Derivative_Constant_Units property or the Derivative_Constant property are present, then both of these
properties shall be present.

12.17.25 Bias

This property, of type REAL, is the bias value used by the loop algorithm expressed in units of the Output_Units property.

12.17.26 Maximum_Output

This property, of type REAL, is the maximum value of the Present_Value property as limited by the PID loop algorithm. It is
normally used to prevent the algorithm from controlling beyond the range of the controlled device and to prevent integral
term "windup."

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

ANSI/ASHRAE Standard 135-2012 239

12.17.27 Minimum_Output

This property, of type REAL, is the minimum value of the Present_Value property as limited by the loop algorithm. It is
normally used to prevent the algorithm from controlling beyond the range of the controlled device and to prevent integral
term "windup."

12.17.28 Priority_For_Writing

Loop objects may be used to control the commandable property of an object. This property, of type Unsigned, provides a
priority to be used by the command prioritization mechanism. It identifies the particular priority slot in the Priority_Array of
the Manipulated_Variable_Reference that is controlled by this loop. It shall have a value in the range 1-16.

12.17.29 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.17.30 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.17.31 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.17.32 Error_Limit

This property is both the pLowDiffLimit and pHighDiffLimit parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.17.33 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.17.34 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.17.35 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.17.36 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.17.37 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.17.38 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

240 ANSI/ASHRAE Standard 135-2012

12.17.39 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.17.40 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.17.41 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.17.42 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.17.43 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.17.44 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.17.45 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.17.46 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Loop Object Type

ANSI/ASHRAE Standard 135-2012 241

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Input Object Type

242 ANSI/ASHRAE Standard 135-2012

12.18 Multi-state Input Object Type

The Multi-state Input object type defines a standardized object whose Present_Value represents the result of an algorithmic
process within the BACnet Device in which the object resides. The algorithmic process itself is a local matter and is not
defined by the protocol. For example, the Present_Value or state of the Multi-state Input object may be the result of a logical
combination of multiple binary inputs or the threshold of one or more analog inputs or the result of a mathematical
computation. The Present_Value property is an integer number representing the state. The State_Text property associates a
description with each state.

Multi-state Input objects that support intrinsic reporting shall apply the CHANGE_OF_STATE event algorithm.

For reliability-evaluation, the FAULT_STATE fault algorithm can be applied.

The Multi-state Input object type and its properties are summarized in Table 12-21 and described in detail in this subclause.

Table 12-21. Properties of the Multi-state Input Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Number_Of_States
State_Text
Time_Delay
Notification_Class
Alarm_Values
Fault_Values
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
Unsigned
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
Unsigned
BACnetARRAY[N] of CharacterString
Unsigned
Unsigned
BACnetLIST of Unsigned
BACnetLIST of Unsigned
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R1

O
O
R
R
O
R
R
O
O3,5

O3,5

O3,5

O7

O3,5

O3,5

O3,5

O3,5

O4,5
O5
O3,5

O5

O5,6

O5

O7

R
O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 Footnote removed.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
7 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Input Object Type

ANSI/ASHRAE Standard 135-2012 243

12.18.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.18.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.18.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be MULTISTATE_INPUT.

12.18.4 Present_Value

This property, of type Unsigned, reflects the logical state of the input. The logical state of the input shall be one of 'n' states,
where 'n' is the number of states defined in the Number_Of_States property. The means used to determine the current state is
a local matter. The Present_Value property shall always have a value greater than zero. The Present_Value property shall be
writable when Out_Of_Service is TRUE. Any local modification to the value of the Present_Value when the
Number_Of_States property is changed is a local matter.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for fault
algorithm parameter descriptions.

12.18.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.18.6 Device_Type

This property, of type CharacterString, is a text description of the multi-state input. It will typically be used to describe the
type of device attached to the multi-state input.

12.18.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the multi-state
input. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Input Object Type

244 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.18.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.18.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical inputs in question are "reliable" as far as the BACnet Device or operator can determine and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.18.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the inputs the object
represents are not in service. This means that the Present_Value property is decoupled from the input and will not track
changes to the input when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding
state of the FAULT flag of the Status_Flags property shall be decoupled from the input when Out_Of_Service is TRUE.
While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be changed to any value as a
means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the
Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as
if those changes had occurred in the input.

12.18.11 Number_Of_States

This property, of type Unsigned, defines the number of states that the Present_Value may have. The Number_Of_States
property shall always have a value greater than zero. If the value of this property is changed, the size of the State_Text array,
if present, shall also be changed to the same value.

12.18.12 State_Text

This property is a BACnetARRAY of character strings representing descriptions of all possible states of the Present_Value.
The number of descriptions matches the number of states defined in the Number_Of_States property. The Present_Value,
interpreted as an integer, serves as an index into the array. If the size of this array is changed, the Number_Of_States property
shall also be changed to the same value.

12.18.13 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.18.14 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.18.15 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.18.16 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Input Object Type

ANSI/ASHRAE Standard 135-2012 245

12.18.17 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.18.18 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.18.19 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.18.20 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.18.21 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.18.22 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.18.23 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.18.24 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.18.25 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Input Object Type

246 ANSI/ASHRAE Standard 135-2012

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.18.26 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.18.27 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.18.28 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.18.29 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Output Object Type

ANSI/ASHRAE Standard 135-2012 247

12.19 Multi-state Output Object Type

The Multi-state Output object type defines a standardized object whose properties represent the desired state of one or more
physical outputs or processes within the BACnet Device in which the object resides. The actual functions associated with a
specific state are a local matter and not specified by the protocol. For example, a particular state may represent the
active/inactive condition of several physical outputs or perhaps the value of an analog output. The Present_Value property is
an unsigned integer number representing the state. The State_Text property associates a description with each state.

Multi-state Output objects that support intrinsic reporting shall apply the COMMAND_FAILURE event algorithm.

The Multi-state Output object type and its properties are summarized in Table 12-22 and described in detail in this subclause.

Table 12-22. Properties of the Multi-state Output Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier
Object_Name
Object_Type
Present_Value
Description
Device_Type
Status_Flags
Event_State
Reliability
Out_Of_Service
Number_Of_States
State_Text
Priority_Array
Relinquish_Default
Time_Delay
Notification_Class
Feedback_Value
Event_Enable
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Event_Detection_Enable
Event_Algorithm_Inhibit_Ref
Event_Algorithm_Inhibit
Time_Delay_Normal
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
Unsigned
CharacterString
CharacterString
BACnetStatusFlags
BACnetEventState
BACnetReliability
BOOLEAN
Unsigned
BACnetARRAY[N] of CharacterString
BACnetPriorityArray
Unsigned
Unsigned
Unsigned
Unsigned
BACnetEventTransitionBits
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetObjectPropertyReference
BOOLEAN
Unsigned
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
W
O
O
R
R
O
R
R
O
R
R
O1,3

O1,3

O1

O1,3

O1,3

O1,3

O1,3

O2,3
O3
O1,3

O3

O3,4

O3

O5

R
O

1 These properties are required if the object supports intrinsic reporting.
2 This property, if present, is required to be read-only.
3 These properties shall be present only if the object supports intrinsic reporting.
4 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
5 If this property is present, then the Reliability property shall be present.

12.19.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Output Object Type

248 ANSI/ASHRAE Standard 135-2012

12.19.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.19.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be MULTISTATE_OUTPUT.

12.19.4 Present_Value (Commandable)

This property, of type Unsigned, reflects the logical state of an output. The logical state of the output shall be one of 'n' states,
where 'n' is the number of states defined in the Number_Of_States property. How the Present_Value is used is a local matter.
Any local modification to the value of the Present_Value when the Number_Of_States property is changed is a local matter.
The Present_Value property shall always have a value greater than zero.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.19.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.19.6 Device_Type

This property, of type CharacterString, is a text description of the physical device connected to the multi-state output. It will
typically be used to describe the type of device attached to the multi-state output.

12.19.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the multi-state
output. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.19.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Output Object Type

ANSI/ASHRAE Standard 135-2012 249

12.19.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical outputs in question are "reliable" as far as the BACnet Device or operator can determine and, if not, why.
12.19.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the output or process
the object represents is not in service. This means that changes to the Present_Value property are decoupled from the output
when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT
flag of the Status_Flags property shall be decoupled when Out_Of_Service is TRUE. While the Out_Of_Service property is
TRUE, the Present_Value and Reliability properties may still be changed to any value as a means of simulating specific fixed
conditions or for testing purposes. Other functions that depend on the state of the Present_Value or Reliability properties
shall respond to changes made to these properties while Out_Of_Service is TRUE, as if those changes had occurred to the
output. The Present_Value property shall still be controlled by the BACnet command prioritization mechanism if
Out_Of_Service is TRUE. See Clause 19.

12.19.11 Number_Of_States

This property, of type Unsigned, defines the number of states the Present_Value may have. The Number_Of_States property
shall always have a value greater than zero. If the value of this property is changed, the size of the State_Text array, if
present, shall also be changed to the same value.

12.19.12 State_Text

This property is a BACnetARRAY of character strings representing descriptions of all possible states of the Present_Value.
The number of descriptions matches the number of states defined in the Number_Of_States property. The Present_Value,
interpreted as an integer, serves as an index into the array. If the size of this array is changed, the Number_Of_States property
shall also be changed to the same value.

12.19.13 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism. Any local modification to the values in the Priority_Array when the
Number_Of_States property is changed is a local matter.

12.19.14 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array have a NULL value. See Clause 19. Any local modification to the value of the Relinquish_Default when the
Number_Of_States property is changed is a local matter.

12.19.15 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.19.16 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.19.17 Feedback_Value

This property is an indication of the actual value of the entity controlled by Present_Value. The manner by which the
Feedback_Value is determined shall be a local matter.

If the object supports event reporting, then this property is the pFeedback parameter for the object's event algorithm. See
Clause 13.3 for event algorithm parameter descriptions.

12.19.18 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Output Object Type

250 ANSI/ASHRAE Standard 135-2012

12.19.19 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.19.20 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.19.21 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.19.22 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.19.23 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.19.24 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.19.25 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.19.26 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Output Object Type

ANSI/ASHRAE Standard 135-2012 251

12.19.27 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.19.28 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.19.29 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.19.30 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Value Object Type

252 ANSI/ASHRAE Standard 135-2012

12.20 Multi-state Value Object Type

The Multi-state Value object type defines a standardized object whose properties represent the externally visible
characteristics of a multi-state value. A "multi-state value" is a control system parameter residing in the memory of the
BACnet Device. The actual functions associated with a specific state are a local matter and not specified by the protocol. For
example, a particular state may represent the active/inactive condition of several physical inputs and outputs or perhaps the
value of an analog input or output. The Present_Value property is an unsigned integer number representing the state. The
State_Text property associates a description with each state.

Multi-state Value objects that support intrinsic reporting shall apply the CHANGE_OF_ STATE event algorithm.

For reliability-evaluation, the FAULT_STATE fault algorithm can be applied.

The Multi-state Value object type and its properties are summarized in Table 12-23 and described in detail in this subclause.

Table 12-23. Properties of the Multi-state Value Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value Unsigned R1
Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Out_Of_Service BOOLEAN R
Number_Of_States Unsigned R
State_Text BACnetARRAY[N] of CharacterString O
Priority_Array BACnetPriorityArray O3
Relinquish_Default Unsigned O3
Time_Delay Unsigned O4,6
Notification_Class Unsigned O4,6
Alarm_Values BACnetLIST of Unsigned O4,6
Fault_Values BACnetLIST of Unsigned O8
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Time_Delay_Normal Unsigned O6
Reliability_Evaluation_Inhibit BOOLEAN O8
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to also be writable. This property is required to
be writable when Out_Of_Service is TRUE.

2 Footnote removed.
3 These properties are required if, and shall be present only if, Present_Value is commandable.
4 These properties are required if the object supports intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Value Object Type

ANSI/ASHRAE Standard 135-2012 253

5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

12.20.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.20.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.20.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be MULTISTATE_VALUE.

12.20.4 Present_Value

This property, of type Unsigned, reflects the logical state of the multi-state value. The logical state of the multi-state value
shall be one of 'n' states, where 'n' is the number of states defined in the Number_Of_States property. How the Present_Value
is used is a local matter. The Present_Value property shall always have a value greater than zero. Present_Value shall be
optionally commandable. If Present_Value is commandable for a given object instance, then the Priority_Array and
Relinquish_Default properties shall also be present for that instance. The Present_Value property shall be writable when
Out_Of_Service is TRUE. Any local modification to the value of the Present_Value when the Number_Of_States property is
changed is a local matter.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, then this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for
fault algorithm parameter descriptions.

12.20.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.20.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the multi-state
value. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Value Object Type

254 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.20.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.20.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value is "reliable" as far
as the BACnet Device or operator can determine and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause13.4 for fault algorithm parameter descriptions.

12.20.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value
property of the Multi-state Value object is prevented from being modified by software local to the BACnet device in which
the object resides. When Out_Of_Service is TRUE the Present_Value property may still be written to freely. In addition, the
Reliability property and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled when
Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be
changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend
on the state of the Present_Value or Reliability properties shall respond to changes made to these properties while
Out_Of_Service is TRUE. If the Priority_Array and Relinquish_Default properties are present, then writing to the
Present_Value property shall be controlled by the BACnet command prioritization mechanism. See Clause 19.

12.20.10 Number_Of_States

This property, of type Unsigned, defines the number of states the Present_Value may have. The Number_Of_States property
shall always have a value greater than zero. If the value of this property is changed, the size of the State_Text array, if
present, shall also be changed to the same value.

12.20.11 State_Text

This property is a BACnetARRAY of character strings representing descriptions of all possible states of the Present_Value.
The number of descriptions matches the number of states defined in the Number_Of_States property. The Present_Value,
interpreted as an integer, serves as an index into the array. If the size of this array is changed, the Number_Of_States property
shall also be changed to the same value.

12.20.12 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism. Any local modification of the values in the Priority_Array when the
Number_Of_States property is changed is a local matter.

12.20.13 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19. Any local modification to the value of the Relinquish_Default
when the Number_Of_States property is changed is a local matter.

12.20.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Value Object Type

ANSI/ASHRAE Standard 135-2012 255

12.20.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.20.16 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.20.17 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

12.20.18 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.20.19 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.20.20 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.20.21 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.20.22 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.20.23 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.20.24 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Multi-state Value Object Type

256 ANSI/ASHRAE Standard 135-2012

12.20.25 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.20.26 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.20.27 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.20.28 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.20.29 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.20.30 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Class Object Type

ANSI/ASHRAE Standard 135-2012 257

12.21 Notification Class Object Type

The Notification Class object type defines a standardized object that represents and contains information required for the
distribution of event notifications within BACnet systems. Notification Classes are useful for event-initiating objects that
have identical needs in terms of how their notifications should be handled, what the destination(s) for their notifications
should be, and how they should be acknowledged.

 A notification class defines how event notifications shall be prioritized in their handling according to TO_OFFNORMAL,
TO_FAULT, and TO_NORMAL events; whether these categories of events require acknowledgment (nearly always by a
human operator); and what destination devices or processes should receive notifications.

The purpose of prioritization is to provide a means to ensure that alarms or event notifications with critical time
considerations are not unnecessarily delayed. The possible range of priorities is 0 - 255. A lower number indicates a higher
priority. The priority and the Network Priority (Clause 6.2.2) are associated as defined in Table 13-5. Priorities may be
assigned to TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events individually within a notification class.

The purpose of acknowledgment is to provide assurance that a notification has been acted upon by some other agent, rather
than simply having been received correctly by another device. In most cases, acknowledgments come from human operators.
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events may, or may not, require individual acknowledgment within a
notification class.

It is often necessary for event notifications to be sent to multiple destinations or to different destinations based on the time of
day or day of week. Notification Classes may specify a list of destinations, each of which is qualified by time, day of week,
and type of handling. A destination specifies a set of days of the week (Monday through Sunday) during which the
destination is considered viable by the Notification Class object. In addition, each destination has a FromTime and ToTime,
which specify a window using specific times, on those days of the week, during which the destination is viable. If an event
that uses a Notification Class object occurs and the day is one of the days of the week that is valid for a given destination and
the time is within the window specified in the destination, then the destination shall be sent a notification. Destinations may
be further qualified, as applicable, by any combination of the three event transitions TO_OFFNORMAL, TO_FAULT, or
TO_NORMAL.

The destination also defines the recipient device to receive the notification and a process within the device. Processes are
identified by numeric handles that are only meaningful to the destination device. The administration of these handles is a
local matter. The recipient device may be specified by either its unique Device Object_Identifier or its BACnetAddress. In
the latter case, a specific node address, a multicast address, or a broadcast address may be used. The destination further
specifies whether the notification shall be sent using a confirmed or unconfirmed event notification.

The Notification Class object and its properties are summarized in Table 12-24 and described in detail in this subclause.

Table 12-24. Properties of the Notification Class Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier
Object_Name
Object_Type
Description
Notification_Class
Priority
Ack_Required
Recipient_List
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
CharacterString
Unsigned
BACnetARRAY[3] of Unsigned
BACnetEventTransitionBits
BACnetLIST of BACnetDestination
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
O
R
R
R
R
R
O

12.21.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Class Object Type

258 ANSI/ASHRAE Standard 135-2012

12.21.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.21.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be NOTIFICATION_CLASS.

12.21.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.21.5 Notification_Class

This property, of type Unsigned, shall indicate the numeric value of this notification class and shall be equal to the instance
number of the Notification Class object. Event-initiating objects shall use this number to refer to this Notification Class
object.

12.21.6 Priority

This property, of type BACnetARRAY[3] of Unsigned, shall convey the priority to be used for event notifications for
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events, respectively. Priorities shall range from 0 - 255 inclusive. A
lower number indicates a higher priority. The priority and the Network Priority (see 6.2.2) are associated as defined in Table
13-5.

12.21.7 Ack_Required

This property, of type BACnetEventTransitionBits, shall convey three separate flags that represent whether acknowledgment
shall be required in notifications generated for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL event transitions,
respectively.

12.21.8 Recipient_List

This property, of type BACnetLIST of BACnetDestination, shall convey a list of one or more recipient destinations to which
notifications shall be sent when event-initiating objects using this class detect the occurrence of an event. These recipient
destinations are intended to be relatively permanent, do not expire, and shall be maintained through a power failure or device
"restart." The destinations themselves define a structure of parameters that is summarized in Table 12-25.

Table 12-25. Components of a BACnetDestination
Parameter Type Description

Valid Days BACnetDaysOfWeek The set of days of the week on which this destination
may be used between From Time and To Time

From Time,
To Time

Time The window of time (inclusive) during which the
destination is viable on the days of the week specified by
Valid Days. These values shall be specific times.

Recipient BACnetRecipient The destination device(s) to receive notifications
Process Identifier Unsigned32 The handle of a process within the recipient device that

is to receive the event notification
Issue Confirmed
Notifications

Boolean (TRUE) if confirmed notifications are to be sent and
(FALSE) if unconfirmed notifications are to be sent

Transitions BACnet Event Transition Bits A set of three flags that indicate those transitions
{TO_OFFNORMAL, TO_FAULT, TO_NORMAL} for
which this recipient is suitable

When combined with local Notification Forwarder objects, a device is able to contain a large number of Notification Class
objects while centralizing the Recipient_List information in a small number of local Notification Forwarder objects. If local
Notification Forwarder objects are being used to specify all of the recipients for the Notification Class, the Recipient_List
property is allowed to be read-only. In this case, the read-only Recipient_List shall contain at least one entry, and all entries
in the Recipient_List shall refer to the local device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Class Object Type

ANSI/ASHRAE Standard 135-2012 259

If the Recipient_List is not writable and the device is not using local Notification Forwarder objects, then the Recipient_List
shall have a length of 1 with the Recipient set to a local broadcast, Valid Days set to all days, From Time set to 00:00:00.0,
To_Time set to 23:59:59.99, Process Identifier set to 0, Issue Confirmed Notifications set to FALSE, and all bits in
Transitions set to TRUE. When deploying devices configured in this manner, it is expected that a Notification Forwarder will
be installed in a different device on the same BACnet network to forward the notifications to recipients that are not on the
local network. Note that this implementation choice should not be chosen for devices on datalinks that are severely impacted
by broadcasts.

For writable Recipient_List properties, devices are allowed to restrict the values for the Valid Days, From Time, To_Time,
and the Transitions field such that they only accept the configuration that results in all transitions being sent without regard to
the current time or date. In such cases, the Valid Days shall be all days, From Time shall be 0:00:00.0, To Time shall be
23:59:59.99, and Transitions shall be (TRUE, TRUE, TRUE). A device shall not otherwise restrict the value of
Recipient_List entries.

12.21.9 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.21.10 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

260 ANSI/ASHRAE Standard 135-2012

12.22 Program Object Type

The Program object type defines a standardized object whose properties represent the externally visible characteristics of an
application program. In this context, an application program is an abstract representation of a process within a BACnet
Device, which is executing a particular body of instructions that act upon a particular collection of data structures. The logic
that is embodied in these instructions and the form and content of these data structures are local matters.

The Program object provides a network-visible view of selected parameters of an application program in the form of
properties of the Program object. Some of these properties are specified in the standard and exhibit a consistent behavior
across different BACnet Devices. The operating state of the process that executes the application program may be viewed and
controlled through these standardized properties, which are required for all Program objects. In addition to these standardized
properties, a Program object may also provide vendor-specific properties. These vendor-specific properties may serve as
inputs to the program, outputs from the program, or both. However, these vendor-specific properties may not be present at
all. If any vendor-specific properties are present, the standard does not define what they are or how they work, as this is
specific to the particular application program and vendor.

Program objects may optionally support intrinsic reporting to facilitate the reporting of fault conditions. Program objects that
support intrinsic reporting shall apply the NONE event algorithm.

The Program object type and its standardized properties are summarized in Table 12-26 and described in detail in this
subclause.

Table 12-26. Properties of the Program Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier
Object_Name
Object_Type
Program_State
Program_Change
Reason_For_Halt
Description_Of_Halt
Program_Location
Description
Instance_Of
Status_Flags
Reliability
Out_Of_Service
Event_Detection_Enable
Notification_Class
Event_Enable
Event_State
Acked_Transitions
Notify_Type
Event_Time_Stamps
Event_Message_Texts
Event_Message_Texts_Config
Reliability_Evaluation_Inhibit
Property_List
Profile_Name

BACnetObjectIdentifier
CharacterString
BACnetObjectType
BACnetProgramState
BACnetProgramRequest
BACnetProgramError
CharacterString
CharacterString
CharacterString
CharacterString
BACnetStatusFlags
BACnetReliability
BOOLEAN
BOOLEAN
Unsigned
BACnetEventTransitionBits
BACnetEventState
BACnetEventTransitionBits
BACnetNotifyType
BACnetARRAY[3] of BACnetTimeStamp
BACnetARRAY[3] of CharacterString
BACnetARRAY[3] of CharacterString
BOOLEAN
BACnetARRAY[N] of BACnetPropertyIdentifier
CharacterString

R
R
R
R
W
O1

O1

O
O
O
R
O
R
O2,3
O2,3
O2,3
O2,3
O2,3
O2,3
O2,3
O3

O3

O4

R
O

1 If one of the optional properties Reason_For_Halt or Description_Of_Halt is present, then both of
these properties shall be present.

2 These properties are required if the object supports intrinsic reporting.
3 These properties shall be present only if the object supports intrinsic reporting.
4 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

ANSI/ASHRAE Standard 135-2012 261

12.22.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.22.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.22.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property
shall be PROGRAM.

12.22.4 Program_State

This property, of type BACnetProgramState, reflects the current logical state of the process executing the application
program this object represents. This property is Read-Only. The values that may be taken on by this property are:

 IDLE process is not executing
 LOADING application program being loaded
 RUNNING process is currently executing
 WAITING process is waiting for some external event
 HALTED process is halted because of some error condition
 UNLOADING process has been requested to terminate

12.22.5 Program_Change

This property, of type BACnetProgramRequest, is used to request changes to the operating state of the process this object
represents. The Program_Change property provides one means for changing the operating state of this process. The process
may change its own state as a consequence of execution as well. The values that may be taken on by this property are:

 READY ready for change request (the normal state)
 LOAD request that the application program be loaded, if not already loaded
 RUN request that the process begin executing, if not already running
 HALT request that the process halt execution
 RESTART request that the process restart at its initialization point
 UNLOAD request that the process halt execution and unload

Normally the value of the Program_Change property will be READY, meaning that the program is ready to accept a new
request to change its operating state. If the Program_Change property is not READY, then it may not be written to and any
attempt to write to the property shall return a Result(-). If it has one of the other enumerated values, then a previous request to
change state has not yet been honored, so new requests cannot be accepted. When the request to change state is finally
honored, then the Program_Change property value shall become READY and the new state shall be reflected in the
Program_State property. Depending on the current Program_State, certain requested values for Program_Change may be
invalid and would also return a Result(-) if an attempt were made to write them. Figure 12-3 shows the valid state transitions
and the resulting new Program_State.

It is important to note that program loading could be terminated either due to an error or a request to HALT that occurs
during loading. In either case, it is possible to have Program_State=HALTED and yet not have a complete or operable
program in place. In this case, a request to RESTART is taken to mean LOAD instead. If a complete program is loaded but
HALTED for any reason, then RESTART simply reenters program execution at its initialization entry point.

There may be BACnet Devices that support Program objects but do not require "loading" of the application programs, as
these applications may be built in. In these cases, loading is taken to mean "preparing for execution," the specifics of which
are a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

262 ANSI/ASHRAE Standard 135-2012

 ���	'
����'
 ��'
����'
 ������'
6�����

6���<4�-

Unload Complex
 ���	'
����'
6�����

4<�!

����'
 ��'
 ������

��<4�-

Load Failed
6�����

 ���	'
����'
 ��'
����'
 ������

�����
&��$���
 ������

 6��4�-

 ������'
����

Load
Completed

���,!<
 ���	'
����'
 ��'
 ������

K�4,4�-

Got I
t

Wait
for

Som
eth

ing ���	'
����

6
�����

InternalErrorHalt

����

6�����

 ���	'
 ��

 ��

����'
 ������

6
�����

Figure 12-3. State Transitions for the program object.

12.22.6 Reason_For_Halt

If the process executing the application program this object represents encounters any type of error that causes process
execution to be halted, then this property shall reflect the reason why the process was halted. The Reason_For_Halt property
shall be an enumerated type called BACnetProgramError. The values that may be taken on by this property are:

 NORMAL process is not halted due to any error condition
 LOAD_FAILED the application program could not complete loading
 INTERNAL process is halted by some internal mechanism
 PROGRAM process is halted by Program_Change request
 OTHER process is halted for some other reason

If one of the optional properties Reason_For_Halt or Description_Of_Halt is present, then both of these properties shall be
present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

ANSI/ASHRAE Standard 135-2012 263

12.22.7 Description_Of_Halt

This property is a character string that may be used to describe the reason why a program has been halted. This property
provides essentially the same information as the Reason_For_Halt property, except in a human-readable form. The content of
this string is a local matter. If one of the optional properties Reason_For_Halt or Description_Of_Halt is present, then both of
these properties shall be present.

12.22.8 Program_Location

This property is a character string that may be used by the application program to indicate its location within the program
code, for example, a line number or program label or section name. The content of this string is a local matter.

12.22.9 Description

This property is a string of printable characters that may be used to describe the application being carried out by this process
or other locally desired descriptive information.

12.22.10 Instance_Of

This property is a character string that is the local name of the application program being executed by this process. The
content of this string is a local matter.

12.22.11 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the program.
Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined
by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the
protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.22.12 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the application-specific properties of
the program object or the process executing the application program are "reliable" as far as the BACnet Device can determine
and, if not, why.

12.22.13 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the process this object
represents is not in service. In this case, "in service" means that the application program is properly loaded and initialized,
although the process may or may not be actually executing. If the Program_State property has the value IDLE, then
Out_Of_Service shall be TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

264 ANSI/ASHRAE Standard 135-2012

12.22.14 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.22.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.22.16 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.22.17 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.22.18 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.22.19 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.22.20 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.22.21 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.22.22 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.22.23 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Program Object Type

ANSI/ASHRAE Standard 135-2012 265

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.22.24 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.22.25 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

266 ANSI/ASHRAE Standard 135-2012

12.23 Pulse Converter Object Type

The Pulse Converter object type defines a standardized object that represents a process whereby ongoing measurements made
of some quantity, such as electric power or water or natural gas usage, and represented by pulses or counts, might be
monitored over some time interval for applications such as peak load management, where it is necessary to make periodic
measurements but where a precise accounting of every input pulse or count is not required.

The Pulse Converter object might represent a physical input. As an alternative, it might acquire the data from the
Present_Value of an Accumulator object, representing an input in the same device as the Pulse Converter object. This linkage
is illustrated by the dotted line in Figure 12-4. Every time the Present_Value property of the Accumulator object is
incremented, the Count property of the Pulse Converter object is also incremented.

The Present_Value property of the Pulse Converter object can be adjusted at any time by writing to the Adjust_Value
property, which causes the Count property to be adjusted, and the Present_Value recomputed from Count. In the illustration
in Figure 12-4, the Count property of the Pulse Converter was adjusted down to 0 when the Total_Count of the Accumulator
object had the value 0070.

)
�����
:
)//
2K�

&������@A���� /) 0 9

������3��=
��1����
"�
������
���
:
=
������
��%

&�������L)L)//

)
�����
:

)
2#�

2K�
�����

/ //) 0 9

����������� &����
���1�����

�����L // 9 9

&������@A����L JM*�9
�����@?�����L)0�9

Figure 12-4. Relationship between the Pulse Converter and Accumulator objects.

Pulse Converter objects that support intrinsic reporting shall apply the OUT_OF_RANGE event algorithm.

The object and its properties are summarized in Table 12-27 and described in detail in this subclause.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

ANSI/ASHRAE Standard 135-2012 267

Table 12-27. Properties of the Pulse Converter Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value REAL R1
Input_Reference BACnetObjectPropertyReference O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Out_Of_Service BOOLEAN R
Units BACnetEngineeringUnits R
Scale_Factor REAL R
Adjust_Value REAL W
Count Unsigned R
Update_Time BACnetDateTime R
Count_Change_Time BACnetDateTime R
Count_Before_Change Unsigned R
COV_Increment REAL O2
COV_Period Unsigned O2
Notification_Class Unsigned O3,5
Time_Delay Unsigned O3,5
High_Limit REAL O3,5
Low_Limit REAL O3,5
Deadband REAL O3,5
Limit_Enable BACnetLimitEnable O3,5
Event_Enable BACnetEventTransitionBits O3,5
Acked_Transitions BACnetEventTransitionBits O3,5
Notify_Type BACnetNotifyType O3,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,5
Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O3,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Time_Delay_Normal Unsigned O5
Reliability_Evaluation_Inhibit BOOLEAN O7
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 These properties are required if, and shall be present only if, the object supports COV reporting.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
7 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

268 ANSI/ASHRAE Standard 135-2012

12.23.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.23.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.23.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be PULSE_CONVERTER.

12.23.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.23.5 Present_Value

This property, of type REAL, indicates the accumulated value of the input being measured. It is computed by multiplying the
current value of the Count property by the value of the Scale_Factor property. The value of the Present_Value property may
be adjusted by writing to the Adjust_Value property. The Present_Value property shall be writable when Out_Of_Service is
TRUE.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.23.6 Input_Reference

This property, of type BACnetObjectPropertyReference, indicates the object and property (typically an Accumulator object's
Present_Value property) representing the actual physical input that is to be measured and presented by the Pulse Converter
object. The referenced property should have a datatype of INTEGER or Unsigned.

If this property is not present, the Pulse Converter object directly represents the physical input.

12.23.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Pulse
Converter. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

ANSI/ASHRAE Standard 135-2012 269

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.23.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.23.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value and/or Count
properties or the operation of the physical input in question is "reliable" as far as the BACnet Device or operator can
determine and, if not, why.

If Input_Reference is configured to reference a property that is not of datatype Unsigned or INTEGER, or is otherwise not
supported as an input source for this object, the Reliability property shall indicate CONFIGURATION_ERROR.

12.23.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the input that the object
directly represents, if any, is not in service. ("Directly represents" means that the Input_Reference property is not present in
this object.) The Present_Value property is decoupled from the Count property and will not track changes to the input when
the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT flag of
the Status_Flags property shall be decoupled from the input when Out_Of_Service is TRUE. While the Out_Of_Service
property is TRUE, the Present_Value and Reliability properties may be changed to any value as a means of simulating
specific fixed conditions or for testing purposes. Other functions that depend on the state of the Present_Value or Reliability
properties shall respond to changes made to these properties while Out_Of_Service is TRUE as if those changes had occurred
in the input.

If the Input_Reference property is present, the state of the Out_Of_Service property of the object referenced by
Input_Reference shall not be indicated by the Out_Of_Service property of the Pulse Converter object.

12.23.11 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of the Present_Value property. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.23.12 Scale_Factor

This property, of type REAL, provides the conversion factor for computing Present_Value. It represents the change in
Present_Value resulting from changing the value of Count by one.

12.23.13 Adjust_Value

This property, of type REAL, is written to adjust the Present_Value property (and thus the Count property also) by the
amount written to Adjust_Value.

The following series of operations shall be performed atomically when this property is written:

(1) The value written to Adjust_Value shall be stored in the Adjust_Value property.
(2) The value of Count shall be copied to the Count_Before_Change property.
(3) The value of Count shall be decremented by the value calculated by performing the integer division

(Adjust_Value/Scale_Factor) and discarding the remainder.
(4) The current date and time shall be stored in the Count_Change_Time property.

A write to this property results in a change in the value of Present_Value. Whether the new value is computed as part of the
atomic series of operations or when Present_Value is read is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

270 ANSI/ASHRAE Standard 135-2012

An attempt to write Adjust_Value with a value that would cause an overflow or underflow condition in Count shall result in a
Result(-) to be returned with an error class of PROPERTY and an error code of VALUE_OUT_OF_RANGE.

If Adjust_Value has never been written, it shall have a value of zero.

12.23.14 Count

This read-only property, of type Unsigned, indicates the count of the input pulses as acquired from the physical input or the
property referenced by the Input_Reference property.

If the property referenced by Input_Reference property is present, has datatype Unsigned or INTEGER, and is supported as
an input source for this object, the value of the Count property is derived from the referenced property. An increment by one
count in the referenced property is reflected by an increment of one count in the Count property. The means by which this is
done shall be a local matter. Because the value of the Pulse Converter object Count property may be changed by a write to
the Adjust_Value property, the value of the Count property can be different from the value of the referenced property.

12.23.15 Update_Time

This read-only property, of type BACnetDateTime, reflects the date and time of the most recent change to the Count property
as a result of input pulse accumulation and is updated atomically with the Count property.

12.23.16 Count_Change_Time

This read-only property, of type BACnetDateTime, represents the date and time of the most recent occurrence of a write to
the Adjust_Value property.

12.23.17 Count_Before_Change

This property, of type Unsigned, indicates the value of the Count property just prior to the most recent write to the
Adjust_Value property. If no such write has yet occurred, this property shall have the value zero.

12.23.18 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COV notification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.23.19 COV_Period

The COV_Period property, of type Unsigned, shall indicate the amount of time in seconds between the periodic COV
notifications performed by this object. This property is required if COV reporting is supported by this object. See Clause
13.1.

12.23.20 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.23.21 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

ANSI/ASHRAE Standard 135-2012 271

12.23.22 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.23.23 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.23.24 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.23.25 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

12.23.26 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.23.27 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.23.28 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.23.29 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.23.30 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

272 ANSI/ASHRAE Standard 135-2012

12.23.31 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.23.32 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.23.33 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.23.34 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.23.35 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.23.36 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.23.37 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.23.38 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Pulse Converter Object Type

ANSI/ASHRAE Standard 135-2012 273

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

274 ANSI/ASHRAE Standard 135-2012

12.24 Schedule Object Type

The Schedule object type defines a standardized object used to describe a periodic schedule that may recur during a range of
dates, with optional exceptions at arbitrary times on arbitrary dates. The Schedule object also serves as a binding between
these scheduled times and the writing of specified "values" to specific properties of specific objects at those times. The
Schedule object type and its properties are summarized in Table 12-28 and described in detail in this subclause.

Schedules are divided into days, of which there are two types: normal days within a week and exception days. Both types of
days can specify scheduling events for either the full day or portions of a day, and a priority mechanism defines which
scheduled event is in control at any given time.

The current state of the Schedule object is represented by the value of its Present_Value property, which is normally
calculated using the time/value pairs from the Weekly_Schedule and Exception_Schedule properties, with a default value for
use when no schedules are in effect. Details of this calculation are provided in the description of the Present_Value property.

Versions of the Schedule object prior to Protocol_Revision 4 only support schedules that define an entire day, from midnight
to midnight. For compatibility with these versions, this whole day behavior can be achieved by using a specific schedule
format. Weekly_Schedule and Exception_Schedule values that begin at 00:00, and do not use any NULL values, will define
schedules for the entire day. Property values in this format will produce the same results in all versions of the Schedule
object.

Schedule objects may optionally support intrinsic reporting to facilitate the reporting of fault conditions. Schedule objects
that support intrinsic reporting shall apply the NONE event algorithm.

Table 12-28. Properties of the Schedule Object Type

Property Identifier Property Datatype Conformance
Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value Any R
Description CharacterString O
Effective_Period BACnetDateRange R
Weekly_Schedule BACnetARRAY[7] of BACnetDailySchedule O1
Exception_Schedule BACnetARRAY[N] of BACnetSpecialEvent O1
Schedule_Default Any R
List_Of_Object_Property_References BACnetLIST of BACnetDeviceObjectPropertyReference R
Priority_For_Writing Unsigned(1..16) R
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability R
Out_Of_Service BOOLEAN R
Event_Detection_Enable BOOLEAN O2,3
Notification_Class Unsigned O2,3
Event_Enable BACnetEventTransitionBits O2,3
Event_State BACnetEventState O2,3
Acked_Transitions BACnetEventTransitionBits O2,3
Notify_Type BACnetNotifyType O2,3
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2,3
Event_Message_Texts BACnetARRAY[3] of CharacterString O3
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O3
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 At least one of these properties is required.
2 These properties are required if the object supports intrinsic reporting.
3 These properties shall be present only if the object supports intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

ANSI/ASHRAE Standard 135-2012 275

12.24.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.24.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.24.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property
shall be SCHEDULE.

12.24.4 Present_Value

This property indicates the current value of the schedule, which may be any primitive datatype. As a result, most analog,
binary, and enumerated values may be scheduled. This property shall be writable when Out_Of_Service is TRUE (see
12.24.14).

Any change in the value of this property shall be written to all members of the List_Of_Object_Property_References
property. An error writing to any member of the list shall not stop the Schedule object from writing to the remaining
members.

The normal calculation of the value of the Present_Value property is illustrated as follows (the actual algorithm used is a
local matter but must yield the same results as this one):

1. Find the highest relative priority (as defined by Clause 12.24.8) Exception_Schedule array element that is in effect
for the current day and whose current value (see method below) is not NULL, and assign that value to the
Present_Value property.

2. If the Present_Value was not assigned in the previous step, then evaluate the current value of the Weekly_Schedule
array element for the current day and if that value is not NULL, assign it to the Present_Value property.

3. If the Present_Value was not assigned in the previous steps, then assign the value of the Schedule_Default property
to the Present_Value property.

The method for evaluating the current value of a schedule (either exception or weekly) is to find the latest element in the list
of BACnetTimeValues that occurs on or before the current time, and then use that element's value as the current value for the
schedule. If no such element is found, then the current value for the schedule shall be NULL.

These calculations are such that they can be performed at any time and the correct value of Present_Value property will
result. These calculations must be performed at 00:00 each day, whenever the device resets, whenever properties that can
affect the results are changed, whenever the time in the device changes by an amount that may have an effect on the
calculation result, and at other times, as required, to maintain the correct value of the Present_Value property through the
normal passage of time.

Note that the Present_Value property will be assigned the value of the Schedule_Default property at 00:00 of any given day,
unless there is an entry for 00:00 in effect for that day. If a scheduled event logically begins on one day and ends on another,
an entry at 00:00 shall be placed in the schedule that is in effect for the second day, and for any subsequent days of the event's
duration, to ensure the correct result whenever Present_Value is calculated.

12.24.5 Description

This property is a string of printable characters whose content is not restricted.

12.24.6 Effective_Period

This property specifies the range of dates within which the Schedule object is active. Seasonal scheduling may be achieved
by defining several SCHEDULE objects with non-overlapping Effective_Periods to control the same property references.
Upon entering its effective period, the object shall calculate its Present_Value and write that value to all members of the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

276 ANSI/ASHRAE Standard 135-2012

List_Of_Object_Property_References property. An error writing to any member of the list shall not stop the Schedule object
from writing to the remaining members.

12.24.7 Weekly_Schedule

This property is a BACnetARRAY containing exactly seven elements. Each of the elements 1-7 contains a
BACnetDailySchedule. A BACnetDailySchedule consists of a list of BACnetTimeValues that are (time, value) pairs, which
describe the sequence of schedule actions on one day of the week when no Exception_Schedule is in effect. The time portion
of each BACnetTimeValue shall contain a specific time. The array elements 1-7 correspond to the days Monday - Sunday,
respectively. The Weekly_Schedule is an optional property, but either the Weekly_Schedule or a non-empty
Exception_Schedule shall be supported in every instance of a Schedule object.

If the Weekly_Schedule property is written with a schedule item containing a datatype not supported by this instance of the
Schedule object (e.g., the List_Of_Object_Property_References property cannot be configured to reference a property of the
unsupported datatype), the device may return a Result(-) response, specifying an 'Error Class' of PROPERTY and an 'Error
Code' of DATATYPE_NOT_SUPPORTED.

12.24.8 Exception_Schedule

This property is a BACnetARRAY of BACnetSpecialEvents. Each BACnetSpecialEvent describes a sequence of schedule
actions that takes precedence over the normal day's behavior on a specific day or days.

 BACnetSpecialEvent ::= (Period, list of BACnetTimeValue, EventPriority)

 Period ::= Choice of {BACnetCalendarEntry | CalendarReference}

 EventPriority ::= Unsigned (1..16)

The Period may be a BACnetCalendarEntry or it may refer to a Calendar object. A BACnetCalendarEntry would be used if
the BACnetSpecialEvent is specific to this Schedule object, while Calendar objects might be defined for common holidays to
be referenced by multiple Schedule objects. Each BACnetCalendarEntry is either a specific date or date pattern (Date), range
of dates (BACnetDateRange), or month/week-of-month/day-of-week specification (BACnetWeekNDay). If the current date
matches any of the calendar entry criteria, the BACnetSpecialEvent would be activated and the list of BACnetTimeValue
items would be enabled for use.

As an example, if the calendar entry is a BACnetWeekNDay with an unspecified octet for month and week-of-month fields
but with a specific day-of-week, it means the BACnetSpecialEvent applies on that day-of-week all year long.

Each item in the list of BACnetTimeValue specifies a time and a value of primitive datatype that is used at the time specified
by the time portion. The time portion shall contain a specific time.

Each BACnetSpecialEvent contains an EventPriority that determines its importance relative to other BACnetSpecialEvent
elements within the same Exception_Schedule array. Since BACnetSpecialEvent elements within the same
Exception_Schedule array may have overlapping periods, it is necessary to have a mechanism to determine the relative
priorities for the BACnetSpecialEvent elements that apply on any given day. If more than one BACnetSpecialEvent applies
to a given day, the relative priority of the BACnetSpecialEvent elements shall be determined by their EventPriority values. If
multiple overlapping BACnetSpecialEvent elements have the same EventPriority value, then the BACnetSpecialEvent with
the lowest index number in the array shall have higher relative priority. The highest EventPriority is 1 and the lowest is 16.
The EventPriority is not related to the Priority_For_Writing property of the Schedule object.

If a BACnet Device supports writing to the Exception_Schedule property, all possible choices in the BACnetSpecialEvent
elements shall be supported. If the size of this array is increased by writing to array index zero, each new array element shall
contain an empty list of BACnetTimeValue.

If the Exception_Schedule property is written with a schedule item containing a datatype not supported by this instance of the
Schedule object (e.g., the List_Of_Object_Property_References property cannot be configured to reference a property of the
unsupported datatype), the device may return a Result(-) response, specifying an 'Error Class' of PROPERTY and an 'Error
Code' of DATATYPE_NOT_SUPPORTED.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

ANSI/ASHRAE Standard 135-2012 277

12.24.9 Schedule_Default

This property holds a default value to be used for the Present_Value property when no other scheduled value is in effect (see
Clause 12.24.4). This may be any primitive datatype.

If the Schedule_Default property is written with a value containing a datatype not supported by this instance of the Schedule
object (e.g., the List_Of_Object_Property_References property cannot be configured to reference a property of the
unsupported datatype), the device may return a Result(-) response, specifying an 'Error Class' of PROPERTY and an 'Error
Code' of DATATYPE_NOT_SUPPORTED.

12.24.10 List_Of_Object_Property_References

This property specifies the Device Identifiers, Object Identifiers and Property Identifiers of the properties to be written with
specific values at specific times on specific days.

If this property is writable, it may be restricted to only support references to objects inside of the device containing the
Schedule object. If the property is restricted to referencing objects within the containing device, an attempt to write a
reference to an object outside the containing device into this property shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Schedule object, the method used for writing to
the referenced property value for the purpose of controlling the property is a local matter. The only restriction on the method
of writing to the referenced property is that the scheduling device be capable of using WriteProperty for this purpose so as to
be interoperable with all BACnet devices.

12.24.11 Priority_For_Writing

This property defines the priority at which the referenced properties are commanded. It corresponds to the 'Priority' parameter
of the WriteProperty service. It is an unsigned integer in the range 1-16, with 1 being considered the highest priority and 16
the lowest. See Clause 19.

12.24.12 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the schedule
object. Two of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

278 ANSI/ASHRAE Standard 135-2012

12.24.13 Reliability

The Reliability property, of type BACnetReliability, provides an indication that the properties of the schedule object are in a
consistent state. All non-NULL values used in the Weekly_Schedule, the Exception_Schedule, and the Schedule_Default
properties shall be of the same datatype, and all members of the List_Of_Object_Property_References shall be writable with
that datatype. If these conditions are not met, then this property shall have the value CONFIGURATION_ERROR.

If the List_Of_Object_Property_References contains a member that references a property in a remote device, the detection of
a configuration error may be delayed until an attempt is made to write a scheduled value.

12.24.14 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the internal calculations
of the schedule object are used to determine the value of the Present_Value property. This means that the Present_Value
property is decoupled from the internal calculations and will not track changes to other properties when Out_Of_Service is
TRUE. Other functions that depend on the state of the Present_Value, such as writing to the members of the
List_Of_Object_Property_References, shall respond to changes made to that property while Out_Of_Service is TRUE, as if
those changes had occurred by internal calculations.

12.24.15 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.24.16 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.24.17 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.24.18 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.24.19 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.24.20 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.24.21 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Schedule Object Type

ANSI/ASHRAE Standard 135-2012 279

12.24.22 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.24.23 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.24.24 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.24.25 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.24.26 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

280 ANSI/ASHRAE Standard 135-2012

12.25 Trend Log Object Type

A Trend Log object monitors a property of a referenced object and, when predefined conditions are met, saves ("logs") the
value of the property and a timestamp in an internal buffer for subsequent retrieval. The data may be logged periodically,
upon a change of value or when "triggered" by a write to the Trigger property. The Trigger property allows the acquisition of
samples to be controlled by network write operations or internal processes. Errors that prevent the acquisition of the data, as
well as changes in the status or operation of the logging process itself, are also recorded. Each timestamped buffer entry is
called a trend log "record."

The referenced object may reside in the same device as the Trend Log object or in an external device. The referenced
property's value may be recorded upon COV subscription or periodic poll. If the value of the monitored object's Status_Flags
property is available, then it may optionally be recorded along with the value of the referenced property.

Each Trend Log object maintains an internal, optionally fixed-size buffer. This buffer fills or grows as log records are added.
If the buffer becomes full, the least recent record is overwritten when a new record is added, or collection may be set to stop.
Trend Log records are transferred as BACnetLogRecords using the ReadRange service. The buffer may be cleared by writing
a zero to the Record_Count property. Each record in the buffer has an implied SequenceNumber which is equal to the value
of the Total_Record_Count property immediately after the record is added.

Several datatypes are defined for storage in the log records. The ability to store ANY datatypes is optional. Data stored in the
log buffer may be optionally restricted in size to 32 bits, as in the case of bit strings, to facilitate implementation in devices
with strict storage requirements.

Logging may be enabled and disabled through the Enable property and at dates and times specified by the Start_Time and
Stop_Time properties. Trend Log enabling and disabling is recorded in the log buffer.

Event reporting (notification) may be provided to facilitate automatic fetching of log records by processes on other devices
such as fileservers. Support is provided for algorithmic reporting; optionally, intrinsic reporting may be provided. Trend Log
objects that support intrinsic reporting shall apply the BUFFER_READY event algorithm.

In intrinsic reporting, when the number of records specified by the Notification_Threshold property have been collected since
the previous notification (or startup), a new notification is sent to all subscribed devices.

In response to a notification, subscribers may fetch all of the new records. If a subscriber needs to fetch all of the new
records, it should use the 'By Sequence Number' form of the ReadRange service request.

A missed notification may be detected by a subscriber if the 'Current Notification' parameter received in the previous
BUFFER_READY notification is different than the 'Previous Notification' parameter of the current BUFFER_READY
notification. If the ReadRange-ACK response to the ReadRange request issued under these conditions has the FIRST_ITEM
bit of the 'Result Flags' parameter set to TRUE, Trend Log records have probably been missed by this subscriber.

The acquisition of log records by remote devices has no effect upon the state of the Trend Log object itself. This allows
completely independent, but properly sequential, access to its log records by all remote devices. Any remote device can
independently update its records at any time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

ANSI/ASHRAE Standard 135-2012 281

Table 12-29. Properties of the Trend Log Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Enable BOOLEAN W
Start_Time BACnetDateTime O1,2
Stop_Time BACnetDateTime O1,2
Log_DeviceObjectProperty BACnetDeviceObjectPropertyReference O8
Log_Interval Unsigned O1,3
COV_Resubscription_Interval Unsigned O
Client_COV_Increment BACnetClientCOV O
Stop_When_Full BOOLEAN R
Buffer_Size Unsigned32 R
Log_Buffer BACnetLIST of BACnetLogRecord R
Record_Count Unsigned32 W
Total_Record_Count Unsigned32 R
Logging_Type BACnetLoggingType R
Align_Intervals BOOLEAN O5
Interval_Offset Unsigned O5
Trigger BOOLEAN O
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability O
Notification_Threshold Unsigned32 O4,7
Records_Since_Notification Unsigned32 O4,7
Last_Notify_Record Unsigned32 O4,7
Event_State BACnetEventState R
Notification_Class Unsigned O4,7
Event_Enable BACnetEventTransitionBits O4,7
Acked_Transitions BACnetEventTransitionBits O4,7
Notify_Type BACnetNotifyType O4,7
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,7
Event_Message_Texts BACnetARRAY[3] of CharacterString O6,7
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O7
Event_Detection_Enable BOOLEAN O4,7
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O7
Event_Algorithm_Inhibit BOOLEAN O7,9
Reliability_Evaluation_Inhibit BOOLEAN O10
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These properties are required if the monitored property is a BACnet property.
2 If present, these properties are required to be writable.
3 If present, this property is required to be writable when Logging_Type has the value POLLED or the

value COV. Also, if present this property is required to be read-only if Logging_Type has the value
TRIGGERED.

4 These properties are required if the object supports intrinsic reporting.
5 These properties are required if, and shall be present only if, the object supports clock-aligned logging.
6 This property, if present, is required to be read-only.
7 These properties shall be present only if the object supports intrinsic reporting.
8 This property is required if, and shall be present only if, the monitored property is a BACnet property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

282 ANSI/ASHRAE Standard 135-2012

9 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
10 If this property is present, then the Reliability property shall be present.

12.25.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.25.2 Object_Name

This property, of type CharacterString, shall represent a name for the Object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.25.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be TREND_LOG.

12.25.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.25.5 Enable

This property, of type BOOLEAN, indicates and controls whether (TRUE) or not (FALSE) logging of events and collected
data is enabled. Logging occurs if and only if Enable is TRUE, Local_Time is on or after Start_Time, and Local_Time is
before Stop_Time. If Start_Time contains an unspecified datetime, then it shall be considered equal to 'the start of time'. If
Stop_Time contains an unspecified datetime, then it shall be considered equal to 'the end of time'. Log_Buffer records of type
log-status are recorded without regard to the value of the Enable property.

Attempts to write the value TRUE to the Enable property while Stop_When_Full is TRUE and Record_Count is equal to
Buffer_Size shall cause a Result(-) response to be issued, specifying an 'Error Class' of OBJECT and an 'Error Code' of
LOG_BUFFER_FULL.

12.25.6 Start_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be enabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be enabled by Start_Time shall
be ignored. If Start_Time specifies a date and time after Stop_Time, then logging shall be disabled. This property shall be
writable if present.

When Start_Time is reached, the value of the Enable property is not changed.

12.25.7 Stop_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be disabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be disabled by Stop_Time shall
be ignored. If Stop_Time specifies a date and time earlier than Start_Time, then logging shall be disabled. This property shall
be writable if present.

When Stop_Time is reached, the value of the Enable property is not changed.

12.25.8 Log_DeviceObjectProperty

This property, of type BACnetDeviceObjectPropertyReference, specifies the Device Identifier, Object Identifier and Property
Identifier of the property to be trend logged.

If this property is writable, it may be restricted to reference only objects inside the device containing the Trend Log object. If
the property is restricted to referencing objects within the containing device, an attempt to write a reference to an object
outside the containing device into this property shall cause a Result(-) to be returned.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

ANSI/ASHRAE Standard 135-2012 283

12.25.9 Log_Interval

This property, of type Unsigned, specifies the periodic interval in hundredths of seconds for which the referenced property is
to be logged when Logging_Type has the value POLLED. If the Logging_Type property has either of the values COV or
TRIGGERED, then the value of the Log_Interval property shall be zero and ignored.

To maintain compatibility with previous versions of the standard, devices supporting COV data collection shall support
switching between COV and polled modes in response to writes to Log_Interval. If the Logging_Type property has the value
POLLED, changing the Log_Interval property from a non-zero value to the value zero shall change the value of
Logging_Type to COV, and shall cause the Trend Log object to issue COV subscriptions for the referenced property. If the
Logging_Type property has the value COV, writing a non-zero value to the Log_Interval property shall change the value of
Logging_Type to POLLED, and shall cause the Trend Log object to periodically poll the monitored property.

If present, this property shall be writable if Logging_Type has either the value POLLED or the value COV. This property
shall be read-only if Logging_Type has the value TRIGGERED.

12.25.10 COV_Resubscription_Interval

If the Trend Log is acquiring data from a remote device by COV subscription, this property, of type Unsigned, specifies the
number of seconds between COV resubscriptions, provided that COV subscription is in effect. SubscribeCOV requests shall
specify twice this lifetime for the subscription and shall specify the issuance of confirmed notifications. If COV subscriptions
are in effect, the first COV subscription is issued when the Trend Log object begins operation or when Enable becomes
TRUE. If present, the value of this property shall be non-zero. If this property is not present, then COV subscription shall not
be attempted.

12.25.11 Client_COV_Increment

If the Trend Log is acquiring COV data, this property, of type BACnetClientCOV, specifies the increment to be used in
determining that a change of value has occurred. If the referenced object and property supports COV reporting according to
Clause 13.1, this property may have the value NULL; in this case change of value is determined by the criteria of Clause
13.1.

12.25.12 Stop_When_Full

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) logging should cease when the buffer is full.
When logging ceases because the addition of one more record would cause the buffer to be full, Enable shall be set to FALSE
and the event recorded.

If Stop_When_Full is writable, attempts to write the value TRUE to the Stop_When_Full property while Record_Count is
equal to Buffer_Size shall result in the oldest Log_Buffer record being discarded, and shall cause the Enable property to be
set to FALSE and the event to be recorded.

12.25.13 Buffer_Size

This property, of type Unsigned32, shall specify the maximum number of records the buffer may hold. If writable, it may not
be written when Enable is TRUE. The disposition of existing records when Buffer_Size is written is a local matter.

12.25.14 Log_Buffer

This property, of type BACnetLIST of BACnetLogRecord, is a list of up to Buffer_Size timestamped records of datatype
BACnetLogRecord, each of which conveys a recorded data value, an error related to data-collection, or status changes in the
Trend Log object. Each record has data fields as follows:

Timestamp The local date and time when the record was collected.

LogDatum The data value read from the monitored object and property, an error encountered in an attempt to read a value,

or a change in status or operation of the Trend Log object itself.

StatusFlags If this field is present in the log record, then it shall contain the value of the Status_Flags property of the

monitored object. If the monitored object is in a different device than the Trend Log object, then it is
recommended that the Status_Flags and the data value in the monitored object property be acquired together
with a single service request, such as COVNotification or ReadPropertyMultiple.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

284 ANSI/ASHRAE Standard 135-2012

The choices available for the LogDatum are listed below:

log-status This choice represents a change in the status or operation of the Trend Log object. Whenever one

of the events represented by the flags listed below occurs, a record shall be appended to the buffer.

 LOG_DISABLED This flag is changed whenever collection of records by the Trend Log
object is enabled or disabled. It shall be TRUE if Enable is FALSE, or
the local time is outside the range defined by Start_Time and
Stop_Time, or the addition of this record will cause the buffer to be full
and Stop_When_Full is TRUE; otherwise it shall be FALSE.

 BUFFER_PURGED This flag shall be set to TRUE whenever the buffer is cleared by writing
zero to the Record_Count property or by a change to the
Log_DeviceObjectProperty property. After this value is recorded in the
buffer, the subsequent immediate change to FALSE shall not be
recorded. A record indicating the purging of the buffer shall be placed
into the buffer even if the Trend Log is disabled or outside of the time
range defined by the Start_Time and Stop_Time properties.

 LOG_INTERRUPTED This flag indicates that the collection of records by the Trend Log
object was interrupted by a power failure, device reset, object
reconfiguration or other such disruption, such that samples prior to this
record might have been missed.

boolean-value
real-value
enum-value
unsigned-value
signed-value
bitstring-value
null-value

These choices represent the data values and datatypes read from the monitored object and property.

failure This choice represents an error encountered in an attempt to read a data value from the monitored

object. If the error is conveyed by an error response from a remote device the Error Class and Error
Code in the response shall be recorded.

time-change This choice represents a change in the clock setting in the device, it records the number of seconds

by which the clock changed. If the number is not known, such as when the clock is initialized for
the first time, the value recorded shall be zero. This record shall be recorded after changing the
local time of the device and the timestamp shall reflect the new local time of the device.

any-value This choice represents the data values and datatypes read from the monitored object and property.

Also associated with each record is an implied record number, the value of which is equal to Total_Record_Count at the
point where the record has been added into the Log Buffer and Total_Record_Count has been adjusted accordingly. All
clients shall be able to correctly handle the case where the Trend Log is reset such that its Total_Record_Count is returned to
zero and also the case where Total_Record_Count has wrapped back to one.

The buffer is not network accessible except through the use of the ReadRange service, in order to avoid problems with record
sequencing when segmentation is required.

If the object supports event reporting, then a reference to this property shall be the pLogBuffer parameter for the object's
event algorithm. See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

ANSI/ASHRAE Standard 135-2012 285

12.25.15 Record_Count

This property, of type Unsigned32, shall represent the number of records currently resident in the log buffer. A write of the
value zero to this property shall cause all records in the log buffer to be deleted and Records_Since_Notification to be reset to
zero. Upon completion, this event shall be reported in the log as the initial entry.

12.25.16 Total_Record_Count

This property, of type Unsigned32, shall represent the total number of records collected by the Trend Log object since
creation. When the value of Total_Record_Count reaches its maximum possible value of 232 - 1, the next value it takes shall
be one. Once this value has wrapped to one, its semantic value (the total number of records collected) has been lost but its use
in generating notifications remains.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.25.17 Notification_Threshold

This property is the pThreshold parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.25.18 Records_Since_Notification

This property, of type Unsigned32, represents the number of records collected since the previous notification, or since the
beginning of logging if no previous notification has occurred.

12.25.19 Last_Notify_Record

This property is the pPreviousCount parameter of the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.25.20 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.25.21 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.25.22 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.25.23 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.25.24 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.25.25 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

286 ANSI/ASHRAE Standard 135-2012

12.25.26 Logging_Type

This property, of type BACnetLoggingType, specifies whether the Trend Log collects records using polling, COV or
triggered acquisition.

If this property is writable, an attempt to write a value not supported by the object into this property shall cause a Result(-)
response to be issued, specifying an 'Error Class' of PROPERTY and 'Error Code' of
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property has the value COV, then the Trend Log shall issue COV subscriptions for the referenced property, and shall
log the COV notifications if they indicate a changed value.

If this property has the value POLLED, then the Trend Log shall periodically poll the monitored property on the interval
defined by the Log_Interval, Align_Intervals, and Interval_Offset properties.

If the value POLLED is written to this property when the value of Log_Interval is zero, then the Log_Interval property shall
be updated with an appropriate default polling interval. Determination of the appropriate default polling interval is a local
matter.

If either of the values COV or TRIGGERED is written to this property when Log_Interval has a non-zero value, then the
Log_Interval property shall be updated with the value zero.

12.25.27 Align_Intervals

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) clock-aligned periodic logging is enabled. If
clock-aligned periodic logging is enabled and the value of Log_Interval is a factor of (i.e., it divides into without a
remainder) a second, minute, hour or day, then the beginning of the period specified for logging shall be aligned to the
second, minute, hour or day, respectively.

This property has no effect on the behavior of the Trend Log object if the Logging_Type property has a value other than
POLLED.

12.25.28 Interval_Offset

This property, of type Unsigned, specifies the offset in hundredths of seconds from the beginning of the period specified for
logging until the actual acquisition of a log record begins. The offset used shall be the value of Interval_Offset modulo the
value of Log_Interval; i.e., if Interval_Offset has the value 31 and Log_Interval is 30, the offset used shall be 1.
Interval_Offset shall have no effect if Align_Intervals is FALSE.

12.25.29 Trigger

This property, of type BOOLEAN, shall cause the Trend Log object to acquire a log record whenever the value of this
property is changed from FALSE to TRUE. It shall remain TRUE while the Trend Log object is acquiring the data items for
a record. When all data items have been collected or it has been determined that all outstanding data requests will not be
fulfilled, the Trend Log object shall reset the value to FALSE.

If the value of the Logging_Type property is not TRIGGERED and an attempt is made to write the value TRUE to the
Trigger property, it is left as a local matter whether to execute the logging operation or not. For devices that choose not to
execute triggered logging when Logging_Type is not equal to TRIGGERED, attempts to write the value TRUE to this
property when Logging_Type has a value other than TRIGGERED shall cause a Result(-) response to be issued, specifying
an 'Error Class' of PROPERTY and an 'Error Code' of NOT_CONFIGURED_FOR_TRIGGERED_LOGGING.

Writing to the Trigger property is not restricted to network-visible write operations; internal processes may control the
acquisition of samples by writing to this property.

12.25.30 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Trend Log
object. The IN_ALARM and FAULT flags are associated with the values of other properties of this object. A more detailed
status may be determined by reading the properties that are linked to these flags. The relationship between individual flags is
not defined by the protocol. The four flags are

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

ANSI/ASHRAE Standard 135-2012 287

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.25.31 Reliability

This property, of type BACnetReliability, provides an indication of whether the application-specific properties of the object
or the process executing the application program are "reliable" as far as the BACnet Device can determine.

12.25.32 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.25.33 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.25.34 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.25.35 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.25.36 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Object Type

288 ANSI/ASHRAE Standard 135-2012

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.25.37 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.25.38 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.25.39 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

ANSI/ASHRAE Standard 135-2012 289

12.26 Access Door Object Type

The Access Door object type is an abstract interface to a physical door whose properties represent the externally visible
characteristics of an access control door. The Access Door is comprised of a collection of physical door hardware, such as a
door lock, a door contact, and a Request-To-Exit device, which together comprise a door for access control. The individual
hardware components of the door may or may not be exposed through this object.

Access Door objects that support intrinsic reporting shall apply the CHANGE_OF_STATE event algorithm.

For reliability-evaluation, the FAULT_STATE fault algorithm can be applied.

The object and its properties are summarized in Table 12-30 and described in detail in this subclause.

Table 12-30. Properties of the Access Door Object
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value BACnetDoorValue W
Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability R
Out_Of_Service BOOLEAN R
Priority_Array BACnetPriorityArray R
Relinquish_Default BACnetDoorValue R
Door_Status BACnetDoorStatus O1,2
Lock_Status BACnetLockStatus O1
Secured_Status BACnetDoorSecuredStatus O
Door_Members BACnetARRAY[N] of

BACnetDeviceObjectReference
O

Door_Pulse_Time Unsigned R
Door_Extended_Pulse_Time Unsigned R
Door_Unlock_Delay_Time Unsigned O
Door_Open_Too_Long_Time Unsigned R
Door_Alarm_State BACnetDoorAlarmState O1, 3

Masked_Alarm_Values BACnetLIST of BACnetDoorAlarmState O
Maintenance_Required BACnetMaintenance O
Time_Delay Unsigned O3,5
Notification_Class Unsigned O3,5
Alarm_Values BACnetLIST of BACnetDoorAlarmState O3,5
Fault_Values BACnetLIST of BACnetDoorAlarmState O
Event_Enable BACnetEventTransitionBits O3,5
Acked_Transitions BACnetEventTransitionBits O3,5
Notify_Type BACnetNotifyType O3,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,5
Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O3,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Time_Delay_Normal Unsigned O5

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

290 ANSI/ASHRAE Standard 135-2012

Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These properties, when present, shall be writable when Out_Of_Service is TRUE.
2 This property is required if the property Secured_Status is present.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

12.26.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.26.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.26.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property
shall be ACCESS_DOOR.

12.26.4 Present_Value (Commandable)

This property, of type BACnetDoorValue, reflects the current active command of the access door object. The Present_Value
is commandable and has one of the following values:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

ANSI/ASHRAE Standard 135-2012 291

Note that the present value represents the commanded state of the door, which does not necessarily correspond to the physical
state of the door lock.

The present value of the Access Door is defined for a standard access controlled door, where the control operation is to lock
or unlock. However, this does not exclude motorized devices such as sliding doors, parking gates, etc., where the operation is
to open or close. In these cases, locked shall be equivalent to closed and unlocked shall be equivalent to open.

12.26.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.26.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the physical
door. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are:

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

Where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.26.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.26.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of
the physical inputs or outputs which comprise this door are "reliable" as far as the BACnet Device or operator can determine
and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

292 ANSI/ASHRAE Standard 135-2012

12.26.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the logical door which
this object represents is not in service. This means that the Present_Value property is decoupled from the physical door and
will not track changes to the physical door when the value of Out_Of_Service is TRUE. In addition, the Reliability property
and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the physical door when
Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties, and if
present, the Door_Status, Lock_Status and Door_Alarm_State properties may be changed to any value as a means of
simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the Present_Value or
Reliability properties, and if present the Door_Status, Lock_Status and Door_Alarm_State properties, shall respond to
changes made to these properties while Out_Of_Service is TRUE, as if those changes had occurred to the physical door.

12.26.10 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.26.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19. The acceptable values for this property are either LOCK or
UNLOCK and the property shall not take on either of the values PULSE_UNLOCK or EXTENDED_PULSE_UNLOCK.

12.26.12 Door_Status

This property, of type BACnetDoorStatus, represents the open or closed state of the physical door. The values that may be
taken on by this property are:

This property, if present, is required to be writable when Out_Of_Service is TRUE.

12.26.13 Lock_Status

This property, of type BACnetLockStatus, represents the monitored (as opposed to the commanded) status of the door lock.
The values that may be taken on by this property are:

This property, if present, is required to be writable when Out_Of_Service is TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

ANSI/ASHRAE Standard 135-2012 293

12.26.14 Secured_Status

This property, of type BACnetDoorSecuredStatus, represents whether or not the physical door is in a secured state. This
property shall have a value of SECURED if, and only if, all of the following conditions are met:

(a)
 the IN_ALARM flag of the Status_Flags property is FALSE, and
(b)
 the Masked_Alarm_Values list, if it exists, is empty , and
(c)
 the Door_Status property has a value of CLOSED or UNUSED, and
(d)
 the Present_Value property has a value of LOCK, and
(e)
 the Lock_Status property, if it exists, has a value of LOCKED or UNUSED.

If one or more of the previous conditions are not met, the property shall have a value of UNSECURED. If the device cannot
determine any of the previous conditions, then the property shall have a value of UNKNOWN.

12.26.15 Door_Members

This property, of type BACnetARRAY[N] of BACnetDeviceObjectReference holds an array of references to BACnet objects
which represent I/O devices, authentication devices, schedules, programs, or other objects that are associated with the
physical door. It is a local matter as to how this array is used and which objects are referenced in this array. The array may be
empty or not present if the vendor does not wish to expose the individual objects that make up this physical door.

12.26.16 Door_Pulse_Time

This property, of type Unsigned, is the maximum duration of time, in tenths of seconds, for which the door will be unlocked
when the Present_Value has a value of PULSE_UNLOCK, after which time the Present_Value shall be automatically
relinquished at the priority that established the PULSE_UNLOCK command.

12.26.17 Door_Extended_Pulse_Time

This property, of type Unsigned, is the maximum amount of time, in tenths of seconds, which the door will be unlocked when
the Present_Value has a value of EXTENDED_PULSE_UNLOCK, after which time the Present_Value shall be
automatically relinquished at the priority that established the EXTENDED_PULSE_UNLOCK command.

12.26.18 Door_Unlock_Delay_Time

This property, of type Unsigned, is the duration of time, in tenths of seconds, which the physical door lock will delay
unlocking when the Present_Value changes to a value of PULSE_UNLOCK or EXTENDED_PULSE_UNLOCK.

12.26.19 Door_Open_Too_Long_Time

This property, of type Unsigned, is the time, in tenths of seconds, to delay before setting the Door_Alarm_State to
DOOR_OPEN_TOO_LONG after it is determined that a door-open-too-long condition exists. A door-open-too-long
condition occurs when the Present_Value has a value of LOCK and one of the following conditions exist:

(a)
 The Present_Value had a previous value of PULSE_UNLOCK and the door has been in a continual open state
for the time specified by Door_Open_Too_Long_Time after the Door_Pulse_Time has expired.

(b)
 The Present_Value had a previous value of EXTENDED_PULSE_UNLOCK and the door has been in a
continual open state for the time specified by Door_Open_Too_Long_Time after the
Door_Extended_Pulse_Time has expired.

(c)
 The Present_Value had a previous value of UNLOCK and the door has been in a continual open state for the
time specified by Door_Open_Too_Long_Time.

12.26.20 Door_Alarm_State

This property, of type BACnetDoorAlarmState, is the alarm state for the physical door and is restricted to the values
NORMAL and those contained in Alarm_Values and Fault_Values. When no alarm or fault condition exists for this object,
this property shall take on the value NORMAL. It is considered a local matter as to when this property is set to a non-normal
value. It is up to the internal control logic to take Lock_Status, Door_Status, Present_Value and information from other
objects into account when calculating the proper alarm state. However, this property cannot take on any value which is also
in the Masked_Alarm_Values list. If the property is currently set to a specific state and that state is written to the
Masked_Alarm_Values list, then the Door_Alarm_State will immediately return to the NORMAL state.

This property, if present, is required to be writable when Out_Of_Service is TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

294 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, then this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for
fault algorithm parameter descriptions.

12.26.21 Masked_Alarm_Values

This property, of type BACnetLIST of BACnetDoorAlarmState, shall specify any alarm and/or fault states which are
masked. An alarm state which is currently masked will prevent the Door_Alarm_State property from being equal to that state.

12.26.22 Maintenance_Required

This property, of type BACnetMaintenance, shall indicate the type of maintenance required for the Access Door. This may be
periodic maintenance, or a "parameter-determined" maintenance, such as maximum duty-cycle for a door lock, and shall be
determined locally.

12.26.23 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.26.24 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.26.25 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.26.26 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

12.26.27 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.26.28 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.26.29 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.26.30 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

ANSI/ASHRAE Standard 135-2012 295

12.26.31 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.26.32 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.26.33 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.26.34 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.26.35 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.26.36 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.26.37 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.26.38 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Door Object Type

296 ANSI/ASHRAE Standard 135-2012

12.26.39 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event LogObject Type

ANSI/ASHRAE Standard 135-2012 297

12.27 Event Log Object Type

An Event Log object records event notifications with timestamps and other pertinent data in an internal buffer for subsequent
retrieval. Each timestamped buffer entry is called an event log "record."

Each Event Log object maintains an internal, optionally fixed-size buffer. This buffer fills or grows as event log records are
added. If the buffer becomes full, the least recent records are overwritten when new records are added, or collection may be
set to stop. Event log records are transferred as BACnetEventLogRecords using the ReadRange service. The buffer may be
cleared by writing a zero to the Record_Count property. The determination of which notifications are placed into the log is a
local matter. Each record in the buffer has an implied SequenceNumber that is equal to the value of the Total_Record_Count
property immediately after the record is added.

Logging may be enabled and disabled through the Enable property and at dates and times specified by the Start_Time and
Stop_Time properties. Event Log enabling and disabling is recorded in the event log buffer.

Event reporting (notification) may be provided to facilitate automatic fetching of event log records by processes on other
devices such as fileservers. Support is provided for algorithmic reporting; optionally, intrinsic reporting may be provided.
Event Log objects that support intrinsic reporting shall apply the BUFFER_READY event algorithm.

In intrinsic reporting, when the number of records specified by the Notification_Threshold property has been collected since
the previous notification (or startup), a new notification is sent to all subscribed devices.

In response to a notification, subscribers may fetch all of the new records. If a subscriber needs to fetch all of the new
records, it should use the 'By Sequence Number' form of the ReadRange service request.

A missed notification may be detected by a subscriber if the 'Current Notification' parameter received in the previous
BUFFER_READY notification is different than the 'Previous Notification' parameter of the current BUFFER_READY
notification. If the ReadRange-ACK response to the ReadRange request issued under these conditions has the FIRST_ITEM
bit of the 'Result Flags' parameter set to TRUE, event log records have probably been missed by this subscriber.

The acquisition of log records by remote devices has no effect upon the state of the Event Log object itself. This allows
completely independent, but properly sequential, access to its log records by all remote devices. Any remote device can
independently update its records at any time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Log Object Type

298 ANSI/ASHRAE Standard 135-2012

Table 12-31. Properties of the Event Log Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Enable BOOLEAN W
Start_Time BACnetDateTime O1, 2
Stop_Time BACnetDateTime O1, 2
Stop_When_Full BOOLEAN R
Buffer_Size Unsigned32 R
Log_Buffer BACnetLIST of BACnetEventLogRecord R
Record_Count Unsigned32 W
Total_Record_Count Unsigned32 R
Notification_Threshold Unsigned32 O3,5
Records_Since_Notification Unsigned32 O3,5
Last_Notify_Record Unsigned32 O3,5
Notification_Class Unsigned O3,5
Event_Enable BACnetEventTransitionBits O3,5
Acked_Transitions BACnetEventTransitionBits O3,5
Notify_Type BACnetNotifyType O3,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,5
Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O3,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Reliability_Evaluation_Inhibit BOOLEAN O7
Profile_Name CharacterString O

1 If present, these properties are required to be writable.
2 If one of these properties is present, then all shall be present.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
7 If this property is present, then the Reliability property shall be present.

12.27.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.27.2 Object_Name

This property, of type CharacterString, shall represent a name for the Object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event LogObject Type

ANSI/ASHRAE Standard 135-2012 299

12.27.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be EVENT_LOG.

12.27.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.27.5 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an Event Log
object. The IN_ALARM and FAULT flags are associated with the values of other properties of this object. A more detailed
status may be determined by reading the properties that are linked to these flags. The relationship between individual flags is
not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.27.6 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.27.7 Reliability

This property, of type BACnetReliability, provides an indication of whether the application-specific properties of the object
or the process executing the application program are "reliable" as far as the BACnet Device can determine.

12.27.8 Enable

This property, of type BOOLEAN, indicates and controls whether (TRUE) or not (FALSE) logging of events is enabled.
Logging occurs if and only if Enable is TRUE, Local_Time is on or after Start_Time, and Local_Time is before Stop_Time.
If Start_Time contains an unspecified datetime, then it shall be considered equal to 'the start of time'. If Stop_Time contains
an unspecified datetime, then it shall be considered equal to 'the end of time'. Log_Buffer records of type log-status are
recorded without regard to the value of the Enable property.

Attempts to write the value TRUE to the Enable property while Stop_When_Full is TRUE and Record_Count is equal to
Buffer_Size shall cause a Result(-) response to be issued, specifying an 'Error Class' of OBJECT and an 'Error Code' of
LOG_BUFFER_FULL.

12.27.9 Start_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be enabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be enabled by Start_Time shall
be ignored. If Start_Time specifies a date and time after Stop_Time, then logging shall be disabled. If either of the optional

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Log Object Type

300 ANSI/ASHRAE Standard 135-2012

properties Start_Time or Stop_Time is present, then both of these properties shall be present. This property shall be writable
if present.

12.27.10 Stop_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be disabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be disabled by Stop_Time shall
be ignored. If Stop_Time specifies a date and time earlier than Start_Time, then logging shall be disabled. If either of the
optional properties Start_Time or Stop_Time is present, then both of these properties shall be present. This property shall be
writable if present.

12.27.11 Stop_When_Full

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) logging should cease when the buffer is full.
When logging ceases because the addition of one more record would cause the buffer to be full, Enable shall be set to FALSE
and the event recorded.

If Stop_When_Full is writable, attempts to write the value TRUE to the Stop_When_Full property while Record_Count is
equal to Buffer_Size shall result in the oldest Log_Buffer record being discarded, and shall cause the Enable property to be
set to FALSE and the event to be recorded.

12.27.12 Buffer_Size

This property, of type Unsigned32, shall specify the maximum number of records the buffer may hold. If writable, it may not
be written when Enable is TRUE. The disposition of existing records when Buffer_Size is written is a local matter.

12.27.13 Log_Buffer

This property, of type BACnetLIST of BACnetEventLogRecord, is a list of up to Buffer_Size timestamped records of
datatype BACnetEventLogRecord, each of which conveys the event notification parameters or status changes in the Event
Log object. Each record has data fields as follows:

Timestamp The local date and time that the entry was placed into the event log.

LogDatum The notification information, or a change in status or operation of the Event Log object itself.

The choices available for the LogDatum are listed below:

log-status This choice represents a change in the status or operation of the Event Log object. Whenever
one of the events represented by the flags listed below occurs, a record shall be appended to
the buffer.

 LOG_DISABLED This flag is changed whenever collection of records by the Event
Log object is enabled or disabled. It shall be TRUE if Enable is
FALSE, or the local time is outside the range defined by
Start_Time and Stop_Time, or the addition of this record will
cause the buffer to be full and Stop_When_Full is TRUE;
otherwise it shall be FALSE.

 BUFFER_PURGED This flag shall be set to TRUE whenever the buffer is deleted by
a write of the value zero to the Record_Count property. After this
value is recorded in the buffer, the subsequent immediate change
to FALSE shall not be recorded.

 LOG_INTERRUPTED This flag indicates that the collection of records by the Event Log
object was interrupted by a power failure, device reset, object
reconfiguration or other such disruption, such that samples prior
to this record might have been missed.

notification This choice represents an event notification that was received. It consists of the body of the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event LogObject Type

ANSI/ASHRAE Standard 135-2012 301

ConfirmedEventNotification or UnconfirmedEventNotification. If the event was generated
locally, this shall hold what would be received if the Event Log object existed on a remote
device. In such a case the value of the Process Identifier parameter is a local matter.

time-change This choice, which represents a change in the clock setting in the device, records the number

of seconds by which the clock changed. If the number is not known, such as when the clock
is initialized for the first time, the value recorded shall be zero.

Also associated with each record is an implied record number, the value of which is equal to Total_Record_Count at the
point where the record has been added into the Log_Buffer and Total_Record_Count has been adjusted accordingly. All
clients shall be able to correctly handle the case where the event log is reset such that its Total_Record_Count is returned to
zero and also the case where Total_Record_Count has wrapped back to one.

The buffer is not network accessible except through the use of the ReadRange service in order to avoid problems with record
sequencing when segmentation is required.

If the object supports event reporting, then a reference to this property shall be the pLogBuffer parameter for the object 's
event algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.27.14 Record_Count

This property, of type Unsigned32, shall represent the number of records currently resident in the log buffer. A write of the
value zero to this property shall cause all records in the log buffer to be deleted and Records_Since_Notification to be reset to
zero. Upon completion, this event shall be reported in the log as the initial entry.

12.27.15 Total_Record_Count

This property, of type Unsigned32, shall represent the total number of records collected by the Event Log object since
creation. When the value of Total_Record_Count reaches its maximum possible value of 232 - 1, the next value it takes shall
be one. Once this value has wrapped to one, its semantic value (the total number of records collected) has been lost but its use
in generating notifications remains.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.27.16 Notification_Threshold

This property is the pThreshold parameter for the object's event algorithm. See 13.3 for event algorithm parameter
descriptions.

12.27.17 Records_Since_Notification

This property, of type Unsigned32, represents the number of records collected since the previous notification, or since the
beginning of logging if no previous notification has occurred.

12.27.18 Last_Notify_Record

This property is the pPreviousCount parameter of the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.27.19 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.27.20 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event Log Object Type

302 ANSI/ASHRAE Standard 135-2012

12.27.21 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.27.22 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.27.23 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.27.24 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.27.25 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.27.26 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.27.27 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.27.28 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Event LogObject Type

ANSI/ASHRAE Standard 135-2012 303

12.27.29 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.27.30 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.27.31 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

304 ANSI/ASHRAE Standard 135-2012

12.28 Load Control Object Type

The Load Control object type defines a standardized object whose properties represent the externally visible characteristics of
a mechanism for controlling load requirements. A BACnet device can use a Load Control object to allow external control
over the shedding of a load that it controls. The mechanisms by which the loads are shed are not visible to the BACnet client.
One or more objects may be used in the device to allow independent control over different sub-loads. The Load Control
object may also be used in a hierarchical fashion to control other Load Control objects in other BACnet devices.

A BACnet client (controller) can request that the Load Control object shed a portion of its load for a specified time by writing
to the four properties: Requested_Shed_Level, Start_Time, Shed_Duration, and Duty_Window. For any given shed request,
which may arrive while a previous request is pending or active, each of these parameters is optional except for Start_Time,
which must be written if no shed request is pending or active. If no shed request is pending or active, only the writing of
Start_Time will cause the Load Control object to become active. Modification of these shed request parameters serves to
configure the load shed command. Initial values of these properties, and the values taken at the completion of a shed
command execution, are as specified in the individual property descriptions.

The Load Control object shed mechanism follows a state machine whose operation is displayed in Figure 12-5. This state
machine only describes the behavior of the Load Control object when the Enable property has the value TRUE. See Clause
12.28.14 for a description of the effect of this property. The state machine captures the transitions that occur within the Load
Control object.

If the device is unable to comply fully with the shed request by shedding the entire amount of load requested, it is a local
matter whether the device sheds as much load as it can or whether it does not shed any of its loads. Determination of
compliance with a client's load shed request may also be affected by other factors, such as the definition of the baseline
usage, synchronization of time between the client and the device containing the Load Control object, and any intrinsic limits
on shed amounts that the device may have. If these factors are not in agreement, the client's determination of compliance may
not match the object's determination.

The activity of a Load Control object in the SHED_REQUEST_PENDING state will vary. For a Load Control object
controlling only one or more direct loads that it can shed instantly, the activity will be simply waiting for the first duty
window to arrive, at which point it will monitor the clock and cycle on/off or begin modulation of loads or reduce loads by
some other means. The object may need to begin shedding some of the loads before Start_Time in order to meet the shed
target by Start_Time, in which case it will enter the SHED_NON_COMPLIANT state. For a Load Control object controlling
other Load Control objects subordinate to it, the shedding activity will begin prior to Start_Time by communicating the shed
request (possibly modified) to these other Load Control objects. There may be some Load Control objects that indicate an
inability to comply with the request, which may lead to requests for increased load reduction from these or other Load
Control objects.

While the Load Control object is designed to allow independent operation, it is possible that there will exist within a building
(or even within a device) a hierarchy of Load Control objects, where one Load Control object receives a load shed command,
possibly from a non-BACnet client (e.g., a utility), and the controller which hosts that object (the master) in turn will be
responsible for managing and issuing requests to other Load Control objects. There may be a negotiation between the master
and its subordinate Load Control objects. The master uses WriteProperty or WritePropertyMultiple to set shed request
parameters in the subordinate Load Control objects. A subordinate Load Control object would then set its
Expected_Shed_Level property to the value that it expects to be able to achieve after Start_Time. Before Start_Time, the
master object can read the Expected_Shed_Level properties of its subordinates to determine expected compliance with the
request. After Start_Time plus Duty_Window, the Actual_Shed_Level properties of the subordinate objects will reflect the
actual amount shed in the past Duty_Window. If by reading these properties the master Load Control object determines that
one or more subordinate objects cannot completely comply with the request, the master may choose to modify the shed
requests to subordinates, such that the overall shed target is achieved. For instance, it may request that another object shed a
greater amount of its load or it may choose to request that the noncompliant device shed a greater amount. This negotiation
could be repeated at each successive level in the hierarchy. If the subordinate Load Control objects also support intrinsic
reporting, expected or actual instances of non-compliance can be reported to the master object using event notifications.

Where large loads are concerned, it is expected that the master Load Control object will employ sequencing to distribute the
startup and shutdown of managed loads. When the load control master is used in a gateway to a non-BACnet load control

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

ANSI/ASHRAE Standard 135-2012 305

client, such as a utility company, the gateway shall accept and process any start randomization commands and accordingly
distribute the initiation of load control requests to its subordinate Load Control objects.

The Load Control object shall exhibit restorative behavior across a restart or time change of the BACnet device in which it
resides. The shed request property values shall be maintained across a device restart. Upon device restart or a time change,
the object shall behave as if Start_Time were written and shall re-evaluate the state machine's state.

Load Control objects that support intrinsic reporting shall apply the CHANGE_OF_STATE event algorithm.

����
 �;����
&�����$

����
4�����1�

����
���3
�������������
���������

����1�����

�;����

�
��

��
��

��
�

������=
�������

��
��

,�
=

��
��

��
�

��������$�������	K�������

��
��

��
��

��
��

��
 �

��
��

�$
��

��

6��������������� ������$����
?�

��
��

��
��

��
��

��
��

��
��

?�������6
���������������

�����#�����	K�������

 ������$���
&�����$

&������,�����

Figure 12-5. State Diagram for Load Control Object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

306 ANSI/ASHRAE Standard 135-2012

SHED_INACTIVE

In the SHED_INACTIVE state, the Load Control object waits for a shed request.

ReceiveShedRequest

If Start_Time is written, the object shall calculate Expected_Shed_Level and Actual_Shed_Level and enter the
SHED_REQUEST_PENDING state.

SHED_REQUEST_PENDING

In the SHED_REQUEST_PENDING state, the object makes a determination from the newly written shed parameters
whether the shed request needs to be executed immediately or at some time in the future.

CancelShed

If the current time is after Start_Time plus Shed_Duration, this request is for an invalid time and is ignored. The object
shall stop shedding and enter the SHED_INACTIVE state.

If Requested_Shed_Level is equal to the default value for the choice, or Start_Time contains an unspecified datetime,
then this is a cancellation of shedding. The object shall stop shedding and enter the SHED_INACTIVE state.

ReconfigurePending

If the current time is prior to Start_Time, and a new write is received for Requested_Shed_Level, Shed_Duration,
Duty_Window, or Start_Time, this is a reconfiguration of the shed request. The object shall calculate
Expected_Shed_Level and Actual_Shed_Level and enter the SHED_REQUEST_PENDING state.

PrepareToShed

If the current time is prior to Start_Time, but the loads to be shed require time to decrease usage to the requested shed
level, the object may choose to initiate shedding of its subordinates prior to Start_Time in order to be in compliance by
Start_Time. If this approach is followed, the object shall calculate Expected_Shed_Level and Actual_Shed_Level and
enter the SHED_NON_COMPLIANT state.

CannotMeetShed

If the current time is after Start_Time, and the object is unable to meet the shed request immediately, it shall begin
shedding its loads, calculate Expected_Shed_Level and Actual_Shed_Level, and enter the SHED_NON_COMPLIANT
state.

AbleToMeetShed

If the current time is after Start_Time and the object is able to achieve the shed request immediately, it shall shed its
loads, calculate Expected_Shed_Level and Actual_Shed_Level, and enter the SHED_COMPLIANT state.

If the current time is before Start_Time, and the object has initiated shedding prior to Start_Time in order to be in
compliance by Start_Time, and the object has achieved the requested shed level, it shall calculate Expected_Shed_Level
and Actual_Shed_Level and enter the SHED_COMPLIANT state.

SHED_NON_COMPLIANT

In the SHED_NON_COMPLIANT state, the object attempts to meet the shed request until the shed is achieved, the
object is reconfigured, or the request has completed unsuccessfully.

FinishedUnsuccessfulShed

If the current time is after Start_Time plus Shed_Duration, the shed request has completed unsuccessfully. The object
shall stop shedding and enter the SHED_INACTIVE state.

UnsuccessfulShedReconfigured

If the object receives a write to any of the properties Requested_Shed_Level, Shed_Duration, Duty_Window, or
Start_Time, the object shall enter the SHED_REQUEST_PENDING state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

ANSI/ASHRAE Standard 135-2012 307

CanNowComplyWithShed

If the object has achieved the Requested_Shed_Level, it shall calculate Expected_Shed_Level and Actual_Shed_Level
and enter the SHED_COMPLIANT state.

SHED_COMPLIANT

In the SHED_COMPLIANT state, the object continues meeting the shed request until the shed is either reconfigured or
completes, or conditions change and the object is no longer able to maintain the requested shed level.

FinishedSuccessfulShed

If the current time is after Start_Time plus Shed_Duration, the shed request has completed successfully. The object shall
stop shedding, set Start_Time to an unspecified datetime, and enter the SHED_INACTIVE state.

SuccessfulShedReconfigured

If the object receives a write to any of the properties Requested_Shed_Level, Shed_Duration, Duty_Window, or
Start_Time, the object shall enter the SHED_REQUEST_PENDING state.

CanNoLongerComplyWithShed

If the object is no longer able to maintain the Requested_Shed_Level, it shall calculate Expected_Shed_Level and
Actual_Shed_Level and enter the SHED_NON_COMPLIANT state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

308 ANSI/ASHRAE Standard 135-2012

Table 12-32. Properties of the Load Control Object Type
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BACnetShedState R

State_Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Requested_Shed_Level BACnetShedLevel W

Start_Time BACnetDateTime W

Shed_Duration Unsigned W

Duty_Window Unsigned W

Enable BOOLEAN W
Full_Duty_Baseline REAL O
Expected_Shed_Level BACnetShedLevel R
Actual_Shed_Level BACnetShedLevel R

Shed_Levels BACnetARRAY[N] of Unsigned W1

Shed_Level_Descriptions BACnetARRAY[N] of CharacterString R

Notification_Class Unsigned O2,4

Time_Delay Unsigned O2,4

Event_Enable BACnetEventTransitionBits O2,4

Acked_Transitions BACnetEventTransitionBits O2,4

Notify_Type BACnetNotifyType O2,4

Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2,4

Event_Message_Texts BACnetARRAY[3] of CharacterString O3,4
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O4
Event_Detection_Enable BOOLEAN O2,4
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O4
Event_Algorithm_Inhibit BOOLEAN O4,5
Time_Delay_Normal Unsigned O4
Reliability_Evaluation_Inhibit BOOLEAN O6
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 The elements of this array are required to be writable, although the array is not required to be resizable.
2 These properties are required if the object supports intrinsic reporting.
3 This property, if present, is required to be read-only.
4 These properties shall be present only if the object supports intrinsic reporting.
5 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
6 If this property is present, then the Reliability property shall be present.

12.28.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

ANSI/ASHRAE Standard 135-2012 309

12.28.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.28.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be LOAD_CONTROL.

12.28.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.28.5 Present_Value

This property, of type BACnetShedState, indicates the current load shedding state of the object. See Figure 12-5 for a
diagram of the state machine governing the value of Present_Value.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm and the pAlarmValues parameter shall have the value SHED_NON_COMPLIANT. See Clause 13.3 for event
algorithm parameter descriptions.

12.28.6 State_Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted. The
State_Description provides additional information for human operators about the shed state of the Load Control object.

12.28.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Load Control
object. Three of the flags are associated with the values of other properties of this object. A more detailed status could be
determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event_State property has a value of NORMAL, otherwise logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the BACnet Device,

otherwise logical FALSE (0).

OUT_OF_SERVICE This bit shall always be Logical FALSE (0).

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.28.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.28.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Load Control object is reliably
reporting its compliance with any load shed requests.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

310 ANSI/ASHRAE Standard 135-2012

12.28.10 Requested_Shed_Level

This property, of type BACnetShedLevel, indicates the desired load shedding. Table 12-33 describes the default values and
power targets for the different choices of Requested_Shed_Level.

If the choice for Requested_Shed_Level is PERCENT, the value of Requested_Shed_Level is interpreted as a requested
percentage of Full Duty to which the device is to attempt to reduce its load. The determination of the Full Duty rating (or
some alternative baseline power usage) is a local matter. It may be determined from the Full_Duty_Baseline property, if
present.

If the choice for Requested_Shed_Level is LEVEL, the value of Requested_Shed_Level is used to set a preconfigured level
of load shedding.

The Load Control object's available shed actions are described by the Shed_Level_Descriptions array and are mapped to the
BACnet visible values of Requested_Shed_Level by the Shed_Levels array. The SHED_INACTIVE state shall always be
represented by the value 0, which is not represented in the Shed_Levels or Shed_Level_Descriptions arrays. If
Requested_Shed_Level choice is AMOUNT, the value of Requested_Shed_Level shall be interpreted as an amount, in
kilowatts, by which to reduce power usage. Load Control objects are required to support the LEVEL choice. Support for the
PERCENT and AMOUNT choices is optional. This allows a master to be guaranteed the ability to write to the Load Control
object by using the LEVEL choice.

If a load control command has been issued, and execution of the command has completed, Requested_Shed_Level shall be
reset to the default value appropriate to the choice of Requested_Shed_Level used for the last command.

Table 12-33. Requested_Shed_Level Default Values and Power Targets
Choice Default Requested_Shed_Level value Power load target in kW

PERCENT 100 (current baseline) * Requested_Shed_Level / 100
LEVEL 0 locally pre-specified shed target for the given level
AMOUNT 0.0 (current baseline) - Requested_Shed_Level

12.28.11 Start_Time

This property, of type BACnetDateTime, indicates the start of the duty window in which the load controlled by the Load
Control object must be compliant with the requested shed. Load shedding (or determination of loads to shed) may need to
begin before Start_Time in order to be compliant with the shed request by Start_Time. If no shed request is pending or active,
Start_Time shall contain an unspecified datetime value. If a load control command has been issued, and execution of the
command has completed, Start_Time shall be reset by the device to contain an unspecified datetime value. If a client wishes
to initiate an immediate shed, it can set Start_Time to a value prior to the device's current time.

12.28.12 Shed_Duration

This property, of type Unsigned, indicates the duration of the load shed action, starting at Start_Time. The units for
Shed_Duration are minutes. If no shed request is pending or active, Shed_Duration shall be zero. If a load control command
has been issued, and execution of the command has completed, Shed_Duration shall be reset by the device to zero.

12.28.13 Duty_Window

This property, of type Unsigned, indicates the time window used for load shed accounting. The units for Duty_Window are
minutes. Duty_Window is used for performance measurement or compliance purposes. The average power consumption
across a duty window must be less than or equal to the requested reduced consumption. It is a local matter whether this
window is fixed or sliding. The first Duty_Window begins at Start_Time. If a shed request is received with no value written
to this property, Duty_Window shall be set to some pre-agreed upon value. If a load control command has been issued, and
execution of the command has completed, Duty_Window shall be reset by the device to this pre-agreed value.

12.28.14 Enable

This property, of type BOOLEAN, indicates and controls whether the Load Control object is currently enabled to respond to
load shed requests. If Enable is TRUE, the object will respond to load shed requests normally and follow the state machine
described in Figure 12-5. If Enable is FALSE, the object will transition to the SHED_INACTIVE state if necessary and
remain in that state. It shall not respond to any load shed request while Enable is FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

ANSI/ASHRAE Standard 135-2012 311

12.28.15 Full_Duty_Baseline

This property, of type REAL, indicates the baseline power consumption value for the sheddable load controlled by this
object, if a fixed baseline is used. Shed requests may be made with respect to this baseline, that is, to "percent of baseline"
and "amount off baseline". The units of Full_Duty_Baseline are kilowatts.

12.28.16 Expected_Shed_Level

This property, of type BACnetShedLevel, indicates the amount of power that the object expects to be able to shed in response
to a load shed request. When the object is in the SHED_INACTIVE state, this value shall be equal to the default value of
Requested_Shed_Level. When a shed request is pending or active, Expected_Shed_Level shall be equal to the shed level the
object expects to be able to achieve at Start_Time. Expected_Shed_Level allows a client (e.g., a master-level Load Control
object) to determine if a pending shed request needs to be modified in order to achieve the requested shed level, in the event
that Expected_Shed_Level is less than the Requested_Shed_Level. The units for Expected_Shed_Level are the same as the
units for Requested_Shed_Level.

12.28.17 Actual_Shed_Level

This property, of type BACnetShedLevel, indicates the actual amount of power being shed in response to a load shed request.
When the object is in the SHED_INACTIVE state, this value shall be equal to the default value of Requested_Shed_Level.
After Start_Time plus Duty_Window has elapsed, this value shall be the actual shed amount as calculated based on the
average value over the previous duty window. The units for Actual_Shed_Level are the same as the units for
Requested_Shed_Level.

12.28.18 Shed_Levels

This property is a BACnetARRAY of unsigned integers representing the shed levels for the LEVEL choice of
BACnetShedLevel that have meaning for this particular Load Control object. The array shall be ordered by increasing shed
amount. When commanded with the LEVEL choice, the Load Control object shall take a shedding action described by the
corresponding element in the Shed_Level_Descriptions array. If the Load Control object is commanded to go to a level that is
not in the Shed_Levels array, it shall go to the Shed_Level whose entry in the Shed_Levels array has the nearest numerically
lower value. The elements of the array are required to be writable, allowing local configuration of how this Load Control
object will participate in load shedding for the facility. This array is not required to be resizable through BACnet write
services. The size of this array shall be equal to the size of the Shed_Level_Descriptions array. The behavior of this object
when the Shed_Levels array contains duplicate entries is a local matter.

12.28.19 Shed_Level_Descriptions

This property is a BACnetARRAY of character strings representing a description of the shed levels that the Load Control
object can take on. This allows a local configuration tool to provide to a user an understanding of what each shed level in this
Load Control object's load shedding algorithm will do. The level at which each shed action will occur can then be configured
by writing to the Shed_Levels property.

12.28.20 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.28.21 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.28.22 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.28.23 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

312 ANSI/ASHRAE Standard 135-2012

12.28.24 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.28.25 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.28.26 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.28.27 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.28.28 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.28.29 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.28.30 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.28.31 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.28.32 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Load Control Object Type

ANSI/ASHRAE Standard 135-2012 313

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.28.33 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.28.34 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Structured View Object Type

314 ANSI/ASHRAE Standard 135-2012

12.29 Structured View Object Type

The Structured View object type defines a standardized object that provides a container to hold references to subordinate
objects, which may include other Structured View objects, thereby allowing multilevel hierarchies to be created. The
hierarchies are intended to convey a structure or organization such as a geographical distribution or application organization.
Subordinate objects may reside in the same device as the Structured View object or in other devices on the network.

The Structured View object and its properties are summarized in Table 12-34 and described in detail in this subclause.

Table 12-34. Properties of the Structured View Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Node_Type BACnetNodeType R
Node_Subtype CharacterString O
Subordinate_List BACnetARRAY[N] of BACnetDeviceObjectReference R
Subordinate_Annotations BACnetARRAY[N] of CharacterString O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

12.29.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.29.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.29.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be STRUCTURED_VIEW.

12.29.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.29.5 Node_Type

This property, of type BACnetNodeType, provides a general classification of the object in the hierarchy of objects.

It is intended as a general suggestion to a client application about the contents of a Structured View object, and is not
intended to convey an exact definition. Further refinement of classification is provided by the Node_Subtype property. The
allowable values for this property are:

 {UNKNOWN, SYSTEM, NETWORK, DEVICE, ORGANIZATIONAL, AREA, EQUIPMENT, POINT,

COLLECTION, PROPERTY, FUNCTIONAL, OTHER}

Where the following are suggested interpretations:

UNKNOWN Indicates that a value for Node_Type is not available or has not been configured at this time

SYSTEM An entire mechanical system

NETWORK A communications network

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Structured View Object Type

ANSI/ASHRAE Standard 135-2012 315

DEVICE Contains a set of elements which collectively represents a BACnet device, a logical device, or a

physical device

ORGANIZATIONAL Business concepts such as departments or people

AREA Geographical concept such as a campus, building, floor, etc.

EQUIPMENT Single piece of equipment that may be a collection of "Points"

POINT Contains a set of elements which collectively defines a single point of data, either a physical

input or output of a control or monitoring device, or a software calculation or configuration
setting

COLLECTION A generic container used to group things together, such as a collection of references to all space

temperatures in a building

PROPERTY Defines a characteristic or parameter of the parent node

FUNCTIONAL Single system component such as a control module or a logical component such as a function

block

OTHER Everything that does not fit into one of these broad categories

12.29.6 Node_Subtype

This property, of type CharacterString, is a string of printable characters whose content is not restricted. It provides a more
specific classification of the object in the hierarchy of objects, providing a short description of the item represented by the
node.

12.29.7 Subordinate_List

This property is a BACnetARRAY of BACnetDeviceObjectReference that defines the members of the current Structured
View.

By including references to 'child' Structured View objects, multilevel hierarchies may be created.

If the optional device identifier is not present for a particular Subordinate_List member, then that object must reside in the
same device that maintains the Structured View object. If Subordinate_List is writable using WriteProperty services, the
Subordinate_List may optionally be restricted to reference-only objects in the local device. To avoid recursion, it is suggested
that a single Structured View object should be referenced only once in the hierarchy.

If the size of the Subordinate_List array is changed, the size of the Subordinate_Annotations array, if present, shall also be
changed to the same size. Uninitialized Subordinate_List array elements shall be given the instance number 4194303.

A Subordinate_List array element whose instance number is equal to 4194303 shall be considered uninitialized and shall be
ignored.

12.29.8 Subordinate_Annotations

This property, a BACnetARRAY of CharacterString, shall be used to define a text string description for each member of the
Subordinate_List. The content of these strings is not restricted.

If the size of this array is changed, the size of the Subordinate_List array shall also be changed to the same size.

12.29.9 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Structured View Object Type

316 ANSI/ASHRAE Standard 135-2012

12.29.10 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

ANSI/ASHRAE Standard 135-2012 317

12.30 Trend Log Multiple Object Type

A Trend Log Multiple object monitors one or more properties of one or more referenced objects, either in the same device as
the Trend Log Multiple object or in an external device. When predefined conditions are met, the object saves ("logs") the
value of the properties and a timestamp into an internal buffer for subsequent retrieval. The data may be logged periodically
or when "triggered" by a write to the Trigger property. Errors that prevent the acquisition of the data, as well as changes in
the status or operation of the logging process itself, are also recorded. Each timestamped buffer entry is called a "log record".

The Log_DeviceObjectProperty array holds the list of properties to be monitored and logged. If an element of the
Log_DeviceObjectProperty array has an object or device instance number equal to 4194303, this indicates that the element is
'empty' or 'uninitialized'. For empty or uninitialized elements, an indication that no property was specified shall be written to
the corresponding entry in each log record.

Each Trend Log Multiple object maintains an internal, optionally fixed-size, buffer in its Log_Buffer property. This buffer
fills or grows as log records are added. If the buffer becomes full, the least recent log record is overwritten when a new log
record is added, or collection may be set to stop. Trend Log Multiple buffers are transferred as a list of
BACnetLogMultipleRecord using the ReadRange service. The buffer may be cleared by writing a zero to the Record_Count
property. Each log record in the buffer has an implied SequenceNumber that is equal to the value of the Total_Record_Count
property immediately after the log record is added.

Logging may be enabled and disabled through the Enable property and at dates and times specified by the Start_Time and
Stop_Time properties. The enabling and disabling of record collection is recorded in the Log_Buffer.

Event reporting (notification) may be provided to facilitate automatic fetching of log records by processes on other devices
such as fileservers. Mechanisms for both algorithmic and intrinsic reporting are provided. Trend Log Multiple objects that
support intrinsic reporting shall apply the BUFFER_READY event algorithm.

In intrinsic reporting, when the number of records specified by the Notification_Threshold property has been collected since
the previous notification (or startup), a new notification is sent to all subscribed devices.

In response to a notification, subscribers may fetch all of the new log records. If a subscriber needs to fetch all of the new log
records, it should use the 'By Sequence Number' form of the ReadRange service request.

A missed notification may be detected by a subscriber if the 'Current Notification' parameter received in the previous
BUFFER_READY notification is different than the 'Previous Notification' parameter of the current BUFFER_READY
notification. If the ReadRange-ACK response to the ReadRange request issued under these conditions has the FIRST_ITEM
bit of the 'Result Flags' parameter set to TRUE, Trend Log Multiple log records have probably been missed by this
subscriber.

The acquisition of log records by remote devices has no effect upon the state of the Trend Log Multiple object itself. This
allows completely independent, but properly sequential, access to its log records by all remote devices. Any remote device
can independently update its records at any time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

318 ANSI/ASHRAE Standard 135-2012

Table 12-35. Properties of the Trend Log Multiple Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O
Enable BOOLEAN W
Start_Time BACnetDateTime O1
Stop_Time BACnetDateTime O1
Log_DeviceObjectProperty BACnetARRAY[N] of BACnetDeviceObjectPropertyReference R
Logging_Type BACnetLoggingType R
Log_Interval Unsigned R2
Align_Intervals BOOLEAN O3
Interval_Offset Unsigned O3
Trigger BOOLEAN O
Stop_When_Full BOOLEAN R
Buffer_Size Unsigned32 R
Log_Buffer BACnetLIST of BACnetLogMultipleRecord R
Record_Count Unsigned32 W
Total_Record_Count Unsigned32 R
Notification_Threshold Unsigned32 O4,6
Records_Since_Notification Unsigned32 O4,6
Last_Notify_Record Unsigned32 O4,6
Notification_Class Unsigned O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Reliability_Evaluation_Inhibit BOOLEAN O8
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If present, these properties are required to be writable.
2 This property is required to be writable when Logging_Type has the value POLLED and is required to be read-

only when Logging_Type has the value TRIGGERED.
3 These properties are required if, and shall be present only if, the object supports clock-aligned logging.
4 These properties are required if the object supports intrinsic reporting.
5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

ANSI/ASHRAE Standard 135-2012 319

12.30.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.30.2 Object_Name

This property, of type CharacterString, shall represent a name for the Object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.30.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be TREND LOG MULTIPLE.

12.30.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.30.5 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Trend Log
Multiple object. The IN_ALARM and FAULT flags are associated with the values of other properties of this object. A more
detailed status may be determined by reading the properties that are linked to these flags. The relationship between individual
flags is not defined by the protocol. The four flags are

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.30.6 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL

12.30.7 Reliability

This property, of type BACnetReliability, provides an indication of whether the application-specific properties of the object
or the process executing the application program are "reliable" as far as the BACnet Device can determine.

12.30.8 Enable

This property, of type BOOLEAN, indicates and controls whether (TRUE) or not (FALSE) logging of events and collected
data is enabled. Logging occurs if and only if Enable is TRUE, Local_Time is on or after Start_Time, and Local_Time is
before Stop_Time. If Start_Time contains an unspecified datetime, then it shall be considered equal to 'the start of time'. If
Stop_Time contains an unspecified datetime, then it shall be considered equal to 'the end of time'. Log records of type log-
status or no-data are recorded without regard to the value of the Enable property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

320 ANSI/ASHRAE Standard 135-2012

Attempts to write the value TRUE to the Enable property while Stop_When_Full is TRUE and Record_Count is equal to
Buffer_Size shall cause a Result(-) response to be issued, specifying an 'Error Class' of OBJECT and an 'Error Code' of
LOG_BUFFER_FULL.

12.30.9 Start_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be enabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be enabled by Start_Time shall
be ignored. If Start_Time specifies a date and time after Stop_Time, then logging shall be disabled. This property shall be
writable if present.

When Start_Time is reached, the value of the Enable property is not changed.

12.30.10 Stop_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be disabled by this
property. If this property contains an unspecified datetime, then the conditions for logging to be disabled by Stop_Time shall
be ignored. If Stop_Time specifies a date and time earlier than Start_Time, then logging shall be disabled. This property shall
be writable if present.

When Stop_Time is reached, the value of the Enable property is not changed.

12.30.11 Log_DeviceObjectProperty

This property, of type BACnetARRAY of BACnetDeviceObjectPropertyReference, specifies the properties to be logged.

If this property is writable, it may be restricted to reference-only objects inside the device containing the Trend Log Multiple
object. If the property is restricted to referencing objects within the containing device, an attempt to write a reference to an
object outside the containing device into this property shall cause a Result(-) response to be issued, specifying an 'Error Class'
of PROPERTY and an 'Error Code' of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

Elements of the Log_DeviceObjectProperty array containing object or device instance numbers equal to 4194303 are
considered to be 'empty' or 'uninitialized'. An error shall be written to log record entries corresponding to these empty or
uninitialized array elements, specifying an 'Error Class' of PROPERTY and an 'Error Code' of
NO_PROPERTY_SPECIFIED.

If this property is changed, one of the following actions shall be taken:

Either the Log_Buffer shall be purged and a BUFFER_PURGED log-status record shall be recorded, or

Log data values corresponding to changed elements of the Log_DeviceObjectProperty array shall be purged by replacing the
relevant log data values in each log record with errors, specifying an 'Error Class' of PROPERTY and an 'Error Code' of
LOGGED VALUE PURGED.

The selection of which action to take is a local matter.

12.30.12 Logging_Type

This property, of type BACnetLoggingType, specifies whether the Trend Log Multiple collects records using polling or
triggered acquisition.

COV Logging is not allowed for a Trend Log Multiple object. If this property is writable, an attempt to write the value COV
into this property shall cause a Result(-) response to be issued, specifying an 'Error Class' of PROPERTY and an 'Error Code'
of VALUE_OUT_OF_RANGE.

If the value POLLED is written to this property when the value of Log_Interval is zero, the Log_Interval property shall be
updated with an appropriate default polling interval. Determination of the appropriate default polling interval is a local
matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

ANSI/ASHRAE Standard 135-2012 321

If the value TRIGGERED is written to this property when Log_Interval has a non-zero value, the Log_Interval property shall
be updated with the value zero.

12.30.13 Log_Interval

This property, of type Unsigned, specifies the periodic interval in hundredths of seconds for which the referenced properties
are to be logged when Logging_Type has the value POLLED. If Logging_Type has the value TRIGGERED, then the value
of this property shall be zero and ignored.

This property shall be writable if Logging_Type has the value POLLED, and shall be read-only if Logging_Type has the
value TRIGGERED.

12.30.14 Align_Intervals

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) clock-aligned periodic logging is enabled. If
periodic logging is enabled and the value of Log_Interval is a factor of (that is, it divides without remainder) a second,
minute, hour or day, then the beginning of the period specified for logging shall be aligned to the second, minute, hour or
day, respectively.

This property has no effect on the behavior of the Trend Log Multiple object if the Logging_Type property has a value other
than POLLED.

12.30.15 Interval_Offset

This property, of type Unsigned, specifies the offset in hundredths of seconds from the beginning of the period specified for
logging until the actual acquisition of a log record begins. The offset used shall be the value of Interval_Offset modulo the
value of Log_Interval; i.e., if Interval_Offset has the value 31 and Log_Interval is 30, the offset used shall be 1.
Interval_Offset shall have no effect if Align_Intervals = FALSE.

12.30.16 Trigger

This property, of type BOOLEAN, shall cause the Trend Log Multiple object to acquire a log record whenever the value of
this property is changed from FALSE to TRUE. It shall remain TRUE while the Trend Log Multiple object is acquiring the
data items for a log record. When all log data items have been collected or it has been determined that all outstanding data
requests will not be fulfilled, the Trend Log Multiple object shall reset the value to FALSE.

If the value of the Logging_Type property is not TRIGGERED and an attempt is made to write the value TRUE to the
Trigger property, it is left as a local matter whether to execute the logging operation or not. For devices that choose not to
execute triggered logging when Logging_Type is not equal to TRIGGERED, attempts to write the value TRUE to this
property when Logging_Type has a value other than TRIGGERED shall cause a Result(-) response to be issued, specifying
an 'Error Class' of PROPERTY and an 'Error Code' of NOT_CONFIGURED_FOR_TRIGGERED_LOGGING.

Writing to the Trigger property is not restricted to network visible write operations; internal processes may control the
acquisition of samples by writing to this property.

12.30.17 Stop_When_Full

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) logging should cease when the Log_Buffer is
full. When logging ceases because the addition of one more log record would cause the buffer to be full, Enable shall be set
to FALSE and the event recorded.

If Stop_When_Full is writable, attempts to write the value TRUE to the Stop_When_Full property while Record_Count is
equal to Buffer_Size shall result in the oldest log record in the Log_Buffer being discarded, and shall cause the Enable
property to be set to FALSE and the event to be recorded.

12.30.18 Buffer_Size

This property, of type Unsigned32, shall specify the maximum number of records the Log_Buffer can hold. If writable, it
may not be written when Enable is TRUE. The disposition of existing log records when Buffer_Size is written is a local
matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

322 ANSI/ASHRAE Standard 135-2012

12.30.19 Log_Buffer

This property, of type BACnetLIST of BACnetLogMultipleRecords, is a list of BACnetLogMultipleRecord records. Each
log record conveys either a set of recorded data values or errors related to data-collection, a status change in the Trend Log
Multiple object, or an indication that the time and/or date was changed in the device hosting the Trend Log Multiple object.

Each log record has data fields as follows:

Timestamp The local date and time when the record was stored.

LogData A set of recorded data values or errors related to data-collection, a status change in the Trend Log Multiple object
itself, or an indication that the time and/or date was changed in the device hosting the Trend Log Multiple object.

The choices available for LogData are listed below:

log- status This choice represents a change in the status or operation of the Trend Log Multiple object.

Whenever one of the events represented by the flags listed below occurs, a log record shall be
appended to the Log_Buffer.

 LOG_DISABLED This flag is changed whenever collection of log records by the Trend
Log Multiple object is enabled or disabled. It shall be TRUE if Enable
is FALSE, or the local time is outside the range defined by Start_Time
and Stop_Time, or the addition of this log record will cause the
Log_Buffer to be full and Stop_When_Full is TRUE; otherwise it shall
be FALSE.

 BUFFER_PURGED This flag shall be set to TRUE whenever the Log_Buffer is cleared by
writing zero to the Record_Count property, or due to a change to the
Log_DeviceObjectProperty property. After this value is recorded in
the Log_Buffer, the subsequent immediate change to FALSE shall not
be recorded. A log record indicating the purging of the Log_Buffer
shall be placed into the buffer even if logging is disabled or outside of
the time range defined by the Start_Time and Stop_Time properties.

 LOG_INTERRUPTED This flag indicates that the collection of log records by the Trend Log
Multiple object was interrupted by a power failure, device reset, object
reconfiguration or other such disruption, such that samples prior to this
record might have been missed.

log-data The set of logged values. The order of logged values shall correspond to the order of the

Log_DeviceObjectProperty array.

 boolean-value
real-value
enum-value
unsigned-value
signed-value
bitstring-value
null-value

These choices represent the data values and datatypes read from the
monitored object and property.

 any-value

This choice represents the data values and datatypes read from the
monitored object and property.

 failure This choice indicates either that an entry in the
Log_DeviceObjectProperty array contains an object or device instance
equal to 4194303, that a previously logged value was purged, or that
an error was encountered in an attempt to read a data value from the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

ANSI/ASHRAE Standard 135-2012 323

monitored object. If the error is conveyed by an error response from a
remote device, the Error Class and Error Code in the response shall be
recorded.

time-change This choice represents a change in the clock setting in the device; it records the number of

seconds by which the clock changed. If the number is not known, such as when the clock is
initialized for the first time, the value recorded shall be zero.

Also associated with each log record is an implied record number, the value of which is equal to Total_Record_Count at the
point where the log record has been added into the Log_Buffer and Total_Record_Count has been adjusted accordingly. All
clients must be able to correctly handle the case where the Log_Buffer is reset such that its Total_Record_Count is returned
to zero and also the case where Total_Record_Count has wrapped back to zero.

The Log_Buffer is not network accessible except through the use of the ReadRange service, in order to avoid problems with
record sequencing when segmentation is required.

If the object supports event reporting, then a reference to this property shall be the pLogBuffer parameter for the object's
event algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.30.20 Record_Count

This property, of type Unsigned32, shall represent the number of log records currently resident in the Log_Buffer. A write of
the value zero to this property shall cause all log records in the Log_Buffer to be deleted and Records_Since_Notification to
be reset to zero. Upon completion, this event shall be reported in the log as the initial entry.

12.30.21 Total_Record_Count

This property, of type Unsigned32, shall represent the total number of log records collected by the Trend Log Multiple object
since creation. When the value of Total_Record_Count reaches its maximum possible value of 232- 1, the next value it takes
shall be one. Once this value has wrapped to one, its semantic value (the total number of log records collected) has been lost
but its use in generating notifications remains.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.30.22 Notification_Threshold

This property is the pThreshold parameter for the object's event algorithm. See 13.3 for event algorithm parameter
descriptions.

12.30.23 Records_Since_Notification

This property, of type Unsigned32, represents the number of log records collected since the previous notification, or since the
beginning of logging if no previous notification has occurred.

12.30.24 Last_Notify_Record

This property is the pPreviousCount parameter of the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.30.25 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.30.26 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

324 ANSI/ASHRAE Standard 135-2012

12.30.27 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.30.28 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.30.29 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.30.30 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.30.31 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.30.32 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.30.33 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.30.34 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Trend Log Multiple Object Type

ANSI/ASHRAE Standard 135-2012 325

12.30.35 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.30.36 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.30.37 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

326 ANSI/ASHRAE Standard 135-2012

12.31 Access Point Object Type

The Access Point object type defines a standardized object whose properties represent the externally visible characteristics
associated with the authentication and authorization process of an access controlled point. (e.g., door, gate, turnstile). Access
through this point is directional in that it represents access in one direction only. A door, in which access is controlled in both
directions, is represented by two separate Access Point objects.

Authentication is the process of verifying the identity of an access user requesting access through an access-controlled door.
This can be an authentication policy as simple as a single-factor authentication, in which one authentication factor (i.e.,
magnetic-stripe card, proximity-card, smart card) is used to identify a known user. In a multi-factor authentication policy, a
combination of two or more authentication factors (e.g., card + PIN, card + biometric) are used to verify the identity of the
access user. The Access Point object supports the definition of single-factor and multi-factor authentication policies,
including the functionality to switch the policy in effect. On false attempts to authenticate, the Access Point may lock-down,
for an infinite or specific amount of time.

Authorization is the process of determining whether the access user is permitted to access the zone that he or she has
requested to enter. Once the access user has been authenticated successfully, a list of criteria is checked to determine whether
access can be granted. If one or more of the authorization criteria fail, then the access user is denied access. Once the access
user is granted access, the door will be commanded unlocked at the specified command priority and the access user can
access the zone. The door which is controlled is specified in the Access Point. Authorization criteria supported by the Access
Point are authorization modes, occupancy enforcement, external verification and threat level.

Authentication and authorization begins when an access user presents an authentication factor at the access controlled point.
The process this object represents consumes the authentication factors from the corresponding Credential Data Input objects
and performs the authentication and authorization functions. The result is to grant or deny access and to generate
corresponding access events. If the object is out of service or not reliable, then these functions are not performed.

The Access Point object generates access events. Access events are stateless (i.e., NORMAL to NORMAL transitions only).
A single access transaction, such as a request to enter or an operator action, can result in one or more access events. All
access events that belong to the same access transaction have the same access event tag.

For intrinsic reporting, the ACCESS_EVENT algorithm is applied for both Access Alarm Events and Access Transaction
Events:

Access Alarm Events: These are events requiring operator attention and handling, and the Access Point object may request
human operator acknowledgment of these events.

Access Transaction Events: These are events that are to be logged, not requiring immediate operator attention. The Access
Point object does not request human operator acknowledgment of these events.

Access Points which authorize entrance to an access controlled zone are entry points of that zone. Access Points which
authorize exit from an access controlled zone are exit points of that zone. In the typical case a specific Access Point is an exit
point from one zone and an entry point to an adjacent zone. If the Access Point leads from an Access Zone to no zone (i.e.,
outside), then the Access Point is an exit point only. If the Access Point leads from no zone (i.e., outside) to an Access Zone,
then the Access Point is an entry point only. If the Access Point does not lead from or to an Access Zone (e.g., internal check
point or muster point), then the Access Point is neither an entry nor an exit point.

Table 12-36. Properties of the Access Point Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 327

Reliability BACnetReliability R
Out_Of_Service BOOLEAN R
Authentication_Status BACnetAuthenticationStatus R
Active_Authentication_Policy Unsigned R
Number_Of_Authentication_Policies Unsigned R
Authentication_Policy_List BACnetARRAY[N] of BACnetAuthenticationPolicy O1
Authentication_Policy_Names BACnetARRAY[N] of CharacterString O1
Authorization_Mode BACnetAuthorizationMode R
Verification_Time Unsigned O
Lockout BOOLEAN O2
Lockout_Relinquish_Time Unsigned O
Failed_Attempts Unsigned O
Failed_Attempt_Events BACnetLIST of BACnetAccessEvent O
Max_Failed_Attempts Unsigned O3
Failed_Attempts_Time Unsigned O3
Threat_Level BACnetAccessThreatLevel O
Occupancy_Upper_Limit_Enforced BOOLEAN O
Occupancy_Lower_Limit_Enforced BOOLEAN O
Occupancy_Count_Adjust BOOLEAN O
Accompaniment_Time Unsigned O
Access_Event BACnetAccessEvent R
Access_Event_Tag Unsigned R
Access_Event_Time BACnetTimeStamp R
Access_Event_Credential BACnetDeviceObjectReference R
Access_Event_Authentication_Factor BACnetAuthenticationFactor O
Access_Doors BACnetARRAY[N] of BACnetDeviceObjectReference R
Priority_For_Writing Unsigned (1…16) R
Muster_Point BOOLEAN O
Zone_To BACnetDeviceObjectReference O
Zone_From BACnetDeviceObjectReference O
Notification_Class Unsigned O4,6
Transaction_Notification_Class Unsigned O
Access_Alarm_Events BACnetLIST of BACnetAccessEvent O4,6
Access_Transaction_Events BACnetLIST of BACnetAccessEvent O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 The size of this array shall equal the value of the Number_Of_Authentication_Policies property.
2 This property is required to be present if Lockout_Relinquish_Time is present.
3 If this property is present, then the Failed_Attempts property shall be present.
4 These properties are required if the object supports intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

328 ANSI/ASHRAE Standard 135-2012

5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

12.31.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.31.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.31.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCESS_POINT.

12.31.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.31.5 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Access
Point. A more detailed status may be determined by reading the properties that are linked to these flags. The relationship
between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.31.6 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.31.7 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the authentication and authorization
process this object represents is "reliable" as far as the BACnet Device can determine and, if not, why.

If Reliability has a value other than NO_FAULT_DETECTED, the process that this object represents shall not perform any
authentication or authorization. No access events are generated in this case.
If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 329

12.31.8 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the authentication and
authorization process this object represents is out of service. If out of service, then the process that this object represents shall
not perform any authentication or authorization.

When this property changes from FALSE to TRUE, then the Access_Event property shall be set to OUT_OF_SERVICE.
When this property changes from TRUE to FALSE, then the Access_Event property shall be set to
OUT_OF_SERVICE_RELINQUISHED.

12.31.9 Authentication_Status

This property, of type BACnetAuthenticationStatus, shall indicate the current status of the authentication process. This is an
enumeration with the following status values:

NOT_READY The authentication process is not ready to perform a new

authentication. This indicates a temporary condition due to
processing of the current authentication factor, initialization
during startup or other internal processing.

READY The authentication process is ready to start a new
authentication

DISABLED The authentication process has been disabled. The property
shall take on this status when the Out_Of_Service property is
TRUE.

WAITING_FOR_AUTHENTICATION_FACTOR The authentication process is waiting for an additional
authentication factor for a multi-factor authentication.

WAITING_FOR_ACCOMPANIMENT The authentication process is waiting for the authentication of
the accompanying credential.

WAITING_FOR_VERIFICATION The authentication process is waiting for the verification of
the credential by an external process.

IN_PROGRESS The authentication process is currently performing an
authentication.

12.31.10 Active_Authentication_Policy

This property, of type Unsigned, shall specify the active authentication policy. The active authentication policy of this object
shall be one of 'n' authentication policies, where 'n' is the number of authentication policies defined in the
Number_Of_Authentication_Policies property.

The value of the Number_Of_Authentication_Policies property specifies the maximum value that can be written to
Active_Authentication_Policy. If a value is written greater than the maximum value or specifies an index of an invalid entry
in the Authentication_Policy_List property, if present, then the write attempt is denied and a Result(-) specifying an 'Error
Class' of PROPERTY and an 'Error Code' of VALUE_OUT_OF_RANGE shall be returned.

If the Authentication_Policy_List property is present, then the value of Active_Authentication_Policy property is an array
index that corresponds to the authentication policy as specified in the Authentication_Policy_List property. If no valid
authentication policy exists or the current active authentication policy is not valid (i.e., the Authentication_Policy_List entry
is empty or not well formed), then this property shall take a value of zero. If the value of the
Number_Of_Authentication_Policies property becomes less than the value of this property, then this property shall take a
value of zero.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

330 ANSI/ASHRAE Standard 135-2012

If this property has the value of zero, then the Reliability property shall have the value CONFIGURATION_ERROR.

12.31.11 Number_Of_Authentication_Policies

This property, of type Unsigned, shall specify the number of specified authentication policies. This property shall always
have a value greater than zero. If the value of this property is changed, the size of the Authentication_Policy_List array and
the size of the Authentication_Policy_Names array, if present, shall also be changed to the same value.

12.31.12 Authentication_Policy_List

This property, of type BACnetARRAY[N] of BACnetAuthenticationPolicy, specifies the authentication policies defined for
this Access Point.

Each element in the array defines an authentication policy for this access point. The BACnetAuthenticationPolicy structure
contains the following fields:

Policy This field is a list of sequence elements that specifies the Credential Data Input objects which are used
for this authentication policy. Each element of the list has the following fields:

Credential-Data-
Input

This field, of type BACnetDeviceObjectReference, contains a reference to an
object of type Credential Data Input where the authentication factor value is read
from the physical device.

Index This field, of type Unsigned, indicates the order in which the authentication
process expects to receive authentication factors from Credential Data Input
objects. The value shall start with the value 1 and continue in increasing sequence.
If two or more entries of the Policy list have the same index value this indicates
that there is a choice between any of the authentication factors supported by the
Credential Data Input objects referenced by these entries. In this case the user may
present any one of these authentication factors.

Order-
Enforced

If TRUE, then the ordering sequence, as specified by the Index fields of this Policy list, is enforced. If
FALSE, then the order is not enforced.

Timeout This field, of type Unsigned, specifies the maximum time in seconds for which all authentication factors,
as defined by this policy, must be presented. A value of zero indicates an unlimited time to present all
authentication factors. If not all authentication factors are presented in the allotted time, then a timeout
occurs and authentication fails.

An Authentication_Policy_List array element shall be considered invalid if the Policy field is empty or if it is not well
formed. In this case, the Reliability property shall have the value CONFIGURATION_ERROR. If a write to the
Authentication_Policy_List property would cause an array element to be invalid, then a Result (-) shall be returned with an
error class of PROPERTY and an error code of VALUE_OUT_OF_RANGE.

If this property is not present, then the authentication policies are a local matter.

The size of this array shall equal the value of the Number_Of_Authentication_Policies property.

12.31.12.1 Reading Authentication Factors

The authentication factors to be read are determined by the current authentication policy in effect. If the
Authentication_Policy_List property is present, the authentication policy is explicitly defined and specifies which Credential
Data Input objects the authentication factors are read from. When any authentication factor is read, then the Access_Event
property shall be set to AUTHENTICATION_FACTOR_READ.

If the authentication factor read does not match any known authentication factor or the authentication factor read has an error
(i.e., has a format type of ERROR), then authentication shall fail and access shall not be granted. In the case where the
authentication factor is unknown the Access Event property shall be set to DENIED_UNKNOWN_CREDENTIAL. In the
case where the authentication factor has an error, then the Access_Event property shall be set to
DENIED_AUTHENTICATION_FACTOR_ERROR.

It may be possible with certain credential readers to signal a duress code when reading an authentication factor. Determining
when a duress code has been read is a local matter. In this case the Access_Event property shall be set to DURESS.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 331

12.31.12.1.1 Single-Factor Authentication

In single-factor authentication, only one authentication factor is required to identify and authenticate the access credential.
Depending on the current authentication policy, the access user may have a choice of multiple credentials to use.

12.31.12.1.2 Multi-Factor Authentication

In multi-factor authentication, two or more authentication factors are used for authentication. Typically when multiple factors
are used, the first authentication factor is used to identify the credential while the subsequent authentication factors are used
to validate the identity. All authentication factors of a multi-factor authentication are expected to be configured in the same
Access Credential object.

If a timeout is specified for the current authentication policy and not all authentication factors are read within that time, then
authentication shall fail and access shall not be granted. In this case the Access_Event property is set to
DENIED_AUTHENTICATION_FACTOR_TIMEOUT.

If one of the authentication factors presented is not the value expected or is presented in an incorrect order, then it is a local
matter as to whether authentication fails immediately or whether the access user is given subsequent chances to present the
correct authentication factor. If authentication fails immediately, then the Access_Event property shall be set to
DENIED_INCORRECT_AUTHENTICATION_FACTOR. If the access user is allowed subsequent chances but fails to
present the correct authentication factor within a certain number of attempts, then the Access_Event property shall be set to
DENIED_MAX_ATTEMPTS. The maximum number of attempts the access user is allowed is a local matter.

12.31.12.1.3 External Authentication

If the authentication decision is made by an external process, such as a remote server, it may be possible that the
authentication process becomes unavailable. When this occurs and when there is no secondary authentication process
available, then the authentication shall fail and the Access_Event property shall be set to
DENIED_AUTHENTICATION_UNAVAILABLE.

12.31.12.2 Initializing New Array Elements When the Array Size is Increased

If the size of the Authentication_Policy_List array is increased without initial values being provided, then the new array
elements for which no initial value is provided shall be initialized with an empty Policy list, Order-Enforced shall be FALSE,
and Timeout shall have the value zero.

12.31.13 Authentication_Policy_Names

This property, of type BACnetARRAY[N] of CharacterString, specifies the names of the defined authentication policies.

The size of this array shall equal the value of the Number_Of_Authentication_Policies property

12.31.14 Authorization_Mode

This property, of type BACnetAuthorizationMode, determines how authorization is performed at the Access Point. An
Access Point object is not required to support all of these authorization modes but is required to support at least
AUTHORIZE.

AUTHORIZE The access rights of an active credential are evaluated, in addition to other

possible authorization checks. If a credential has the value ACCESS_RIGHTS
in the Authorization_Exemptions property, then access is granted unless other
authorizations checks fail.

GRANT_ACTIVE An active credential is granted access without evaluating the access rights
assigned to the credential. Other authorization checks can still lead to denying
access.

DENY_ALL All credentials are denied access and the Access_Event property is set to
DENIED_DENY_ALL. If a credential has the value DENY in the
Authorization_Exemptions property, then access is granted unless other
authorizations checks fail.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

332 ANSI/ASHRAE Standard 135-2012

VERIFICATION_REQUIRED The access rights of an active credential are evaluated, unless an
ACCESS_RIGHTS exemption exists for this credential, in addition to other
possible authorization checks. Granting access requires external verification. In
this case the Access_Event property is set to VERIFICATION_REQUIRED
and the access point waits for the external verification. The external verification
process and the mechanism by which the verification result is provided to the
access point is a local matter.

If the external verification process denies access, then the Access_Event
property shall be set to DENIED_VERIFICATION_FAILED.

If there is no external verification result within the time specified by the
Verification_Time property, then the Access_Event property shall be set to
DENIED_VERIFICATION_TIMEOUT.

If the credential has a VERIFICATION exemption, then the external
verification step shall be omitted.

AUTHORIZATION_DELAYED

The access rights of an active credential are evaluated, unless an
ACCESS_RIGHTS exemption exists for this credential, in addition to other
possible authorization checks. Granting access is delayed by the time specified
by the Verification_Time property. This provides an external verification
process the opportunity to deny access. In this case the Access_Event property
is set to AUTHORIZATION_DELAYED and the access point waits for the
external verification. The external verification process and the mechanism by
which the verification result is provided to the access point is a local matter.

If the external verification process denies access within the time specified in the
Verification_Time property, then the Access_Event property shall be set to
DENIED_VERIFICATION_FAILED.

If there is no external verification result within the time specified by the
Verification_Time property, then this authorization check succeeded.

If the credential has an AUTHORIZATION_DELAY exemption, then the
authorization delay step shall be omitted.

NONE No authorization functionality takes place at this access point and no
authorization events (e.g., grant or any deny events) are generated. This may be
used to implement special access point functionality, such as a guard tour or
muster point, where authorization checks are not required.

<Proprietary Enum Values>

A vendor may use other proprietary enumeration values to allow proprietary
authorization modes other than those defined by the standard. For proprietary
extensions of this enumeration, see Clause 23.1 of this standard.

12.31.14.1 Authorization Decision

Authorization is the process of determining whether or not the credential that has been used to request access at an access
point will be permitted access. The authorization process completes when the access decision to grant or deny has been
reached. Typically there are multiple authorization criteria used to determine if access will be granted. Examples of
authorization criteria are checking access rights, checking passback violations, checking threat level, checking occupancy
limits, etc. It is a local matter as to what order the authorization criteria are checked. The authorization criteria used to
determine whether access is allowed may change according to the time of day, the location and the credential used.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 333

If all authorization criteria are successful, then the credential is granted access at the access point. In this case, the
Access_Event property shall be set to GRANTED.

If even one authorization check fails, then access is denied and the Access_Event property is set to the appropriate deny
event. If there is no access event, either defined or proprietary, which is specific to the actual reason why access was denied,
then the Access_Event property shall be set to DENIED_OTHER.

Access may be denied if the authorization process detects an inconsistency with the access request, such as when an access
user requests access to a zone but there is no record of that access user being in the building. How the inconsistency is
determined is a local matter. In this case access is denied and the Access_Event property shall be set to
DENIED_UNEXPECTED_LOCATION_USAGE.

12.31.15 Verification_Time

This property, of type Unsigned, shall specify the time, in seconds, to wait for external verification when the
Authorization_Mode property has a value of AUTHORIZATION_DELAYED or VERIFICATION_REQUIRED.

12.31.16 Lockout

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the access controlled point this object
represents is in a lockout state. When the access point is in a lockout state, any access request shall always be denied, except
for an active credential for which the value LOCKOUT is contained in the Authorization_Exemptions property of the
corresponding Access Credential object. For each denied access request, the Access_Event property shall be set to
DENIED_LOCKOUT. An Access Point object may be set to a lockout state due to too many failed access attempts, as
defined in the Max_Failed_Attempts property, or by writing TRUE to this property.

When the property Lockout becomes TRUE due to too many failed access attempts, then the Access_Event property shall be
set to LOCKOUT_MAX_ATTEMPTS. If TRUE is written to this property for any other reason, the Access_Event property
shall be set to LOCKOUT_OTHER. When the Lockout property becomes FALSE, the Access_Event property shall be set to
LOCKOUT_RELINQUISHED.

If the Lockout property is present, then the Lockout_Relinquish_Time property shall also be present.

12.31.17 Lockout_Relinquish_Time

This property, of type Unsigned, shall specify the time, in seconds, to delay after the Lockout property has taken on the value
TRUE, before automatically relinquishing the lockout state. The lockout state is relinquished by setting the Lockout property
to FALSE. A value of zero indicates that the lockout state will not automatically be relinquished.

If the Lockout_Relinquish_Time is present, then the Lockout property shall also be present.

12.31.18 Failed_Attempts

This property, of type Unsigned, shall indicate the current count of successive failed access attempts. Any successive failed
access attempt shall increment the value of this property.

This property shall be set to zero when a successful access attempt occurs or when the property Lockout becomes FALSE.

12.31.19 Failed_Attempt_Events

This property, of type BACnetLIST of BACnetAccessEvent, specifies those access events that are counted as a failed access
attempt.

If this property is not present, it is a local matter as to which access events are considered a failed attempt.

12.31.20 Max_Failed_Attempts

This property, of type Unsigned, shall specify the maximum number of successive failed access attempts before the Lockout
property is set to TRUE. If the Failed_Attempts property becomes greater than or equal to the value of this property and this
property is not zero, the Lockout property is set to TRUE. Zero indicates that the Lockout property is not set to TRUE as the
result of failed access attempts.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

334 ANSI/ASHRAE Standard 135-2012

If the Max_Failed_Attempts property is present, then the Failed_Attempts property shall also be present.

12.31.21 Failed_Attempts_Time

This property, of type Unsigned, shall specify the time, in seconds, to delay before setting the Failed_Attempts property to
zero, after the last failed access attempt.

If the Failed_Attempts_Time is present, then the Failed_Attempts property shall also be present.

12.31.22 Threat_Level

This property, of type BACnetAccessThreatLevel, shall specify the current threat level for this Access Point. Zero is the
lowest threat level, effectively disabling the threat level check, while 100 is the maximum threat level. If the threat authority
of the authenticated credential is lower than the value of this property, then the authorization fails. In this case the
Access_Event property shall be set to DENIED_THREAT_LEVEL.

12.31.23 Occupancy_Upper_Limit_Enforced

This property, of type BOOLEAN, indicates whether the upper occupancy limit of the access controlled zone, for which this
object is an entry point, is enforced (TRUE) or not (FALSE). If enforced, authorization shall fail if the access controlled
zone's occupancy is greater than or equal to its upper occupancy limit, unless the credential is exempted from this
authorization check. When this authorization check fails, the Access_Event property shall be set to
DENIED_UPPER_OCCUPANCY_LIMIT.

12.31.24 Occupancy_Lower_Limit_Enforced

This property, of type BOOLEAN, indicates whether the lower occupancy limit of the access controlled zone, for which this
object is an exit point, is enforced (TRUE) or not (FALSE). If enforced, authorization shall fail if the access controlled zone's
occupancy is lower than or equal to its lower occupancy limit, unless the credential is exempted from this authorization
check. When this authorization check fails, the Access_Event property shall be set to
DENIED_LOWER_OCCUPANCY_LIMIT.

12.31.25 Occupancy_Count_Adjust

This property, of type BOOLEAN, indicates whether (TRUE) this object will adjust the occupancy count of the zones for
which it controls access, or not (FALSE). The occupancy count is decremented for the zone for which this Access Point is an
exit point and incremented for the zone for which this Access Point is an entry point.

Occupancy count shall be adjusted if the credential holder passes through the access point. How this is determined is a local
matter. The occupancy count of the zones is adjusted by writing a negative amount to the Adjust_Value property of the exit
access zone and the corresponding positive amount to the Adjust_Value property of the entry access zone.

If this property is not supported, then the Access Point object behaves as if the value is FALSE.

12.31.26 Accompaniment_Time

This property, of type Unsigned, shall specify the time, in seconds, to wait for a second credential to be presented at this
access point when the original credential requires accompaniment. If an accompanying credential is not presented within this
time the authorization of the original credential shall fail and the Access_Event property shall be set to
DENIED_NO_ACCOMPANIMENT.

12.31.27 Access_Event

This property, of type BACnetAccessEvent, indicates the last access event which occurred at this Access Point. This property
is the pMonitoredValue parameter of the object's ACCESS_EVENT event algorithm for both Access Alarm Events and
Access Transaction Events. See Clause 13.3 for event algorithm parameter descriptions.

BACnetAccessEvent is an enumeration of authentication and authorization decisions, subsequent actions, and results of these
actions. An Access Point is not required to support all values of this enumeration.

NONE The access point did not yet determine any access event

or the object is not generating access events.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 335

This is not a reported event. It is required to enable
algorithmic ACCESS_EVENT reporting.

GRANTED Access granted to the presented credential.

MUSTER If the access point is a muster point, a muster event is
generated when a credential is presented.

PASSBACK_DETECTED A passback violation for the presented credential has
been detected.

DURESS A duress incident was detected at this access point.

TRACE A traced credential has been presented.

LOCKOUT_MAX_ATTEMPTS The access point is in a lockout state due to maximum
failed access attempts.

LOCKOUT_OTHER The access point is in a lockout state due to any reason
other than maximum failed access attempts.

LOCKOUT_RELINQUISHED The access point has relinquished the lockout state.

LOCKED_BY_HIGHER_PRIORITY The controlled Access Door object is commanded at a
higher priority.

OUT_OF_SERVICE The Out_Of_Service flag of the Access Point object has
been set to TRUE.

OUT_OF_SERVICE_RELINQUISHED The Out_Of_Service flag of the Access Point object has
been set to FALSE.

ACCOMPANIMENT_BY The credential presented accompanies the previous
credential.

AUTHENTICATION_FACTOR_READ An authentication factor has been read. This event
indicates a successful read of an authentication factor in
single-factor or multi-factor authentication.

AUTHORIZATION_DELAYED Authorization of a credential is delayed to allow time for
an external process to deny access.

VERIFICATION_REQUIRED Authorization of a credential requires verification from
an external process.

NO_ENTRY_AFTER_GRANTED Access was granted to the presented credential but the
physical door was not opened.

DENIED_DENY_ALL Access denied because the Authorization_Mode property
of the Access Point object is set to DENY_ALL.

DENIED_UNKNOWN_CREDENTIAL Access denied due to an unknown credential. The
authentication factor presented did not match any known
authentication factor.

DENIED_AUTHENTICATION_UNAVAILABLE Access denied because the authentication and
authorization decision is unavailable.

DENIED_AUTHENTICATION_FACTOR_TIMEOUT Access denied due to required authentication factor for
multi-factor authentication not being presented within
time.

DENIED_INCORRECT_AUTHENTICATION_FACTOR Access denied due to the authentication factor presented

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

336 ANSI/ASHRAE Standard 135-2012

for a multi-factor-authentication not being the one
expected.

DENIED_POINT_NO_ACCESS_RIGHTS Access denied due to evaluation of TRUE of a negative
access rule for the access point.

DENIED_ZONE_NO_ACCESS_RIGHTS Access denied due to evaluation of TRUE of a negative
access rule for the access zone.

DENIED_NO_ACCESS_RIGHTS Access denied due to no positive access rule being found
for the access zone or access point.

DENIED_OUT_OF_TIME_RANGE Access denied due to the presented credential not being
valid at this access point or access zone at this time.

DENIED_THREAT_LEVEL Access denied due to insufficient threat authority for the
presented credential.

DENIED_PASSBACK Access denied due to a passback violation for the
presented credential.

DENIED_UNEXPECTED_LOCATION_USAGE Access denied due to the credential being used at a
location which violates local consistency rules.

DENIED_MAX_ATTEMPTS Access denied due to too many failed multi-factor access
attempts at the access point.

DENIED_LOWER_OCCUPANCY_LIMIT Exit from a zone for which this access point is an exit
access point is denied due to zone occupancy being
below or at the minimum limit.

DENIED_UPPER_OCCUPANCY_LIMIT Access to a zone for which this access point is an entry
access point is denied due to zone occupancy being at or
above the maximum limit.

DENIED_AUTHENTICATION_FACTOR_LOST Access denied due to the authentication factor used
being reported as lost.

DENIED_AUTHENTICATION_FACTOR_STOLEN Access denied due to the authentication factor used
being reported as stolen.

DENIED_AUTHENTICATION_FACTOR_DAMAGED Access denied due to the authentication factor used
being reported as damaged.

DENIED_AUTHENTICATION_FACTOR_DESTROYED Access denied due to the authentication factor used
being reported as destroyed.

DENIED_AUTHENTICATION_FACTOR_DISABLED Access denied due to the authentication factor used
being disabled for unspecified or unknown reasons.

DENIED_AUTHENTICATION_FACTOR_ERROR Access denied due to the authentication factor used
having a read error.

DENIED_CREDENTIAL_UNASSIGNED Access denied due to the credential used not having yet
been assigned to an access user.

DENIED_CREDENTIAL_NOT_PROVISONED Access denied due to the credential used not yet having
been provisioned.

DENIED_CREDENTIAL_NOT_YET_ACTIVE Access denied due to the credential used not yet being
active.

DENIED_CREDENTIAL_EXPIRED Access denied due to the credential used having expired.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 337

DENIED_CREDENTIAL_MANUAL_DISABLE Access denied due to the credential used having been
manually disabled.

DENIED_CREDENTIAL_LOCKOUT Access denied due to the credential used being locked
out.

DENIED_CREDENTIAL_MAX_DAYS Access denied due to the number of days the credential
may be used having been exceeded.

DENIED_CREDENTIAL_MAX_USES Access denied due to the number of allowed uses of the
credential used has been exceeded.

DENIED_CREDENTIAL_INACTIVITY Access denied due to the credential used being disabled
after a period of inactivity.

DENIED_CREDENTIAL_DISABLED Access denied due to the credential used being disabled
for unspecified or unknown reasons.

DENIED_NO_ACCOMPANIMENT Access denied due to the expected accompanying
credential not being presented.

DENIED_INCORRECT_ACCOMPANIMENT Access denied due to the accompanying credential
presented being incorrect

DENIED_LOCKOUT Access denied due to the access point being in lockout
state.

DENIED_VERIFICATION_FAILED Access denied due to an external process denying access
when verification was required.

DENIED_VERIFICATION_TIMEOUT Access denied due to an external process having failed to
send a response, in the allotted time, when verification
was required.

DENIED_OTHER Access is denied for unspecified reasons.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values
to indicate Access Events other than those defined by
this standard. For proprietary extensions of this
enumeration, see Clause 23.1 of this standard.

12.31.27.1 Operations for setting the Access_Event property

When a new event occurs at the access point, the following series of operations shall be performed atomically:

The value written to Access_Event shall be stored in the Access_Event property,

(1)
 If this event is the start of a new access transaction, the value of the Access_Event_Tag property shall be
incremented.

(2)
 The current date and time shall be stored in the Access_Event_Time property.
(3)
 The reference to the Access Credential object that is associated with this event shall be stored in the

Access_Event_Credential property. See Clause 12.31.30 for other conditions.
(4)
 The value of the authentication factor that is associated with this event shall be stored in the

Access_Event_Authentication_Factor property. See Clause 12.31.31 for other conditions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

338 ANSI/ASHRAE Standard 135-2012

12.31.28 Access_Event_Tag

This property, of type Unsigned, is a numeric value which identifies the access transaction to which the current access event
belongs. Multiple access events may be generated by a single access transaction.

The value of this property shall increase monotonically for each new access transaction. It may be implemented using
modulo arithmetic. The initial value of this property before any access transaction has occurred shall be a local matter.

This property is the pAccessEventTag parameter of the object's ACCESS_EVENT event algorithm for both Access Alarm
Events and Access Transaction Events. See Clause 13.3 for event algorithm parameter descriptions.

12.31.29 Access_Event_Time

This property, of type BACnetTimeStamp, indicates the most recent update time of the Access_Event property. This property
shall update its value on each update of Access_Event. Update times of type Time or Date shall have X'FF' in each octet, and
Sequence Number update times shall have the value 0 if no update has yet occurred.

This property is the pAccessEventTime parameter of the object's ACCESS_EVENT event algorithm for both Access Alarm
Events and Access Transaction Events. See Clause 13.3 for event algorithm parameter descriptions.

12.31.30 Access_Event_Credential

This property, of type BACnetDeviceObjectReference, shall specify the Access Credential object that corresponds to the
access event specified in the Access_Event property, if applicable.
This property shall contain 4194303 in the instance part of the object identifier and in the device instance part of the device
identifier, if present, under the following conditions:

(a)
 there is no credential recognized up to now, or
(b)
 there is no credential that is associated to the current access event, or
(c)
 the credential of the authentication factor that is associated to the current event is unknown, or
(d)
 the device chooses not to expose the credential.

This property is the pAccessCredential parameter of the object's ACCESS_EVENT event algorithm for both Access Alarm
Events and Access Transaction Events. See Clause 13.3 for event algorithm parameter descriptions.

12.31.31 Access_Event_Authentication_Factor

This property, of type BACnetAuthenticationFactor, shall specify the authentication factor that corresponds to the access
event specified in the Access_Event property, if applicable. Otherwise it shall contain a value of format type UNDEFINED.

This property shall contain a value of format type UNDEFINED under the following conditions:

(a)
 there was no authentication factor read up to now, or
(b)
 there is no authentication factor that is associated to the current access event, or
(c)
 the device chooses not to expose the authentication factor.

This property is the pAccessFactor parameter of the object's ACCESS_EVENT event algorithm for both Access Alarm
Events and Access Transaction Events. See Clause 13.3 for event algorithm parameter descriptions.

12.31.32 Access_Doors

This property, of type BACnetARRAY[N] of BACnetDeviceObjectReference, shall specify the references to those Access
Door objects whose Present_Value properties are commanded after successful authorization. If this Access Point object does
not command Access Door objects (e.g., muster point), or is used to control access to other resources or functions, or
commands other objects, then this array shall be empty.

12.31.32.1 Commanding Access Doors

After successful authorization the following actions occur:

(1)
 The Access_Event property shall be set to GRANTED, and

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 339

(2)
 The physical doors, as specified in the Access_Doors property, are commanded with either a PULSE_UNLOCK or
EXTENDED_PULSE_UNLOCK door command, at the priority specified by the Priority_For_Writing property.

Commanding the doors may fail due to a higher priority command in effect in the Access Door object. In this case the
Access_Event property shall be set to LOCKED_BY_HIGHER_PRIORITY.

The respective Access Doors may be monitored to verify that they are opened and access takes place. If no access takes
place, the Access_Event property shall be set to NO_ENTRY_AFTER_GRANTED.

12.31.33 Priority_For_Writing

This property, of type Unsigned (1..16), defines the priority at which the referenced Access Door object's Present_Value
properties are commanded. It corresponds to the 'Priority' parameter of the WriteProperty service. The value 1 is considered
the highest priority and 16 the lowest. See Clause 19.2.

12.31.34 Muster_Point

This property, of type BOOLEAN, indicates whether this Access Point generates muster access events (TRUE) or not
(FALSE).

A muster event is generated by setting the Access_Event property to MUSTER after an access credential has been presented
at the access point. It is a local matter as to whether a muster event is generated for unknown credentials.

12.31.35 Zone_To

This property, of type BACnetDeviceObjectReference, shall specify the Access Zone object for which this Access Point
object is an entry access controlled point, allowing entrance to the zone. This property shall not reference the same Access
Zone object as the Zone_From property. If the Access Point is not an entry point to an access controlled zone, then this
property shall contain 4194303 in the instance part of the object identifier and in the device instance part of the device
identifier, if present.

12.31.36 Zone_From

This property, of type BACnetDeviceObjectReference, shall specify the Access Zone object for which this Access Point
object is an exit access controlled point, allowing exit from the zone. This property shall not reference the same Access Zone
object as the Zone_To property. If the Access Point is not an exit point from an access controlled zone, then this property
shall contain 4194303 in the instance part of the object identifier and in the device instance part of the device identifier, if
present.

12.31.37 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.31.38 Transaction_Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution of Access Transaction Events. If this property is not present, then the Notification Class specified by the property
Notification_Class shall be used for Access Transaction Events.

12.31.39 Access_Alarm_Events

The value of this property is used as the value of the pAccessEvents parameter of the object's ACCESS_EVENT event
algorithm for Access Alarm Events.

An Access Alarm Event is reported when the following conditions are true:

(a)
 The Access_Event is updated and the updated value is equal to one of the values in Access_Alarm_Events, and
(b)
 the TO_NORMAL flag is enabled in the Event_Enable property.

The notification is sent with Notify Type as specified by the property Notify_Type.

The Notification Class object referenced by the Notification_Class property is used to report Access Alarm Events.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

340 ANSI/ASHRAE Standard 135-2012

12.31.40 Access_Transaction_Events

The value of this property is used as the value of the pAccessEvents parameter of the object's ACCESS_EVENT event
algorithm for Access Transaction Events.

An Access Transaction Event is reported when the following conditions are true:

(a)
 the Access_Event is updated and the updated value is equal to one of the values in Access_Transaction_Events,
and

(b)
 the TO_NORMAL flag is set in the Event_Enable property.

The value of Notify_Type is ignored and the notification is sent with a Notify Type of EVENT. The Event_Time_Stamps
TO_NORMAL element is not affected. The Acked_Transitions TO_NORMAL bit is not affected.

The Notification Class object referenced by the Transaction_Notification_Class property is used to report Access Transaction
Events. If Transaction_Notification_Class is not present, the Notification Class object referenced by Notification_Class is
used. The Ack_Required property of the respective Notification Class object is ignored and the value FALSE is conveyed in
the AckRequired parameter of the event notification message.

12.31.41 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.31.42 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.31.43 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

Access Transaction Events generated by the object are always of type EVENT, regardless of the value of this property.

12.31.44 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.31.45 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.31.46 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.31.47 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Point Object Type

ANSI/ASHRAE Standard 135-2012 341

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.31.48 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.31.49 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.31.50 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.31.51 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.31.52 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name shall begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

342 ANSI/ASHRAE Standard 135-2012

12.32 Access Zone Object Type

The Access Zone object type defines a standardized object whose properties represent the externally visible characteristics
associated with a secured geographical zone for which authentication and authorization of a credential takes place to obtain
physical access. Entrance to the zone takes place through entry access controlled points while the zone is exited through exit
access controlled points. These access controlled points are represented by Access Point objects.

The Access Zone object may optionally support occupancy counting and the specification of occupancy limits. Access may
be denied if limits are violated. The enforcement rules are specified at the corresponding entry and/or exit Access Point
objects. The Access Zone object's Occupancy_State is the state of occupancy. This state is derived from the actual occupancy
count and occupancy limits.

Intrinsic reporting of this object is based on the Occupancy_State property and uses the CHANGE_OF_STATE algorithm.

"Who's in" reporting is supported through a list of the credentials which are currently in the zone. Credentials are added on
successful entrance through an access controlled entry point and removed on successful exit through an access controlled exit
point. This list may also be maintained based on time conditions or other local methods.

The Access Zone object supports passback detection and allows the selection of hard, soft or no-passback enforcement. A
passback violation occurs when entrance to this zone is requested at an access controlled point while the credential is
assumed to be in this zone. The list of credentials in this zone may be used to detect a passback violation.

A specific access controlled zone may be represented by a single Access Zone object in a single device, or in multiple
devices by one Access Zone object per device. When an access controlled zone is represented in multiple devices, the
representing Access Zone objects may not have the same Object_Identifier in each device; however, they may be identified
using the Global_Identifier property. It is a local matter as to how these objects are synchronized.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

ANSI/ASHRAE Standard 135-2012 343

Properties of the Access Zone Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Global_Identifier Unsigned32 W
Occupancy_State BACnetAccessZoneOccupancyState R
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability R1
Out_Of_Service BOOLEAN R
Occupancy_Count Unsigned O1,3,4
Occupancy_Count_Enable BOOLEAN O3,4
Adjust_Value INTEGER O3,4,5
Occupancy_Upper_Limit Unsigned O
Occupancy_Lower_Limit Unsigned O
Credentials_In_Zone BACnetLIST of BACnetDeviceObjectReference O
Last_Credential_Added BACnetDeviceObjectReference O
Last_Credential_Added_Time BACnetDateTime O
Last_Credential_Removed BACnetDeviceObjectReference O
Last_Credential_Removed_Time BACnetDateTime O
Passback_Mode BACnetAccessPassbackMode O
Passback_Timeout Unsigned O2
Entry_Points BACnetLIST of BACnetDeviceObjectReference R
Exit_Points BACnetLIST of BACnetDeviceObjectReference R
Time_Delay Unsigned O3,7
Notification_Class Unsigned O3,7
Alarm_Values BACnetLIST of BACnetAccessZoneOccupancyState O3,7
Event_Enable BACnetEventTransitionBits O3,7
Acked_Transitions BACnetEventTransitionBits O3,7
Notify_Type BACnetNotifyType O3,7
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,7
Event_Message_Texts BACnetARRAY[3] of CharacterString O6,7
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O7
Event_Detection_Enable BOOLEAN O3,7
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O7
Event_Algorithm_Inhibit BOOLEAN O7,8
Time_Delay_Normal Unsigned O7
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These properties, if present, shall be writeable when Out_Of_Service is TRUE.
2 If this property is present, then Passback_Mode shall be present.
3 These properties are required if the object supports intrinsic reporting.
4 These properties are required if, and shall be present only if, the object supports occupancy counting.
5 The Adjust_Value property shall be writeable if present.
6 This property, if present, is required to be read-only.
7 These properties shall be present only if the object supports intrinsic reporting.
8 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

344 ANSI/ASHRAE Standard 135-2012

12.32.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.32.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.32.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCESS_ZONE.

12.32.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.32.5 Global_Identifier

This property, of type Unsigned32, is a unique identifier which is used to globally identify the access controlled zone this
object represents. This value may be used to identify Access Zone objects in multiple devices that represent the same access
controlled zone.

If this value is assigned, it shall be unique internetwork-wide and all Access Zone objects in all devices that represent this
access controlled zone shall have this value. A value of zero indicates that no global identifier is assigned.

12.32.6 Occupancy_State

This property, of type BACnetAccessZoneOccupancyState, reflects the occupancy state of the zone.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

BACnetAccessZoneOccupancyState is an enumeration of possible occupancy states.

NORMAL This is the occupancy state when occupancy counting is enabled and no other

standard or proprietary states are applicable.

BELOW_LOWER_LIMIT If Occupancy_Lower_Limit property is present and the Occupancy_Count
property is lower than this value.

AT_LOWER_LIMIT If Occupancy_Lower_Limit property is present and the Occupancy_Count
property is equal to this value.

AT_UPPER_LIMIT If Occupancy_Upper_Limit property is present and the Occupancy_Count
property is equal to this value.

ABOVE_UPPER_LIMIT If Occupancy_Upper_Limit property is present and the Occupancy_Count
property is greater than this value.

DISABLED This is the occupancy state when occupancy counting is disabled for this object.
Occupancy counting is disabled when the Occupancy_Count_Enable property is
FALSE.

NOT_SUPPORTED This is the occupancy state when occupancy counting is not supported by this
object.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values to indicate other states
based on the Occupancy_Count property other than those defined by this

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

ANSI/ASHRAE Standard 135-2012 345

standard. For proprietary extensions of this enumeration, see Clause 23.1 of this
standard.

12.32.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Access Zone
object. A more detailed status may be determined by reading the properties that are linked to these flags. The relationship
between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.32.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.32.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Occupancy_State,
Occupancy_Count and/or Credentials_In_Zone properties of this object are "reliable" as far as the BACnet Device can
determine and, if not, why.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.32.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the object is out of
service.

When the object is out of service, the Reliability property and the corresponding state of the FAULT flag of the Status_Flags
property shall be decoupled and the Reliability property may be changed to any value as a means of simulating specific fixed
conditions or for testing purposes. Other functions that depend on the state of the Reliability property shall respond to
changes made to this property while Out_Of_Service is TRUE.

If occupancy counting is supported and the object is out of service, then the Occupancy_Count property is decoupled from
the processing of occupancy counting. In addition, writing to the Adjust_Value property shall not modify the
Occupancy_Count. The Occupancy_Count property may be changed to any value as a means of simulating specific fixed
conditions or for testing purposes. Other functions that depend on the state of the Occupancy_State property shall respond to
changes made to this property while Out_Of_Service is TRUE.

12.32.11 Occupancy_Count

This property, of type Unsigned, is used to indicate the actual occupancy count of a zone. If the value of the
Occupancy_Count_Enable property is FALSE, then this property shall have a value of zero. The value of the
Occupancy_Count property may be adjusted by writing to the Adjust_Value property. The Occupancy_Count property shall

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

346 ANSI/ASHRAE Standard 135-2012

be writable when Out_Of_Service is TRUE. When Out_Of_Service becomes FALSE, it is a local matter as to what value this
property is set to.

12.32.12 Occupancy_Count Enable

This property, of type BOOLEAN, indicates whether occupancy counting is enabled (TRUE) or not (FALSE).

If this property has a value of FALSE, then the Occupancy_State property shall have a value of DISABLED.

When this property changes from FALSE to TRUE it is a local matter as to what value the Occupancy_Count property is set
to.

12.32.13 Adjust_Value

This property, of type INTEGER, shall adjust the Occupancy_Count property when written.

The following series of operations shall be performed atomically when this property is written and the value of the
Occupancy_Count_Enable property is TRUE:

(1)
 The value written to Adjust_Value shall be stored in the Adjust_Value property.
(2)
 If the value written is non-zero, then this value shall be added to the value of the Occupancy_Count property. If the

value written is negative and the resulting value of the Occupancy_Count property would be less than zero, then the
Occupancy_Count property shall be set to zero. If the value written is zero, then the value of the Occupancy_Count
property shall be set to zero.

When this property is written and the value of the Occupancy_Count_Enable property is FALSE, then the Adjust_Value
property shall be set to zero.

If Adjust_Value has never been written or the Occupancy_Count_Enable property is FALSE, then this property shall have a
value of zero.

12.32.14 Occupancy_Upper_Limit

This property, of type Unsigned, specifies the occupancy upper limit of the zone. If this property has a value of zero, then
there is no upper limit. If this value is not zero, it shall be greater than the value of the Occupancy_Lower_Limit, if present.

12.32.15 Occupancy_Lower_Limit

This property, of type Unsigned, specifies the occupancy lower limit of the zone. If this property has a value of zero, then
there is no lower limit.

12.32.16 Credentials_In_Zone

This property, of type BACnetLIST of BACnetDeviceObjectReference, is used to list references to those Access Credential
objects that represent credentials assumed to be in this zone. This information may be used to verify whether a specific
credential is already in the zone for passback detection purposes. If the zone does not support listing credentials, then this list,
if present, shall be empty. It is a local matter as to how this list is updated.

12.32.17 Last_Credential_Added

This property, of type BACnetDeviceObjectReference, indicates the reference to the Access Credential object which has last
been added to the Credentials_In_Zone property. If no credential has been added yet, then this reference shall contain
4194303 in the instance part of the object identifier and in the device instance part of the device identifier, if present. If COV
property subscriptions for this property are present, then any update, even one with the same value, is reported by a COV
notification.

12.32.18 Last_Credential_Added_Time

This property, of type BACnetDateTime, indicates the date and time when a reference to an Access Credential object has last
been added to the Credentials_In_Zone property. If this property is present, but no credential has yet been added, then this
property shall not convey an actual time and shall contain a value of X'FF' in all octets.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

ANSI/ASHRAE Standard 135-2012 347

12.32.19 Last_Credential_Removed

This property, of type BACnetDeviceObjectReference, indicates the reference to the Access Credential object which has last
been removed from the Credentials_In_Zone property. If no credential has been removed yet, then this reference shall contain
4194303 in the instance part of the object identifier and in the device instance part of the device identifier, if present. If COV
property subscriptions for this property are present, then any update, even one with the same value, is reported by a COV
notification.

12.32.20 Last_Credential_Removed_Time

This property, of type BACnetDateTime, indicates the date and time when a reference to an Access Credential object has last
been removed from the Credentials_In_Zone property. If this property is present, but no credential has yet been removed,
then this property shall not convey an actual time and shall contain a value of X'FF' in all octets.

12.32.21 Passback_Mode

This property, of type BACnetAccessPassbackMode, specifies how all Access Point objects that represent entry points to the
access controlled zone this object represents shall handle passback violations. Passback modes are:

PASSBACK_OFF Passback violations are not checked.

HARD_PASSBACK Passback violations are checked, enforced and reported. When a passback violation is
detected, the Access_Event Property of the corresponding Access Point object shall
be set to DENIED_PASSBACK and the authorization for the credential shall fail.

SOFT_PASSBACK Passback violations are checked and reported but not enforced. When a passback
violation is detected, the Access_Event Property of the corresponding Access Point
object shall be set to PASSBACK_DETECTED.

12.32.22 Passback_Timeout

This property, of type Unsigned, specifies the passback timeout in minutes. The timeout is evaluated individually for every
credential used to enter the zone. The timeout period for a particular credential begins at the time of successful access to the
zone. After the timeout has expired for a particular credential, a passback violation of this credential will no longer be
detected. A value of zero or absence of this property indicates passback violations will never time out.

If Passback_Timeout is present, Passback_Mode shall be present.

12.32.23 Entry_Points

This property, of type BACnetLIST of BACnetDeviceObjectReference, references all Access Point objects that lead into the
zone.

12.32.24 Exit_Points

This property, of type BACnetLIST of BACnetDeviceObjectReference, references all Access Point objects that lead out of
the zone.

12.32.25 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.32.26 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.32.27 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

348 ANSI/ASHRAE Standard 135-2012

12.32.28 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.32.29 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.32.30 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.32.31 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.32.32 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.32.33 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.32.34 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.32.35 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.32.36 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Zone Object Type

ANSI/ASHRAE Standard 135-2012 349

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.32.37 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.32.38 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.32.39 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.32.40 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name begins with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access User Object Type

350 ANSI/ASHRAE Standard 135-2012

12.33 Access User Object Type

The Access User object type defines a standardized object whose properties represent the externally visible characteristics
associated with a user of a physical access control system.

The Access User object is used to represent an individual person, a group of users, or an asset. Relationships among access
users are supported for representation of hierarchical organizations (e.g., companies, departments, or groups of any kind) or
for representing ownership of assets.

The Access User object is not directly involved in authentication and authorization. It is used for informational purposes. It
can hold a name, a reference number and a reference to an external system providing details of the access user.

The Access User object can have Access Credential objects assigned. This information can be used for administrative
purposes (e.g., disabling all credentials of a person).

When a user is represented in multiple devices, the representing Access User objects may not have the same Object_Identifier
in each device; however, they may be identified using the Global_Identifier property. It is a local matter as to how these
objects are synchronized.

Table 12-38. Properties of the Access User Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Global_Identifier Unsigned32 W
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability R
User_Type BACnetAccessUserType R
User_Name CharacterString O
User_External_Identifier CharacterString O
User_Information_Reference CharacterString O
Members BACnetLIST of BACnetDeviceObjectReference O
Member_Of BACnetLIST of BACnetDeviceObjectReference O
Credentials BACnetLIST of BACnetDeviceObjectReference R
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

12.33.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.33.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.33.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCESS_USER.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access User Object Type

ANSI/ASHRAE Standard 135-2012 351

12.33.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.33.5 Global_Identifier

This property, of type Unsigned32, is a unique identifier which is used to globally identify the access user this object
represents. This value may be used to identify Access User objects in multiple devices which represent the same access user.

If this value is assigned, it shall be unique internetwork-wide and all Access User objects in all devices which represent this
access user shall have this value. A value of zero indicates that no global identifier is assigned.

12.33.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of this object. A
more detailed status may be determined by reading the properties that are linked to these flags. The relationship between
individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

12.33.7 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether this object is "reliable" as far as the
BACnet Device can determine and, if not, why.

12.33.8 User_Type

This property, of type BACnetAccessUserType, specifies the access user type this object represents. The following user types
are defined:

ASSET The Access User object represents a physical item.

GROUP The Access User object represents a group of access users.

PERSON The Access User object represents an individual person.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values to allow proprietary
access user types other than those defined by this standard. For proprietary
extensions of this enumeration, see Clause 23.1 of this standard.

12.33.9 User_Name

This property, of type CharacterString, is a string of printable characters which specifies the name of the access user. The
content is not restricted and can contain multiple lines.

12.33.10 User_External_Identifier

This property, of type CharacterString, specifies an external identifier associated with the access user. While the content is
typically unique, its interpretation is a local matter.

12.33.11 User_Information_Reference

This property, of type CharacterString, specifies a reference to an external system where additional information of the user
can be found. The interpretation of the content is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access User Object Type

352 ANSI/ASHRAE Standard 135-2012

12.33.12 Members

This property, of type BACnetLIST of BACnetDeviceObjectReference, references the Access User objects that represent the
associated access users. Each object referenced shall be an Access User object.

12.33.13 Member_Of

This property, of type BACnetLIST of BACnetDeviceObjectReference, references the Access User objects that represent the
access users to which this access user is associated. Each object referenced shall be an Access User object.

12.33.14 Credentials

This property, of type BACnetLIST of BACnetDeviceObjectReference, references all Access Credential objects that
represent those credentials which are owned by this access user. Each object referenced shall be an Access Credential object.

12.33.15 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.33.16 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.33.17 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name begins with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

ANSI/ASHRAE Standard 135-2012 353

12.34 Access Rights Object Type

The Access Rights object type defines a standardized object whose properties represent the externally visible characteristics
associated with access rights for physical access control.

The Access Rights object is a collection of individual access rule specifications which define privileges for entering and
leaving access controlled zones or for accessing other resources or functions. One or many credentials can share this
collection of access rules. This object type supports role-based access control models.

The Access Rights object contains a collection of negative and positive access rules. A negative access rule specifies where
and when access shall be denied. A positive access rule specifies where and when access may be granted. Negative access
rules take precedence over positive access rules. All negative access rules of all Access Rights objects assigned to a
credential are evaluated before any positive access rule.

Each access rule, whether positive or negative, specifies the location of access, which is an access controlled point or a zone,
a condition which determines whether the rule applies at this time, and a flag which indicates whether the rule is enabled. In
the most typical case the condition is determined by evaluating the Present_Value of a Schedule object that specifies time
ranges. In addition, each of these access rules can be enabled or disabled individually.

The Access Rights object can specify an accompaniment requirement that defines the access user that owns the
accompanying credential, the credential required to accompany, or the access rights required to be assigned to the
accompanying credential.

When a specific access rights collection is represented in multiple devices, the representing Access Rights objects may not
have the same Object_Identifier in each device; however, they may be identified using the Global_Identifier property. It is a
local matter as to how these objects are synchronized.

Table 12-39. Properties of the Access Rights Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Global_Identifier Unsigned32 W
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability R
Enable BOOLEAN R
Negative_Access_Rules BACnetARRAY[N] of BACnetAccessRule R
Positive_Access_Rules BACnetARRAY[N] of BACnetAccessRule R
Accompaniment BACnetDeviceObjectReference O
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

12.34.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.34.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

354 ANSI/ASHRAE Standard 135-2012

12.34.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCESS_ RIGHTS.

12.34.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.34.5 Global_Identifier

This property, of type Unsigned32, is a unique identifier which is used to globally identify the collection of access rights this
object represents. This value may be used to identify Access Rights objects in multiple devices which represent the same
collection of access rights.

If this value is assigned, it shall be unique internetwork-wide and all Access Rights objects in all devices which represent this
collection of access rights shall have this value. A value of zero indicates that no global identifier is assigned.

12.34.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of this object. A
more detailed status may be determined by reading the properties that are linked to these flags. The relationship between
individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

12.34.7 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether this object is "reliable" as far as the
BACnet Device can determine and, if not, why.

12.34.8 Enable

This property, of type BOOLEAN, indicates whether this object is enabled (TRUE) or disabled (FALSE). When this object is
disabled all the access rules specified in the Positive_Access_Rules and Negative_Access_Rules properties are disabled.

12.34.9 Negative_Access_Rules

This property, of type BACnetARRAY[N] of BACnetAccessRule, specifies the negative access rules. Each element of the
array is evaluated as described in Clause 12.34.9.1.

To determine how access rules are evaluated, see Clause 12.34.9.2.

12.34.9.1 Access Rule Specification

An access rule specification is of type BACnetAccessRule. This is a structure with the following fields:

Time-Range-Specifier This field is an enumeration that specifies the evaluation of the Time-Range field:

 SPECIFIED Time-Range references a property that will be evaluated to
TRUE or FALSE as defined for the Time-Range field.

 ALWAYS The value of the Time-Range field is ignored and always
evaluates to TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

ANSI/ASHRAE Standard 135-2012 355

Time-Range This optional field, of type BACnetDeviceObjectPropertyReference, references a

property that can be evaluated to TRUE or FALSE, which defines whether the
rule is valid (TRUE) or not (FALSE).

The Time-Range reference shall be considered unspecified if it contains 4194303
in the instance part of the object identifier and in the device instance part of the
device identifier, if present.

This field shall be present if Time-Range-Specifier is SPECIFIED. If Time-
Range-Specifier is ALWAYS and this field is present, then this reference shall be
unspecified.

If Time-Range-Specifier is SPECIFIED and this field references a property of
type other than BOOLEAN, then the following evaluations apply:

If the value of the referenced property is of type Unsigned, a value of zero shall
evaluate to FALSE, while any other value shall evaluate to TRUE.

If the value of the referenced property is of type INTEGER, a value of less than
or equal to zero shall evaluate to FALSE, while any value greater than zero shall
evaluate to TRUE.

If the value of the referenced property is of type BACnetBinaryPV, then
INACTIVE shall evaluate to FALSE, while ACTIVE evaluates to TRUE.

If the referenced property does not exist or is unspecified, or if its value cannot be
retrieved or is of type NULL, the Time-Range evaluates to FALSE.

If the reference property is of any other type, then the evaluation is a local matter.

Note: This field can reference a Schedule object Present_Value property for the
specification of time ranges.

Location-Specifier This field is an enumeration that specifies how the Location field is evaluated:

 SPECIFIED Location references a specific Access Point or Access Zone

object and is evaluated as specified for the Location field.

 ALL The value of the Location field is ignored and matches any
access controlled point.

Location This optional field, of type BACnetDeviceObjectReference, refers to the Access
Point or Access Zone that this access rule is valid for.

The Location reference shall be considered unspecified if it contains 4194303 in
the instance part of the object identifier and in the device instance part of the
device identifier, if present.

This field shall be present if Location-Specifier is SPECIFIED. If Location-
Specifier is ALL and this field is present, then this reference shall be unspecified.

If Location-Specifier is SPECIFIED, then the following evaluations apply:

When Location refers to an Access Point object, this access controlled point is

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

356 ANSI/ASHRAE Standard 135-2012

required to be the location where the credential used to request access has been
authenticated.

When Location refers to an Access Zone object, the access controlled point where
the credential used to request access has been authenticated is required to be an
entry point to this zone.

If the referenced object does not exist, is unspecified, or cannot be retrieved, then
the Location evaluates to FALSE.

Enable This field, of type BOOLEAN, specifies whether this rule is enabled (TRUE) or
not (FALSE).

An access rule evaluates to true when all of the following conditions are met:

(a)
 Time_Range field evaluates to TRUE, and
(b)
 the Location field matches the location of authentication, and
(c)
 the Enable field is TRUE.

12.34.9.2 Access Rules Authorization Check

The access rules authorization check is performed on the access rules assigned to a credential.

All the negative access rules of all the Access Rights objects referenced by the respective Access Credential object shall be
evaluated before the positive access rules. If any enabled negative rule evaluates to true, then this authorization check fails
and access shall be denied. In this case, the Access_Event property of the Access Point object shall be set to
DENIED_POINT_NO_ACCESS_RIGHTS if the negative rule prohibits access through the access point, or to
DENIED_ZONE_NO_ACCESS_RIGHTS if the negative rule prohibits access to the zone.

If no negative access rule evaluates to true, then the positive access rules of all the Access Rights objects referenced by the
respective Access Credential object shall be evaluated. When the first enabled positive access rule is found that evaluates to
true, then this authorization check succeeds. Access may subsequently be denied or granted based on other authorization
checks.

If all positive access rules of all the Access Rights objects referenced by this credential evaluate to false, then this
authorization check shall fail. In this case, if the credential has access through this access point or to the access zone at a
different time, then the Access_Event property of the Access Point object shall be set to
DENIED_OUT_OF_TIME_RANGE. Otherwise, the Access_Event property shall be set to
DENIED_NO_ACCESS_RIGHTS.

If the respective Access Credential object contains the value ACCESS_RIGHTS in the Authorization_Exemptions property,
then this authorization check is not performed and always considered successful.

12.34.9.3 Initializing New Array Elements When the Array Size is Increased

If the size of the Negative_Access_Rules array is increased without initial values being provided, then the new array
elements, for which no initial value is provided, shall be initialized to contain SPECIFIED for the Time-Range-Specifier
field, an unspecified reference in the Time-Range field, SPECIFIED for the Location-Specifier field, an unspecified reference
in the Location field, and FALSE for the Enable field.

12.34.10 Positive_Access_Rules

This property, of type BACnetARRAY[N] of BACnetAccessRule, specifies the positive access rules. Each element of the
array is evaluated as described in Clause 12.34.9.1.

To determine how access rules are evaluated, see Clause 12.34.9.2

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

ANSI/ASHRAE Standard 135-2012 357

12.34.10.1 Initializing New Array Elements When the Array Size is Increased

If the size of the Positive_Access_Rules array is increased without initial values being provided, then the new array elements,
for which no initial value is provided, shall be initialized to contain SPECIFIED for the Time-Range-Specifier field, an
unspecified reference in the Time-Range field, SPECIFIED for the Location-Specifier field, an unspecified reference in the
Location field, and FALSE for the Enable field.

12.34.11 Accompaniment

This property, of type BACnetDeviceObjectReference, specifies that the access rights, which this object represents, may be
evaluated successfully only if the original credential, which has this Access Rights object assigned, is accompanied by a
second credential that meets the accompaniment criteria and is presented at the same access point. The accompanying
credential must also have valid access rights to the Access Point where both credentials are presented. It is a local matter as to
whether the accompanying credential is required to be presented by the access user before or after the original credential.

If the accompanying credential is not presented within the amount of time, specified by the Accompaniment_Time property
of the Access Point object, then the authorization of the original credential will fail. If this time is not specified then the
amount of time to wait for the accompanying credential is a local matter. When the expected accompaniment is not received,
the Access_Event property of the Access Point object shall be set to DENIED_NO_ACCOMPANIMENT.

When an accompaniment is presented, whether valid or not, the Access_Event property of the Access Point object shall be
set to ACCOMPANIMENT_BY.

The accompaniment criteria are specified as:

(a)
 If this property refers to an Access Rights object, then the accompanying credential is required to have that
Access Rights object assigned.

(b)
 If this property refers to an Access Credential object, then this object is required to represent the accompanying
credential.

(c)
 If this property refers to an Access User object, then this object is required to represent the access user which
owns the accompanying credential.

If an invalid accompaniment is provided, then the Access_Event property of the Access Point object shall be set to
DENIED_INCORRECT_ACCOMPANIMENT.

If no accompaniment requirement is specified then this reference shall contain 4194303 in the instance part of the object
identifier and in the device instance part of the device identifier, if present.

12.34.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.34.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.34.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name begins with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Rights Object Type

358 ANSI/ASHRAE Standard 135-2012

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

ANSI/ASHRAE Standard 135-2012 359

12.35 Access Credential Object Type

The Access Credential object type defines a standardized object whose properties represent the externally visible
characteristics of a credential that is used for authentication and authorization when requesting access.

The credential can be owned by an access user of any type. Access user ownership is represented by a reference to an Access
User object.

The Access Credential object is a container of related authentication factors. Each authentication factor in the credential can
be individually enabled or disabled. An Access Credential object can represent a single authentication factor, a group of
authentication factors each having identical access rights, or multiple authentication factors required for multi-factor-
authentications.

The access rights assigned to the credential are specified by referencing Access Rights objects. Each reference can be
individually enabled or disabled.

The Credential_Status indicates the validity of this credential for authentication. The status is derived from other properties of
this object or can be set from an external process.

The credential can be restricted in its use for authentication. It can be restricted based on activation and expiry dates, the
number of days it can be used or the number of uses. It can be disabled if it is not used for a specified number of days. The
credential can be exempted from authorization checks such as passback violation enforcement and occupancy enforcements.
It can indicate whether an extended time is required to pass through a door.

A threat authority can be specified for the credential. If this value is lower than the threat level at the access controlled point,
then access is denied.

The credential can be flagged to be traced. Any access controlled point recognizing this credential shall generate a
corresponding TRACE access event.

When a credential is represented in multiple devices, the representing Access Credential objects may not have the same
Object_Identifier in each device; however, they may be identified using the Global_Identifier property. It is a local matter as
to how these objects are synchronized.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

360 ANSI/ASHRAE Standard 135-2012

Table 12-40. Properties of the Access Credential Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Global_Identifier Unsigned32 W
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability R
Credential_Status BACnetBinaryPV R
Reason_For_Disable BACnetLIST of BACnetAccessCredentialDisableReason R
Authentication_Factors BACnetARRAY[N] of BACnetCredentialAuthenticationFactor R
Activation_Time BACnetDateTime R
Expiry_Time BACnetDateTime R
Credential_Disable BACnetAccessCredentialDisable R
Days_Remaining INTEGER O1
Uses_Remaining INTEGER O
Absentee_Limit Unsigned O1
Belongs_To BACnetDeviceObjectReference O
Assigned_Access_Rights BACnetARRAY[N] of BACnetAssignedAccessRights R
Last_Access_Point BACnetDeviceObjectReference O
Last_Access_Event BACnetAccessEvent O
Last_Use_Time BACnetDateTime O
Trace_Flag BOOLEAN O
Threat_Authority BACnetAccessThreatLevel O
Extended_Time_Enable BOOLEAN O
Authorization_Exemptions BACnetLIST of BACnetAuthorizationExemption O
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If this property is present, then the property Last_Use_Time shall also be present.

12.35.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.35.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.35.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ACCESS_CREDENTIAL.

12.35.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

ANSI/ASHRAE Standard 135-2012 361

12.35.5 Global_Identifier

This property, of type Unsigned32, is a unique identifier which is used to globally identify the credential this object
represents. This value may be used to identify Access Credential objects in multiple devices which represent the same
credential.

If this value is assigned, it shall be unique internetwork-wide and all Access Credential objects in all devices which represent
this credential shall have this value. A value of zero indicates that no global identifier is assigned.

12.35.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of this object. A
more detailed status may be determined by reading the properties that are linked to these flags. The relationship between
individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

12.35.7 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether this object is "reliable" as far as the
BACnet Device can determine and, if not, why.

12.35.8 Credential_Status

This property, of type BACnetBinaryPV, specifies whether the credential is active or inactive. Only the value ACTIVE
enables the credential to be used for authentication. While the list in property Reason_For_Disable is nonempty, the status of
the credential shall be INACTIVE, otherwise it shall be ACTIVE.

When an inactive credential is used, the authentication of this credential shall fail and access to the access point shall be
denied. In this case, the Access_Event property of the Access Point object where the credential has attempted access shall be
set to the value which corresponds to the reason this credential is disabled, as specified in the Reason_For_Disable property.
See Clause 12.36.9.1.

12.35.9 Reason_For_Disable

This property, of type BACnetLIST of BACnetAccessCredentialDisableReason, contains a list of disable-reasons why the
credential has been disabled. The credential can be disabled for multiple reasons at the same time. While the
Credential_Status property has a value INACTIVE, this list shall not be empty. When an entry is removed from this list that
results in the list becoming empty, the Credential_Status shall be set to ACTIVE.

The disable-reasons for which the credential can be disabled are as follows:

DISABLED The credential is disabled for unspecified reasons.

DISABLED_NEEDS_PROVISIONING The credential needs further provisioning, which may include vendor
proprietary data.

DISABLED_UNASSIGNED The credential is not currently assigned to any access user.
This status is assigned only if the property Belongs_To is present and
contains instance 4194303 in the object identifier.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

362 ANSI/ASHRAE Standard 135-2012

DISABLED_NOT_YET_ACTIVE The credential is not yet valid at this time. The current time is before the
Activation_Time.

DISABLED_EXPIRED The credential is no longer valid. The current time is after the
Expiry_Time.

DISABLED_LOCKOUT Too many retries in multi-factor authentications have been performed.

DISABLED_MAX_DAYS The maximum number of days for which this credential is valid for has
been exceeded.

DISABLED_MAX_USES The maximum number of uses for which this credential is valid for has
been exceeded.

DISABLED_INACTIVITY The credential has exceeded the allowed period of inactivity.

DISABLED_MANUAL The credential is commanded to be disabled by a human operator.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values to indicate
disable reasons other than those defined by this standard. For proprietary
extensions of this enumeration, see Clause 23.1 of this standard.

12.35.9.1 Conditions for setting the Access_Event property of the Access Point object

When access is requested using a credential that is inactive, access shall not be granted. In this case the Access Point object
representing the access point where access was requested shall set its Access_Event property as defined in the following
table:

Table 12-41. Credential Disable Reasons and Applicable Access Events
Credential Disable Reason Applicable Access Event

DISABLED_NEEDS_PROVISIONING DENIED_CREDENTIAL_NOT_PROVISONED
DISABLED_UNASSIGNED DENIED_CREDENTIAL_UNASSIGNED
DISABLED_NOT_YET_ACTIVE DENIED_CREDENTIAL_NOT_YET_ACTIVE
DISABLED_LOCKOUT DENIED_CREDENTIAL_LOCKOUT
DISABLED_MAX_DAYS DENIED_CREDENTIAL_MAX_DAYS
DISABLED_MAX_USES DENIED_CREDENTIAL_MAX_USES
DISABLED_INACTIVITY DENIED_CREDENTIAL_INACTIVITY
DISABLED_MANUAL DENIED_CREDENTIAL_MANUAL_DISABLE
DISABLED DENIED_CREDENTIAL_DISABLED

If Reason_For_Disable contains multiple values, it is a local matter as to which corresponding access event the Access_Event
property is set to.

12.35.10 Authentication_Factors

This property, of type BACnetARRAY[N] of BACnetCredentialAuthenticationFactor, specifies the authentication factors
that belong to this credential. Each element of the array has two fields:

Disable This field, of type BACnetAccessAuthenticationFactorDisable, specifies whether the
corresponding authentication factor is disabled or not. Any value other than NONE
indicates that the authentication factor is not valid for authentication.

The following authentication factor disable values are defined:

 DISABLED The physical authentication factor is disabled for

unspecified reasons.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

ANSI/ASHRAE Standard 135-2012 363

 DISABLED_LOST The physical authentication factor is reported to be

lost.

 DISABLED_STOLEN The physical authentication factor is reported to be
stolen.

 DISABLED_DAMAGED The physical authentication factor is reported to be
damaged.

 DISABLED_DESTROYED The physical authentication factor is reported to be
destroyed.

 <Proprietary Enum Values> A vendor may use other proprietary enumeration
values to specify disable values other than those
defined by this standard. For proprietary
extensions of this enumeration, see Clause 23.1 of
this standard.

Authentication-Factor This field, of type BACnetAuthenticationFactor, specifies the authentication factor that
belongs to this credential.

Any access attempt using an authentication factor which is disabled shall fail. In this case, the Access_Event property of the
Access Point object where this authentication factor was used shall be set to the value corresponding to the reason why it was
disabled. See the following table.

Table 12-42. Authentication Factor Disable and Applicable Access Events
Authentication Factor Disable Applicable Access Event

DISABLED DENIED_AUTHENTICATION_FACTOR_DISABLED
DISABLED_LOST DENIED_AUTHENTICATION_FACTOR_LOST
DISABLED_STOLEN DENIED_AUTHENTICATION_FACTOR_STOLEN
DISABLED_DAMAGED DENIED_AUTHENTICATION_FACTOR_DAMAGED
DISABLED_DESTROYED DENIED_AUTHENTICATION_FACTOR_DESTROYED

12.35.10.1 Initializing New Array Elements When the Array Size is Increased

If the size of the Authentication _Factors array is increased without initial values being provided, then the new array elements
for which no initial value is provided shall be initialized to contain DISABLE for the Disable field and an authentication
factor with format type UNDEFINED for the Authentication-Factor field.

12.35.11 Activation_Time

This property, of type BACnetDateTime, specifies the date and time at or after which the credential becomes active. If the
current time is before the activation time, the credential shall be disabled and the value DISABLED_NOT_YET_ACTIVE
shall be added to the Reason_For_Disable list. The value DISABLED_NOT_YET_ACTIVE shall be removed from the list
when this condition no longer applies. If all of the octets of the BACnetDateTime value contain a value of X'FF', then the
credential has an activation time of 'start of time'.

12.35.12 Expiry_Time

This property, of type BACnetDateTime, specifies the date and time after which the credential will expire. This defines the
end of the validity period of the credential. If the current time is after the expiry time, the credential shall be disabled and the
value DISABLED_EXPIRED shall be added to the Reason_For_Disable list. The value DISABLED_EXPIRED shall be
removed from the list when this condition no longer applies. If all of the fields of the BACnetDateTime value contain a value
of X'FF', then the credential has an expiry time of 'end-of-time'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

364 ANSI/ASHRAE Standard 135-2012

12.35.13 Credential_Disable

This property, of type BACnetAccessCredentialDisable, contains a value that disables a credential for reasons external to this
object. If this property is writable, then it is the mechanism by which an operator or external process may disable the
credential.

When this property is changed, any disable reason added to the Reason_For_Disable list as a result of a previous change of
this property shall be removed from that list. When this property takes on any value other than NONE, the corresponding
disable-reason value shall be added to the Reason_For_Disable list.

The following credential disable values are defined:

NONE The credential has not been disabled by an operator or external
process.

DISABLE The credential has been disabled for unspecified reasons. The
disable-reason value DISABLED shall be added to the
Reason_For_Disable property.

DISABLE_MANUAL The credential has been disabled by a human operator. The
disable-reason value DISABLED_MANUAL shall be added to
the Reason_For_Disable property.

DISABLE_LOCKOUT The credential is disabled because it has been locked out by an
external process. The disable-reason value
DISABLED_LOCKOUT shall be added to the
Reason_For_Disable property.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values for
disabling a credential other than those defined by this standard.
A disable-reason value shall be added to the
Reason_For_Disable property. It is a local matter which disable
reason is added.
For proprietary extensions of this enumeration, see Clause 23.1
of this standard.

12.35.14 Days_Remaining

This property, of type INTEGER, specifies the number of remaining days for which the credential can be used. If this
property has a value greater than zero, its value shall be decremented by one when the credential this object represents is
granted access at an access controlled point, and the current date is more recent than the date indicated in the property
Last_Use_Time. If this property becomes zero, the Access Credential shall be disabled and the value
DISABLED_MAX_DAYS shall be added to the Reason_For_Disable property. The value DISABLED_MAX_DAYS shall
be removed from the Reason_For_Disable property when this property is set to a value greater than zero.

If this property is present and the credential this object represents is not limited in the days it can be used, then the value of
this property shall be -1 and DISABLED_MAX_USES shall never be added to the Reason_For_Disable property.

If Days_Remaining is present, then Last_Use_Time shall also be present.

12.35.15 Uses_Remaining

This property, of type INTEGER, specifies the number of remaining uses that the credential can be used for authentication. If
this property has a value greater than zero and access is granted at an access controlled point, then the value of this property
shall be decremented by one. If this property becomes zero, then the Access Credential shall be disabled and the value
DISABLED_MAX_USES shall be added to the Reason_For_Disable property. The value DISABLED_MAX_USES shall be
removed from the Reason_For_Disable property when this property is set to a value greater than zero.

If this property is present and the credential this object represents is not limited in the number of uses, then the value of this
property shall be -1 and DISABLED_MAX_USES shall never be added to the Reason_For_Disable property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

ANSI/ASHRAE Standard 135-2012 365

12.35.16 Absentee_Limit

This property, of type Unsigned, specifies the maximum number of consecutive days for which the credential can remain
inactive (i.e., unused) before it becomes disabled. The calculation of inactivity duration is based on the time of last use as
indicated by the property Last_Use_Time. If Last_Use_Time does not have a valid time and date, then the absentee limit
shall be considered to not be exceeded. When the absentee limit is exceeded, the Access Credential shall be disabled and the
value DISABLED_INACTIVITY shall be added to the Reason_For_Disable list. The value DISABLED_INACTIVITY shall
be removed from the list when this condition no longer applies.

If Absentee_Limit is present, Last_Use_Time shall also be present.

12.35.17 Belongs_To

This property, of type BACnetDeviceObjectReference, references an Access User object that represents the owning access
user (i.e., person, group, or asset). If this property is present and the credential is not assigned to an access user, this property
shall contain an instance number of 4194303 in the instance part of the object identifier and in the device instance part of the
device identifier, if present. The determination of whether the credential is valid for authentication, based on the value of this
property, is a local matter. If the credential has not been assigned to an access user and the policy of the site requires that it be
assigned, then the credential shall be disabled and the value DISABLED_UNASSIGNED shall be added to the
Reason_For_Disable list. The value DISABLED_UNASSIGNED shall be removed from the list when this condition no
longer applies.

12.35.18 Assigned_Access_Rights

This property, of type BACnetARRAY[N] of BACnetAssignedAccessRights, specifies the access rights assigned to this
credential. The structure has two fields:

Assigned-Access-Rights This field, of type BACnetDeviceObjectReference, refers to an Access Rights object
that defines access rights assigned to this credential. Each object referenced in this
field shall be an Access Rights object. Any entry which references a non-existent
Access Rights object shall be ignored. If no access rights are specified, then this
reference shall contain 4194303 in the instance part of the object identifier and in the
device instance part of the device identifier, if present.

Enable This field, of type BOOLEAN, specifies whether the access rights specified in the
assigned-access-rights field is enabled (TRUE) or not (FALSE) for the credential this
object represents.

12.35.18.1 Initializing New Array Elements When the Array Size is Increased

If the size of the Assigned_Access_Rights array is increased without initial values being provided, then the new array
elements for which no initial value is provided shall be initialized to contain 4194303 in the instance part of the object
identifier and in the device instance part of the device identifier, if present, for the Assigned-Access-Rights field, and the
value FALSE for the Enable field.

12.35.19 Last_Access_Point

This property, of type BACnetDeviceObjectReference, refers to the last Access Point object where one of the authentication
factors of the credential has been used. If property level COV is in effect for this property, any update of this property shall
cause a COV notification to be issued, regardless of whether the value of this property changes. If the credential this object
represents has never been used, then this property shall contain 4194303 in the instance part of the object identifier and in the
device instance part of the device identifier, if present.

12.35.20 Last_Access_Event

This property, of type BACnetAccessEvent, shall specify the last access event generated at an access controlled point upon
use of this credential. If the credential this object represents has never been used, then this property shall have a value of
NONE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

366 ANSI/ASHRAE Standard 135-2012

12.35.21 Last_Use_Time

This property, of type BACnetDateTime, specifies the date and time of the last use of the credential at an access controlled
point, independent of whether access was granted or denied. If the credential this object represents has never been used, then
this property shall have the value X'FF' for all date and time octets.

12.35.22 Trace_Flag

This property, of type BOOLEAN, specifies whether the credential is being traced. When a traced credential is used at an
access point, the Access_Event property of the corresponding Access Point object shall be set to TRACE.

12.35.23 Threat_Authority

This property, of type BACnetAccessThreatLevel, specifies the maximum threat level for which this credential is valid. If
this value is less than the Threat_Level property of the Access Point object where the access credential is used, access is
denied. If this property is not present, the threat authority of this credential is assumed to be zero.

12.35.24 Extended_Time_Enable

This property, of type BOOLEAN, specifies which command of type BACnetDoorValue shall be used to command the
access door when access is granted. If extended time is enabled (TRUE), EXTENDED_PULSE_UNLOCK is used, otherwise
(FALSE) PULSE_UNLOCK is used.

12.35.25 Authorization_Exemptions

This property, of type BACnetLIST of BACnetAuthorizationExemption, specifies the authorization checks from which this
credential is exempt. When a credential is exempt from an authorization check, the access attempt shall not be denied due to
this authorization criterion.

The following authorization exemption values are defined:

PASSBACK The credential is exempt from passback enforcement. If a passback
exemption is enabled for this credential, then the credential shall not
be denied access due to passback violations.

OCCUPANCY_CHECK The credential is exempt from occupancy enforcement. If an
occupancy exemption is enabled for this credential, then the
occupancy count in the Access Zone object shall be updated as
normal; however, the access credential shall not be denied access due
to occupancy limit enforcement.

ACCESS_RIGHTS The credential is exempt from standard access rights checks at the
access point. If an access rights exemption is enabled for this
credential, then the credential shall not be denied access due to having
insufficient access rights.

LOCKOUT The credential is exempt from lockout enforcement at an access
controlled point. If a lockout exemption is enabled for this credential,
then the credential shall not be denied access due to the access
controlled point being locked out.

DENY The credential is exempt from being denied access due to the
Authorization_Mode property of the Access Point object having the
value DENY_ALL.

VERIFICATION The credential is exempt from requiring secondary verification at an
access controlled point when the Authorization_Mode property has the
value VERIFICATION_REQUIRED.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Access Credential Object Type

ANSI/ASHRAE Standard 135-2012 367

AUTHORIZATION_DELAY

The credential is exempt from an authorization delay at an access
controlled point when the Authorization_Mode has the value
AUTHORIZATION_DELAYED.

<Proprietary Enum Values> A vendor may use other proprietary enumeration values for exempting
the credential from specific proprietary authorization checks.

For proprietary extensions of this enumeration, see Clause 23 of this
standard.

12.35.26 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the
object. This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.35.27 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.35.28 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name begins with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Credential Data Input Object Type

368 ANSI/ASHRAE Standard 135-2012

12.36 Credential Data Input Object Type

The Credential Data Input object type defines a standardized object whose properties represent the externally visible
characteristics of a process that provides authentication factors read by a physical device. An authentication factor is a data
element of a credential that is a unique digital identifier used to verify the identity of a credential. A credential may have
multiple authentication factors.

Examples of physical devices that may be represented by this object type are card readers, keypads, biometric readers, etc.

A single physical credential reader which supports multiple authentication factor formats may be represented by multiple
Credential Data Input objects when the authentication factor formats are not functionally equivalent or cannot be used
interchangeably. An example of a device of this type is a credential reader that contains both a card and biometric reader. In
this case two specific Credential Data Input objects are used; one for the card reader function and one for the biometric reader
function respectively.

Alternatively, a single physical credential reader that supports multiple authentication factor formats may be represented by a
single Credential Data Input object when the authentication factor formats are functionally equivalent and may be used
interchangeably. An example of a device of this type is a credential reader that can read multiple Wiegand formats. It is
recommended that a single Credential Data Input object that supports multiple authentication factor formats be associated
with a single physical device.

Credential Data Input objects may optionally support intrinsic reporting to facilitate the reporting of fault conditions.
Credential Data Input objects that support intrinsic reporting shall apply the NONE event algorithm.

The Credential Data Input object type and its properties are summarized in Table 12-43 and described in detail in this
subclause.

Table 12-43. Properties of the Credential Data Input Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value BACnetAuthenticationFactor R1

Description CharacterString O
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability R1
Out_Of_Service BOOLEAN R
Supported_Formats BACnetARRAY[N] of BACnetAuthenticationFactorFormat R
Supported_Format_Classes BACnetARRAY[N] of Unsigned O2
Update_Time BACnetTimeStamp R
Event_Detection_Enable BOOLEAN O3,4
Notification_Class Unsigned O3,4
Event_Enable BACnetEventTransitionBits O3,4
Event_State BACnetEventState O3,4
Acked_Transitions BACnetEventTransitionBits O3,4
Notify_Type BACnetNotifyType O3,4
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,4
Event_Message_Texts BACnetARRAY[3] of CharacterString O4
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O4
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required to be writable when Out_Of_Service is TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Credential Data Input Object Type

ANSI/ASHRAE Standard 135-2012 369

2 The size of this array shall be the same as the size of the Supported_Formats array.
3 These properties are required if the object supports intrinsic reporting.
4 These properties shall be present only if the object supports intrinsic reporting.

12.36.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.36.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.36.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be CREDENTIAL_DATA_INPUT.

12.36.4 Present_Value

This property, of type BACnetAuthenticationFactor, is a structure that encapsulates the authentication factor value. The
structure has three fields, which are defined as follows:

Format-Type This field, of type BACnetAuthenticationFactorType, specifies the format of the
authentication factor value in the Value field. The value of this field shall be one of the
format types specified in the Supported_Formats property. If there is no current
authentication factor value read by this object, then this field shall take on the value
UNDEFINED. In addition, if this field contains a value that is not specified in the
Supported_Formats property, such as after a modification to the Supported_Formats
property or after the Out_Of_Service property changes from TRUE to FALSE, then
this field shall take on the value UNDEFINED. If an authentication factor is read that
contains errors or that cannot be interpreted as one of the specified format types, then
this field shall take on the value ERROR.

Format-Class This field, of type Unsigned, shall contain the value specified in the
Supported_Format_Classes array field that corresponds to the authentication format type
in the Format-Type field. If the Supported_Format_Classes property is not present, this
field shall always have a value of zero. If Format-Type has a value of UNDEFINED, then
this field shall have a value of zero.

Value This field, of type OCTET STRING, holds the authentication factor value data. The
encoding of this value is specified in the Format-Type field and defined in Table P-1 of
ANNEX P.

The Present_Value property shall be writable when Out_Of_Service is TRUE.

12.36.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.36.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Credential
Data Input object. A more detailed status could be determined by reading the properties that are linked to these flags. The
relationship between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Credential Data Input Object Type

370 ANSI/ASHRAE Standard 135-2012

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.36.7 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value is "reliable" as far
as the BACnet Device or operator can determine.

The Reliability property shall be writable when Out_Of_Service is TRUE.

12.36.8 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of
the Credential Data Input object is prevented from being modified by some process local to the BACnet device in which the
object resides.

While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be changed to any value as a
means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the
Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as
if those changes had occurred in the input.

12.36.9 Supported_Formats

This property, of type BACnetARRAY of BACnetAuthenticationFactorFormat, is used to specify which authentication factor
formats are supported by this object. The structure of an element of this array has three fields that are defined as follows:

Vendor-Format This optional field of type Unsigned16 is required when Format-Type field has a value of
CUSTOM. It shall contain a unique identifier that identifies a specific custom
authentication factor format as defined by the BACnet vendor in the Vendor-ID field. If
the Format-Type field does not have a value of CUSTOM and this field is present, then it
shall have a value of zero.

12.36.9.1 Resizing Supported_Formats Array and Supported_Format_Classes Array, by Writing Any of these
Properties

The size of the Supported Formats array and Supported_Format_Classes arrays shall be maintained so that both have the
same size. If either of these arrays is present and writable and the number of elements of one is reduced, then each of the
arrays shall be truncated to the new reduced size. If either of these arrays is present and writable and the number of elements
of one array is increased, then the other array shall be increased to the new expanded size and the new array elements
initialized according to the requirements of each property. See Clauses 12.36.9.2 and 12.36.10.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Credential Data Input Object Type

ANSI/ASHRAE Standard 135-2012 371

12.36.9.2 Initializing New Array Elements When the Array Size is Increased

If the size of the Supported_Formats array is increased without entry values being provided, then the new array entries shall
be initialized with the Format-Type having a value of UNDEFINED. If Vendor-ID and Vendor-Format are present, they shall
be initialized with a value of zero.

12.36.10 Supported_Format_Classes

This property, of type BACnetARRAY of Unsigned, specifies the values that the Format-Class field of the Present_Value
may take on. The value of the ith element of this array shall be used when an authentication factor is read that is of the format
defined in the ith element of the Supported_Formats array.

This property is used to distinguish between multiple different supported authentication factor formats, used on a site, of
which two or more use the same authentication factor format type and may have colliding value ranges. A value of zero is
used as the default where no differentiation is required. Otherwise, the value is site specific and can be any non-zero value.

12.36.10.1 Resizing Supported_Formats Array and Supported_Format_Classes Array by Writing Any of these
Properties

See Clause 12.36.9.1

12.36.10.2 Initializing New Array Elements When the Array Size is Increased

If the size of the Supported_Format_Classes array is increased without entry values being provided, then the new array
entries shall be initialized with a value of zero.

12.36.11 Update_Time

This property, of type BACnetTimeStamp, indicates the most recent update time when the Present_Value was updated. This
property shall update its value on each update of the Present_Value. If no update has yet occurred, update times of type Time
or Date shall have X'FF' in each octet, and Sequence Number update times shall have the value 0.

12.36.12 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.36.13 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.36.14 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.36.15 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.36.16 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Credential Data Input Object Type

372 ANSI/ASHRAE Standard 135-2012

12.36.17 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.36.18 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.36.19 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.36.20 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.36.21 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.36.22 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.36.23 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name shall begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
CharacterString Value Object Type

ANSI/ASHRAE Standard 135-2012 373

12.37 CharacterString Value Object Type

The CharacterString Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a CharacterString Value object to make
any kind of character string data value accessible to other BACnet devices. The mechanisms by which the value is derived
are not visible to the BACnet client.

If a set of strings is known and fixed, then a Multi-state Value object is an alternative that may provide some benefit to
automated processes consuming the numeric Present_Value.

CharacterString Value objects that support intrinsic reporting shall apply the CHANGE_OF_CHARACTERSTRING event
algorithm.

For reliability-evaluation, the FAULT_CHARACTERSTRING fault algorithm can be applied.

Table 12-44. Properties of the CharacterString Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value CharacterString R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O3
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default CharacterString O2
Time_Delay Unsigned O3,5
Notification_Class Unsigned O3,5
Alarm_Values BACnetARRAY[N] of BACnetOptionalCharacterString O3,5
Fault_Values BACnetARRAY[N] of BACnetOptionalCharacterString O7
Event_Enable BACnetEventTransitionBits O3,5
Acked_Transitions BACnetEventTransitionBits O3,5
Notify_Type BACnetNotifyType O3,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,5
Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O3,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Time_Delay_Normal Unsigned O5
Reliability_Evaluation_Inhibit BOOLEAN O7
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be writable
when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
CharacterString Value Object Type

374 ANSI/ASHRAE Standard 135-2012

7 If this property is present, then the Reliability property shall be present.

12.37.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.37.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be CHARACTERSTRING_VALUE.

12.37.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.37.5 Present_Value

This property, of type CharacterString, indicates the current value of the object. The Present_Value property shall be writable
when Out_Of_Service is TRUE (see Clause 12.37.9).

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

If a fault algorithm is applied, then this property shall be the pMonitoredValue fault algorithm parameter. See Clause 13.4 for
fault algorithm parameter descriptions.

12.37.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a
CharacterString Value object. Three of the flags are associated with the values of another property of this object. A more
detailed status could be determined by reading the property that is linked to this flag. The relationship between individual
flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
CharacterString Value Object Type

ANSI/ASHRAE Standard 135-2012 375

12.37.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.37.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the CharacterString Value object is reliably
reporting its value.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.37.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the
CharacterString Value object is decoupled from software local to the BACnet device in which the object resides that
normally produces the Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the
Present_Value property may be written to freely.

12.37.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.37.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.37.12 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.37.13 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.37.14 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.37.15 Fault_Values

This property is the value of the pFaultValues parameter of the object's fault algorithm. See Clause 13.4 for fault algorithm
parameter descriptions.

12.37.16 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.37.17 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
CharacterString Value Object Type

376 ANSI/ASHRAE Standard 135-2012

12.37.18 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.37.19 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.37.20 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.37.21 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.37.22 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.37.23 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.37.24 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.37.25 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.37.26 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
CharacterString Value Object Type

ANSI/ASHRAE Standard 135-2012 377

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.37.27 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.37.28 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Value Object Type

378 ANSI/ASHRAE Standard 135-2012

12.38 DateTime Value Object Type

The DateTime Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a DateTime Value object to make any
kind of datetime data value accessible to other BACnet devices. The mechanisms by which the value is derived are not
visible to the BACnet client.

A DateTime Value object is used to represent a single moment in time. In contrast, the DateTime Pattern Value object can be
used to represent multiple recurring dates and times.

Table 12-45. Properties of the DateTime Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BACnetDateTime R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default BACnetDateTime O2
Is_UTC BOOLEAN O
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.38.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.38.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be DATETIME_VALUE.

12.38.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.38.5 Present_Value

This property, of type BACnetDateTime, indicates the current value of the object. The value of this property shall contain
either a fully specified date and time or it shall indicate a fully unspecified date and time by setting all octets to X'FF'. A fully

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Value Object Type

ANSI/ASHRAE Standard 135-2012 379

specified date and time does not contain any octets that are equal to X'FF' or the special values for the 'month' or 'day of
month' fields, the Present_Value property shall be writable when Out_Of_Service is TRUE (see Clause 12.38.9).

12.38.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a DateTime
Value object. Three of the flags are associated with the values of another property of this object. A more detailed status could
be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by
the protocol. The four flags are:

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}
where:

12.38.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.38.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the DateTime Value object is reliably reporting
its value.

12.38.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the DateTime
Value object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.38.10 Priority_Array

This property is a read-only array containing prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.38.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.38.12 Is_UTC

This property, of type BOOLEAN, indicates whether the Present_Value property indicates a UTC date and time (when
TRUE) or a local date and time (when FALSE). If this property is absent, the Present_Value shall be a local date and time.

12.38.13 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Value Object Type

380 ANSI/ASHRAE Standard 135-2012

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.38.14 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.38.15 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Large Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 381

12.39 Large Analog Value Object Type

The Large Analog Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a Large Analog Value object to make
any kind of double-precision data value accessible to other BACnet devices. The mechanisms by which the value is derived
are not visible to the BACnet client.

Large Analog Value objects that support intrinsic reporting shall apply the DOUBLE_OUT_OF_RANGE event algorithm.

Table 12-46. Properties of the Large Analog Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Double R1

Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O4
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Units BACnetEngineeringUnits R
Priority_Array BACnetPriorityArray O2
Relinquish_Default Double O2
COV_Increment Double O3
Time_Delay Unsigned O4,6
Notification_Class Unsigned O4,6
High_Limit Double O4,6
Low_Limit Double O4,6
Deadband Double O4,6
Limit_Enable BACnetLimitEnable O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Time_Delay_Normal Unsigned O6
Reliability_Evaluation_Inhibit BOOLEAN O8
Min_Pres_Value Double O
Max_Pres_Value Double O
Resolution Double O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be writable
when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 This property is required if, and shall be present only if, the object supports COV reporting.
4 These properties are required if the object supports intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Large Analog Value Object Type

382 ANSI/ASHRAE Standard 135-2012

5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

12.39.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.39.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be LARGE_ANALOG_VALUE.

12.39.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.39.5 Present_Value

This property, of type Double, indicates the current value of the object. The Present_Value property shall be writable when
Out_Of_Service is TRUE (see Clause 12.39.9).

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.39.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Large Analog
Value object. Three of the flags are associated with the values of another property of this object. A more detailed status could
be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Large Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 383

12.39.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.39.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Large Analog Value object is reliably
reporting its value.

12.39.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Large Analog
Value object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.39.10 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.39.11 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.39.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.39.13 COV_Increment

This property, of type Double, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.39.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.39.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.39.16 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.39.17 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.39.18 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.39.19 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Large Analog Value Object Type

384 ANSI/ASHRAE Standard 135-2012

12.39.20 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.39.21 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.39.22 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.39.23 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.39.24 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.39.25 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.39.26 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.39.27 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.39.28 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Large Analog Value Object Type

ANSI/ASHRAE Standard 135-2012 385

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.39.29 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.39.30 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.39.31 Min_Pres_Value

This property, of type Double, indicates the lowest number in engineering units that can be reliably obtained or used for the
Present_Value property of this object.

12.39.32 Max_Pres_Value

This property, of type Double, indicates the highest number in engineering units that can be reliably obtained or used for the
Present_Value property of this object.

12.39.33 Resolution

This read-only property, of type Double, indicates the smallest recognizable change in Present_Value in engineering units.

12.39.34 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.39.35 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
BitString Value Object Type

386 ANSI/ASHRAE Standard 135-2012

12.40 BitString Value Object Type

The BitString Value object type defines a standardized object whose properties represent the externally visible characteristics
of a named data value in a BACnet device. A BACnet device can use a BitString Value object to make any kind of bitstring
data value accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to the BACnet
client.

BitString Value objects that support intrinsic reporting shall apply the CHANGE_OF_BITSTRING event algorithm.

Table 12-47. Properties of the BitString Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BIT STRING R1
Bit_Text BACnetARRAY[N] of CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O3
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default BIT STRING O2
Time_Delay Unsigned O3,5
Notification_Class Unsigned O3,5
Alarm_Values BACnetARRAY[N] of BIT STRING O3,5
Bit_Mask BIT STRING O3,5
Event_Enable BACnetEventTransitionBits O3,5
Acked_Transitions BACnetEventTransitionBits O3,5
Notify_Type BACnetNotifyType O3,5
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3,5
Event_Message_Texts BACnetARRAY[3] of CharacterString O4,5
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O5
Event_Detection_Enable BOOLEAN O3,5
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O5
Event_Algorithm_Inhibit BOOLEAN O5,6
Time_Delay_Normal Unsigned O5
Reliability_Evaluation_Inhibit BOOLEAN O7
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 These properties are required if the object supports intrinsic reporting.
4 This property, if present, is required to be read-only.
5 These properties shall be present only if the object supports intrinsic reporting.
6 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
7 If this property is present, then the Reliability property shall be present.

12.40.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
BitString Value Object Type

ANSI/ASHRAE Standard 135-2012 387

12.40.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be BITSTRING_VALUE.

12.40.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.40.5 Present_Value

This property, of type BIT STRING, indicates the current value of the object. The Present_Value property shall be writable
when Out_Of_Service is TRUE (see Clause 12.40.10).

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.40.6 Bit_Text

This property is a BACnetARRAY of Character Strings representing descriptions of all possible bits of the Present_Value.
The number of descriptions matches the number of bits in the Present_Value property. The bits in Present_Value have a one-
to-one correspondence with one-based indices in the array, where bit (0) corresponds to array index one.

12.40.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a BitString
Value object. Three of the flags are associated with the values of another property of this object. A more detailed status could
be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.40.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
BitString Value Object Type

388 ANSI/ASHRAE Standard 135-2012

12.40.9 Reliability

This property, of type BACnetReliability, provides an indication of whether the BitString Value object is reliably reporting
its value.

12.40.10 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the BitString
Value object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.40.11 Priority_Array

This property is a read-only array containing prioritized commands that are in effect for this object. See Clause 19 for a
description of the prioritization mechanism.

12.40.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.40.13 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.40.14 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.40.15 Alarm_Values

This property is the pAlarmValues parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.40.16 Bit_Mask

This property is the pBitMask parameter of the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.40.17 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.40.18 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.40.19 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.40.20 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
BitString Value Object Type

ANSI/ASHRAE Standard 135-2012 389

12.40.21 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.40.22 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.40.23 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.40.24 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.40.25 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.40.26 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.40.27 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.40.28 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
BitString Value Object Type

390 ANSI/ASHRAE Standard 135-2012

12.40.29 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
OctetString Value Object Type

ANSI/ASHRAE Standard 135-2012 391

12.41 OctetString Value Object Type

The OctetString Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use an OctetString Value object to make any
kind of OCTET STRING data value accessible to other BACnet devices. The mechanisms by which the value is derived are
not visible to the BACnet client.

Table 12-48. Properties of the OctetString Value Object
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value OCTET STRING R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default OCTET STRING O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required to be writable when Out_Of_Service is TRUE.
2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.41.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.41.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be OCTETSTRING_VALUE.

12.41.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.41.5 Present_Value

This property, of type OCTET STRING, indicates the current value of the object. The Present_Value property shall be
writable when Out_Of_Service is TRUE (see Clause 12.41.9).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
OctetString Value Object Type

392 ANSI/ASHRAE Standard 135-2012

12.41.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an OctetString
Value object. Three of the flags are associated with the values of another property of this object. A more detailed status could
be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.41.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.41.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the OctetString Value object is reliably reporting
its value.

12.41.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the OctetString
Value object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.41.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.41.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.41.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
OctetString Value Object Type

ANSI/ASHRAE Standard 135-2012 393

12.41.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.41.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Value Object Type

394 ANSI/ASHRAE Standard 135-2012

12.42 Time Value Object Type

The Time Value object type defines a standardized object whose properties represent the externally visible characteristics of a
named data value in a BACnet device. A BACnet device can use a Time Value object to make any kind of time data value
accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to the BACnet client.

A Time Value object is used to represent a single moment in time. In contrast, the Time Pattern Value object can be used to
represent multiple recurring times.

Table 12-49. Properties of the Time Value Object
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Time R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default Time O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.42.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.42.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be TIME_VALUE.

12.42.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.42.5 Present_Value

This property, of type Time, indicates the current value of the object. The value of this property shall contain either a fully
specified time of day or it shall indicate a fully unspecified time by setting all octets to X'FF'. A fully specified time shall
contain no octets that are equal to X'FF'. This property shall always be used to indicate a time of day, not a duration or
relative time value. The Present_Value property shall be writable when Out_Of_Service is TRUE (see Clause 12.42.9).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Value Object Type

ANSI/ASHRAE Standard 135-2012 395

12.42.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Time Value
object. Three of the flags are associated with the values of another property of this object. A more detailed status could be
determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by the
protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.42.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.42.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Time Value object is reliably reporting its
value.

12.42.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Time Value
object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.42.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.42.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.42.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Value Object Type

396 ANSI/ASHRAE Standard 135-2012

12.42.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.42.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier is not required to have any relationship to the vendor identifier of
the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Integer Value Object Type

ANSI/ASHRAE Standard 135-2012 397

12.43 Integer Value Object Type

The Integer Value object type defines a standardized object whose properties represent the externally visible characteristics
of a named data value in a BACnet device. A BACnet device can use an Integer Value object to make any kind of signed
integer data value accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to the
BACnet client.

Integer Value objects that support intrinsic reporting shall apply the SIGNED_OUT_OF_RANGE event algorithm.

Table 12-50. Properties of the Integer Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value INTEGER R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O4
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Units BACnetEngineeringUnits R
Priority_Array BACnetPriorityArray O2
Relinquish_Default INTEGER O2
COV_Increment Unsigned O3
Time_Delay Unsigned O4,6
Notification_Class Unsigned O4,6
High_Limit INTEGER O4,6
Low_Limit INTEGER O4,6
Deadband Unsigned O4,6
Limit_Enable BACnetLimitEnable O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Time_Delay_Normal Unsigned O6
Reliability_Evaluation_Inhibit BOOLEAN O8
Min_Pres_Value INTEGER O
Max_Pres_Value INTEGER O
Resolution INTEGER O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 This property is required if, and shall be present only if, the object supports COV reporting.
4 These properties are required if the object supports intrinsic reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Integer Value Object Type

398 ANSI/ASHRAE Standard 135-2012

5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

12.43.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.43.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be INTEGER_VALUE.

12.43.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.43.5 Present_Value

This property, of type INTEGER, indicates the current value of the object. The Present_Value property shall be writable
when Out_Of_Service is TRUE (see Clause 12.43.9).

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.43.6 Status_Flags

This required property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an
Integer Value object. Three of the flags are associated with the values of another property of this object. A more detailed
status could be determined by reading the property that is linked to this flag. The relationship between individual flags is not
defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Integer Value Object Type

ANSI/ASHRAE Standard 135-2012 399

12.43.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.43.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Integer Value object is reliably reporting its
value.

12.43.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Integer Value
object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.43.10 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.43.11 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.43.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.43.13 COV_Increment

This property, of type Unsigned, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.43.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.43.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.43.16 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.43.17 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.43.18 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.43.19 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Integer Value Object Type

400 ANSI/ASHRAE Standard 135-2012

12.43.20 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.43.21 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.43.22 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.43.23 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.43.24 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.43.25 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.43.26 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.43.27 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.43.28 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Integer Value Object Type

ANSI/ASHRAE Standard 135-2012 401

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.43.29 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.43.30 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.43.31 Min_Pres_Value

This property, of type INTEGER, indicates the lowest number in engineering units that can be reliably obtained or used for
the Present_Value property of this object.

12.43.32 Max_Pres_Value

This property, of type INTEGER, indicates the highest number in engineering units that can be reliably obtained or used for
the Present_Value property of this object.

12.43.33 Resolution

This read-only property, of type Integer, indicates the smallest recognizable change in Present_Value in engineering units.

12.43.34 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.43.35 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Positive Integer Value Object Type

402 ANSI/ASHRAE Standard 135-2012

12.44 Positive Integer Value Object Type

The Positive Integer Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a Positive Integer Value object to make
any kind of unsigned data value accessible to other BACnet devices. The mechanisms by which the value is derived are not
visible to the BACnet client.

Positive Integer Value objects that support intrinsic reporting shall apply the UNSIGNED_OUT_OF_RANGE event
algorithm.

Table 12-51. Properties of the Positive Integer Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Unsigned R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O4
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Units BACnetEngineeringUnits R
Priority_Array BACnetPriorityArray O2
Relinquish_Default Unsigned O2
COV_Increment Unsigned O3
Time_Delay Unsigned O4,6
Notification_Class Unsigned O4,6
High_Limit Unsigned O4,6
Low_Limit Unsigned O4,6
Deadband Unsigned O4,6
Limit_Enable BACnetLimitEnable O4,6
Event_Enable BACnetEventTransitionBits O4,6
Acked_Transitions BACnetEventTransitionBits O4,6
Notify_Type BACnetNotifyType O4,6
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4,6
Event_Message_Texts BACnetARRAY[3] of CharacterString O5,6
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O6
Event_Detection_Enable BOOLEAN O4,6
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O6
Event_Algorithm_Inhibit BOOLEAN O6,7
Time_Delay_Normal Unsigned O6
Reliability_Evaluation_Inhibit BOOLEAN O8
Min_Pres_Value Unsigned O
Max_Pres_Value Unsigned O
Resolution Unsigned O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 This property is required if, and shall be present only if, the object supports COV reporting.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Positive Integer Value Object Type

ANSI/ASHRAE Standard 135-2012 403

4 These properties are required if the object supports intrinsic reporting.
5 This property, if present, is required to be read-only.
6 These properties shall be present only if the object supports intrinsic reporting.
7 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
8 If this property is present, then the Reliability property shall be present.

12.44.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.44.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be POSITIVE_INTEGER_VALUE.

12.44.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.44.5 Present_Value

This property, of type Unsigned, indicates the current value of the object. The Present_Value property shall be writable when
Out_Of_Service is TRUE (see Clause 12.44.9).

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm. See Clause 13.3 for event algorithm parameter descriptions.

12.44.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Positive
Integer Value object. Three of the flags are associated with the values of another property of this object. A more detailed
status could be determined by reading the property that is linked to this flag. The relationship between individual flags is not
defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Positive Integer Value Object Type

404 ANSI/ASHRAE Standard 135-2012

12.44.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.44.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Positive Integer Value object is reliably
reporting its value.

12.44.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Positive
Integer Value object is decoupled from software local to the BACnet device in which the object resides that normally
produces the Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value
property may be written to freely.

12.44.10 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of this object. See the
BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units defined by this standard.

12.44.11 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.44.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.44.13 COV_Increment

This property, of type Unsigned, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients. This property is required if COV reporting is supported by this object.

12.44.14 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.44.15 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.44.16 High_Limit

This property is the pHighLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.44.17 Low_Limit

This property is the pLowLimit parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.44.18 Deadband

This property is the pDeadband parameter for the object's event algorithm. See Clause 13.3 for event algorithm parameter
descriptions.

12.44.19 Limit_Enable

This property, of type BACnetLimitEnable, is the pLimitEnable parameter for the object's event algorithm. See 13.3 for event
algorithm parameter descriptions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Positive Integer Value Object Type

ANSI/ASHRAE Standard 135-2012 405

12.44.20 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.44.21 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.44.22 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.44.23 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.44.24 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.44.25 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.44.26 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.44.27 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.44.28 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Positive Integer Value Object Type

406 ANSI/ASHRAE Standard 135-2012

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.44.29 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.44.30 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.44.31 Min_Pres_Value

This property, of type Unsigned, indicates the lowest number in engineering units that can be reliably obtained or used for the
Present_Value property of this object.

12.44.32 Max_Pres_Value

This property, of type Unsigned, indicates the highest number in engineering units that can be reliably obtained or used for
the Present_Value property of this object.

12.44.33 Resolution

This read-only property, of type Unsigned, indicates the smallest recognizable change in Present_Value in engineering units.

12.44.34 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.44.35 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Value Object Type

ANSI/ASHRAE Standard 135-2012 407

12.45 Date Value Object Type

The Date Value object type defines a standardized object whose properties represent the externally visible characteristics of a
named data value in a BACnet device. A BACnet device can use a Date Value object to make any kind of date data value
accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to the BACnet client.

A Date Value object is used to represent a single day. In contrast, the Date Pattern Value object can be used to represent
multiple recurring dates.

Table 12-52. Properties of the Date Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Date R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default Date O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.45.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.45.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be DATE_VALUE.

12.45.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.45.5 Present_Value

This property, of type Date, indicates the current value of the object. The value of this property shall contain either a fully
specified date or it shall indicate a fully unspecified date by setting all octets to X'FF'. A fully specified date shall not contain
octets that are equal to X'FF' or contain special values for the 'month' or 'day of month' fields. The Present_Value property
shall be writable when Out_Of_Service is TRUE (see Clause 12.45.9).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Value Object Type

408 ANSI/ASHRAE Standard 135-2012

12.45.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Date Value
object. Three of the flags are associated with the values of another property of this object. A more detailed status could be
determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by the
protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.45.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.45.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Date Value object is reliably reporting its
value.

12.45.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Date Value
object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.45.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.45.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.45.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Value Object Type

ANSI/ASHRAE Standard 135-2012 409

12.45.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.45.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Pattern Value Object Type

410 ANSI/ASHRAE Standard 135-2012

12.46 DateTime Pattern Value Object Type

The DateTime Pattern Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a DateTime Pattern Value object to
make any kind of datetime data value accessible to other BACnet devices. The mechanisms by which the value is derived are
not visible to the BACnet client.

DateTime Pattern objects can be used to represent multiple recurring dates and times based on rules defined by the pattern of
individual fields of the date and time, some of which can be special values like "even months", or "don't care", which
matches any value in that field. Examples of possibilities would be: "11:00 every Thursday in any June", or "every day in
May 2009".

Table 12-53. Properties of the DateTime Pattern Value Object
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BACnetDateTime R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Is_UTC BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default BACnetDateTime O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.46.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.46.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be DATETIME_PATTERN_VALUE.

12.46.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.46.5 Present_Value

This property, of type BACnetDateTime, indicates the current value of the object. The value of this property may indicate a
fully specified date and time or a partially specified datetime pattern by containing one or more unspecified octets that are

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Pattern Value Object Type

ANSI/ASHRAE Standard 135-2012 411

equal to X'FF' or the special values for the 'month' or 'day of month' fields. The Present_Value property shall be writable
when Out_Of_Service is TRUE (see Clause 12.46.9).

12.46.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a DateTime
Pattern Value object. Three of the flags are associated with the values of another property of this object. A more detailed
status could be determined by reading the property that is linked to this flag. The relationship between individual flags is not
defined by the protocol. The four flags are:

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.46.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.46.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the DateTime Pattern Value object is reliably
reporting its value.

12.46.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the DateTime
Value object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.46.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.46.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.46.12 Is_UTC

This property indicates whether the Present_Value property indicates a UTC date and time (when TRUE) or a local date and
time (when FALSE). If this property is absent, the Present_Value shall be a local date and time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
DateTime Pattern Value Object Type

412 ANSI/ASHRAE Standard 135-2012

12.46.13 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.46.14 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.46.15 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Pattern Value Object Type

ANSI/ASHRAE Standard 135-2012 413

12.47 Time Pattern Value Object Type

The Time Pattern Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a Time Pattern Value object to make any
kind of time data value accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to
the BACnet client.

Time Pattern objects can be used to represent multiple recurring times based on rules defined by the pattern of individual
fields of the time, some of which may be "don't care", which matches any value in that field. Examples of possibilities would
be: "every minute of the 11 o'clock hour of the day", or "the thirteenth minute of any hour".

Table 12-54. Properties of the Time Pattern Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Time R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default Time O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.47.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.47.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be TIME_PATTERN_VALUE.

12.47.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.47.5 Present_Value

This property, of type Time, indicates the current value of the object. The value of this property may indicate a fully specified
time or a partially specified time pattern by containing one or more "unspecified" octets that are equal to X'FF'. The
Present_Value property shall be writable when Out_Of_Service is TRUE (see Clause 12.47.9).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Pattern Value Object Type

414 ANSI/ASHRAE Standard 135-2012

12.47.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Time Pattern
Value object. Three of the flags are associated with the values of another property of this object. A more detailed status could
be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by
the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.47.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.47.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Time Pattern Value object is reliably
reporting its value.

12.47.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Time Value
object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.47.10 Priority_Array

This property, of BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this object.
See Clause 19 for a description of the prioritization mechanism.

12.47.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.47.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Time Pattern Value Object Type

ANSI/ASHRAE Standard 135-2012 415

12.47.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.47.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier is not required to have any relationship to the vendor identifier of
the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Pattern Value Object Type

416 ANSI/ASHRAE Standard 135-2012

12.48 Date Pattern Value Object Type

The Date Pattern Value object type defines a standardized object whose properties represent the externally visible
characteristics of a named data value in a BACnet device. A BACnet device can use a Date Pattern Value object to make any
kind of date data value accessible to other BACnet devices. The mechanisms by which the value is derived are not visible to
the BACnet client.

Date Pattern objects can be used to represent multiple recurring dates based on rules defined by the pattern of individual
fields of the date, some of which can be special values like "even months", or "don't care", which matches any value in that
field. Examples of possibilities would be: "every Thursday in May of any year", or "every day in May 2009".

Table 12-55. Properties of the Date Pattern Value Object
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value Date R1
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState O
Reliability BACnetReliability O
Out_Of_Service BOOLEAN O
Priority_Array BACnetPriorityArray O2
Relinquish_Default Date O2
Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If Present_Value is commandable, then it is required to be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 These properties are required if, and shall be present only if, Present_Value is commandable.
3 If this property is present, then the Reliability property shall be present.

12.48.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.48.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be DATE_PATTERN_VALUE.

12.48.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.48.5 Present_Value

This property, of type Date, indicates the current value of the object. The value of this property may indicate a fully specified
date or a partially specified date pattern by containing one or more "unspecified" octets that are equal to X'FF' or the special
values for the 'month' or 'day of month' fields. The Present_Value property shall be writable when Out_Of_Service is TRUE
(see Clause 12.48.9).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Pattern Value Object Type

ANSI/ASHRAE Standard 135-2012 417

12.48.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Date Value
object. Three of the flags are associated with the values of another property of this object. A more detailed status could be
determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by the
protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

12.48.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.48.8 Reliability

This property, of type BACnetReliability, provides an indication of whether the Date Value object is reliably reporting its
value.

12.48.9 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the Present_Value of the Date Value
object is decoupled from software local to the BACnet device in which the object resides that normally produces the
Present_Value as an output or consumes it as an input. When Out_Of_Service is TRUE, the Present_Value property may be
written to freely.

12.48.10 Priority_Array

This property, of type BACnetPriorityArray, is a read-only array containing prioritized commands that are in effect for this
object. See Clause 19 for a description of the prioritization mechanism.

12.48.11 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority values in the
Priority_Array property have a NULL value. See Clause 19.

12.48.12 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Date Pattern Value Object Type

418 ANSI/ASHRAE Standard 135-2012

12.48.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.48.14 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Network Security Object Type

ANSI/ASHRAE Standard 135-2012 419

12.49 Network Security Object Type

The Network Security object type defines a standardized object whose properties represent the externally visible network
security settings and status of a BACnet Device. Secure BACnet devices shall contain exactly one Network Security object
and they shall have an instance of 1. A detailed description of BACnet security and secure BACnet devices can be found in
Clause 24.

Operations on the Network Security object shall always be deemed to have sufficient authorization if the request is secured
with an Installation key.

Table 12-56. Properties of the Network Security Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Base_Device_Security_Policy BACnetSecurityLevel W
Network_Access_Security_Policies BACnetARRAY[N] of BACnetNetworkSecurityPolicy W
Security_Time_Window Unsigned W
Packet_Reorder_Time Unsigned W
Distribution_Key_Revision Unsigned8 R
Key_Sets BACnetARRAY[2] of BACnetSecurityKeySet R
Last_Key_Server BACnetAddressBinding W
Security_PDU_Timeout Unsigned16 W
Update_Key_Set_Timeout Unsigned16 R
Supported_Security_Algorithms BACnetLIST of Unsigned8 R
Do_Not_Hide BOOLEAN W
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

12.49.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.49.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.49.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be NETWORK_SECURITY.

12.49.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.49.5 Base_Device_Security_Policy

This writable property, of type BACnetSecurityLevel, specifies the minimum level of security that the device requires
allowing client devices to know the level of security to use when communicating with the device.

While devices may require higher security levels for some operations, this property shall be readable using the security level
defined by this property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Network Security Object Type

420 ANSI/ASHRAE Standard 135-2012

12.49.6 Network_Access_Security_Policies

This writable property, of type BACnetARRAY of BACnetNetworkSecurityPolicy, specifies the security policy for each
network directly connected to the device. It specifies the level of security that the device should use for network
infrastructure services, such as Who-Is, I-Am, Who-Is-Router, etc. This array shall have 1 entry for each network port.

The Port ID field shall correspond to the Port ID of the associated network as described in Clause 6. For non-routing nodes,
this value shall be 0.

This property shall be readable via the base security level for the device.

12.49.7 Security_Time_Window

This writable property, of type Unsigned, specifies the security time window for the device in seconds. The recommended
default value for this property is 180 (3 minutes). The property shall be restricted to the range 1 through 600.

12.49.8 Packet_Reorder_Time

This writable property, of type Unsigned, specifies the packet reorder time, in milliseconds, used by the device for validating
Message Ids. The recommended default value for this property is 500 (0.5 seconds). The property shall be restricted to the
range 1 through 3000.

12.49.9 Distribution_Key_Revision

This read-only property, of type Unsigned8, identifies the device's Distribution key revision. This property shall be 0 if the
device does not have a Distribution key.

12.49.10 Key_Sets

This read-only property, of type BACnetARRAY of BACnetSecurityKeySet, describes the contents of the device's 2 key
sets. The actual key values are not included in the contents of this property. When a key set has not been provided, the key-
revision field shall be set to 0, the key-ids field shall be empty, and the activation-time and expiration-time fields shall
contain all wildcard values.

12.49.11 Last_Key_Server

This writable property, of type BACnetAddressBinding, specifies the device identifier and address of the last Key Server that
successfully updated a security key in the device. If no Key Server has updated the keys sets in the device, the
deviceObjectIdentifier field shall contain 4194303 in the instance part, the network-number field shall be 0, and the mac-
address field shall be empty.

This property is writable in order to allow a Key Server address to be provided to the secure device before it has received a
Device-Master key. This allows the secure device to be directed to the Key Server in a legacy environment where globally
broadcast Request-Key-Update messages will not be routed. A device may make this property read-only once a Device-
Master key has been received.

12.49.12 Security_PDU_Timeout

This writable property, of type Unsigned16, specifies the length of time, in milliseconds, the device waits for a security
response. For the application TSM to work correctly, this value should be configured to be less than the
APDU_Segment_Timeout value in the Device object.

12.49.13 Update_Key_Set_Timeout

This property, of type Unsigned16, indicates the maximum amount of time, in milliseconds, that the device will take to
respond to an Update-Key-Set message. This value added to the device APDU_Timeout results in the amount of time that a
Key Server shall wait for a Security-Response for an Update-Key-Set message. The use of APDU_Timeout is to allow for
network delay; whereas the Update_Key_Set_Timeout provides for the actual time the device will need to apply the keys to
its key set.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Network Security Object Type

ANSI/ASHRAE Standard 135-2012 421

12.49.14 Supported_Security_Algorithms

This read-only property, of type BACnetLIST of Unsigned8, identifies the encryption and signature algorithm pairs that the
device supports. See Clause 24.21.1 for a list of defined values.

12.49.15 Do_Not_Hide

This writable property, of type BOOLEAN, indicates whether or not the device is allowed to ignore certain network security
error conditions. When True, the device is required to return errors in all of the conditions described in Clause 24.3.

It is recommended that this property default to True.

12.49.16 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.49.17 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global GroupObject Type

422 ANSI/ASHRAE Standard 135-2012

12.50 Global Group Object Type

The Global Group object type defines a standardized object whose properties represent a collection of other objects and one
or more of their properties. A Global Group object is used to simplify the exchange of information between BACnet devices
by providing a shorthand way to specify all members of the group at once.

A Global Group object differs from a Group object in that its members can be from anywhere in the BACnet internetwork, it
supports intrinsic event reporting, and it exposes a method for sending periodic COV notifications. The Global Group object
is able to monitor all referenced Status_Flags properties to detect changes to non-normal states and can initiate an event
notification message conveying the values of all of the members of the group. This provides a mechanism to define a large
set of property values that are made available when an event occurs.

Global Group objects that support intrinsic reporting shall apply the CHANGE_OF_STATUS_FLAGS event algorithm. The
pSelectedFlags parameter used shall only have the IN_ALARM bit set.

For reliability-evaluation, the FAULT_STATUS_FLAGS fault algorithm shall be applied.

Table 12-57. Properties of the Global Group Object Type
Property Identifier Property Datatype Conformance

Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Group_Members BACnetARRAY[N] of BACnetDeviceObjectPropertyReference R
Group_Member_Names BACnetARRAY[N] of CharacterString O
Present_Value BACnetARRAY[N] of BACnetPropertyAccessResult R
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Member_Status_Flags BACnetStatusFlags R
Reliability BACnetReliability O
Out_of_Service BOOLEAN R
Update_Interval Unsigned O
Requested_Update_Interval Unsigned O
COV_Resubscription_Interval Unsigned O
Client_COV_Increment BACnetClientCOV O
Time_Delay Unsigned O1,4
Notification_Class Unsigned O1,4
Event_Enable BACnetEventTransitionBits O1,4
Acked_Transitions BACnetEventTransitionBits O1,4
Notify_Type BACnetNotifyType O1,4
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O1,4
Event_Message_Texts BACnetARRAY[3] of CharacterString O3,4
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O4
Event_Detection_Enable BOOLEAN O1,4
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O4
Event_Algorithm_Inhibit BOOLEAN O4,5
Time_Delay_Normal Unsigned O4
COVU_Period Unsigned O2
COVU_Recipients BACnetLIST of BACnetRecipient O2
Reliability_Evaluation_Inhibit BOOLEAN O6
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These properties are required if the object supports intrinsic reporting.
2 These properties are required if the object sends periodic unsubscribed COV notifications for

Present_Value. These properties are required to be writable if present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global Group Object Type

ANSI/ASHRAE Standard 135-2012 423

3 This property, if present, is required to be read-only.
4 These properties shall be present only if the object supports intrinsic reporting.
5 Event_Algorithm_Inhibit shall be present if Event_Algorithm_Inhibit_Ref is present.
6 If this property is present, then the Reliability property shall be present.

12.50.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.50.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.50.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be GLOBAL_GROUP.

12.50.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.50.5 Group_Members

This property, of type BACnetARRAY of BACnetDeviceObjectPropertyReference, defines the members of the group. If the
optional device identifier is not present for a particular group member, then that object shall reside in the same device that
maintains the Global Group object. If the Group_Members property is writable using WriteProperty services, then the object
shall support group members that are outside the device that maintains the Global Group object.

Nesting of group objects is not permitted; that is, Group_Members shall not refer to the Present_Value property of a Group
object or a Global Group object.

12.50.5.1 Resizing Group_Members and Group_Member_Names by Writing Either Property

The size of the Group_Members and Group_Member_Names properties shall be maintained so that both have the same size.
If either of these arrays is writable and the size of one array is reduced, the size of the other array and the Present_Value array
shall also be truncated to the new reduced size. If the size of either array is increased, the other array and the Present_Value
array shall all be increased to the new expanded size and the new array elements initialized according to the requirements of
each property. See Clauses 12.50.5.2, 12.50.6.2, and 12.50.7.1.

12.50.5.2 Initializing New Array Elements When the Array Size is Increased

If the size of the Group_Members array is increased by writing to the size of either the Group_Members or
Group_Member_Names property, the new array entries shall be initialized by setting the object or device instance numbers of
the BACnetDeviceObjectPropertyReference equal to 4194303, indicating that the value is not initialized. The initial value of
the other parameters is a local matter except that they must be of the correct datatype.

12.50.6 Group_Member_Names

This property, of type BACnetARRAY of CharacterString, represents a descriptive name for the members of the Global
Group. The number of names matches the number of members defined in Group_Members. The array index of the name
shall match the array index of the corresponding group member.

12.50.6.1 Resizing Group_Members and Group_Member_Names by Writing Either Property

See Clause 12.50.5.1.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global GroupObject Type

424 ANSI/ASHRAE Standard 135-2012

12.50.6.2 Initializing New Array Elements When the Array Size is Increased

If the size of the Group_Member_Names array is increased by writing to the size of either the Group_Members or
Group_Member_Names property, the new array entries shall be initialized with empty strings.

12.50.7 Present_Value

This read-only property, of type BACnetARRAY of BACnetPropertyAccessResult, contains the values of all the properties
specified in the Group_Members property. The array index of the Present_Value shall match the corresponding array index in
Group_Members. This is a "read-only" property; it cannot be used to write a set of values to the members of the group.

The Present_Value data shall be stored locally. The Present_Value may be updated based on COV notifications, polling, or a
combination of the two. The method of acquisition used for any particular member is a local matter. If the Present_Value, or
a portion of the Present_Value, is acquired periodically and the Requested_Update_Interval property is present, then an
attempt shall be made to update the Present_Value within this time interval. If the Present_Value, or a portion of the
Present_Value, is acquired periodically and the Requested_Update_Interval is not present, then the update interval is a local
matter. When updating the Present_Value, if a group member's property value cannot be acquired, a property access error
shall be stored in the access result for that member of the group. If a property access error was returned when attempting to
update the group member's property value, then that access error shall be the one stored in the access result. Otherwise, the
choice of property access error to store shall be a local matter.

The Present_Value array shall be maintained at the same size as the Group_Members array. If the Group_Members property
is writable and the size of the array is reduced, the Present_Value array shall be truncated to match. If the Group_Members
property is writable and the size of the array is increased, the Present_Value array shall be increased in size to match with the
value of the new array elements being determined through the same mechanism that is used to update the values. If a specific
element in the Group_Members property changes, then the corresponding element in the Present_Value array shall be
updated through the same mechanism that is used to update the values. Note that the size of the Group_Members property
can also be affected by changing the size of the Group_Member_Names property.

The value of the Present_Value property shall continue to be updated regardless of the value of the Reliability property.

12.50.7.1 Initializing New Array Elements When the Array Size is Increased

If the size of the Present_Value array is increased by writing to the size of either the Group_Members or
Group_Member_Names property, the new array entries shall be initialized with the Access Result parameter having a value
of type PropertyAccessError, with an Error Class of PROPERTY and an Error Code of VALUE_NOT_INITIALIZED. The
other parameters shall have values consistent with the corresponding entry in the Group_Members array.

12.50.8 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the Global
Group object. Three of the flags are associated with the values of other properties of this object. A more detailed status could
be determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined
by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global Group Object Type

ANSI/ASHRAE Standard 135-2012 425

If the object supports event reporting, then this property shall be the pStatusFlags parameter for the object's event algorithm.
See Clause 13.3 for event algorithm parameter descriptions.

12.50.9 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.50.10 Member_Status_Flags

The Member_Status_Flags property is a logical combination of all the Status_Flags properties contained in the
Present_Value. The logical combination means that each of the flags in this property (IN_ALARM, FAULT,
OVERRIDDEN, OUT_OF_SERVICE) is TRUE if and only if the corresponding flag is set in any of the Status_Flags
property values in the Present_Value property. This property shall be updated whenever new Status_Flags property values
are updated in the Present_Value.

If the object supports event reporting, then this property shall be the pMonitoredValue parameter for the object's event
algorithm and the pSelectedFlags parameter shall have the IN_ALARM and FAULT bits set and the others cleared. See
Clause 13.3 for event algorithm parameter descriptions.

This property is the pMonitoredValue fault algorithm parameter. See Clause 13.4 for fault algorithm parameter descriptions.

12.50.11 Reliability

This property, of type BACnetReliability, provides an indication of whether the Present_Value is "reliable" as far as the
BACnet Device or operator can determine. If the FAULT flag of the Member_Status_Flags has a value of TRUE, then the
value of this property shall be MEMBER_FAULT. If one or more group member values cannot be updated because of a
communication failure, the value of this property shall be COMMUNICATION_FAILURE. If the conditions for a
MEMBER_FAULT and a COMMUNICATION_FAILURE are both present, the selection of which value to use is a local
matter.

If a fault algorithm is applied, then this property shall be the pCurrentReliability parameter for the object's fault algorithm.
See Clause 13.4 for fault algorithm parameter descriptions.

12.50.12 Out_of_Service

This property, of type BOOLEAN, indicates and controls whether (TRUE) or not (FALSE) the Present_Value property is
updated to track the values of the group members. In addition, the Reliability property and the corresponding state of the
FAULT flag of the Status_Flags property shall be decoupled from their normal calculations when Out_Of_Service is TRUE.
While the Out_Of_Service property is TRUE, the Reliability property may be changed to any value as a means of simulating
specific fixed conditions or for testing purposes. Other functions that depend on the state of the Reliability property shall
respond to changes made to these properties while Out_Of_Service is TRUE as if those changes had occurred by normal
operation.

12.50.13 Update_Interval

This property, of type Unsigned, provides an indication of the actual period of time between updates to Present_Value,
measured in hundredths of a second. The method used to calculate Update_Interval is a local matter.

12.50.14 Requested_Update_Interval

This property, of type Unsigned, indicates the requested period of time between updates to Present_Value, measured in
hundredths of a second when the object is not out-of-service.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global GroupObject Type

426 ANSI/ASHRAE Standard 135-2012

12.50.15 COV_Resubscription_Interval

If the Global Group is acquiring data from a remote device by COV subscription, this property, of type Unsigned, specifies
the number of seconds between COV resubscriptions, provided that COV subscription is in effect. SubscribeCOV requests
shall specify twice this lifetime for the subscription and shall specify the issuance of confirmed notifications. If COV
subscriptions are in effect, the first COV subscription is issued when the Global Group object begins operation. If present, the
value of this property shall be non-zero. If this property is not present, then COV subscription shall not be attempted.

12.50.16 Client_COV_Increment

If the Global Group is acquiring COV data, this property, of type BACnetClientCOV, specifies the increment to be used in
determining that a change of value has occurred. If all the referenced objects and properties support COV reporting according
to Clause 13.1, this property may have the value NULL; in this case change of value is determined by the criteria of Clause
13.1.

12.50.17 Time_Delay

This property, of type Unsigned, is the pTimeDelay parameter for the object's event algorithm. See Clause 13.3 for event
algorithm parameter descriptions.

12.50.18 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.50.19 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable the distribution
of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL notifications (see Clause 13.2.5). A device is allowed to restrict the
set of supported values for this property but shall support (T, T, T) at a minimum.

12.50.20 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.50.21 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.50.22 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.50.23 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.50.24 COVU_Period

The optional COVU_Period property, of type Unsigned, shall indicate the amount of time in seconds between the periodic
unsubscribed COV notifications performed by this object. These COV notifications convey the value of the Present_Value
and Member_Status_Flags properties. If the value of COVU_Period is zero, then periodic unsubscribed COV notification
messages shall not be transmitted.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global Group Object Type

ANSI/ASHRAE Standard 135-2012 427

12.50.25 COVU_Recipients

This property, of type BACnetLIST of BACnetRecipient, is used to control the restrictions on which devices, if any, are to
receive periodic unsubscribed COV notifications for the Present_Value and Member_Status_Flags properties. This property
is required if the object sends such notifications. The value of this property shall be a list of zero or more BACnetRecipients.
If the list is of length zero, a device is prohibited from sending such notifications. If the list is of length one or more, the
device shall send the notifications, but only to the devices or addresses listed.

12.50.26 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

12.50.27 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.50.28 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.50.29 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.50.30 Time_Delay_Normal

This property, of type Unsigned, is the pTimeDelayNormal parameter for the object's event algorithm. See Clause 13.3 for
event algorithm parameter descriptions.

12.50.31 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.50.32 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Global GroupObject Type

428 ANSI/ASHRAE Standard 135-2012

12.50.33 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier is not required to have any relationship to the vendor identifier of
the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Forwarder Object Type

ANSI/ASHRAE Standard 135-2012 429

12.51 Notification Forwarder Object Type

The Notification Forwarder object type defines a standardized object whose properties represent the externally visible
characteristics required for the re-distribution of event notifications to zero or more destinations. It differs from a Notification
Class in that the Notification Forwarder object is not used for originating event notifications, but rather is used to forward
event notifications to a different and potentially larger number of recipients.

The Notification Forwarder allows devices that can distribute notifications to a small number of destinations to have their
notifications received by many destinations. It also allows for a reduction in the number of objects that need to be modified in
order to change the set of event destinations for a large number of devices. Notification Forwarder objects can also be
restricted to forward only locally generated notifications as indicated by the Local_Forwarding_Only property. In doing so,
the Notification Forwarder object allows for the use of recipient subscriptions and the centralization of recipients for multiple
Notification Classes.

A Notification Forwarder object's Process_Identifier_Filter value is used in the selection of event notification service requests
that are to be forwarded by the object. If multiple Notification Forwarder objects exist within the device, any received event
notification shall be passed to each Notification Forwarder object internally by the device if the Process_Identifier_Filter and
other restrictions allow acceptance by the object. Event notifications generated by local event-initiating objects are only
passed to local Notification Forwarder objects if the Notification Class object has the local device as a recipient.

The following restrictions are intended to reduce the likelihood of an accidental endless cycle of event forwarding for the
same notification or of accidental duplicated notifications to the same device.

(a)
 Any event notification received on a particular port of the device containing Notification Forwarder objects

shall not be forwarded as a local broadcast to the BACnet network directly attached to that port.

(b)
 Any event notification received as a global broadcast shall be ignored by Notification Forwarder objects in
receiving devices.

(c)
 The Notification Forwarder object shall not send any forwarded notification using a global broadcast.

(d)
 Any event notification received as a broadcast to a particular BACnet network shall not be forwarded to any
device resident on that same network.

(e)
 Any event notification received on a particular port of the device containing Notification Forwarder objects
shall be ignored by any Notification Forwarder object within the device that does not have the receiving port
enabled within its Port_Filter property. In order to stop multiple notifications from being forwarded to the
notification-clients, there should be at most one Notification Forwarder object on a network that will forward
broadcast notifications. The Port_Filter allows a site to be configured this way when the Notification Forwarder
objects are located in BACnet routers.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification ForwarderObject Type

430 ANSI/ASHRAE Standard 135-2012

)
 0

<))

<)0

<).

<0)

<00

<0.

 8

 .

<)

<.)

!���
��
���
�������'
)'
 0'
���
 .
��1�

������������
?��#�����
��G����
��
�����
��

���#���
�1���
�������������
����
�����
�������
��

��1���
<)�
���
���
���
��
���
�������
�����
��
�$����
�1���

�������������
�����1��
��
���
8
��
��
��
������

����
����������
���
���
���#�����
��
<)�
,��
&���
?�����
�������	
����#�
���
������������

?��#�����
��G����
��
��
�����$����
��
�$����

�1���
�������������
�����1��
��
���
&���
��������

��
���
8�

���
8

<8)

Figure 12-6. General Use Case for the Port_Filter property.

Notification Forwarder objects can be logically chained together one after another in the same or different devices.

An event notification is sent through a Notification Forwarder object in the same device by specifying the local Device object
in the Notification Class object's Recipient_List along with the Process_Identifier_Filter matching the Notification
Forwarding object.

Like Notification Class objects, the Notification Forwarder object allows for date, time and transition filters for destinations
in the Recipient_List property. The filtering works in the same manner as the Notification Class object. In order to allow
central configuration of the date, time and transition filters, Recipient_List entries that direct event notifications to
Notification Forwarder objects are expected to have the filtering parameters set to send all transitions, on all days, at all times
so that filtering is performed only by the Notification Forwarder object.

������������3���1��
)

������������3���1��
0

������������3���1��
.

������������
?��#�����

�G���

������������3������
)

������������3������
0

������������3������
.

������������3������
8

Figure 12-7. Example of Multiple Notification-Servers Routing to Multiple Notification-Clients.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Forwarder Object Type

ANSI/ASHRAE Standard 135-2012 431

<�1���
�

������������3������
C
������������3���1��

������������
?��#�����
�G���

&������@4���������@?�����
:
)

������������3������
)

������������3������
0

������������3������
.

������������3������
8

������������
?��#�����
�G���

&������@4���������@?�����
:
0

������������
?��#�����
�G���

&������@4���������@?�����
:
�6��

<�1���
H
������������3���1��

!1���34��������$
�G���

������������
�����
�G���
" ��������
:
<�1���
�'

&������
4���������
:
)%

Figure 12-8. Example of Forwarding a Single-Event Notification.

<�1���
�
������������3������
C
������������3���1��

<�1���
H
������������3���1��

������������
?��#�����
�G���

&������@4���������@?�����
:
0

������������3������
)

������������3������
0

������������3������
.

������������3������
8

!1���34��������$
�G���

������������
�����
�G���
" ��������
:
<�1���
H'
&������
4���������
:
9%

������������
?��#�����
�G���

&������@4���������@?�����
:
9

" ��������
:
<�1���
�'

&������
4���������
:
0%

Figure 12-9. Example of Local Forwarding and Multiple-Step Forwarding.

Notification Forwarders that are forwarding for other devices shall be capable of forwarding both
ConfirmedEventNotification and UnconfirmedEventNotification services, and shall be capable of forwarding them using
either service regardless of which is received.

Notification Forwarder objects shall forward event notifications regardless of the character set of any text in the event
notification.

To forward an event notification to a BACnetDestination, the source notification shall have the Process Identifier parameter
changed to match that of the BACnetDestination, and the notification shall be sent confirmed or unconfirmed as specified by
the BACnetDestination. The notification shall then be sent to the recipient indicated by the BACnetDestination.

When acknowledging an event notification that has been forwarded by a Notification Forwarder, the acknowledging device
shall send the AcknowledgeAlarm service request directly to the device indicated by the Initiating Device Identifier
parameter of the event notification.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification ForwarderObject Type

432 ANSI/ASHRAE Standard 135-2012

Table 12-58. Properties of the Notification Forwarder Object Type
Property Identifier Property Datatype Conformance

Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Status_Flags BACnetStatusFlags R

Reliability BACnetReliability R
Out_Of_Service BOOLEAN R
Recipient_List BACnetLIST of BACnetDestination R
Subscribed_Recipients BACnetLIST of BACnetEventNotificationSubscription W
Process_Identifier_Filter BACnetProcessIdSelection R
Port_Filter BACnetARRAY[N] of BACnetPortPermission O1

Local_Forwarding_Only BOOLEAN R
Reliability_Evaluation_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 This property is required if the device includes BACnet router functionality.

12.51.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.51.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.51.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be NOTIFICATION_FORWARDER.

12.51.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.51.5 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Notification
Forwarder object. The OUT_OF_SERVICE flag is associated with the value of another property of this object. The
relationship between individual flags is not defined by the protocol. The four flags are:

 {IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM The value of this flag shall be Logical FALSE (0).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN The value of this flag shall be Logical FALSE (0).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification Forwarder Object Type

ANSI/ASHRAE Standard 135-2012 433

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise logical
FALSE (0).

12.51.6 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the object is configured and operating.
The value of Reliability shall not indicate that a subset of the possible recipients (Recipient_List, and Subscribed_Recipients)
are not reachable, but may indicate that all possible recipients are unreachable or are undefined.

12.51.7 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN is an indication whether (TRUE) or not (FALSE) the object has been
prevented from forwarding event notifications. This property can be used to disable the Notification Forwarder object.

12.51.8 Recipient_List

This property, of type BACnetLIST of BACnetDestination, shall convey a list of recipient destinations to which notifications
shall be sent when events are processed by the Notification Forwarder object. These recipient destinations are intended to be
relatively permanent, do not expire and shall be maintained through a power failure or device "restart". If not writable, the
Recipient_List must be configurable by some other means. The destinations themselves define a structure of parameters that
is summarized in Table 12-25.

12.51.9 Subscribed_Recipients

This property, of type BACnetLIST of BACnetEventNotificationSubscription, conveys a list of recipient destinations to
which event notifications are sent when events are forwarded by the Notification Forwarder object. These recipient
destinations are intended to be temporary, and will expire if not renewed.

To add, remove, renew or modify a subscription, the AddListElement or RemoveListElement services are used. When
comparing entries to those provided by a list service, an entry in this property shall be considered a match when the Recipient
fields are equal and Process Identifier fields are equal. Each entry in the list is a structure of parameters that is described in
Table 12-59.

Table 12-59. Components of a BACnetEventNotificationSubscription
Parameter Type Description

Recipient BACnetRecipient The destination device(s) to receive notifications.
Process Identifier Unsigned32 The handle of a process within the recipient device

that is to receive the event notification.
Issue Confirmed Notifications Boolean (TRUE) if confirmed notifications are to be sent

and (FALSE) if unconfirmed notifications are to be
sent.

Time Remaining Unsigned Actual time the entry will remain in the
Subscribed_Recipients in minutes.

The Time Remaining field of a BACnetEventNotificationSubscription entry, of type Unsigned, indicates the remaining time
of the subscription in minutes. An entry shall be removed from the list when the remaining time reaches zero, and therefore
no entries in the property shall have a Time Remaining value of zero. Notification Forwarder objects shall accept
subscriptions with Time Remaining values in the range of 1 through 1440 (24 hours). It is a local matter whether or not a
Notification Forwarder accepts larger Time Remaining values.

When renewing an existing subscription, the values of all fields provided in the AddListElement service shall replace the
values of all fields of the existing subscription.

The Subscribed_Recipients shall be maintained through a power failure or device "restart." After the restart, the Time
Remaining may be any value between the value before the restart and the value provided in the entry's last subscription
operation.

12.51.10 Process_Identifier_Filter

This property, of type BACnetProcessIdSelection, is used in the selection of event notification service requests that are to be
forwarded by the object. When the Process Identifier parameter of a received event notification is the same as the value of the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Notification ForwarderObject Type

434 ANSI/ASHRAE Standard 135-2012

Process_Identifier_Filter property, or if the Process_Identifier_Filter property contains a NULL, then the notification will be
accepted for forwarding by the Notification Forwarder object subject to the port, network and broadcast restrictions.

12.51.11 Port_Filter

This property, of type BACnetARRAY of BACnetPortPermission, enables or disables the forwarding of event notifications
received on a particular network port. When an event notification is received on a port that is marked as disabled by this
property, the Notification Forwarder object shall ignore that event notification.

If present, this property shall be writable. If not present, then the device is not a router and its only configured port shall be
enabled for event notification forwarding.

Neither the size of the array nor the Port_ID portion of the BACnetPortPermission entries shall be modifiable via writes to
this property.

The number of entries in the array shall match the number of BACnet ports currently defined in the device.

The BACnetPortPermission entries themselves define a structure of parameters that is summarized in Table 12-60.

Table 12-60. Components of a BACnetPortPermission
Parameter Type Description

Port_ID Unsigned8 The Port_ID parameter shall correspond to the Port ID of the
associated network as described in Clause 6. For non-routing nodes,
this value shall be 0.

Enabled Boolean Indicates whether forwarding is enabled (TRUE) or not (FALSE) for
event notifications received through the corresponding port.

12.51.12 Local_Forwarding_Only

This property, of type BOOLEAN is an indication whether (TRUE) or not (FALSE) the object is limited to forwarding
notifications initiated from within the same device. If Local_Forwarding_Only has a value of FALSE, then the Notification
Forwarder is capable of forwarding notifications for other devices.

12.51.13 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.51.14 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.51.15 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier is not required to have any relationship to the vendor identifier of
the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Alert Enrollment Object Type

ANSI/ASHRAE Standard 135-2012 435

12.52 Alert Enrollment Object Type

The Alert Enrollment object type defines a standardized object that represents and contains the information required for
managing information alerts from a BACnet device. "Information alerts" are interesting notifications that are not related to
algorithmic or intrinsic reporting of an object. The Alert Enrollment object allows these alerts to be generated without
impacting the Event_State of the object to which the alerts are related.

Alerts are always distributed using ConfirmedEventNotification or UnconfirmedEventNotification services with 'To State'
and 'From State' set to NORMAL and an 'Event Type' of EXTENDED. The values used in the 'Vendor Id' and 'Extended
Event Type' parameters allow for classification of alerts. The choice of values used in the 'Vendor Id' and 'Extended Event
Type' parameters is a local matter. The definition of the parameters used with any particular pair of 'Vendor Id' and 'Extended
Event Type' is controlled by the registered owner of the 'Vendor Id' value. The extended notification parameters allow for a
vendor-specified set of values to be provided with the notification. For the notification of alerts, the first extended notification
parameter shall be a BACnetObjectIdentifier that identifies the source of the alert (not the Alert Enrollment object, but the
object that provided the alert to the Alert Enrollment object). If an alert is not logically associated with a specific object, the
local Device object shall be referenced as the source of the alert.

When there are multiple alert enrollment objects in a device, the method used to associate an Alert Enrollment object to any
particular alert generated by an object is a local matter.

The Alert Enrollment object and its properties are summarized in Table 12-61 and described in detail in this subclause.

Table 12-61. Properties of the Alert Enrollment Object Type
Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BACnetObjectIdentifier R

Event_State BACnetEventState R
Event_Detection_Enable BOOLEAN R
Notification_Class Unsigned R
Event_Enable BACnetEventTransitionBits R
Acked_Transitions BACnetEventTransitionBits R
Notify_Type BACnetNotifyType R
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp R
Event_Message_Texts BACnetARRAY[3] of CharacterString O
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O
Event_Algorithm_Inhibit_Ref BACnetObjectPropertyReference O
Event_Algorithm_Inhibit BOOLEAN O
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

12.52.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.52.2 Object_Name

This property, of type CharacterString, shall represent a name for the Object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Alert Enrollment Object Type

436 ANSI/ASHRAE Standard 135-2012

12.52.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be ALERT_ENROLLMENT.

12.52.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.52.5 Present_Value

This read-only property, of type BACnetObjectIdentifier, indicates the object that last provided an alert to this object for
notification.

12.52.6 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine whether this object
has an active event state associated with it (see Clause 13.2.2.1). If the object supports event reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support event reporting then the value of this
property shall be NORMAL.

12.52.7 Event_Detection_Enable

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) intrinsic reporting is enabled in the object and
controls whether (TRUE) or not (FALSE) the object will be considered by event summarization services.

This property is expected to be set during system configuration and is not expected to change dynamically.

When this property is FALSE, Event_State shall be NORMAL, and the properties Acked_Transitions, Event_Time_Stamps,
and Event_Message_Texts shall be equal to their respective initial conditions.

12.52.8 Notification_Class

This property, of type Unsigned, shall specify the instance of the Notification Class object to use for event-notification-
distribution.

12.52.9 Acked_Transitions

This read-only property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
acknowledgment state for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1.5). Each flag
shall have the value TRUE if no event of that type has ever occurred for the object.

12.52.10 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or
Alarms. The value of the property is used as the value of the 'Notify Type' service parameter in event notifications generated
by the object.

12.52.11 Event_Time_Stamps

This read-only property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). Timestamps of type Time or Date shall
have X'FF' in each octet and Sequence Number timestamps shall have the value 0 if no event of that type has ever occurred
for the object.

12.52.12 Event_Message_Texts

This read-only property, of type BACnetARRAY[3] of CharacterString, shall convey the message text values of the last
TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events (see Clause 13.2.2.1). If a particular type of event has yet to
occur, an empty string shall be stored in the respective array element.

12.52.13 Event_Message_Texts_Config

This property, of type BACnetARRAY[3] of CharacterString, contains the character strings which are the basis for the
'Message Text' parameter for the event notifications of TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events,
respectively, generated by this object. The character strings may optionally contain proprietary text substitution codes to
incorporate dynamic information such as date and time or other information.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Alert Enrollment Object Type

ANSI/ASHRAE Standard 135-2012 437

12.52.14 Event_Algorithm_Inhibit_Ref

This property, of type BACnetObjectPropertyReference, indicates the property which controls the value of property
Event_Algorithm_Inhibit. When this property is present and initialized (contains an instance other than 4194303), the
referenced property shall be of type BACnetBinaryPV or BOOLEAN.

12.52.15 Event_Algorithm_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the event algorithm has been disabled for the
object (see Clause 13.2.2.1). This property is a runtime override that allows temporary disabling of the event algorithm.

If the Event_Algorithm_Inhibit_Ref property is present and initialized (contains an instance other than 4194303), then the
Event_Algorithm_Inhibit property shall be read-only and shall reflect the value of the property referenced by
Event_Algorithm_Inhibit_Ref. A BACnetBinaryPV value of INACTIVE shall map to a value of FALSE and a value of
ACTIVE shall map to a value of TRUE. If the referenced property does not exist, it shall be assumed to have a value of
FALSE.

If the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized and Event_Detection_Enable is TRUE, then the
Event_Algorithm_Inhibit property shall be writable.

12.52.16 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.52.17 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

438 ANSI/ASHRAE Standard 135-2012

12.53 Channel Object Type

The Channel object type defines a standardized object used to forward a single received value to a collection of object
properties. The collection of object properties may include any combination of object types, as well as properties of different
data types. The coercion of the datatype from the value written to the Channel object Present_Value to the datatypes required
by the object properties is controlled by coercion rules defined in Clause 12.53.5.1.

Each Channel object is associated with a single logical "channel" in the range 0..65535. Multiple Channel object instances
may be associated with a given channel number.

Each Channel object may be a member of zero or more "control groups" to facilitate writing to Channel objects with the
WriteGroup service.

The Channel object is intended for value distribution and does not maintain a state. Therefore, it does not act on its own and
does not contain a priority array. When the Present_Value property of this object is written by the WriteProperty,
WritePropertyMultiple, or WriteGroup services, and a 'Priority' is provided in the write, this object shall use this same
priority to command the referenced properties. Figure 12-10 illustrates the behavior of the Channel object.

Object
1

Object
2

Object
n

Device 1

Channel
Object

Object
1

Object
2

Object
n

Device n

Writing the same value to multiple objects
using the Channel object

Writing
Device

WriteGroup,
WriteProperty,

or
WritePropertyMultiple

service

Figure 12-10. Channel object behavior

When the WriteGroup service is used, potentially many devices may be affected because WriteGroup is usually broadcast. As
a result, WriteGroup includes a group number parameter that restricts the effect to only those receiving devices that are
members of that group. The WriteGroup further restricts the targets for writing to those Channel objects within those devices
that are associated with the specified channel number(s).

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

ANSI/ASHRAE Standard 135-2012 439

Devices that contain Channel objects shall also support the WriteGroup service.

Figure 12-11. Control Groups limit WriteGroup effect to specific Channel objects across many devices

The object and its properties are summarized in Table 12-62 and described in detail in this subclause.

Object
1

Object
2

Object
n

Device 1

Channel Object
Group 27, Chan 11

Writing
Device

WriteGroup Group 27, Channel 11

Object
1

Object
2

Object
n

Device 2

Channel Object
Group 14, Chan 11

received by both devices...

...only executed by Device 1

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

440 ANSI/ASHRAE Standard 135-2012

Table 12-62. Properties of the Channel Object
Property Identifier Property Datatype Conformance

Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Present_Value BACnetChannelValue W

Last_Priority Unsigned R
Write_Status BACnetWriteStatus R
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability O
Out_Of_Service BOOLEAN R
List_Of_Object_Property_References BACnetARRAY[N] of BACnetDeviceObjectPropertyReference W1
Execution_Delay BACnetARRAY[N] of Unsigned O1
Allow_Group_Delay_Inhibit BOOLEAN O
Channel_Number Unsigned16 W
Control_Groups BACnetARRAY[N] of Unsigned32 W
Event_Detection_Enable BOOLEAN O2,3
Notification_Class Unsigned O2,3
Event_Enable BACnetEventTransitionBits O2,3
Event_State BACnetEventState O2,3
Acked_Transitions BACnetEventTransitionBits O2,3
Notify_Type BACnetNotifyType O2,3
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2,3
Event_Message_Texts BACnetARRAY[3] of CharacterString O3
Event_Message_Texts_Config BACnetARRAY[3] of CharacterString O3

Reliability_Evaluation_Inhibit BOOLEAN O4
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 These array properties shall be the same size.
2 These properties are required if the object supports intrinsic reporting.
3 These properties shall be present only if the object supports intrinsic reporting.
4 If this property is present, then the Reliability property shall be present.

12.53.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.53.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.53.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be CHANNEL.

12.53.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

ANSI/ASHRAE Standard 135-2012 441

12.53.5 Present_Value (Commandable)

This property, of type BACnetChannelValue, shall indicate the value most recently written to the Present_Value.

When Present_Value is written, the Channel object shall propagate that value to each of the members in the
List_Of_Object_Property_References except those members containing an empty reference. During the writing of values to
members, Write_Status shall be IN_PROGRESS. At the end of writing all values, Write_Status shall change to
SUCCESSFUL or FAILED based on the results of these writes. If Write_Status is SUCCESSFUL, then the Reliability
property shall be reevaluated as described in 12.53.10

When Present_Value is written with a 'Priority' parameter, the resulting writes to the members of the
List_Of_Object_Property_References shall also use that 'Priority' parameter. See 19.2.1.6. If the Channel object supports
device-object-property references, then it may elect to use individual WriteProperty or WritePropertyMultiple, or a
combination of both, to achieve the writing, as a local matter.

The initial value of the Present_Value property shall be NULL. This initial value shall not be automatically written to the
properties listed in List_Of_Object_Property_References.

Attempts to write to Present_Value using WriteProperty service when Write_Status is IN_PROGRESS shall cause a Result(-)
to be returned with an error class of OBJECT and an error code of BUSY.

Example List_Of_Object_Property_References [1]=(101,AV27;Present_Value)
 List_Of_Object_Property_References [2]=(102,AO14;Present_Value)
 List_Of_Object_Property_References [3]=(103,AO5;Present_Value)
 List_Of_Object_Property_References [4]=(104,AV123;Present_Value)
 Execution_Delay[1]=0
 Execution_Delay[2]=100
 Execution_Delay[3]=0
 Execution_Delay[4]=200

t1. Present_Value written with value X
t2. If write was WriteProperty or WritePropertyMultiple, then Channel object returns
 Result(+) or Result(-)
t3. Write_Status = IN_PROGRESS
IF write was WriteGroup AND
 WriteGroup has 'Inhibit Delay'=TRUE AND
 Allow_Group_Delay_Inhibit=TRUE, THEN
{

t4. WriteProperty(101,AV27,Present_Value,X)
t5. WriteProperty(102,AO14,Present_Value,X)
t6. WriteProperty(103,AO5,Present_Value,X)
t7. WriteProperty(104,AV123,Present_Value,X)
t8. Write_Status = SUCCESSFUL
t9. Reliability = NO_FAULT_DETECTED

}
ELSE
{

t4. WriteProperty(101,AV27,Present_Value,X)
t5. WriteProperty(103,AO5,Present_Value,X)
t3+100ms. WriteProperty(102,AO14,Present_Value,X)
t3+200ms. WriteProperty(104,AV123,Present_Value,X)
t3+200ms+y Write_Status = SUCCESSFUL
t3+200ms+y Reliability = NO_FAULT_DETECTED

}
Figure 12-12. Channel Object Execution Timeline

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

442 ANSI/ASHRAE Standard 135-2012

12.53.6 Datatype Coercion of Present_Value

Since List_Of_Object_Property_References can include object properties of different data types, the value written to
Present_Value may require coercion to another datatype. The rules governing how these coercions occur are summarized in
Table 12-63. Those cases where Invalid Datatype (ID) is indicated in Table 12-63, and those cases where coercion of values
exceeds a range specified by an indicated coercion rule, shall be considered as coercion failures and the write shall not occur.
In those cases where No Coercion (NC) is indicated in Table 12-63, the coercion shall be considered as successful. If any of
the writes to the List_Of_Object_Property_References produces a failure then Write_Status shall indicate FAILED.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

ANSI/ASHRAE Standard 135-2012 443

Table 12-63 – Datatype Coercion Rules

NC=No Coercion ID=Invalid Datatype

12.53.6.1 Coercion Rule 1 – Numeric to BOOLEAN

The numeric value 0 maps to FALSE and anything else is TRUE.

12.53.6.2 Coercion Rule 2 – BOOLEAN to Numeric

The BOOLEAN value FALSE is mapped to 0 and TRUE is mapped to 1.

12.53.6.3 Coercion Rule 3 – Unsigned to Numeric

The Unsigned value is mapped directly to the target datatype. The Unsigned value shall be limited to 2147483647. The
REAL value shall be limited in precision to seven significant digits. Values outside this limit shall cause Write_Status to
indicate FAILED when the List_Of_Object_Property_References has been completely processed.

12.53.6.4 Coercion Rule 4 – INTEGER to Numeric

The INTEGER value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483647. The
REAL value shall be limited in precision to seven significant digits. Values outside these limits shall cause Write_Status to
indicate FAILED when the List_Of_Object_Property_References has been completely processed.

12.53.6.5 Coercion Rule 5 – REAL to Numeric

The REAL value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483000. The
INTEGER value shall be limited to -2147483000 to 214783000. Values outside these limits shall cause Write_Status to
indicate FAILED when the List_Of_Object_Property_References has been completely processed.

12.53.6.6 Coercion Rule 6 – Double to Numeric

The Double value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483000. The
INTEGER value shall be limited to -2147483000 to 214783000. The REAL value shall be limited to 3.4*10±38. Values

 Datatype of referenced property
Datatype in Present_Value
write

un
kn

ow
n

B
O

O
LE

A
N

U
ns

ig
ne

d

IN
TE

G
ER

R
EA

L

D
ou

bl
e

O
C

TE
T

ST
R

IN
G

C
ha

ra
ct

er
St

rin
g

B
IT

 S
TR

IN
G

EN
U

M
ER

A
TE

D

D
at

e

Ti
m

e

B
A

C
ne

tO
bj

ec
tId

en
tif

ie
r

B
A

C
ne

tL
ig

ht
in

gC
om

m
an

d

NULL NC NC NC NC NC NC NC NC NC NC NC NC NC ID
BOOLEAN NC NC 2 2 2 2 ID ID ID 2 ID ID ID ID
Unsigned NC 1 NC 3 3 3 ID ID ID NC ID ID NC ID
INTEGER NC 1 4 NC 4 4 ID ID ID 4 ID ID ID ID
REAL NC 1 5 5 NC 5 ID ID ID 5 ID ID ID ID
Double NC 1 6 6 6 NC ID ID ID 6 ID ID ID ID
OCTET STRING NC ID ID ID ID ID NC ID ID ID ID ID ID ID
CharacterString NC ID ID ID ID ID ID NC ID ID ID ID ID ID
BIT STRING NC ID ID ID ID ID ID ID NC ID ID ID ID ID
ENUMERATED NC 1 NC 3 3 3 ID ID ID NC ID ID ID ID
Date NC ID ID ID ID ID ID ID ID ID NC ID ID ID
Time NC ID ID ID ID ID ID ID ID ID ID NC ID ID
BACnetObjectIdentifier NC ID NC ID ID ID ID ID ID ID ID ID NC ID
BACnetLightingCommand ID ID ID ID ID ID ID ID ID ID ID ID ID NC

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

444 ANSI/ASHRAE Standard 135-2012

outside these limits shall cause Write_Status to indicate FAILED when the List_Of_Object_Property_References has been
completely processed.

12.53.6.7 Handling of Coercion Failures

In any case of coercion failure the Write_Status shall indicate FAILED and the write shall not occur. The
List_Of_Object_Property_References shall be processed in its entirety even if one or more coercion failures occur.

12.53.7 Last_Priority

This read-only property, of type Unsigned, shall convey the priority at which the Present_Value was most recently written
(1..16). If an attempt was made to write to the Present_Value without the 'Priority' parameter, a default priority of 16 (the
lowest priority) shall be assumed. The initial value of Last_Priority shall be 16.

12.53.8 Write_Status

This property, of type BACnetWriteStatus, shall be set to IDLE initially. This property shall be set to IN_PROGRESS when
a value is written to the Present_Value property indicating that the Channel object has begun processing the
List_Of_Object_Property_References.

Once all of the writes have been attempted by the Channel object, the Write_Status property shall be set to either
SUCCESSFUL or FAILED. The SUCCESSFUL value indicates that the Channel object has processed all of the properties in
List_Of_Object_Property_References and did not have any coercion errors, and did not receive any errors, rejects, or aborts.
The FAILED value indicates that the Channel object has processed all of the properties in
List_Of_Object_Property_References and encountered a coercion failure, or received an error, reject, or abort for at least one
of the writes. A special exception shall be the writing of a NULL value. If a NULL value is written and WriteProperty or
WritePropertyMultiple services subsequently receive an ERROR INVALID_DATATYPE or REJECT
INVALID_PARAMETER_DATA_TYPE, it shall not be treated as a FAILED value. This is specifically to allow Channel
objects to point to both commandable and non-commandable properties with the same channel.

If List_Of_Object_Property_References is empty, this property shall remain set to IDLE.

12.53.9 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a
Channel object. Two of the flags are associated with the values of another property of this object. A more detailed
status could be determined by reading the property that is linked to this flag. The relationship between individual
flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the BACnet

Device. In this context, "overridden" is taken to mean that the Present_Value property is not
changeable through BACnet services. Otherwise, the value is logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise logical FALSE

(0).

12.53.10 Reliability

This property, of type BACnetReliability, provides an indication of whether the object is "reliable" as far as the BACnet
Device or operator can determine. If the Write_Status property indicates FAILED, the value of the Reliability property shall
provide an indication of the type of failure that occurred. If one or more member values cannot be written because of a

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

ANSI/ASHRAE Standard 135-2012 445

communication failure, the value of the Reliability property shall be COMMUNICATION_FAILURE. If one or more
member values cannot be written because of invalid or inconsistent configuration, the value of the Reliability property shall
be CONFIGURATION_ERROR. Other errors that may occur during the processing of writes to Present_Value shall be
PROCESS_ERROR conditions. If the conditions for a PROCESS_ERROR, CONFIGURATION_ERROR, or
COMMUNICATION_FAILURE are present at the same time, or some other error condition occurs, the selection of which
value to use shall be a local matter.

12.53.11 Out_Of_Service

This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the forwarding mechanism that the
object represents is not in service. This means that changes to the Present_Value property are decoupled from the forwarding
mechanism when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of
the FAULT flag of the Status_Flags property shall be decoupled from the forwarding mechanism when Out_Of_Service is
TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may still be changed to
any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state
of the Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is
TRUE, as if those changes had occurred and been passed on to the forwarding mechanism. Since the Channel object does not
directly implement command prioritization, the Present_Value property shall not be required to implement the BACnet
command prioritization mechanism when Out_Of_Service is TRUE. See Clause 19.

12.53.12 List_Of_Object_Property_References

This property, of type BACnetARRAY of BACnetDeviceObjectPropertyReference, specifies the Device Identifiers, Object
Identifiers, and Property Identifiers of the properties to be written with the same value that is written to Present_Value.

This property may be restricted to only support references to objects inside of the device containing the Channel object. If the
property is restricted to referencing objects within the containing device, an attempt to write a reference to an object outside
the containing device into this property using WriteProperty service shall cause a Result(-) to be returned with an error class
of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Channel object, the method used for writing to
the referenced property value for the purpose of controlling the property is a local matter. If an implementation chooses to use
WritePropertyMultiple as the preferred method of writing to the referenced property, then the device containing the Channel
object shall be capable of using WriteProperty to complete writes to devices that do not support WritePropertyMultiple, or
that fail before completing all required writes. If WritePropertyMultiple fails for one element, the remaining elements shall be
retried as WritePropertyMultiple or WriteProperty as a local matter.

12.53.12.1 Empty References

Elements of the List_Of_Object_Property_References array containing object or device instance numbers equal to 4194303
are considered to be 'empty' or 'uninitialized'.

12.53.12.2 Initializing New Array Elements When the Array Size is Increased

If the size of this array is increased by writing to array index zero, each new array element shall contain an empty reference.
The size of Execution_Delay shall be automatically increased to be the same.

12.53.13 Execution_Delay

This property, of type BACnetARRAY of Unsigned, shall indicate an execution delay in milliseconds for each value to be
written in the List_Of_Object_Property_References when the Channel object's Present_Value is written. A value of zero
indicates no delay. A non-zero execution delay value shall cause a delay, by that many milliseconds, in the writing to the
corresponding referenced value. The resolution of Execution_Delay shall be a local matter. If present, the Execution_Delay
property shall be writable. All delay periods shall "start" at the same time. So, a write of A, B(delay 100), C, D(delay 200)
shall immediately write A and C, but delay the writing of B by 100 milliseconds and D by 200 milliseconds. Multiple
delayed values shall execute their corresponding delays in parallel (see Figure 12-12).

12.53.13.1 Initializing New Array Elements When the Array Size is Increased

If the size of this array is increased by writing to array index zero, each new array element shall contain zero. The size of
List_Of_Object_Property_References shall be automatically increased to be the same.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Channel Object Type

446 ANSI/ASHRAE Standard 135-2012

12.53.14 Allow_Group_Delay_Inhibit

This property, of type BOOLEAN, shall indicate whether WriteGroup service writes to this object, that specify 'Inhibit
Delay'=TRUE, may override any execution delay specified in this object. Execution_Delay shall always occur as the result of
WriteProperty or WritePropertyMultiple. In the case of WriteGroup, Execution_Delay shall always occur unless the
WriteGroup service parameter 'Inhibit Delay' is TRUE, and the Channel object property Allow_Group_Delay_Inhibit is
present and has the value TRUE.

12.53.15 Channel_Number

This property, of type Unsigned16, shall indicate the logical channel number that this Channel object is associated with when
the Channel object Present_Value is written to using the WriteGroup service.

12.53.16 Control_Groups

This property, of type BACnetARRAY of Unsigned32, shall indicate those logical control groups of which this Channel
object is a member. This array shall contain at least one entry. Unused array slots shall contain the value zero, and control
group zero shall mean "no assignment." Control_Groups is required to be writable, and it shall be permitted to configure the
membership of the Channel object in arbitrary groups by writing the control group numbers into this array in any order, up to
the maximum number of simultaneous groups supported by the Channel object. Duplicate entries specifying the same group
number shall be permitted. The maximum size of the Control_Groups array shall be a local matter.

12.53.17 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.53.18 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.53.19 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 447

12.54 Lighting Output Object Type

The Lighting Output object type defines a standardized object whose properties represent the externally visible characteristics
of a lighting output and includes dedicated functionality specific to lighting control that would otherwise require explicit
programming. The lighting output is analog in nature.

The physical output level, or non-normalized range, is specified as the linearized percentage (0..100%) of the possible light
output range with 0.0% being off, 1.0% being dimmest, and 100.0% being brightest. The actual range represents the subset of
physical output levels defined by Min_Actual_Value and Max_Actual_Value (or 1.0 to 100.0% if these properties are not
present). The normalized range is always 0.0 to 100.0% where 1.0% = bottom of the actual range and 100.0% = top of the
actual range. All 0.0% to 100.0% properties of the Lighting Output object shall use the normalized range except for
Min_Actual_Value and Max_Actual_Value. If Min_Actual_Value and Max_Actual_Value are not present, then the
normalized and non-normalized ranges shall be the same.

)//R

)R

=�E@������@A����

Actual Range

���$�����
��������L
)//R

���L
/R

�������
��������L
)R

=��@������@A����

Normalized
Range

physical output

/R

���
����#��

Non-normalized
Range

Figure 12-13. Normalized Range of the Lighting Output

The level of the lights can be changed directly to an absolute level by writing to the Present_Value. This property is
commandable and uses a priority array to arbitrate between multiple writers to the lighting output.

The level of the lights may also be changed by writing to the Lighting_Command property. The lighting command provides
additional lighting functionality with special lighting-specific functions such as ramping, stepping, and fading.

The Lighting_Command also provides a blink-warn mechanism to notify room occupants that the lights are about to turn off.
The blink-warning mechanism is internal to the lighting output and may cause the physical lights to blink on and off or issue
a notification in some other manner. The blink-warn commands come in three different variants. The WARN command
causes a blink-warn notification but then leaves the level of the lights unaffected. The WARN_RELINQUISH command
executes the blink-warn notification, then keeps the light at the current level for a predetermined amount of time (egress
time), and then relinquishes the value at the given priority. The WARN_OFF command executes the blink-warn notification,
then keeps the light at the current level for the egress time, and then writes 0.0% (off) at the given priority. See Table 12-67.

The following example illustrates how a Lighting Output object may be used in a typical office scenario. Prior to 7:00 AM
the lights are off as the Lighting Output object is being controlled at the relinquish default value (0.0%). At 7:00 AM a
scheduler (e.g., a BACnet Schedule object or other automated process) turns the physical lights on by writing 100.0% to the
Present_Value property at priority 9. At 6:00 PM a WARN_RELINQUISH lighting command is executed at priority 9, which
causes an immediate blink-warn notification to occur but leaves the lights on until the egress timer has expired. Assuming a

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

448 ANSI/ASHRAE Standard 135-2012

10 minute (600 seconds) egress time is specified, the value at priority 9 is relinquished at 6:10 PM. This scenario is shown in
figure 12-14.

������
�����
�����

*L//
�
=

&������@A����
:)//R'
&�:+ ��$����$
�������
:
K� �@ !�4�>64��
&�:+

JL)/
&
=

Priority 9

5���23#���

������������

JL//
&
=

Relinquish Default = 0.0%

...

...

Priority 1

Priority 16

)//R

/R

/R

/R

Figure 12-14. Daily Schedule with Blink-Warn Example

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 449

The object and its properties are summarized in Table 12-64 and described in detail in this subclause.

Table 12-64. Properties of the Lighting Output Object
Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value REAL W
Tracking_Value REAL R
Lighting_Command BACnetLightingCommand W
In_Progress BACnetLightingInProgress R
Description CharacterString O
Status_Flags BACnetStatusFlags R
Reliability BACnetReliability O
Out_Of_Service BOOLEAN R
Blink_Warn_Enable BOOLEAN R
Egress_Time Unsigned R
Egress_Active BOOLEAN R
Default_Fade_Time Unsigned R

Default_Ramp_Rate REAL R

Default_Step_Increment REAL R

Transition BACnetLightingTransition O

Feedback_Value REAL O

Priority_Array BACnetPriorityArray R
Relinquish_Default REAL R
Power REAL O
Instantaneous_Power REAL O
Min_Actual_Value REAL O1

Max_Actual_Value REAL O1

Lighting_Command_Default_Priority Unsigned R
COV_Increment REAL O2

Reliability_Evaluation_Inhibit BOOLEAN O3
Property_List BACnetARRAY[N] of BACnetPropertyIdentifier R
Profile_Name CharacterString O

1 If either of these properties is present, they shall both be present, and they shall be writable.
2 This property is required if, and shall be present on if, the object supports COV reporting.
3 If this property is present, then the Reliability property shall be present.

12.54.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within
the BACnet Device that maintains it.

12.54.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that
maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be
restricted to printable characters.

12.54.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property
shall be LIGHTING_OUTPUT.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

450 ANSI/ASHRAE Standard 135-2012

12.54.4 Present_Value (Commandable)

This property, of type REAL, specifies the target value, in percent, for the lighting output within the normalized range. The
valid range of values for the Present_Value is 0.0% to 100.0%. Writes to Present_Value at a value greater than 0.0% but less
than 1.0% shall be clamped to 1.0%.

Present_Value may also be affected by writes to the Lighting_Command property that initiate lighting commands. These
commands may asynchronously affect the lighting output by establishing a new target for Present_Value and carrying out the
requested operation. When a ramp or fade lighting command is in progress, the Present_Value shall indicate the target level
of the operation and not the current value. The current value is always indicated in the Tracking_Value property. If a lighting
command is currently in progress and the Present_Value is written at a higher or equal priority, the lighting command shall
be halted (see Clause 12.54.6.1 Halting a Lighting Command in Progress).

The Present_Value supports special values outside of the normal range of values to provide blink-warn functionality from
objects and devices that are unable to write the complex datatypes used in the Lighting Command property (e.g., the BACnet
Schedule object type). The special values of the Present_Value are summarized in table 12-65.

Table 12-65. Special Values of the Present_Value Property
Value Description

-1.0 Provides the same functionality as the WARN lighting command.
-2.0 Provides the same functionality as the WARN_RELINQUISH lighting command.
-3.0 Provides the same functionality as the WARN_OFF lighting command.

Writing a special value has the same effect as writing the corresponding lighting command (see Table 12.67 Lighting
Commands) and is subject to the same restrictions. The special value itself is not written to the priority array.

The physical lighting output shall be updated whenever the Present_Value is commanded or changed as a result of executing
a lighting command. However, when the device starts up or is reset, it is a local matter as to whether the physical lighting
output is updated with the current value of Present_Value or whether the value of the physical output before startup or reset is
retained. When the physical output is not updated at startup or reset, the property In_Progress shall be set to
NOT_CONTROLLED until the physical output is updated with the current value of Present_Value. Writes to Present_Value
of values outside of the valid range of values shall cause a Result(-) to be returned with an Error Class of PROPERTY and an
Error Code of VALUE_OUT_OF_RANGE.

12.54.5 Tracking_Value

This property, of type REAL, indicates the value at which the physical lighting output is being controlled within the
normalized range at all times.

When the value of In_Progress is IDLE, Tracking_Value shall be equal to Present_Value.

When the value of In_Progress is RAMP_ACTIVE or FADE_ACTIVE, Tracking_Value shall indicate the current calculated
value of the ramp or fade algorithm. The manner by which the Tracking_Value is calculated in this situation shall be a local
matter.

When the value of In_Progress is NOT_CONTROLLED or OTHER, the value of Tracking_Value shall be a local matter.

12.54.6 Lighting_Command

This property, of type BACnetLightingCommand, is used to request special lighting commands with specific behaviors.
Lighting_Command is written with compound values that specify particular lighting operations. Devices containing Lighting
Output objects shall support all BACnetLightingOperations shown in Table 12-67.

When a lighting operation is written to the Lighting_Command property, the effect of that operation is written to the
Present_Value at the priority level specified by the priority field. If the priority field is not included with the command, the
priority specified in Lighting_Command_Default_Priority shall be used.

Some lighting operations require additional parameters. These are provided by optional fields of the
BACnetLightingCommand value.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 451

The fields of the BACnetLightingCommand are summarized in Table 12-66.

Table 12-66. BACnetLightingCommand Fields
Field Description

operation This field is an enumeration of type BACnetLightingOperation that defines the lighting
operation desired.

target-level This field, of type REAL, represents the target lighting output level in the normalized
range (0.0%…100.0%).

ramp-rate This field, of type REAL, represents the rate of change in percent-per-second for ramp
operations. The range of allowable ramp-rate values is 0.1 to 100.0 inclusive.
If this field is not specified, then the value of Default_Ramp_Rate specifies the ramp rate
to be used

fade-time This field, of type Unsigned, represents the time in milliseconds over which fade
operations take place. The range of allowable fade-time values is 100 ms to 86400000 ms
(1 day) inclusive.
If this field is not specified, then the value of Default_Fade_Time specifies the fade time
to be used.

step-increment This field, of type REAL, represents the percent amount to be added to Present_Value
when stepping. The range of allowable values is 0.1% to 100.0% inclusive.
If this field is not specified, then the value of Default_Step_Increment specifies the step
increment to be used.

priority This field, of type Unsigned (1..16), represents the priority values 1 (highest priority)
through 16 (lowest priority).
If this field is not specified, then the value of Lighting_Command_Default_Priority
specifies the priority to be used.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

452 ANSI/ASHRAE Standard 135-2012

The lighting commands are described in Table 12-67. The notation to specify the syntax of the lighting commands is as
follows:
 <field in angle brackets> required field of the BACnetLightingCommand
 <field in angle brackets = value> required field of the BACnetLightingCommand with a specified value
 [fields in square brackets] optional fields of the BACnetLightingCommand.

Table 12-67. Lighting Commands

Operation Description
NONE This operation is used to indicate that no lighting command has been written to the

Lighting_Command property.

This operation shall not be written to the Lighting_Command property. Attempts to write
this operation to the Lighting_Command property shall cause a Result(-) to be returned
with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE

FADE_TO Commands Present_Value to fade from the current Tracking_Value to the target-level
specified in the command at the specified priority.
The fade operation is implemented by first writing target-level to the specified slot in the
priority array.

If the fade command is the highest priority when written, then the fade operation
continues by changing the physical lighting output proportionally from its current value to
target-level, over a period of time defined by fade-time. While the fade operation is
executing, In_Progress shall be set to FADE_ACTIVE, and Tracking_Value shall be
updated to reflect the current progress of the fade.

If the fade command is not the highest priority when written, then this fade operation is
not executed.

syntax:

<operation = FADE_TO> <target-level> [priority] [fade-time]

RAMP_TO Commands Present_Value to ramp from the current Tracking_Value to target-level
specified in the command at the specified priority.
The ramp operation is implemented by first writing target-level to the specified slot in the
priority array.

If the ramp command is the highest priority when written, then the ramp operation
continues by changing the physical lighting output proportionally from its current value to
target-level, with a fixed rate of change defined by ramp-rate. While the ramp operation is
executing, In_Progress shall be set to RAMP_ACTIVE, and Tracking_Value shall be
updated to reflect the current progress of the fade.

If the ramp command is not the highest priority when written, then this ramp operation is
not executed.

syntax:

<operation = RAMP_TO> <target-level> [priority] [ramp-rate]

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 453

STEP_UP Commands Present_Value to a value equal to the Tracking_Value plus the step-increment
at the specified priority.

The step-up operation is implemented by writing the Tracking_Value plus step-increment
to the specified slot in the priority array. If the result of the addition is greater than
100.0%, the value shall be set to 100.0%.

If the starting level of Tracking_Value is 0.0%, then this operation is ignored.

syntax:

<operation = STEP_UP> [priority] [step-increment]

STEP_DOWN Commands Present_Value to a value equal to the Tracking_Value minus the step-
increment at the specified priority.

The step-down operation is implemented by writing the Tracking_Value minus step-
increment to the specified slot in the priority array. If the result of the subtraction is less
than 1.0%, the value shall be set to 1.0%.

If the starting level of Tracking_Value is 0.0%, then this operation is ignored.

syntax:

<operation = STEP_DOWN> [priority] [step-increment]

STEP_ON Same as STEP_UP except when Tracking_Value is 0.0%, in which case, 1.0% is written
to the specified slot in the priority array.

syntax:

<operation = STEP_ON> [priority] [step-increment]

STEP_OFF Same as STEP_DOWN except when Tracking_Value is 1.0%, in which case, 0.0% is
written to the specified slot in the priority array.

syntax:

<operation = STEP_OFF> [priority] [step-increment]

WARN Executes a blink-warn notification at the specified priority. After the blink-warn
notification has been executed, the value at the specified priority is unchanged.

The blink-warn notification shall not occur if any of the following conditions occur:

(a)
 The specified priority is not the highest active priority, or
(b)
 The value at the specified priority is 0.0%, or
(c)
 Blink_Warn_Enable is FALSE.

See Clause 12.54.6.2 Blink-Warn Behavior.

syntax:

<operation = WARN> [priority]

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

454 ANSI/ASHRAE Standard 135-2012

WARN_RELINQUISH Executes a blink-warn notification at the specified priority and then relinquishes the value
at the specified priority slot after a delay of Egress_Time seconds.

The blink-warn notification shall not occur, and the value at the specified priority shall be
relinquished immediately if any of the following conditions occur:

(a)
 The specified priority is not the highest active priority, or
(b)
 The value at the specified priority is 0.0% or NULL, or
(c)
 The value of the next highest non-NULL priority, including

Relinquish_Default, is greater than 0.0%, or
(d)
 Blink_Warn_Enable is FALSE.

See clause 12.54.6.2 Blink-Warn Behavior.

syntax:

<operation = WARN_RELINQUISH> [priority]

WARN_OFF Executes a blink-warn notification at the specified priority and then writes the value 0.0%
to the specified slot in the priority array after a delay of Egress_Time seconds.

The blink-warn notification shall not occur and the value 0.0% written at the specified
priority immediately if any of the following conditions occur:

(a)
 The specified priority is not the highest active priority, or
(b)
 The Present_Value is 0.0%, or
(c)
 Blink_Warn_Enable is FALSE

See clause 12.54.6.2 Blink-Warn Behavior.

syntax:

<operation = WARN_OFF> [priority]

STOP Stops any FADE_TO or RAMP_TO command in progress at the specified priority and
writes the current value of Tracking_Value to that slot in the priority array and sets
In_Progress to IDLE.

Cancels any WARN_RELINQUISH or WARN_OFF command in progress at the
specified priority and cancels the blink-warn egress timer. The value in the priority array
at the specified priority remains unchanged.

If there is no fade, ramp, or warn command currently executing at the specified priority,
then this operation is ignored.

syntax:

<operation = STOP> [priority]

Some lighting devices may incorporate remote subnetworks or other technology that may introduce latency or non-linearity
in the behavior of the physical light being controlled. Consequently, the absolute timing resolution of lighting operations
should not be assumed. Some lighting devices may not be capable of achieving the performance implied by a given
operation, in which case, the device shall use its best effort to carry out the intended operation.

The Lighting_Command property shall indicate the last written value or NONE if it has not yet been written.

If a BACnetLightingCommand is sent that includes an optional field that is not explicitly described for that operation in
Table 12-67, then the field value shall be ignored. Lighting commands written with a required or optional field, explicitly
specified for this command, which are outside of the allowable range of values, shall cause a Result(-) to be returned with an
Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 455

12.54.6.1 Halting a Lighting Command in Progress

Some lighting commands (i.e., RAMP_TO, FADE_TO, WARN_RELINQUISH, and WARN_OFF) are executed over a
period of time. While a lighting command, at a specific priority, is in progress, it shall be halted under the following
conditions:

(a)
 A valid command, other than STOP, is written to the Lighting_Command property at a higher priority than the
command in progress, or

(b)
 The Present_Value is written at a higher priority than the command in progress.

When a RAMP_TO or FADE_TO command that is currently in progress is halted, the internal ramp or fade algorithm is
halted, and the corresponding slot in the priority array remains unchanged.

When a WARN_RELINQUISH command that is currently in progress is halted, the blink-warn egress timer is immediately
expired, and the corresponding value of the priority array is relinquished.

When a WARN_OFF command that is currently in progress is halted, the egress timer is immediately expired, and the value
0.0% is written to the priority array at the specified priority.

A lighting command that is in progress is implicitly halted when it is overwritten by another lighting command at the same
priority or by a write to the Present_Value at the same priority.

There may only be one lighting command currently in progress at any time.

12.54.6.2 Blink-Warn Behavior

The WARN, WARN_RELINQUISH, and WARN_OFF lighting commands, as well as writing one of the special values to
the Present_Value property, cause a blink-warn notification to occur at the specified priority. A blink-warn notification is
used to warn the occupants that the lights are about to turn off, giving the occupants the opportunity to exit the space or to
override the lights for a period of time.

The actual blink-warn notification mechanism shall be a local matter. The physical lights may blink once, multiple times, or
repeatedly. They may also go bright, go dim, or signal a notification through some other means. In some circumstances, no
blink-warn notification will occur at all. The blink-warn notification shall not be reflected in the priority array or the tracking
value.

The WARN_RELINQUISH and WARN_OFF lighting commands include an egress time in which the lights are held at the
current level until the egress time expires or the command is halted. The number of seconds for egress is specified in the
Egress_Time property. The egress timer shall start when the WARN_RELINQUISH or WARN_OFF command is written.
While the egress timer is active, the property Egress_Active shall be set to TRUE. When the egress timer expires or the
command is halted, then Egress_Active shall be set to FALSE. There may only be one priority slot with an active egress
timer at any time.

If the Blink_Warn_Enable property has the value FALSE, then the blink-warn notification shall not occur, and the effect of
the operation shall occur immediately without an egress delay.

The relationship between Egress_Time and the Egress_Active property is shown in Figure 12-15.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

456 ANSI/ASHRAE Standard 135-2012

/R

)//R

!$����@,���

��
��

2

#

��
�

��
���

��
��

��
�

!$����@����1�
:
, 6!!$����@����1�
:
?���! !$����@����1�
:
?���!

K� �@??

Figure 12-15. Blink-warn and Egress Time

12.54.7 In_Progress

This property, of type BACnetLightingInProgress, shall indicate processes in the lighting output object that may cause the
Tracking_Value and Present_Value to differ temporarily. The processes indicated in the property are summarized in table 12-
68.

Table 12-68. BACnetLightingInProgress Values
Value Description

IDLE The default value that indicates that no processes are executing which would cause
the Present_Value and Tracking _Value to differ.

RAMP_ACTIVE Indicates that a ramp lighting command is currently being executed.
FADE_ACTIVE Indicates that a fade lighting command is currently being executed.
NOT_CONTROLLED Indicates that on startup or reset the physical output has not been updated with the

current value of Present_Value.
OTHER Indicates that the Tracking_Value and Present_Value may differ but none of the

other conditions describe the nature of the process.

12.54.8 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.54.9 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Lighting
Output object. Two of the flags are associated with the values of other properties of this object. A more detailed status could
be determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined
by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 457

12.54.10 Reliability

This property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of the
physical output in question is "reliable" as far as the BACnet Device or operator can determine and, if not, why.

12.54.11 Out_Of_Service

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) the physical point that the object represents is
not in service. This means that changes to the Present_Value property are decoupled from the physical lighting output when
the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT flag of
the Status_Flags property shall be decoupled from the physical lighting output when Out_Of_Service is TRUE. While the
Out_Of_Service property is TRUE, the Present_Value and Reliability properties may still be changed to any value as a
means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the
Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as
if those changes had occurred to the physical lighting output. The Present_Value property shall still be controlled by the
BACnet command prioritization mechanism and lighting command if Out_Of_Service is TRUE. See Clause 19.

12.54.12 Blink_Warn_Enable

This property, of type BOOLEAN, specifies whether a blink-warn is executed (TRUE) or not (FALSE) when a WARN,
WARN_RELINQUISH, or WARN_OFF command is written to the Lighting_Command property or one of the special values
is written to the Present_Value. When this property is FALSE and a warn operation is written, a blink-warn notification shall
not occur, and the effect of the operation shall occur immediately without an egress delay.

12.54.13 Egress_Time

This property, of type Unsigned, specifies the egress time in seconds when a WARN_RELINQUISH or WARN_OFF is
written to the Lighting_Command property or when the special values -2.0 or -3.0 are written to the Present_Value property.
The egress time is the time for which the light level is held at its current level before it is relinquished or set to 0.0%.

12.54.14 Egress_Active

This property, of type BOOLEAN, shall be TRUE whenever the Egress_Time for a WARN_RELINQUISH or WARN_OFF
lighting operation is in effect and FALSE otherwise.

12.54.15 Default_Fade_Time

This property, of type Unsigned, indicates the amount of time in milliseconds over which changes to the normalized value
reflected in the Tracking_Value property of the lighting output shall occur when the Lighting_Command property is written
with a fade request that does not include a fade-time value. The range of allowable fade-time values is 100 ms to 86400000
ms (1 day) inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of
PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.
12.54.16 Default_Ramp_Rate

This property, of type REAL, indicates the rate in percent-per-second at which changes to the normalized value reflected in
the Tracking_Value property of the lighting output shall occur when the Lighting_Command property is written with a ramp
request that does not include a ramp-rate value. The range of allowable ramp-rate values is 0.1 %/s to 100.0 %/s inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and
an Error Code of VALUE_OUT_OF_RANGE.

12.54.17 Default_Step_Increment

This property, of type REAL, indicates the amount to be added to the Tracking_Value when the Lighting_Command property
is written with a step request that does not include a step-increment value. The range of allowable values is 0.1% to 100.0%
inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and
an Error Code of VALUE_OUT_OF_RANGE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

458 ANSI/ASHRAE Standard 135-2012

12.54.18 Transition

This property, of type BACnetLightingTransition, specifies how a change in the Present_Value transitions from the current
level to the target level. A transition comes into effect when the Present_Value is directly commanded or when the current
highest priority value has been relinquished. Writing the Lighting commands FADE_TO, RAMP_TO, STEP_ON,
STEP_OFF, STEP_UP, or STEP_DOWN shall ignore the Transition property.

The transition may be one of NONE, FADE, or RAMP. The transition NONE causes the Present_Value to immediately be
set to the target level when the highest priority value has been relinquished. If this property does not exist, then the transition
type shall be assumed to be NONE.

FADE or RAMP transitions allow a smooth transition of the lighting level when the Present_Value changes. A FADE
transition executes a fade operation from the Tracking_Value to the target level using the fade time specified in
Default_Fade_Time. A RAMP transition executes a ramp operation from the Tracking_Value to the target level using the
ramp rate specified in Default_Ramp_Rate.

When a transition results in an operation that may cause the Tracking_Value to differ from the Present_Value, then the
In_Progress property shall be set to the value that reflects the operation in progress.

12.54.19 Feedback_Value

This property, of type REAL, shall indicate the actual value of the physical lighting output within the normalized range.

If the actual value of the physical lighting output in the non-normalized range is not off but is less than the
Min_Actual_Value, then Feedback_Value shall be set to 1.0%. If the actual value in the non-normalized range is greater than
Max_Actual_Value, then Feedback_Value shall be set to 100.0%.

The manner by which the Feedback_Value is determined shall be a local matter.

12.54.20 Priority_Array

This property is a read-only array of prioritized values. See Clause 19 for a description of the prioritization mechanism.

12.54.21 Relinquish_Default

This property, of type REAL, is the default value to be used for the Present_Value property when all command priority
values in the Priority_Array property have a NULL value. See Clause 19.

12.54.22 Power

This property, of type REAL, is the nominal power consumption of the load(s) controlled by this object when the light level
is 100.0% of the non-normalized range. The units shall be kilowatts.

12.54.23 Instantaneous_Power

This property, of type REAL, is the nominal power consumption of the load(s) controlled by this object at this moment. The
units shall be kilowatts.

12.54.24 Min_Actual_Value

This property, of type REAL, shall specify the physical output level that corresponds to a Present_Value of 1.0%. Changing
Min_Actual_Value to a value greater than Max_Actual_Value shall force Max_Actual_Value to become equal to
Min_Actual_Value. Min_Actual_Value shall always be a positive number in the range 1.0% to 100.0%.

12.54.25 Max_Actual_Value

This property, of type REAL, shall specify the physical output level that corresponds to a Present_Value of 100.0%.
Changing Max_Actual_Value to a value less than Min_Actual_Value shall force Min_Actual_Value to become equal to
Max_Actual_Value. Max_Actual_Value shall always be a positive number in the range 1.0% to 100.0%.

12.54.26 Lighting_Command_Default_Priority

This property, of type Unsigned, shall specify a write priority of 1 to 16 that indicates the element of the Priority_Array
controlled by the Lighting_Command property when the BACnetLightingCommand priority field is absent.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

12. MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS
Lighting Output Object Type

ANSI/ASHRAE Standard 135-2012 459

The priority value 6 shall not be used for this property. If a value of 6 is written to this property, then a Result(-) shall be
returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.54.27 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COVNotification to be
issued to subscriber COV-clients.

12.54.28 Reliability_Evaluation_Inhibit

This property, of type BOOLEAN, indicates whether (TRUE) or not (FALSE) reliability-evaluation is disabled in the object.
This property is a runtime override that allows temporary disabling of reliability-evaluation.

When reliability-evaluation is disabled, the Reliability property shall have the value NO_FAULT_DETECTED unless
Out_Of_Service is TRUE and an alternate value has been written to the Reliability property.

12.54.29 Property_List

This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists
within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the
list.

12.54.30 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness,
a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All
subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier
code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named
by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the
device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here.
This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope
of this standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARMAND EVENT SERVICES

460 ANSI/ASHRAE Standard 135-2012

13 ALARM AND EVENT SERVICES

This clause describes the conceptual approach and application services used in BACnet to manage communication related to
events. Object types relating to event management are defined in Clause 12. In general, "events" are changes of value of
certain properties of certain objects, or internal status changes, that meet predetermined criteria. There are two mechanisms
provided in BACnet for managing events: change of value reporting and event reporting.

Change of value (COV) reporting allows a COV-client to subscribe with a COV-server, on a permanent or temporary basis,
to receive reports of some changes of value of some referenced property based on fixed criteria. Certain BACnet standard
objects may optionally support COV reporting. If a standard object provides COV reporting, then changes of value of
specific properties of the object, in some cases based on programmable increments, trigger COV notifications to be sent to
one or more subscriber clients. Typically, COV notifications are sent to supervisory programs in COV-client devices or to
operators or logging devices. Proprietary objects may support COV reporting at the implementor's option.

Event reporting allows BACnet devices to contain one or more event objects (event-initiating objects) that generate event
notifications that may be directed to one or more destinations. Event reporting comes in three forms: intrinsic reporting,
algorithmic reporting and alert reporting. Typically, event notifications are sent to operators or logging devices represented
by "processes" within a notification-client device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Change of Value Reporting

ANSI/ASHRAE Standard 135-2012 461

13.1 Change of Value Reporting

Change of value (COV) reporting allows a COV-client to subscribe with a COV-server, on a permanent or temporary basis,
to receive reports of some changes of value of some referenced property based on fixed criteria. If an object provides COV
reporting, then changes of value of any subscribed-to properties of the object, in some cases based on programmable
increments, trigger COV notifications to be sent to subscribing clients. Typically, COV notifications are sent to supervisory
programs in COV-client devices or to operators or logging devices. Any object, proprietary or standard, may support COV
reporting at the implementor's option.

COV subscriptions are established using the SubscribeCOV service or the SubscribeCOVProperty service. The subscription
establishes a connection between the change of value detection and reporting mechanism within the COV-server device and a
"process" within the COV-client device. Notifications of changes are issued by the COV-server when changes occur after the
subscription has been established. The ConfirmedCOVNotification and UnconfirmedCOVNotification services are used by
the COV-server to convey change notifications. The choice of confirmed or unconfirmed service is specified in the
subscription.

When a BACnet standard object, of a type listed in Table 13-1, supports COV reporting it shall support COV reporting for
the property as listed in Table 13-1. At the implementor's discretion, COV reporting may also be supported for any other
property of the object. For properties listed in Table 13-1 that have a numeric datatype, the COV increment used to determine
when to generate notifications will be the COV_Increment property of the object unless a COV_Increment parameter is
supplied in the SubscribeCOVProperty service. For other properties that have a numeric datatype, the COV increment to use
when not supplied with the SubscribeCOVProperty service shall be a local matter. This is to allow multiple subscribers that
do not require a specific increment to use a common increment to allow for the reduction of the processing burden on the
COV-server. The criteria for COV reporting for properties other than those listed in Table 13-1 is based on the datatype of
the property subscribed to and is described in Table 13-1a.

If an object supports the COV_Period property and COV_Period is non-zero, it shall issue COV notifications to all
subscribed recipients at the regular interval specified by COV_Period, in addition to the notifications initiated by the change
of value of the monitored property. The value of the monitored property conveyed by the periodic COV notification shall be
the basis for determining whether a subsequent COV notification is required by the change in value of the monitored
property. If COV_Period is zero, the periodic notifications shall not be issued.

It is the responsibility of the COV-server to maintain the list of active subscriptions for each object that supports COV
notification. This list of subscriptions shall be capable of holding at least a single subscription for each object that supports
COV notification, although multiple subscriptions may be supported at the implementor's option. The list of subscriptions is
network-visible through the device object's Active_COV_Subscriptions property. Subscriptions may be created with finite
lifetimes, meaning that the subscription may lapse and be automatically canceled after a period of time. Optionally, the
lifetime may be specified as infinite, meaning that no automatic cancellation occurs. However, the COV-server is not
required to guarantee preservation of subscriptions across power failures or "restarts." Periodic resubscription is allowed and
expected and shall simply succeed as if the subscription were new, extending the lifetime of the subscription.

The different standard objects that support standardized COV reporting use different criteria for determining that a "change
of value" has occurred, which are summarized in Table 13-1. Proprietary object types, or other standard object types not
listed in Table 13-1, that support COV reporting of the Present_Value property, should follow these criteria whenever
possible. Any objects that may optionally provide COV support and the change of value algorithms they shall employ are
summarized in Tables 13-1 and 13-1a.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Change of Value Reporting

462 ANSI/ASHRAE Standard 135-2012

Table 13-1. Standardized Objects That May Support COV Reporting
Object Type Criteria Properties Reported

Access Door If Present_Value changes at all
or
Status_Flags changes at all
or
Door_Alarm_State changes at all (if the object has a
Door_Alarm_State property)

Present_Value, Status_Flags,
Door_Alarm_State (if the object has a
Door_Alarm_State property)

Access Point 1 If Access_Event_Time changes at all
 or
Status_Flags changes at all

Access_Event,
Status_Flags,
Access_Event_Tag,
Access_Event_Time,
Access_Event_Credential,
Access_Event_Authentication_Factor
(if present)

Analog Input,
Analog Output,
Analog Value,
Large Analog Value,
Integer Value,
Positive Integer Value,
Lighting Output

If Present_Value changes by COV_Increment
 or
Status_Flags changes at all

Present_Value, Status_Flags

Binary Input,
Binary Output,
Binary Value,
Life Safety Point,
Life Safety Zone,
Multi-state Input,
Multi-state Output,
Multi-state Value,
OctetString Value,
CharacterString Value,
Time Value,
DateTime Value,
Date Value,
Time Pattern Value,
Date Pattern Value,
DateTime Pattern Value

If Present_Value changes at all
 or
Status_Flags changes at all

Present_Value, Status_Flags

Credential Data Input If Update_Time changes at all
 or
Status_Flags changes at all

Present_Value,
Status_Flags,
Update_Time

Load Control If Present_Value, Status_Flags,
Requested_Shed_Level, Start_Time,
Shed_Duration, or Duty_Window changes at all

Present_Value, Status_Flags,
Requested_Shed_Level, Start_Time,
Shed_Duration, Duty_Window

Loop If Present_Value changes by COV_Increment
 or
Status_Flags changes at all

Present_Value, Status_Flags,
Setpoint,
Controlled_Variable_Value

Pulse Converter If Present_Value changes by COV_Increment
 or
Status_Flags changes at all
 or
If COV_Period expires

Present_Value, Status_Flags,
Update_Time

1 For COV contexts for this object type in Active_COV_Subscriptions in the Device object, the
Monitored Property Reference shall contain the Access_Event property identifier.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Change of Value Reporting

ANSI/ASHRAE Standard 135-2012 463

Table 13-1a. Criteria Used for COV Reporting of Properties Other Than Those Listed in Table 13-1.
Datatype Criteria Properties Reported

REAL If the property changes by the increment (from the
service if provided; otherwise, as determined by
the device)
 or
Status_Flags changes at all (if the object has a
Status_Flags property)

The subscribed-to property,
Status_Flags (if the object has a
Status_Flags property)

All other datatypes If the property changes at all
 or
Status_Flags changes at all (if the object has a
Status_Flags property)

The subscribed-to property,
Status_Flags (if the object has a
Status_Flags property)

13.1.1 Unsubscribed COV Notifications

Some objects may share information by generating UnconfirmedCOVNotification messages without using COV
subscriptions. As described in Clause 13.7, such notifications set the Subscriber Process Identifier parameter to zero to
identify them as unsubscribed.

The use of UnconfirmedCOVNotification messages in this manner is not restricted, and any object can use this mechanism to
distribute its properties' values to one or more recipients. The selection of which properties to send and the criteria for when
to send them are a local matter. A single object is not restricted to sending a single set of properties and thus may use this
mechanism for different purposes with different collections of properties to different recipients.

Some standardized objects have standardized usages of this mechanism, and those are listed in Table 13-1b. Inclusion in the
table does not restrict other collections of properties from being sent for other purposes.

Table 13-1b. Standardized Objects That May Support Standardized Unsubscribed COV Reporting
Object Type Distribution Controlled By Criteria Properties Reported

Device Restart_Notification_Recipients Device has completed the
restart process.
See Clause 19.3

System_Status,
Time_Of_Device_Restart,
Last_Restart_Reason

Global Group COVU_Recipients Periodic, as determined by
COVU_Period

Member_Status_Flags1,
Elements of Present_Value1

1 For Global Group, the elements of Present_Value shall be encoded individually each in its own
BACnetPropertyValue production and shall include its array index. The elements shall be sent in index order and the
first element shall be the Unsigned value at array index 0 (to inform recipients of the total array size). If the total
Present_Value array is too large to fit within a single message, then multiple notifications shall be sent in order to
convey all the elements. If a single element is too large to fit in a single message, it shall be encoded as an Error
production with an error class of PROPERTY and an error code of VALUE_TOO_LONG. When multiple
notifications are required, the index 0 element of Present_Value and the Member_Status_Flags shall be present only
in the first notification.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

464 ANSI/ASHRAE Standard 135-2012

13.2 Event Reporting

Event reporting is used to detect and report conditions that are broadly categorized into one of three possible groups: fault,
offnormal, and normal. A "fault" condition is a malfunction, nearly always representing a failure within the automation
system itself. An "offnormal" condition is a condition within the system that is not normally expected or is outside the bounds
of ideal operation. A "normal" condition is anything else.

Objects which support event reporting are called event-initiating objects. Event-initiating objects identify their "event state"
from moment to moment as one of any number of possibly unique event states. Notifications are triggered by the "transition"
of conditions for an object, usually from one unique event state to another. In these contexts, all states that are not normal and
not fault are offnormal states, and transitions that result in an offnormal state are considered to be TO_OFFNORMAL
transitions. Transitions to any fault state are considered to be TO_FAULT transitions. All other transitions are, by definition,
TO_NORMAL transitions.

Intrinsic reporting consists of an object monitoring its own properties, whereas algorithmic reporting consists of an object
monitoring properties of other objects. Certain BACnet standard objects may optionally support intrinsic reporting by
supporting optional properties that define the type of event to be generated and options for handling and routing of the
notifications. Proprietary objects may support intrinsic reporting at the implementor's option.

Algorithmic reporting allows the monitoring of objects that do not provide intrinsic reporting, or the monitoring of an object
with an algorithm or algorithm parameters that differ from those configured in the object. Any of the standardized algorithms
described in Clause 13.3 may be used to establish criteria for algorithmic reporting. Algorithmic reporting differs from
intrinsic reporting in that Event Enrollment objects are used to determine the event condition(s).

Alert reporting allows any object to provide event reports that are unrelated to the object's event state and the intrinsic
reporting algorithm of the object. Conceptually, when the need for an alert message is identified by an object, the alert is
passed to an Alert Enrollment object for distribution. Alerts differ from intrinsic reporting and algorithmic reporting in that
there are no standard conditions under which alerts are generated and in that alerts are stateless and cannot be acknowledged.

Events may be selectively identified as belonging to the category of "alarms" or "events." Event-initiating objects indicate
this distinction through the Notify_Type property. Conceptually, alarms are events that are intended to be seen and reacted to
by human operators. Operator workstation software is written, for example, to facilitate the reviewing and acknowledgment
of alarms, possibly conveying the acknowledgment over the network via the AcknowledgeAlarm service. Events may or may
not be of interest to operators and are typically intended for machine-to-machine communication. Applications of events
include equipment interlocks, temperature overrides, the transition to a load-shedding condition, and so on. In the BACnet
protocol, the singular distinction is that alarms will be reported by the GetAlarmSummary service, while all other events will
not. In every other respect, BACnet makes no distinction between an alarm and an event.

The event notification services contain a 'Time Stamp' parameter that indicates the chronological order of events. This 'Time
Stamp' may be the actual time as determined by the local device clock or, if the device has no clock, a sequence number.
Sequence numbers are required to increase monotonically up to their maximum value, at which point the number "wraps
around" to zero. A device may have a single sequence number for all event-initiating objects, or it may have a separate
sequence number for each object.

Event notifications may be specified to use either confirmed or unconfirmed services for notification messages. By providing
two kinds of notification mechanisms, BACnet allows the application designer to determine the relative importance of each
event and whether or not notification of its occurrence is essential or merely desirable. In the former case, notification can be
carried out with a confirmed service and repeated for as many recipients as required. In the latter case, an unconfirmed
service using a broadcast or multicast address may be used.

Notification Class objects provide event classification and specify the destination devices for notification messages using
BACnetRecipients. The recipients may be individual devices, groups of devices with a common multicast address, or all
devices reachable by a broadcast address. If a broadcast is used, the scope may be limited to all devices on a single network
or it may be extended to encompass all devices on a BACnet internetwork. The Notification Class object defines the priorities
to be used in event notification messages, whether acknowledgment by an application process or a human operator is
required, and at what time periods during the week given destinations are to be used.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

ANSI/ASHRAE Standard 135-2012 465

BACnet event reporting provides support for event acknowledgment whereby an operator indicates that the event transition
has been reviewed. The need for acknowledgments is enabled or disabled by event class through the Notification Class object
and by transition type (fault, offnormal or normal).

13.2.1 Event Detection and Reporting Model

The BACnet event detection and reporting model as outlined in this clause applies to all BACnet objects, both standard and
proprietary. The event algorithms are described in Clause 13.3.

<�1���
"������������3���1��%

Event-initiating object

!1���3�����3
<��������

�����3
��2��#���$�����

!1���3
������������3
<�����������

��������
�1���
�����
����������

��������
�1���
�����
����������

��������
��2��#���$�����
����������

������������

��2��#���$�����

�1���3�������S�����
��������

Device (notification-client)

Device (notification-client)

�1���3�������S�����
��������

������������

����������

Device (notification-client)
������������

!1���3
�������S��������������
1�����

 ���������	

Device (notification-client)

������������
������������

�1���
�����

Event Log Object

������������
?��#�����

�G���

��G���3
����

!1���
��$
�G���

��2��#���$�����

��2��#���$�����

Figure 13-1. Overview of the Event Detection and Reporting Model

The event-detection and reporting model used in BACnet is separated into four main concepts: event-state-detection, alarm-
acknowledgment, event-summarization, and event-notification-distribution. The flow of data between the main parts of the
model and the roles that the different objects play in event reporting are shown in Figure 13-1.

Devices that contain event-initiating objects (notification-servers) interact with one or more devices which process the event
information (notification-clients). A notification-client can receive the event information through an event notification or by
querying the notification-server via an event-summarization service.

Event-state-detection consists of the monitoring of one or more values (including a Reliability value) in order to evaluate the
object's event state.

An object that supports event-state-detection (intrinsic reporting or algorithmic reporting) may also support alarm-
acknowledgment. Alarm-acknowledgment is an optional functionality whereby an event transition requires acknowledgment

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

466 ANSI/ASHRAE Standard 135-2012

by an operator. A notification-client performs an acknowledgment by issuing an AcknowledgeAlarm service request.
Additionally, the acknowledgment may be performed by means local to the device (e.g., an alarm reset button).

Event-summarization provides the ability for a device to retrieve event information independent of notifications, allowing
notification-clients that have missed notifications or that are not subscribed for notifications to easily determine the event
state of all objects in a device. A device is required to support event-summarization if it is capable of containing objects that
support event-state-detection.

Event-notification-distribution refers to the process involved in sending notifications of event state transitions and
acknowledgment transitions using ConfirmedEventNotifications and UnconfirmedEventNotifications to a set of notification-
clients and to local Event Log objects. Event-notification-distribution is provided via Notification Class objects and,
optionally, Notification Forwarder objects. Devices that support event-state-detection shall support event-notification-
distribution.

Objects support event-state-detection via intrinsic reporting, or event-state-detection can be provided for the object via
another object performing algorithmic reporting. Notification Class, Notification Forwarder and any objects that implement
algorithmic reporting shall not be permitted to implement intrinsic reporting.

The following clauses specify the Event Detection and Reporting model independent of the object types. The Event Log and
Notification Forwarder object processes notifications and are included in the overview for information. These objects and
their associations to event notifications are specified in Clause 12.

13.2.2 Event-State-Detection

!1���3�����3
<��������

��������
�1���3�����
����������

����������	3�1��������
������

!1���@�����

!1���@,���@������

!1���@��$������@4������

!1���@=����$�@,�E��

!1���3��$������

������@?��$��4�@��� =

!1���3<��������3!�����

=��������
1�����

Figure 13-2. The Event-State-Detection Process

In the event-state-detection process, the event algorithm and the Reliability property together determine the event state of an
object. The event algorithm determines the normal or offnormal states and the Reliability property determines whether or not
the event state will indicate a fault. Fault detection takes precedence over the detection of normal and offnormal states. As
such, when Reliability has a value other than NO_FAULT_DETECTED, the event-state-detection process will determine the
object's event state to be FAULT.

When the event-state-detection process is disabled via the Event_Detection_Enable, both the event algorithm and the
Reliability value are ignored, and Event_State remains NORMAL.

When the monitoring of values is disabled by Event_Algorithm_Inhibit, the result of the event algorithm will be ignored and
all TO_OFFNORMAL and TO_NORMAL transitions will be disabled with the exception of TO_NORMAL transitions from
FAULT. Event_Algorithm_Inhibit does not impact transitions to or from the fault state.

For intrinsic reporting in standard object types, the event algorithm is implied by the object type. For algorithmic reporting,
the Event Enrollment object contains the Event_Type property which indicates the event algorithm. An object, standard or
proprietary, shall use only a single event algorithm. For objects in which the event algorithm is configurable, there is an
expectation that the event algorithm does not change dynamically.

In objects that support event-state-detection, the reporting of changes in Reliability cannot be disabled while event-state-
detection is enabled. Instead, the object may be stopped from detecting faults through the Reliability_Evaluation_Inhibit

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

ANSI/ASHRAE Standard 135-2012 467

property. If an object that supports event-state-detection does not have a Reliability property, then the reliability evaluation is
assumed to indicate NO_FAULT_DETECTED and no fault transitions shall occur.

A transition of the event state is indicated to the Alarm-Acknowledgment process (see Clause 13.2.2.1.5) and the event-
notification-distribution process (see Clause 13.2.5).

13.2.2.1 Event-State-Detection State Machine

NoFault

Normal

Fault

OffNormal

,�������

,�������

,���������

,�?����

,�������

,���������

,�?����

Figure 13-3. Event-State-Detection State Machine

The state machine in Figure 13-3 shows all possible transitions of the general event-state-detection model. Not all ToNormal
or ToOffNormal transitions are supported by every event algorithm.

If the Event_Detection_Enable property is FALSE, then this state machine is not evaluated. In this case, no transitions shall
occur, Event_State shall be set to NORMAL, and Event_Time_Stamps, Event_Message_Texts and Acked_Transitions shall
be set to their respective initial conditions.

It is important to note that, in the following clauses, transitions from one Event_State to the same Event_State value are
indicated by the event algorithm or by reliability-evaluation.

13.2.2.1.1 Normal

In the Normal state reliability-evaluation indicates a value of NO_FAULT_DETECTED and either the event algorithm
indicates a normal event state or the Event_Algorithm_Inhibit is TRUE.

ToOffNormal

If reliability-evaluation indicates a value of NO_FAULT_DETECTED and the event algorithm indicates an offnormal
event state and Event_Algorithm_Inhibit is FALSE,

then perform the corresponding transition actions (see Clause 13.2.2.1.4) and enter the OffNormal state.

ToFault

If reliability-evaluation indicates a value other than NO_FAULT_DETECTED,

then perform the corresponding transition actions and enter the Fault state.

ToNormal

If reliability-evaluation indicates a value of NO_FAULT_DETECTED and the event algorithm indicates a transition to
the Normal state and Event_Algorithm_Inhibit is FALSE,

then perform the corresponding transition actions and re-enter the Normal state.

13.2.2.1.2 OffNormal

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

468 ANSI/ASHRAE Standard 135-2012

In the OffNormal state, reliability-evaluation indicates a value of NO_FAULT_DETECTED and the event algorithm
indicates an offnormal event state and Event_Algorithm_Inhibit is FALSE. (Note that the OffNormal state includes all event
states other than NORMAL and FAULT).

ToOffNormal

If reliability-evaluation indicates a value of NO_FAULT_DETECTED and the event algorithm indicates a transition to
the OffNormal state and Event_Algorithm_Inhibit is FALSE,

then perform the corresponding transition actions and re-enter the OffNormal state.

ToFault
If reliability-evaluation indicates a value other than NO_FAULT_DETECTED,

then perform the corresponding transition actions and enter the Fault state.

ToNormal

If reliability-evaluation indicates a value of NO_FAULT_DETECTED and the event algorithm indicates a normal event
state,
or
if reliability-evaluation indicates a value of NO_FAULT_DETECTED and Event_Algorithm_Inhibit is TRUE,

then perform the corresponding transition actions and enter the Normal state.

13.2.2.1.3 Fault

In the Fault state reliability-evaluation indicates a value other than NO_FAULT_DETECTED.

ToNormal
If reliability-evaluation indicates a value of NO_FAULT_DETECTED,

then perform the corresponding transition actions and enter the Normal state.

ToFault

If reliability-evaluation indicates a different Reliability value and the new Reliability value is not
NO_FAULT_DETECTED or reliability-evaluation indicates a transition to the Fault state with the same Reliability
value,

then perform the corresponding transition actions and re-enter the Fault state.

13.2.2.1.4 Transition Actions

This clause describes the actions to be taken when a transition of the event-state-detection state machine occurs. The actions
are the same for all transitions and they shall be executed even if the transition does not change the event state (e.g., to the
ToOffNormal from the OffNormal state).

Store the new event state in the event-initiating object's Event_State property. Note that the Event_State property shall reflect
the specific BACnetEventState returned by the event algorithm (i.e., it is not acceptable to set Event_State to OFFNORMAL
when the returned value is HIGH_LIMIT).

Store the time of the transition in the corresponding entry of the Event_Time_Stamps property.

Store the message text that is generated for distribution with the notification in the corresponding entry of the
Event_Message_Texts property, if present.

Indicate the transition to the Alarm-Acknowledgment process (see Clause 13.2.3) and the event-notification-distribution
process (see Clause 13.2.5).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

ANSI/ASHRAE Standard 135-2012 469

13.2.2.1.5 Inhibiting Detection of Offnormal Conditions

The Event_Algorithm_Inhibit property temporarily overrides the event algorithm thus maintaining a normal Event_State
regardless of the existence of offnormal conditions. The effect of this property on the Event_State property is shown in
Figure 13-4.

Upon Event_Algorithm_Inhibit changing to TRUE, the event shall transition to the NORMAL state if not already there.
While Event_Algorithm_Inhibit remains TRUE, no transitions shall occur except those into and out of FAULT. Upon
Event_Algorithm_Inhibit changing to FALSE, any condition shall hold for the its regular time delay after the change to
FALSE before a transition is generated.

� =��

??� =��

,���3<���	

?����

,���

�
��

��
���

�
4�

��
��

�

� =��

??� =��

��
��

�

�

,���3<���	
������
#���
4������

����$��
��
?����

4��������
���
������������

��
�
�����������

Figure 13-4. Effect of Event_Algorithm_Inhibit on Event_State

13.2.3 Alarm-Acknowledgment

�����3
��2��#��$����

��������
�1���3�����
����������

��2��@,������������2@ �;�����

��������
��2��#���$����
����������

��2��#���$����

Figure 13-5. Alarm-Acknowledgment

The alarm-acknowledgment process, shown in Figure 13-5, is responsible for maintaining the acknowledgment state for each
of the transition types (TO_NORMAL, TO_FAULT, TO_OFFNORMAL) in the Acked_Transitions property and for
indicating acknowledgment transitions to the event-notification-distribution process.

Event state transitions are received from the event-state-detection state machine. Acknowledgment indications are received
from the AcknowledgeAlarm service procedure and from a means local to the device (e.g., reset button) and acknowledgment
transitions are indicated to the event-notification-distribution process (see Clause 13.2.5). Every device that supports
acknowledgable transitions shall support execution of the AcknowledgeAlarm service.

Whether or not an acknowledgment is required is determined by the Ack_Required property from the referenced Notification
Class object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

470 ANSI/ASHRAE Standard 135-2012

When an event state transition is received, the corresponding bit in Acked_Transitions is either set or cleared. If the
corresponding bit in Ack_Required is set, then the bit in Acked_Transitions is cleared, otherwise it is set.

When an acknowledgment indication is received, the corresponding bit in Acked_Transitions is set and an Acknowledgment
transition is indicated to the event-notification-distribution process.

Modification of Ack_Required does not change the value of Acked_Transitions properties of associated objects.

13.2.4 Event-Summarization

Device (notification-server)

!1���3�������S�����

�1���3�������S�����
��;������G���
���� Device (notification-client)

�1���3�������S�����
��������

���
��G���
����

Figure 13-6. Event-Summarization

Event-summarization (see Figure 13-6) provides the means by which a notification-client can efficiently determine the
current state of multiple event-initiating objects in a device when it has not received all of the event notifications (either
because it was offline, the network is down, or the client is not in the distribution list for the event-initiating objects). The
different BACnet services that can be used for event-summarization are compared in Table 13-2.

Table 13-2. Event-Summarization Services

Service Selected objects Response
GetAlarmSummary
(see Clause 13.10)

All event-initiating objects where:
Event_Detection_Enable is TRUE and
Event_State is not NORMAL and
Notify_Type equal to ALARM

List of
 Object_Identifier
 Event_State
 Acked_Transitions

GetEnrollmentSummary
(see Clause 13.11)

All event-initiating objects where:
Event_Detection_Enable is TRUE and
Acknowledgment Filter matches and
Enrollment Filter matches (optional) and
Event State Filter matches (optional)
and
Event Type Filter matches (optional)
and
Priority Filter matches (optional) and
Notification Class Filter
matches(optional)

List of
 Object_Identifier
 Event Type
 Event_State
 Priority
 Notification_Class

GetEventInformation
(see Clause 13.12)

All event-initiating objects where:
Event_Detection_Enable is TRUE and
Event_State is not NORMAL or
any bit in the Acked_Transitions
property is not set

List of
 Object_Identifier
 Event_State
 Acked_Transitions
 Event_Time_Stamps
 Notify_Type
 Event_Enable
 Event Priorities

Notification-servers are required to support execution of the GetEventInformation service. Support for the execution of the
GetAlarmSummary and GetEnrollmentSummary services is optional.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

ANSI/ASHRAE Standard 135-2012 471

It is important to note that the results returned by the summarization services ignore the value of the event-initiating objects'
Event_Enable properties and the notification filtering fields in the Recipient_List property of related Notification Class
objects. This results in the set of objects returned by the services being different than the set of objects a notification-client
would be made aware of via the event notification services.

13.2.5 Event-Notification-Distribution

!1���3
������������3
<�����������

��������

�1���3�����
����������

���

��������

��2��#��$������
����������

������������

������������

 ��������@����

!1���@!�����

�����	@,	��

&������	

��2@ �;�����

Figure 13-7. Event-Notification-Distribution

The event-notification-distribution process (see Figure 13-7) is responsible for distributing event transition notifications to all
local objects and to notification-clients. Event transition notifications and acknowledgment notifications are distributed to
notification-clients via the ConfirmedEventNotification and UnconfirmedEventNotification services.

The Event_Enable and Notify_Type inputs are provided by the event-initiating object, and the Recipient_List, Priority, and
Ack_Required inputs are provided by the Notification Class object referenced by the event-initiating object.

When an event state transition or an acknowledgment transition is indicated, notifications are distributed to the notification-
clients specified by the Recipient_List input. Additional information provided by the Recipient_List input controls the
distribution of the notification. For acknowledgment notifications, the transition type of notification (TO_FAULT,
TO_NORMAL, or TO_OFFNORMAL) is the same as the transition type of the event transition that is being acknowledged.

The external distribution of notifications can be disabled by the Event_Enable property. The notifications are disabled if the
bit corresponding to the transition is set to FALSE. While the Event_Enable property can take on any combination of three
bits, the two most used values are (T, T, T), indicating that all transitions are to be distributed, or (F, F, F), indicating that no
transitions are to be distributed.

Distribution of notifications to local objects (e.g., Event Log objects) in the device is not controlled by the Recipient_List
information unless otherwise indicated (e.g., Notification Forwarder objects). It is a local matter whether or not the
distribution of notifications to local objects is affected by the Event_Enable property (e.g., whether or not Event Log objects
record the notifications).

13.2.5.1 Notification Forwarding

Notification forwarding is related to, but separate from, the distribution of event notifications by the Notification Class
object.

The forwarding of notifications, whether by a local or remote Notification Forwarder object, modifies the notification
distribution as setup by a Notification Class. The Notification Class distributes the notification to the device that contains the
Notification Forwarder object, and the Notification Forwarder object re-sends the notification with recipient information
from the Notification Forwarder object. See Clause 12.51 for a detailed description of notification forwarding as
implemented by Notification Forwarding objects.

13.2.5.2 Service Parameters of Event Notification Service Requests

The event-notification-distribution process generates event notifications and the service parameters for those notifications are
generated according to Table 13-3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

472 ANSI/ASHRAE Standard 135-2012

Table 13-3. Event Notification Service Parameter Values

Service Parameter Event State Transition
(all transitions)

Acknowledgment Transition

Process Identifier From Recipient_List entry From Recipient_List entry
Initiating Device
Identifier

Device object identifier of the device
which contains the event-initiating object

Device object identifier of the device
which contains the event-initiating object

Event Object
Identifier

Object identifier of the event-initiating
object

Object identifier of the event-initiating
object

Time Stamp Value of the Event_Time_Stamps array
entry that corresponds to the 'To State'.

The time at which the AcknowledgeAlarm
service is executed or

If acknowledged locally, the time that the
acknowledgment is performed.

Notification Class Value of the event-initiating object's
Notification_Class property.

Value of the event-initiating object's
Notification_Class property.

Priority Value of the Priority property entry that
corresponds to the 'To State'

Value of the Priority property entry that
corresponds to the 'To State'.

Event Type When 'To State' or 'From State' is FAULT,
set to CHANGE_OF_RELIABILITY,

Otherwise the value associated with the
event-initiating object's event algorithm.

Not present

Message Text Optional

The value is a local matter and is reflected
in the Event_Message_Texts array, if the
property exists.

Optional

The value is a local matter.

Notify Type Value of Notify_Type ACK_NOTIFICATION
AckRequired Value of the Ack_Required bit that

corresponds to 'To State'.
Not present

From State Value of Event_State before this transition Not present
To State Value of property Event_State after this

transition
The 'To State' parameter from the
transition being acknowledged

Event Values As defined for the Event_Type Not present

13.2.5.3 Fault Event Notifications

For all transitions to, or from, the FAULT state, the corresponding event notification shall use the Event Type
CHANGE_OF_RELIABILITY.

Table 13-4. CHANGE_OF_RELIABILITY Notification Parameters

Parameter Value
reliability The value of the Reliability property of the event-initiating object.
status-flags The value of the Status_Flags property of the event-initiating object.
property-values As specified in Table 13-5.

The content of the property-values parameter of CHANGE_OF_RELIABILITY event notifications depends on the type of
the event-initiating object. The property values required to be conveyed are specified in Table 13-5, and shall be included in
the order shown in the table. Object types that are not included in Table 13-5 are not required to include any extra properties
in CHANGE_OF_RELIABILITY notifications.

Additional properties of the event-initiating object may be conveyed in the property-values parameter following the
properties which are required by this standard. The selection of additional properties to include in the event notification is a
local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

ANSI/ASHRAE Standard 135-2012 473

In the case of the Event Enrollment object, the first property in the property-values parameter shall be the Event Enrollment
object's Object_Property_Reference property. The second property is the property that is referenced by the Event Enrollment
object's Object_Property_Reference property. All other properties (required and additional properties) shall be from the
monitored object. This is the only case where the properties conveyed in the CHANGE_OF_RELIABILITY are not from the
event-initiating object.

Table 13-5. Properties Reported in CHANGE_OF_RELIABILITY Notifications

Object Type Properties
Access Door Door_Alarm_State

Present_Value
Access Point Access_Event

Access_Event_Tag
Access_Event_Time
Access_Event_Credential

Access Zone Occupancy_State
Accumulator Pulse_Rate

Present_Value
Analog Input,
Analog Output,
Analog Value,
Binary Input,
Binary Value,
BitString Value,
CharacterString Value,
Integer Value,
Large Analog Value,
Multi-state Input,
Multi-state Value,
Positive Integer Value,
Pulse Converter

Present_Value

Binary Output,
Multi-state Output

Present_Value
Feedback_Value

Credential Data Input Update_Time
Present_Value1

Event Enrollment Object_Property_Reference
Value of property referenced by

Object_Property_Reference2
Reliability2

Status_Flags2
Life Safety Point,
Life Safety Zone

Present_Value
Mode
Operation_Expected

Load Control Present_Value
Requested_Shed_Level
Actual_Shed_Level

Loop Present_Value
Controlled_Variable_Value2
Setpoint2

Program Program_State
Reason_For_Halt2,3
Description_Of_Halt2,3

1 This value may be excluded from the property-value parameter due to security requirements.

2 This property is, or may be, from a referenced object. If the value is not known by the event-
initiating object, then it shall not be included in the property-value parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Reporting

474 ANSI/ASHRAE Standard 135-2012

3 These properties are optional and are included only if present in the object.

13.2.5.4 Alarm and Event Priority Classification

Alarms and events traversing the BACnet network need prioritization to assure that important information reaches its
destination and is acted upon quickly. To assure alarm prioritization at the network level, the Network Priority as defined in
Clause 6.2.2 shall be set as a function of the alarm and event priority as defined in Table 13-6. Annex M provides additional
clarity and examples of specific messages and priorities.

Table 13-6. Alarm and Event Priority - Network Priority Association

Alarm and Event Priority Network Priority
00 – 63 Life Safety message
64 - 127 Critical Equipment message
128 - 191 Urgent message
192 - 255 Normal message

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 475

13.3 Event Algorithms

Table 13-7 lists the event algorithms that are specified in this standard. The event algorithms are indicated by the
BACnetEventType value of the same name.

Table 13-7. Standardized Event Algorithms

Event Algorithm Clause
NONE 13.3.17
ACCESS_EVENT 13.3.12
BUFFER_READY 13.3.7
CHANGE_OF_BITSTRING 13.3.1
CHANGE_OF_CHARACTERSTRING 13.3.16
CHANGE_OF_LIFE_SAFETY 13.3.8
CHANGE_OF_STATE 13.3.2
CHANGE_OF_STATUS_FLAGS 13.3.11
CHANGE_OF_VALUE 13.3.3
COMMAND_FAILURE 13.3.4
DOUBLE_OUT_OF_RANGE 13.3.13
EXTENDED 13.3.10
FLOATING_LIMIT 13.3.5
OUT_OF_RANGE 13.3.6
SIGNED_OUT_OF_RANGE 13.3.14
UNSIGNED_OUT_OF_RANGE 13.3.15
UNSIGNED_RANGE 13.3.9

Event algorithms monitor a value and evaluate whether the condition for a transition of event state exists. The result of the
evaluation, indicated to the Event-State-Detection process, may be a transition to a new event state, a transition to the same
event state, or no transition. The final determination of the Event_State property value is the responsibility of the Event-State-
Detection process and is subject to additional conditions. See Clause 13.2.

Each of the event algorithms defines its input parameters, the allowable normal and offnormal states, the conditions for
transitions between those states, and the notification parameters conveyed in event notifications for the algorithm.

When executing an event algorithm, all conditions defined for the algorithm shall be evaluated in the order as presented for
the algorithm. Some algorithms specify optional conditions, marked as "Optional:" Whether or not an implementation uses
these conditions is a local matter. If no condition evaluates to true, then no transition shall be indicated to the Event-State-
Detection process.

13.3.1 CHANGE_OF_BITSTRING Event Algorithm

The CHANGE_OF_BITSTRING event algorithm detects whether the monitored value of type BIT STRING equals a value
that is listed as an alarm value, after applying a bitmask.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type BIT STRING, represents the current value of the

monitored property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

476 ANSI/ASHRAE Standard 135-2012

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the
Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pAlarmValues This parameter, of type list of BIT STRING, represents a list of values that are

considered offnormal values.

pBitmask This parameter, of type BIT STRING, represents the bitmask that defines the bits

of pMonitoredValue that are significant for comparison with values of
pAlarmValues.
This value is bit-wise ANDed with the pMonitoredValue before comparison with
pAlarmValues.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is available for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue, after applying pBitmask, is equal to any of the values

contained in pAlarmValues for pTimeDelay, then indicate a transition to the OFFNORMAL event state.
(b)
 If pCurrentState is OFFNORMAL, and pMonitoredValue, after applying pBitmask, is not equal to any of the

values contained in pAlarmValues for pTimeDelayNormal, then indicate a transition to the NORMAL event
state.

(c)
 Optional: If pCurrentState is OFFNORMAL, and pMonitoredValue, after applying pBitmask, is equal to one of
the values contained in pAlarmValues that is different from the value that caused the last transition to
OFFNORMAL and remains equal to that value for pTimeDelay, then indicate a transition to the OFFNORMAL
event state.

Figure 13-8 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

NORMAL

OFFNORMAL

ToNormal
(b) ToOffNormal

(a)

ToOffNormal
(c)

Figure 13-8. Transitions indicated by CHANGE_OF_BITSTRING algorithm

The notification parameters of this algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 477

Referenced_Bitstring This notification parameter, of type BIT STRING, conveys the value of
pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

13.3.2 CHANGE_OF_STATE Event Algorithm

The CHANGE_OF_STATE event algorithm detects whether the monitored value equals a value that is listed as an alarm
value. The monitored value may be of any discrete or enumerated data type, including Boolean.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter is a discrete value that represents the current value of the monitored

property. The datatype of the value of this parameter shall be one of the options of
BACnetPropertyStates.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the value
of the pMonitoredValue parameter. If no value is available for this parameter, then
it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pAlarmValues This parameter is a list of discrete values that represent the offnormal values. The

datatype of the values of this parameter and of pMonitoredValue shall be the same.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the Normal

conditions must exist before a NORMAL event state is indicated. If no value is
available for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue is equal to any of the values contained in pAlarmValues

for pTimeDelay, then indicate a transition to the OFFNORMAL event state.
(b)
 If pCurrentState is OFFNORMAL, and pMonitoredValue is not equal to any of the values contained in

pAlarmValues for pTimeDelayNormal, then indicate a transition to the NORMAL event state.
(c)
 Optional: If pCurrentState is OFFNORMAL, and pMonitoredValue is equal to one of the values contained in

pAlarmValues that is different from the value that caused the last transition to OFFNORMAL, and remains
equal to that value for pTimeDelay, then indicate a transition to the OFFNORMAL event state.

Figure 13-9 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

478 ANSI/ASHRAE Standard 135-2012

NORMAL

OFFNORMAL

ToNormal
(b) ToOffNormal

(a)

ToOffNormal
(c)

Figure 13-9. Transitions indicated by CHANGE_OF_STATE algorithm

The notification parameters of this algorithm are:

New_State This notification parameter, of type BACnetPropertyStates, conveys the value of

pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

13.3.3 CHANGE_OF_VALUE Event Algorithm

The CHANGE_OF_VALUE event algorithm, for monitored values of datatype REAL, detects whether the absolute value of
the monitored value changes by an amount equal to or greater than a positive REAL increment.

The CHANGE_OF_VALUE event algorithm, for monitored values of datatype BIT STRING, detects whether the monitored
value changes in any of the bits specified by a bitmask.

For detection of change, the value of the monitored value when a transition to NORMAL is indicated shall be used in
evaluation of the conditions until the next transition to NORMAL is indicated. The initialization of the value used in
evaluation before the first transition to NORMAL is indicated is a local matter.

The parameters of this event algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 479

pCurrentState This parameter, of type BACnetEventState, represents the current value of the
Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type REAL or BIT STRING, represents the current value of

the monitored property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pIncrement This parameter, of type REAL, shall provide a value if and only if

pMonitoredValue is of type REAL. It represents the positive increment by which
the monitored value of type REAL must change for a new transition.

pBitmask This parameter, of type BIT STRING, shall provide a value if and only if

pMonitoredValue is of type BIT STRING. It represents the bitmask that defines
the bits of pMonitoredValue that are significant for detecting a change of value.
This value is bit-wise ANDed with the pMonitoredValue before comparison with
the value that has caused the last transition to NORMAL.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is available for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm, for a monitored value of type REAL, are:

(a)
 If pCurrentState is NORMAL, and the absolute value of pMonitoredValue changes by an amount equal to or

greater than pIncrement for pTimeDelayNormal, then indicate a transition to the NORMAL event state.

The conditions evaluated by this event algorithm, for a monitored value of type BIT STRING, are:

(a)
 If pCurrentState is NORMAL, and any of the significant bits of pMonitoredValue change state and remain
changed for pTimeDelayNormal, then indicate a transition to the NORMAL event state.

Figure 13-10 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

NORMALToNormal
(a)

Figure 13-10. Transitions indicated by CHANGE_OF_VALUE algorithm

The notification parameters of this algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

480 ANSI/ASHRAE Standard 135-2012

New_Value This notification parameter, of type REAL or BIT STRING, conveys the value of
pMonitoredValue.
If pMonitoredValue is of type BIT STRING, then the Changed_Bits option is used.
If pMonitoredValue is of type REAL, then the Changed_Value option is used.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

13.3.4 COMMAND_FAILURE Event Algorithm

The COMMAND_FAILURE event algorithm detects whether the monitored value and the feedback value disagree for a time
period. It may be used, for example, to verify that a process change has occurred after writing a property.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type ABSTRACT-SYNTAX.&Type, represents the current

value of the monitored property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the value
of the pMonitoredValue parameter. If no value is available for this parameter, then
it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pFeedbackValue This parameter, of type ABSTRACT-SYNTAX.&Type, represents the feedback

value used for comparison with the pMonitoredValue. The datatype of the value
of this parameter shall be the same as the datatype of the value of
pMonitoredValue.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the Normal

conditions must exist before a NORMAL event state is indicated. If no value is
available for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pFeedbackValue is not equal to pMonitoredValue for pTimeDelay, then

indicate a transition to the OFFNORMAL event state.
(b)
 If pCurrentState is OFFNORMAL, and pMonitoredValue is equal to pMonitoredValue for pTimeDelayNormal,

then indicate a transition to the NORMAL event state.

Figure 13-11 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 481

NORMAL

OFFNORMAL

ToNormal
(b) ToOffNormal

(a)

Figure 13-11. Transitions indicated by COMMAND_FAILURE algorithm

The notification parameters of this algorithm are:

Command_Value This notification parameter, of type ABSTRACT-SYNTAX.&Type, conveys the

value of pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Feedback_Value This notification parameter, of type ABSTRACT-SYNTAX.&Type, conveys the

value of pFeedbackValue.

13.3.5 FLOATING_LIMIT Event Algorithm

The FLOATING_LIMIT event algorithm detects whether the monitored value exceeds a range defined by a setpoint, a high
difference limit, a low difference limit and a deadband.

The parameters of this event algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

482 ANSI/ASHRAE Standard 135-2012

pCurrentState This parameter, of type BACnetEventState, represents the current value of the
Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type REAL, represents the current value of the monitored

property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pSetpoint This parameter, of type REAL, represents the value that defines the reference

interval.

pLowDiffLimit This parameter, of type REAL, represents, when subtracted from pSetpoint, the

lower limit of the range considered normal.

pHighDiffLimit This parameter, of type REAL, represents, when added to pSetpoint, the higher

limit of the range considered normal.

pDeadband This parameter, of type REAL, represents the deadband that is applied to the

respective limit before a return to Normal event state is indicated.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

Figure 13-12 shows the relationship of the various parameters used in the FLOATING_LIMIT algorithm. In this figure,
pTimeDelay is assumed to have a value of zero.

pSetpoint + pHighDiffLimit

pSetpoint + pHighDiffLimit
- pDeadband

pSetpoint

pSetpoint - pLowDiffLimit
+ pDeadband

pSetpoint - pLowDiffLimit

pMonitoredValue

t

NORMAL LOW_LIMITNORMALHIGH_LIMIT NORMALIndicated Event State:

Figure 13-12. FLOATING_LIMIT parameter relationship

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 483

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue is greater than (pSetpoint + pHighDiffLimit) for

pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and pMonitoredValue is less than (pSetpoint - pLowDiffLimit) for pTimeDelay,

then indicate a transition to the LOW_LIMIT event state.

(c)
 Optional: If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pSetpoint - pLowDiffLimit) for
pTimeDelay, then indicate a transition to the LOW_LIMIT event state.

(d)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pSetpoint + pHighDiffLimit - pDeadband)
for pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(e)
 Optional: If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pSetpoint + pHighDiffLimit)
for pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.

(f)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pSetpoint - pLowDiffLimit +
pDeadband) for pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-13 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(d)

ToOffNormal
(a)

ToOffNormal
(c)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(e)

ToNormal
(f)

Figure 13-13. Transitions indicated by FLOATING_LIMIT algorithm

The notification parameters of this algorithm are:

Reference_Value This notification parameter, of type REAL, conveys the value of pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Setpoint_Value This notification parameter, of type REAL, conveys the value of pSetpoint.

Error_Limit This notification parameter, of type REAL, conveys the value of pLowDiffLimit if

a) the new state is LOW_LIMIT, or

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

484 ANSI/ASHRAE Standard 135-2012

b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighDiffLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.6 OUT_OF_RANGE Event Algorithm

The OUT_OF_RANGE event algorithm detects whether the monitored value exceeds a range defined by a high limit and a
low limit. Each of these limits may be enabled or disabled. If disabled, the normal range has no higher limit or no lower limit.
In order to reduce jitter of the resulting event state, a deadband is applied when the value is in the process of returning to the
normal range.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type REAL, represents the current value of the monitored

property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pLowLimit This parameter, of type REAL, represents the lower limit of the range considered

normal.

pHighLimit This parameter, of type REAL, represents the higher limit of the range

considered normal.

pDeadband This parameter, of type REAL, represents the deadband that is applied to the

respective limit before a return to Normal event state is indicated.

pLimitEnable This parameter, of type BACnetLimitEnable, represents two flags,

HighLimitEnable and LowLimitEnable, that separately enable (TRUE) or
disable (FALSE) the respective limits applied by the event algorithm.
If the value of this parameter is not provided, then both flags shall be set to
TRUE (1).

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and the HighLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and the LowLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 485

(c)
 If pCurrentState is HIGH_LIMIT, and the HighLimitEnable flag of pLimitEnable is FALSE, then indicate a
transition to the NORMAL event state.

(d)
 Optional: If pCurrentState is HIGH_LIMIT, and the LowLimitEnable flag of pLimitEnable is TRUE, and
pMonitoredValue is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event
state.

(e)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pHighLimit - pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(f)
 If pCurrentState is LOW_LIMIT, and the LowLimitEnable flag of pLimitEnable is FALSE, then indicate a
transition to the NORMAL event state.

(g)
 Optional: If pCurrentState is LOW_LIMIT, and the HighLimitEnable flag of pLimitEnable is TRUE, and
pMonitoredValue is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT
event state.

(h)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pLowLimit + pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-14 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(c,e)

ToOffNormal
(a)

ToOffNormal
(d)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(g)

ToNormal
(f,h)

Figure 13-14. Transitions indicated by OUT_OF_RANGE algorithm

The notification parameters of this algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

486 ANSI/ASHRAE Standard 135-2012

Exceeding_Value This notification parameter, of type REAL, conveys the value of pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Deadband This notification parameter, of type REAL, conveys the value of pDeadband.

Exceeded_Limit This notification parameter, of type REAL, conveys the value of pLowLimit if

a) the new state is LOW_LIMIT, or
b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.7 BUFFER_READY Event Algorithm

The BUFFER_READY event algorithm detects whether a defined number of records have been added to a log buffer since
start of operation or the previous notification, whichever is most recent.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type Unsigned32, represents the current total count of records in

the log buffer referenced by pLogBuffer.

pLogBuffer This parameter, of type BACnetDeviceObjectPropertyReference, represents the

reference to the log buffer property for which this algorithm is applied.

pThreshold This parameter, of type Unsigned, represents the number of records that, when

added to the log buffer, will result in a transition to NORMAL. If this parameter
has a value of 0, then no transitions will be indicated by the algorithm.

pPreviousCount This parameter, of type Unsigned32, represents the value of pMonitoredValue at

the time the most recent transition to NORMAL was indicated. Upon initialization
of the event algorithm, this parameter shall be set to the value of pMonitoredValue.
When a transition to NORMAL is indicated, this parameter shall be updated to the
value of pMonitoredValue.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue is greater than or equal to pPreviousCount, and

(pMonitoredValue - pPreviousCount) is greater than or equal to pThreshold and pThreshold is greater than 0,
then indicate a transition to the NORMAL event state.

(b)
 If pCurrentState is NORMAL, and pMonitoredValue is less than pPreviousCount, and (pMonitoredValue -
pPreviousCount + 232 - 1) is greater than or equal to pThreshold and pThreshold is greater than 0, then indicate
a transition to the NORMAL event state.

Figure 13-15 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 487

NORMALToNormal
(a), (b)

Figure 13-15. Transitions indicated by BUFFER_READY algorithm

The notification parameters of this algorithm are:

Buffer_Property This notification parameter, of type BACnetDeviceObjectPropertyReference,

conveys the value of pLogBuffer.

Previous_Notification This notification parameter, of type Unsigned32, conveys the value of

pPreviousCount.

Current_Notification This notification parameter, of type Unsigned32, conveys the value of

pMonitoredValue.

13.3.8 CHANGE_OF_LIFE_SAFETY Event Algorithm

The CHANGE_OF_LIFE_SAFETY event algorithm detects whether the monitored value equals a value that is listed as an
alarm value or life safety alarm value. Event state transitions are also indicated if the value of the mode parameter changed
since the last transition indicated. In this case, any time delays are overridden and the transition is indicated immediately.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of

the Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type BACnetLifeSafetyState, represents the current value

of the monitored property.

pMode This parameter, of type BACnetLifeSafetyMode, represents the current life

safety mode of operation.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of

the Status_Flags property of the object containing the property that provides
the value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pOperationExpected This parameter, of type BACnetLifeSafetyOperation, represents the

currently expected life safety operation.

pAlarmValues This parameter, of type list of BACnetLifeSafetyState, represents a list of

values that are considered offnormal values.

pLifeSafetyAlarmValues This parameter, of type list of BACnetLifeSafetyState, represents a list of

values that are considered life safety alarm values.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If
no value is available for this parameter, then it takes on the value of the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

488 ANSI/ASHRAE Standard 135-2012

pTimeDelay parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue is equal to any of the values contained in pAlarmValues,
and remains within the set of values of pAlarmValues either for pTimeDelay or for pMode changes, then
indicate a transition to the OFFNORMAL event state.

(b)
 If pCurrentState is NORMAL, and pMonitoredValue is equal to any of the values contained in
pLifeSafetyAlarmValues, and remains within the set of values of pLifeSafetyAlarmValues either for
pTimeDelay or for pMode changes, then indicate a transition to the LIFE_SAFETY_ALARM event state.

(c)
 If pCurrentState is NORMAL, and pMode changes, then indicate a transition to the NORMAL event state.

(d)
 If pCurrentState is OFFNORMAL, and pMonitoredValue is not equal to any of the values contained in
pAlarmValues and pLifeSafetyAlarmValues either for pTimeDelayNormal or for pMode changes, then indicate
a transition to the NORMAL event state.

(e)
 If pCurrentState is OFFNORMAL, and pMonitoredValue is equal to any of the values contained in
pLifeSafetyAlarmValues, and remains within the set of values of pLifeSafetyAlarmValues either for
pTimeDelay or for pMode changes, then indicate a transition to the LIFE_SAFETY_ALARM event state.

(f)
 Optional: If pCurrentState is OFFNORMAL, and pMonitoredValue is equal to one of the values contained in
pAlarmValues that is different from the value causing the last transition to OFFNORMAL, and remains equal to
that value for pTimeDelay, then indicate a transition to the OFFNORMAL event state.

(g)
 If pCurrentState is OFFNORMAL, and pMode changes, then indicate a transition to the OFFNORMAL event
state.

(h)
 If pCurrentState is LIFE_SAFETY_ALARM, and pMonitoredValue is not equal to any of the values contained
in pAlarmValues and pLifeSafetyAlarmValues either for pTimeDelayNormal or for pMode changes, then
indicate a transition to the NORMAL event state.

(i)
 If pCurrentState is LIFE_SAFETY_ALARM, and pMonitoredValue is equal to any of the values contained in
pAlarmValues, and remains within the set of values of pAlarmValues either for pTimeDelay or for pMode
changes, then indicate a transition to the OFFNORMAL event state.

(j)
 Optional: If pCurrentState is LIFE_SAFETY_ALARM, and pMonitoredValue is equal to one of the values
contained in pLifeSafetyAlarmValues that is different from the value causing the last transition to
LIFE_SAFETY_ALARM, and remains equal to that value for pTimeDelay, then indicate a transition to the
LIFE_SAFETY_ALARM event state.

(k)
 If pCurrentState is LIFE_SAFETY_ALARM, and pMode changes, then indicate a transition to the
LIFE_SAFETY_ALARM event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-16 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 489

OffNormal

NORMAL

OFFNORMAL

ToNormal
(d)

ToOffNormal
(a)

ToOffNormal
(e)

LIFE_SAFETY_ALARM

ToOffNormal
(b)

ToOffNormal
(i)

ToNormal
(h)

ToNormal
(c)

ToOffNormal
(f), (g)

ToOffNormal
(j), (k)

Figure 13-16. Transitions indicated by CHANGE_OF_LIFE_SAFETY algorithm

The notification parameters of this algorithm are:

New_State This notification parameter, of type BACnetLifeSafetyState, conveys the value

of pMonitoredValue.

New_Mode This notification parameter, of type BACnetLifeSafetyMode, conveys the value

of pMode.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Operation_Expected This notification parameter, of type BACnetLifeSafetyOperation, conveys the

value of pOperationExpected.

13.3.9 UNSIGNED_RANGE Event Algorithm

The UNSIGNED_RANGE event algorithm detects whether the monitored value exceeds a range defined by a high limit and
a low limit.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type Unsigned, represents the current value of the monitored

property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

490 ANSI/ASHRAE Standard 135-2012

parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pLowLimit This parameter, of type Unsigned, represents the lower limit of the range

considered normal.

pHighLimit This parameter, of type Unsigned, represents the higher limit of the range

considered normal.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue is greater than pHighLimit for pTimeDelay, then indicate

a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and pMonitoredValue is less than pLowLimit for pTimeDelay, then indicate a

transition to the LOW_LIMIT event state.

(c)
 Optional: If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than pLowLimit for pTimeDelay,
then indicate a transition to the LOW_LIMIT event state.

(d)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is equal to or less than pHighLimit for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(e)
 Optional: If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than pHighLimit for pTimeDelay,
then indicate a transition to the HIGH_LIMIT event state.

(f)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is equal to or greater than pLowLimit, for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-17 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 491

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(d)

ToOffNormal
(a)

ToOffNormal
(c)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(e)

ToNormal
(f)

Figure 13-17. Transitions indicated by UNSIGNED_RANGE algorithm

The notification parameters of this algorithm are:

Exceeding_Value This notification parameter, of type Unsigned, conveys the value of

pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Exceeded_Limit This notification parameter, of type Unsigned, conveys the value of pLowLimit if

a) the new state is LOW_LIMIT, or
b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.10 EXTENDED Event Algorithm

The EXTENDED event algorithm detects event conditions based on a proprietary event algorithm. The proprietary event
algorithm uses parameters and conditions defined by the vendor. The algorithm is identified by a vendor-specific event type
that is in the scope of the vendor's vendor identification code. The algorithm may, at the vendor's discretion, indicate a new
event state, a transition to the same event state, or no transition to the Event-State-Detection. The indicated new event states
may be NORMAL, and any OffNormal event state. FAULT event state may not be indicated by this algorithm. For the
purpose of proprietary evaluation of unreliability conditions that may result in FAULT event state, a FAULT_EXTENDED
fault algorithm shall be used.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pVendorId This parameter, of type Unsigned16, represents the vendor identification code for

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

492 ANSI/ASHRAE Standard 135-2012

the event type of the vendor-proprietary event algorithm.

pEventType This parameter, of type Unsigned, represents the vendor-proprietary event

algorithm.

pParameters This parameter is a sequence of primitive or constructed values that represent

algorithm parameters whose interpretation is specific to the proprietary event
algorithm.
Values of this parameter may be used to provide values of the Parameters
notification parameter.

The conditions evaluated by this event algorithm are vendor-specific, and are identified by pVendorId and pEventType. This
algorithm may support multiple offnormal event states, including proprietary offnormal event states.

Figure 13-18 depicts those transitions of Figure 13-3 that this event algorithm may indicate. The particular offnormal states
shown are for illustration only.

NORMAL

OffNormal

ToNormal

ToOffNormal

ToOffNormal

ToNormal

OFFNORMAL

OffNormaly

OffNormalx

Figure 13-18. Transitions indicated by EXTENDED algorithm

The notification parameters of this algorithm are:

Vendor_Id This notification parameter, of type Unsigned16, conveys the value of

pVendorId.

Extended_Event_Type This notification parameter, of type Unsigned, conveys the value of

pEventType.

Parameters This notification parameter is a sequence of primitive or constructed values

whose content and interpretation is specific to the proprietary event algorithm.

13.3.11 CHANGE_OF_STATUS_FLAGS Event Algorithm

The CHANGE_OF_STATUS_FLAGS event algorithm detects whether a significant flag of the monitored value of type
BACnetStatusFlags has the value TRUE.

The parameters of this event algorithm are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 493

pCurrentState This parameter, of type BACnetEventState, represents the current value of the
Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type BACnetStatusFlags, represents the current value of the

monitored property.

pSelectedFlags This parameter, of type BACnetStatusFlags, represents the flags of

pMonitoredValue that are selected to be significant for evaluation. A value of
TRUE in a flag indicates that the corresponding flag in pMonitoredValue is
significant for evaluation. A value of FALSE in a flag indicates that the
corresponding flag in pMonitoredValue is not significant for evaluation.

pPresentValue This optional parameter, of type ABSTRACT-SYNTAX.&Type, represents the

current value of the Present_Value property of the object containing the property
that provides the value of the pMonitoredValue parameter. This parameter may be
omitted if it is determined to be too large. The method of such determination is a
local matter.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the Normal

conditions must exist before a NORMAL event state is indicated. If no value is
provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue has a value of TRUE in any of its flags that also has a

value of TRUE in the corresponding flag in pSelectedFlags for pTimeDelay, then indicate a transition to the
OFFNORMAL event state.

(b)
 If pCurrentState is OFFNORMAL, and pMonitoredValue has none of its flags set to TRUE that also has a value
of TRUE in the corresponding flag in the pSelectedFlags event parameter for pTimeDelayNormal, then indicate
a transition to the NORMAL event state.

(c)
 If pCurrentState is OFFNORMAL, and the set of selected flags of pMonitoredValue that have a value of TRUE
changes, then indicate a transition to the OFFNORMAL event state.

Figure 13-19 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

NORMAL

OFFNORMAL

ToNormal
(b) ToOffNormal

(a)

ToOffNormal
(c)

Figure 13-19. Transitions indicated by CHANGE_OF_STATUS_FLAGS algorithm

The notification parameters of this algorithm are:

Present_Value This optional notification parameter, of type ABSTRACT-SYNTAX.&Type,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

494 ANSI/ASHRAE Standard 135-2012

conveys the value of pPresentValue. This parameter is optional and may be
omitted if it is not provided to the algorithm, or if it is determined to be too large.
The method of such determination is a local matter.

Referenced_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pMonitoredValue.

13.3.12 ACCESS_EVENT Event Algorithm

The ACCESS_EVENT event algorithm detects whether the access event time has changed and the new access event value
equals a value that is listed to cause a transition to NORMAL.

For detection of change, the access event time when a transition to NORMAL is indicated shall be used in evaluation of the
conditions until the next transition to NORMAL is indicated. The initialization of the access event time used in evaluation
before the first transition to NORMAL is indicated is a local matter.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type BACnetAccessEvent, represents the current value of the

monitored property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the value
of the pMonitoredValue parameter. If no value is available for this parameter, then
it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pAccessEvents This parameter, of type list of BACnetAccessEvent, represents a list of values that

are considered access event values that shall cause a transition indication.

pAccessEventTag This parameter, of type Unsigned, represents the current value of the

Access_Event_Tag property of the object containing the property that provides the
value of the pMonitoredValue parameter.

pAccessEventTime This parameter, of type BACnetTimeStamp, represents the update time of the

monitored access event value.

pAccessCredential This parameter, of type BACnetDeviceObjectReference, represents the current

value of the Access_Event_Credential property of the object containing the
property that provides the value of the pMonitoredValue parameter.

pAccessFactor This optional parameter, of type BACnetDeviceObjectReference, represents the

current value of the Access_Event_Authentication_Factor property of the object
containing the property that provides the value of the pMonitoredValue parameter.
This parameter may be omitted if it is determined to be too large, or omitted for
security reasons. The method of such determination is a local matter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pAccessEventTime changes, and pMonitoredValue is equal to any of the

values contained in pAccessEvents, then indicate a transition to the NORMAL event state.

Figure 13-20 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 495

NORMALToNormal
(a)

Figure 13-20. Transitions indicated by ACCESS_EVENT algorithm

The notification parameters of this algorithm are:

Access_Event This notification parameter, of type BACnetAccessEvent, conveys the value

of pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Access_Event_Tag This notification parameter, of type Unsigned, conveys the value of

pAccessEventTag.

Access_Event_Time This notification parameter, of type BACnetTimeStamp, conveys the value of

pAccessEventTime.

Access_Credential This notification parameter, of type BACnetDeviceObjectReference, conveys

the value of pAccessCredential.

Authentication_Factor This optional notification parameter, of type BACnetAuthenticationFactor,

conveys the value of pAccessFactor. This parameter may be omitted if it is not
provided to the algorithm, is determined to be too large for the event
notification, or omitted for security reasons. The method of such
determination is a local matter.

13.3.13 DOUBLE_OUT_OF_RANGE Event Algorithm

The DOUBLE_OUT_OF_RANGE event algorithm detects whether the monitored value exceeds a range defined by a high
limit and a low limit. Each of these limits may be enabled or disabled. If disabled, the normal range has no lower limit or no
higher limit respectively. In order to reduce jitter of the resulting event state, a deadband is applied when the value is in the
process of returning to the normal range.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type Double, represents the current value of the monitored

property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pLowLimit This parameter, of type Double, represents the lower limit of the range

considered normal

pHighLimit This parameter, of type Double, represents the higher limit of the range

considered normal.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

496 ANSI/ASHRAE Standard 135-2012

pDeadband This parameter, of type Double, represents the deadband that is applied to the
respective limit before a return to Normal event state is indicated.

pLimitEnable This parameter, of type BACnetLimitEnable, represents two flags,

HighLimitEnable and LowLimitEnable, that separately enable (TRUE) or
disable (FALSE) the respective limits applied by the event algorithm.
If the value of this parameter is not provided, then both flags shall be set to
TRUE (1).

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and the HighLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and the LowLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event state.

(c)
 If pCurrentState is HIGH_LIMIT, and the HighLimitEnable flag of pLimitEnable is FALSE, then indicate a
transition to the NORMAL event state.

(d)
 Optional: If pCurrentState is HIGH_LIMIT, and the LowLimitEnable flag of pLimitEnable is TRUE, and
pMonitoredValue is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event
state.

(e)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pHighLimit - pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(f)
 If pCurrentState is LOW_LIMIT, and the LowLimitEnable flag of pLimitEnable is FALSE, then indicate a
transition to the NORMAL event state.

(g)
 Optional: If pCurrentState is LOW_LIMIT, and the HighLimitEnable flag of pLimitEnable is TRUE, and
pMonitoredValue is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT
event state.

(h)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pLowLimit + pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-21 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 497

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(c,e)

ToOffNormal
(a)

ToOffNormal
(d)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(g)

ToNormal
(f,h)

Figure 13-21. Transitions indicated by DOUBLE_OUT_OF_RANGE algorithm

The notification parameters of this algorithm are:

Exceeding_Value This notification parameter, of type Double, conveys the value of pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Deadband This notification parameter, of type Double, conveys the value of pDeadband.

Exceeded_Limit This notification parameter, of type Double, conveys the value of pLowLimit if

a) the new state is LOW_LIMIT, or
b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.14 SIGNED_OUT_OF_RANGE Event Algorithm

The SIGNED_OUT_OF_RANGE event algorithm detects whether the monitored value exceeds a range defined by a high
limit and a low limit. Each of these limits may be enabled or disabled. If disabled, the normal range has no lower limit or no
higher limit respectively. In order to reduce jitter of the resulting event state, a deadband is applied when the value is in the
process of returning to the normal range.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type INTEGER, represents the current value of the monitored

property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

498 ANSI/ASHRAE Standard 135-2012

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the
Status_Flags property of the object containing the property that provides the
value of the pMonitoredValue parameter. If no value is available for this
parameter, then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pLowLimit This parameter, of type INTEGER, represents the lower limit of the range

considered normal.

pHighLimit This parameter, of type INTEGER, represents the higher limit of the range

considered normal.

pDeadband This parameter, of type Unsigned, represents the deadband that is applied to the

respective limit before a return to Normal event state is indicated.

pLimitEnable This parameter, of type BACnetLimitEnable, represents two flags,

HighLimitEnable and LowLimitEnable, that separately enable (TRUE) or
disable (FALSE) the respective limits applied by the event algorithm. If the
value of this parameter is not provided, then both flags shall be set to TRUE (1).

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the

Normal conditions must exist before a NORMAL event state is indicated. If no
value is provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and the HighLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and the LowLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event state.
(c)
 If pCurrentState is HIGH_LIMIT, and the HighLimitEnable flag of pLimitEnable is FALSE, then indicate a

transition to the NORMAL event state.
(d)
 Optional: If pCurrentState is HIGH_LIMIT, and the LowLimitEnable flag of pLimitEnable is TRUE, and

pMonitoredValue is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event
state.

(e)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pHighLimit - pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(f)
 If pCurrentState is LOW_LIMIT, and the LowLimitEnable flag of pLimitEnable is FALSE, then indicate a
transition to the NORMAL event state.

(g)
 Optional: If pCurrentState is LOW_LIMIT, and the HighLimitEnable flag of pLimitEnable is TRUE, and
pMonitoredValue is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT
event state.

(h)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pLowLimit + pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-22 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 499

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(c,e)

ToOffNormal
(a)

ToOffNormal
(d)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(g)

ToNormal
(f,h)

Figure 13-22. Transitions indicated by SIGNED_OUT_OF_RANGE algorithm

The notification parameters of this algorithm are:

Exceeding_Value This notification parameter, of type INTEGER, conveys the value of

pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Deadband This notification parameter, of type Unsigned, conveys the value of pDeadband.

Exceeded_Limit This notification parameter, of type INTEGER, conveys the value of pLowLimit if

a) the new state is LOW_LIMIT, or
b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.15 UNSIGNED_OUT_OF_RANGE Event Algorithm

The UNSIGNED_OUT_OF_RANGE event algorithm detects whether the monitored value exceeds a range defined by a high
limit and a low limit. Each of these limits may be enabled or disabled. If disabled, the normal range has no lower limit or no
higher limit respectively. In order to reduce jitter of the resulting event state, a deadband is applied when the value is in the
process of returning to the normal range.

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the

Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type Unsigned, represents the current value of the monitored

property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

500 ANSI/ASHRAE Standard 135-2012

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the
Status_Flags property of the object containing the property that provides the value
of the pMonitoredValue parameter. If no value is available for this parameter, then
it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pLowLimit This parameter, of type Unsigned, represents the lower limit of the range

considered normal.

pHighLimit This parameter, of type Unsigned, represents the higher limit of the range

considered normal.

pDeadband This parameter, of type Unsigned, represents the deadband that is applied to the

respective limit before a return to Normal event state is indicated.

pLimitEnable This parameter, of type BACnetLimitEnable, represents two flags,

HighLimitEnable and LowLimitEnable, that separately enable (TRUE) or disable
(FALSE) the respective limits applied by the event algorithm. If the value of this
parameter is not provided, then both flags shall be set to TRUE (1).

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the Normal

conditions must exist before a NORMAL event state is indicated. If no value is
provided for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and the HighLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT event state.
(b)
 If pCurrentState is NORMAL, and the LowLimitEnable flag of pLimitEnable is TRUE, and pMonitoredValue

is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event state.
(c)
 If pCurrentState is HIGH_LIMIT, and the HighLimitEnable flag of pLimitEnable is FALSE, then indicate a

transition to the NORMAL event state.
(d)
 Optional: If pCurrentState is HIGH_LIMIT, and the LowLimitEnable flag of pLimitEnable is TRUE, and

pMonitoredValue is less than pLowLimit for pTimeDelay, then indicate a transition to the LOW_LIMIT event
state.

(e)
 If pCurrentState is HIGH_LIMIT, and pMonitoredValue is less than (pHighLimit - pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

(f)

(g)
 If pCurrentState is LOW_LIMIT, and the LowLimitEnable flag of pLimitEnable is FALSE, then indicate a

transition to the NORMAL event state.
(h)
 Optional: If pCurrentState is LOW_LIMIT, and the HighLimitEnable flag of pLimitEnable is TRUE, and

pMonitoredValue is greater than pHighLimit for pTimeDelay, then indicate a transition to the HIGH_LIMIT
event state.

(i)
 If pCurrentState is LOW_LIMIT, and pMonitoredValue is greater than (pLowLimit + pDeadband) for
pTimeDelayNormal, then indicate a transition to the NORMAL event state.

If any of the optional conditions are supported, then all optional conditions shall be supported.

Figure 13-23 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 501

OffNormal

NORMAL

HIGH_LIMIT

ToNormal
(c,e)

ToOffNormal
(a)

ToOffNormal
(d)

LOW_LIMIT

ToOffNormal
(b)

ToOffNormal
(g)

ToNormal
(f,h)

Figure 13-23. Transitions indicated by UNSIGNED_OUT_OF_RANGE algorithm

The notification parameters of this algorithm are:

Exceeding_Value This notification parameter, of type Unsigned, conveys the value of

pMonitoredValue.

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of

pStatusFlags.

Deadband This notification parameter, of type Unsigned, conveys the value of pDeadband.

Exceeded_Limit This notification parameter, of type Unsigned, conveys the value of pLowLimit if

a) the new state is LOW_LIMIT, or
b) pCurrentState is LOW_LIMIT and the new state is NORMAL
This notification parameter conveys the value of pHighLimit if
a) the new state is HIGH_LIMIT, or
b) pCurrentState is HIGH_LIMIT and the new state is NORMAL

13.3.16 CHANGE_OF_CHARACTERSTRING Event Algorithm

The CHANGE_OF_CHARACTERSTRING event algorithm detects whether the monitored value matches a character string
that is listed as an alarm value. Alarm values are of type BACnetOptionalCharacterString, and may also be NULL or an
empty character string.

A "match" of the monitored value with an alarm value is defined as follows:

(a)
 If the alarm value string is NULL, then it is not considered a match.
(b)
 If the alarm value string is empty (of zero length), then it is considered a match if and only if the monitored

value is also an empty string.
(c)
 If the alarm value string is not empty, then it is considered a match if the alarm value string appears in any

position within the monitored value string. For character-matching purposes, character case shall be significant,
and so a match must be an exact match character by character.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

502 ANSI/ASHRAE Standard 135-2012

The parameters of this event algorithm are:

pCurrentState This parameter, of type BACnetEventState, represents the current value of the
Event_State property of the object that applies the event algorithm.

pMonitoredValue This parameter, of type CharacterString, represents the current value of the

monitored property.

pStatusFlags This parameter, of type BACnetStatusFlags, represents the current value of the

Status_Flags property of the object containing the property that provides the value
of the pMonitoredValue parameter. If no value is available for this parameter,
then it takes on the value {FALSE, FALSE, FALSE, FALSE}.

pAlarmValues This parameter, of type list of BACnetOptionalCharacterString, represents a list

of character strings that are considered alarm values.

pTimeDelay This parameter, of type Unsigned, represents the time, in seconds, that the

offnormal conditions must exist before an offnormal event state is indicated.

pTimeDelayNormal This parameter, of type Unsigned, represents the time, in seconds, that the Normal

conditions must exist before a NORMAL event state is indicated. If no value is
available for this parameter, then it takes on the value of the pTimeDelay
parameter.

The conditions evaluated by this event algorithm are:

(a)
 If pCurrentState is NORMAL, and pMonitoredValue matches any of the values contained in pAlarmValues for

pTimeDelay, then indicate a transition to the OFFNORMAL event state.
(b)
 If pCurrentState is OFFNORMAL, and pMonitoredValue does not match any of the values contained in

pAlarmValues for pTimeDelayNormal, then indicate a transition to the NORMAL event state.
(c)
 If pCurrentState is OFFNORMAL, and pMonitoredValue matches one of the values contained in pAlarmValues

that is different from the value that caused the last transition to OFFNORMAL, and remains equal to that value
for pTimeDelay, then indicate a transition to the OFFNORMAL event state.

Figure 13-24 depicts those transitions of Figure 13-3 that this event algorithm may indicate:

NORMAL

OFFNORMAL

ToNormal
(b) ToOffNormal

(a)

ToOffNormal
(c)

Figure 13-24. Transitions indicated by CHANGE_OF_CHARACTERSTRING algorithm

The notification parameters for this algorithm are:

Changed_Value This notification parameter, of type CharacterString, conveys the value of

pMonitoredValue.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Event Algorithms

ANSI/ASHRAE Standard 135-2012 503

Status_Flags This notification parameter, of type BACnetStatusFlags, conveys the value of
pStatusFlags.

Alarm_Value This notification parameter, of type CharacterString, conveys the character string of

pAlarmValues related to the event state transition reported:
(a)
 for transitions to OFFNORMAL, the character string of pAlarmValues

that matches pMonitoredValue,
(b)
 for transitions to NORMAL, the character string of pAlarmValues that

match pMonitoredValue at the time of the most recent transition to
OFFNORMAL.

13.3.17 NONE Event Algorithm

This event algorithm has no parameters, no conditions, and does not indicate any transitions of event state.

The NONE algorithm is used when only fault detection is in use by an object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Fault Algorithms

504 ANSI/ASHRAE Standard 135-2012

13.4 Fault Algorithms

Certain object types may optionally support a fault algorithm which has externally visible inputs and is performed as part of
the object's reliability-evaluation process. This clause defines the standard fault algorithms. To determine which algorithm is
applied by which object type, see the object type definitions in Clause 12.

Table 13-8 lists the fault algorithms that are specified in this standard. The fault algorithms are indicated by the
BACnetFaultType value of the same name.

Table 13-8. Standardized Fault Algorithms

Fault Algorithm Clause
NONE 13.4.1
FAULT_CHARACTERSTRING 13.4.2
FAULT_EXTENDED 13.4.3
FAULT_LIFE_SAFETY 13.4.4
FAULT_STATE 13.4.5
FAULT_STATUS_FLAGS 13.4.6

Fault algorithms monitor a value and evaluate whether the condition for transition of reliability exists. The result of the
evaluation, indicated to the reliability-evaluation process, may be a transition to a new reliability, a transition to the same
reliability, or no transition. The final determination of the Reliability property value is the responsibility of the reliability-
evaluation process and is subject to additional conditions. See Clause 13.2.

Each of the fault algorithms defines its input parameters, the allowable reliability values, and the conditions for transitions
between those values.

When evaluating the monitored value, all conditions defined for the algorithm shall be evaluated in the order as presented for
the algorithm. Some algorithms specify optional conditions, marked as "Optional:" Whether or not an implementation uses
these conditions is a local matter. If no condition evaluates to true, then no transition shall be indicated to the reliability-
evaluation process.

13.4.1 NONE Fault Algorithm

The NONE fault algorithm is a placeholder for the case where no fault algorithm is applied by the object.

This fault algorithm has no parameters, no conditions, and does not indicate any transitions of reliability.

13.4.2 FAULT_CHARACTERSTRING Fault Algorithm

The FAULT_CHRACTERSTRING event algorithm detects whether the monitored value matches a character string that is
listed as a fault value. Fault values are of type BACnetOptionalCharacterString and may also be NULL or an empty character
string.

A "match" of the monitored value with a fault value is defined as follows:

(a)
 If the fault value is NULL, then it is not considered a match.
(b)
 If the fault value string is empty (of zero length), then it is considered a match if and only if the monitored value

is also an empty string.
(c)
 If the fault value string is not empty, then it is considered a match if the fault value string appears in any

position within the monitored value string. For character-matching purposes, character case shall be significant,
and so a match must be an exact match character by character.

The parameters of this fault algorithm are:

pCurrentReliability This parameter, of type BACnetReliability, represents the current value of the

Reliability property of the object that applies the fault algorithm.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Fault Algorithms

ANSI/ASHRAE Standard 135-2012 505

pMonitoredValue This parameter, of type CharacterString, represents the value monitored by this
algorithm.

pFaultValues This parameter, of type list of BACnetOptionalCharacterString, represents a list

of character strings that are considered fault values. This parameter shall not
contain string values that are present in the pAlarmValues parameter of the
CHANGE_OF_CHARACTERSTRING algorithm performed by the same
object. NULL values may be present in this parameter regardless of the content
of pAlarmValues.

The conditions evaluated by this fault algorithm are:

(a)
 If pCurrentReliability is NO_FAULT_DETECTED, and pMonitoredValue matches one of the values in

pFaultValues, then indicate a transition to the MULTI_STATE_FAULT reliability.
(b)
 If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue does not match any of the values

contained in pFaultValues, then indicate a transition to the NO_FAULT_DETECTED reliability.
(c)
 Optional: If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue matches one of the values

contained in pFaultValues that is different from the value that caused the last transition to
MULTI_STATE_FAULT, then indicate a transition to the MULTI_STATE_FAULT reliability.

Figure 13-25 depicts the reliability transitions that this fault algorithm may indicate:

MULTI_STATE_FAULT

ToNoFaultDetected
(b)

ToMultiStateFault
(a)

ToMultiStateFault
(c)

NO_FAULT_DETECTED

Figure 13-25. Transitions indicated by FAULT_CHARACTERSTRING algorithm

13.4.3 FAULT_EXTENDED Fault Algorithm

The FAULT_EXTENDED fault algorithm detects fault conditions based on a proprietary fault algorithm. The proprietary
fault algorithm uses parameters and conditions defined by the vendor. The algorithm is identified by a vendor-specific fault
type that is in the scope of the vendor's vendor identification code. The algorithm may, at the vendor's discretion, indicate a
new reliability, a transition to the same reliability, or no transition to the reliability-evaluation process.

The parameters of this fault algorithm are:

pCurrentReliability This parameter, of type BACnetReliability, represents the current value of the

Reliability property of the object that applies the fault algorithm.

pVendorId This parameter, of type Unsigned16, represents the vendor identification code

for the fault type of the vendor-proprietary fault algorithm.

pFaultType This parameter, of type Unsigned, represents the vendor-proprietary fault

algorithm.

pParameters This parameter represents a sequence of primitive or constructed values whose

interpretation is specific to the proprietary fault algorithm.

The conditions evaluated and transitions indicated by this fault algorithm are vendor-specific and are identified by pVendorId
and pFaultType.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Fault Algorithms

506 ANSI/ASHRAE Standard 135-2012

Figure 13-26 depicts the reliability transitions that this fault algorithm may indicate. The particular unreliable values shown
are for illustration only.

NO_FAULT_DETECTED

Unreliable

ToNoFaultDetected

ToUnreliable

ToUnreliable

Unreliabley

Unreliablex

Figure 13-26. Transitions indicated by FAULT_EXTENDED algorithm

13.4.4 FAULT_LIFE_SAFETY Fault Algorithm

The FAULT_LIFE_SAFETY fault algorithm detects whether the monitored value equals a value that is listed as a fault
value. The monitored value is of type BACnetLifeSafetyState. If internal operational reliability is unreliable, then the internal
reliability takes precedence over evaluation of the monitored value.

In addition, this algorithm monitors a life safety mode value. If reliability is MULTI_STATE_FAULT, then new transitions
to MULTI_STATE_FAULT are indicated upon change of the mode value.

The parameters of this fault algorithm are:

pCurrentReliability This parameter, of type BACnetReliability, represents the current value of the

Reliability property of the object that applies the fault algorithm.

pMonitoredValue This parameter, of type BACnetLifeSafetyState, represents the value monitored

by this algorithm.

pMode This parameter, of type BACnetLifeSafetyMode, represents the life safety mode

value monitored by this algorithm.

pFaultValues This parameter, of type list of BACnetLifeSafetyState, represents a list of

values that are considered fault values. This parameter shall not contain values
that are present in the pAlarmValues or pLifeSafetyAlarmValues parameters of
the associated CHANGE_OF_LIFE_SAFETY algorithm performed by the
same object.

The conditions evaluated by this fault algorithm are:

(a)
 If pCurrentReliability is NO_FAULT_DETECTED, and pMonitoredValue is equal to any of the values in

pFaultValues, then indicate a transition to the MULTI_STATE_FAULT reliability.
(b)
 If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue is not equal to any of the values

contained in pFaultValues, then indicate a transition to the NO_FAULT_DETECTED reliability

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Fault Algorithms

ANSI/ASHRAE Standard 135-2012 507

(c)
 If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue is equal to any of the values
contained in pFaultValues, and pMode has changed since the last transition to MULTI_STATE_FAULT, then
indicate a transition to the MULTI_STATE_FAULT reliability.

(d)
 Optional: If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue is equal to one of the
values contained in pFaultValues that is different from the value causing the last transition to
MULTI_STATE_FAULT, then indicate a transition to the MULTI_STATE_FAULT reliability.

Figure 13-27 depicts the reliability transitions that this fault algorithm may indicate:

MULTI_STATE_FAULT

ToNoFaultDetected
(b)

ToMultiStateFault
(a)

ToMultiStateFault
(c,d)

NO_FAULT_DETECTED

Figure 13-27. Transitions indicated by FAULT_LIFE_SAFETY algorithm

13.4.5 FAULT_STATE Fault Algorithm

The FAULT_STATE fault algorithm detects whether the monitored value equals a value that is listed as a fault value. The
monitored value may be of any discrete or enumerated data type, including Boolean. If internal operational reliability is
unreliable, then the internal reliability takes precedence over evaluation of the monitored value.

The parameters of this fault algorithm are:

pCurrentReliability This parameter, of type BACnetReliability, represents the current value of the

Reliability property of the object that applies the fault algorithm.

pMonitoredValue This parameter is a discrete value that represents the current value of the

monitored property. The datatype of the value of this parameter shall be one of
the options of BACnetPropertyStates.

pFaultValues This parameter is a list of discrete values that represent the fault values. The

datatype of the values of this parameter and of pMonitoredValue shall be the
same.

The conditions evaluated by this fault algorithm are:

(a)
 If pCurrentReliability is NO_FAULT_DETECTED, and pMonitoredValue is equal to any of the values in

pFaultValues, then indicate a transition to the MULTI_STATE_FAULT reliability.
(b)
 If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue is not equal to any of the values

contained in pFaultValues, then indicate a transition to the NO_FAULT_DETECTED reliability.
(c)
 Optional: If pCurrentReliability is MULTI_STATE_FAULT, and pMonitoredValue is equal one of the values

contained in pFaultValues that is different from the value that caused the last transition to
MULTI_STATE_FAULT, then indicate a transition to the MULTI_STATE_FAULT reliability.

Figure 13-28 depicts the reliability transitions that this fault algorithm may indicate:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
Fault Algorithms

508 ANSI/ASHRAE Standard 135-2012

MULTI_STATE_FAULT

ToNoFaultDetected
(b)

ToMultiStateFault
(a)

ToMultiStateFault
(c)

NO_FAULT_DETECTED

Figure 13-28. Transitions indicated by FAULT_STATE algorithm

13.4.6 FAULT_STATUS_FLAGS Fault Algorithm

The FAULT_STATUS_FLAGS fault algorithm detects whether the monitored status flags are indicating a fault condition.

The parameters of this fault algorithm are:

pCurrentReliability This parameter, of type BACnetReliability, represents the current value of the

Reliability property of the object that applies the fault algorithm.

pMonitoredValue This parameter, of type BACnetStatusFlags, is the status flags value monitored

by this algorithm.

The conditions evaluated by this fault algorithm are:

(a)
 If pCurrentReliability is NO_FAULT_DETECTED, and the FAULT bit in pMonitoredValue is TRUE, then
indicate a transition to the MEMBER_FAULT reliability.

(b)
 If pCurrentReliability is MEMBER_FAULT, and the FAULT bit in pMonitoredValue is FALSE, then indicate
a transition to the NO_FAULT_DETECTED reliability.

Figure 13-29 depicts the reliability transitions that this fault algorithm may indicate:

MEMBER_FAULT

,���?����<�������
"�%

,�=�����?����
"�%

NO_FAULT_DETECTED

Figure 13-29. Transitions indicated by FAULT_STATUS_FLAGS algorithm

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
AcknowledgeAlarm Service

ANSI/ASHRAE Standard 135-2012 509

13.5 AcknowledgeAlarm Service

In some systems a device may need to know that an operator has seen the alarm notification. The AcknowledgeAlarm service
is used by a notification-client to acknowledge that a human operator has seen and responded to an event notification with
'AckRequired' = TRUE. Ensuring that the acknowledgment actually comes from a person with appropriate authority is a local
matter. This service may be used in conjunction with either the ConfirmedEventNotification service or the
UnconfirmedEventNotification service.

13.5.1 Structure

The structure of the AcknowledgeAlarm service primitives is shown in Table 13-6. The terminology and symbology used in
this table are explained in Clause 5.6.

Table 13-6. Structure of AcknowledgeAlarm Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Acknowledging Process Identifier
 Event Object Identifier
 Event State Acknowledged
 Time Stamp
 Acknowledgment Source
 Time Of Acknowledgment

Result(+)

Result(-)
 Error Type

M
M
M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

13.5.1.1 Argument

This parameter shall convey the parameters for the AcknowledgeAlarm confirmed service request.

13.5.1.1.1 Acknowledging Process Identifier

This parameter, of type Unsigned32, shall specify the 'Process Identifier' parameter that identifies the acknowledging process.
The assignment of acknowledging process identifiers is a local matter.

13.5.1.1.2 Event Object Identifier

This parameter, of type BACnetObjectIdentifier, shall specify the 'Event Object Identifier' parameter of the event notification
to which this acknowledgment is a response. This is the same object that initiated the event notification that is being
acknowledged.

13.5.1.1.3 Event State Acknowledged

This parameter, of type BACnetEventState, shall match the value of the 'To State' from the event notification that is being
acknowledged. The 'Event State Acknowledged' matches the 'To State' if they are equal, or if 'Event State Acknowledged' is
OFFNORMAL and 'To State' is any "offnormal" state (such as HIGH_LIMIT). This parameter is included so that the remote
device that initiated the event notification can ensure that the state being acknowledged is recorded in the Acked_Transitions
property of the initiating object.

An 'Event State Acknowledged' of OFFNORMAL shall match any off-normal event state.

13.5.1.1.4 Time Stamp

This parameter, of type BACnetTimeStamp, shall convey the same 'Time Stamp' that was received in the event notification
that is being acknowledged by this service. The 'Time Stamp' is used by the recipient of this service request to identify the
event notification that is being acknowledged in the case when more than one has been issued with the same 'To State'.

13.5.1.1.5 Acknowledgment Source

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
AcknowledgeAlarm Service

510 ANSI/ASHRAE Standard 135-2012

This parameter, of type CharacterString, shall specify the identity of the operator or process that is acknowledging the event
notification.

13.5.1.1.6 Time Of Acknowledgment

This parameter, of type BACnetTimeStamp, shall specify the time that the operator or process acknowledged the event
notification.

13.5.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded and the alarm is marked as acknowledged.

13.5.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request failed. The reason for failure is specified by the 'Error Type'
parameter.

13.5.1.3.1 Error Type

This parameter consists of two components: (1) 'Error Class' and (2) 'Error Code'. See Clause 18.

The 'Error Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code
The object does not exist. OBJECT UNKNOWN_OBJECT
The object exists but does not support or is not configured for event
generation.

OBJECT NO_ALARM_CONFIGURED

The requesting BACnet device does not have appropriate
authorization to Acknowledge this alarm.

SERVICES SERVICE_REQUEST_DENIED

The timestamp provided in the AcknowledgeAlarm message does
not match with the latest timestamp for the transition being
acknowledged.

SERVICES INVALID_TIMESTAMP

The 'Event State Acknowledged' does not match the 'To State'
parameter of the original Event Notification message. An 'Event
State Acknowledged' of OFFNORMAL shall match any off-normal
event state.

SERVICES INVALID_EVENT_STATE

13.5.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to locate the specified object. If the
object exists and if the 'Time Stamp' parameter matches the most recent time for the event being acknowledged, then the bit
in the Acked_Transitions property of the object that corresponds to the value of the 'Event State Acknowledged' parameter
shall be set to 1, a 'Result(+)' primitive shall be issued, and an event notification with a 'Notify Type' parameter equal to
ACK_NOTIFICATION shall be issued. Otherwise, a 'Result(-)' primitive shall be issued. An acknowledgment notification
shall use the same type of service (confirmed or unconfirmed) directed to the same recipients to which a confirmed or
unconfirmed event notification for the same transition type would be sent. The Time Stamp conveyed in the acknowledgment
notification shall not be derived from the Time Stamp of the original event notification, but rather the time at which the
acknowledgment notification is generated.

A device shall not fail to process, or issue a Result(-), upon receiving an AcknowledgeAlarm service request containing an
'Acknowledgment Source' parameter in an unsupported character set. In this case, it is a local matter whether the
'Acknowledgment Source' parameter is used as provided or whether a character string, in a supported character set, of length
0 is used in its place.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedCOVNotification Service

ANSI/ASHRAE Standard 135-2012 511

13.6 ConfirmedCOVNotification Service

The ConfirmedCOVNotification service is used to notify subscribers about changes that may have occurred to the properties
of a particular object. Subscriptions for COV notifications are made using the SubscribeCOV service or the
SubscribeCOVProperty service.

13.6.1 Structure

The structure of the ConfirmedCOVNotification service primitives is shown in Table 13-7. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 13-7. Structure of ConfirmedCOVNotification Service Primitives

Parameter Name Req Ind Rsp Cnf

Argument
 Subscriber Process Identifier
 Initiating Device Identifier
 Monitored Object Identifier
 Time Remaining
 List of Values

Result(+)

Result(-)
 Error Type

M
M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

13.6.1.1 Argument

This parameter shall convey the parameters for the ConfirmedCOVNotification service request.

13.6.1.1.1 Subscriber Process Identifier

This parameter, of type Unsigned32, shall convey a numeric "handle" meaningful to the subscriber. This handle shall be used
to identify the process within the COV client that should receive the notification.

13.6.1.1.2 Initiating Device Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Device Object_Identifier of the device that initiated the
ConfirmedCOVNotification service request.

13.6.1.1.3 Monitored Object Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Object_Identifier of the object that has changed.

13.6.1.1.4 Time Remaining

This parameter, of type Unsigned, shall convey the remaining lifetime of the subscription in seconds. A value of zero shall
indicate an indefinite lifetime without automatic cancellation.

13.6.1.1.5 List of Values

This parameter shall convey a list of one or more property values whose contents depend on the type of object being
monitored. Table 13-1 summarizes the BACnet standard objects and those property values that shall be returned in the 'List
of Values' parameter when those objects are enabled for COV reporting. The property values are returned in the order shown
in Table 13-1.

13.6.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedCOVNotification Service

512 ANSI/ASHRAE Standard 135-2012

13.6.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.6.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

The 'Error Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code
No subscription exists for the specified object,
property, and process identifier. Devices may
ignore this condition and return a BACnet-
SimpleACK-PDU.

SERVICES UNKNOWN_SUBSCRIPTION

13.6.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall take whatever local actions have been assigned
to the indicated COV and issue a 'Result(+)' service primitive. If the service request cannot be executed, a 'Result(-)' service
primitive shall be issued indicating the error encountered.

13.7 UnconfirmedCOVNotification Service

The UnconfirmedCOVNotification Service is used to notify subscribers about changes that may have occurred to the
properties of a particular object, or to distribute object properties of wide interest (such as outside air conditions) to many
devices simultaneously without a subscription. Subscriptions for COV notifications are made using the SubscribeCOV
service. For unsubscribed notifications, the algorithm for determining when to issue this service is a local matter and may be
based on a change of value, periodic updating, or some other criteria.

13.7.1 Structure

The structure of the UnconfirmedCOVNotification service primitive is shown in Table 13-8. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 13-8. Structure of UnconfirmedCOVNotification Service Primitive
Parameter Name Req Ind

Argument
 Subscriber Process Identifier
 Initiating Device Identifier
 Monitored Object Identifier
 Time Remaining
 List of Values

M
M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)

13.7.1.1 Argument

This parameter shall convey the parameters for the UnconfirmedCOVNotification service request.

13.7.1.1.1 Subscriber Process Identifier

This parameter, of type Unsigned32, shall convey a numeric "handle" meaningful to the subscriber. This handle shall be used
to identify the process within the COV client that should receive the notification. The value of zero is reserved for
unsubscribed COV.

13.7.1.1.2 Initiating Device Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Device Object_Identifier of the device that initiated the
UnconfirmedCOVNotification service request.

13.7.1.1.3 Monitored Object Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Object_Identifier of the object that has changed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedCOVNotification Service

ANSI/ASHRAE Standard 135-2012 513

13.7.1.1.4 Time Remaining

This parameter, of type Unsigned, shall convey the remaining lifetime of the subscription in seconds. A value of zero shall
indicate an indefinite lifetime, without automatic cancellation, or an unsubscribed notification.

13.7.1.1.5 List of Values

This parameter shall convey a list of one or more property values whose contents depend on the type of object being
monitored. Table 13-1 summarizes the BACnet standard objects and those property values that shall be returned in the 'List
of Values' parameter when those objects are enabled for COV reporting.

13.7.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. Actions taken in response to this notification are a
local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedEventNotification Service

514 ANSI/ASHRAE Standard 135-2012

13.8 ConfirmedEventNotification Service

The ConfirmedEventNotification service is used by a notification-server to notify a remote device that an event has occurred
and that the notification-server needs a confirmation that the notification has been received. This confirmation means only
that the device received the message. It does not imply that a human operator has been notified. A separate
AcknowledgeAlarm service is used to indicate that an operator has acknowledged the receipt of the notification if the
notification specifies that acknowledgment is required. If multiple recipients must be notified, a separate invocation of this
service shall be used to notify each intended recipient. If a confirmation that a notification was received is not needed, then
the UnconfirmedEventNotification may be used.

13.8.1 Structure

The structure of the ConfirmedEventNotification service primitives is shown in Table 13-9. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 13-9. Structure of ConfirmedEventNotification Service Primitives

Parameter Name Req Ind Rsp Cnf

 Argument
 Process Identifier
 Initiating Device Identifier
 Event Object Identifier
 Time Stamp
 Notification Class
 Priority
 Event Type
 Message Text
 Notify Type
 AckRequired
 From State
 To State
 Event Values

 Result(+)

 Result(-)
 Error Type

M
M
M
M
M
M
M
M
U
M
C
C
M
C

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
U(=)
M(=)
C(=)
C(=)
M(=)
C(=)

S

S
M

S(=)

S(=)
M

13.8.1.1 Argument

This parameter shall convey the parameters for the ConfirmedEventNotification service request.

13.8.1.1.1 Process Identifier

This parameter, of type Unsigned32, shall convey the identification of the process in the receiving device for which the
notification is intended.

13.8.1.1.2 Initiating Device Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Device Object_Identifier of the device that initiated the
ConfirmedEventNotification service request.

13.8.1.1.3 Event Object Identifier

This parameter, of type BACnetObjectIdentifier, shall specify the Object_Identifier of the object that is initiating the
notification. This parameter is used by the AcknowledgeAlarm service to identify the object whose notification is being
acknowledged.

13.8.1.1.4 Time Stamp

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedEventNotification Service

ANSI/ASHRAE Standard 135-2012 515

This parameter, of type BACnetTimeStamp, shall convey the current time as determined by the clock in the device issuing
the service request. If this device has no clock, then this parameter shall convey a sequence number, of type Unsigned, which
indicates the relative ordering of this event notification to all other event notifications issued by this device without regard to
their intended recipient. The sequence numbers shall increase monotonically (they may be implemented using modulo
arithmetic). A device may have a single sequence number for all event-initiating objects or a separate sequence number for
each object.

13.8.1.1.5 Notification Class

This parameter, of type Unsigned, designates the notification class of the event. Definition of the various notification classes
is a local matter (see 13.2, 13.4, and 12.21 for discussion of Notification Class objects).

13.8.1.1.6 Priority

This parameter, of type Unsigned8, shall specify the priority of the event that has occurred. The priority is specified by the
Priority property of the Notification Class or Event Enrollment objects associated with this event. The possible range of
priorities is 0-255. A lower number indicates a higher priority. The priority and the Network Priority (see 6.2.2) are
associated as defined in Table 13-5.

13.8.1.1.7 Event Type

This parameter, of type BACnetEventType, shall specify the type of event that has occurred.

13.8.1.1.8 Message Text

This optional parameter, of type CharacterString, shall convey a string of printable characters. This parameter may be used to
convey a message to be logged or displayed, which pertains to the occurrence of the event. The content of the message is a
local matter. If the optional property Event_Message_Texts is present in the event generating object, the text conveyed in this
Message Text parameter shall be stored in the respective field of the Event_Message_Texts array.

13.8.1.1.9 Notify Type

This parameter, of type BACnetNotifyType, shall convey whether this notification is an event or an alarm or a notification
that someone has acknowledged a previous event notification:

{ALARM, EVENT, ACK_NOTIFICATION}.

13.8.1.1.10 AckRequired

This parameter, of type BOOLEAN, shall convey whether this notification requires acknowledgment (TRUE) or not
(FALSE). This parameter shall only be present if the 'Notify Type' parameter is EVENT or ALARM.

13.8.1.1.11 From State

This parameter, of type BACnetEventState, shall indicate the Event_State of the object prior to the occurrence of the event
that initiated this notification. This parameter shall only be present if the 'Notify Type' parameter is EVENT or ALARM.

13.8.1.1.12 To State

This parameter, of type BACnetEventState, shall indicate the Event_State of the object after the occurrence of the event that
initiated this notification.

13.8.1.1.13 Event Values

This parameter, of type BACnetNotificationParameters, shall convey a set of values relevant to the particular event and
whose content depends on the event type. This parameter shall only be present if the 'Notify Type' parameter is EVENT or
ALARM.

13.8.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded.

13.8.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
ConfirmedEventNotification Service

516 ANSI/ASHRAE Standard 135-2012

13.8.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

13.8.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall take whatever local actions have been assigned
to the indicated event occurrence and issue a 'Result(+)' service primitive. If the service request cannot be executed, a
'Result(-)' service primitive shall be issued indicating the encountered error. A device shall not fail to process, or issue a
Result(-), upon receiving a ConfirmedEventNotification service request containing a 'Message Text' parameter in an
unsupported character set.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
UnconfirmedEventNotification Service

ANSI/ASHRAE Standard 135-2012 517

13.9 UnconfirmedEventNotification Service

The UnconfirmedEventNotification service is used by a notification-server to notify a remote device that an event has
occurred. Its purpose is to notify recipients that an event has occurred, but confirmation that the notification was received is
not required. Applications that require confirmation that the notification was received by the remote device should use the
ConfirmedEventNotification service. The fact that this is an unconfirmed service does not mean it is inappropriate for
notification of alarms. Events of type Alarm may require a human acknowledgment that is conveyed using the
AcknowledgeAlarm service. Thus, using an unconfirmed service to announce the alarm has no effect on the ability to
confirm that an operator has been notified. Any device that executes this service shall support programmable process
identifiers to allow broadcast and multicast 'Process Identifier' parameters to be assigned on a per installation basis.

13.9.1 Structure

The structure of the UnconfirmedEventNotification service primitives is shown in Table 13-10. The terminology and
symbology used in this table are explained in Clause 5.6.

Table 13-10. Structure of UnconfirmedEventNotification Service Primitive
Parameter Name Req Ind

 Argument
 Process Identifier
 Initiating Device Identifier
 Event Object Identifier
 Time Stamp
 Notification Class
 Priority
 Event Type
 Message Text
 Notify Type
 AckRequired
 From State
 To State
 Event Values

M
M
M
M
M
M
M
M
U
M
C
C
M
C

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
U(=)
M(=)
C(=)
C(=)
M(=)
C(=)

13.9.1.1 Argument

The 'Argument' parameter shall convey the parameters for the UnconfirmedEventNotification service request.

13.9.1.1.1 Process Identifier

This parameter, of type Unsigned32, shall convey the identification of the process in the receiving device for which the
notification is intended.

13.9.1.1.2 Initiating Device Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the Device Object_Identifier of the device that initiated the
UnconfirmedEventNotification service request.

13.9.1.1.3 Event Object Identifier

This parameter, of type BACnetObjectIdentifier, shall specify the identifier of the object that is initiating the notification.
This parameter is used by the AcknowledgeAlarm service to identify the object whose notification is being acknowledged.

13.9.1.1.4 Time Stamp

This parameter, of type BACnetTimeStamp, shall convey the current time as determined by the clock in the device issuing
the service request. If this device has no clock, then this parameter shall convey a sequence number that indicates the relative
ordering of this event notification to all other event notifications issued by this device without regard to their intended
recipient. The sequence numbers shall increase monotonically (they may be implemented using modulo arithmetic). A device
may have a single sequence number for all event-initiating objects or a separate sequence number for each object.

13.9.1.1.5 Notification Class

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
UnconfirmedEventNotification Service

518 ANSI/ASHRAE Standard 135-2012

This parameter, of type Unsigned, designates the notification class of the event. Definition of the various notification classes
is a local matter (see 13.2, 13.4, and 12.21 for discussion of Notification Class objects).

13.9.1.1.6 Priority

This parameter, of type Unsigned8, shall specify the priority of the event that has occurred. The priority is specified by the
Priority property of the Notification Class object associated with the event. The possible range of priorities is 0-255. A lower
number indicates a higher priority. The priority and the Network Priority (see 6.2.2) are associated as defined in Table 13-5.

13.9.1.1.7 Event Type

This parameter, of type BACnetEventType, shall specify the type of event that has occurred.

13.9.1.1.8 Message Text

This optional parameter, of type CharacterString, shall convey a string of printable characters. This parameter may be used to
convey a message to be logged or displayed, which pertains to the occurrence of the event. The content of the message is a
local matter. If the optional property Event_Message_Texts is present in the event generating object, the text conveyed in this
Message Text parameter shall be stored in the respective field of the Event_Message_Texts array.

13.9.1.1.9 Notify Type

This parameter, of type BACnetNotifyType, shall convey whether this notification is an event or an alarm or a notification
that someone has acknowledged a previous event notification:

{EVENT, ALARM, ACK_NOTIFICATION}.

13.9.1.1.10 AckRequired

This parameter, of type BOOLEAN, shall convey whether this notification requires acknowledgment (TRUE) or not
(FALSE). This parameter shall only be present if the 'Notify Type' parameter is EVENT or ALARM.

13.9.1.1.11 From State

This parameter, of type BACnetEventState, shall indicate the state of the object prior to the occurrence of the event that
initiated this notification. This parameter shall only be present if the 'Notify Type' parameter is EVENT or ALARM.

13.9.1.1.12 To State

This parameter, of type BACnetEventState, shall indicate the state of the object after the occurrence of the event that initiated
this notification.

13.9.1.1.13 Event Values

This parameter, of type BACnetNotificationParameters, shall convey a set of values relevant to the particular event and
whose content depends on the event type. This parameter shall only be present if the 'Notify Type' parameter is EVENT or
ALARM.

13.9.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. Actions taken in response to this notification are a
local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetAlarmSummary Service

ANSI/ASHRAE Standard 135-2012 519

13.10 GetAlarmSummary Service

The GetAlarmSummary service is used by a client BACnet-user to obtain a summary of "active alarms." The term "active
alarm" refers to BACnet standard objects that have an Event_State property whose value is not equal to NORMAL and a
Notify_Type property whose value is ALARM. The GetEnrollmentSummary service provides a more sophisticated approach
with various kinds of filters.

13.10.1 Structure

The structure of the GetAlarmSummary service primitives is shown in Table 13-11. The terminology and symbology used in
this table are explained in Clause 5.6.

Table 13-11. Structure of GetAlarmSummary Service Primitives

Parameter Name Req Ind Rsp Cnf

Argument

Result(+)
 List of Alarm Summaries
 Object Identifier
 Alarm State
 Acknowledged Transitions

Result(-)
 Error Type

M

M(=)

S
M
M
M
M

S
M

S(=)
M(=)
M(=)
M(=)
M(=)

S(=)
M(=)

13.10.1.1 Argument

This parameter indicates the GetAlarmSummary confirmed service request.

13.10.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded. A successful result includes the following
parameters.

13.10.1.2.1 List of Alarm Summaries

The 'List of Alarm Summaries' shall contain zero or more Alarm Summaries. Each Alarm Summary shall consist of three
parameters: 'Object Identifier', 'Alarm State', and 'Acknowledged Transitions'. If the list is of length zero, then this shall be
interpreted to mean that there are no active alarms for this device.

13.10.1.2.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall identify the event-initiating object whose Event_State property is not
equal to NORMAL and that has a Notify_Type property whose value is ALARM.

13.10.1.2.1.2 Alarm State

This parameter, of type BACnetEventState, indicates the value of the Event_State property of the object.

13.10.1.2.1.3 Acknowledged Transitions

This parameter, of type BACnetEventTransitionBits, indicates the value of the Acked_Transitions property of the object.

13.10.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.10.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetAlarmSummary Service

520 ANSI/ASHRAE Standard 135-2012

13.10.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall search all event-initiating objects that have an
Event_State property not equal to NORMAL and a Notify_Type property whose value is ALARM. Any object that has an
Event_Detection_Enable property with a value of FALSE shall be ignored. A positive response containing the alarm
summaries for objects found in this search shall be constructed. If no objects are found that meet these criteria, then a list of
length zero shall be returned.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetEnrollmentSummary Service

ANSI/ASHRAE Standard 135-2012 521

13.11 GetEnrollmentSummary Service

The GetEnrollmentSummary service is used by a client BACnet-user to obtain a summary of event-initiating objects. Several
different filters may be applied to define the search criteria. This service may be used to obtain summaries of objects with any
event type and is thus a superset of the functionality provided by the GetAlarmSummary Service.

13.11.1 Structure

The structure of the GetEnrollmentSummary service primitives is shown in Table 13-12. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 13-12. Structure of GetEnrollmentSummary Service Primitives

Parameter Name Req Ind Rsp Cnf

 Argument
 Acknowledgment Filter
 Enrollment Filter
 Event State Filter
 Event Type Filter
 Priority Filter
 Notification Class Filter

 Result(+)
 List of Enrollment Summaries
 Object Identifier
 Event Type
 Event State
 Priority
 Notification Class

Result(-)
 Error type

M
M
U
U
U
U
U

M(=)
M(=)
U(=)
U(=)
U(=)
U(=)
U(=)

S
M
M
M
M
M
U

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
U(=)

S(=)
M(=)

13.11.1.1 Argument

This parameter shall convey the parameters for the GetEnrollmentSummary confirmed service request.

13.11.1.1.1 Acknowledgment Filter

This parameter, of type ENUMERATED, shall provide a means of restricting the event-initiating objects that are to be
summarized. The 'Acknowledgment Filter' may take any of three values:

 ALL - Shall request that the returned summary contain all event-initiating objects without regard to whether the

objects have acknowledgments or not.

 ACKED - Shall request that the returned summary contain only those objects for which the Acked_Transitions

property has a value of one in every bit position.

 NOT-ACKED - Shall request that the returned summary contain only reports for those objects for which the

Acked_Transitions property has a value of zero in one or more bit positions.

13.11.1.1.2 Enrollment Filter

This parameter, of type BACnetRecipientProcess, shall provide a means of restricting the set of objects that are to be
summarized. Only those objects for which the specified BACnetRecipient and Process Identifier are enrolled to receive
notifications, either confirmed or unconfirmed, shall be summarized. In this case, "enrolled" shall mean that an event-
initiating object references a Notification Class object containing one or more BACnetDestinations containing the indicated
Process Identifier and BACnetRecipient.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetEnrollmentSummary Service

522 ANSI/ASHRAE Standard 135-2012

If this parameter is omitted, it shall mean that event-initiating objects shall be summarized without regard to enrollment
status.

13.11.1.1.3 Event State Filter

This parameter shall provide a means of restricting the set of event-initiating objects that are to be summarized. It may have
any of the following values:

{OFFNORMAL, FAULT, NORMAL, ALL, ACTIVE}.

Only those event-initiating objects whose Event_State property matches the value specified in this parameter shall be
included. If the value ALL is specified, then all of the event-initiating objects shall be summarized without regard to the
value of the Event_State property. If the value ACTIVE is specified, then only those event-initiating objects whose
Event_State property has a value other than NORMAL shall be summarized. If this parameter is omitted, a default value of
ALL shall be assumed.

13.11.1.1.4 Event Type Filter

This parameter is provided as a means of restricting the summary to only those event-initiating objects that can generate
event notifications with an Event_Type equal to the value of this parameter. This parameter may have any legal value of
Event_Type as defined in the Event Enrollment object specification. If this parameter is omitted, all event-initiating objects
shall be included in the summary without regard to which event types they generate.

13.11.1.1.5 Priority Filter

This parameter consists of two parts, MinPriority and MaxPriority, each of datatype Unsigned8. It provides a means of
restricting the summary to only those event-initiating objects that can generate event notifications with a Priority as specified
by this parameter. The 'Priority Filter' parameter consists of two parts, MinPriority and MaxPriority. All event-initiating
objects, such that MinPriority � Priority � MaxPriority, shall be included in the summary. For the purpose of this filter, the
Priority checked by the filter is the Priority associated with the most recent transition. If 'Priority Filter' is omitted, all event-
initiating objects shall be summarized without regard to their Priority.

13.11.1.1.6 Notification Class Filter

This parameter, of type Unsigned, provides a means of restricting the summary to only those event-initiating objects that can
generate event notifications with a Notification Class equal to the value of this parameter. If 'Notification Class Filter' is
omitted, it shall mean that all event-initiating objects shall be summarized without regard to their Notification Class.

13.11.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded. A successful result includes the following
parameters.

13.11.1.2.1 List of Enrollment Summaries

The 'List of Enrollment Summaries' shall contain zero or more Enrollment Summaries. Each Enrollment Summary shall
consist of up to five parameters: 'Object Identifier', 'Event Type', 'Event State', 'Priority', and, optionally, 'Notification Class'.
If the list is of length zero, then this shall be interpreted to mean that there are no event-initiating objects that meet the search
criteria specified in the request primitive.

13.11.1.2.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall identify an object meeting the search criteria.

13.11.1.2.1.2 Event Type

This parameter, of type BACnetEventType, indicates the Event_Type that the object can generate.

13.11.1.2.1.3 Event State

This parameter, of type BACnetEventState, indicates the value of the Event_State property of the object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetEnrollmentSummary Service

ANSI/ASHRAE Standard 135-2012 523

13.11.1.2.1.4 Priority

This parameter, of type Unsigned8, indicates the priority of notifications generated by the object.

13.11.1.2.1.5 Notification Class

This optional parameter, of type Unsigned, indicates the class of notifications generated by the object and implicitly refers to
a Notification Class object that has a Notification_Class property of the same value.

13.11.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.11.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

13.11.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall search for all event-initiating objects that meet
the search criteria specified in the request primitive. The search criteria are the logical conjunctions of all of the explicitly
stated filters and the default values for any filters that were omitted in the request primitive. Any object that has an
Event_Detection_Enable property with a value of FALSE shall be ignored. A positive response containing the enrollment
summaries for objects found in this search shall be constructed. If no objects are found that meet these criteria, then a list of
length zero shall be returned.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetEventInformation Service

524 ANSI/ASHRAE Standard 135-2012

13.12 GetEventInformation Service

The GetEventInformation service is used by a client BACnet-user to obtain a summary of all "active event states". The term
"active event states" refers to all event-initiating objects that

(a) have an Event_State property whose value is not equal to NORMAL, or
(b) have an Acked_Transitions property, which has at least one of the bits (TO_OFFNORMAL, TO_FAULT,

TO_NORMAL) set to FALSE.

This service is intended to be implemented in all devices that generate event notifications.

13.12.1 Structure

The structure of the GetEventInformation service primitives is shown in Table 13-13. The terminology and symbology used
in this table are explained in Clause 5.6.

Table 13-13. Structure of GetEventInformation Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument M M(=)
 Last Received Object Identifier U U(=)

Result(+)
 List of Event Summaries M M(=)
 Object Identifier M M(=)
 Event State M M(=)
 Acknowledged Transitions M M(=)
 Event Time Stamps M M(=)
 Notify Type M M(=)
 Event Enable M M(=)
 Event Priorities M M(=)
 More Events M M(=)

Result(-) S S(=)
 Error Type M M(=)

13.12.1.1 Argument

This parameter indicates the GetEventInformation confirmed service request.

13.12.1.1.1 Last Received Object Identifier

This optional parameter, of type BACnetObjectIdentifier, shall specify the last Object Identifier received in a preceding
GetEventInformation-ACK, if its 'More Events' parameter was TRUE. If this parameter is omitted, the returned summary
shall start with the first object meeting the "active event states" criteria. A fixed object processing order is assumed, however
the particular order is a local matter. If the Last Received Object Identifier has become invalid in the responding device (i.e.,
the object is no longer present), the service shall resume if it is possible to determine the object that would have been the
successor of the object that is no longer present. Otherwise a Result(-) shall be returned with an error class of OBJECT and
an error code of UNKNOWN_OBJECT.

13.12.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded. A successful result includes the following
parameters.

13.12.1.2.1 List of Event Summaries

The 'List of Event Summaries' shall contain zero or more Event Summaries. Each Event Summary shall consist of seven
parameters: 'Object Identifier', 'Event State', 'Acknowledged Transitions', 'Event Time Stamps', 'Notify Type', 'Event Enable'
and 'Event Priorities'. If the list is of length zero, then this shall be interpreted to mean that there are no event-initiating
objects that have active event states in this device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
GetEventInformation Service

ANSI/ASHRAE Standard 135-2012 525

13.12.1.2.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall identify the event-initiating object that has an Event_State property
whose value is not equal to NORMAL or has an Acked_Transitions property that has at least one of the following bits
(TO_OFFNORMAL, TO_FAULT, TO_NORMAL) set to FALSE.

13.12.1.2.1.2 Event State

This parameter, of type BACnetEventState, indicates the value of the Event_State property of the object.

13.12.1.2.1.3 Acknowledged Transitions

This parameter, of type BACnetEventTransitionBits, indicates the value of the Acked_Transitions property of the object.

13.12.1.2.1.4 Event Time Stamps

This parameter, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the timestamps of the last event
notifications for TO_OFFNORMAL, TO_FAULT, and TO_NORMAL events.

13.12.1.2.1.5 Notify Type

This parameter, of type BACnetNotifyType, shall convey the value of the Notify_Type property of this object.

13.12.1.2.1.6 Event Enable

This parameter, of type BACnetEventTransitionBits, shall convey the value of the Event_Enable property of the object.

13.12.1.2.1.7 Event Priorities

This parameter, of type BACnetARRAY[3] of Unsigned, shall convey the priorities specified in the Priority property of the
associated Notification Class object.

13.12.1.2.2 More Events

This parameter, of type BOOLEAN, shall indicate whether (TRUE) or not (FALSE) more objects exist that meet the active
event state criteria of the service request, but that could not be returned in the reply.

13.12.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.12.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

13.12.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall search for all event-initiating objects that do not
have an Event_Detection_Enable property with a value of FALSE and that meet the following conditions, beginning with the
object following (in whatever internal ordering of objects is used by the responding device) the object specified by the 'Last
Received Object Identifier' parameter, if present:

(a) have an Event_State property whose value is not equal to NORMAL, or
(b) have an Acked_Transitions property that has at least one of the following bits (TO_OFFNORMAL, TO_FAULT,

TO_NORMAL) set to FALSE.

A positive response containing the event summaries for objects found in this search shall be constructed. If no objects are
found that meet these criteria, then a list of length zero shall be returned. As many of the included objects as can be returned
within the APDU shall be returned. If more objects exist that meet the criteria but cannot be returned in the APDU, the 'More
Events' parameter shall be set to TRUE, otherwise it shall be set to FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
LifeSafetyOperation Service

526 ANSI/ASHRAE Standard 135-2012

13.13 LifeSafetyOperation Service

The LifeSafetyOperation service is intended for use in fire, life safety and security systems to provide a mechanism for
conveying specific instructions from a human operator to accomplish any of the following objectives:

(a) silence audible or visual notification appliances,
(b) reset latched notification appliances, or
(c) unsilence previously silenced audible or visual notification appliances.

Ensuring that the LifeSafetyOperation request actually comes from a person with appropriate authority is a local matter.

13.13.1 Structure

The structure of the LifeSafetyOperation primitive is shown in Table 13-14. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 13-14. Structure of LifeSafetyOperation Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument M M(=)
 Requesting Process Identifier M M(=)
 Requesting Source M M(=)
 Request M M(=)
 Object Identifier U U(=)

Result(+) S S(=)

Result(-) S S(=)
 Error Type M M(=)

13.13.1.1 Argument

This parameter shall convey the parameters for the LifeSafetyOperation confirmed service request.

13.13.1.1.1 Requesting Process Identifier

This parameter, of type Unsigned32, specifies an identifying number of significance to the sending device that uniquely
identifies the process which initiated the service request. The assignment and meaning of process identifiers shall be a local
matter.

13.13.1.1.2 Requesting Source

This parameter, of type CharacterString, specifies the identity of the human operator that initiated the LifeSafetyOperation
service request.

13.13.1.1.3 Request

This parameter, of type BACnetLifeSafetyOperation, shall convey the requested operation:

{SILENCE, SILENCE_AUDIBLE, SILENCE_VISUAL, RESET, RESET_ALARM, RESET_FAULT, UNSILENCE,
UNSILENCE_AUDIBLE, UNSILENCE_VISUAL}

13.13.1.1.4 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the specific BACnet object to which the life safety request is
directed. If this parameter is not present, then all applicable objects within the receiving BACnet device shall be silenced or
reset accordingly based on the 'Request' provided.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
LifeSafetyOperation Service

ANSI/ASHRAE Standard 135-2012 527

13.13.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded.

13.13.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for the failure shall be specified by the
'Error Type' parameter.

13.13.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

13.13.2 Service Procedure

The responding BACnet-user shall first verify the validity of the 'Object Identifier' parameter and return a 'Result(-)' response
with the appropriate error class and code if the 'Request' is invalid or if the 'Object Identifier' parameter is present and
specifies an object that is either unknown or does not represent an appropriate request for this object type.

If the 'Object Identifier' parameter is not present, then the responding BACnet-user shall attempt to operate all applicable
objects in the device based on the 'Request' parameter. If the 'Object Identifier' parameter is present, the responding BACnet-
user shall attempt to silence or reset the object specified in the 'Object Identifier' parameter based on the 'Request' parameter.
In either case, the responding BACnet-user shall issue a Result(+) primitive.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOV Service

528 ANSI/ASHRAE Standard 135-2012

13.14 SubscribeCOV Service

The SubscribeCOV service is used by a COV-client to subscribe for the receipt of notifications of changes that may occur to
the properties of a particular object. Certain BACnet standard objects may optionally support COV reporting. If a standard
object provides COV reporting, then changes of value of specific properties of the object, in some cases based on
programmable increments, trigger COV notifications to be sent to one or more subscriber clients. Typically, COV
notifications are sent to supervisory programs in BACnet client devices or to operators or logging devices. Proprietary objects
may support COV reporting at the implementor's option. The standardized objects that may optionally provide COV support
and the change of value algorithms they shall employ are summarized in Table 13-1.

The subscription establishes a connection between the change of value detection and reporting mechanism within the COV-
server device and a "process" within the COV-client device. Notifications of changes are issued by the COV-server device
when changes occur after the subscription has been established. The ConfirmedCOVNotification and
UnconfirmedCOVNotification services are used by the COV-server device to convey change notifications. The choice of
confirmed or unconfirmed service is made at the time the subscription is established.

13.14.1 Structure

The structure of the SubscribeCOV service primitives is shown in Table 13-15. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 13-15. Structure of SubscribeCOV Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Subscriber Process Identifier
 Monitored Object Identifier
 Issue Confirmed Notifications
 Lifetime

Result(+)

Result(-)
 Error Type

M
M
M
U
U

M(=)
M(=)
M(=)
U(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

13.14.1.1 Argument

This parameter shall convey the parameters for the SubscribeCOV confirmed service request.

13.14.1.1.1 Subscriber Process Identifier

This parameter, of type Unsigned32, shall convey a numeric "handle" meaningful to the subscriber. This handle shall be used
to match future re-subscriptions and cancellations from the subscriber with the COV context that exists within the COV-
server device and with confirmed or unconfirmed COV notifications to identify the process within the COV-client that
should receive them. The value zero is reserved for unsubscribed COV notifications as described in 13.7.

13.14.1.1.2 Monitored Object Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the identifier of the object within the receiving device for
which a subscription is desired.

13.14.1.1.3 Issue Confirmed Notifications

This parameter, of type BOOLEAN, shall convey whether the COV-server device shall issue ConfirmedCOVNotifications
(TRUE) or UnconfirmedCOVNotifications (FALSE) when changes occur. This parameter, if present, shall indicate a
subscription or re-subscription is to occur and that the lifetime shall be refreshed to its initial state. If both the 'Issue
Confirmed Notifications' and 'Lifetime' parameters are absent, then this shall indicate a cancellation request. If the 'Lifetime'
parameter is present then the 'Issue Confirmed Notifications' parameter shall be present.

13.14.1.1.4 Lifetime

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOV Service

ANSI/ASHRAE Standard 135-2012 529

This parameter, of type Unsigned, shall convey the desired lifetime of the subscription in seconds. A value of zero shall
indicate an indefinite lifetime, without automatic cancellation. A non-zero value shall indicate the number of seconds that
may elapse before the subscription shall be automatically cancelled. If both the 'Issue Confirmed Notifications' and 'Lifetime'
parameters are absent, then this shall indicate a cancellation request. If the 'Lifetime' parameter is present then the 'Issue
Confirmed Notifications' parameter shall be present.

Devices that execute this service shall accept, at a minimum, lifetime values up to and including 28800 seconds (8 hours).
Devices may optionally support lifetime values larger than 28800. Devices that initiate this service shall be capable of
providing Lifetime values less than or equal to 28800.

13.14.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded.

13.14.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.14.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

The 'Error Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code
Specified object does not exist OBJECT UNKNOWN_OBJECT
Specified object does not support COV
notifications

OBJECT OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

No context can be created due to
resource limitations

RESOURCES NO_SPACE_TO_ADD_LIST_ELEMENT

The Lifetime parameter is out of the
range supported by the device

SERVICES VALUE_OUT_OF_RANGE

13.14.2 Service Procedure

If neither 'Lifetime' nor 'Issue Confirmed Notifications' are present, then the request shall be considered to be a cancellation.
Any COV context that already exists for the same BACnet address contained in the PDU that carries the SubscribeCOV
request and has the same 'Subscriber Process Identifier' and 'Monitored Object Identifier' shall be disabled and a 'Result(+)'
returned. Cancellations that are issued for which no matching COV context can be found shall succeed as if a context had
existed, returning 'Result(+)'.

If the 'Lifetime' parameter is not present but the 'Issue Confirmed Notifications' parameter is present, then a value of zero
(indefinite lifetime) shall be assumed for the lifetime. If the 'Issue Confirmed Notifications' parameter is present but the
object to be monitored does not support COV reporting, then a 'Result(-)' shall be returned. If the object to be monitored does
support COV reporting, then a check shall be made to locate an existing COV context for the same BACnet address
contained in the PDU that carries the SubscribeCOV request and has the same 'Subscriber Process Identifier' and 'Monitored
Object Identifier'. If an existing COV context is found, then the request shall be considered a re-subscription and shall
succeed as if the subscription had been newly created.

If no COV context can be found that matches the request, then a new COV context shall be established that contains the
BACnet address from the PDU that carries the SubscribeCOV request and the same 'Subscriber Process Identifier' and
'Monitored Object Identifier'. If no context can be created, then a 'Result(-)' shall be returned.

If a new context is created, or a re-subscription is received, then the COV context shall be initialized and given a lifetime as
specified by the 'Lifetime' parameter, if present, or zero if the 'Lifetime' parameter is not present. The subscription shall be
automatically cancelled after that many seconds have elapsed unless a re-subscription is received. A lifetime of zero shall
indicate that the subscription is indefinite and no automatic cancellation shall occur. In either case, a 'Result(+)' shall be
returned. A ConfirmedCOVNotification or UnconfirmedCOVNotification shall be issued as soon as possible after the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOV Service

530 ANSI/ASHRAE Standard 135-2012

successful completion of a subscription or re-subscription request, as specified by the 'Issue Confirmed Notifications'
parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOVProperty Service

ANSI/ASHRAE Standard 135-2012 531

13.15 SubscribeCOVProperty Service

The SubscribeCOVProperty service is used by a COV-client to subscribe for the receipt of notifications of changes that may
occur to the properties of a particular object. Any object may optionally support COV reporting. If a standard object provides
COV reporting, then changes of value of subscribed-to properties of the object, in some cases based on programmable
increments, trigger COV notifications to be sent to one or more subscriber clients. Typically, COV notifications are sent to
supervisory programs in BACnet client devices or to operators or logging devices.

The subscription establishes a connection between the change of value detection and reporting mechanism within the COV-
server device and a "process" within the COV-client device. Notifications of changes are issued by the COV-server device
when changes occur after the subscription has been established. The ConfirmedCOVNotification and
UnconfirmedCOVNotification services are used by the COV-server device to convey change notifications. The choice of
confirmed or unconfirmed service is made at the time the subscription is established. Any object, proprietary or standard,
may support COV reporting for any property at the implementor's option.

The SubscribeCOVProperty service differs from the SubscribeCOV service in that it allows monitoring of properties other
than those listed in Table 13-1.

13.15.1 Structure

The structure of the SubscribeCOVProperty service primitives is shown in Table 13-16. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 13-16. Structure of SubscribeCOVProperty Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument M M(=)
 Subscriber Process Identifier M M(=)
 Monitored Object Identifier M M(=)
 Issue Confirmed Notifications U U(=)

 Lifetime U U(=)
 Monitored Property Identifier M M(=)

 COV Increment U U(=)

Result(+) S S(=)

Result(-) S S(=)
 Error Type M M(=)

13.15.1.1 Argument

This parameter shall convey the parameters for the SubscribeCOVProperty confirmed service request.

13.15.1.1.1 Subscriber Process Identifier

This parameter, of type Unsigned32, shall convey a numeric "handle" meaningful to the subscriber. This handle shall be used
to match future re-subscriptions and cancellations from the subscriber with the COV context that exists within the COV-
server device and with confirmed or unconfirmed COV notifications to identify the process within the COV-client that
should receive them.

13.15.1.1.2 Monitored Object Identifier

This parameter, of type BACnetObjectIdentifier, shall convey the identifier of the object within the receiving device that
contains the property for which a subscription is desired.

13.15.1.1.3 Issue Confirmed Notifications

This parameter, of type BOOLEAN, shall convey whether the COV-server device shall issue ConfirmedCOVNotifications
(TRUE) or UnconfirmedCOVNotifications (FALSE) when changes occur. This parameter, if present, shall indicate that a

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOVProperty Service

532 ANSI/ASHRAE Standard 135-2012

subscription or re-subscription is to occur and that the lifetime shall be refreshed to its initial state. This parameter shall be
present if the request is a subscription, or re-subscription, and absent if the request is a cancellation.

13.15.1.1.4 Lifetime

This parameter, of type Unsigned, shall convey the desired lifetime of the subscription in seconds. A value of zero shall not
be allowed. A non-zero value shall indicate the number of seconds that may elapse before the subscription shall be
automatically cancelled. This parameter shall be present if the request is a subscription, or re-subscription, and absent if the
request is a cancellation.

Devices that execute this service shall accept, at a minimum, lifetime values up to and including 28800 seconds (8 hours).
Devices may optionally support lifetime values larger than 28800. Devices that initiate this service shall be capable of
providing Lifetime values less than or equal to 28800.

13.15.1.1.5 Monitored Property Identifier

This parameter, of type BACnetPropertyReference, shall convey the property identifier and optional array index for which a
subscription is desired. If COV reporting is supported for a property that has an array datatype, it is a local matter to
determine whether to support COV subscriptions for all elements of the array or only for particular elements in the array.

13.15.1.1.6 COV Increment

This parameter, of type REAL, shall specify the minimum change in the monitored property that will cause a
COVNotification to be issued to subscriber COV-clients. This parameter is ignored if the datatype of the monitored property
is not numeric. If the monitored property is Present_Value, its datatype is numeric, this parameter is not present, and the
monitored object has a COV_Increment property, then the COV increment to use is taken from the COV_Increment property
of the monitored object. Otherwise, the COV increment is a local matter. The intent is to allow the subscriber to use a
previously established COV increment from another subscription or to allow use of the COV_Increment property in the
monitored object.

13.15.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded.

13.15.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

13.15.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

13.15.2 Service Procedure

The absence of the 'Lifetime' and 'Issue Confirmed Notifications' indicates that the request is a cancellation. Any COV
context that already exists for the same BACnet address contained in the PDU that carries the SubscribeCOVProperty request
and has the same 'Subscriber Process Identifier', 'Monitored Object Identifier' and 'Monitored Property Identifier' shall be
disabled and a 'Result(+)' returned. Cancellations that are issued for which no matching COV context can be found shall
succeed as if a context had existed, returning 'Result(+)'. If an existing COV context is found, it shall be removed from the
Active_COV_Subscriptions property in the Device object.

If the 'Issue Confirmed Notifications' parameter is present but the property to be monitored does not support COV reporting,
then a 'Result(-)' shall be returned. If the property to be monitored does support COV reporting, then a check shall be made to
locate an existing COV context for the same BACnet address contained in the PDU that carries the SubscribeCOVProperty
request and has the same 'Subscriber Process Identifier', 'Monitored Object Identifier' and 'Monitored Property Identifier'. If
an existing COV context is found, then the request shall be considered a re-subscription and shall succeed as if the
subscription had been newly created.

If no COV context can be found that matches the request, then a new COV context shall be established that contains the
BACnet address from the PDU that carries the SubscribeCOVProperty request and the same 'Subscriber Process Identifier',
'Monitored Object Identifier' and 'Monitored Property Identifier'. The new context shall be included in the
Active_COV_Subscriptions property of the Device object. If no context can be created, then a 'Result(-)' shall be returned.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

13. ALARM AND EVENT SERVICES
SubscribeCOVProperty Service

ANSI/ASHRAE Standard 135-2012 533

If a new context is created, or a re-subscription is received, then the COV context shall be initialized and given a lifetime as
specified by the 'Lifetime' parameter. The subscription shall be automatically cancelled after that many seconds have elapsed
unless a re-subscription is received. A 'Result(+)' shall be returned and a ConfirmedCOVNotification or
UnconfirmedCOVNotification shall be issued as soon as possible after the successful completion of a subscription or re-
subscription request, as specified by the 'Issue Confirmed Notifications' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES

534 ANSI/ASHRAE Standard 135-2012

14 FILE ACCESS SERVICES

This clause defines the set of services used to access and manipulate files contained in BACnet devices. The concept of files
is used here as a network-visible representation for a collection of octets of arbitrary length and meaning. This is an abstract
concept only and does not imply the use of disk, tape or other mass storage devices in the server devices. These services may
be used to access vendor-defined files as well as specific files defined in the BACnet protocol standard.

Every file that is accessible by File Access Services shall have a corresponding File object in the BACnet device. This File
object is used to identify the particular file by name. In addition, the File object provides access to "header information," such
as the file's total size, creation date, and type. File Access Services may model files in two ways: as a continuous stream of
octets or as a contiguous sequence of numbered records.

The File Access Services provide atomic read and write operations. In this context "atomic" means that during the execution
of a read or write operation, no other AtomicReadFile or AtomicWriteFile operations are allowed for the same file.
Synchronization of these services with internal operations of the BACnet device is a local matter and is not defined by this
standard.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicReadFile Service

ANSI/ASHRAE Standard 135-2012 535

14.1 AtomicReadFile Service

The AtomicReadFile Service is used by a client BACnet-user to perform an open-read-close operation on the contents of the
specified file. The file may be accessed as records or as a stream of octets.

14.1.1 Structure

The structure of the AtomicReadFile service primitives is shown in Table 14-1. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 14-1. Structure of AtomicReadFile Service Primitives
Parameter Name Req Ind Rsp Cnf

 Argument
 File Identifier
 Stream Access
 File Start Position
 Requested Octet Count
 Record Access
 File Start Record
 Requested Record Count

 Result(+)
 End Of File
 Stream Access
 File Start Position
 File Data
 Record Access
 File Start Record
 Returned Record Count
 File Record Data

 Result(-)
 Error Type

M
M
S
M
M
S
M
M

M(=)
M(=)
S(=)
M(=)
M(=)
S(=)
M(=)
M(=)

S
M
S
M
C
S
M
M
C

S
M

S(=)
M(=)
S(=)
M(=)
C(=)
S(=)
M(=)
M(=)
C(=)

S(=)
M(=)

14.1.2 Argument

This parameter shall convey the parameters for the AtomicReadFile confirmed service request.

14.1.2.1 File Identifier

This parameter is the Object_Identifier of the File object that identifies the file to be read.

14.1.2.2 Stream Access

The 'Stream Access' parameter shall indicate that stream-oriented file access is required. Stream access includes the
parameters 'File Start Position' and 'Requested Octet Count'.

14.1.2.2.1 File Start Position

This parameter, of type INTEGER, represents the number of octets from the beginning of the file at which reading shall
commence. A 'File Start Position' of 0 is the first octet of the file.

14.1.2.2.2 Requested Octet Count

This parameter, of type Unsigned, represents the number of octets that shall be read from the file starting at the 'File Start
Position'.

14.1.2.3 Record Access

The 'Record Access' parameter shall indicate that record-oriented file access is required. Record access includes the
parameters 'File Start Record' and 'Requested Record Count'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicReadFile Service

536 ANSI/ASHRAE Standard 135-2012

14.1.2.3.1 File Start Record

This parameter, of type INTEGER, represents the number of records from the beginning of the file at which reading shall
commence. A 'File Start Record' of 0 is the first record of the file.

14.1.2.3.2 Requested Record Count

This parameter, of type Unsigned, represents the number of records that shall be read from the file starting at the 'File Start
Record'.

14.1.3 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameters.

14.1.3.1 End Of File

The 'End Of File' parameter, of type BOOLEAN, shall be equal to TRUE if this response includes the last octet of the file and
FALSE otherwise. This parameter shall be used to check for the end of file since the number of octets returned could be less
than the 'Requested Octet Count' or the 'Returned Record Count' could be less than the 'Requested Record Count' due to the
amount of data remaining in the file. This parameter also provides a data-independent way for the client user of this service to
detect an end of file.

14.1.3.2 Stream Access

The 'Stream Access' parameter shall indicate that stream-oriented file access was requested. Stream access includes the
parameters 'File Start Position' and 'File Data'.

14.1.3.2.1 File Start Position

This parameter, of type INTEGER, represents the number of octets from the beginning of the file from which the start of the
data was read. A 'File Start Position' of 0 is the first octet of the file.

14.1.3.2.2 File Data

This parameter consists of an OCTET STRING that contains the requested file data.

14.1.3.3 Record Access

The 'Record Access' parameter shall indicate that record-oriented file access was requested. Record access includes the
parameters 'File Start Record', 'Returned Record Count', and 'File Record Data'.

14.1.3.3.1 File Start Record

This parameter, of type INTEGER, represents the number of records from the beginning of the file from which the start of
the data was read. A 'File Start Record' of 0 is the first record of the file.

14.1.3.3.2 Returned Record Count

This parameter, of type Unsigned, represents the number of records that were actually read from the file, which may be less
than the 'Requested Record Count'.

14.1.3.3.3 File Record Data

This parameter consists of a list of OCTET STRINGs that contain the requested file data.

14.1.4 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicReadFile Service

ANSI/ASHRAE Standard 135-2012 537

14.1.4.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

The File object does not exist. OBJECT UNKNOWN_OBJECT
'File Start Record' is out of range. SERVICES INVALID_FILE_START_POSITION
Incorrect File access method. SERVICES INVALID_FILE_ACCESS_METHOD
A non-File Object Identifier was provided. SERVICES INCONSISTENT_OBJECT_TYPE

14.1.5 Service Procedure

The responding BACnet-user shall first verify the validity of the 'File Identifier' parameter and return a 'Result(-)' response
with the appropriate error class and code if the File object is unknown, if there is currently another AtomicReadFile or
AtomicWriteFile service in progress, or if the File object is currently inaccessible for another reason. If the 'File Start
Position' parameter or the 'File Start Record' parameter is either less than 0 or exceeds the actual file size, then the appropriate
error is returned in a 'Result(-)' response. If not, then the responding BACnet-user shall read the number of octets specified by
'Requested Octet Count' or the number of records specified by 'Requested Record Count'. If the number of remaining octets
or records is less than the requested amount, then the length of the 'File Data' returned or 'Returned Record Count' shall
indicate the actual number read. If the returned response contains the last octet or record of the file, then the 'End Of File'
parameter shall be TRUE, otherwise FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicWriteFile Service

538 ANSI/ASHRAE Standard 135-2012

14.2 AtomicWriteFile Service

The AtomicWriteFile Service is used by a client BACnet-user to perform an open-write-close operation of an OCTET
STRING into a specified position or a list of OCTET STRINGs into a specified group of records in a file. The file may be
accessed as records or as a stream of octets.

14.2.1 Structure

The structure of the AtomicWriteFile service primitives is shown in Table 14-2. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 14-2. Structure of AtomicWriteFile Service Primitives
Parameter Name Req Ind Rsp Cnf

 Argument
 File Identifier
 Stream Access
 File Start Position
 File Data
 Record Access
 File Start Record
 Record Count
 File Record Data

 Result(+)
 Stream Access
 File Start Position
 Record Access
 File Start Record

 Result(-)
 Error Type

M
M
S
M
M
S
M
M
M

M(=)
M(=)
S(=)
M(=)
M(=)
S(=)
M(=)
M(=)
M(=)

S
S
M
S
M

S
M

S(=)
S(=)
M(=)
S(=)
M(=)

S(=)
M(=)

14.2.2 Argument

This parameter shall convey the parameters for the AtomicWriteFile confirmed service request.

14.2.2.1 File Identifier

This parameter is the Object_Identifier of the File object that identifies the file to be written.

14.2.2.2 Stream Access

The 'Stream Access' parameter shall indicate that stream-oriented file access is required. Stream access includes the
parameters 'File Start Position' and 'File Data'.

14.2.2.2.1 File Start Position

This parameter, of type INTEGER, represents the number of octets from the beginning of the file at which the data shall start
being written. A 'File Start Position' of 0 is the first octet of the file. A 'File Start Position' of -1 shall indicate the end of the
current file, i.e., an append to file operation.

14.2.2.2.2 File Data

This parameter consists of an OCTET STRING that is to be written to the file.

14.2.2.3 Record Access

The 'Record Access' parameter shall indicate that record-oriented file access is required. Record access includes the
parameters 'File Start Record', 'Record Count', and 'File Record Data'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicWriteFile Service

ANSI/ASHRAE Standard 135-2012 539

14.2.2.3.1 File Start Record

This parameter, of type INTEGER, represents the number of records from the beginning of the file at which the data shall
start being written. A 'File Start Record' of 0 is the first record of the file. A 'File Start Record' of -1 shall indicate the end of
the current file, i.e., an append to file operation.

14.2.2.3.2 Record Count

This parameter, of type Unsigned, represents the number of records that shall be written to the file starting at the 'File Start
Record'.

14.2.2.3.3 File Record Data

This parameter consists of a list of OCTET STRINGs that is to be written to the file.

14.2.3 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result shall include the following
parameters.

14.2.3.1 Stream Access

The 'Stream Access' parameter shall indicate that stream-oriented file access was requested. Stream access includes the 'File
Start Position' parameter. The 'File Start Position' parameter, of type INTEGER, represents the number of octets from the
beginning of the file where the data were actually written. A 'File Start Position' of 0 is the first octet of the file.

14.2.3.2 Record Access

The 'Record Access' parameter shall indicate that record-oriented file access was requested. Record access includes the 'File
Start Record' parameter. The 'File Start Record' parameter, of type INTEGER, represents the number of records from the
beginning of the file where the data were actually written. A 'File Start Record' of 0 is the first record of the file.

14.2.4 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

14.2.4.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

The File object does not exist. OBJECT UNKNOWN_OBJECT
'File Start Record' is out of range. SERVICES INVALID_FILE_START_POSITION
Incorrect File access method. SERVICES INVALID_FILE_ACCESS_METHOD
Write to a read-only File. SERVICES FILE_ACCESS_DENIED
A syntax error is encountered in the message after
the file has been partially modified during the
execution of this service.

SERVICES INVALID_TAG

The File object is full OBJECT FILE_FULL
A non-File Object Identifier was provided SERVICES INCONSISTENT_OBJECT_TYPE

14.2.5 Service Procedure

The responding BACnet-user shall first verify the validity of the 'File Identifier' parameter and return a 'Result(-)' response
with the appropriate error class and code if the File object is unknown, if there is currently another AtomicReadFile or
AtomicWriteFile service in progress, or if the File object is currently inaccessible for another reason. If the 'File Start
Position' parameter or the 'File Start Record' parameter exceeds the actual file size, then the file shall be extended to the size
indicated, but the contents of any intervening octets or records shall be a local matter. If either of these parameters has the
special value -1, then the write operation shall be treated as an append to the current end of file. Then the responding
BACnet-user shall write the number of octets specified by 'Octet Count' or the number of records specified by 'Record Count'
to the file. If the write fails for any reason, then a 'Result(-)' response with the appropriate error class and code shall be

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

14. FILE ACCESS SERVICES
AtomicWriteFile Service

540 ANSI/ASHRAE Standard 135-2012

returned. If the write succeeds in its entirety, then a 'Result(+)' response shall be returned. The 'File Start Position' or 'File
Start Record' shall indicate the actual position or record at which data were written.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
AddListElement Service

ANSI/ASHRAE Standard 135-2012 541

15 OBJECT ACCESS SERVICES

This clause defines application services that collectively provide the means to access and manipulate the properties of
BACnet objects. A BACnet object is any object whose properties are accessible through this protocol regardless of its
particular function within the device in which it resides. These services may be used to access the properties of vendor-
defined objects as well as those of objects specified in this standard.

15.1 AddListElement Service

The AddListElement service is used by a client BACnet-user to add one or more list elements to an object property that is a
list.

15.1.1 Structure

The structure of the AddListElement service primitives is shown in Table 15-1. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 15-1. Structure of AddListElement Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Identifier
 Property Identifier
 Property Array Index
 List of Elements

Result(+)

Result(-)
 Error Type
 First Failed Element Number

M
M
M
C
M

M(=)
M(=)
M(=)
C(=)
M(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

15.1.1.1 Argument

This parameter shall convey the parameters for the AddListElement confirmed service request.

15.1.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose specified list
property is to be modified by this service.

15.1.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall provide the means of uniquely identifying the property to be
modified by this service.

15.1.1.1.3 Property Array Index

If the property identified above is of datatype array, this conditional parameter of type Unsigned shall be present and shall
indicate the array index of the element of the referenced property to be modified by this service. Otherwise, it shall be
omitted.

15.1.1.1.4 List of Elements

This parameter specifies one or more elements that shall be added to the property specified by the 'Property Identifier'
parameter. The datatype of the elements of this parameter is determined by the definition of the object type for the object
specified by the 'Object Identifier' parameter.

15.1.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded and all of the specified elements were added to the
list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
AddListElement Service

542 ANSI/ASHRAE Standard 135-2012

15.1.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request failed and none of the specified elements were added to the
list. The reason for failure is specified by the 'Error Type' parameter.

15.1.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT
Specified property does not exist. PROPERTY UNKNOWN_PROPERTY
The element datatype does not match the property. PROPERTY INVALID_DATATYPE
The data being written has a datatype not supported
by the property.

PROPERTY DATATYPE_NOT_SUPPORTED

The element value is out of range for the property. PROPERTY VALUE_OUT_OF_RANGE
The specified property is currently not modifiable
by the requester.

PROPERTY WRITE_ACCESS_DENIED

There is not enough free memory for the element. RESOURCES NO_SPACE_TO_ADD_LIST_ELEMENT
The property or specified array element is not a list. SERVICES PROPERTY_IS_NOT_A_LIST
An array index is provided but the property is not an
array.

PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range
existing in the property.

PROPERTY INVALID_ARRAY_INDEX

15.1.1.3.2 First Failed Element Number

This parameter, of type Unsigned, shall convey the numerical position, starting at 1, of the offending element in the 'List of
Elements' parameter received in the request. If the request is considered invalid for reasons other than the 'List of Elements'
parameter, the 'First Failed Element Number' shall be equal to zero.

15.1.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to modify the object identified in the
'Object Identifier' parameter. If the identified object exists and has the property specified in the 'Property Identifier'
parameter, an attempt shall be made to add all of the elements specified in the 'List of Elements' parameter to the specified
property. If this attempt is successful, a 'Result(+)' primitive shall be issued.

When comparing elements in the List of Elements with elements in the specified property, the complete element shall be
compared unless the property description specifies otherwise. If one or more of the elements is already present in the list, it
shall be updated with the provided element, that is, the existing element is over-written with the provided element.
Optionally, if the provided element is exactly the same as the existing element in every way, it can be ignored, that is, not
added to the list. Ignoring an element that already exists shall not cause the service to fail.

If the specified object does not exist, the specified property does not exist, or the specified property is not a list, then the
service shall fail and a 'Result(-)' response primitive shall be issued. If one or more elements cannot be added to, or updated
in, the list, a 'Result(-)' response primitive shall be issued and no elements shall be added to, or updated in, the list.

The effect of this service shall be to add to, or update in, the list all of the specified elements, or to neither add nor update any
elements at all.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
RemoveListElement Service

ANSI/ASHRAE Standard 135-2012 543

15.2 RemoveListElement Service

The RemoveListElement service is used by a client BACnet-user to remove one or more elements from the property of an
object that is a list. If an element is itself a list, the entire element shall be removed. This service does not operate on nested
lists.

15.2.1 Structure

The structure of the RemoveListElement service primitives is shown in Table 15-2. The terminology and symbology used in
this table are explained in Clause 5.6.

Table 15-2. Structure of RemoveListElement Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Identifier
 Property Identifier
 Property Array Index
 List of Elements

Result (+)

Result (-)
 Error Type
 First Failed Element Number

M
M
M
C
M

M(=)
M(=)
M(=)
C(=)
M(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

15.2.1.1 Argument

This parameter shall convey the parameters for the RemoveListElement confirmed service request.

15.2.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose specified list
property is to be modified by this service.

15.2.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall provide the means of uniquely identifying the property to be
modified by this service.

15.2.1.1.3 Property Array Index

If the property identified above is of datatype array, this conditional parameter of type Unsigned shall be present and shall
indicate the array index of the element of the referenced property to be modified by this service. Otherwise, it shall be
omitted.

15.2.1.1.4 List of Elements

This parameter specifies one or more elements that shall be removed from the property specified in the 'Property Identifier'
parameter. The datatype of the elements of this parameter is determined by the definition of the object type for the object
specified by the 'Object Identifier' parameter.

15.2.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded and all of the specified elements have been
removed.

15.2.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request failed. The reason for failure is specified by the 'Error Type'
parameter. None of the elements of the specified object shall be removed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
RemoveListElement Service

544 ANSI/ASHRAE Standard 135-2012

15.2.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT
Specified property does not exist. PROPERTY UNKNOWN_PROPERTY
The element datatype does not match the property. PROPERTY INVALID_DATATYPE
The specified property is currently not modifiable by the
requestor.

PROPERTY WRITE_ACCESS_DENIED

A list element to be removed is not present. SERVICES LIST_ELEMENT_NOT_FOUND
The property or specified array element is not a list. SERVICES PROPERTY_IS_NOT_A_LIST
An array index is provided but the property is not an
array.

PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range
existing in the property.

PROPERTY INVALID_ARRAY_INDEX

15.2.1.3.2 First Failed Element Number

This parameter, of type Unsigned, shall convey the numerical position, starting at 1, of the offending element in the 'List of
Elements' parameter received in the request. If the request is considered invalid for reasons other than the 'List of Elements'
parameter, the 'First Failed Element Number' shall be equal to zero.

15.2.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to modify the object identified in the
'Object Identifier' parameter. If the identified object exists and it has the property specified in the 'Property Identifier'
parameter, an attempt shall be made to remove the elements in the 'List of Elements' from the property of the object.

When comparing elements of the service with entries in the affected list, the complete element shall be compared unless the
property description specifies otherwise. If one or more of the elements does not exist or cannot be removed because of
insufficient authority, none of the elements shall be removed and a 'Result(-)' response primitive shall be issued.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
CreateObject Service

ANSI/ASHRAE Standard 135-2012 545

15.3 CreateObject Service

The CreateObject service is used by a client BACnet-user to create a new instance of an object. This service may be used to
create instances of both standard and vendor specific objects. The standard object types supported by this service shall be
specified in the PICS. The properties of standard objects created with this service may be initialized in two ways: initial
values may be provided as part of the CreateObject service request or values may be written to the newly created object using
the BACnet WriteProperty services. The initialization of non-standard objects is a local matter. The behavior of objects
created by this service that are not supplied, or only partially supplied, with initial property values is dependent upon the
device and is a local matter.

15.3.1 Structure

The structure of the CreateObject service primitives is shown in Table 15-3. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 15-3. Structure of CreateObject Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Specifier
 List of Initial Values

Result(+)
 Object Identifier

Result(-)
 Error Type
 First Failed Element Number

M
M
U

M(=)
M(=)
U(=)

S
M

S
M
M

S(=)
M(=)

S(=)
M(=)
M(=)

15.3.1.1 Argument

This parameter shall convey the parameters for the CreateObject confirmed service request.

15.3.1.1.1 Object Specifier

This parameter shall convey information about the type of object that is to be created. The datatype is a choice between an
object type and an object identifier. If the object type choice is used, the specified object type shall become the value of the
Object_Type property of the newly created object and the responding BACnet-user shall select an object identifier. If the
object identifier choice is used, an object with this particular object identifier shall be created.

15.3.1.1.2 List of Initial Values

This parameter shall convey a list of BACnetPropertyValues that shall be used to initialize the values of the specified
properties of the newly created object.

15.3.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A success includes successfully initializing all the
properties specified in the 'List of Initial Values' parameter. The 'Result(+)' shall convey as a parameter an 'Object Identifier',
which is the value of the Object_Identifier property of the newly created object. This identifier shall be unique within the
server device.

15.3.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request failed. The reason for failure is specified by the 'Error Type'
parameter.

15.3.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
CreateObject Service

546 ANSI/ASHRAE Standard 135-2012

Situation Error Class Error Code
The device cannot allocate the space needed for the
new object.

RESOURCES NO_SPACE_FOR_OBJECT

The device supports the object type and may have
sufficient space, but does not support the creation of
the object for some other reason.

OBJECT DYNAMIC_CREATION_NOT_SUPPORTED

The device does not support the specified object type. OBJECT UNSUPPORTED_OBJECT_TYPE
The object being created already exists. OBJECT OBJECT_IDENTIFIER_ALREADY_EXISTS
A datatype of a property value specified in the List of
Initial Values does not match the datatype of the
property specified by the Property_Identifier.

PROPERTY INVALID_DATATYPE

A value used in the List of Initial Values is outside the
range of values defined for the property specified by
the Property_Identifier.

PROPERTY VALUE_OUT_OF_RANGE

A Property_Identifier has been specified in the List of
Initial Values that is unknown for objects of the type
being created.

PROPERTY UNKNOWN_PROPERTY

A character string value was encountered in the List of
Initial Values that is not a supported character set.

PROPERTY CHARACTER_SET_NOT_SUPPORTED

A property specified by the Property_Identifier in the
List of Initial Values does not support initialization
during the CreateObject service.

PROPERTY WRITE_ACCESS_DENIED

The data being written has a datatype not supported by
the property.

PROPERTY DATATYPE_NOT_SUPPORTED

15.3.1.3.2 First Failed Element Number

This parameter, of type Unsigned, shall convey the numerical position, starting at 1, of the offending 'Initial Value' in the
'List of Initial Values' parameter received in the request. If the request is considered invalid for reasons other than the 'List of
Initial Values' parameter, the 'First Failed Element Number' shall be equal to zero.

15.3.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to create a new object of the type
specified in the 'Object Specifier' parameter.

If the 'Object Specifier' parameter contains an object type, the Object_Identifier property of the newly created object shall be
initialized to a value that is unique within the responding BACnet-user device. The method used to generate the object
identifier is a local matter. The Object_Type property shall be initialized to the value of the 'Object Specifier' parameter. If a
new object of the specified type cannot be created, a 'Result(-)' primitive shall be returned and the 'First Failed Element
Number' parameter shall have a value of zero.

If the 'Object Specifier' parameter contains an object identifier, the responding BACnet-user shall determine if an object with
this identifier already exists. If such an object exists, then a new object shall not be created, and a 'Result(-)' primitive shall be
returned and the 'First Failed Element Number' parameter shall have a value of zero. If such an object does not exist and it
cannot be created, a 'Result(-)' primitive shall be returned and the 'First Failed Element Number' parameter shall have a value
of zero. If such an object does not exist but it can be created, the new object shall be created. The Object_Identifier property
of the new object shall have the value specified in the 'Object Specifier' parameter, and the Object_Type property shall have a
value consistent with the object type field of the Object_Identifier. See Clause 20.2.14.

If the optional 'List of Initial Values' parameter is included, then all properties in the list shall be initialized as indicated. The
initial values of all other properties are a local matter. If this initialization cannot be done, then a 'Result(-)' primitive shall be
returned. The 'First Failed Element Number' parameter shall indicate the first property in the 'List of Initial Values' that
cannot be initialized, and the object shall not be created. If the attempt to create the object is successful, a 'Result(+)' response
primitive shall be issued that conveys the value of the Object_Identifier property of the newly created object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
DeleteObject Service

ANSI/ASHRAE Standard 135-2012 547

15.4 DeleteObject Service

The DeleteObject service is used by a client BACnet-user to delete an existing object. Although this service is general in the
sense that it can be applied to any object type, it is expected that most objects in a control system cannot be deleted by this
service because they are protected as a security feature. There are some objects, however, that may be created and deleted
dynamically. Group objects and Event Enrollment objects are examples. This service is primarily used to delete objects of
these types but may also be used to remove vendor-specific deletable objects.

15.4.1 Structure

The structure of the DeleteObject service primitives is shown in Table 15-4. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 15-4. Structure of DeleteObject Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Identifier

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

15.4.1.1 Argument

This parameter shall convey the parameters for the DeleteObject confirmed service request.

15.4.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall specify the object that is to be deleted by this service.

15.4.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded and the specified object was deleted.

15.4.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request failed and the specified object was not deleted. The reason for
failure is specified in the 'Error type' parameter.

15.4.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

The object to be deleted does not exist. OBJECT UNKNOWN_OBJECT

The object exists but cannot be deleted. OBJECT OBJECT_DELETION_NOT_PERMITTED

15.4.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to delete the object specified by the
'Object Identifier' parameter of the request/indication primitive. If the specified object exists and can be deleted, it shall be
deleted and the 'Result(+)' primitive shall be issued. If the specified object does not exist or cannot be deleted, then the
'Result(-)' primitive shall be issued.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadProperty Service

548 ANSI/ASHRAE Standard 135-2012

15.5 ReadProperty Service

The ReadProperty service is used by a client BACnet-user to request the value of one property of one BACnet Object. This
service allows read access to any property of any object, whether a BACnet-defined object or not.

15.5.1 Structure

The structure of the ReadProperty service primitives is shown in Table 15-5. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 15-5. Structure of ReadProperty Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Identifier
 Property Identifier
 Property Array Index

Result (+)
 Object Identifier
 Property Identifier
 Property Array Index
 Property Value

Result (-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S
M
M
U
M

S
M

S(=)
M(=)
M(=)
U(=)
M(=)

S(=)
M(=)

15.5.1.1 Argument

This parameter shall convey the parameters for the ReadProperty confirmed service request.

15.5.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose property is to be
read and returned to the client BACnet-user.

15.5.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall provide the means of uniquely identifying the property to be read
and returned by this service. Because this service is intended to read a single property of a single object, the value of this
parameter shall not be one of the special property identifiers ALL, REQUIRED, or OPTIONAL.

15.5.1.1.3 Property Array Index

If the property identified above is of datatype array, this optional parameter of type Unsigned shall indicate the array index of
the element of the property referenced by this service. If the 'Property Array Index' is omitted, this shall mean that the entire
array shall be referenced.

If the property identified above is not of datatype array, this parameter shall be omitted.

15.5.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameters:

15.5.1.2.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall identify the object whose property has been read and is being returned
to the client BACnet-user.

15.5.1.2.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall identify the property that was read and is being returned by this
service. Because this service is intended to read a single property of a single object, the value of this parameter shall not be
one of the special property identifiers ALL, REQUIRED, or OPTIONAL.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadProperty Service

ANSI/ASHRAE Standard 135-2012 549

15.5.1.2.3 Property Array Index

If the property identified above is of datatype array and a 'Property Array Index' was specified in the request, this parameter
of type Unsigned shall be present and shall indicate the array index of the element of the property referenced by this service.
Otherwise it shall be omitted.

15.5.1.2.4 Property Value

If access to the specified property of the specified object was successful, this parameter shall be returned. It shall be of the
datatype appropriate to the specified property and shall contain the value of the requested property.

15.5.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

15.5.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT

Specified property does not exist. PROPERTY UNKNOWN_PROPERTY

An array index is provided but the property is not an array. PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range
existing in the property.

PROPERTY INVALID_ARRAY_INDEX

The property is not accessible using this service. PROPERTY READ_ACCESS_DENIED

15.5.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to access the specified property of the
specified object. If the access is successful, a 'Result(+)' primitive, which returns the accessed value, shall be generated. If the
access fails, a 'Result(-)' primitive shall be generated, indicating the reason for the failure.

When the object-type in the Object Identifier parameter contains the value 'Device Object' and the instance in the 'Object
Identifier' parameter contains the value 4194303, the responding BACnet-user shall treat the Object Identifier as if it correctly
matched the local Device object. This allows the device instance of a device that does not generate I-Am messages to be
determined.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES

550 ANSI/ASHRAE Standard 135-2012

15.6 Deleted Clause

This clause has been removed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadPropertyMultiple Service

ANSI/ASHRAE Standard 135-2012 551

15.7 ReadPropertyMultiple Service

The ReadPropertyMultiple service is used by a client BACnet-user to request the values of one or more specified properties
of one or more BACnet Objects. This service allows read access to any property of any object, whether a BACnet-defined
object or not. The user may read a single property of a single object, a list of properties of a single object, or any number of
properties of any number of objects. A 'Read Access Specification' with the property identifier ALL can be used to learn the
implemented properties of an object along with their values.

15.7.1 Structure

The structure of the ReadPropertyMultiple service primitives is shown in Table 15-10. The terminology and symbology used
in this table are explained in Clause 5.6.

Table 15-10. Structure of ReadPropertyMultiple Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 List of Read Access Specifications

Result (+)
 List of Read Access Results

Result (-)
 Error Type

M
M

M(=)
M(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

15.7.1.1 Argument

This parameter shall convey the parameters for the ReadPropertyMultiple confirmed service request.

15.7.1.1.1 List of Read Access Specifications

This parameter shall consist of a list of one or more 'Read Access Specifications'. Each specification shall consist of two
parameters: (1) an 'Object Identifier' and (2) a 'List of Property References'. See 15.7.3.1.

15.7.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameter.

15.7.1.2.1 List of Read Access Results

The 'List of Read Access Results' parameter shall indicate the success or failure of the access to each specified property. The
contents of each Read Access Result are described in 15.7.3.2.

15.7.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

15.7.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT

Specified property does not exist. PROPERTY UNKNOWN_PROPERTY

An array index is provided but the property is not an array. PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range existing
in the property.

PROPERTY INVALID_ARRAY_INDEX

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadPropertyMultiple Service

552 ANSI/ASHRAE Standard 135-2012

The property is not accessible using this service. PROPERTY READ_ACCESS_DENIED

15.7.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to access the specified properties of the
specified objects and shall construct a 'List of Read Access Results' in the order specified in the request. If the 'List of
Property References' portion of the 'List of Read Access Specifications' parameter contains the property identifier ALL,
REQUIRED, or OPTIONAL, then the 'List of Read Access Results' shall be constructed as if each property being returned
had been explicitly referenced (see 15.7.3.1.2). While there is no requirement that the request be carried out "atomically,"
nonetheless the responding BACnet-user shall ensure that all readings are taken in the shortest possible time subject only to
higher priority processing. The request shall continue to be executed until an attempt has been made to access all specified
properties. If none of the specified objects is found or if none of the specified properties of the specified objects can be
accessed, either a 'Result(-)' primitive or a Result(+) primitive that returns error codes for all properties shall be issued. If any
of the specified properties of the specified objects can be accessed, then a 'Result(+)' primitive shall be issued, which returns
all accessed values and error codes for all properties that could not be accessed.

When the object-type in the Object Identifier portion of the Read Access Specification parameter contains the value 'Device
Object' and the instance of that 'Object Identifier' parameter contains the value 4194303, the responding BACnet-user shall
treat the Object Identifier as if it correctly matched the local Device object. This allows the device instance of a device that
does not generate I-Am messages to be determined.

15.7.3 Parameters Referenced by the ReadPropertyMultiple Service

The following parameters appear in the ReadPropertyMultiple service primitives.

15.7.3.1 Read Access Specification Parameter

The 'Read Access Specification' parameter is shown in Table 15-11. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 15-11. Structure of 'Read Access Specification' Parameter
Parameter Name Req

Ind
Rsp
Cnf

Datatype

 Object Identifier
 List of Property References

M
M

M(=)
M(=)

 BACnetObjectIdentifier
 List of BACnetPropertyReference

15.7.3.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose properties are to be
read and returned to the service requester.

15.7.3.1.2 List of Property References

This parameter shall be a list of one or more BACnetPropertyReferences, each of which corresponds directly to a specific
property of the object identified above. The property identifier ALL means that all defined properties of the object are to be
accessed, including any proprietary properties.

The property identifier REQUIRED means that only those standard properties having a conformance code of "R" or "W"
shall be returned. The property identifier OPTIONAL means that only those standard properties present in the object that
have a conformance code "O" shall be returned. The Property_List property shall not be returned when properties ALL or
REQUIRED are requested. See the specification for the particular object type in Clause 12. If the property identifier ALL,
REQUIRED, or OPTIONAL is specified and any of the selected properties is not readable by this service, then a Property
Access Error for that property shall be returned in the List of Read Access Results as specified by Clause 15.7.3.2.

15.7.3.2 Read Access Result

The 'Read Access Result' parameter is shown in Table 15-12. The terminology and symbology used in this table are
explained in Clause 5.6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadPropertyMultiple Service

ANSI/ASHRAE Standard 135-2012 553

Table 15-12. Structure of 'Read Access Result' Parameter
Parameter Name Rsp Cnf Datatype

 Object Identifier
 List of Results
 Property Identifier
 Property Array Index
 Property Value
 Property Access Error

M
M
M
U
S
S

M(=)
M(=)
M(=)
U(=)
S(=)
S(=)

 BACnetObjectIdentifier

 BACnetPropertyIdentifier
 Unsigned
 ANY
 Error

15.7.3.2.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall identify the object whose properties are being returned to the service
requester.

15.7.3.2.2 List of Results

The result of reading a given property is either the present value of the property or an error code indicating why the access
attempt failed. Each element in the 'List of Results' contains a 'Property Identifier' and conditionally a 'Property Array Index',
followed by either a 'Property Value' or a 'Property Access Error'.

15.7.3.2.2.1 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall identify the property whose value has been read.

15.7.3.2.2.2 Property Array Index

If the property identified above is of datatype array and a 'Property Array Index' was specified in the request, this parameter
of type Unsigned shall be present and shall indicate the array index of the element of the property referenced by this service.
Otherwise it shall be omitted.

15.7.3.2.2.3 Property Value

If access to the specified property of the specified object is successful, this parameter shall be returned. It shall be of a
datatype consistent with the requested property and shall contain the value of the requested property.

15.7.3.2.2.4 Property Access Error

If the responding BACnet-user is unable to access the specified property of the specified object, then this parameter shall be
returned. It shall contain a value that indicates the reason for the access failure. This parameter consists of two component
parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. Note that this parameter refers only to a failure of the
access to a specific property of a specific object, whereas the 'Error Type' parameter returned in the 'Result(-)' primitive refers
to a failure of the entire ReadPropertyMultiple service request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadRange Service

554 ANSI/ASHRAE Standard 135-2012

15.8 ReadRange Service

The ReadRange service is used by a client BACnet-user to read a specific range of data items representing a subset of data
available within a specified object property. The service may be used with any list or array of lists property.

15.8.1 Structure

The structure of the ReadRange primitive is shown in Table 15-13. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 15-13. Structure of ReadRange Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument M M(=)
 Object Identifier M M(=)
 Property Identifier M M(=)
 Property Array Index C C(=)
 Range U U(=)

Result(+) S S(=)
 Object Identifier M M(=)
 Property Identifier M M(=)
 Property Array Index C C(=)
 Result Flags M M(=)
 Item Count M M(=)
 Item Data M M(=)
 First Sequence Number C C(=)

Result(-) S S(=)
 Error Type M M(=)

15.8.1.1 Argument

This parameter shall convey the parameters for the ReadRange confirmed service request.

15.8.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, specifies the object and property is to be read.

15.8.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, specifies the property to be read by this service. Because this service is
intended to read a single property of a single object, the value of this parameter shall not be one of the special property
identifiers ALL, REQUIRED, or OPTIONAL.

15.8.1.1.3 Property Array Index

If the property identified above is of datatype array of lists, this optional parameter of type Unsigned shall indicate the array
index of the element of the property referenced by this service. If the property identified above is not of datatype array of
lists, this parameter shall be omitted. The index value shall not be zero.

15.8.1.1.4 Range

This optional parameter shall convey criteria for the consecutive range items within the referenced property that are to be
returned, as described in Clause 15.8.2. The 'Range' parameter is shown in Table 15-14. The terminology and symbology
used in this table are explained in Clause 5.6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadRange Service

ANSI/ASHRAE Standard 135-2012 555

Table 15-14. Structure of the 'Range' Parameter
Parameter Name Req Ind Datatype

 By Position S S(=)
 Reference Index M M(=) Unsigned
 Count M M(=) INTEGER16
 By Sequence Number S S(=)
 Reference Sequence Number M M(=) Unsigned32
 Count M M(=) INTEGER16
 By Time S S(=)
 Reference Time M M(=) BACnetDateTime
 Count M M(=) INTEGER16

15.8.1.1.4.1 By Position

The 'By Position' parameter shall indicate that the particular items to be read are referenced by an index.

15.8.1.1.4.1.1 Reference Index

The 'Reference Index' parameter specifies the index of the first (if 'Count' is positive) or last (if 'Count' is negative) item to be
read.

15.8.1.1.4.1.2 Count

The absolute value of the 'Count' parameter specifies the number of records to be read. If 'Count' is positive, the record
specified by 'Reference Index' shall be the first record read and returned; if 'Count' is negative the record specified by
'Reference Index' shall be the last record. 'Count' may not be zero.

15.8.1.1.4.2 By Sequence Number

The 'By Sequence Number' parameter shall indicate that the particular items to be read are referenced by a sequence number
and that the response shall include the sequence number of the first returned item. This differs semantically from the 'By
Position' parameter choice. The Reference Number provided in the 'By Position' choice references an item by its position in
the list. In contrast, the Reference Number provided in the 'By Sequence Number' choice references an item by its sequence
number, which it is given when the item is added to the list. Not all lists implement the concept of a sequence number. An
example of a list that does implement the concept of a sequence number is the Log_Buffer property of the Trend Log object.

15.8.1.1.4.2.1 Reference Sequence Number

The 'Reference Sequence Number' parameter specifies the sequence number of the first (if 'Count' is positive) or last (if
'Count' is negative) item to be read.

15.8.1.1.4.2.2 Count

The absolute value of the 'Count' parameter specifies the number of records to be read. If 'Count' is positive, the record
specified by 'Reference Sequence Number' shall be the first and oldest record read and returned. If 'Count' is negative the
record specified by 'Reference Sequence Number' shall be the last and newest record read and returned. 'Count' shall not be
zero.

15.8.1.1.4.3 By Time

The 'By Time' parameter shall indicate that the particular item to be read is referenced by timestamp and that the Sequence
Number of the item shall be returned in the response. This form of the service is expected to be used when searching lists that
are loosely indexed by time.

15.8.1.1.4.3.1 Reference Time

If 'Count' is positive, the first record to be read shall be the first record with a timestamp newer than the time specified by the
'Reference Time' parameter. If 'Count' is negative, the last record to be read shall be the newest record with a timestamp older
than the time specified by the 'Reference Time' parameter. This parameter shall contain a specific datetime value.

15.8.1.1.4.3.2 Count

The absolute value of the 'Count' parameter specifies the number of records to be read. If 'Count' is positive, the first record
with a timestamp newer than the time specified by 'Reference Time' shall be the first and oldest record read and returned; if

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadRange Service

556 ANSI/ASHRAE Standard 135-2012

'Count' is negative, the newest record with a timestamp older than the time specified by 'Reference Time' shall be the last and
newest record. 'Count' shall not be zero.

15.8.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameters.

15.8.1.2.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, specifies the object that was read.

15.8.1.2.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall identify that property that was read.

15.8.1.2.3 Property Array Index

If the property identified above is of datatype array of lists, this parameter of type Unsigned shall indicate the array index of
the element of the property referenced by this service. If the property identified above is not of datatype array of lists, this
parameter shall be omitted.

15.8.1.2.4 Result Flags

This parameter, of type BACnetResultFlags, shall convey several flags that describe characteristics of the response data:

{FIRST_ITEM, LAST_ITEM, MORE_ITEMS}

The FIRST_ITEM flag indicates whether this response includes the first list or array element (in the case of positional
indexing), or the oldest timestamped item (in the case of time indexing).

The LAST_ITEM flag indicates whether this response includes the last list or array element (in the case of positional
indexing), or the newest timestamped item (in the case of time indexing)

The MORE_ITEMS flag indicates whether more items matched the request but were not transmittable within the PDU.

15.8.1.2.5 Item Count

This parameter, of type Unsigned, represents the number of items that were returned.

15.8.1.2.6 Item Data

This parameter consists of a list of the requested data.

15.8.1.2.7 First Sequence Number

This parameter, of type Unsigned32, specifies the sequence number of the first item returned. This parameter is only included
if the 'Range' parameter of the request was of the type 'By Sequence Number' or 'By Time' and 'Item Count' is greater than 0.

15.8.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for the failure shall be specified by the
'Error Type' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadRange Service

ANSI/ASHRAE Standard 135-2012 557

15.8.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code
Specified property does not exist. PROPERTY UNKNOWN_PROPERTY
The specified property is currently not readable by the requester. PROPERTY READ_ACCESS_DENIED
Property is not a list or array of lists SERVICES PROPERTY_IS_NOT_A_LIST
An array index is provided but the property is not an array. PROPERTY PROPERTY_IS_NOT_AN_ARRAY
An array index is provided that is outside the range existing in the
property.

PROPERTY INVALID_ARRAY_INDEX

15.8.2 Service Procedure

The responding BACnet-user shall first verify the validity of the 'Object Identifier', 'Property Identifier' and 'Property Array
Index' parameters and return a 'Result(-)' response with the appropriate error class and code if the object or property is
unknown, if the referenced data is not a list or array, or if it is currently inaccessible for another reason.

If the 'Range' parameter is not present, then the responding BACnet-user shall read and attempt to return all of the available
items in the list or array.

If the 'Range' parameter is present and specifies the 'By Position' parameters, then the responding BACnet-user shall read and
attempt to return all of the items specified. The items specified include the item at the index specified by 'Reference Index'
plus up to 'Count' - 1 items following if 'Count' is positive, or up to -1 - 'Count' items preceding if 'Count' is negative. The
first element of a list shall be associated with index 1.

If the 'Range' parameter is present and specifies the 'By Time' parameter, then the responding BACnet-user shall read and
attempt to return all of the items specified. If 'By Time' parameters are specified and the property values are not timestamped
an error shall be returned. If 'Count' is positive, the records specified include the first record with a timestamp newer than
'Reference Time' plus up to 'Count'-1 items following. If 'Count' is negative, the records specified include the newest record
with a timestamp older than 'Reference Time' and up to -1-'Count' records preceding. The sequence number of the first item
returned shall be included in the response. The items shall be returned in chronological order.

If the 'Range' parameter is present and specifies the 'By Sequence Number' parameters, then the responding BACnet-user
shall read and attempt to return all of the items specified. The items specified are all items with a sequence number in the
range 'Reference Sequence Number' to 'Reference Sequence Number' plus 'Count'-1 if 'Count' is positive, or in the range
'Reference Sequence Number' plus 'Count'+1 to 'Reference Sequence' if 'Count' is negative.

To avoid missing items when using chained time-based reads, the first item in the desired set should be found using the 'By
Time' form of the 'Range' parameter. Subsequent requests to retrieve the remaining items in the desired set should use the 'By
Sequence Number' form of the 'Range' parameter. The reason for this is that lists that include a timestamp but are ordered by
time of arrival may have entries with out-of-order timestamps due to negative time changes in the local device's clock. If
items are read that match the request parameters but cannot be returned in the response, the 'Result Flags' parameter shall
contain the MORE_ITEMS flag set to TRUE, otherwise it shall be FALSE. Remaining items may be obtained with
subsequent requests specifying appropriately chosen parameters.

The returned response shall convey the number of items read and returned using the 'Item Count' parameter. The actual items
shall be returned in the 'Item Data' parameter. If the returned response includes the first positional index and a 'By Position'
request had been made, or the oldest sequence number and a 'By Sequence Number' or 'By Time' request had been made, then
the 'Result Flags' parameter shall contain the FIRST_ITEM flag set to TRUE; otherwise it shall be FALSE.

If the returned response includes the last positional index and a 'By Position' request had been made, or the newest sequence
number and a 'By Sequence Number' or 'By Time' request had been made, then the 'Result Flags' shall contain the
LAST_ITEM flag set to TRUE; otherwise it shall be FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
ReadRange Service

558 ANSI/ASHRAE Standard 135-2012

If there are no items in the list that match the 'Range' parameter criteria, then a Result(+) shall be returned with an 'Item
Count' of 0 and no 'First Sequence Number' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WriteProperty Service

ANSI/ASHRAE Standard 135-2012 559

15.9 WriteProperty Service

The WriteProperty service is used by a client BACnet-user to modify the value of a single specified property of a BACnet
object. This service potentially allows write access to any property of any object, whether a BACnet-defined object or not.
Some implementors may wish to restrict write access to certain properties of certain objects. In such cases, an attempt to
modify a restricted property shall result in the return of an error of 'Error Class' PROPERTY and 'Error Code'
WRITE_ACCESS_DENIED. Note that these restricted properties may be accessible through the use of Virtual Terminal
services or other means at the discretion of the implementor.

15.9.1 Structure

The structure of the WriteProperty service primitives is shown in Table 15-15. The terminology and symbology used in this
table are explained in Clause 5.6.

Table 15-15. Structure of WriteProperty Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Object Identifier
 Property Identifier
 Property Array Index
 Property Value
 Priority

 Result (+)

 Result (-)
 Error Type

M
M
M
U
M
C

M(=)
M(=)
M(=)
U(=)
M(=)
C(=)

S

S
M

S(=)

S(=)
M(=)

15.9.1.1 Argument

This parameter shall convey the parameters for the WriteProperty confirmed service request.

15.9.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose property is to be
modified.

15.9.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall provide the means of uniquely identifying the property to be written
by this service. Because this service is intended to write a single property of a single object, the value of this parameter shall
not be one of the special property identifiers ALL, REQUIRED, or, OPTIONAL.

15.9.1.1.3 Property Array Index

If the property identified above is of datatype array, this optional parameter of type Unsigned shall indicate the array index of
the element of the property referenced by this service. If the 'Property Array Index' is omitted for an array, this shall mean
that the entire array shall be referenced.

If the property identified above is not of datatype array, this parameter shall be omitted.

15.9.1.1.4 Property Value

If access to the specified property of the specified object is successful, this parameter shall be used to replace the value of the
property at the time of access. It shall be of any datatype that is valid for the property being modified.

15.9.1.1.5 Priority

This parameter shall be an integer in the range 1-16, which indicates the priority assigned to this write operation. If an
attempt is made to write to a commandable property without specifying the priority, a default priority of 16 (the lowest
priority) shall be assumed. If an attempt is made to write to a property that is not commandable with a specified priority, the
priority shall be ignored. See Clause 19.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WriteProperty Service

560 ANSI/ASHRAE Standard 135-2012

15.9.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded in its entirety.

15.9.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

15.9.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT

Specified property does not exist. PROPERTY UNKNOWN_PROPERTY

An array index is provided but the property is not an array. PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range existing in
the property.

PROPERTY INVALID_ARRAY_INDEX

The specified property is currently not writable by the
requestor.

PROPERTY WRITE_ACCESS_DENIED

The datatype of the value provided is incorrect for the
specified property.

PROPERTY INVALID_DATATYPE

The property is Object_Name and the name is already in use
in the device.

PROPERTY DUPLICATE_NAME

The property is Object Identifier and the identifier is already
in use in the device.

PROPERTY DUPLICATE_OBJECT_ID

The value provided is outside the range of values that the
property can take on.

PROPERTY VALUE_OUT_OF_RANGE

There is not enough space to store the new value. RESOURCES NO_SPACE_TO_WRITE_PROPERTY

The data being written has a datatype not supported by the
property.

PROPERTY DATATYPE_NOT_SUPPORTED

The Priority parameter is not within the defined range of
1..16. This condition may be ignored if the property is not
commandable.

SERVICES PARAMETER_OUT_OF_RANGE

15.9.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to modify the specified property of the
specified object using the value provided in the 'Property Value' parameter. If the modification attempt is successful, a
'Result(+)' primitive shall be issued. If the modification attempt fails, a 'Result(-)' primitive shall be issued indicating the
reason for the failure. Interpretation of the conditional Priority parameter shall be as defined in Clause 19.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WritePropertyMultiple Service

ANSI/ASHRAE Standard 135-2012 561

15.10 WritePropertyMultiple Service

The WritePropertyMultiple service is used by a client BACnet-user to modify the value of one or more specified properties
of a BACnet object. This service potentially allows write access to any property of any object, whether a BACnet-defined
object or not.

Properties shall be modified by the WritePropertyMultiple service in the order specified in the 'List of Write Access
Specifications' parameter, and execution of the service shall continue until all of the specified properties have been written to
or a property is encountered that for some reason cannot be modified as requested.

Some implementors may wish to restrict write access to certain properties of certain objects. In such cases, an attempt to
modify a restricted property shall result in the return of an error of 'Error Class' PROPERTY and 'Error Code'
WRITE_ACCESS_DENIED. Note that these restricted properties may be accessible through the use of Virtual Terminal
services or other means at the discretion of the implementor.

15.10.1 Structure

The structure of the WritePropertyMultiple service primitives is shown in Table 15-16. The terminology and symbology used
in this table are explained in Clause 5.6.

Table 15-16. Structure of WritePropertyMultiple Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 List of Write Access Specifications

 Result (+)

 Result (-)
 Error Type
 First Failed Write Attempt

M
M

M(=)
M(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

15.10.1.1 Argument

This parameter shall convey the parameters for the WritePropertyMultiple confirmed service request.

15.10.1.1.1 List of Write Access Specifications

Each 'Write Access Specification' conveys the information required to carry out the modification of a property or properties
of a BACnet object. The specification consists of up to five parameters: (1) an 'Object Identifier'; a List of Properties each of
which consists of (2) a 'Property Identifier'; (3) an optional 'Property Array Index'; (4) a 'Property Value'; and (5) an optional
'Priority'.

15.10.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded in its entirety and that all specified properties were
correctly modified.

15.10.1.3 Result(-)

The 'Result(-)' parameter shall indicate that at least one of the specified properties could not be modified as requested. The
reason for the failure shall be conveyed by the 'Error Type' parameter along with the 'Object Identifier', 'Property Identifier',
and 'Property Array Index' of the first encountered property that, for the reason specified by the 'Error Type' parameter, could
not be properly written.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WritePropertyMultiple Service

562 ANSI/ASHRAE Standard 135-2012

15.10.1.3.1 Error Type

This parameter consists of two component parameters: (1) an 'Error Class' and (2) an 'Error Code'. See Clause 18. The 'Error
Class' and 'Error Code' to be returned in a 'Result(-)' for specific situations are as follows:

Situation Error Class Error Code

Specified object does not exist. OBJECT UNKNOWN_OBJECT

Specified property does not exist. PROPERTY UNKNOWN_PROPERTY

An array index is provided but the property is not an array. PROPERTY PROPERTY_IS_NOT_AN_ARRAY

An array index is provided that is outside the range existing in
the property.

PROPERTY INVALID_ARRAY_INDEX

The specified property is currently read-only. PROPERTY WRITE_ACCESS_DENIED

The datatype of the value provided is incorrect for the
specified property.

PROPERTY INVALID_DATATYPE

The property is Object_Name and the name is already in use
in the device.

PROPERTY DUPLICATE_NAME

The property is Object Identifier and the identifier is already
in use in the device.

PROPERTY DUPLICATE_OBJECT_ID

The value provided is outside the range of values that the
property can take on.

PROPERTY VALUE_OUT_OF_RANGE

There is not enough space to store the new value. RESOURCES NO_SPACE_TO_WRITE_PROPERTY

The data being written has a datatype not supported by the
property.

PROPERTY DATATYPE_NOT_SUPPORTED

The Priority parameter is not within the defined range of
1..16. This condition may be ignored if the property is not
commandable.

SERVICES PARAMETER_OUT_OF_RANGE

A syntax error is encountered in the message after one or
more properties have been successfully written.

SERVICES INVALID_TAG

15.10.1.3.2 First Failed Write Attempt

This parameter, of type BACnetObjectPropertyReference, shall convey the 'Object Identifier', 'Property Identifier', and
'Property Array Index' of the first failed element in the 'List of Write Access Specification' for which the write attempt failed.

15.10.2 Service Procedure

For each 'Write Access Specification' contained in the 'List of Write Access Specifications', the value of each specified
property shall be replaced by the property value provided in the 'Write Access Specification' and a 'Result(+)' primitive shall
be issued, indicating that the service request was carried out in its entirety. Interpretation of the conditional Priority parameter
shall be as specified in Clause 19.

If, in the process of carrying out the modification of the indicated properties in the order specified in the 'List of Write Access
Specifications', a property is encountered that cannot be modified, the responding BACnet-user shall issue a 'Result(-)'
response primitive indicating the reason for the failure. The result of this service shall be either that all of the specified
properties or only the properties up to, but not including, the property specified in the 'First Failed Write Attempt' parameter
were successfully modified.

A BACnet-Reject-PDU shall be issued only if no write operations have been successfully executed, indicating that the
service request was rejected in its entirety. If any of the write operations contained in the 'List of Write Access Specifications'
have been successfully executed, a Result(-) response indicating the reason for the failure shall be issued as described above.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WritePropertyMultiple Service

ANSI/ASHRAE Standard 135-2012 563

15.10.3 Parameters Referenced by the WritePropertyMultiple Service

The 'Write Access Specification' parameter is shown in Table 15-17. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 15-17. Structure of 'Write Access Specification' Parameter

Parameter Name
Req
Ind

Rsp
Cnf

Datatype

 Object Identifier
 List of Properties
 Property Identifier
 Property Array Index
 Property Value
 Priority

M
M
M
U
M
C

M(=)
M(=)
M(=)
U(=)
M(=)
C(=)

BACnetObjectIdentifier

BACnetPropertyIdentifier
Unsigned
ANY
Unsigned(1..16)

15.10.3.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, shall provide the means of identifying the object whose property or
properties are to be modified.

15.10.3.2 List of Properties

This parameter shall specify a list of one or more properties of the object identified above, the value to be written to each
property, and the priority assigned to the write operation. Each element of the list shall specify the following parameters.

15.10.3.2.1 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall provide the means of uniquely identifying the property to be written
by this service. The value of this parameter shall not be one of the special property identifiers ALL, REQUIRED, or,
OPTIONAL.

15.10.3.2.2 Property Array Index

If the property identified above is of datatype array, this optional parameter of type Unsigned shall indicate the array index of
the element of the property referenced by this service. If the 'Property Array Index' is omitted for an array, this shall mean
that the entire array shall be referenced.

If the property identified above is not of datatype array, this parameter shall be omitted.

15.10.3.2.3 Property Value

If access to the specified property of the specified object is successful, this parameter shall be used to replace the value of the
property at the time of access. It shall be of any datatype that is valid for the property being modified.

15.10.3.2.4 Priority

This parameter shall be an integer in the range 1-16, which indicates the priority assigned to this write operation. If an
attempt is made to write to a commandable property without specifying the priority, a default priority of 16 (the lowest
priority) shall be assumed. If an attempt is made to write to a property that is not commandable with a specified priority, the
priority shall be ignored. See Clause 19.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WriteGroup Service

564 ANSI/ASHRAE Standard 135-2012

15.11 WriteGroup Service

The purpose of WriteGroup is to facilitate the efficient distribution of values to a large number of devices and objects.
WriteGroup provides compact representations for data values that allow rapid transfer of many values. See Clause 12-53 and
Figure 12-10.

The WriteGroup service is used by a sending BACnet-user to update arbitrary Channel objects' Present_Value properties for
a particular numbered control group. The WriteGroup service is an unconfirmed service. Upon receipt of a WriteGroup
service request, all devices that are members of the specified control group shall write to their corresponding Channel objects'
Present_Value properties with the value applicable to the Channel Number, if any. A device shall be considered to be a
member of a control group if that device has one or more Channel objects for which the 'Group Number' from the service
appears in its Control_Groups property. If the receiving device does not contain one or more Channel objects with matching
channel numbers, then those values shall be ignored.

The WriteGroup service may be unicast, multicast, broadcast locally, on a particular remote network, or using the global
BACnet network address. Since global broadcasts are generally discouraged, the use of multiple directed broadcasts is
preferred.

15.11.1 WriteGroup Service Structure

The structure of the WriteGroup service primitive is shown in Table 15-18. The terminology and symbology used in this
table are explained in 5.6.

Table 15-18. Structure of WriteGroup Service Primitives
Parameter Name Req Ind

 Argument
 Group Number
 Write Priority
 Change List
 Inhibit Delay

M
M
M
M
U

M(=)
M(=)
M(=)
M(=)
U(=)

15.11.1.1 Argument

The 'Argument' parameter shall convey the parameters for the WriteGroup unconfirmed service request.

15.11.1.1.1 Group Number

This parameter is an unsigned integer in the range 1 – 4,294,967,295 that represents the control group to be affected by this
request. Control group zero shall never be used and shall be reserved. WriteGroup service requests containing a zero value
for 'Group Number' shall be ignored.

15.11.1.1.2 Write Priority

This parameter is an unsigned integer in the range 1-16 that represents the priority for writing that shall apply to any channel
value changes that result in writes to properties of BACnet objects.

15.11.1.1.3 Change List

This parameter shall specify a list of BACnetGroupChannelValue values containing at least one value. The list consists of
(channel number, overridingPriority, value) tuples representing each channel number whose value is to be updated. Channel
numbers shall range from 0 to 65535 where the channel number corresponds directly to the Channel_Number property of a
Channel object. The optional overridingPriority allows specific values to be written with some priority other than that
specified by Write_Priority property. BACnetGroupChannelValue values convey BACnetChannelValue values that are any
primitive application datatype or BACnetLightingCommand. The NULL value represents 'relinquish control' as with
commandable object properties. See Clause 19.

15.11.1.1.4 Inhibit Delay

This optional parameter shall specify whether Channel objects whose Allow_Group_Delay_Inhibit properties have a value of
TRUE shall inhibit any execution delay specified in their Execution_Delay property. If the 'Inhibit Delay' parameter is absent
or FALSE, then execution delay(s) shall occur according to the Execution_Delay property.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

15. OBJECT ACCESS SERVICES
WriteGroup Service

ANSI/ASHRAE Standard 135-2012 565

15.11.2 WriteGroup Service Procedure

Since this is an unconfirmed service, no response primitives are expected. The sending BACnet-user shall transmit the
WriteGroup unconfirmed request using a unicast, multicast or broadcast address. A broadcast may be sent locally, to a
remote BACnet network number, or using the global BACnet network address.

If the 'Group Number' is non-zero, and the receiving BACnet-user has been configured to be a member of the control group
'Group Number' by virtue of having that group number in any of the array elements of the Control_Groups property of any of
its Channel objects, then for each (channel number, overridingPriority, value) tuple provided in the 'Change List' parameter,
the receiving BACnet-user shall attempt to write to the Channel object(s) whose Channel_Number property(s) match that
channel number with the indicated value. If no Channel object's Channel_Number property matches the provided channel
number, then that value shall be ignored.

If the optional field overridingPriority is provided, it shall specify the priority for writing the value. Otherwise the 'Write
Priority' parameter shall specify the priority for writing.

If a BACnetGroupChannelValue specifies a NULL value, it shall serve the same function as if NULL had been used with
WriteProperty.

The failure of any particular write shall not prevent the remaining writes from taking place.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
DeviceCommunicationControl Service

566 ANSI/ASHRAE Standard 135-2012

16 REMOTE DEVICE MANAGEMENT SERVICES

16.1 DeviceCommunicationControl Service

The DeviceCommunicationControl service is used by a client BACnet-user to instruct a remote device to stop initiating and
optionally stop responding to all APDUs (except DeviceCommunicationControl or, if supported, ReinitializeDevice) on the
communication network or internetwork for a specified duration of time. This service is primarily used by a human operator
for diagnostic purposes. A password may be required from the client BACnet-user prior to executing the service. The time
duration may be set to "indefinite," meaning communication must be re-enabled by a DeviceCommunicationControl or, if
supported, ReinitializeDevice service, not by time.

16.1.1 Structure

The structure of the DeviceCommunicationControl service primitives is shown in Table 16-1. The terminology and
symbology used in this table are explained in Clause 5.6.

Table 16-1. Structure of DeviceCommunicationControl Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Time Duration
 Enable/Disable
 Password

 Result (+)

 Result (-)
 Error Type

M
U
M
U

M(=)
U(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

16.1.1.1 Argument

This parameter shall convey the parameters for the DeviceCommunicationControl confirmed service request.

16.1.1.1.1 Time Duration

This optional parameter, of type Unsigned16, indicates the number of minutes that the remote device shall ignore all
APDUs except DeviceCommunicationControl and, if supported, ReinitializeDevice APDUs. If the 'Time Duration'
parameter is not present, then the time duration shall be considered indefinite, meaning that only an explicit
DeviceCommunicationControl or ReinitializeDevice APDU shall enable communications. The 'Time Duration' parameter
shall be ignored and the time period considered to be indefinite if the 'Enable/Disable' parameter has a value of ENABLE.

If the responding BACnet-user does not have a clock and the time duration is not indefinite, then the request shall be
considered invalid and the responding BACnet-user shall issue a Result(-) response.

16.1.1.1.2 Enable/Disable

This parameter is an enumeration that may take on the values ENABLE, DISABLE, or DISABLE_INITIATION. It is used
to indicate whether the responding BACnet-user is to enable all, disable initiation, or disable all communications on the
network interface. When this parameter has a value of ENABLE, communications shall be enabled. When this parameter
has a value of DISABLE, network communications shall be disabled as described in the DeviceCommunicationControl
service procedure. When this parameter has a value of DISABLE_INITIATION, the initiation of communications shall be
disabled as described in the DeviceCommunicationControl service procedure.

16.1.1.1.3 Password

This optional parameter shall be a CharacterString of up to 20 characters. For those devices that require password
protection, the service shall be denied if the parameter is absent or if the password is incorrect. For those devices that do not
require a password, this parameter shall be ignored.

16.1.1.2 Result(+)

This parameter shall indicate that the service request succeeded.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
DeviceCommunicationControl Service

ANSI/ASHRAE Standard 135-2012 567

16.1.1.3 Result(-)

This parameter shall indicate that the service request has failed. The reason for failure shall be specified by the 'Error Type'
parameter.

16.1.1.3.1 Error Type

This parameter consists of two components parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The
'Error Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

The password is invalid or absent when one is
required.

SECURITY PASSWORD_FAILURE

The device does not have a clock and the
'Time Duration' parameter is not set to
"indefinite".

SERVICES OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

16.1.2 Service Procedure

After verifying the validity of the request, including the 'Time Duration' and 'Password' parameters, the responding
BACnet-user shall respond with a 'Result(+)' service primitive. If the request is valid and the 'Enable/Disable' parameter is
DISABLE, the responding BACnet-user shall discontinue responding to any subsequent messages except
DeviceCommunicationControl and, if supported, ReinitializeDevice messages, and shall discontinue initiating messages. If
the request is valid and the 'Enable/Disable' parameter is DISABLE_INITIATION, the responding BACnet-user shall
discontinue the initiation of messages except for I-Am requests issued in accordance with the Who-Is service procedure.
Communication shall be disabled in this manner until either the 'Time Duration' has expired or a valid
DeviceCommunicationControl (with 'Enable/Disable' = ENABLE) or, if supported, a valid ReinitializeDevice (with
'Reinitialized State of Device' = WARMSTART or COLDSTART) message is received.

If the responding BACnet-user does not have a clock and the 'Time Duration' parameter is not set to "indefinite," the APDU
shall be ignored and a 'Result(-)' service primitive shall be issued. If the 'Password' parameter is invalid or absent when a
password is required, the APDU shall be ignored and an Error-PDU with 'error class' = SECURITY and 'error code' =
PASSWORD_FAILURE shall be issued.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ConfirmedPrivateTransfer Service

568 ANSI/ASHRAE Standard 135-2012

16.2 ConfirmedPrivateTransfer Service

The ConfirmedPrivateTransfer is used by a client BACnet-user to invoke proprietary or non-standard services in a remote
device. The specific proprietary services that may be provided by a given device are not defined by this standard. The
PrivateTransfer services provide a mechanism for specifying a particular proprietary service in a standardized manner. The
only required parameters for these services are a vendor identification code and a service number. Additional parameters
may be supplied for each service if required. The form and content of these additional parameters, if any, are not defined by
this standard. The vendor identification code and service number together serve to unambiguously identify the intended
purpose of the information conveyed by the remainder of the APDU or the service to be performed by the remote device
based on parameters in the remainder of the APDU.

The vendor identification code is a unique code assigned to the vendor by ASHRAE. The mechanism for administering
these codes is not defined in this standard. See Clause 23.

16.2.1 ConfirmedPrivateTransfer Service Structure

The structure of the ConfirmedPrivateTransfer service primitives is shown in Table 16-2. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 16-2. Structure of ConfirmedPrivateTransfer Service Primitives
Parameter Name Req Ind Rsp Conf

Argument
 Vendor ID
 Service Number
 Service Parameters

Result(+)
 Vendor ID
 Service Number
 Result Block

Result(-)
 Error Type
 Vendor ID
 Service Number
 Error Parameters

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S
M
M
C

S
M
M
M
U

S(=)
M(=)
M(=)
C(=)

S(=)
M(=)
M(=)
M(=)
U(=)

16.2.1.1 Argument

This parameter shall convey the parameters for the ConfirmedPrivateTransfer confirmed service request.

16.2.1.1.1 Vendor ID

This parameter, of type Unsigned, shall specify the unique vendor identification code for the type of vendor-proprietary
service to be performed.

16.2.1.1.2 Service Number

This parameter, of type Unsigned, shall specify the desired service to be performed.

16.2.1.1.3 Service Parameters

This optional parameter shall convey additional parameters for the service specified by 'Vendor ID' and 'Service Number'.
The datatype and interpretation of these parameters is a local matter.

16.2.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the service request succeeded. A successful result indicates that the request
APDU was received and the recipient was able to perform the indicated proprietary service.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ConfirmedPrivateTransfer Service

ANSI/ASHRAE Standard 135-2012 569

16.2.1.2.1 Vendor ID

This parameter, of type Unsigned, shall specify the unique vendor identification code for the vendor-proprietary service for
which this is the result.

16.2.1.2.2 Service Number

This parameter, of type Unsigned, shall indicate the proprietary service for which this is the result.

16.2.1.2.3 Result Block

This conditional parameter, of type list of ANY, shall convey any additional results from the execution of the requested
service. Interpretation of these results is a local matter.

16.2.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the service request has failed. The reason for failure shall be specified by the
'Error Type' parameter.

16.2.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

16.2.1.3.2 Vendor ID

This parameter, of type Unsigned, shall specify the unique vendor identification code for the vendor-proprietary service for
which this error is the result.

16.2.1.3.3 Service Number

This parameter, of type Unsigned, shall indicate the proprietary service for which this error is the result.

16.2.1.3.4 Error Parameters

This optional parameter shall convey any additional error results from the execution of the requested service. Interpretation
of these results is a local matter.

16.2.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to perform the specified proprietary
service request. If successful, a 'Result(+)' response primitive shall be issued. If the request fails, a 'Result(-)' response
primitive shall be issued.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
UnconfirmedPrivateTransfer Service

570 ANSI/ASHRAE Standard 135-2012

16.3 UnconfirmedPrivateTransfer Service

The UnconfirmedPrivateTransfer is used by a client BACnet-user to invoke proprietary or non-standard services in a
remote device. The specific proprietary services that may be provided by a given device are not defined by this standard.
The PrivateTransfer services provide a mechanism for specifying a particular proprietary service in a standardized manner.
The only required parameters for these services are a vendor identification code and a service number. Additional
parameters may be supplied for each service if required. The form and content of these additional parameters, if any, are not
defined by this standard. The vendor identification code and service number together serve to unambiguously identify the
intended purpose of the information conveyed by the remainder of the APDU or the service to be performed by the remote
device based on parameters in the remainder of the APDU.

The vendor identification code is a unique code assigned to the vendor by ASHRAE. The mechanism for administering
these codes is not defined in this standard. See Clause 23.

16.3.1 UnconfirmedPrivateTransfer Service Structure

The structure of the UnconfirmedPrivateTransfer service primitive is shown in Table 16-3. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 16-3. Structure of UnconfirmedPrivateTransfer Service Primitive
Parameter Name Req Ind

Argument
 Vendor ID
 Service Number
 Service Parameters

M
M
M
U

M(=)
M(=)
M(=)
U(=)

16.3.1.1 Argument

This parameter shall convey the parameters for the UnconfirmedPrivateTransfer confirmed service request.

16.3.1.1.1 Vendor ID

This parameter, of type Unsigned, shall specify the unique vendor identification code for the type of vendor-proprietary
service to be performed.

16.3.1.1.2 Service Number

This parameter, of type Unsigned, shall specify the desired service to be performed.

16.3.1.1.3 Service Parameters

This optional parameter shall convey additional parameters for the service specified by 'Vendor ID' and 'ServiceNumber'.
The datatype and interpretation of these parameters is a local matter.

16.3.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. Actions taken in response to this service request
are a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ReinitializeDevice Service

ANSI/ASHRAE Standard 135-2012 571

16.4 ReinitializeDevice Service

The ReinitializeDevice service is used by a client BACnet-user to instruct a remote device to reboot itself (cold start), reset
itself to some predefined initial state (warm start), or to control the backup or restore procedure. Resetting or rebooting a
device is primarily initiated by a human operator for diagnostic purposes. Use of this service during the backup or restore
procedure is usually initiated on behalf of the user by the device controlling the backup or restore. Due to the sensitive
nature of this service, a password may be required by the responding BACnet-user prior to executing the service.

A BACnet device may support the ReinitializeDevice service by supporting only the restart choices COLDSTART and
WARMSTART. Support for the backup and restore features of this service is claimed separately.

16.4.1 Structure

The structure of the ReinitializeDevice service primitives is shown in Table 16-4. The terminology and symbology used in
this table are explained in Clause 5.6.

Table 16-4. Structure of ReinitializeDevice Service Primitives
 Parameter Name Req Ind Rsp Cnf

Argument
 Reinitialized State of Device
 Password

 Result (+)

 Result (-)
 Error Type

M
M
U

M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

16.4.1.1 Argument

This parameter shall convey the parameters for the ReinitializeDevice confirmed service request.

16.4.1.1.1 Reinitialized State of Device

This parameter allows the client user to specify the desired state of the device after its reinitialization. The value of the
parameter may be one of COLDSTART, WARMSTART, STARTBACKUP, ENDBACKUP, STARTRESTORE,
ENDRESTORE, or ABORTRESTORE.. WARMSTART shall mean to reboot the device and start over, retaining all data
and programs that would normally be retained during a brief power outage. The precise interpretation of COLDSTART
shall be defined by the vendor.

If the value of the parameter is WARMSTART and the device is not ready due to a configuration procedure in progress, the
request shall be considered invalid and the responding BACnet user shall issue a Result(-) response.

If the value of the parameter is one of STARTBACKUP, ENDBACKUP, STARTRESTORE, ENDRESTORE, or
ABORTRESTORE and communication has been disabled due to receipt of a DeviceCommunicationControl request with
'Enable/Disable' equal to DISABLE, the request shall be considered invalid and the responding BACnet user shall issue a
Result(-) response.

The use of the backup and restore commands are defined in Clause 19.1.

16.4.1.1.2 Password

This optional parameter shall be a CharacterString of up to 20 characters. For those devices that require the password as a
protection, the service request shall be denied if the parameter is absent or if the password is incorrect. For those devices
that do not require a password, this parameter shall be ignored.

16.4.1.2 Result(+)

This parameter shall indicate that the service request succeeded.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ReinitializeDevice Service

572 ANSI/ASHRAE Standard 135-2012

16.4.1.3 Result(-)

This parameter shall indicate that the service request has failed. The reason for the failure shall be specified by the 'Error
Type' parameter.

16.4.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The
'Error Class' and 'Error Code' to be returned for specific situations are as follows:

Situation Error Class Error Code

The password is invalid or absent when one is required. SECURITY PASSWORD_FAILURE

The device is in the process of being configured. DEVICE CONFIGURATION_IN_PROGRESS

Communication has been disabled due to receipt of a
DeviceCommunicationControl request.

SERVICES COMMUNICATION_DISABLED

16.4.2 Service Procedure

After verifying the validity of the request, including the 'Reinitialized State of Device' and 'Password' parameters, the
responding BACnet-user shall pre-empt all other outstanding requests and respond with a 'Result(+)' primitive. If the
request is valid and 'Reinitialized State of Device' is WARMSTART or COLDSTART, then the responding BACnet-user
shall immediately proceed to perform any applicable shut-down procedures prior to reinitializing the device as specified by
the requesting BACnet-user in the request.

If 'Reinitialized State of Device' is WARMSTART and the device is not ready due to its initial characterization being in
progress, a 'Result (-)' response primitive shall be issued.

If 'Reinitialized State of Device' is one of STARTBACKUP, ENDBACKUP, STARTRESTORE, ENDRESTORE, or
ABORTRESTORE and communication has been disabled due to receipt of a DeviceCommunicationControl request with
'Enable/Disable' equal to DISABLE, the responding BACnet user shall respond with a Result(-) primitive. Otherwise, the
responding BACnet user shall behave as described in Clause 19.1.

If the password is invalid or is absent when one is required, an Error-PDU with 'error class' of SECURITY and 'error code'
of PASSWORD_FAILURE shall be issued.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ConfirmedTextMessage Service

ANSI/ASHRAE Standard 135-2012 573

16.5 ConfirmedTextMessage Service

The ConfirmedTextMessage service is used by a client BACnet-user to send a text message to another BACnet device. This
service is not a broadcast or multicast service. This service may be used in cases when confirmation that the text message
was received is required. The confirmation does not guarantee that a human operator has seen the message. Messages may
be prioritized into normal or urgent categories. In addition, a given text message may be optionally classified by a numeric
class code or class identification string. This classification may be used by the receiving BACnet device to determine how
to handle the text message. For example, the message class might indicate a particular output device on which to print text
or a set of actions to take when the text is received. In any case, the interpretation of the class is a local matter.

16.5.1 ConfirmedTextMessage Service Structure

The structure of the ConfirmedTextMessage service primitives is shown in Table 16-5. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 16-5. Structure of ConfirmedTextMessage Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Text Message Source Device
 Message Class
 Message Priority
 Message

Result(+)

Result(-)
 Error Type

M
M
U
M
M

M(=)
M(=)
U(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

16.5.1.1 Argument

This parameter shall convey the parameters for the ConfirmedTextMessage service request.

16.5.1.1.1 Text Message Source Device

This parameter, of type BACnetObjectIdentifier, shall convey the value of the Object_Identifier property of the Device
object of the device that initiated this text message.

16.5.1.1.2 Message Class

This parameter, if present, shall indicate the class of the received message. The datatype of this parameter shall be a choice
of Unsigned or CharacterString. The interpretation of the meaning of any particular value for this parameter shall be a local
matter.

16.5.1.1.3 Message Priority

This parameter, of type ENUMERATED, shall indicate the priority for message handling:

{NORMAL, URGENT}

16.5.1.1.4 Message

This parameter, of type CharacterString, shall be used to convey the text message.

16.5.1.2 Result(+)

The 'Result(+)' parameter shall indicate that the requested service has succeeded.

16.5.1.3 Result(-)

The 'Result(-)' parameter shall indicate that the requested service has failed. The reason for the failure shall be specified by
the 'Error Type' parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
ConfirmedTextMessage Service

574 ANSI/ASHRAE Standard 135-2012

16.5.1.3.1 Error Type

This parameter shall consist of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

16.5.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall take whatever local actions have been assigned
to the indicated 'Message Class' and issue a 'Result(+)' service primitive. If the service request cannot be executed, a
'Result(-)'service primitive shall be issued indicating the encountered error.

Other than the requirement to return a success or failure response, actions taken in response to this notification are a local
matter. However, typically the receiving device would take the text specified by the 'Message' parameter and display, print,
or file it according to the classification specified by the 'Message Class' parameter. If the 'Message Class' parameter is
omitted, then some general class might be assumed. If 'Message Priority' is URGENT, then clearly the messages should be
considered as more important than existing NORMAL messages, which may be awaiting printing or some other action.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
UnconfirmedTextMessage Service

ANSI/ASHRAE Standard 135-2012 575

16.6 UnconfirmedTextMessage Service

The UnconfirmedTextMessage service is used by a client BACnet-user to send a text message to one or more BACnet
devices. This service may be broadcast, multicast, or addressed to a single recipient. This service may be used in cases
where confirmation that the text message was received is not required. Messages may be prioritized into normal or urgent
categories. In addition, a given text message may optionally be classified by a numeric class code or class identification
string. This classification may be used by receiving BACnet devices to determine how to handle the text message. For
example, the message class might indicate a particular output device on which to print text or a set of actions to take when
the text message is received. In any case, the interpretation of the class is a local matter.

16.6.1 UnconfirmedTextMessage Service Structure

The structure of the UnconfirmedTextMessage service primitive is shown in Table 16-6. The terminology and symbology
used in this table are explained in Clause 5.6.

Table 16-6. Structure of UnconfirmedTextMessage Service Primitive
Parameter Name Req Ind

Argument
 Text Message Source Device
 Message Class
 Message Priority
 Message

M
M
U
M
M

M(=)
M(=)
U(=)
M(=)
M(=)

16.6.1.1 Argument

The 'Argument' parameter shall convey the parameters for the UnconfirmedTextMessage service request.

16.6.1.1.1 Text Message Source Device

This parameter, of type BACnetObjectIdentifier, shall convey the value of the Object_Identifier property of the Device
object of the device that initiated this text message.

16.6.1.1.2 Message Class

This parameter, if present, shall indicate the classification of the received message. The datatype of this parameter shall be a
choice of Unsigned or CharacterString. The interpretation of the meaning of any particular value for this parameter shall be
a local matter.

16.6.1.1.3 Message Priority

This parameter, of type ENUMERATED, shall indicate the priority for message handling:

{NORMAL, URGENT}

16.6.1.1.4 Message

This parameter, of type CharacterString, shall be used to convey the text message.

16.6.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. Actions taken in response to this service request
are a local matter. However, typically the receiving device(s) would take the text block specified by the 'Message'
parameter and display or print or file them according to the classification specified by the 'Message Class' parameter. If the
'Message Class' parameter is omitted, then some general class might be assumed. If 'Message Priority' is URGENT, then
clearly the messages should be considered as more important than existing NORMAL messages, which may be awaiting
printing or some other action.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
TimeSynchronization Service

576 ANSI/ASHRAE Standard 135-2012

16.7 TimeSynchronization Service

The TimeSynchronization service is used by a requesting BACnet-user to notify a remote device of the correct current time.
This service may be broadcast, multicast, or addressed to a single recipient. Its purpose is to notify recipients of the correct
current time so that devices may synchronize their internal clocks with one another.

16.7.1 Structure

The structure of the TimeSynchronization service primitive is shown in Table 16-7. The terminology and symbology used
in this table are explained in Clause 5.6.

Table 16-7. Structure of TimeSynchronization Service Primitive
Parameter Name Req Ind

Argument
 Time

M
M

M(=)
M(=)

16.7.1.1 Argument

The 'Argument' parameter shall convey the parameters for the TimeSynchronization service request.

16.7.1.1.1 Time

This parameter, of type BACnetDateTime, shall convey the current date and time as determined by the clock in the device
issuing the service request. This parameter shall contain a specific datetime value.

16.7.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. A device receiving a TimeSynchronization
service indication shall update its local representation of time. This change shall be reflected in the Local_Time and
Local_Date properties of the Device object.

No restrictions on the use of this service exist when it is invoked at the request of an operator. Otherwise, the use of this
service is controlled by the value of the Time_Synchronization_Recipients property in the Device object. When the
Time_Synchronization_Recipients list is of length zero, a device may not automatically send a TimeSynchronization
request. When Time_Synchronization_Recipients list is of length one or more, a device may automatically send a
TimeSynchronization request but only to the devices or addresses contained in the Time_Synchronization_Recipients list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
UTCTimeSynchronization Service

ANSI/ASHRAE Standard 135-2012 577

16.8 UTCTimeSynchronization Service

The UTCTimeSynchronization service is used by a requesting BACnet-user to notify one or more remote devices of the
correct Universal Time Coordinated (UTC). This service may be broadcast, multicast, or addressed to a single recipient. Its
purpose is to notify recipients of the correct UTC so that devices may synchronize their internal clocks with one another.

16.8.1 Structure

The structure of the UTCTimeSynchronization service primitive is shown in Table 16-8. The terminology and symbology used
in this table are explained in Clause 5.6.

Table 16-8. Structure of UTCTimeSynchronization Service Primitive
Parameter Name Req Ind

Argument M M(=)
Time M M(=)

16.8.1.1 Argument

The 'Argument' parameter shall convey the parameters for the UTCTimeSynchronization service request.

16.8.1.1.1 Time

This parameter, of type BACnetDateTime, shall convey the UTC date and time. This parameter shall contain a specific
datetime value.

16.8.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. A device receiving a UTCTimeSynchronization
service indication shall update its local representation of time and date by subtracting the value of the 'UTC_Offset' property
of the Device object from the 'Time' parameter and taking the 'Daylight_Savings_Status' property of the Device object into
account as appropriate to the locality. This change shall be reflected in the Local_Time and Local_Date properties of the
Device object.

No restrictions on the use of this service exist when it is invoked at the request of an operator. Otherwise, the initiation of this
service by a device is controlled by the value of the UTC_Time_Synchronization_Recipients property in the Device object.
When the UTC_Time_Synchronization_Recipients list is of length zero, a device may not automatically send a
UTCTimeSynchronization request. When UTC_Time_Synchronization_Recipients list is of length one or more, a device may
automatically send a UTCTimeSynchronization request but only to the devices or addresses contained in the
UTC_Time_Synchronization_Recipients list.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
Who-Has and I-Have Services

578 ANSI/ASHRAE Standard 135-2012

16.9 Who-Has and I-Have Services

The Who-Has service is used by a sending BACnet-user to identify the device object identifiers and network addresses of
other BACnet devices whose local databases contain an object with a given Object_Name or a given Object_Identifier. The I-
Have service is used to respond to Who-Has service requests or to advertise the existence of an object with a given
Object_Name or Object_Identifier. The I-Have service request may be issued at any time and does not need to be preceded
by the receipt of a Who-Has service request. The Who-Has and I-Have services are unconfirmed services.

16.9.1 Who-Has Service Structure

The structure of the Who-Has service primitive is shown in Table 16-9. The terminology and symbology used in this table
are explained in Clause 5.6.

Table 16-9. Structure of Who-Has Service Primitive
Parameter Name Req Ind

Argument
 Device Instance Range Low Limit
 Device Instance Range High Limit
 Object Identifier
 Object Name

M
U
U
S
S

M(=)
U(=)
U(=)
S(=)
S(=)

16.9.1.1 Argument

The 'Argument' parameter shall convey the parameters for the Who-Has unconfirmed service request.

16.9.1.1.1 Device Instance Range Low Limit

This parameter is an unsigned integer in the range 0 - 4194303. In conjunction with the 'Device Instance Range High Limit'
parameter, it defines the devices that are qualified to respond with an I-Have service request if the 'Object Identifier' or
'Object Name' criteria are satisfied as described in Clauses 16.9.1.1.3 and 16.9.1.1.4. If the 'Device Instance Range Low
Limit' parameter is present, then the 'Device Instance Range High Limit' parameter shall also be present, and only those
devices whose Device Object_Identifier instance number falls within the range 'Device Instance Range Low Limit' �
Object_Identifier Instance Number � 'Device Instance Range High Limit' shall be qualified to respond. The value of the
'Device Instance Range Low Limit' shall be less than or equal to the value of the 'Device Instance Range High Limit'. If the
'Device Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are omitted, then all devices that
receive this message are qualified to respond with an I-Have service request.

16.9.1.1.2 Device Instance Range High Limit

This parameter is an unsigned integer in the range 0 - 4194303. In conjunction with the 'Device Instance Range Low Limit'
parameter, it defines the devices that are qualified to respond with an I-Have service request if the 'Object Identifier' or
'Object Name' criteria are satisfied as described in Clauses 16.9.1.1.3 and 16.9.1.1.4. If the 'Device Instance Range High
Limit' parameter is present, then the 'Device Instance Range Low Limit' parameter shall also be present, and only those
devices whose Device Object_Identifier instance number falls within the range 'Device Instance Range Low Limit' �
Object_Identifier Instance Number � 'Device Instance Range High Limit' shall be qualified to respond. The value of the
'Device Instance Range High Limit' shall be greater than or equal to the value of the 'Device Instance Range Low Limit'. If
the 'Device Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are omitted, then all devices that
receive this message are qualified to respond with an I-Have service request.

16.9.1.1.3 Object Identifier

The 'Object Identifier' parameter, of type BACnetObjectIdentifier, shall convey the Object_Identifier of the object that is to
be located. If the 'Object Identifier' parameter is omitted, then the 'Object Name' parameter shall be present. If the 'Object
Identifier' parameter is present, then only those devices that contain an object with an Object_Identifier property value
matching the 'Object Identifier' parameter, which are qualified to respond as described in Clauses 16.9.1.1.1 and 16.9.1.1.2,
shall respond with an I-Have service request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
Who-Has and I-Have Services

ANSI/ASHRAE Standard 135-2012 579

16.9.1.1.4 Object Name

The 'Object Name' parameter, of type CharacterString, shall convey the value of the Object_Name property of the object that
is to be located. If the 'Object Name' parameter is omitted, then the 'Object Identifier' parameter shall be present. If the
'Object Name' parameter is present, then only those devices that contain an object with an Object_Name property value
matching the 'Object Name' parameter, which are qualified to respond as described in Clauses 16.9.1.1.1 and 16.9.1.1.2, shall
respond with an I-Have service request.
16.9.2 Service Procedure

The sending BACnet-user shall transmit the Who-Has unconfirmed request, normally using a broadcast address. If the
'Device Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are present, then only those receiving
BACnet-users whose Device Object_Identifier instance number falls in the range 'Device Instance Range Low Limit' �
Object_Identifier Instance Number � 'Device Instance Range High Limit' shall be qualified to respond. If the 'Object Name'
parameter is present, then only those qualified receiving BACnet-users that contain an object with an Object_Name property
value matching the 'Object Name' parameter shall respond with an I-Have service request. If the 'Object Identifier' parameter
is present, then only those qualified receiving BACnet-users that contain an object with an Object_Identifier property value
matching the 'Object Identifier' parameter shall respond with an I-Have service request.

16.9.3 I-Have Service Structure

The structure of the I-Have service primitive is shown in Table 16-10. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 16-10. Structure of I-Have Service Primitive
Parameter Name Req Ind

Argument
 Device Identifier
 Object Identifier
 Object Name

M
M
M
M

M(=)
M(=)
M(=)
M(=)

16.9.3.1 Argument

The 'Argument' parameter shall convey the parameters for the I-Have unconfirmed service request.

16.9.3.1.1 Device Identifier

The 'Device Identifier' parameter, of type BACnetObjectIdentifier, is the Device Object_Identifier of the device initiating the
I-Have service request.
16.9.3.1.2 Object Identifier

The 'Object Identifier' parameter, of type BACnetObjectIdentifier, shall convey the Object_Identifier of the object that is
being advertised as located in the initiating device. This identifier shall correspond to the value of the Object_Identifier
property of the object being advertised.

16.9.3.1.3 Object Name

The 'Object Name' parameter, of type CharacterString, shall convey the name of the object that is being advertised as located
in the initiating device. This name shall correspond to the value of the Object_Name property of the object being advertised.

16.9.4 Service Procedure

The sending BACnet-user shall broadcast the I-Have unconfirmed request. Such broadcasts may be on the local network
only, a remote network only, or globally on all networks at the discretion of the application. If the I-Have is being transmitted
in response to a previously received Who-Has, then the I-Have shall be transmitted in such a manner that the BACnet-user
that sent the Who-Has will receive the resulting I-Have. Since the request is unconfirmed, no further action is required. A
BACnet-user may issue an I-Have service request at any time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
Who-Is and I-Am Services

580 ANSI/ASHRAE Standard 135-2012

16.10 Who-Is and I-Am Services

The Who-Is service is used by a sending BACnet-user to determine the device object identifier, the network address, or both,
of other BACnet devices that share the same internetwork. The Who-Is service is an unconfirmed service. The Who-Is
service may be used to determine the device object identifier and network addresses of all devices on the network, or to
determine the network address of a specific device whose device object identifier is known, but whose address is not. The I-
Am service is also an unconfirmed service. The I-Am service is used to respond to Who-Is service requests. However, the I-
Am service request may be issued at any time. It does not need to be preceded by the receipt of a Who-Is service request. In
particular, a device may wish to broadcast an I-Am service request when it powers up. The network address is derived either
from the MAC address associated with the I-Am service request, if the device issuing the request is on the local network, or
from the NPCI if the device is on a remote network.

16.10.1 Who-Is Service Structure

The structure of the Who-Is service primitive is shown in Table 16-11. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 16-11. Structure of Who-Is Service Primitive
Parameter Name Req Ind

Argument
 Device Instance Range Low Limit
 Device Instance Range High Limit

M
U
U

M(=)
U(=)
U(=)

16.10.1.1 Argument

The 'Argument' parameter shall convey the parameters for the Who-Is unconfirmed service request.

16.10.1.1.1 Device Instance Range Low Limit

This parameter is an unsigned integer in the range 0 - 4194303. In conjunction with the 'Device Instance Range High Limit'
parameter, it defines the devices that are qualified to respond with an I-Am service request. If the 'Device Instance Range
Low Limit' parameter is present, then the 'Device Instance Range High Limit' parameter shall also be present, and only those
devices whose Device Object_Identifier instance number falls within the range 'Device Instance Range Low Limit' � Device
Object_Identifier Instance Number � 'Device Instance Range High Limit' shall be qualified to respond. The value of the
'Device Instance Range Low Limit' shall be less than or equal to the value of the 'Device Instance Range High Limit'. If the
'Device Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are omitted, then all devices that
receive this message are qualified to respond with an I-Am service request.

16.10.1.1.2 Device Instance Range High Limit

This parameter is an unsigned integer in the range 0 - 4194303. In conjunction with the 'Device Instance Range Low Limit'
parameter, it defines the devices that are qualified to respond with an I-Am service request. If the 'Device Instance Range
High Limit' parameter is present, then the 'Device Instance Range Low Limit' parameter shall also be present, and only those
devices whose Device Object_Identifier instance number falls within the range 'Device Instance Range Low Limit' � Device
Object_Identifier Instance Number � 'Device Instance Range High Limit' shall be qualified to respond. The value of the
'Device Instance Range High Limit' shall be greater than or equal to the value of the 'Device Instance Range Low Limit'. If
the 'Device Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are omitted, then all devices that
receive this message are qualified to respond with an I-Am service request.

16.10.2 Service Procedure

The sending BACnet-user shall transmit the Who-Is unconfirmed request, normally using a broadcast address. If the 'Device
Instance Range Low Limit' and 'Device Instance Range High Limit' parameters are omitted, then all receiving BACnet-users
shall return their Device Object_Identifier in individual responses using the I-Am service. If the 'Device Instance Range Low
Limit' and 'Device Instance Range High Limit' parameters are present, then only those receiving BACnet-users whose Device
Object_Identifier instance number falls within the range 'Device Instance Range Low Limit � Device Object_Identifier
Instance Number � 'Device Instance Range High Limit' shall return their Device Object_Identifier using the I-Am service.
If the receiving BACnet-user has a Slave_Proxy_Enable property and the Slave_Proxy_Enable for the receiving port is
TRUE, then the BACnet-user shall respond with an I-Am unconfirmed request for each of the slave devices on the MS/TP
network that are present in the Slave_Address_Binding property and that match the device range parameters. The I-Am

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

16. REMOTE DEVICE MANAGEMENT SERVICES
Who-Is and I-Am Services

ANSI/ASHRAE Standard 135-2012 581

unconfirmed requests that are generated shall be generated as if the slave device originated the service. If the I-Am
unconfirmed request is to be placed onto the MS/TP network on which the slave resides, then the MAC address included in
the packet shall be that of the slave device. In the case where the I-Am unconfirmed request is to be placed onto a network
other than that on which the slave resides, then the network layer shall contain SLEN and SNET filled in with the slave's
MAC address as if it were routing a packet originally generated by the slave device.

16.10.3 I-Am Service Structure

The structure of the I-Am service primitive is shown in Table 16-12. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 16-12. Structure of I-Am Service Primitive
Parameter Name Req Ind

Argument
 I-Am Device Identifier
 Max APDU Length Accepted
 Segmentation Supported
 Vendor Identifier

M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)

16.10.3.1 Argument

The 'Argument' parameter shall convey the parameters for the I-Am unconfirmed service request.

16.10.3.1.1 I-Am Device Identifier

The 'I-Am Device Identifier' parameter, of type BACnetObjectIdentifier, is the Device Object_Identifier of the device
initiating the I-Am service request.

16.10.3.1.2 Max APDU Length Accepted

This parameter, of type Unsigned, shall convey the maximum number of octets that may be contained in a single, indivisible
APDU. The value of this parameter shall be the same as the value of the Max_APDU_Length_Accepted property of the
Device object. See 12.11.18.

16.10.3.1.3 Segmentation Supported

This parameter, of type BACnetSegmentation, conveys the capabilities of the device initiating the I-Am service request with
respect to processing segmented messages. The value of this parameter shall be the same as the value of the
Segmentation_Supported property of the Device object. See 12.11.19.

16.10.3.1.4 Vendor Identifier

This parameter, of type Unsigned16, shall convey the identity of the vendor who manufactured the device initiating the I-Am
service request. The value of this parameter shall be the same as the value of the Vendor_Identifier property of the Device
object. See 12.11.6 and Clause 23.

16.10.4 Service Procedure

The sending BACnet-user shall broadcast or unicast the I-Am unconfirmed request. If the I-Am is broadcast, this broadcast
may be on the local network only, a remote network only, or globally on all networks at the discretion of the application. If
the I-Am is being sent in response to a previously received Who-Is, then the I-Am shall be sent in such a manner that the
BACnet-user that sent the Who-Is will receive the resulting I-Am. Since the request is unconfirmed, no further action is
required. A BACnet-user may issue an I-Am service request at any time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Virtual Terminal Model

582 ANSI/ASHRAE Standard 135-2012

17 VIRTUAL TERMINAL SERVICES

Virtual Terminal (VT) services are used by a client BACnet-user to establish a connection to an application program server in
another BACnet device. The purpose of this connection is to facilitate the bi-directional exchange of character-oriented data.
Normally, these services would be used to permit an application program in one BACnet device to act as a "terminal emulator"
that interacts with an "operator interface" application program in another BACnet device.

These connections will be referred to here as VT-sessions. Once a VT-session is established, both the client application program
and server application program will be referred to as VT-users.

The VT services provide the following features and services to the VT-user:

(a)
 the means to establish a VT-session between two peer VT-users for the purpose of enabling virtual terminal
information exchange;

(b)
 the means to select between different VT-class types, including character repertoire and encoding;
(c)
 the means to control the integrity of the communication;
(d)
 the means to terminate the VT-session unilaterally;
(e)
 the means to exchange virtual terminal data.

17.1 Virtual Terminal Model

Each VT-session is a bi-directional connection between two peer application processes. Once a session is established between
these peers, data are exchanged through the use of Virtual Terminal Queues (VTQ). The VTQs are first-in, first-out (FIFO)
queues. The purpose of modeling the data flow between peer processes as FIFO queues is to isolate the implementation of the
peer application process that is on each side of the VT-session from the other. Normally a human operator using a BACnet
device will request the operator interface application program to establish a VT-session with an operator interface application
program in another BACnet device. The VTQ model uses two FIFO queues to allow those operator interfaces, or other
application programs that can provide simultaneous bi-directional interaction, to do so through the BACnet protocol.

Figure 17-1 shows a typical relationship between an operator interface application program and a physical device, such as a CRT
terminal.

�����
;����

������
;����

������

�����

��������
���������

�����������

Figure 17-1. Relationship between an operator interface program and a physical device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Virtual Terminal Model

ANSI/ASHRAE Standard 135-2012 583

Figure 17-2 shows how this model is extended using the VTQ concept.

�����
;����

������
;����

�����

��������
���������

�����������

������
������
;����

A,
���1���

�����
;����

Figure 17-2. Extending the VT model to accommodate queues.

The peer processes at each end of a VT-session may not actually be agents for a physical device such as a CRT terminal. The
VTQ model permits flexibility in the implementation of each BACnet device. There may, in fact, be several different processes
that coordinate their use of VT Services within each BACnet device. For example, in a multi-window operator interface
program, there may be several windows, each with its own interactive virtual terminal session to some other BACnet device. For
this reason, each VT-session exists between two unique processes rather than between two BACnet devices. Each session,
therefore, consists of two processes that act as agents for their respective application programs and their respective VTQs. These
agent processes and their VTQs are called VT-Users. The model of this data flow is shown in Figure 17-3.

�����������
���$���

�����������
���$���

A,
6���

A,
6���

A,
���1���
&��1����

Figure 17-3. Virtual terminal data flow.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Virtual Terminal Model

584 ANSI/ASHRAE Standard 135-2012

Once the virtual terminal session is established, character data are exchanged by the two peers through their respective VTQs.
Normally, characters typed by a human operator would be passed directly to an input queue for forwarding to the peer's input
queue, without any echoing by the local device to which the operator is connected. The peer application program, upon receiving
these characters from its input queue, would respond with characters placed in its output queue for forwarding back to the output
queue of the operator device and so on. In particular, it shall be the responsibility of the operator interface application to generate
all "screen" output, including carriage control and character echoing when appropriate.

Although the VT services model does provide a true peer-to-peer connection, as shown in Figure 17-3, a human operator
typically uses one BACnet device to establish a virtual terminal connection to a second BACnet device. This second BACnet
device contains an "operator interface" application program to which the operator's keystrokes are sent without filtering. The
operator interface application program's output is conveyed through the VT services and ultimately displayed for the human
operator. Normally, the BACnet device to which the operator is actually connected would recognize some local signal meaning
"end virtual terminal session" but otherwise would not filter the operator's keystrokes.

17.1.1 Basic Services

There are three basic services provided: VT-Open, VT-Close, and VT-Data. The VT-Open service is used to establish a VT-
session between peer processes. The VT-Close service is used to terminate a previously established session. The VT-Data
service is used to exchange data between peer processes.

17.1.2 VT-classes

The classes of virtual terminal that are available in a peer VT service may be determined by examining the BACnet Device
object in the peer device. The BACnet Device object has a property called VT_Classes_Supported, which may be read with the
ReadProperty or ReadPropertyMultiple service to determine which VT-classes are available in that device.

17.1.3 Active VT-sessions

The active VT-sessions within a peer VT service may be determined by examining the BACnet Device object in the peer
device. The BACnet Device object has a property called Active_VT_Sessions, which may be read with the ReadProperty or
ReadPropertyMultiple service to determine which VT-session IDs are in use within that device.

17.1.4 State Diagram for VT-Open, VT-Data, and VT-Close

There are three phases of operation within a VT session context: IDLE, DATA EXCHANGE, and HOLD. In the IDLE phase,
no VT-session exists. Once a VT-session is created through the use of the VT-Open service, the VT context enters the DATA
EXCHANGE phase. The VT context remains in the DATA EXCHANGE phase until one of two events occurs:

(a)
 a successful VT-Close is performed, terminating the VT-session context, or
(b)
 a VT-Data request returns 'Result (-)'.

The HOLD phase occurs when a VT-Data request cannot be confirmed. Figure 17-4 shows the relationship between phases.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Virtual Terminal Model

ANSI/ASHRAE Standard 135-2012 585

VT-Open, 'Result(-)'

Idle

HoldData
Exchange

VT-Close,
'Result(+)'

VT-Close,
'Result(-)'

VT-Data,
'Result(+)'

VT-Close,
'Result(-)'

VT-Data, Application retries
previous failure, 'Result(+)'

VT-Data, 'Result(-)'

VT-Open,
'Result(+)'

VT-Close,
'Result(+)'

Figure 17-4. Virtual terminal services state diagram.

17.1.5 VT Session Synchronization

Each of the peers participating in a VT-session shall maintain two VT-data flags that are used to synchronize the VT-session.
One flag represents the device's role as a sending BACnet-user and is the sequence number, which that alternates between
zero and one, of the next VT-data that is to be sent. This sequence number is incremented modulo 2 upon receipt of a
'Result(+)' response to a VT-Data request. This flag is initialized to 0 (the first VT-Data request uses a sequence number of 0)
when the VT-session is established.

The other flag represents the device's role as a receiving BACnet-user and is the sequence number of the last VT-Data request
that was correctly received. This sequence number is initialized to 1 (the next VT-Data indication is expected to have a
sequence number of 0) when the VT session is established. The sequence number is incremented modulo 2 when a VT-Data
indication with the expected sequence number is received and successfully processed.

The receiving VT-session context shall also store the last received 'All New Data Accepted' and 'Accepted Octet Count'. This
is required in the event that a 'Result(+)' response to a VT-Data indication is lost, which would be detected by the receipt of a
VT-Data indication with the same 'VT-Data Flag' as the previously received 'VT-Data Flag' saved in the VT session context.

17.1.6 VT Session Identifiers

Associated with each VT-session are two session identifiers, a 'Local VT Session Identifier' and a 'Remote VT Session
Identifier'. These session identifiers provide a way to associate the data from a particular VT-Data request with the correct
process. The value of the session identifiers is established as part of the VT-Open service. Each device selects its own 'Local VT
Session Identifier', which shall be unique to all active VT-sessions in the device, without regard to whether the device's role in
the session is a client or a server. The appropriate 'Remote VT Session Identifier' is obtained from the VT-Open service
parameters.

When VT data are conveyed to a remote device, the 'Remote VT Session Identifier' is conveyed with the data. This session
identifier is used by the remote device to identify the correct VT-session.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
VT-Open Service

586 ANSI/ASHRAE Standard 135-2012

17.2 VT-Open Service

The VT-Open service is used to establish a VT-session with a peer VT-user. The service request includes a VT-class type that
identifies a particular set of assumptions about the character repertoire and encoding to be used with this session.

17.2.1 Structure

The structure of the VT-Open service primitives is shown in Table 17-1. The terminology and symbology used in this table are
explained in Clause 5.6.

 Table 17-1. Structure of VT-Open Service Primitives

Parameter Name Req Ind Rsp Cnf

Argument
 VT-class
 Local VT Session Identifier

Result (+)
 Remote VT Session Identifier

Result (-)
 Error Type

 M
 M
 M

 M(=)
 M(=)
 M(=)

 S
 M

 S
 M

 S(=)
 M(=)

 S(=)
 M(=)

17.2.1.1 Argument

This parameter shall convey the parameters for the VT-Open confirmed service request.

17.2.1.1.1 VT-class

This parameter, of type BACnetVTClass, shall identify the name of the desired class of session to be established. The
standard enumeration is:

 DEFAULT_TERMINAL
 ANSI_X3.64
 DEC_VT52
 DEC_VT100
 DEC_VT220
 HP_700/94
 IBM_3130

The enumeration DEFAULT_TERMINAL shall refer to a terminal with the characteristics defined in 17.5. All VT-users are
required to support at least one VT-class, namely DEFAULT_TERMINAL. Other VT-class types may also be supported by a
given VT-user. It is possible to discover which VT-class types are supported by reading the VT_Classes_Supported property
of the Device object.

17.2.1.1.2 Local VT Session Identifier

The 'Local VT Session Identifier' parameter shall be an unsigned integer in the range 0-255 indicating the unique VT-session
in the requesting VT-user, which shall be used to receive VT-Data output from the opened virtual terminal. This identifier
becomes the 'Remote VT Session Identifier' to the responding VT-user.

17.2.1.2 Result (+)

The 'Result (+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameter.

17.2.1.2.1 Remote VT Session Identifier

The 'Remote VT Session Identifier' parameter shall be an unsigned integer in the range 0-255 indicating a unique VT-session
that exists within the responding VT-user's context. From the perspective of the responding VT-user, this parameter is the
'Local VT Session Identifier'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
VT-Open Service

ANSI/ASHRAE Standard 135-2012 587

17.2.1.3 Result (-)

The 'Result (-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

17.2.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

17.2.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to allocate the resources necessary to
establish a VT-session. If there is no VT-user that can provide the desired VT-class, then the 'Result (-)' response shall be
returned. If there is a VT-user that can provide the desired VT-class, then the responding BACnet-user shall attempt to establish
a new VT-session. If the VT-user does not have the resources to establish another session, then the 'Result (-)' response shall be
returned. If the VT-user has the resources, a new VT-session shall be created, the local VT-data Flags shall be initialized as
specified in 17.1.5, and a new VT-session Identifier shall be returned in the 'Result (+)' response.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
VT-Close Service

588 ANSI/ASHRAE Standard 135-2012

17.3 VT-Close Service

The VT-Close service is used to terminate a previously established VT-session with a peer VT-user. The service request may
specify a particular VT-session to be terminated or a list of VT-sessions to be terminated.

17.3.1 Structure

The structure of the VT-Close service primitives is shown in Table 17-2. The terminology and symbology used in this table are
explained in Clause 5.6.

Table 17-2. Structure of VT-Close Service Primitives

Parameter Name Req Ind Rsp Cnf
Argument
 List of Remote VT Session Identifiers

Result (+)

Result (-)
 Error Type
 List of VT Session Identifiers

 M
 M

 M(=)
 M(=)

 S

 S
 M
 C

 S(=)

 S(=)
 M(=)
 C(=)

17.3.1.1 Argument

This parameter shall convey the parameters for the VT-Close confirmed service request.

17.3.1.1.1 List of Remote VT Session Identifiers

The 'List of Remote VT Session Identifiers' parameter shall consist of a list of one or more 'Remote VT Session Identifiers'.
Each 'Remote VT Session Identifier' shall indicate the particular VT-session that is to be terminated.

17.3.1.2 Result (+)

The 'Result (+)' parameter shall indicate that the service request succeeded.

17.3.1.3 Result (-)

The 'Result (-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

17.3.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

17.3.1.3.2 List of VT Session Identifiers

If the 'Error Type' parameter returns an 'Error Code' of VT_SESSION_TERMINATION_FAILURE, then this parameter shall
be included. If the 'Error Type' parameter indicates some other error, then this parameter shall be omitted. The 'List of VT
Session Identifiers' parameter shall consist of a list of one or more 'VT Session Identifiers'. Each 'VT Session Identifier' shall
indicate the particular VT-session that could not be terminated. The Session Identifiers returned are the ones that are local with
respect to the device receiving the 'Result(-)' primitive, the requesting VT-user.

17.3.2 Service Procedure

After verifying the validity of the request, the responding BACnet-user shall attempt to terminate each VT-session specified
by the 'List of Remote VT Session Identifiers' parameter. From the viewpoint of the responding BACnet-user, these are
'Local VT Session Identifiers'. If one or more of the specified VT-sessions cannot be terminated for some reason, then all of
the specified sessions that can be terminated shall be terminated and a 'Result (-)' response shall be returned. If all of the
specified VT-sessions are successfully terminated, then the 'Result (+)' response shall be returned.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
VT-Data Service

ANSI/ASHRAE Standard 135-2012 589

17.4 VT-Data Service

The VT-Data service is used to exchange data with a peer VT-user through a previously established VT-session. The sending
BACnet-user provides new input for the peer VT-user, which may accept or reject the new data. If the new data are rejected,
then it is up to the sending BACnet-user to retry the request at a later time.

17.4.1 Structure

The structure of the VT-Data service primitives is shown in Table 17-3. The terminology and symbology used in this table are
explained in Clause 5.6.

 Table 17-3. Structure of VT-Data Service Primitives

 Parameter Name Req Ind Rsp Cnf

Argument
 VT-session Identifier
 VT-new Data
 VT-data Flag

Result (+)
 All new Data Accepted
 Accepted Octet Count

Result (-)
 Error Type

 M
 M
 M
 M

 M(=)
 M(=)
 M(=)
 M(=)

 S
 M
 C

 S
 M

 S(=)
 M(=)
 C(=)

 S(=)
 M(=)

17.4.1.1 Argument

This parameter shall convey the parameters for the VT-Data confirmed service request.

17.4.1.1.1 VT-session Identifier

The 'VT-session Identifier' parameter shall indicate the particular VT-session to which data will be sent. It is the 'Remote VT
Session Identifier' from the perspective of the requesting BACnet-user and the 'Local VT Session Identifier' from the perspective
of the responding BACnet-user.

17.4.1.1.2 VT-new Data

The 'VT-new Data' parameter shall specify the octets of new data that are to be sent to the peer VT-user.

17.4.1.1.3 VT-data Flag

The 'VT-data Flag' parameter, of type Unsigned, shall indicate the expected sequence of VT-Data requests. It shall have values
of 0 or 1, which alternate with each new VT-Data request for the same VT session.

17.4.1.2 Result (+)

The 'Result (+)' parameter shall indicate that the service request succeeded. A successful result includes the following
parameters.

17.4.1.2.1 All New Data Accepted

The 'All New Data Accepted' parameter, of type BOOLEAN, shall be equal to TRUE if all of the 'VT-new Data' octets were
accepted by the peer VT-user. In this case, the service shall be considered completed. If the 'All New Data Accepted'
parameter is FALSE, then some of the 'VT-new Data' octets were unable to be accepted by the peer VT-user. Typically this
could occur because of resource limitations in the peer VT-user. In this case, it is up to the sending BACnet user to re-issue
the VT-Data request at a later time, including only those octets that could not be accepted.

17.4.1.2.2 Accepted Octet Count

The 'Accepted Octet Count' parameter shall only be present if the 'All New Data Accepted' parameter is FALSE. In this case, the
'Accepted Octet Count' parameter shall indicate the number of octets that were actually accepted from those presented in the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
VT-Data Service

590 ANSI/ASHRAE Standard 135-2012

'VT-new Data' parameter of the service request. If the 'All New Data Accepted' parameter is TRUE, then the 'Accepted Octet
Count' parameter shall be omitted.

17.4.1.3 Result (-)

The 'Result (-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be
specified by the 'Error Type' parameter.

17.4.1.3.1 Error Type

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18.

17.4.2 Service Procedure

The sending BACnet user shall send the initial VT-Data request using a 'VT-data Flag' value of 0. Subsequent VT-Data requests
for the same session, except retries, shall alternate sequence numbers 0 and 1. New VT-Data requests with the alternate sequence
number shall not be transmitted until a 'Result(+)' has been received for the previous VT-Data request.

After verifying the validity of the request, the receiving BACnet-user shall attempt to locate the session specified by the 'VT-
session Identifier' parameter. If the VT-session cannot be located, then the 'Result (-)' response shall be returned.

If the specified VT-session is found and the received 'VT-Data Flag' is the same as the last received 'VT-Data Flag' for this
session, then this is a duplicate VT-Data request. The data shall be discarded, and a 'Result(+)' shall be returned containing the
'All New Data Accepted' and 'Accepted Octet Count' values that have been saved in the VT-session context from the previous
VT-Data response.

If the specified VT-session is found and the received 'VT-Data Flag' is different from the last received 'VT-Data Flag' for this
session, then this is a new VT-Data request. If all of the data can be added to the session's input queue, then the data shall be
queued and a 'Result(+)' shall be returned with 'All New Data Accepted' = TRUE and the 'Accepted Octet Count' absent. If all of
the data in the VT-Data request cannot be added to the session's input queue, then as many data as possible shall be queued and
the remainder discarded. A 'Result(+)' shall be returned with 'All New Data Accepted' = FALSE and 'Accepted octet Count'
equal to the number of octets that were able to be queued. In either case, the returned 'All New Data Accepted' and 'Accepted
Octet Count' values shall be saved in the VT-session context.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Default Terminal Characteristics

ANSI/ASHRAE Standard 135-2012 591

17.5 Default-terminal Characteristics

Every VT-user shall implement at least one VT-class, DEFAULT_TERMINAL. The default terminal is based on a limited set of
functions that are commonly found in all types of interactive terminal devices. The characteristics of the default terminal include
a character repertoire, control functions, and page size assumptions. No other assumptions may be made about the behavior of
the VT-user.

17.5.1 Default-terminal Character Repertoire

The default terminal character repertoire shall be defined as a particular mapping between single octet values and their
associated meanings. The default terminal character repertoire shall include three types of meanings for a given octet value:

 (a) a particular symbol (SYMBOL), e.g., "A";
 (b) a particular implied control function (CONTROL), e.g., Carriage Return;
 (c) a null meaning (NUL), e.g., Unused, shall be ignored.

Those octets specified as NUL within the default terminal character repertoire have no assumed meanings and shall be ignored if
they are received by either VT-user. The default terminal character repertoire is a subset of ASCII. Table 17.4 summarizes the
octet encodings for each character in the default terminal character repertoire. The "Octet Value" field indicates octet encodings
as decimal (base 10) values from 0 to 255. A range of octet values is indicated by two decimal numbers, e.g., 000-006.

Table 17-4. Default Terminal Character Repertoire

 Octet Value Type Meaning

 000-006
 007
 008
 009
 010
 011-012
 013
 014-031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047

 NUL
 CONTROL
 CONTROL
 CONTROL
 CONTROL
 NUL
 CONTROL
 NUL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL

none
audible indication (BEL)
non-destructive backspace (BS)
horizontal tab (TAB)
line feed (LF)
none
carriage return (CR)
none
space
! exclamation
" double quote
pound sign
$ dollar sign
% percent
& ampersand
' apostrophe
(left parenthesis
) right parenthesis
* asterisk
+ plus sign
, comma
- minus sign
. period
/ forward slash

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Default Terminal Characteristics

592 ANSI/ASHRAE Standard 135-2012

 Table 17-4. Default Terminal Character Repertoire (continued)

 Octet Value Type Meaning

 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090

 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine
: colon
; semicolon
< left angle bracket (or less than)
= equal sign
> right angle bracket (or greater than)
? question mark
@ commercial at sign
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Default Terminal Characteristics

ANSI/ASHRAE Standard 135-2012 593

 Table 17-4. Default Terminal Character Repertoire (concluded)

 Octet Value Type Meaning

 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128-255

 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 SYMBOL
 CONTROL
 NUL

[left square bracket
\ back slash
] right square bracket
^ caret
_ underscore
` accent grave
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{ left curly bracket
| vertical bar
} right curly bracket
~ tilde
 non-destructive backspace (DEL)
 none

17.5.2 Control Functions

There are six octet codes within the default terminal character repertoire that perform control functions. In this context, control
function means some action that is implied by the receipt of one of these control codes.

17.5.2.1 Octet Code 007

The octet code 007 shall represent an audible indication (BEL). Normally this would be used to sound a tone or bell signal.

17.5.2.2 Octet Codes 008 and 127

The octet code 008 shall represent a non-destructive backspace (BS). This shall cause the cursor of the virtual "output device" to
be moved one character position to the left. If the cursor is at the extreme left or beginning of a line, then BS shall have no effect.
This function shall only change the current position, without overwriting or altering any characters that have been previously
displayed on the same "line." The octet code 127 shall be considered to be equivalent to 008 and shall have the same effects.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

17. VIRTUAL TERMINAL SERVICES
Default Terminal Characteristics

594 ANSI/ASHRAE Standard 135-2012

17.5.2.3 Octet Code 013

The octet code 013 shall represent a carriage return (CR). This shall cause the cursor to be reset to the beginning of the current
"line." Subsequently received characters would then overwrite existing characters on the current "line."

17.5.2.4 Octet Code 010

The octet code 010 shall represent a line feed (LF). This shall cause the cursor to be advanced to the next line but shall not
change cursor position within the line. Typically this code is used in conjunction with CR.

17.5.2.5 Octet Code 009

The octet code 009 shall represent a horizontal advance to the next tab stop (TAB). This shall cause the cursor to be advanced
to the next tab position on the current line. This function shall only change the cursor position, without overwriting or altering
any characters that have previously been displayed on the same line. Tab stops shall exist at every eight character positions,
as shown in Figure 17-5.

17.5.3 Page Size Assumptions

There shall be only two
assumptions about page size
within the Default-terminal
context. First, pages are
assumed to have 80 columns.

Each SYMBOL character
received is assumed to occupy
one column. NUL characters
have no effect on column position. CONTROL characters have different effects, as described under 17.5.2. Second, each page is
assumed to be unconstrained in length. This is equivalent to a printer with continuous form paper.

 1 2 3 4 5
 12345678901234567890123456789012345678901234567890 ...
 T T T T T T ...
 Figure 17-5. VT tab positions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

ANSI/ASHRAE Standard 135-2012 595

18 ERROR, REJECT, and ABORT CODES

All errors associated with the BACnet protocol are enumerated according to a category called "Error Class." Within each
Error Class, the errors are further enumerated individually by "Error Code." It is thus possible for an application to take
remedial action based upon two levels of granularity.

18.1 Error Class - DEVICE

This Error Class pertains to circumstances that affect the functioning of an entire BACnet device. The presence of one of these
errors generally indicates that the entire service request has failed.

CONFIGURATION_IN_PROGRESS - A service request has been temporarily declined because the addressed
BACnet device is in the process of being configured, either by means local to the device or by means of other protocol
services.

DEVICE_BUSY - A service request has been temporarily declined because the addressed BACnet device expects
to be involved in higher priority processing for a time in excess of the usual request/confirm timeout period.

INCONSISTENT_CONFIGURATION - This error code is used when a device is misconfigured and hence cannot
process a request.

INTERNAL_ERROR - There are cases where some internal error is encountered. These are cases that are never
expected to occur, but if they do the manufacturer should be contacted.

NOT_CONFIGURED - A device may require configuration, possibly vendor-specific, before it becomes functional.
If it is not configured, it can receive BACnet requests but cannot reasonably process them.

OPERATIONAL_PROBLEM - A service request has been declined because the addressed BACnet device has
detected an operational problem that prevents it from carrying out the requested service.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.2 Error Class - OBJECT

This Error Class pertains to problems related to identifying, accessing, and manipulating BACnet objects, whether BACnet-
defined or not. Since these errors generally apply to individual object characteristics, they do not necessarily signal that an entire
service request has failed.

BUSY - A service request has been temporarily declined because the addressed object is involved in a process that
precludes execution of the service.

DYNAMIC_CREATION_NOT_SUPPORTED - An attempt has been made to create an object using an object type
that cannot be created dynamically.

FILE_FULL - This applies to the case when a File Object becomes filled to a designed limit, as opposed to a No
Space Available / Out of Memory situation.

LOG_BUFFER_FULL - The attempted operation would result in the addition of a log record to an object whose
log buffer is full.

NO_ALARM_CONFIGURED - The BACnet object referenced by the service does not support, or is not
configured for, event generation.

NO_OBJECTS_OF_SPECIFIED_TYPE - A search of the addressed BACnet device's object database has failed to
find any objects of the object type specified in the service request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

596 ANSI/ASHRAE Standard 135-2012

OBJECT_DELETION_NOT_PERMITTED - An attempt has been made to delete an object that cannot be deleted
or is currently protected from deletion.

OBJECT_IDENTIFIER_ALREADY_EXISTS - An attempt has been made to create a new object using an object
identifier already in use.

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED - The requested action cannot be executed because the
specified object does not support the optional functionality required.

READ_ACCESS_DENIED - An attempt has been made to read the properties of an object defined as inaccessible
through the BACnet protocol read services.

UNKNOWN_OBJECT - An Object_Identifier has been specified for an object that does not exist in the object
database of the addressed BACnet device.

UNSUPPORTED_OBJECT_TYPE - An object type has been specified in a service parameter that is unknown or
unsupported in the addressed BACnet device.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.3 Error Class - PROPERTY

This Error Class pertains to problems related to identifying, accessing, and manipulating the properties of BACnet objects,
whether BACnet-defined or not. Since these errors generally apply to individual property characteristics, they do not
necessarily signal that an entire service request has failed.

CHARACTER_SET_NOT_SUPPORTED - A character string value was encountered that is not a supported
character set.

DATATYPE_NOT_SUPPORTED - The data is of, or contains, a datatype not supported by this instance of this
property.

DUPLICATE_NAME - An attempt has been made to write to an Object_Name property with a value that is already
in use in a different Object_Name property within the device.

DUPLICATE_OBJECT_ID - An attempt has been made to write to an Object_Identifier property with a value that is
already in use in a different Object_Identifier within the same device.

INCONSISTENT_SELECTION_CRITERION - A property has been referenced with a datatype inconsistent with
the 'Comparison Value' specified in an 'Object Selection Criteria' service parameter. This error would arise, for
example, if an analog property were compared against a Boolean constant, or vice-versa.

INVALID_ARRAY_INDEX - An attempt was made to access an array property using an array index that is outside
the range permitted for this array.

INVALID_DATATYPE - The datatype of a property value specified in a service parameter does not match the
datatype of the property referenced by the specified Property_Identifier.

LOGGED_VALUE_PURGED - A previously logged value was purged due to a change to the list of logged
properties.

NO_PROPERTY_SPECIFIED - No data was logged due to a device or object instance equal to 4194303 in the list
of logged properties.

NOT_CONFIGURED_FOR_TRIGGERED_LOGGING - The attempted logging operation is only allowed when
the Logging_Type property has the value TRIGGERED.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

ANSI/ASHRAE Standard 135-2012 597

NOT_COV_PROPERTY - The property is not conveyed by COV notification.

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED - An attempt has been made to write a value to a property
that would require the device to exhibit non-supported optional functionality.

PROPERTY_IS_NOT_AN_ARRAY - An attempt has been made to access a property as an array and that property
does not have an array datatype.

READ_ACCESS_DENIED - An attempt has been made to read a property defined as inaccessible through the
BACnet protocol read services.

UNKNOWN_PROPERTY - A Property_Identifier has been specified in a service parameter that is unknown or
unsupported in the addressed BACnet device for objects of the referenced object type.

UNKNOWN_FILE_SIZE - This error code is returned when the File_Size property is read and the size of the file is
unknown.

VALUE_NOT_INITIALIZED - An attempt was made to read a property whose value has not been initialized.

VALUE_OUT_OF_RANGE - An attempt has been made to write to a property with a value that is outside the range
of values defined for the property.

VALUE_TOO_LONG - A property value is too long to send in the current message context and an Abort is not an
option, such as when sending an UnconfirmedCOVNotification.

WRITE_ACCESS_DENIED - An attempt has been made to write to a property defined as inaccessible through the
BACnet protocol write services.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.4 Error Class - RESOURCES

This Error Class pertains to problems related to the resources of a BACnet device that affect its capacity to carry out protocol
service requests.

NO_SPACE_FOR_OBJECT - An attempt to create an object has failed because not enough dynamic memory space
exists in the addressed BACnet device.

NO_SPACE_TO_ADD_LIST_ELEMENT - An attempt to add an element to a list has failed because not enough
dynamic memory space exists in the addressed BACnet device.

NO_SPACE_TO_WRITE_PROPERTY - An attempt to write a property has failed because not enough dynamic
memory space exists in the addressed BACnet device.

OUT_OF_MEMORY - There are many internal operations during the processing of typical messages that may rely
on acquiring dynamically allocated space. This indicates the failure of such an allocation.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.5 Error Class - SECURITY

This Error Class pertains to problems related to security services. Without exception, these errors signal the inability of the
responding BACnet-user to carry out the desired service in its entirety and are thus "fatal".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

598 ANSI/ASHRAE Standard 135-2012

ACCESS_DENIED - The requesting device did not provide security credentials of sufficient authorization to allow
the request. This error is used when READ_ACCESS_DENIED and WRITE_ACCESS_DENIED are not
appropriate.

BAD_DESTINATION_ADDRESS - The destination address in the request does not match that of the receiver.

BAD_DESTINATION_DEVICE_ID - The Destination Device Instance in the security wrapper does not match the
local device instance.

BAD_SIGNATURE - The signature in a secure packet was incorrect.

BAD_SOURCE_ADDRESS - The source address in a secure packet was incorrect or missing.

BAD_TIMESTAMP - The timestamp in a secure packet was not within the allowable timestamp window of the
receiver.

CANNOT_USE_KEY - A key was provided to the device via an Update-Key-Set or Update-Distribution-Key
service that is based on an algorithm that the device does not support.

CANNOT_VERIFY_MESSAGE_ID - A device could not accurately ascertain whether it sent a challenged
message or not.

CORRECT_KEY_REVISION - The device's key sets are current.

DESTINATION_DEVICE_ID_REQUIRED - The Destination Device Instance in the security header of a unicast
message had the value 4194303 and the destination device requires this value to be set correctly for the operation
requested.

DUPLICATE_MESSAGE - A message with the provided Message Id has already been received from the source
device within the security time window.

ENCRYPTION_NOT_CONFIGURED - The device is not configured to accept encrypted messages.

ENCRYPTION_REQUIRED - The device requires encryption for the requested operation.

INCORRECT_KEY - The key provided to secure the message does not indicate sufficient authority to perform the
requested operation.

INVALID_KEY_DATA - A key was received that contained invalid data.

KEY_UPDATE_IN_PROGRESS - A key update is already in progress.

MALFORMED_MESSAGE - The message size is invalid, or security parameters are missing or malformed.

NOT_KEY_SERVER - A device received a request that only a Key Server configured to service the message
source could fulfill.

PASSWORD_FAILURE - The 'Operator Name' and 'Operator Password' did not associate correctly.

READ_ACCESS_DENIED - The requesting device did not provide security credentials of sufficient authorization
to allow the request.

SECURITY_NOT_CONFIGURED - The device is not configured for security on the receiving port.

SOURCE_SECURITY_REQUIRED - The operation requested requires that the source secure or encrypt the
request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

ANSI/ASHRAE Standard 135-2012 599

SUCCESS - The security operation was successful.

TOO_MANY_KEYS - The device cannot be configured with the number of keys provided for the key set.

UNKNOWN_AUTHENTICATION_TYPE - The authentication method in a secure message is unknown to the
receiving device.

UNKNOWN_KEY - The key used to secure message is unknown to the receiving device.

UNKNOWN_KEY_REVISION - The key revision used to secure message is unknown to the receiving device.

UNKNOWN_SOURCE_MESSAGE - The device did not send the challenged message.

WRITE_ACCESS_DENIED - The requesting device did not provide security credentials of sufficient
authorization to allow the request.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.6 Error Class - SERVICES

This Error Class pertains to problems related to the execution of protocol service requests, whether BACnet-defined or not.

CHARACTER_SET_NOT_SUPPORTED - A character string value was encountered that is not a supported
character set.

COMMUNICATION_DISABLED - Communication has been disabled due to receipt of a
DeviceCommunicationControl request.

COV_SUBSCRIPTION_FAILED - COV Subscription failed for some reason.

FILE_ACCESS_DENIED - Generated in response to an AtomicReadFile or AtomicWriteFile service request for
access to a file that is currently locked or otherwise not accessible.

INCONSISTENT_OBJECT_TYPE - A device receives a service request for an object whose type is inconsistent
with the service requested, or for an object that doesn't support the service. An example is an AtomicReadFile request
received for an object that is not a File object.

INCONSISTENT_PARAMETERS - A conflict exists because two or more of the parameters specified in the service
request are mutually exclusive.

INVALID_CONFIGURATION_DATA - The configuration data provided was invalid or corrupt.

INVALID_EVENT_STATE - The 'Event State Acknowledged' parameter conveyed by an AcknowledgeAlarm
service request does not match the 'To State' parameter of the most recent occurrence of the same transition type of
the event being acknowledged.

INVALID_FILE_ACCESS_METHOD - Generated in response to an AtomicReadFile or AtomicWriteFile request
that specifies a 'File Access Method' that is not valid for the specified file.

INVALID_FILE_START_POSITION - Generated in response to an AtomicReadFile or AtomicWriteFile request
that specifies an invalid 'File Start Position' or invalid 'File Start Record' parameter.

INVALID_PARAMETER_DATATYPE - The datatype of a value specified for a service parameter is not
appropriate to the parameter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

600 ANSI/ASHRAE Standard 135-2012

INVALID TAG - This error indicates that a syntax error was encountered in the request.

INVALID_TIME_STAMP - The 'Time Stamp' parameter conveyed by an AcknowledgeAlarm service request does
not match the time of the most recent occurrence of the event being acknowledged.

LIST_ELEMENT_NOT_FOUND - A list data item required for carrying out the service request was not found.

MISSING_REQUIRED_PARAMETER - A parameter required for the execution of a service request has not
been supplied.

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED - The parameters of a service are such that the device
would be required to exhibit non-supported optional functionality.

PARAMETER_OUT_OF_RANGE

PROPERTY_IS_NOT_A_LIST - An attempt has been made to access a property via either the AddListElement
service or the RemoveListElement service and that property does not have a list datatype.

PROPERTY_IS_NOT_AN_ARRAY - An attempt has been made to access a property as an array and that property
does not have an array datatype.

SERVICE_REQUEST_DENIED - A request has been made to execute a service for which the requesting BACnet
device does not have the appropriate authorization.

UNKNOWN_SUBSCRIPTION - No subscription can be found that matches the specified object, property, and
process identifier for the received notification.

VALUE_OUT_OF_RANGE - The requested action cannot be executed because one of the parameters provided is
outside of the range supported by the device.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class.

18.7 Error Class - COMMUNICATION

This Error Class pertains to problems related to network communications. These codes indicate problems reported by a
remote device in abort and reject PDUs, or they indicate problems detected internally. These error codes are stored in
properties of objects whose operation involves the network communications, such as the Trend Log object's Log_Buffer
property. This Error Class shall not be conveyed in error PDUs.

ABORT_APDU_TOO_LONG - An APDU was received from the local application program whose overall size
exceeds the maximum transmittable length or exceeds the maximum number of segments accepted by the server.

ABORT_APPLICATION_EXCEEDED_REPLY_TIME - A device receives a confirmed request but its
application layer has not responded within the published APDU Timeout period.

ABORT_BUFFER_OVERFLOW - An input buffer capacity has been exceeded in this device or was reported by
the remote device.

ABORT_INSUFFICIENT_SECURITY - The transaction is aborted due to receipt of a PDU secured
differently than the original PDU of the transaction.

ABORT_INVALID_APDU_IN_THIS_STATE - An APDU was received, by this device or the remote device,
that was not expected in the present state of the Transaction State Machine.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

ANSI/ASHRAE Standard 135-2012 601

ABORT_OUT_OF_RESOURCES - A device receives a request but cannot start processing because it has run out
of some internal resource.

ABORT_PREEMPTED_BY_HIGHER_PRIORITY_TASK - The transaction was aborted to permit higher
priority processing by this device or the remote device.

ABORT_SECURITY_ERROR - The Transaction is aborted due to receipt of a security error.

ABORT_SEGMENTATION_NOT_SUPPORTED - An Abort PDU specifying an abort code of
SEGMENTATION_NOT_SUPPORTED was sent or received by this device.

ABORT_TSM_TIMEOUT - A transaction state machine timer exceeded the timeout applicable for the current
state, causing the transaction machine to abort the transaction.

ABORT_PROPRIETARY - An abort PDU with a proprietary reason was sent or received by this device.

ABORT_WINDOW_SIZE_OUT_OF_RANGE - A device receives a request that is segmented, or receives any
segment of a segmented request, where the Proposed Window Size field of the PDU header is either zero or greater
than 127.

ABORT_OTHER - This device sent or received an abort PDU with a reason of OTHER.

ADDRESSING_ERROR - A network request failed due to an addressing error.

DELETE_FDT_ENTRY_FAILED - A Delete-Foreign-Device-Table-Entry request failed.

DISTRIBUTE_BROADCAST_FAILED - A broadcast network request failed due to a failure of a Distribute-
Broadcast-To-Network.

INVALID_TAG - This error indicates that an improper tag was found when parsing the response to a confirmed
service request or an unconfirmed service request.

MESSAGE_TOO_LONG - A network request failed due a message that was too long to make it to its destination.

NETWORK_DOWN - This error indicates that the local network connection was not established when the request
was initiated.

NOT_ROUTER_TO_DNET - A Reject-Message-To-Network with reason 1 was returned in response to a network
request.

READ_BDT_FAILED - A Read-Broadcast-Distribution-Table request failed.

READ_FDT_FAILED - A Read-Foreign-Device-Table request failed.

REGISTER_FOREIGN_DEVICE_FAILED - A Register-Foreign-Device request failed.

REJECT_BUFFER_OVERFLOW - An input buffer capacity has been exceeded in this device or has been
reported by the remote device.

REJECT_INCONSISTENT_PARAMETERS - The remote device sent a reject PDU with a reason of
INCONSISTENT_PARAMETERS.

REJECT_INVALID_PARAMETER_DATA_TYPE - The remote device sent a reject PDU with a reason of
INVALID_PARAMETER_DATATYPE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

602 ANSI/ASHRAE Standard 135-2012

REJECT_INVALID_TAG - This device or the remote device encountered an invalid tag while parsing a message.

REJECT_MISSING_REQUIRED_PARAMETER - The remote device sent a reject PDU with a reason of
MISSING_REQUIRED_PARAMETER.

REJECT_PARAMETER_OUT_OF_RANGE - The remote device sent a reject PDU with a reason of
PARAMETER_OUT_OF_RANGE.

REJECT_TOO_MANY_ARGUMENTS - The remote device sent a reject PDU with a reason of
TOO_MANY_ARGUMENTS.

REJECT_UNDEFINED_ENUMERATION - The remote device sent a reject PDU with a reason of
UNDEFINED_ENUMERATION.

REJECT_UNRECOGNIZED_SERVICE - The remote device sent a reject PDU with a reason of
UNRECOGNIZED_SERVICE.

REJECT_PROPRIETARY - This reject reason indicates that a proprietary reject reason was sent or received by
this device.

REJECT_OTHER - The remote device sent a reject PDU with a reason of OTHER.

ROUTER_BUSY - A network request failed due to a router en-route being busy.

SECURITY_ERROR - A network request failed due a security error en-route.

TIMEOUT - This error indicates that a request timed out before a response was received from the remote device.

UNKNOWN_DEVICE - This error indicates that a request was not initiated because the remote device could not be
found.

UNKNOWN_ROUTE - This error indicates that a request was not initiated because a route to the network where
the remote device resides could not be found.

UNKNOWN_NETWORK_MESSAGE - A network request failed that relied on a network message unknown to
the receiver.

WRITE_BDT_FAILED - A Write-Broadcast-Distribution-Table request failed.

OTHER - This error indicates that a communication error occurred other than those previously enumerated for this
Error Class.

18.8 Error Class - VT

This Error Class pertains to problems related to the execution of Virtual Terminal services.

NO_VT_SESSIONS_AVAILABLE - This error indicates that the target device could not fulfill a VT-Open request
because of resource limitations.

UNKNOWN_VT_CLASS - This error indicates that the 'VT-Class' specified in a VT-Open request was not
recognized by the target device.

UNKNOWN_VT_SESSION - This error indicates that the 'VT-Session ID' specified in a VT-Data or VT-Close
request was not recognized by the target device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

ANSI/ASHRAE Standard 135-2012 603

VT_SESSION_ALREADY_CLOSED - This error indicates that an attempt has been made to close a VT-session
that has been previously terminated.

VT_SESSION_TERMINATION_FAILURE - This error indicates that one of the 'VT-Sessions' specified in a VT-
Close request could not be released for some implementation-dependent reason.

OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class

18.9 Reject Reason

Only confirmed request PDUs can be rejected. The possible reasons for rejecting the PDU are enumerated in this subclause.

BUFFER_OVERFLOW - A buffer capacity has been exceeded.

INCONSISTENT_PARAMETERS - Generated in response to a confirmed request APDU that omits a conditional
service argument that should be present or contains a conditional service argument that should not be present. This
condition could also elicit a Reject PDU with a Reject Reason of INVALID_TAG.

INVALID_PARAMETER_DATA_TYPE - Generated in response to a confirmed request APDU in which the
encoding of one or more of the service parameters does not follow the correct type specification. This condition could
also elicit a Reject PDU with a Reject Reason of INVALID_TAG.

INVALID_TAG - While parsing a message, an invalid tag was encountered. Since an invalid tag could confuse the
parsing logic, any of the following Reject Reasons may also be generated in response to a confirmed request containing
an invalid tag: INCONSISTENT_PARAMETERS, INVALID_PARAMETER_DATA_TYPE,
MISSING_REQUIRED_PARAMETER, and TOO_MANY_ARGUMENTS.

MISSING_REQUIRED_PARAMETER - Generated in response to a confirmed request APDU that is missing at
least one mandatory service argument. This condition could also elicit a Reject PDU with a Reject Reason of
INVALID_TAG.

PARAMETER_OUT_OF_RANGE - Generated in response to a confirmed request APDU that conveys a parameter
whose value is outside the range defined for this service.

TOO_MANY_ARGUMENTS - Generated in response to a confirmed request APDU in which the total number of
service arguments is greater than specified for the service. This condition could also elicit a Reject PDU with a Reject
Reason of INVALID_TAG.

UNDEFINED_ENUMERATION - Generated in response to a confirmed request APDU in which one or more of the
service parameters is decoded as an enumeration that is not defined by the type specification of this parameter.

UNRECOGNIZED_SERVICE - Generated in response to a confirmed request APDU in which the Service Choice
field specifies an unknown or unsupported service.

OTHER - Generated in response to a confirmed request APDU that contains a syntax error for which an error code has
not been explicitly defined.

18.10 Abort Reason

APDU_TOO_LONG - An APDU was received from the local application program whose overall size exceeds the
maximum transmittable length or exceeds the maximum number of segments accepted by the server.

APPLICATION_EXCEEDED_REPLY_TIME - A device receives a confirmed request but its application layer has
not responded within the published APDU Timeout period.

BUFFER_OVERFLOW - A buffer capacity has been exceeded.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

18. ERROR, REJECT, AND ABORT CODES

604 ANSI/ASHRAE Standard 135-2012

INSUFFICIENT_SECURITY - The transaction is aborted due to receipt of a PDU secured differently than the original
PDU of the transaction.

INVALID_APDU_IN_THIS_STATE - Generated in response to an APDU that is not expected in the present state of
the Transaction State Machine.

OUT_OF_RESOURCES - A device receives a request but cannot start processing because it has run out of some
internal resource.

PREEMPTED_BY_HIGHER_PRIORITY_TASK - The transaction shall be aborted to permit higher priority
processing.

SECURITY_ERROR - The Transaction is aborted due to receipt of a security error.

SEGMENTATION_NOT_SUPPORTED - Generated in response to an APDU that has its segmentation bit set to
TRUE when the receiving device does not support segmentation. It is also generated when a BACnet-ComplexACK-
PDU is large enough to require segmentation but it cannot be transmitted because either the transmitting device or the
receiving device does not support segmentation.

TSM_TIMEOUT - A transaction state machine timer exceeded the timeout applicable for the current state, causing
the transaction machine to abort the transaction.

WINDOW_SIZE_OUT_OF_RANGE - A device receives a request that is segmented, or receives any segment of a
segmented request, where the Proposed Window Size field of the PDU header is either zero or greater than 127.

OTHER - This abort reason is returned for a reason other than any of those previously enumerated.

18.11 Confirmed Service Common Errors

Some errors are generic and can occur when any confirmed service is requested. The 'Error Class' and 'Error Code' to be
returned for specific situations are as follows:

Situation Error Class Error Code

During the processing of the request, dynamically
allocated memory was not available at an intermediate
step so the request cannot be completed.

RESOURCES OUT_OF_MEMORY

An unexpected internal error occurred that cannot be
recovered from.

DEVICE INTERNAL_ERROR

The device is not completely configured and therefore
can't fulfill the request.

DEVICE NOT_CONFIGURED

Some misconfiguration is preventing the request from
being fulfilled.

DEVICE INCONSISTENT_CONFIGURATION

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

ANSI/ASHRAE Standard 135-2012 605

19 BACnet PROCEDURES

This clause defines several procedures that are commonly required in building automation and control systems. Each
procedure makes use of BACnet capabilities defined elsewhere in this standard.

19.1 Backup and Restore

This clause describes the procedures to be used to backup and restore the configuration of BACnet devices.

19.1.1 The Backup and Restore Procedures

In BACnet building control systems, many devices will have configuration data that is set up by a vendor's proprietary
configuration tool. This setup may consist of network visible BACnet objects and/or non-network visible settings. This
section outlines the standard method that BACnet devices will employ if an interoperable device backup and restore feature is
to be provided.

The backup and restore procedures use File objects to hold and transfer the configuration data. The content and format of the
configuration files is a local matter. The choice of whether to use stream-based files or record-based files is a local matter.
The services required to support the backup and restore procedures are ReinitializeDevice, ReadProperty, WriteProperty,
AtomicWriteFile, AtomicReadFile, and optionally CreateObject, ReadPropertyMultiple, or WritePropertyMultiple.

19.1.2 Backup

For the purposes of this discussion, the device performing the backup procedure will be referred to as device A, and the
device being backed up will be device B.

19.1.2.1 Initiation of the Backup Procedure

Device A sends a ReinitializeDevice(STARTBACKUP, <password>) message to device B. Device A will await a response
from device B before continuing with the backup procedure.

19.1.2.2 Preparation for Backup

Before starting a backup procedure, device A shall read the Backup_Preparation_Time property, if present, from device B's
Device object. If the property is not present in device B, the value shall be assumed to be 0.

Upon receipt of the ReinitializeDevice(STARTBACKUP, <password>)message, if device B is able to perform a backup
procedure, device B shall respond with a 'Result(+)' to the ReinitializeDevice service request. Device B shall set its
Backup_And_Restore_State to PREPARING_FOR_BACKUP. Upon receipt of a Result(+), device A shall monitor the
Backup_And_Restore_State property and not continue with the backup until the property contains the value
PERFORMING_A_BACKUP. During the time period immediately following the Result(+) defined by the
Backup_Preparation_Time, device B is allowed to ignore requests from device A and as such device A shall not consider a
lack of response during this period to be an error condition. It is a local matter whether device A initiates the monitoring of
the Backup_And_Restore_State property during or after this time period. Once device B changes its
Backup_And_Restore_State to PERFORMING_A_BACKUP, it shall not ignore requests from device A regardless of
whether the Backup_Preparation_Time time period has expired.

If device B is unable to perform a backup procedure or is already performing a backup procedure, then it will respond to the
ReinitializeDevice service request with a 'Result(-)' response. Assuming device B supports the backup procedure and the
request was properly formulated, the valid Error Class:Error Codes that can be returned are :

DEVICE:CONFIGURATION_IN_PROGRESS - if device B is already processing a backup or a restore request.

SECURITY:PASSWORD_FAILURE - if the password that was provided was incorrect or if a password is required and one
was not provided.

After device B responds to the ReinitializeDevice request with a 'Result(+)', device B has Backup_Preparation_Time seconds
to prepare for the backup procedure. During this period of time, device B is not required to respond to any BACnet service
requests. Once this period of time elapses, device B is required to respond to read requests for properties of the Device object.
When device B has successfully completed its backup preparations in their entirety, the configuration File objects shall exist

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

606 ANSI/ASHRAE Standard 135-2012

in the device and the Backup_And_Restore_State property shall be set to PERFORMING_A_BACKUP. The creation of
configuration File objects during this time shall not have an effect on the Database_Revision property.

If device B is unable to successfully complete its backup preparations, it shall set its Backup_And_Restore_State to
BACKUP_FAILURE. Device A shall end the backup procedure when it detects device B's state is set to
BACKUP_FAILURE.

It is a local matter as to whether device B will respond to other requests while performing a backup procedure. The exception
to this is that device B is required to accept and fulfill read requests by device A that consist of accesses to device B's Device
object and/or its configuration File objects. Note that Device B is allowed to return an UNKNOWN_FILE_SIZE error in
response to requests for the File_Size property of any of its configuration files if the file size is unknown. Any services that
are rejected due to an in-progress backup procedure will be rejected with an error class of DEVICE and error code of
DEVICE_BUSY.

It is a local matter as to whether device B will continue to perform control actions while it is in backup mode. If device B
changes its operational behavior during a backup procedure, then the System_Status property of the Device object shall be set
to BACKUP_IN_PROGRESS.

19.1.2.3 Loading the Backup Parameters

Upon receipt of a 'Result(+)' response from device B to the ReinitializeDevice(STARTBACKUP, <password>) message,
device A will read the Configuration_Files property of the Device object. This property will be used to determine the files to
read and in what order the files will be read. The value of the Configuration_Files property is not guaranteed to contain a
complete or correct set of configuration File object references before the backup request is accepted by device B.

19.1.2.4 Backing Up the Configuration Files

Once device A has determined the files that make up the device configuration image, device A will determine the type of
each file and will use the AtomicReadFile service to read each configuration file from device B. Each file will be read as a
stream of bytes, or as a sequence of records depending on the File_Access_Method property of the File object. Stream access
files will be read in byte order and record access files will be read in record order. The files will be read in the same order as
they appear in the Configuration_Files property.

It is a local matter as to what device A does with the configuration files, although the intent of the service is to allow an
operator to archive the setup of device B such that device B may be restored at a later date should its configuration become
corrupt.

It is left up to the implementor of device A as to whether the files read from device B will be made available for examination
by tools developed by the implementor of device B. It is recommended that record access files be stored on device A as a
sequence of BACnet OCTET STRINGS.

19.1.2.5 Ending the Backup Procedure

When all of the configuration files have been read, device A sends a ReinitializeDevice(ENDBACKUP, <password>)
message to device B. Device B will perform whatever actions are required to complete the backup in order to place the
device back into the state it was in before the backup procedure or into any other state as defined by the vendor. Device B
must not remain in the BACKUP_IN_PROGRESS mode after the backup procedure has ended.

If device A needs to abort the backup for any reason (i.e., the user aborts the procedure, device B fails to allow reads from a
configuration file, or device A detects any other condition that inhibits the backup procedure), device A shall attempt to send
ReinitializeDevice(ENDBACKUP, <password>) to device B. Upon receipt of this message, device B shall end the backup
procedure. If the backup procedure is aborted, device A should not assume that the configuration files are still valid and
continue to read them.

The receipt of the ReinitializeDevice(ENDBACKUP, <password>) message shall cause device B to exit backup mode.

If device B does not receive any messages related to the backup procedure from device A for the number of seconds specified
in the Backup_Failure_Timeout property of its Device object, device B should assume that the backup procedure has been
aborted, and device B should exit backup mode. A message related to the backup procedure is defined to be any

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

ANSI/ASHRAE Standard 135-2012 607

ReadProperty, ReadPropertyMultiple, WriteProperty, WritePropertyMultiple, CreateObject, or AtomicReadFile request that
directly accesses a configuration File object.

When the backup procedure ends, device B shall set its Backup_and_Restore_State to IDLE. The deletion of configuration
File objects during the backup procedure shall not have an effect on the Database_Revision property.

19.1.3 Restore

For the purposes of this discussion, the device performing the restore procedure will be referred to as device A, and the
device being restored will be device B.

19.1.3.1 Initiation of the Restore Procedure

Device A sends a ReinitializeDevice(STARTRESTORE, <password>) message to device B. Device A will await a response
from device B before continuing the restore procedure.

19.1.3.2 Preparation for Restore

Before starting a restore procedure, device A shall read the Restore_Preparation_Time property from device B's Device
object. If the property is not present in device B, the value shall be assumed to be 0.

Upon receipt of a restore request, if device B is able to perform a restore procedure, device B shall respond with a 'Result(+)'
to the ReinitializeDevice service request. Device B shall set its Backup_And_Restore_State to
PREPARING_FOR_RESTORE.

If device B is unable to perform a restore procedure, then it will respond to the ReinitializeDevice service request with a
'Result(-)' response. Assuming device B supports the restore procedure and the request was properly formulated, the valid
Error Class:Error Codes that can be returned are:

DEVICE:CONFIGURATION_IN_PROGRESS - if device B is already processing a backup or a restore request.

SECURITY:PASSWORD_FAILURE - if the password that was provided was incorrect or if a password is required and one
was not provided.

After device B responds to the ReinitializeDevice request with a 'Result(+)', device B has Restore_Preparation_Time seconds
to prepare for the restore procedure. During this period of time, device B is not required to respond to any BACnet service
requests. Once this period of time elapses, device B is required to respond to read requests for properties of the Device object.
When device B has completed its restore preparations in their entirety, the configuration File objects shall exist in the device,
or device B shall be able to accept CreateObject requests from device A to create the configuration File objects, and the
Backup_And_Restore_State property shall be set to PERFORMING_A_RESTORE. Once device B changes its
Backup_And_Restore_State to PERFORMING_A_RESTORE, it shall not ignore requests from device A regardless of
whether the Restore_Preparation_Time time period has expired. The creation of configuration File objects during the Restore
procedure, whether automatically created by the device or by the execution of the CreateObject service, shall not impact the
value of the Database_Revision property.

If device B is unable to successfully complete its restore preparations, it shall set its Backup_And_Restore_State to
RESTORE_FAILURE. Device A shall abort the restore procedure when it detects device B's state is set to
RESTORE_FAILURE.

Upon receipt of a Result(+), device A shall monitor the Backup_And_Restore_State property and not continue with the
restore until the property contains the value PERFORMING_A_RESTORE. During the time period immediately following
the Result(+) defined by the Restore_Preparation_Time, device B is allowed to ignore requests from device A and as such
device A shall not consider a lack of response during this period to be an error condition. It is a local matter whether device A
initiates the monitoring of the Backup_And_Restore_State property during or after this time period.

It is a local matter as to whether device B will respond to other requests while it is in restore mode. The exception to this is
that device B must accept and fulfill read and write requests by device A that consist of accesses to device B's Device object
and/or its configuration File objects. Any services that are rejected due to an in-progress backup procedure will be rejected
with an error class of DEVICE and error code of CONFIGURATION_IN_PROGRESS.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

608 ANSI/ASHRAE Standard 135-2012

Device B must be prepared to answer device A's requests for information from device B's Device object. If device B cannot
service requests from devices other than device A, then device B shall reject those services with an error class of DEVICE
and an error code of CONFIGURATION_IN_PROGRESS.

It is a local matter as to whether device B will continue to perform control actions while it is in restore mode. If device B
changes its operational behavior during a restore procedure, then the System_Status property of the Device object shall be set
to DOWNLOAD_IN_PROGRESS.

19.1.3.3 Restoring the Configuration Files

Device A will use the AtomicWriteFile service to write each configuration file to device B. If any of the files do not exist in
device B, then device A will attempt to create the files using the CreateObject service. Any files that already exist in the
device, and differ in size from the image being written to them, will be truncated by writing 0 to the File_Size property of the
File object before the contents are written to the file.

The configuration files will be written as a stream of bytes, or as a sequence of records, depending on the value of the
File_Access_Method property of the File object. Note that there is no standard file format for record-based files, whereas any
file can be written as a stream of bytes.

Each configuration file written to the device should be a valid configuration file obtained from the vendor, from a vendor's
configuration tool, or from a previous backup procedure. The files will be written to the device in the same order as they were
retrieved during the backup procedure, or as specified by the vendor if the files were obtained from another source.

Device B is allowed to reject any write operation to the configuration file if it has determined that the content of the write is
invalid (internal CRC error, Invalid type code, etc.). If this is the case, device B will respond with an error class of
SERVICES and an error code of INVALID_CONFIGURATION_DATA. It is a local matter as to whether device A will
retry the request and how many times device A will retry, but device A should abort the restore procedure if device B
continues to return an error.

19.1.3.4 Ending the Restore Procedure

When device A has completely written all of the configuration files to device B, device A shall send
ReinitializeDevice(ENDRESTORE, <password>). Device B will perform whatever actions are required to complete the
restore procedure within Restore_Completion_Time seconds after responding with a Result(+), which should include a
validation of the restored configuration. If the validation fails, it is a local matter as to what device B will do beyond
changing its System_Status property to something other than DOWNLOAD_IN_PROGRESS.

If device A needs to abort the restore for any reason (i.e., the user aborts the procedure, device B fails to allow writes to a
configuration file, or device A detects any other condition that inhibits the restore procedure), device A shall attempt to send
ReinitializeDevice(ABORTRESTORE, <password>) to device B. Upon receipt of this message, device B shall abort the
restore procedure within Restore_Completion_Time seconds after responding with a Result(+).

If device B does not receive any messages related to the restore procedure from device A for the number of seconds specified
in the Backup_Failure_Timeout property of its Device object, device B should assume that the restore procedure has been
aborted, and device B should exit restore mode. A message related to the restore procedure is defined to be any
ReadProperty, ReadPropertyMultiple, WriteProperty, WritePropertyMultiple, CreateObject, or AtomicWriteFile request that
directly accesses a configuration File object.

When the restore procedure ends successfully, device B shall set its Backup_and_Restore_State to IDLE and shall set the
value of the Database_Revision property to the value it had before the restore, and then increment it.

Once the restore procedure has ended, whether it was successful or not, device B must change its System_Status property to
something other than DOWNLOAD_IN_PROGRESS.

If the restore is successful, no other actions by device A shall be required, and device B will update the Last_Restore_Time
property in its Device object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

ANSI/ASHRAE Standard 135-2012 609

If the restore failed or was aborted and device B is unable to recover its old configuration, or cannot establish a default
configuration, device B shall set its System_Status to DOWNLOAD_REQUIRED. Every attempt shall be made to leave
device B in a state that will accept additional restore procedures.

19.2 Command Prioritization

In building control systems, an object may be manipulated by a number of entities. For example, the present value of a Binary
Output object may be set by several applications, such as demand metering, optimum start/stop, etc. Each such application
program has a well-defined function it needs to perform. When the actions of two or more application programs conflict with
regard to the value of a property, there is a need to arbitrate between them. The objective of the arbitration process is to ensure
the desired behavior of an object that is manipulated by several program (or non-program) entities. For example, a start/stop
program may specify that a particular Binary Output should be ON, while demand metering may specify that the same Binary
Output should be OFF. In this case, the OFF should take precedence. An operator may be able to override the demand metering
program and force the Binary Output ON, in which case the ON should take precedence.

In BACnet, this arbitration is provided by a prioritization scheme that assigns varying levels of priorities to commanding entities
on a system-wide basis. Each object that contains a commandable property is responsible for acting upon prioritized commands
in the order of their priorities. While there is a trade-off between the complexity and the robustness of any such mechanism, the
scheme described here is intended to be effective but applicable to even simple BACnet devices.

The following property types are involved in the prioritization mechanism:

 (a) Commandable Property: Each object that supports command prioritization has one or more distinguished properties

that are referred to as "Commandable Properties." The value of these properties is controlled by the command
prioritization mechanism.

 (b) Priority_Array: This property is a read-only array that contains prioritized commands or NULLs in the order of

decreasing priority. The highest priority (lowest array index) with a non-NULL value is the active command.

 (c) Relinquish_Default: This property shall be of the same datatype (and engineering units) as the Commandable Property.

When all entries in the Priority_Array are NULL, the value of the Commandable Property shall have the value
specified by the Relinquish_Default property.

Although the Command object is used to write a set of values to a group of object properties, command prioritization is not
involved unless the properties are commandable.

19.2.1 Prioritization Mechanism

For BACnet objects, commands are prioritized based upon a fixed number of priorities that are assigned to command-issuing
entities. A prioritized command (one that is directed at a commandable property of an object) is performed via a WriteProperty
service request or a WritePropertyMultiple service request. The request primitive includes a conditional 'Priority' parameter that
ranges from 1 to 16. Each commandable property of an object has an associated priority table that is represented by a
Priority_Array property. The Priority_Array consists of an array of commanded values in order of decreasing priority. The first
value in the array corresponds to priority 1 (highest), the second value corresponds to priority 2, and so on, to the sixteenth value
that corresponds to priority 16 (lowest).

An entry in the Priority_Array may have a commanded value or a NULL. A NULL value indicates that there is no existing
command at that priority. An object continuously monitors all entries within the priority table in order to locate the entry with
the highest priority non-NULL value and sets the commandable property to this value.

A commanding entity (application program, operator, etc.) may issue a command to write to the commandable property of an
object, or it may relinquish a command issued earlier. Relinquishing of a command is performed by a write operation similar to
the command itself, except that the commandable property value is NULL. Relinquishing a command places a NULL value in
the Priority_Array corresponding to the appropriate priority. This prioritization approach shall be applied to local actions that
change the value of commandable properties as well as to write operations via BACnet services.

If an attempt is made to write to a commandable property without explicitly specifying the priority, a default priority of 16 (the
lowest priority) shall be assumed. If an attempt is made to write to a property that is not commandable with a specified priority,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

610 ANSI/ASHRAE Standard 135-2012

the priority shall be ignored. The Priority_Array property is read-only. Its values are changed indirectly by writing to the
commandable property itself.

19.2.1.1 Commandable Properties

The prioritization scheme is applied to certain properties of objects. The standard commandable properties and objects are as
follows:

 OBJECT COMMANDABLE PROPERTY
 Analog Output Present_Value
 Binary Output Present_Value
 Multi-state Output Present_Value
 Multi-state Value Present_Value
 Analog Value Present_Value
 Binary Value Present_Value
 Access Door Present_Value
 BitString Value Present_Value
 CharacterString Value Present_Value
 Date Value Present_Value
 Date Pattern Value Present_Value
 DateTime Value Present_Value
 DateTime Pattern Value Present_Value
 Large Analog Value Present_Value
 OctetString Value Present_Value
 Integer Value Present_Value
 Time Value Present_Value
 Time Pattern Value Present_Value
 Positive Integer Value Present_Value
 Channel Present_Value (see 19.2.1.6)
 Lighting Output Present_Value

The designated properties of the Analog Output, Binary Output, Multi-state Output, Access Door, and Lighting Output objects
are commandable (prioritized) by definition. The designated properties of the Analog Value, Binary Value, Multi-state Value,
BitString Value, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Large
Analog Value, OctetString Value, Integer Value, Time Value, Time Pattern Value, and Positive Integer Value objects may
optionally be commandable. Individual vendors, however, may decide to apply prioritization to any of the vendor-specified
properties. These additional commandable properties shall have associated Priority_Array and Relinquish_Default properties
with appropriate names. See Clause 23.3. The Channel object is a special exception, see Clause 19.2.1.6.

19.2.1.2 Prioritized Commands

Prioritized commands, i.e., commands directed at commandable properties, are either WriteProperty service requests or
WritePropertyMultiple service requests. In either case, the request primitive shall contain (among others) the following
parameters:

 Property Identifier: Commandable_Property
 Property Value: Desired Value
 Priority: Priority

The end result of a successful write operation is to place a desired value in the priority table at the appropriate priority. If another
value was already present at that priority, it shall be overwritten with the new value, without any regard to the identity of the
previous commanding entity.

19.2.1.3 Relinquish Commands

When a commanding entity no longer desires to control a commandable property, it issues a relinquish command. A relinquish
command is also either a WriteProperty service request or a WritePropertyMultiple service request. In either case, the request
primitive shall contain (among others) the following parameters:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

ANSI/ASHRAE Standard 135-2012 611

 Property Identifier: Commandable_Property
 Property Value: NULL
 Priority: Priority

The placement of NULL in the value parameter indicates the absence of any command at that priority. When all elements of the
priority table array contain NULL, the commandable property shall assume the value defined in the Relinquish_Default property
of the object.

It is possible for an application entity to relinquish at a priority other than its own, resulting in unpredictable behavior. If more
than one application is assigned the same priority, it is possible for one application entity to write-over (or relinquish) the
commands from the other application entity, resulting in unpredictable operation. To minimize this possibility, it is very
important not to allow more than one commanding entity to assume the same priority level within the system.

19.2.1.4 Command Source ID

There is no provision for maintaining command source identification as part of the priority table. Any implementation of
command source identification is vendor-specific in nature.

19.2.1.5 Command Overwrite

Whenever a command is issued to a commandable property, the value is placed in the Priority_Array at the appropriate
priority position, without any regard to the current value residing there. The new command overwrites the existing command.
No notification of such overwrite is made to the original commanding entity.

19.2.1.6 Prioritization for Channel Objects

Channel objects have commandable Present_Value properties, even though the Channel object itself does not contain
Priority_Array or Relinquish_Default properties. The Channel object passes the value written to Present_Value on to another
object property, which may itself be commandable. In this case, any priority provided when the Channel object
Present_Value is written is propagated on to its constituent member references. The Last_Priority property of the Channel
object remembers the most recently provided priority value.

19.2.2 Application Priority Assignments

Commanding entities are assigned one of the 16 possible priority levels. The assignment of most priorities is site dependent and
represents the objectives of the site management. Table 19-1 contains the standard priorities. Other applications that need
prioritization include Temperature Override, Demand Limiting, Optimum Start/Stop, Duty Cycling, and Scheduling. The
relative priorities of these applications may vary from site to site and are not standardized. For interoperability at any particular
site, the only requirement is that all devices implement the same priority scheme. The positions marked Available are open for
assignment to DDC programs, EMS programs, etc. The interpretation of what conditions constitute Manual-Life Safety or
Automatic-Life Safety decisions is a local matter.

Table 19-1. Standard Command Priorities

Priority Level Application Priority Level Application

1 Manual-Life Safety 9 Available

2 Automatic-Life Safety 10 Available

3 Available 11 Available

4 Available 12 Available

5 Critical Equipment Control 13 Available

6 Minimum On/Off 14 Available

7 Available 15 Available

8 Manual Operator 16 Available

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

612 ANSI/ASHRAE Standard 135-2012

19.2.3 Minimum_On_Time and Minimum_Off_Time

If the commandable property is the Present_Value property of a Binary Output object or a Binary Value object and that
object possesses the optional Minimum_On_Time and Minimum_Off_Time properties, then minimum on and minimum off
times shall behave according to the algorithm described in this subclause.

Command priority 6 is reserved for use by this algorithm and may not be used for other purposes in any object.

(a)
 the Present_Value is ACTIVE and the time since the last change of state of the Present_Value is less than the
Minimum_On_Time, then element 6 of the Priority_Array shall contain a value of ACTIVE.

(b)
 If the Present_Value is INACTIVE and the time since the last change of state of the Present_Value is less than
the Minimum_Off_Time, then element 6 of the Priority_Array shall contain a value of INACTIVE.

(c)
 If neither (a) nor (b) is true, then element 6 of the Priority_Array shall contain a value of NULL.

These rules imply actions to be taken when the Present_Value is written and actions to be taken based on elapsed time. The
means by which these actions are implemented is a local matter, so long as the behavior described in this subclause is achieved.

When a write to a commandable property occurs at any priority, the specified value or relinquish (NULL) is always written to
the appropriate slot in the priority table, regardless of any minimum on or off times.

The Priority_Array is then examined by the local priority maintenance entity to determine the highest priority that contains a
non-NULL value. If this value differs from the Present_Value immediately before the write, then a change of state has occurred.
If such a change of state occurs, the new value is also written to priority 6 in the Priority_Array and the time of the change is
noted. The means by which the timing is performed is a local matter.

When the minimum on or off time signified by a non-NULL value in priority 6 has elapsed, the local minimum time
maintenance entity shall write a NULL to priority 6 and re-examine the Priority_Array to determine the new Present_Value. If
this value indicates a change of state, then the appropriate actions shall be taken as described above.

The effect of a non-NULL value in priority 6 is that writes at any lower priority (larger priority number) cannot cause a change
of state. Thus, minimum on or off time protection may be achieved relative to these priorities.

Writes to any priority higher than 6 (smaller priority number) may cause changes of state regardless of Minimum_On_Time or
Minimum_Off_Time. Thus, these priorities should be used only for critical or emergency use. Note, however, that changes of
state caused by a write to these high priorities will also cause writes to priority 6 as described above. Thus, if a NULL is
subsequently written to the high priority while minimum time is in effect, that time shall be observed before any change of state
is made as a result of a value at a lower priority.

For additional discussion of minimum on and off time processing see Annex I.

19.2.4 Prioritization for Command Objects

A Command object is capable of issuing commands just as any other command-issuing entity. A Command object may be
related to an application with any priority. The Action property of the Command object contains all of the parameters necessary
for writing to commandable properties. See Clause 12.10.8.

19.2.5 Prioritization for Loop Objects

Loop objects may need to interact with objects that have a commandable property, even though, in general, they will not use
BACnet services to do so. Each Loop object has a Priority_For_Writing property that designates the appropriate priority of
this control loop with respect to the commandable property. See Clause 12.17.28.

19.2.6 Prioritization for Schedule Objects

Schedule objects may need to interact with objects that have a commandable property, even though, in general, they will not
use BACnet services to do so. Each Schedule object has a Priority_For_Writing property that designates the appropriate
priority of this schedule with respect to the commandable property. See Clause 12.24.11.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

19. BACnet PROCEDURES

ANSI/ASHRAE Standard 135-2012 613

19.2.7 Prioritization for Access Point Objects

Access Point objects interact with the Present_Value property of Access Door objects; however, if the Access Door objects
are local to the device, they will not use BACnet services to do so. Each Access Point object has a Priority_For_Writing
property that designates the priority to be used to command the Access Door objects.

19.3 Device Restart Procedure

When a BACnet device restarts, there are a number of different configuration items that can be lost. For example, a device
need not remember which devices have subscribed to receive change-of-value notifications or to which values they have
subscribed. For this reason, other devices may be interested in determining when a device has restarted. This section outlines
how a device may interoperably indicate that it has restarted.

When a device is powered on, when it restarts due to a ReinitializeDevice service (COLDSTART or WARMSTART), or
when it restarts for some other reason, the device shall transmit an UnconfirmedCOVNotification request. The 'Subscriber
Process Identifier' parameter shall be 0, the 'Monitored Object Identifier' parameter shall reference the Device object, the
'Time Remaining' parameter shall be 0, and the 'List of Values' parameter shall contain three values, the System_Status, the
Time_Of_Device_Restart, and the Last_Restart_Reason properties of the Device object. The device shall transmit this
message after the complete power-up or restart sequence has been completed so that the system-status value is accurate.

The device shall send the restart notification to each recipient in the Restart_Notification_Recipients property of the Device
object.

MS/TP slave devices are not able to support this procedure, although they may support the Time_Of_Device_Restart and
Last_Restart_Reason properties.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

614 ANSI/ASHRAE Standard 135-2012

20 ENCODING BACnet PROTOCOL DATA UNITS

Application Layer Protocol Data Units (APDUs) are used in BACnet to convey the information contained in the application
service primitives and associated parameters.

ISO Standard 8824, Specification of Abstract Syntax Notation One (ASN.1), has been selected as the method for representing
the data content of BACnet services. Clause 21 contains an ASN.1 definition for each service defined by this standard. ASN.1
provides an abstract syntax. However, the exact bit-by-bit layout of an APDU may have several forms, depending on the
encoding rules that are selected.

Within the Open Systems Interconnection model, the encoding rules to be used are chosen by the presentation layer through a
process of negotiation. This negotiation is used by cooperating systems to determine not only the basic encoding rules, of which
ISO 8825, Specification of Basic Encoding Rules for ASN.1, is an example, but also whether or not the APDU is to be subjected
to other manipulations such as data compression, encryption, or character code conversion.

Because BACnet's collapsed OSI architecture does not incorporate any presentation layer functionality, APDU encoding must
be defined and agreed to by communicating devices in advance. BACnet's encoding rules have been designed to take into
account the requirements of building automation and control systems for simplicity and compactness. As a result, they differ, in
some respects, from ISO 8825 while still permitting the encoding of BACnet APDUs that have been represented using ASN.1.
This means that BACnet services and procedures could be used in their entirety in a future OSI-compliant network by adding the
presentation layer capability to negotiate either the encoding rules contained in this standard or any other encoding rules that
might later be available.

The encoding of ASN.1 specified in ISO 8825 is intended to apply uniformly to all data elements in a PDU. Each data element is
represented by three components: (1) identifier octets, (2) length octets, and (3) contents octets. The explicit identification of
each data element allows parsers to be developed that can decode any PDU without prior knowledge of its format or semantic
content. The alternative is to implicitly identify each data element, generally by mutual agreement as to its data format and
location within the PDU. The former approach tends to result in greater generality at the expense of greater overhead; the latter
approach tends to reduce overhead while limiting future extensibility.

The approach taken in BACnet is a compromise. The fixed portion of each APDU containing protocol control information is
encoded implicitly and is described in 20.1. The variable portion of each APDU containing service-specific information is
encoded explicitly and is described in 20.2. The resulting scheme significantly reduces overhead while preserving the possibility
of easily adding new services in the future.

20.1 Encoding the Fixed Part of BACnet APDUs

BACnet APDUs consist of protocol control information and, possibly, user data.

"Protocol control information" (PCI) comprises data required for the operation of the application layer protocol, including the
type of APDU, information to match service requests and service responses, and information to carry out the reassembly of
segmented messages. This information is contained in the "header," or fixed part, of the APDU.

"User data" comprises information specific to individual service requests or responses. This portion of the APDU will be
referred to as the 'variable part' of the APDU.

Because every APDU contains PCI fields, BACnet encodes the PCI without the use of tags or length information even though
the ASN.1 might indicate the presence of tags in the syntactical descriptions of the APDUs. Tags are used to encode the
variable-content user data as specified in 20.2. This selective use of tags results in a considerable reduction in overhead.

The remainder of this subclause lays out the format of each APDU type.

20.1.1 Encoding the BACnetPDU CHOICE Tag

All BACnet messages are defined by an ASN.1 production called the BACnetPDU. See Clause 21. BACnetPDU is a choice
of one of eight BACnet APDU types. For all BACnet APDUs, this choice shall be encoded as a four-bit binary number in the
bits 4 through 7 of the first octet of the APDU header, with bit 7 being the most significant bit. These bits indicate the value

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 615

of the tag (0 - 7), which represents the APDU type choice. This encoding is illustrated in the examples below for each APDU
type.

20.1.2 BACnet-Confirmed-Request-PDU

The BACnet-Confirmed-Request-PDU is used to convey the information contained in confirmed service request primitives.

BACnet-Confirmed-Request-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 0 for this PDU type
 segmented-message [1] BOOLEAN,
 more-follows [2] BOOLEAN,
 segmented-response-accepted [3] BOOLEAN,
 reserved [4] Unsigned (0..3), -- must be set to zero
 max-segments-accepted [5] Unsigned (0..7), -- as per 20.1.2.4
 max-APDU-length-accepted [6] Unsigned (0..15), -- as per 20.1.2.5
 invokeID [7] Unsigned (0..255),
 sequence-number [8] Unsigned (0..255) OPTIONAL, -- only if segmented msg
 proposed-window-size [9] Unsigned (1..127) OPTIONAL, -- only if segmented msg
 service-choice [10] BACnetConfirmedServiceChoice,
 service-request [11] BACnet-Confirmed-Service-Request
-- Context specific tags 0..11 are NOT used in header encoding
 }

The parameters of the BACnet-Confirmed-Request-PDU have the following meanings.

20.1.2.1 segmented-message

This parameter indicates whether or not the confirmed service request is entirely, or only partially, contained in the present PDU.
If the request is present in its entirety, the value of the 'segmented-message' parameter shall be FALSE. If the present PDU
contains only a segment of the request, this parameter shall be TRUE.

20.1.2.2 more-follows

This parameter is only meaningful if the 'segmented-message' parameter is TRUE. If 'segmented-message' is TRUE, then the
'more-follows' parameter shall be TRUE for all segments comprising the confirmed service request except for the last and shall
be FALSE for the final segment. If 'segmented-message' is FALSE, then 'more-follows' shall be set FALSE by the encoder and
shall be ignored by the decoder.

20.1.2.3 segmented-response-accepted

This parameter shall be TRUE if the device issuing the confirmed request will accept a segmented complex acknowledgment
as a response. It shall be FALSE otherwise. This parameter is included in the confirmed request so that the responding device
may determine how to convey its response.

20.1.2.4 max-segments-accepted

This optional parameter specifies the maximum number of segments that the device will accept. This parameter is included in
the confirmed request so that the responding device may determine how to convey its response. The parameter shall be
encoded as follows:

B'000' Unspecified number of segments accepted.
B'001' 2 segments accepted.
B'010' 4 segments accepted.
B'011' 8 segments accepted.
B'100' 16 segments accepted.
B'101' 32 segments accepted.
B'110' 64 segments accepted.
B'111' Greater than 64 segments accepted.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

616 ANSI/ASHRAE Standard 135-2012

20.1.2.5 max-APDU-length-accepted

This parameter specifies the maximum size of a single APDU that the issuing device will accept. This parameter is included
in the confirmed request so that the responding device may determine how to convey its response. The parameter shall be
encoded as follows:

 B'0000' Up to MinimumMessageSize (50 octets)
 B'0001' Up to 128 octets
 B'0010' Up to 206 octets (fits in a LonTalk frame)
 B'0011' Up to 480 octets (fits in an ARCNET frame)
 B'0100' Up to 1024 octets
 B'0101' Up to 1476 octets (fits in an ISO 8802-3 frame)
 B'0110' reserved by ASHRAE
 B'0111' reserved by ASHRAE
 B'1000' reserved by ASHRAE
 B'1001' reserved by ASHRAE
 B'1010' reserved by ASHRAE
 B'1011' reserved by ASHRAE
 B'1100' reserved by ASHRAE
 B'1101' reserved by ASHRAE
 B'1110' reserved by ASHRAE
 B'1111' reserved by ASHRAE

20.1.2.6 invokeID

This parameter shall be an integer in the range 0 - 255 assigned by the service requester. It shall be used to associate the response
to a confirmed service request with the original request. In the absence of any error, the 'invokeID' shall be returned by the
service provider in a BACnet-SimpleACK-PDU or a BACnet-ComplexACK-PDU. In the event of an error condition, the
'invokeID' shall be returned by the service provider in a BACnet-Error-PDU, BACnet-Reject-PDU, or BACnet-Abort-PDU as
appropriate.

The 'invokeID' shall be generated by the device issuing the service request. It shall be unique for all outstanding confirmed
request APDUs generated by the device. The same 'invokeID' shall be used for all segments of a segmented service request.
Once an 'invokeID' has been assigned to an APDU, it shall be maintained within the device until either a response APDU is
received with the same 'invokeID' or a no response timer expires (see 5.3). In either case, the 'invokeID' value shall then be
released for reassignment. The algorithm used to pick a value out of the set of unused values is a local matter. The storage
mechanism for maintaining the used 'invokeID' values within the requesting and responding devices is also a local matter. The
requesting device may use a single 'invokeID' space for all its confirmed APDUs or multiple 'invokeID' spaces (one per
destination device address) as desired. Since the 'invokeID' values are only source-device-unique, the responding device shall
maintain the 'invokeID' as well as the requesting device address until a response has been sent. The responding device may
discard the 'invokeID' information after a response has been sent.

20.1.2.7 sequence-number

This optional parameter is only present if the 'segmented-message' parameter is TRUE. In this case, the 'sequence-number' shall
be a sequentially incremented unsigned integer, modulo 256, which identifies each segment of a segmented request. The value
of the received 'sequence-number' is used by the responder to acknowledge the receipt of one or more segments of a segmented
request. The 'sequence-number' of the first segment of a segmented request shall be zero.

20.1.2.8 proposed-window-size

This optional parameter is only present if the 'segmented-message' parameter is TRUE. In this case, the 'proposed-window-
size' parameter shall specify as an unsigned binary integer the maximum number of message segments containing 'invokeID'
the sender is able or willing to send before waiting for a segment acknowledgment PDU (see 5.2 and 5.3). The value of the
'proposed-window-size' shall be in the range 1 - 127.

20.1.2.9 service-choice

This parameter shall contain the value of the BACnetConfirmedServiceChoice. See Clause 21.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 617

20.1.2.10 service-request

This parameter shall contain the parameters of the specific service that is being requested, encoded according to the rules of
20.2. These parameters are defined in the individual service descriptions in this standard and are represented in Clause 21 in
accordance with the rules of ASN.1.

20.1.2.11 Format of the BACnet-Confirmed-Request-PDU

The format of the BACnet-Confirmed-Request-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
PDU Type	SEG	MOR	SA	0			
0	Max Segs	Max Resp					
---	---	---	---	---	---	---	---
Invoke ID							
---	---	---	---	---	---	---	---
Sequence Number	Only present if SEG = 1						
---	---	---	---	---	---	---	---
Proposed Window Size	Only present if SEG = 1						
---	---	---	---	---	---	---	---
Service Choice							

 |---|---|---|---|---|---|---|---|
 | Service Request |
 | . |
 .
 | . |
 |---|---|---|---|---|---|---|---|

The PDU fields have the following values:

PDU Type = 0 (BACnet-Confirmed-Service-Request-PDU)
SEG = 0 (Unsegmented Request)
 1 (Segmented Request)
MOR = 0 (No More Segments Follow)
 1 (More Segments Follow)
SA = 0 (Segmented Response not accepted)
 1 (Segmented Response accepted)
Max Segs = (0..7) (Number of response segments accepted per 20.1.2.4)
Max Resp = (0..15) (Size of Maximum APDU accepted per 20.1.2.5)
Invoke ID = (0..255)
Sequence Number = (0..255) Only present if SEG = 1
Proposed Window Size = (1..127) Only present if SEG = 1
Service Choice = BACnetConfirmedServiceChoice
Service Request = Variable Encoding per 20.2.

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.3 BACnet-Unconfirmed-Request-PDU

The BACnet-Unconfirmed-Request-PDU is used to convey the information contained in unconfirmed service request
primitives.

BACnet-Unconfirmed-Request-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 1 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 service-choice [2] BACnetUnconfirmedServiceChoice,
 service-request [3] BACnet-Unconfirmed-Service-Request

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

618 ANSI/ASHRAE Standard 135-2012

-- Context specific tags 0..3 are NOT used in header encoding
 }

The parameters of the BACnet-Unconfirmed-Request-PDU have the following meanings.

20.1.3.1 service-choice

This parameter shall contain the value of the BACnetUnconfirmedServiceChoice. See Clause 21.

20.1.3.2 service-request

This parameter shall contain the parameters of the specific service that is being requested, encoded according to the rules of
20.2. These parameters are defined in the individual service descriptions in this standard and are represented in Clause 21 in
accordance with the rules of ASN.1.

20.1.3.3 Format of the BACnet-Unconfirmed-Request-PDU

The format of the BACnet-Unconfirmed-Request-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU Type | 0 | 0 | 0 | 0 |
 |---|---|---|---|---|---|---|---|
 | Service Choice |
 |---|---|---|---|---|---|---|---|
 | Service Request |
 | . |
 .
 | . |
 |---|---|---|---|---|---|---|---|

The PDU fields have the following values:

PDU Type = 1 (BACnet-Unconfirmed-Service-Request-PDU)
Service Choice = BACnetUnconfirmedServiceChoice
Service Request = Variable Encoding per 20.2.

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.4 BACnet-SimpleACK-PDU

The BACnet-SimpleACK-PDU is used to convey the information contained in a service response primitive ('Result(+)') that
contains no other information except that the service request was successfully carried out.

BACnet-SimpleACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 2 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 original-invokeID [2] Unsigned (0..255),
 service-ACK-choice [3] BACnetConfirmedServiceChoice
-- Context specific tags 0..3 are NOT used in header encoding
 }

The parameters of the BACnet-SimpleACK-PDU have the following meanings.

20.1.4.1 original-invokeID

This parameter shall be the 'invokeID' contained in the confirmed service request being acknowledged.

20.1.4.2 service-ACK-choice

This parameter shall contain the value of the BACnetConfirmedServiceChoice corresponding to the service contained in the
previous BACnet-Confirmed-Service-Request that has resulted in this acknowledgment. See Clause 21.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 619

20.1.4.3 Format of the BACnet-SimpleACK-PDU

The format of the BACnet-SimpleACK-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU-Type | 0 | 0 | 0 | 0 |
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Service Ack Choice |
 |---|---|---|---|---|---|---|---|

Note that this APDU is always three octets long.

The PDU fields have the following values:

PDU Type = 2 (BACnet-SimpleACK-PDU)
Original Invoke ID = (0..255)
Service ACK Choice = BACnetConfirmedServiceChoice

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.5 BACnet-ComplexACK-PDU

The BACnet-ComplexACK-PDU is used to convey the information contained in a service response primitive ('Result(+)') that
contains information in addition to the fact that the service request was successfully carried out.

BACnet-ComplexACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 3 for this PDU type
 segmented-message [1] BOOLEAN,
 more-follows [2] BOOLEAN,
 reserved [3] Unsigned (0..3), -- must be set to zero
 original-invokeID [4] Unsigned (0..255),
 sequence-number [5] Unsigned (0..255) OPTIONAL, --only if segment
 proposed-window-size [6] Unsigned (1..127) OPTIONAL, -- only if segment
 service-ACK-choice [7] BACnetConfirmedServiceChoice,
 service-ACK [8] BACnet-Confirmed-Service-ACK
-- Context specific tags 0..8 are NOT used in header encoding
 }

The parameters of the BACnet-ComplexACK-PDU have the following meanings.

20.1.5.1 segmented-message

This parameter indicates whether or not the confirmed service response is entirely, or only partially, contained in the present
PDU. If the response is present in its entirety, the 'segmented-message' parameter shall be FALSE. If the present PDU
contains only a segment of the response, this parameter shall be TRUE.

20.1.5.2 more-follows

This parameter is only meaningful if the 'segmented-message' parameter is TRUE. If 'segmented-message' is TRUE, then the
'more-follows' parameter shall be TRUE for all segments comprising the confirmed service response except for the last and shall
be FALSE for the final segment. If 'segmented-message' is FALSE, then 'more-follows' shall be set FALSE by the encoder and
shall be ignored by the decoder.

20.1.5.3 original-invokeID

This parameter shall be the 'invokeID' contained in the confirmed service request being acknowledged. The same 'original-
invokeID' shall be used for all segments of a segmented acknowledgment.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

620 ANSI/ASHRAE Standard 135-2012

20.1.5.4 sequence-number

This optional parameter is only present if the 'segmented-message' parameter is TRUE. In this case, the 'sequence-number' shall
be a sequentially incremented unsigned integer, modulo 256, which identifies each segment of a segmented response. The value
of the received 'sequence-number' is used by the original requester to acknowledge the receipt of one or more segments of a
segmented response. The sequence-number of the first segment of a segmented response shall be zero.

20.1.5.5 proposed-window-size

This optional parameter is only present if the 'segmented-message' parameter is TRUE. In this case, the 'proposed-window-size'
parameter shall specify as an unsigned binary integer the maximum number of message segments containing 'original-invokeID'
the sender is able or willing to send before waiting for a segment acknowledgment PDU (see 5.2 and 5.3). The value of the
'proposed-window-size' shall be in the range 1 - 127.

20.1.5.6 service-ACK-choice

This parameter shall contain the value of the BACnetConfirmedServiceChoice corresponding to the service contained in the
previous BACnet-Confirmed-Service-Request that has resulted in this acknowledgment. See Clause 21.

20.1.5.7 service-ACK

This parameter shall contain the parameters of the specific service acknowledgment that is being encoded according to the
rules of 20.2. These parameters are defined in the individual service descriptions in this standard and are represented in
Clause 21 in accordance with the rules of ASN.1.

20.1.5.8 Format of the BACnet-ComplexACK-PDU

The format of the BACnet-ComplexACK-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU Type |SEG|MOR| 0 | 0 |
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Sequence Number | Only present if SEG = 1
 |---|---|---|---|---|---|---|---|
 | Proposed Window Size | Only present if SEG = 1
 |---|---|---|---|---|---|---|---|
 | Service ACK Choice |
 |---|---|---|---|---|---|---|---|
 | Service ACK |
 | . |
 .
 | . |
 |---|---|---|---|---|---|---|---|

The PDU fields have the following values:

PDU Type = 3 (BACnet-ComplexACK-PDU)
SEG = 0 (Unsegmented Response)
 1 (Segmented Response)
MOR = 0 (No More Segments Follow)
 1 (More Segments Follow)
Original Invoke ID = (0..255)
Sequence Number = (0..255) Only present if SEG = 1
Proposed Window Size = (1..127) Only present if SEG = 1
Service ACK Choice = BACnetConfirmedServiceChoice
Service ACK = Variable Encoding per 20.2.

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 621

20.1.6 BACnet-SegmentACK-PDU

The BACnet-SegmentACK-PDU is used to acknowledge the receipt of one or more PDUs containing portions of a segmented
message. It may also request the next segment or segments of the segmented message.

BACnet-SegmentACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 4 for this PDU type
 reserved [1] Unsigned (0..3), -- must be set to zero
 negative-ACK [2] BOOLEAN,
 server [3] BOOLEAN,
 original-invokeID [4] Unsigned (0..255),
 sequence-number [5] Unsigned (0..255),
 actual-window-size [6] Unsigned (1..127)
-- Context specific tags 0..6 are NOT used in header encoding
 }

The parameters of the BACnet-SegmentACK-PDU have the following meanings.

20.1.6.1 negative-ACK

This parameter shall be TRUE if the Segment-ACK PDU is being sent to indicate a segment received out of order.
Otherwise, it shall be FALSE.

20.1.6.2 server

This parameter shall be TRUE when the SegmentACK PDU is sent by a server, that is, when the SegmentACK PDU is in
acknowledgment of a segment or segments of a Confirmed-Request PDU.

This parameter shall be FALSE when the SegmentACK PDU is sent by a client, that is, when the SegmentACK PDU is in
acknowledgment of a segment or segments of a ComplexACK PDU.

20.1.6.3 original-invokeID

This parameter shall be the 'invokeID' contained in the segment being acknowledged.

20.1.6.4 sequence-number

This parameter shall contain the 'sequence-number' of a previously received message segment. It is used to acknowledge the
receipt of that message segment and all earlier segments of the message.

If the 'more-follows' parameter of the received message segment is TRUE, then the 'sequence-number' also requests continuation
of the segmented message beginning with the segment whose 'sequence-number' is one plus the value of this parameter, modulo
256.

20.1.6.5 actual-window-size

This parameter shall specify as an unsigned binary integer the number of message segments containing 'original-invokeID'
the sender will accept before sending another SegmentACK. See 5.3 for additional details. The value of the 'actual-window-
size' shall be in the range 1 - 127.

20.1.6.6 Format of the BACnet-SegmentACK-PDU

The format of the BACnet-SegmentACK-PDU is:
Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU-Type | 0 | 0 |NAK|SRV|
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Sequence Number |
 |---|---|---|---|---|---|---|---|
 | Actual Window Size |
 |---|---|---|---|---|---|---|---|

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

622 ANSI/ASHRAE Standard 135-2012

Note that this PDU is always four octets long.

The PDU fields have the following values:

PDU Type = 4 (BACnet-SegmentACK-PDU)
NAK = 0 (Normal Acknowledgment)
 1 (Negative Acknowledgment, Segment Out of Order)
SRV = 0 (Sent by Client)
 1 (Sent by Server)
Original Invoke ID = (0..255)
Sequence Number = (0..255)
Actual Window Size = (1..127)

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.7 BACnet-Error-PDU

The BACnet-Error-PDU is used to convey the information contained in a service response primitive ('Result(-)') that indicates
the reason why a previous confirmed service request failed either in its entirety or only partially.

BACnet-Error-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 5 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 original-invokeID [2] Unsigned (0..255),
 error-choice [3] BACnetConfirmedServiceChoice,
 error [4] BACnet-Error
-- Context specific tags 0..4 are NOT used in header encoding
 }

The parameters of the BACnet-Error-PDU have the following meanings.

20.1.7.1 original-invokeID

This parameter shall be the 'invokeID' contained in the confirmed service request to which the error is a response.

20.1.7.2 error-choice

This parameter, of type BACnetConfirmedServiceChoice, shall contain the tag value of the BACnet-Error choice. See Clause
21.

20.1.7.3 error

This parameter, of type BACnet-Error, indicates the reason the indicated service request could not be carried out. This
parameter shall be encoded according to the rules of 20.2.

20.1.7.4 Format of the BACnet-Error-PDU

The format of the BACnet-Error-PDU is:
Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU Type | 0 | 0 | 0 | 0 |
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Error Choice |
 |---|---|---|---|---|---|---|---|
 | Error |
 | . |
 .
 | . |
 |---|---|---|---|---|---|---|---|

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 623

The PDU fields have the following values:

PDU Type = 5 (BACnet-Error-PDU)
Original Invoke ID = (0..255)
Error Choice = BACnetConfirmedServiceChoice
Error = Variable Encoding per 20.2.

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.8 BACnet-Reject-PDU

The BACnet-Reject-PDU is used to reject a received confirmed request PDU based on syntactical flaws or other protocol errors
that prevent the PDU from being interpreted or the requested service from being provided. Only confirmed request PDUs may
be rejected (see 18.8). A BACnet-Reject-PDU shall be sent only before the execution of the service, such as during the interval
after a syntax check is performed on the request but before the service procedure is executed. Such a syntax check may occur as
segments are received and thus may result in a BACnet-Reject-PDU being returned before the complete request has been
received.

There are error conditions where a valid reject-reason and an equally valid error code exist that can be used to describe the
condition. In such cases it is a local matter whether or not a BACnet-Reject-PDU is used to convey the error, with the exception
that a BACnet-Reject-PDU shall not be returned if service execution has commenced and the execution has resulted in a
standard network visible change in the device's state. For example, a WritePropertyMultiple-Request shall not be rejected if at
least one of the write operations has already been applied. In such cases an error code shall be used.

BACnet-Reject-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 6 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 original-invokeID [2] Unsigned (0..255),
 reject reason [3] BACnetRejectReason
-- Context specific tags 0..3 are NOT used in header encoding
 }

The parameters of the BACnet-Reject-PDU have the following meanings.

20.1.8.1 original-invokeID

This parameter shall be the 'invokeID' of the PDU being rejected.

20.1.8.2 reject-reason

This parameter, of type BACnetRejectReason, contains the reason the PDU with the indicated 'invokeID' is being rejected.

20.1.8.3 Format of the BACnet-Reject-PDU

The format of the BACnet-Reject-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU-Type | 0 | 0 | 0 | 0 |
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Reject Reason |
 |---|---|---|---|---|---|---|---|

Note that this PDU is always three octets long.

The PDU fields have the following values:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

624 ANSI/ASHRAE Standard 135-2012

PDU Type = 6 (BACnet-Reject-PDU)
Original Invoke ID = (0..255)
Reject Reason = One octet containing the reject reason enumeration

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

20.1.9 BACnet-Abort-PDU

The BACnet-Abort-PDU is used to terminate a transaction between two peers.

BACnet-Abort-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 7 for this PDU type
 reserved [1] Unsigned (0..7), -- must be set to zero
 server [2] BOOLEAN,
 original-invokeID [3] Unsigned (0..255),
 abort-reason [4] BACnetAbortReason
-- Context specific tags 0..4 are NOT used in header encoding
 }

The parameters of the BACnet-Abort-PDU have the following meanings.

20.1.9.1 server

This parameter shall be TRUE when the Abort PDU is sent by a server. This parameter shall be FALSE when the Abort PDU is
sent by a client.

20.1.9.2 original-invokeID

This parameter shall be the 'invokeID' of the transaction being aborted.

20.1.9.3 abort-reason

This parameter, of type BACnetAbortReason, contains the reason the transaction with the indicated invoke ID is being
aborted.

20.1.9.4 Format of the BACnet-Abort-PDU

The format of the BACnet-Abort-PDU is:

Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | PDU Type | 0 | 0 | 0 |SRV|
 |---|---|---|---|---|---|---|---|
 | Original Invoke ID |
 |---|---|---|---|---|---|---|---|
 | Abort Reason |
 |---|---|---|---|---|---|---|---|

Note that this PDU is always three octets long.

The PDU fields have the following values:

PDU Type = 7 (BACnet-Abort-PDU)
SRV = 0 (Sent by Client)
 1 (Sent by Server)
Original Invoke ID = (0..255)

Bits shown in the diagram as '0' shall be set to zero. These bits are currently unused and are reserved by ASHRAE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 625

20.2 Encoding the Variable Part of BACnet APDUs

The encoding of the header portions of BACnet APDUs has been specified in 20.1. This subclause describes the encoding
procedures for the variable portion of BACnet APDUs referred to hereafter as "service parameters." These parameters are of
types BACnet-Confirmed-Service-Request, BACnet-Unconfirmed-Service-Request, BACnet-Confirmed-Service-ACK, and
BACnet-Error. Each parameter is unambiguously defined by means of ASN.1 productions in Clause 21.

All data elements in service parameters are identified by constructs known as "tags." Each tag refers to a unique parameter or
subparameter.

BACnet encoding uses two classes of tag. The first identifies fundamental datatypes used or defined in this standard, such as
BOOLEANs, Unsigneds, CharacterStrings, Date, Time, or BACnetObjectIdentifiers. Where a datatype appears in upper case, its
semantics are identical to the corresponding ASN.1 universal datatype of the same name, as indicated in Clause 21.

Such tags are called "application" tags, and the values of the tags are specified in 20.2.1.4.

The second class of tag is used to identify data elements whose datatype may be inferred from the context in which they appear.
These tags are called "context specific" tags.

ASN.1 defines two other classes of tags, "universal" and "private." The encoding scheme used by BACnet does not allow, nor
do any BACnet ASN.1 productions require, the use of these classes of tags.

In some instances, the datatype of a parameter cannot be deduced from the context in which it appears. In such cases, both a
context specific and one or more application tags are required. These cases are indicated in the ASN.1 productions by service
parameters whose datatypes are indicated by the keywords ABSTRACT-SYNTAX.&TYPE (ANY), CHOICE, SEQUENCE, or
SEQUENCE OF.

The subclauses that follow show how each tagged element is identified, its length specified, and its value encoded.

20.2.1 General Rules For Encoding BACnet Tags

BACnet tags are encoded in an initial octet and zero or more conditional subsequent octets. The initial octet is defined as
follows:

Bit Number: 7 6 5 4 3 2 1 0
 |-----|-----|-----|-----|-----|-----|-----|-----|
 | Tag Number |Class|Length/Value/Type|
 |-----|-----|-----|-----|-----|-----|-----|-----|

where Tag Number = the tag number within the class
 Class = the class of tag (application or context specific)
 Length/Value/Type = whether the data following the tag is primitive or constructed and specifies the length
 or value of primitive data.

20.2.1.1 Class

The Class bit shall be zero for application tags. The Class bit shall be one for context specific tags.

20.2.1.2 Tag Number

Tag numbers ranging from zero to 14 (inclusive) shall be encoded in the Tag Number field of the initial octet as a four bit binary
integer with bit 7 the most significant bit.

Tag numbers ranging from 15 to 254 (inclusive) shall be encoded by setting the Tag Number field of the initial octet to B'1111'
and following the initial tag octet by an octet containing the tag number represented as an eight-bit binary integer with bit 7 the
most significant bit.

The encoding does not allow, nor does BACnet require, tag numbers larger than 254. The value B'11111111' of the subsequent
octet is reserved by ASHRAE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

626 ANSI/ASHRAE Standard 135-2012

20.2.1.3 Length/Value/Type

The content of the length/value/type field of the initial octet distinguishes between primitive and constructed encodings and
specifies the length or value of primitive data. A primitive encoding is one in which the data do not contain other tagged
encodings. A constructed encoding is one in which the data do contain other tagged encodings.

20.2.1.3.1 Primitive Data

If the data being encoded are application class BOOLEAN data, then the Boolean value shall be encoded by setting the
length/value/type field of the initial octet to B'000' if the Boolean value is FALSE or B'001' if the Boolean value is TRUE. In this
case, the length/value/type field shall be interpreted as a value.

If the data being encoded are primitive (that is, not constructed) and not application class BOOLEAN data, then the value of the
data shall be encoded according to 20.2.2 through 20.2.14, and the length/value/type field of the initial tag octet shall specify the
length of the primitive data in octets as follows:

 Data length in octets ranging from zero to four (inclusive) shall be encoded in the length/value/type field of the initial

octet as a three-bit binary integer with bit 2 the most significant bit.

 Data length in octets ranging from 5 to 253 (inclusive) shall be encoded by setting the length/value/type field of the

initial octet to B'101' and following the initial tag octet or, if the Tag Number has been extended, following the Tag
Number extension octet by an octet containing the data length represented as an eight-bit binary integer with bit 7 the
most significant bit.

 Data length in octets ranging from 254 to 65535 (inclusive) shall be encoded by setting the length/value/type field of

the initial octet to B'101' and following the initial tag octet or, if the Tag Number has been extended, following the Tag
Number extension octet by an octet containing D'254' and two additional octets whose value contains the data length
represented as a 16-bit binary integer with the most significant octet first.

 Data length in octets ranging from 65536 to 232-1 (inclusive) shall be encoded by setting the length/value/type field of

the initial octet to B'101' and following the initial tag octet or, if the Tag Number has been extended, following the Tag
Number extension octet by an octet containing D'255' and four additional octets whose value contains the data length
represented as a 32-bit binary integer with the most significant octet first.

 Data lengths larger than 232-1 are not encodable using primitive tags.

Note that with the exception of 8-octet IEEE-754 double precision floating point values and certain bit, character, and octet
strings, the length of BACnet application-tagged primitives will fit in the tag octet without extension.

20.2.1.3.2 Constructed Data

If the production being encoded contains tagged elements, then the encoding is called "constructed" and shall consist of

(a)
 an "opening" tag whose Tag Number field shall contain the value of the tag number, whose Class field shall
indicate "context specific," and whose length/value/type field shall have the value B'110';

(b)
 the complete encoding, with tags, of the zero, one, or more elements that comprise the data;
(c)
 a "closing" tag, whose Class and Tag Number fields shall contain the same values as the "opening" tag and

whose length/value/type field shall have the value B'111'.

In this case, the length/value/type fields of the "opening" and "closing" tags shall be interpreted as types.

Note that a contained tagged element may itself be a constructed element. This recursion does not result in ambiguous encoding,
as each "opening" tag must have a corresponding "closing" tag that will be contained within any outer "opening" and "closing"
tags.

20.2.1.4 Application Tags

The Tag Number field of an encoded BACnet application tag shall specify the application datatype as follows:

Tag Number: 0 = Null

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 627

 1 = Boolean
 2 = Unsigned Integer
 3 = Signed Integer (2's complement notation)
 4 = Real (ANSI/IEEE-754 floating point)
 5 = Double (ANSI/IEEE-754 double precision floating point)
 6 = Octet String
 7 = Character String
 8 = Bit String
 9 = Enumerated
 10 = Date
 11 = Time
 12 = BACnetObjectIdentifier
 13, 14, 15 = Reserved for ASHRAE

Note that all currently defined BACnet Application datatypes are primitively encoded.

20.2.1.5 Context-Specific Tags

The Tag Number field of an encoded BACnet context-specific tag shall contain the value of the context-specific tag number.

The data delimited by a context-specific tag may be either primitive or constructed.

20.2.2 Encoding of a Null Value

The encoding of a Null value shall be primitive, with no contents octet.

Example: Application-tagged null value
 ASN.1 = NULL
 Application Tag = Null (Tag Number = 0)
 Encoded Tag = X'00'

20.2.3 Encoding of a Boolean Value

Application-tagged Boolean values shall be encoded within a single octet by setting the length/value/type field to B'000' if the
value to be encoded is FALSE or B'001' if the value to be encoded is TRUE.

Example: Application-tagged Boolean value
 ASN.1 = BOOLEAN
 Value = FALSE
 Application Tag = Boolean (Tag Number = 1)
 Encoded Tag = X'10'

Context-tagged Boolean primitive data shall contain one contents octet. The value of this octet shall be B'00000000' if the value
to be encoded is FALSE or B'00000001' if the value to be encoded is TRUE.

Example: Context-tagged Boolean value
 ASN.1 = [2] BOOLEAN
 Value = TRUE
 Context Tag = 2
 Encoded Tag = X'29'
 Encoded Data = X'01'

NOTE: The Boolean datatype differs from the other datatypes in that the encoding of a context-tagged Boolean value is not the
same as the encoding of an application-tagged Boolean value. This is done so that the application-tagged value may be encoded
in a single octet, without a contents octet. While this same encoding could have been used for the context-tagged case, doing so
would require that the context be known in order to distinguish between a length or a value in the length/value/type field. This
was considered to be undesirable. See 20.2.20.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

628 ANSI/ASHRAE Standard 135-2012

20.2.4 Encoding of an Unsigned Integer Value

The encoding of an unsigned integer value shall be primitive, with at least one contents octet.

Unsigned integers shall be encoded in the contents octet(s) as binary numbers in the range 0 to (28*L - 1) where L is the
number of octets used to encode the value and L is at least one. Values encoded into more than one octet shall be conveyed
with the most significant octet first. All unsigned integers shall be encoded in the smallest number of octets possible. That is,
the first octet of any multi-octet encoded value shall not be X'00'.

Example: Application-tagged unsigned integer
 ASN.1 = Unsigned
 Value = 72
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'48'

20.2.5 Encoding of a Signed Integer Value

The encoding of a signed integer value shall be primitive, with at least one contents octet.

Signed integers shall be encoded in the contents octet(s) as binary numbers using 2's complement notation in the range -2(8*L-1) to
(2(8*L-1) - 1) where L is the number of octets used to encode the value and L is at least one. Values encoded into more than one
octet shall be conveyed most significant octet first. All signed integers shall be encoded in the smallest number of octets
possible. That is, the first octet of any multi-octet encoded value shall not be X'00' if the most significant bit (bit 7) of the second
octet is 0, and the first octet shall not be X'FF' if the most significant bit of the second octet is 1.

Example: Application-tagged signed integer
 ASN.1 = INTEGER
 Value = 72
 Application Tag = Signed Integer (Tag Number = 3)
 Encoded Tag = X'31'
 Encoded Data = X'48'

20.2.6 Encoding of a Real Number Value

The encoding of a real number value shall be primitive, with four contents octets. Real numbers shall be encoded using the
method specified in ANSI/IEEE Standard 754-1985, "IEEE Standard for Binary Floating-Point Arithmetic." This standard
should be consulted for details. The multi-octet value shall be conveyed with the most significant (sign and exponent) octet
first.

For the case of single precision real numbers, the encoding format is:

Bit Number: 31 30 ... 23 22 ... 0

 |---|---|...|...|---|---|...|...|---|

 | s | e | f |

 |---|---|...|...|---|---|...|...|---|

Field Width: 1 <----- 8 ------><----- 23 ---->

where the numbers indicate the field widths in bits. Non-zero values shall be represented by the equation v = (-1)s2e-127(1�f)
where the symbol "�" signifies the binary point. Zero shall be indicated by setting s, e, and f to zero.

Example: Application-tagged single precision real
 ASN.1 = REAL
 Value = 72.0
 Application Tag = Real (Tag Number = 4)
 Encoded Tag = X'44'
 Encoded Data = X'42900000'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 629

20.2.7 Encoding of a Double Precision Real Number Value

The encoding of a double precision real number value shall be primitive with eight contents octets. Double precision real
numbers shall be encoded using the method specified in ANSI/IEEE Standard 754-1985, "IEEE Standard for Binary
Floating-Point Arithmetic." This standard should be consulted for details. The multi-octet value shall be conveyed most
significant (sign and exponent) octet first.

For the case of double precision real numbers, the encoding format is:

Bit Number: 63 62 ... 52 51 ... 0

 |---|---|...|...|---|---|...|...|---|

 | s | e | f |

 |---|---|...|...|---|---|...|...|---|

Field Width: 1 <----- 11 -----><----- 52 ---->

where the numbers indicate the field widths in bits. Non-zero values shall be represented by the equation v = (-1)s2e-1023(1�f)
where the symbol "�" signifies the binary point. Zero shall be indicated by setting s, e, and f to zero.

Example: Application-tagged double precision real
 ASN.1 = Double
 Value = 72.0
 Application Tag = Double (Tag Number = 5)
 Encoded Tag = X'55'
 Extended Length = X'08'
 Encoded Data = X'4052000000000000'

ANSI/IEEE-754 Extended Precision format is not supported by BACnet.

20.2.8 Encoding of an Octet String Value

The encoding of an octet string value shall be primitive.

The encoding shall contain zero, one, or more contents octets equal in value to the octets in the data value, in the order in which
they appear in the data value, and with the most significant bit of an octet of the data value aligned with the most significant bit
of an octet of the contents octets.

Example: Application-tagged octet string
 ASN.1 = OCTET STRING
 Value = X'1234FF'
 Application Tag = Octet String (Tag Number = 6)
 Encoded Tag = X'63'
 Encoded Data = X'1234FF'

20.2.9 Encoding of a Character String Value

The encoding of a character string value shall be primitive.

The encoding shall contain an initial contents octet, and zero, one, or more additional contents octets equal in value to the octets
in the data value, in the order in which they appear in the data value, i.e., most significant octet first, and with the most
significant bit of an octet of the data value aligned with the most significant bit of an octet of the contents octets.

The initial octet shall specify the character set with the following encoding:
 X'00' ISO 10646 (UTF-8)
 X'01' IBM�/Microsoft� DBCS
 X'02' JIS X 0208
 X'03' ISO 10646 (UCS-4)
 X'04' ISO 10646 (UCS-2)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

630 ANSI/ASHRAE Standard 135-2012

 X'05' ISO 8859-1

Other values of the initial octet are reserved by ASHRAE.
Example: Application-tagged character string
 ASN.1 = CharacterString
 Value = "This is a BACnet string!" (ISO 10646 UTF-8)
 Application Tag = Character String (Tag Number = 7)
 Encoded Tag = X'75'
 Length Extension = X'19'
 Character Set = X'00' (ISO 10646: UTF-8)
 Encoded Data = X'546869732069732061204241436E657420737472696E6721'

In the case of IBM/Microsoft DBCS (X'01'), the initial octet shall be followed by two additional octets whose value shall
represent an unsigned integer, with the most significant octet first, that shall indicate the Code Page to be presumed for the
characters that follow.

Example: Application-tagged character string (DBCS)
 ASN.1 = CharacterString
 Value = "This is a BACnet String!" (IBM/Microsoft DBCS, code page 850)
 Application Tag = Character String (Tag Number = 7)
 Encoded Tag = X'75'
 Length Extension = X'1B'
 Encoded Data = X'010352546869732069732061204241436E657420737472696E6721'

In the case of ISO 10646 UCS-2 (X'04') and UCS4 (X'03'), each character of the string shall be represented by two or four
octets, respectively. The octet order for UCS-2 shall be Row-Cell. The octet order for UCS-4 shall be Group-Plane-Row-Cell.

Example: Application-tagged character string (UCS-2)
 ASN.1 = CharacterString
 Value = "This is a BACnet String!" (ISO 10646 UCS-2)
 Application Tag = Character String (Tag Number = 7)
 Encoded Tag = X'75'
 Length Extension = X'31'
 Encoded Data = X'04005400680069007300200069007300200061002000420041
 0043006E0065007400200073007400720069006E00670021'

20.2.10 Encoding of a Bit String Value

The encoding of a bit string value shall be primitive.

The contents octets for the primitive encoding shall contain an initial octet and zero or more subsequent octets containing the bit
string. The initial octet shall encode, as an unsigned binary integer, the number of unused bits in the final subsequent octet. The
number of unused bits shall be in the range zero to seven, inclusive.

Bit strings defined in this standard, e.g., the Status_Flags property, shall be encoded in the order of definition, with the first
defined Boolean value in the most significant bit, i.e., bit 7, of the first subsequent octet. The bits in the bitstring shall be placed
in bits 7 to 0 of the first subsequent octet, followed by bits 7 to 0 of the second subsequent octet, followed by bits 7 to 0 of each
octet in turn, followed by as many bits as are needed of the final subsequent octet, commencing with bit 7. Undefined bits shall
be zero.

If the bit string is empty, there shall be no subsequent octets, and the initial octet shall be zero.

Example: Application-tagged bit string
 ASN.1 = BIT STRING
 Value = B'10101'
 Application Tag = Bit String (Tag Number = 8)
 Encoded Tag = X'82'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 631

 Encoded Data = X'03A8'

20.2.11 Encoding of an Enumerated Value

The encoding of an enumerated value shall be primitive, with at least one contents octet.

Enumerated values shall be encoded in the contents octet(s) as binary numbers in the range 0 to (28*L - 1) where L is the number
of octets used to encode the value and L is at least one. Values encoded into more than one octet shall be conveyed most
significant octet first. All enumerated values shall be encoded in the smallest number of octets possible. That is, the first octet of
any multi-octet encoded value shall not be X'00'.

Example: Application-tagged enumeration
 ASN.1 = BACnetObjectType
 Value = ANALOG-INPUT (0)
 Application Tag = Enumerated (Tag Number = 9)
 Encoded Tag = X '91'
 Encoded Data = X '00'

20.2.12 Encoding of a Date Value

The encoding of a date value shall be primitive, with four contents octets. Unless otherwise specified (e.g. UTC date), a date
value generated by a device shall be a local date.

Date values shall be encoded in the contents octets as four binary integers. The first contents octet shall represent the year minus
1900; the second octet shall represent the month, with January = 1; the third octet shall represent the day of the month; and the
fourth octet shall represent the day of the week, with Monday = 1. A value of X'FF' = D'255' in any of the four octets shall
indicate that the corresponding value is unspecified and shall be considered a wildcard when matching dates. If all four octets =
X'FF', the corresponding date may be interpreted as "any" or "don't care."

Neither an unspecified date nor a date pattern shall be used in date values that convey actual dates, such as in a
TimeSynchronization-Request.

The processing of a day of week received in a service that is in the range 1 to 7 and is inconsistent with the values in the other
octets shall be a local matter.

A number of special values for the month and day octets have been defined. The following special values shall not be used when
conveying an actual date value, such as the Local_Date property of the Device object or in a TimeSynchronization-Request. A
value of 13 in the second octet shall indicate odd months. A value of 14 in the second octet shall indicate even months. A value
of 32 in the third octet shall indicate the last day of the month. A value of 33 in the third octet shall indicate odd days of the
month. A value of 34 in the third octet shall indicate even days of the month.

Example: Application-tagged specific date value
 ASN.1 = Date
 Value = January 24, 1991 (Day of week = Thursday)
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011804'

Example: Application-tagged date pattern value
 ASN.1 = Date
 Value = year = 1991, month is unspecified, day = 24, day of week is unspecified
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5BFF18FF'

20.2.13 Encoding of a Time Value

The encoding of a time value shall be primitive, with four contents octets. Unless otherwise specified (e.g., UTC time), a time
value generated by a device shall be a local time.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

632 ANSI/ASHRAE Standard 135-2012

Time values shall be encoded in the contents octets as four binary integers. The first contents octet shall represent the hour, in
the 24-hour system (1 P.M. = D'13'); the second octet shall represent the minute of the hour; the third octet shall represent the
second of the minute; and the fourth octet shall represent the fractional part of the second in hundredths of a second. A value of
X'FF' = D'255' in any of the four octets shall indicate that the corresponding value is unspecified and shall be considered a
wildcard when matching times. If all four octets = X'FF', the corresponding time may be interpreted as "any" or "don't care."

Neither an unspecified time nor a time pattern shall be used in time values that convey actual time, such as those presented by
the Local_Time property of the Device object or in a TimeSynchronization-Request.

Example: Application-tagged specific time value
 ASN.1 = Time
 Value = 17:35:45.17 (= 5:35:45.17 P.M.)
 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11232D11'

20.2.14 Encoding of an Object Identifier Value

A BACnet Object Identifier value shall consist of two components:

 (1) A 10-bit object type, representing the BACnetObjectType of the object, with bit 9 the most significant bit and

bit 0 the least significant. For objects defined in this standard, the value for this field shall be determined by
the BACnetObjectType enumeration in Clause 21.

 (2) A 22-bit object instance number, with bit 21 the most significant bit and bit 0 the least significant.

Bit Number: 31 ... 22 21 ... 0
---	---	---	---	---	...	---	---
Object Type	Instance Number						
---	---	---	---	---	...	---	---
Field Width: <----- 10 ----> <---- 22 ---->

The encoding of an object identifier value shall be primitive, with four contents octets as follows:

Bits 9 through 2 of the object type shall be encoded in bits 7 through 0 of the first contents octet. Bits 1 through 0 of the object
type shall be encoded in bits 7 through 6 of the second contents octet.

Bits 21 through 16 of the object instance shall be encoded in bits 5 through 0 of the second contents octet. Bits 15 through 8 of
the object instance shall be encoded in bits 7 through 0 of the third contents octet. Bits 7 through 0 of the object instance shall be
encoded in bits 7 through 0 of the fourth contents octet.

Example: Application-tagged object identifier value
 ASN.1 = ObjectIdentifier
 Value = (Binary Input, 15)
 Application Tag = ObjectIdentifier (Tag Number = 12)
 Encoded Tag = X'C4'
 Encoded Data = X'00C0000F'

20.2.15 Encoding of a Tagged Value

The encoding of a tagged value shall be derived from the complete encoding of the corresponding data value.

ISO 8824 defines the keywords "IMPLICIT" and "EXPLICIT," with "EXPLICIT" the default. Clause 21 begins with a
"DEFINITION IMPLICIT TAGS," which changes the default to IMPLICIT. BACnet ASN.1 definitions are in terms of this
default and use EXPLICIT only as an override.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 633

If the "EXPLICIT" keyword is used in the production for the type, the encoding shall be constructed, and the contents octets
shall be the complete base encoding, including tags.

If the "EXPLICIT" keyword is not used in the definition of the type, then

 a) the encoding shall be constructed if the base encoding is constructed and shall be primitive otherwise, and either

 b) the contents octets shall be the same as the contents octets of the base encoding if the base encoding is not primitively

tagged application class Boolean or

 c) the contents octet shall contain the value B'00000000' to denote a Boolean value of FALSE or B'00000001' to denote a

Boolean value of TRUE if the base encoding is primitively tagged application class Boolean.

The context tag numbers shown in the following examples are for illustrative purposes only.

Example: Context-tagged null value
 ASN.1 = [3] NULL
 Context Tag = 3
 Encoded Tag = X'38'

Example: Context-tagged Boolean value
 ASN.1 = [6] BOOLEAN
 Value = FALSE
 Context Tag = 6
 Encoded Tag = X'69'
 Encoded Data = X'00'

Example: Context-tagged Boolean value with context tag number greater than 14
 ASN.1 = [27] BOOLEAN
 Value = FALSE
 Context Tag = 27
 Encoded Tag = X'F9'
 Tag Number Extension = X'1B'
 Encoded Data = X'00'

Example: Context-tagged unsigned integer
 ASN.1 = [0] Unsigned
 Value = 256
 Context Tag = 0
 Encoded Tag = X'0A'
 Encoded Data = X'0100'

Example: Context-tagged signed integer
 ASN.1 = [5] INTEGER
 Value = -72
 Context Tag = 5
 Encoded Tag = X'59'
 Encoded Data = X'B8'

Example: Context-tagged signed integer with context tag number greater than 14
 ASN.1 = [33] INTEGER
 Value = -72
 Context Tag = 33
 Encoded Tag = X'F9'
 Tag Number Extension = X'21'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

634 ANSI/ASHRAE Standard 135-2012

 Encoded Data = X'B8'

Example: Context-tagged single precision real
 ASN.1 = [0] REAL
 Value = -33.3
 Context Tag = 0
 Encoded Tag = X'0C'
 Encoded Data = X'C2053333'

Example: Context-tagged double precision real
 ASN.1 = [1] Double
 Value = -33.3
 Context Tag = 1
 Encoded Tag = X'1D'
 Length Extension = X'08'
 Encoded Data = X'C040A66666666666'

Example: Context-tagged double precision real with context tag number greater than 14
 ASN.1 = [85] Double
 Value = -33.3
 Context Tag = 85
 Encoded Tag = X'FD'
 Tag Number Extension = X'55'
 Length Extension = X'08'
 Encoded Data = X'C040A66666666666'

Example: Context-tagged octet string
 ASN.1 = [1] OctetString
 Value = X'4321'
 Context Tag = 1
 Encoded Tag = X'1A'
 Encoded Data = X'4321'

Example: Context-tagged character string
 ASN.1 = [5] CharacterString
 Value = "This is a BACnet string!" (ISO 10646 UTF-8)
 Context Tag = 5
 Encoded Tag = X'5D'
 Length Extension = X'19'
 Character Set = X'00' (ISO 10646 UTF-8)
 Encoded Data = X'546869732069732061204241436E657420737472696E6721'

Example: Context-tagged character string with context tag number greater than 14
 ASN.1 = [127] CharacterString
 Value = "This is a BACnet string!" (ISO 10646 UTF-8)
 Context Tag = 127
 Encoded Tag = X'FD'
 Tag Number Extension = X'7F'
 Length Extension = X'19'
 Character Set = X'00' (ISO 10646 UTF-8)
 Encoded Data = X'546869732069732061204241436E657420737472696E6721'

Example: Application-tagged character string with non-ANSI character
 ASN.1 = CharacterString
 Value = "Français" (ISO 10646 UTF-8)
 Application Tag = Character String (Tag Number = 7)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 635

 Encoded Tag = X'75'
 Length Extension = X'0A'
 Character Set = X'00' (ISO 10646: UTF-8)
 Encoded Data = X'4672616EC3A7616973'

Example: Context-tagged bit string
 ASN.1 = [0] BIT STRING
 Value = B'10101'
 Context Tag = 0
 Encoded Tag = X'0A'
 Unused Bits in Last Octet = X'03'
 Encoded Data = X'A8'

Example: Context-tagged enumeration
 ASN.1 = [9] BACnetObjectType
 Value = ANALOG-INPUT (0)
 Context Tag = 9
 Encoded Tag = X'99'
 Encoded Data = X'00'

Example: Context-tagged date value
 ASN.1 = [9] Date
 Value = January 24, 1991 (Day of week = Thursday)
 Context Tag = 9
 Encoded Tag = X'9C'
 Encoded Data = X'5B011804'

Example: Context-tagged time value
 ASN.1 = [4] Time
 Value = 5:35:45.17 P.M. = 17:35:45.17
 Context Tag = 4
 Encoded Tag = X'4C'
 Encoded Data = X'11232D11'

Example: Context-tagged object identifier value
 ASN.1 = [4] ObjectIdentifier
 Value = (Binary Input, 15)
 Context Tag = 4
 Encoded Tag = X'4C'
 Encoded Data = X'00C0000F'

20.2.16 Encoding of a Sequence Value

The encoding of a sequence value shall consist of the complete encoding, including tags, of one data value from each of the
types listed in the ASN.1 production for the sequence type, in the order of their appearance in the definition, unless the type was
referenced with the keyword "OPTIONAL".

The encoding of a data value may, but need not, be present for a type that was referenced with the keyword "OPTIONAL". If
present, it shall appear in the encoding at the point corresponding to the appearance of the type in the ASN.1 definition.

Example: SEQUENCE value
 ASN.1 = BACnetDateTime
 Value = January 24, 1991, 5:35:45.17 P.M.
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011805'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

636 ANSI/ASHRAE Standard 135-2012

 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11232D11'

Example: Context-tagged SEQUENCE value
 ASN.1 = [0] BACnetDateTime
 Value = January 24, 1991, 5:35:45.17 P.M.
 Context Tag = 0
 Encoded Tag = X'0E' (opening tag)
 Application Tag =Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011805'
 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11232D11'
 Encoded Tag = X'0F' (closing tag)

Example: Context-tagged SEQUENCE value with context tag number greater than 14
 ASN.1 = [47] BACnetDateTime
 Value = January 24, 1991, 5:35:45.17 P.M.
 Context Tag = 47
 Encoded Tag = X'FE' (opening tag)
 Tag Number Extension = X'2F'
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011805'
 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11232D11'
 Encoded Tag = X'FF' (closing tag)
 Tag Number Extension = X'2F'

All ASN.1 productions of sequences that contain structured elements shall have distinct tags as necessary to permit
unambiguous encoding and decoding of values. The follow example illustrates this requirement.

 (incorrect usage)
 Var1 ::= SEQUENCE {
 varn1 SEQUENCE {
 varn2 [1] INTEGER,
 varn3 [2] INTEGER OPTIONAL
 },
 varn4 SEQUENCE {
 varn5 [1] INTEGER OPTIONAL,
 varn6 [2] INTEGER
 }
 }

 (correct usage)
 Var1 ::= SEQUENCE {
 varn1 SEQUENCE {
 varn2 [1] INTEGER,
 varn3 [2] INTEGER OPTIONAL
 },
 varn4 SEQUENCE {
 varn5 [3] INTEGER OPTIONAL,
 varn6 [4] INTEGER

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 637

 }
 }

20.2.17 Encoding of a Sequence-Of Value

The encoding of a sequence-of value shall consist of zero, one, or more complete encodings, including tags, of data values
from the types listed in the ASN.1 definition.

The use of OPTIONAL components or ABSTRACT-SYNTAX_&Type in datatypes can lead to ambiguous parsing of
concatenations. Therefore, the members of a Sequence-Of shall be restricted to datatypes that can be unambiguously parsed
when concatenated.

The order of the encodings of the data values shall be the same as the order of the data values in the sequence-of value to be
encoded.

Example: SEQUENCE OF primitive data
 ASN.1 = SEQUENCE OF INTEGER
 Value = 1,2,4
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'01'
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'02'
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'04'

Example: Context-tagged SEQUENCE OF primitive data
 ASN.1 = [1] SEQUENCE OF INTEGER
 Value = 1,2,4
 Encoded Tag = X'1E' (Opening Tag)
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'01'
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'02'
 Application Tag = Unsigned Integer (Tag Number = 2)
 Encoded Tag = X'21'
 Encoded Data = X'04'
 Encoded Tag = X'1F' (Closing Tag)

Example: SEQUENCE OF constructed data
 ASN.1 = SEQUENCE OF BACnetDateTime
 Value = (January 24, 1991, 5:00 P.M.),
 (January 24, 1991, 6:45 P.M.)
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011804'
 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11000000'
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011804'
 Application Tag = Time (Tag Number = 11)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

20. ENCODING BACnet PROTOCOL DATA UNITS

638 ANSI/ASHRAE Standard 135-2012

 Encoded Tag = X'B4'
 Encoded Data = X'122D0000'

20.2.18 Encoding of a Choice Value

The encoding of a CHOICE value shall be the same as the encoding of a value of the chosen type. The encoding may be
primitive or constructed depending on the chosen type.

Example: CHOICE of primitive data
 ASN.1 = BACnetTimeStamp
 Value = 5:35:45.17 P.M. = 17:35:45.17
 Context Tag = 0 (Choice for 'time' in BACnetTimeStamp)
 Encoded Tag = X'0C'
 Encoded Data = X'11232D11'

Example: CHOICE of constructed data
 ASN.1 = BACnetTimeStamp
 Value = January 24, 1991, 5:45.17 P.M.
 Context Tag = 2 (Choice for 'dateTime' in BACnetTimeStamp)
 Encoded Tag = X'2E' (Opening Tag)
 Application Tag = Date (Tag Number = 10)
 Encoded Tag = X'A4'
 Encoded Data = X'5B011804'
 Application Tag = Time (Tag Number = 11)
 Encoded Tag = X'B4'
 Encoded Data = X'11232D11'
 Encoded Tag = X'2F' (Closing Tag)

20.2.19 Encoding of a Value of the ANY Type

The encoding of an ANY type shall be the complete encoding specified in this standard for the type of the value substituted for
the placeholder ANY. This is represented in ASN.1 by ABSTRACT-SYNTAX.&Type.

20.2.20 Summary of the Tagging Rules

While the tagged portion of a BACnet PDU cannot be interpreted without knowledge of the context, the tagging rules described
in 20.2 result in a tagged stream that can be unambiguously parsed even without a priori knowledge of the context.

 (a) The first octet in a stream shall be a tag, either context specific or application class.

 (b) If a tag is application class, then the format and extent of its data are known according to the definitions in 20.2. In

particular, the data, if any, may be bypassed and the next tag in the stream found.

 (c) If a tag is context specific and primitive, then it contains primitive (untagged) data of some type. The length/value/type

field of the tag specifies the length of this data. Thus, while the datatype and format of the data may be unknown, its
length is known exactly. This allows the data, if any, to be bypassed and the next tag in the stream found.

 (d) If a tag is constructed (length/value/type = 6), then it is the opening tag of a pair. Following this tag shall be a sequence

of zero or more tagged elements, followed by the closing tag of the pair with length/value/type = 7. The tagged stream
between opening and closing tags may be parsed according to these same four rules via a process of recursive descent
until only primitive tags are encountered or until no tags are encountered.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 639

21 FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

This clause consists of an ASN.1 module that defines the BACnet APDUs and all necessary underlying datatypes. Clauses 13
through 17 contain many service parameters that are defined as conditional (C) or user optional (U). Both of these parameter
types are designated as OPTIONAL in the ASN.1 productions to indicate that they may or may not be present in the PDU. The
use of OPTIONAL in the ASN.1 production shall not supersede the conditional requirements defined in the service
specification.

BACnetModule DEFINITIONS IMPLICIT TAGS ::=
BEGIN

--******************* APDU Definitions *******************

BACnetPDU ::= CHOICE {
 confirmed-request-PDU [0] BACnet-Confirmed-Request-PDU,
 unconfirmed-request-PDU [1] BACnet-Unconfirmed-Request-PDU,
 simpleACK-PDU [2] BACnet-SimpleACK-PDU,
 complexACK-PDU [3] BACnet-ComplexACK-PDU,
 segmentAck-PDU [4] BACnet-SegmentACK-PDU,
 error-PDU [5] BACnet-Error-PDU,
 reject-PDU [6] BACnet-Reject-PDU,
 abort-PDU [7] BACnet-Abort-PDU
 }

BACnet-Confirmed-Request-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 0 for this PDU type
 segmented-message [1] BOOLEAN,
 more-follows [2] BOOLEAN,
 segmented-response-accepted [3] BOOLEAN,
 reserved [4] Unsigned (0..3), -- must be set to zero
 max-segments-accepted [5] Unsigned (0..7), -- as per 20.1.2.4

max-APDU-length-accepted [6] Unsigned (0..15), -- as per 20.1.2.5
 invokeID [7] Unsigned (0..255),
 sequence-number [8] Unsigned (0..255) OPTIONAL, -- only if segmented msg
 proposed-window-size [9] Unsigned (1..127) OPTIONAL, -- only if segmented msg
 service-choice [10] BACnetConfirmedServiceChoice,
 service-request [11] BACnet-Confirmed-Service-Request OPTIONAL
-- Context-specific tags 0..11 are NOT used in header encoding
 }

BACnet-Unconfirmed-Request-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 1 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 service-choice [2] BACnetUnconfirmedServiceChoice,
 service-request [3] BACnet-Unconfirmed-Service-Request
-- Context-specific tags 0..3 are NOT used in header encoding
 }

BACnet-SimpleACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 2 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 invokeID [2] Unsigned (0..255),
 service-ACK-choice [3] BACnetConfirmedServiceChoice
-- Context-specific tags 0..3 are NOT used in header encoding
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

640 ANSI/ASHRAE Standard 135-2012

BACnet-ComplexACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 3 for this PDU type
 segmented-message [1] BOOLEAN,
 more-follows [2] BOOLEAN,
 reserved [3] Unsigned (0..3), -- must be set to zero
 invokeID [4] Unsigned (0..255),
 sequence-number [5] Unsigned (0..255) OPTIONAL, --only if segment
 proposed-window-size [6] Unsigned (1..127) OPTIONAL, -- only if segment
 service-ACK-choice [7] BACnetConfirmedServiceChoice,
 service-ACK [8] BACnet-Confirmed-Service-ACK
-- Context-specific tags 0..8 are NOT used in header encoding
 }

BACnet-SegmentACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 4 for this PDU type
 reserved [1] Unsigned (0..3), -- must be set to zero
 negative-ACK [2] BOOLEAN,
 server [3] BOOLEAN,
 original-invokeID [4] Unsigned (0..255),
 sequence-number [5] Unsigned (0..255),
 actual-window-size [6] Unsigned (1..127)
-- Context-specific tags 0..6 are NOT used in header encoding
 }

BACnet-Error-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 5 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 original-invokeID [2] Unsigned (0..255),
 error-choice [3] BACnetConfirmedServiceChoice,
 error [4] BACnet-Error
-- Context-specific tags 0..4 are NOT used in header encoding
 }

BACnet-Reject-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 6 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 original-invokeID [2] Unsigned (0..255),
 reject-reason [3] BACnetRejectReason
-- Context-specific tags 0..3 are NOT used in the header encoding
 }

BACnet-Abort-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 7 for this PDU type
 reserved [1] Unsigned (0..7), -- must be set to zero
 server [2] BOOLEAN,
 original-invokeID [3] Unsigned (0..255),
 abort-reason [4] BACnetAbortReason
-- Context-specific tags 0..4 are NOT used in header encoding
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 641

********************** Confirmed Service Productions *********************

BACnetConfirmedServiceChoice ::= ENUMERATED {
-- Alarm and Event Services
 acknowledgeAlarm (0),
 confirmedCOVNotification (1),
 confirmedEventNotification (2),
 getAlarmSummary (3),
 getEnrollmentSummary (4),
 getEventInformation (29),
 subscribeCOV (5),
 subscribeCOVProperty (28),
 lifeSafetyOperation (27),

-- File Access Services
 atomicReadFile (6),
 atomicWriteFile (7),

-- Object Access Services
 addListElement (8),
 removeListElement (9),
 createObject (10),
 deleteObject (11),
 readProperty (12),
 readPropertyMultiple (14),
 readRange (26),
 writeProperty (15),
 writePropertyMultiple (16),

-- Remote Device Management Services
 deviceCommunicationControl (17),
 confirmedPrivateTransfer (18),
 confirmedTextMessage (19),
 reinitializeDevice (20),

-- Virtual Terminal Services
 vtOpen (21),
 vtClose (22),
 vtData (23)

-- Removed Services
 -- formerly: authenticate (24), removed in version 1 revision 11
 -- formerly: requestKey (25), removed in version 1 revision 11
 -- formerly: readPropertyConditional (13), removed in version 1 revision 12

-- Services added after 1995

-- readRange (26) see Object Access Services
-- lifeSafetyOperation (27) see Alarm and Event Services
-- subscribeCOVProperty (28) see Alarm and Event Services
-- getEventInformation (29) see Alarm and Event Services

 }
-- Other services to be added as they are defined. All enumeration values in this production are reserved for definition by
-- ASHRAE. Proprietary extensions are made by using the ConfirmedPrivateTransfer or UnconfirmedPrivateTransfer
-- services. See Clause 23.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

642 ANSI/ASHRAE Standard 135-2012

BACnet-Confirmed-Service-Request ::= CHOICE {
-- Alarm and Event Services
 acknowledgeAlarm [0] AcknowledgeAlarm-Request,
 confirmedCOVNotification [1] ConfirmedCOVNotification-Request,
 confirmedEventNotification [2] ConfirmedEventNotification-Request,
 -- getAlarmSummary conveys no parameters
 getEnrollmentSummary [4] GetEnrollmentSummary-Request,
 getEventInformation [29] GetEventInformation-Request,
 subscribeCOV [5] SubscribeCOV-Request,
 subscribeCOVProperty [28] SubscribeCOVProperty-Request,
 lifeSafetyOperation [27] LifeSafetyOperation-Request,

-- File Access Services
 atomicReadFile [6] AtomicReadFile-Request,
 atomicWriteFile [7] AtomicWriteFile-Request,

-- Object Access Services
 addListElement [8] AddListElement-Request,
 removeListElement [9] RemoveListElement-Request,
 createObject [10] CreateObject-Request,
 deleteObject [11] DeleteObject-Request,
 readProperty [12] ReadProperty-Request,
 readPropertyMultiple [14] ReadPropertyMultiple-Request,
 readRange [26] ReadRange-Request,
 writeProperty [15] WriteProperty-Request,
 writePropertyMultiple [16] WritePropertyMultiple-Request,

-- Remote Device Management Services
 deviceCommunicationControl [17] DeviceCommunicationControl-Request,
 confirmedPrivateTransfer [18] ConfirmedPrivateTransfer-Request,
 confirmedTextMessage [19] ConfirmedTextMessage-Request,
 reinitializeDevice [20] ReinitializeDevice-Request,

-- Virtual Terminal Services
 vtOpen [21] VT-Open-Request,
 vtClose [22] VT-Close-Request,
 vtData [23] VT-Data-Request

-- Removed Services
 -- formerly:authenticate [24] This was removed in version 1 revision 11
 -- formerly:requestKey [25] This was removed in version 1 revision 11
 -- formerly: readPropertyConditional [13] removed in version 1 revision 12

-- Services added after 1995
 -- readRange [26] see Object Access Services
 -- lifeSafetyOperation [27] see Alarm and Event Services
 -- subscribeCOVProperty [28] see Alarm and Event Services
 -- getEventInformation [29] see Alarm and Event Services
 }
-- Context-specific tags 0..29 are NOT used in the encoding. The tag number is transferred as the service-choice parameter
-- in the BACnet-Confirmed-Request-PDU.
--
-- Other services will be added as they are defined. All choice values in this production are reserved for definition by
-- ASHRAE. Proprietary extensions are made by using the ConfirmedPrivateTransfer service. See Clause 23.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 643

BACnet-Confirmed-Service-ACK ::= CHOICE {
-- This production represents the 'Result(+)' parameters defined for each confirmed service that returns one or more
-- parameters with 'Result(+)'.

-- Alarm and Event Services
 getAlarmSummary [3] GetAlarmSummary-ACK,
 getEnrollmentSummary [4] GetEnrollmentSummary-ACK,
 getEventInformation [29] GetEventInformation-ACK,

-- File Access Services
 atomicReadFile [6] AtomicReadFile-ACK,
 atomicWriteFile [7] AtomicWriteFile-ACK,

-- Object Access Services
 createObject [10] CreateObject-ACK,
 readProperty [12] ReadProperty-ACK,
 readPropertyMultiple [14] ReadPropertyMultiple-ACK,
 readRange [26] ReadRange-ACK,

-- Remote Device Management Services
 confirmedPrivateTransfer [18] ConfirmedPrivateTransfer-ACK,

-- Virtual Terminal Services
 vtOpen [21] VT-Open-ACK,
 vtData [23] VT-Data-ACK

-- Removed Services
 -- formerly: authenticate [24]removed in version 1 revision 11
 -- formerly: readPropertyConditional [13] removed in version 1 revision 12

-- Context-specific tags 3..29 are NOT used in the encoding. The tag number is transferred as the service-ACK-choice
-- parameter in the BACnet-ComplexACK-PDU.
--
-- Other services to be added as they are defined. All choice values in this production are reserved for definition by
-- ASHRAE. Proprietary extensions are made by using the ConfirmedPrivateTransfer service.
-- See Clause 23.
 }

*********************** Confirmed Alarm and Event Services ******************

AcknowledgeAlarm-Request ::= SEQUENCE {
 acknowledgingProcessIdentifier [0] Unsigned32,
 eventObjectIdentifier [1] BACnetObjectIdentifier,
 eventStateAcknowledged [2] BACnetEventState,
 timeStamp [3] BACnetTimeStamp,
 acknowledgmentSource [4] CharacterString,
 timeOfAcknowledgment [5] BACnetTimeStamp
 }

ConfirmedCOVNotification-Request ::= SEQUENCE {
 subscriberProcessIdentifier [0] Unsigned32,
 initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
 monitoredObjectIdentifier [2] BACnetObjectIdentifier,
 timeRemaining [3] Unsigned,
 listOfValues [4] SEQUENCE OF BACnetPropertyValue
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

644 ANSI/ASHRAE Standard 135-2012

ConfirmedEventNotification-Request ::= SEQUENCE {
 processIdentifier [0] Unsigned32,
 initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
 eventObjectIdentifier [2] BACnetObjectIdentifier,
 timeStamp [3] BACnetTimeStamp,
 notificationClass [4] Unsigned,
 priority [5] Unsigned8,
 eventType [6] BACnetEventType,
 messageText [7] CharacterString OPTIONAL,
 notifyType [8] BACnetNotifyType,
 ackRequired [9] BOOLEAN OPTIONAL,
 fromState [10] BACnetEventState OPTIONAL,
 toState [11] BACnetEventState,
 eventValues [12] BACnetNotificationParameters OPTIONAL
 }

GetAlarmSummary-ACK ::= SEQUENCE OF SEQUENCE {
 objectIdentifier BACnetObjectIdentifier,
 alarmState BACnetEventState,
 acknowledgedTransitions BACnetEventTransitionBits
 }

GetEnrollmentSummary-Request ::= SEQUENCE {
 acknowledgmentFilter [0] ENUMERATED {
 all (0),
 acked (1),
 not-acked (2)
 },
 enrollmentFilter [1] BACnetRecipientProcess OPTIONAL,
 eventStateFilter [2] ENUMERATED {
 offnormal (0),
 fault (1),
 normal (2),
 all (3),
 active (4)
 } OPTIONAL,
 eventTypeFilter [3] BACnetEventType OPTIONAL,
 priorityFilter [4] SEQUENCE {
 minPriority [0] Unsigned8,
 maxPriority [1] Unsigned8
 } OPTIONAL,
 notificationClassFilter [5] Unsigned OPTIONAL
 }

GetEnrollmentSummary-ACK ::= SEQUENCE OF SEQUENCE {
 objectIdentifier BACnetObjectIdentifier,
 eventType BACnetEventType,
 eventState BACnetEventState,
 priority Unsigned8,
 notificationClass Unsigned OPTIONAL
 }

GetEventInformation-Request ::= SEQUENCE {
 lastReceivedObjectIdentifier [0] BACnetObjectIdentifier OPTIONAL

}

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 645

GetEventInformation-ACK ::= SEQUENCE {
 listOfEventSummaries [0] SEQUENCE OF SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 eventState [1] BACnetEventState,
 acknowledgedTransitions [2] BACnetEventTransitionBits,
 eventTimeStamps [3] SEQUENCE SIZE (3) OF BACnetTimeStamp,
 notifyType [4] BACnetNotifyType,
 eventEnable [5] BACnetEventTransitionBits,
 eventPriorities [6] SEQUENCE SIZE (3) OF Unsigned
 },
 moreEvents [1] BOOLEAN

}

LifeSafetyOperation-Request ::= SEQUENCE {
 requestingProcessIdentifier [0] Unsigned32,
 requestingSource [1] CharacterString,
 request [2] BACnetLifeSafetyOperation,
 objectIdentifier [3] BACnetObjectIdentifier OPTIONAL
 }

SubscribeCOV-Request ::= SEQUENCE {
 subscriberProcessIdentifier [0] Unsigned32,
 monitoredObjectIdentifier [1] BACnetObjectIdentifier,
 issueConfirmedNotifications [2] BOOLEAN OPTIONAL,
 lifetime [3] Unsigned OPTIONAL
 }

SubscribeCOVProperty-Request ::= SEQUENCE {
 subscriberProcessIdentifier [0] Unsigned32,
 monitoredObjectIdentifier [1] BACnetObjectIdentifier,
 issueConfirmedNotifications [2] BOOLEAN OPTIONAL,
 lifetime [3] Unsigned OPTIONAL,
 monitoredPropertyIdentifier [4] BACnetPropertyReference,
 covIncrement [5] REAL OPTIONAL
 }

************************** Confirmed File Access Services *************************

AtomicReadFile-Request ::= SEQUENCE {
 fileIdentifier BACnetObjectIdentifier,
 accessMethod CHOICE {
 streamAccess [0] SEQUENCE {
 fileStartPosition INTEGER,
 requestedOctetCount Unsigned
 },
 recordAccess [1] SEQUENCE {
 fileStartRecord INTEGER,
 requestedRecordCount Unsigned
 }
 }
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

646 ANSI/ASHRAE Standard 135-2012

AtomicReadFile-ACK ::= SEQUENCE {
 endOfFile BOOLEAN,
 accessMethod CHOICE {
 streamAccess [0] SEQUENCE {
 fileStartPosition INTEGER,
 fileData OCTET STRING
 },
 recordAccess [1] SEQUENCE {
 fileStartRecord INTEGER,
 returnedRecordCount Unsigned,
 fileRecordData SEQUENCE OF OCTET STRING
 }
 }
 }

AtomicWriteFile-Request ::= SEQUENCE {
 fileIdentifier BACnetObjectIdentifier,
 accessMethod CHOICE {
 streamAccess [0] SEQUENCE {
 fileStartPosition INTEGER,
 fileData OCTET STRING
 },
 recordAccess [1] SEQUENCE {
 fileStartRecord INTEGER,
 recordCount Unsigned,
 fileRecordData SEQUENCE OF OCTET STRING
 }
 }
 }

AtomicWriteFile-ACK ::= CHOICE {
 fileStartPosition [0] INTEGER,
 fileStartRecord [1] INTEGER
 }

************************** Confirmed Object Access Services ***********************

AddListElement-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
 listOfElements [3] ABSTRACT-SYNTAX.&Type
 }

CreateObject-Request ::= SEQUENCE {
 objectSpecifier [0] CHOICE {
 objectType [0] BACnetObjectType,
 objectIdentifier [1] BACnetObjectIdentifier
 },
 listOfInitialValues [1] SEQUENCE OF BACnetPropertyValue OPTIONAL
 }

CreateObject-ACK ::= BACnetObjectIdentifier

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 647

DeleteObject-Request ::= SEQUENCE {
 objectIdentifier BACnetObjectIdentifier
 }

ReadProperty-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL --used only with array datatype
 -- if omitted with an array the entire array is referenced
 }

ReadProperty-ACK ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, --used only with array datatype
 -- if omitted with an array the entire array is referenced
 propertyValue [3] ABSTRACT-SYNTAX.&Type
 }

ReadPropertyMultiple-Request ::= SEQUENCE {
 listOfReadAccessSpecs SEQUENCE OF ReadAccessSpecification
 }

ReadPropertyMultiple-ACK ::= SEQUENCE {
 listOfReadAccessResults SEQUENCE OF ReadAccessResult
 }

ReadRange-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
 range CHOICE {
 byPosition [3] SEQUENCE {
 referenceIndex Unsigned,
 count INTEGER16
 },
 -- context tag 4 is deprecated
 -- context tag 5 is deprecated
 bySequenceNumber [6] SEQUENCE {
 referenceSequenceNumber Unsigned,
 count INTEGER16
 },
 byTime [7] SEQUENCE {
 referenceTime BACnetDateTime,
 count INTEGER16
 }
 } OPTIONAL

}

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

648 ANSI/ASHRAE Standard 135-2012

ReadRange-ACK ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL , -- used only with array datatype
 resultFlags [3] BACnetResultFlags,
 itemCount [4] Unsigned,

itemData [5] SEQUENCE OF ABSTRACT-SYNTAX.&Type,
 firstSequenceNumber [6] Unsigned32 OPTIONAL -- used only if 'Item Count' > 0 and the request was either of

 -- type 'By Sequence Number' or 'By Time'
}

RemoveListElement-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, --used only with array datatypes
 listOfElements [3] ABSTRACT-SYNTAX.&Type
 }

WriteProperty-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, --used only with array datatype
 -- if omitted with an array the entire
 -- array is referenced
 propertyValue [3] ABSTRACT-SYNTAX.&Type,
 priority [4] Unsigned (1..16) OPTIONAL --used only when property is commandable
 }

WritePropertyMultiple-Request ::= SEQUENCE {
 listOfwriteAccessSpecifications SEQUENCE OF WriteAccessSpecification
 }

************************* Confirmed Remote Device Management Services *****************

ConfirmedPrivateTransfer-Request ::= SEQUENCE {
 vendorID [0] Unsigned16,
 serviceNumber [1] Unsigned,
 serviceParameters [2] ABSTRACT-SYNTAX.&Type OPTIONAL
 }

ConfirmedPrivateTransfer-ACK ::= SEQUENCE {
 vendorID [0] Unsigned16,
 serviceNumber [1] Unsigned,
 resultBlock [2] ABSTRACT-SYNTAX.&Type OPTIONAL
 }

ConfirmedTextMessage-Request ::= SEQUENCE {
 textMessageSourceDevice [0] BACnetObjectIdentifier,
 messageClass [1] CHOICE {
 numeric [0] Unsigned,
 character [1] CharacterString
 } OPTIONAL,
 messagePriority [2] ENUMERATED {
 normal (0),
 urgent (1)
 },

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 649

 message [3] CharacterString
 }

DeviceCommunicationControl-Request ::= SEQUENCE {
 timeDuration [0] Unsigned16 OPTIONAL,
 enable-disable [1] ENUMERATED {
 enable (0),
 disable (1),
 disable-initiation (2)
 },
 password [2] CharacterString (SIZE(1..20)) OPTIONAL
 }

ReinitializeDevice-Request ::= SEQUENCE {
 reinitializedStateOfDevice [0] ENUMERATED {
 coldstart (0),
 warmstart (1),
 startbackup (2),
 endbackup (3),
 startrestore (4),
 endrestore (5),
 abortrestore (6)
 },
 password [1] CharacterString (SIZE (1..20)) OPTIONAL
 }

********************** Confirmed Virtual Terminal Services ********************

VT-Open-Request ::= SEQUENCE {
 vtClass BACnetVTClass,
 localVTSessionIdentifier Unsigned8
 }

VT-Open-ACK ::= SEQUENCE {
 remoteVTSessionIdentifier Unsigned8
 }

VT-Close-Request ::= SEQUENCE {
 listOfRemoteVTSessionIdentifiers SEQUENCE OF Unsigned8
 }

VT-Data-Request ::= SEQUENCE {
 vtSessionIdentifier Unsigned8,
 vtNewData OCTET STRING,
 vtDataFlag Unsigned (0..1)
 }

VT-Data-ACK ::= SEQUENCE {
 allNewDataAccepted [0] BOOLEAN,
 acceptedOctetCount [1] Unsigned OPTIONAL --present only if allNewDataAccepted = FALSE
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

650 ANSI/ASHRAE Standard 135-2012

******************* Unconfirmed Request Productions ********************

BACnetUnconfirmedServiceChoice ::= ENUMERATED {
 i-Am (0),
 i-Have (1),
 unconfirmedCOVNotification (2),
 unconfirmedEventNotification (3),
 unconfirmedPrivateTransfer (4),
 unconfirmedTextMessage (5),
 timeSynchronization (6),
 who-Has (7),
 who-Is (8),
 utcTimeSynchronization (9),
 writeGroup (10)
 }
-- Other services to be added as they are defined. All choice values in this production are reserved for definition by
-- ASHRAE. Proprietary extensions are made by using the UnconfirmedPrivateTransfer service. See Clause 23.
BACnet-Unconfirmed-Service-Request ::= CHOICE {
 i-Am [0] I-Am-Request,
 i-Have [1] I-Have-Request,
 unconfirmedCOVNotification [2] UnconfirmedCOVNotification-Request,
 unconfirmedEventNotification [3] UnconfirmedEventNotification-Request,
 unconfirmedPrivateTransfer [4] UnconfirmedPrivateTransfer-Request,
 unconfirmedTextMessage [5] UnconfirmedTextMessage-Request,
 timeSynchronization [6] TimeSynchronization-Request,
 who-Has [7] Who-Has-Request,
 who-Is [8] Who-Is-Request,
 utcTimeSynchronization [9] UTCTimeSynchronization-Request,
 writeGroup [10] WriteGroup-Request
 }
-- Context-specific tags 0..8 are NOT used in the encoding. The tag number is transferred as the service-choice parameter
-- in the BACnet-Unconfirmed-Request-PDU.
--
-- Other services to be added as they are defined. All choice values in this production are reserved for definition by
-- ASHRAE. Proprietary extensions are made by using the UnconfirmedPrivateTransfer service.
-- See Clause 23.

******************* Unconfirmed Alarm and Event Services ********************

UnconfirmedCOVNotification-Request ::= SEQUENCE {
 subscriberProcessIdentifier [0] Unsigned32,
 initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
 monitoredObjectIdentifier [2] BACnetObjectIdentifier,
 timeRemaining [3] Unsigned,
 listOfValues [4] SEQUENCE OF BACnetPropertyValue
 }

UnconfirmedEventNotification-Request ::= SEQUENCE {
 processIdentifier [0] Unsigned32,
 initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
 eventObjectIdentifier [2] BACnetObjectIdentifier,
 timeStamp [3] BACnetTimeStamp,
 notificationClass [4] Unsigned,
 priority [5] Unsigned8,
 eventType [6] BACnetEventType,
 messageText [7] CharacterString OPTIONAL,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 651

 notifyType [8] BACnetNotifyType,
 ackRequired [9] BOOLEAN OPTIONAL,
 fromState [10] BACnetEventState OPTIONAL,
 toState [11] BACnetEventState,
 eventValues [12] BACnetNotificationParameters OPTIONAL
 }

******************* Unconfirmed Object Access Services ********************

WriteGroup-Request ::= SEQUENCE {
 groupNumber [0] Unsigned32,
 writePriority [1] Unsigned (1..16),
 changeList [2] SEQUENCE of BACnetGroupChannelValue,
 inhibitDelay [3] BOOLEAN OPTIONAL
 }

******************* Unconfirmed Remote Device Management Services ********************

I-Am-Request ::= SEQUENCE {
 iAmDeviceIdentifier BACnetObjectIdentifier,
 maxAPDULengthAccepted Unsigned,
 segmentationSupported BACnetSegmentation,
 vendorID Unsigned16
 }

I-Have-Request ::= SEQUENCE {
 deviceIdentifier BACnetObjectIdentifier,
 objectIdentifier BACnetObjectIdentifier,
 objectName CharacterString
 }

UnconfirmedPrivateTransfer-Request ::= SEQUENCE {
 vendorID [0] Unsigned16,
 serviceNumber [1] Unsigned,
 serviceParameters [2] ABSTRACT-SYNTAX.&Type OPTIONAL
 }

UnconfirmedTextMessage-Request ::= SEQUENCE {
 textMessageSourceDevice [0] BACnetObjectIdentifier,
 messageClass [1] CHOICE {
 numeric [0] Unsigned,
 character [1] CharacterString
 } OPTIONAL,
 messagePriority [2] ENUMERATED {
 normal (0),
 urgent (1)
 },
 message [3] CharacterString
 }

TimeSynchronization-Request ::= SEQUENCE {
 time BACnetDateTime
 }

UTCTimeSynchronization-Request ::= SEQUENCE {
 time BACnetDateTime

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

652 ANSI/ASHRAE Standard 135-2012

 }

Who-Has-Request ::= SEQUENCE {
 limits SEQUENCE {
 deviceInstanceRangeLowLimit [0] Unsigned (0..4194303),
 deviceInstanceRangeHighLimit [1] Unsigned (0..4194303)
 } OPTIONAL,
 object CHOICE {
 objectIdentifier [2] BACnetObjectIdentifier,
 objectName [3] CharacterString
 }
 }

Who-Is-Request ::= SEQUENCE {
 deviceInstanceRangeLowLimit [0] Unsigned (0..4194303) OPTIONAL, -- must be used as a pair, see 16.10
 deviceInstanceRangeHighLimit [1] Unsigned (0..4194303) OPTIONAL -- must be used as a pair, see 16.10
 }

****************************** Error Productions *************************

BACnetAbortReason ::= ENUMERATED {
 other (0),
 buffer-overflow (1),
 invalid-apdu-in-this-state (2),
 preempted-by-higher-priority-task (3),
 segmentation-not-supported (4),
 security-error (5),
 insufficient-security (6),
 window-size-out-of-range (7),
 application-exceeded-reply-time (8),
 out-of-resources (9),
 tsm-timeout (10),
 apdu-too-long (11),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values 64-255
 -- may be used by others subject to the procedures and constraints described in Clause 23.

BACnet-Error ::= CHOICE {
 other [127] Error,
-- The remaining choices in this production represent the Result(-) parameters
-- defined for each confirmed service.

-- Alarm and Event Services
 acknowledgeAlarm [0] Error,
 confirmedCOVNotification [1] Error,
 confirmedEventNotification [2] Error,
 getAlarmSummary [3] Error,
 getEnrollmentSummary [4] Error,
 getEventInformation [29] Error,
 subscribeCOV [5] Error,
 subscribeCOVProperty [28] Error,
 lifeSafetyOperation [27] Error,

-- File Access Services

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 653

 atomicReadFile [6] Error,
 atomicWriteFile [7] Error,

-- Object Access Services
 addListElement [8] ChangeList-Error,
 removeListElement [9] ChangeList-Error,
 createObject [10] CreateObject-Error,
 deleteObject [11] Error,
 readProperty [12] Error,
 readPropertyMultiple [14] Error,
 readRange [26] Error,
 writeProperty [15] Error,
 writePropertyMultiple [16] WritePropertyMultiple-Error,

-- Remote Device Management Services
 deviceCommunicationControl [17] Error,
 confirmedPrivateTransfer [18] ConfirmedPrivateTransfer-Error,
 confirmedTextMessage [19] Error,
 reinitializeDevice [20] Error,

-- Virtual Terminal Services
 vtOpen [21] Error,
 vtClose [22] VTClose-Error,
 vtData [23] Error

-- Removed Services
 -- formerly: authenticate [24] removed in version 1 reviion 11
 -- formerly: requestKey [25] removed in version 1 reviion 11
 -- formerly: readPropertyConditional [13] removed in version 1 revision 12

-- Services added after 1995
 -- readRange [26] see Object Access Services
 -- lifeSafetyOperation [27] see Alarm and Event Services
 -- subscribeCOVProperty [28] see Alarm and Event Services
 -- getEventInformation [29] see Alarm and Event Services
 }
-- Context-specific tags 0..29 and 127 are NOT used in the encoding. The tag number is transferred as the error-choice
-- parameter in the BACnet-Error-PDU.
--
-- Other services to be added as they are defined. All choice values in this production are reserved for definition by
-- ASHRAE. See Clause 23.

BACnetRejectReason ::= ENUMERATED {
 other (0),
 buffer-overflow (1),
 inconsistent-parameters (2),
 invalid-parameter-data-type (3),
 invalid-tag (4),
 missing-required-parameter (5),
 parameter-out-of-range (6),
 too-many-arguments (7),
 undefined-enumeration (8),
 unrecognized-service (9),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values 64-255

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

654 ANSI/ASHRAE Standard 135-2012

-- may be used by others subject to the procedures and constraints described in Clause 23.

ChangeList-Error ::= SEQUENCE {
 errorType [0] Error,
 firstFailedElementNumber [1] Unsigned
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 655

CreateObject-Error ::= SEQUENCE {
 errorType [0] Error,
 firstFailedElementNumber [1] Unsigned
 }

ConfirmedPrivateTransfer-Error ::= SEQUENCE {
 errorType [0] Error,
 vendorID [1] Unsigned16,
 serviceNumber [2] Unsigned,
 errorParameters [3] ABSTRACT-SYNTAX.&Type OPTIONAL
 }

Error ::= SEQUENCE {
-- NOTE: The valid combinations of error-class and error-code are defined in Clause 18.
 error-class ENUMERATED {
 device (0),
 object (1),
 property (2),
 resources (3),
 security (4),
 services (5),
 vt (6),
 communication (7),
 ...
 },
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

 error-code ENUMERATED { -- see below for numerical order
 abort-apdu-too-long (123),
 abort-application-exceeded-reply-time (124),
 abort-buffer-overflow (51),
 abort-insufficient-security (135),
 abort-invalid-apdu-in-this-state (52),
 abort-other (56),
 abort-out-of-resources (125),
 abort-preempted-by-higher-priority-task (53),
 abort-proprietary (55),
 abort-security-error (136),
 abort-segmentation-not-supported (54),
 abort-tsm-timeout (126),
 abort-window-size-out-of-range (127),
 access-denied (85),
 addressing-error (115),
 bad-destination-address (86),
 bad-destination-device-id (87),
 bad-signature (88),
 bad-source-address (89),
 bad-timestamp (90),
 busy (82),
 cannot-use-key (91),
 cannot-verify-message-id (92),
 character-set-not-supported (41),
 communication-disabled (83),
 configuration-in-progress (2),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

656 ANSI/ASHRAE Standard 135-2012

 correct-key-revision (93),
 cov-subscription-failed (43),
 datatype-not-supported (47),
 delete-fdt-entry-failed (120),
 device-busy (3),
 destination-device-id-required (94),
 distribute-broadcast-failed (121),
 duplicate-message (95),
 duplicate-name (48),
 duplicate-object-id (49),
 dynamic-creation-not-supported (4),
 encryption-not-configured (96),
 encryption-required (97),
 file-access-denied (5),
 file-full (128),
 inconsistent-configuration (129),
 inconsistent-object-type (130),
 inconsistent-parameters (7),
 inconsistent-selection-criterion (8),
 incorrect-key (98),
 internal-error (131),
 invalid-array-index (42),
 invalid-configuration-data (46),
 invalid-data-type (9),
 invalid-event-state (73),
 invalid-file-access-method (10),
 invalid-file-start-position (11),
 invalid-key-data (99),
 invalid-parameter-data-type (13),
 invalid-tag (57),
 invalid-time-stamp (14),
 key-update-in-progress (100),
 list-element-not-found (81),
 log-buffer-full (75),
 logged-value-purged (76),
 malformed-message (101),
 message-too-long (113),
 missing-required-parameter (16),
 network-down (58),
 no-alarm-configured (74),
 no-objects-of-specified-type (17),
 no-property-specified (77),
 no-space-for-object (18),
 no-space-to-add-list-element (19),
 no-space-to-write-property (20),
 no-vt-sessions-available (21),
 not-configured (132),
 not-configured-for-triggered-logging (78),
 not-cov-property (44),
 not-key-server (102),
 not-router-to-dnet (110),
 object-deletion-not-permitted (23),
 object-identifier-already-exists (24),
 other (0),
 operational-problem (25),
 optional-functionality-not-supported (45),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 657

 out-of-memory (133),
 parameter-out-of-range (80),
 password-failure (26),
 property-is-not-a-list (22),
 property-is-not-an-array (50),
 read-access-denied (27),
 read-bdt-failed (117),
 read-fdt-failed (119),
 register-foreign-device-failed (118),
 reject-buffer-overflow (59),
 reject-inconsistent-parameters (60),
 reject-invalid-parameter-data-type (61),
 reject-invalid-tag (62),
 reject-missing-required-parameter (63),
 reject-parameter-out-of-range (64),
 reject-too-many-arguments (65),
 reject-undefined-enumeration (66),
 reject-unrecognized-service (67),
 reject-proprietary (68),
 reject-other (69),
 router-busy (111),
 security-error (114),
 security-not-configured (103),
 service-request-denied (29),
 source-security-required (104),
 success (84),
 timeout (30),
 too-many-keys (105),
 unknown-authentication-type (106),
 unknown-device (70),
 unknown-file-size (122),
 unknown-key (107),
 unknown-key-revision (108),
 unknown-network-message (112),
 unknown-object (31),
 unknown-property (32),
 unknown-subscription (79),
 unknown-route (71),
 unknown-source-message (109),
 unknown-vt-class (34),
 unknown-vt-session (35),
 unsupported-object-type (36),
 value-not-initialized (72),
 value-out-of-range (37),
 value-too-long (134),
 vt-session-already-closed (38),
 vt-session-termination-failure (39),
 write-access-denied (40),
 write-bdt-failed (116),
-- numerical order reference
 -- see other (0),
 -- formerly: authentication-failed (1), removed version 1 revision 11
 -- see configuration-in-progress (2),
 -- see device-busy (3),
 -- see dynamic-creation-not-supported (4),
 -- see file-access-denied (5),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

658 ANSI/ASHRAE Standard 135-2012

 -- formerly:incompatible-security-levels (6), removed in version 1 revision 11
 -- see inconsistent-parameters (7),
 -- see inconsistent-selection-criterion (8),
 -- see invalid-data-type (9),
 -- see invalid-file-access-method (10),
 -- see invalid-file-start-position (11),
 -- formerly: invalid-operator-name (12), removed in version 1 revision 11
 -- see invalid-parameter-data-type (13),
 -- see invalid-time-stamp (14),
 -- formerly: key-generation-error (15), removed in version 1 revision 11
 -- see missing-required-parameter (16),
 -- see no-objects-of-specified-type (17),
 -- see no-space-for-object (18),
 -- see no-space-to-add-list-element (19),
 -- see no-space-to-write-property (20),
 -- see no-vt-sessions-available (21),
 -- see property-is-not-a-list (22),
 -- see object-deletion-not-permitted (23),
 -- see object-identifier-already-exists (24),
 -- see operational-problem (25),
 -- see password-failure (26),
 -- see read-access-denied (27),
 -- formerly: security-not-supported (28), removed in version 1 revision 11
 -- see service-request-denied (29),
 -- see timeout (30),
 -- see unknown-object (31),
 -- see unknown-property (32),
 -- this enumeration was removed (33),
 -- see unknown-vt-class (34),
 -- see unknown-vt-session (35),
 -- see unsupported-object-type (36),
 -- see value-out-of-range (37),
 -- see vt-session-already-closed (38),
 -- see vt-session-termination-failure (39),
 -- see write-access-denied (40),
 -- see character-set-not-supported (41),
 -- see invalid-array-index (42),
 -- see cov-subscription-failed (43),
 -- see not-cov-property (44),
 -- see optional-functionality-not-supported (45),
 -- see invalid-configuration-data (46),
 -- see datatype-not-supported (47),
 -- see duplicate-name (48),
 -- see duplicate-object-id (49),
 -- see property-is-not-an-array (50),
 -- see abort-buffer-overflow (51),
 -- see abort-invalid-apdu-in-this-state (52),
 -- see abort-preempted-by-higher-priority-task (53),
 -- see abort-segmentation-not-supported (54),
 -- see abort-proprietary (55),
 -- see abort-other (56),
 -- see invalid-tag (57),
 -- see network-down (58),
 -- see reject-buffer-overflow (59),
 -- see reject-inconsistent-parameters (60),
 -- see reject-invalid-parameter-data-type (61),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 659

 -- see reject-invalid-tag (62),
 -- see reject-missing-required-parameter (63),
 -- see reject-parameter-out-of-range (64),
 -- see reject-too-many-arguments (65),
 -- see reject-undefined-enumeration (66),
 -- see reject-unrecognized-service (67),
 -- see reject-proprietary (68),
 -- see reject-other (69),
 -- see unknown-device (70),
 -- see unknown-route (71),
 -- see value-not-initialized (72),
 -- see invalid-event-state (73),
 -- see no-alarm-configured (74),
 -- see log-buffer-full (75)
 -- see logged-value-purged (76),
 -- see no-property-specified (77),
 -- see not-configured-for-triggered-logging (78),
 -- see unknown-subscription (79),
 -- see parameter-out-of-range (80),
 -- see list-element-not-found (81),
 -- see busy (82),
 -- see communication-disabled (83),
 -- see success (84),
 -- see access-denied (85),
 -- see bad-destination-address (86),
 -- see bad-destination-device-id (87),
 -- see bad-signature (88),
 -- see bad-source-address (89),
 -- see bad-timestamp (90),
 -- see cannot-use-key (91),
 -- see cannot-verify-message-id (92),
 -- see correct-key-revision (93),
 -- see destination-device-id-required (94),
 -- see duplicate-message (95),
 -- see encryption-not-configured (96),
 -- see encryption-required (97),
 -- see incorrect-key (98),
 -- see invalid-key-data (99),
 -- see key-update-in-progress (100),
 -- see malformed-message (101),
 -- see not-key-server (102),
 -- see security-not-configured (103),
 -- see source-security-required (104),
 -- see too-many-keys (105),
 -- see unknown-authentication-type (106),
 -- see unknown-key (107),
 -- see unknown-key-revision (108),
 -- see unknown-source-message (109),
 -- see not-router-to-dnet (110),
 -- see router-busy (111),
 -- see unknown-network-message (112),
 -- see message-too-long (113),
 -- see security-error (114),
 -- see addressing-error (115),
 -- see write-bdt-failed (116),
 -- see read-bdt-failed (117),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

660 ANSI/ASHRAE Standard 135-2012

 -- see register-foreign-device-failed (118),
 -- see read-fdt-failed (119),
 -- see delete-fdt-entry-failed (120),
 -- see distribute-broadcast-failed (121),
 -- see unknown-file-size (122),
 -- see abort-apdu-too-long (123),
 -- see abort-application-exceeded-reply-time (124),
 -- see abort-out-of-resources (125),
 -- see abort-tsm-timeout (126),
 -- see abort-window-size-out-of-range (127),
 -- see file-full (128),
 -- see inconsistent-configuration (129),
 -- see inconsistent-object-type (130),
 -- see internal-error (131),
 -- see not-configured (132),
 -- see out-of-memory (133),
 -- see value-too-long (134),
 -- see abort-insufficient-security (135),
 -- see abort-security-error (136),
 ...
 }
 -- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
 -- 256-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.
 }

WritePropertyMultiple-Error ::= SEQUENCE {
 errorType [0] Error,
 firstFailedWriteAttempt [1] BACnetObjectPropertyReference
 }

VTClose-Error ::= SEQUENCE {
 errorType [0] Error,
 listOfVTSessionIdentifiers [1] SEQUENCE OF Unsigned8 OPTIONAL

}

-- ***************************** Application Types ********************************

-- The following productions are the definitions of the Application datatypes.
-- See 20.2.1.4.

-- NULL [APPLICATION 0], equivalent to [UNIVERSAL 5]

-- BOOLEAN [APPLICATION 1], equivalent to [UNIVERSAL 1]

Unsigned ::= [APPLICATION 2] INTEGER (0..MAX)

Unsigned8 ::= Unsigned (0..255)

Unsigned16 ::= Unsigned (0..65535)

Unsigned32 ::= Unsigned (0..4294967295)

-- INTEGER [APPLICATION 3], equivalent to [UNIVERSAL 2]

INTEGER16 ::= INTEGER (-32768..32767)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 661

-- REAL [APPLICATION 4], equivalent to [UNIVERSAL 9] ANSI/IEEE-754 single precision floating point

Double ::= [APPLICATION 5] OCTET STRING (SIZE(8)) -- ANSI/IEEE-754 double precision floating point

-- OCTET STRING [APPLICATION 6], equivalent to [UNIVERSAL 4]

CharacterString ::= [APPLICATION 7] OCTET STRING -- see 20.2.9 for supported types

-- BIT STRING [APPLICATION 8], equivalent to [UNIVERSAL 3]

-- ENUMERATED [APPLICATION 9], equivalent to [UNIVERSAL 10]

Date ::= [APPLICATION 10] OCTET STRING (SIZE(4)) -- see 20.2.12
-- first octet year minus 1900 X'FF' = unspecified
-- second octet month (1.. 14) 1 = January
-- 13 = odd months
-- 14 = even months
-- X'FF' = unspecified
-- third octet day of month (1..34), 32 = last day of month
-- 33 = odd days of month
-- 34 = even days of month
-- X'FF' = unspecified
-- fourth octet day of week (1..7) 1 = Monday
-- 7 = Sunday
-- X'FF' = unspecified

Time ::= [APPLICATION 11] OCTET STRING (SIZE(4)) -- see 20.2.13
-- first octet hour (0..23), (X'FF') = unspecified
-- second octet minute (0..59), (X'FF') = unspecified
-- third octet second (0..59), (X'FF') = unspecified
-- fourth octet hundredths (0..99), (X'FF') = unspecified

BACnetObjectIdentifier ::= [APPLICATION 12] OCTET STRING (SIZE(4)) -- see 20.2.14

-- ***************************** Base Types ********************************

BACnetAccessAuthenticationFactorDisable ::= ENUMERATED {
 none (0),
 disabled (1),
 disabled-lost (2),
 disabled-stolen (3),
 disabled-damaged (4),
 disabled-destroyed (5),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccessCredentialDisable ::= ENUMERATED {
 none (0),
 disable (1),
 disable-manual (2),
 disable-lockout (3),
 ...

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

662 ANSI/ASHRAE Standard 135-2012

 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccessCredentialDisableReason ::= ENUMERATED {
 disabled (0),
 disabled-needs-provisioning (1),
 disabled-unassigned (2),
 disabled-not-yet-active (3),
 disabled-expired (4),
 disabled-lockout (5),
 disabled-max-days (6),
 disabled-max-uses (7),
 disabled-inactivity (8),
 disabled-manual (9),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccessEvent ::= ENUMERATED {
 none (0),
 granted (1),
 muster (2),
 passback-detected (3),
 duress (4),
 trace (5),
 lockout-max-attempts (6),
 lockout-other (7),
 lockout-relinquished (8),
 locked-by-higher-priority (9),
 out-of-service (10),
 out-of-service-relinquished (11),
 accompaniment-by (12),
 authentication-factor-read (13),
 authorization-delayed (14),
 verification-required (15),
 no-entry-after-grant (16),
 -- Enumerated values 128-511 are used for events which indicate that access has been denied.
 denied-deny-all (128),
 denied-unknown-credential (129),
 denied-authentication-unavailable (130),
 denied-authentication-factor-timeout (131),
 denied-incorrect-authentication-factor (132),
 denied-zone-no-access-rights (133),
 denied-point-no-access-rights (134),
 denied-no-access-rights (135),
 denied-out-of-time-range (136),
 denied-threat-level (137),
 denied-passback (138),
 denied-unexpected-location-usage (139),
 denied-max-attempts (140),
 denied-lower-occupancy-limit (141),
 denied-upper-occupancy-limit (142),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 663

 denied-authentication-factor-lost (143),
 denied-authentication-factor-stolen (144),
 denied-authentication-factor-damaged (145),
 denied-authentication-factor-destroyed (146),
 denied-authentication-factor-disabled (147),
 denied-authentication-factor-error (148),
 denied-credential-unassigned (149),
 denied-credential-not-provisioned (150),
 denied-credential-not-yet-active (151),
 denied-credential-expired (152),
 denied-credential-manual-disable (153),
 denied-credential-lockout (154),
 denied-credential-max-days (155),
 denied-credential-max-uses (156),
 denied-credential-inactivity (157),
 denied-credential-disabled (158),
 denied-no-accompaniment (159),
 denied-incorrect-accompaniment (160),
 denied-lockout (161),
 denied-verification-failed (162),
 denied-verification-timeout (163),
 denied-other (164),
 ...
 }
 -- Enumerated values 0-511 are reserved for definition by ASHRAE. Enumerated values
 -- 512-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccessPassbackMode ::= ENUMERATED {
 passback-off (0),
 hard-passback (1),
 soft-passback (2)
 }

BACnetAccessRule ::= SEQUENCE {
 timeRangeSpecifier [0] ENUMERATED {
 specified (0),
 always (1)
 },
 timeRange [1] BACnetDeviceObjectPropertyReference OPTIONAL,
 -- to be present if timeRangeSpecifier has the value "specified"
 locationSpecifier [2] ENUMERATED {
 specified (0),
 all (1)
 },
 location [3] BACnetDeviceObjectReference OPTIONAL,
 -- to be present if locationSpecifier has the value "specified"
 enable [4] BOOLEAN
}

BACnetAccessThreatLevel ::= Unsigned(0..100)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

664 ANSI/ASHRAE Standard 135-2012

BACnetAccessUserType ::= ENUMERATED {
 asset (0),
 group (1),
 person (2),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccessZoneOccupancyState ::= ENUMERATED {
 normal (0),
 below-lower-limit (1),
 at-lower-limit (2),
 at-upper-limit (3),
 above-upper-limit (4),
 disabled (5),
 not-supported (6),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAccumulatorRecord ::= SEQUENCE {
 timestamp [0] BACnetDateTime,
 presentValue [1] Unsigned,
 accumulatedValue [2] Unsigned,
 accumulatorStatus [3] ENUMERATED {

 normal (0),
 starting (1),
 recovered (2),
 abnormal (3),
 failed (4)
 }

}

BACnetAction ::= ENUMERATED {
 direct (0),
 reverse (1)
 }

BACnetActionCommand ::= SEQUENCE {
 deviceIdentifier [0] BACnetObjectIdentifier OPTIONAL,
 objectIdentifier [1] BACnetObjectIdentifier,
 propertyIdentifier [2] BACnetPropertyIdentifier,
 propertyArrayIndex [3] Unsigned OPTIONAL, --used only with array datatype
 propertyValue [4] ABSTRACT-SYNTAX.&Type,
 priority [5] Unsigned (1..16) OPTIONAL, --used only when property is commandable
 postDelay [6] Unsigned OPTIONAL,
 quitOnFailure [7] BOOLEAN,
 writeSuccessful [8] BOOLEAN
 }

BACnetActionList ::= SEQUENCE{
 action [0] SEQUENCE OF BACnetActionCommand

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 665

 }

BACnetAddress ::= SEQUENCE {
 network-number Unsigned16, -- A value of 0 indicates the local network
 mac-address OCTET STRING -- A string of length 0 indicates a broadcast
 }

BACnetAddressBinding ::= SEQUENCE {
 deviceObjectIdentifier BACnetObjectIdentifier,
 deviceAddress BACnetAddress
 }

BACnetAssignedAccessRights ::= SEQUENCE {
 assigned-access-rights [0] BACnetDeviceObjectReference,
 enable [1] BOOLEAN
 }

BACnetAuthenticationFactor ::= SEQUENCE {
 format-type [0] BACnetAuthenticationFactorType,
 format-class [1] Unsigned,
 value [2] OCTET STRING -- for encoding of values into this octet string see ANNEX P.
 }

BACnetAuthenticationFactorFormat ::= SEQUENCE {
 format-type [0] BACnetAuthenticationFactorType,
 vendor-id [1] Unsigned16 OPTIONAL,
 vendor-format [2] Unsigned16 OPTIONAL
 }

BACnetAuthenticationFactorType ::= ENUMERATED {
 undefined (0),
 error (1),
 custom (2),
 simple-number16 (3),
 simple-number32 (4),
 simple-number56 (5),
 simple-alpha-numeric (6),
 aba-track2 (7),
 wiegand26 (8),
 wiegand37 (9),
 wiegand37-facility (10),
 facility16-card32 (11),
 facility32-card32 (12),
 fasc-n (13),
 fasc-n-bcd (14),
 fasc-n-large (15),
 fasc-n-large-bcd (16),
 gsa75 (17),
 chuid (18),
 chuid-full (19),
 guid (20),
 cbeff-A (21),
 cbeff-B (22),
 cbeff-C (23),
 user-password (24)
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

666 ANSI/ASHRAE Standard 135-2012

BACnetAuthenticationPolicy ::= SEQUENCE {
 policy [0] SEQUENCE OF SEQUENCE {
 credential-data-input [0] BACnetDeviceObjectReference,
 index [1] Unsigned
 },
 order-enforced [1] BOOLEAN,
 timeout [2] Unsigned
 }

BACnetAuthenticationStatus ::= ENUMERATED {
 not-ready (0),
 ready (1),
 disabled (2),
 waiting-for-authentication-factor (3),
 waiting-for-accompaniment (4),
 waiting-for-verification (5),
 in-progress (6)
 }

BACnetAuthorizationExemption ::= ENUMERATED {
 passback (0),
 occupancy-check (1),
 access-rights (2),
 lockout (3),
 deny (4),
 verification (5),
 authorization-delay (6),
 …
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-255 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetAuthorizationMode ::= ENUMERATED {
 authorize (0),
 grant-active (1),
 deny-all (2),
 verification-required (3),
 authorization-delayed (4),
 none (5),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23.

BACnetBackupState ::= ENUMERATED {
 idle (0),
 preparing-for-backup (1),
 preparing-for-restore (2),
 performing-a-backup (3),
 performing-a-restore (4),
 backup-failure (5),
 restore-failure (6)
}

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 667

BACnetBinaryPV ::= ENUMERATED {
 inactive (0),
 active (1)
 }

BACnetCalendarEntry ::= CHOICE {
 date [0] Date,
 dateRange [1] BACnetDateRange,
 weekNDay [2] BACnetWeekNDay
 }

BACnetChannelValue ::= CHOICE {
 null NULL,
 real REAL,
 enumerated ENUMERATED,
 unsigned Unsigned,
 boolean BOOLEAN,
 signed INTEGER,
 double Double,
 time Time,
 characterString CharacterString,
 octetString OCTET STRING,
 bitString BIT STRING,
 date Date,
 objectid BACnetObjectIdentifier,
 lightingCommand [0] BACnetLightingCommand
 }

BACnetClientCOV ::= CHOICE {
 real-increment REAL,
 default-increment NULL
 }

BACnetCOVSubscription ::= SEQUENCE {
 recipient [0] BACnetRecipientProcess,
 monitoredPropertyReference [1] BACnetObjectPropertyReference,
 issueConfirmedNotifications [2] BOOLEAN,
 timeRemaining [3] Unsigned,
 covIncrement [4] REAL OPTIONAL -- used only with monitored
 -- properties with a numeric datatype
 }

BACnetCredentialAuthenticationFactor ::= SEQUENCE {
 disable [0] BACnetAccessAuthenticationFactorDisable,
 authentication-factor [1] BACnetAuthenticationFactor
 }

BACnetDailySchedule ::= SEQUENCE {
 day-schedule [0] SEQUENCE OF BACnetTimeValue
 }

BACnetDateRange ::= SEQUENCE { -- see Clause 20.2.12 for restrictions
 startDate Date,
 endDate Date
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

668 ANSI/ASHRAE Standard 135-2012

BACnetDateTime ::= SEQUENCE {
 date Date, -- see Clause 20.2.12 for restrictions
 time Time -- see Clause 20.2.13 for restrictions
 }

BACnetDaysOfWeek ::= BIT STRING {
 monday (0),
 tuesday (1),
 wednesday (2),
 thursday (3),
 friday (4),
 saturday (5),
 sunday (6)
 }

BACnetDestination ::= SEQUENCE {
 validDays BACnetDaysOfWeek,
 fromTime Time,
 toTime Time,
 recipient BACnetRecipient,
 processIdentifier Unsigned32,
 issueConfirmedNotifications BOOLEAN,
 transitions BACnetEventTransitionBits
 }

BACnetDeviceObjectPropertyReference ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
 -- if omitted with an array then
 -- the entire array is referenced
 deviceIdentifier [3] BACnetObjectIdentifier OPTIONAL
 }

BACnetDeviceObjectPropertyValue ::= SEQUENCE {
 deviceIdentifier [0] BACnetObjectIdentifier,
 objectIdentifier [1] BACnetObjectIdentifier,
 propertyIdentifier [2] BACnetPropertyIdentifier,
 arrayIndex [3] Unsigned OPTIONAL,
 value [4] ABSTRACT-SYNTAX.&Type

}

BACnetDeviceObjectReference ::= SEQUENCE {
 deviceIdentifier [0] BACnetObjectIdentifier OPTIONAL,
 objectIdentifier [1] BACnetObjectIdentifier
 }

BACnetDeviceStatus ::= ENUMERATED {
 operational (0),
 operational-read-only (1),
 download-required (2),
 download-in-progress (3),
 non-operational (4),
 backup-in-progress (5),
 ...

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 669

 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetDoorAlarmState ::= ENUMERATED {
 normal (0),
 alarm (1),
 door-open-too-long (2),
 forced-open (3),
 tamper (4),
 door-fault (5),
 lock-down (6),
 free-access (7),
 egress-open (8),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetDoorSecuredStatus ::= ENUMERATED {
 secured (0),
 unsecured (1),
 unknown (2)
 }

BACnetDoorStatus ::= ENUMERATED {
 closed (0),
 opened (1),
 unknown (2),
 door-fault (3),
 unused (4)
 }

BACnetDoorValue ::= ENUMERATED {
 lock (0),
 unlock (1),
 pulse-unlock (2),
 extended-pulse-unlock (3)
 }

BACnetEngineeringUnits ::= ENUMERATED { -- See below for numerical order
-- Acceleration
 meters-per-second-per-second (166),
--Area
 square-meters (0),
 square-centimeters (116),
 square-feet (1),
 square-inches (115),

--Currency
 currency1 (105),
 currency2 (106),
 currency3 (107),
 currency4 (108),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

670 ANSI/ASHRAE Standard 135-2012

 currency5 (109),
 currency6 (110),
 currency7 (111),
 currency8 (112),
 currency9 (113),
 currency10 (114),

--Electrical
 milliamperes (2),
 amperes (3),
 amperes-per-meter (167),
 amperes-per-square-meter (168),
 ampere-square-meters (169),
 decibels (199),
 decibels-millivolt (200),
 decibels-volt (201),
 farads (170),
 henrys (171),
 ohms (4),
 ohm-meters (172),
 milliohms (145),
 kilohms (122),
 megohms (123),
 microsiemens (190),
 millisiemens (202),
 siemens (173),
 siemens-per-meter (174),
 teslas (175),
 volts (5),
 millivolts (124),
 kilovolts (6),
 megavolts (7),
 volt-amperes (8),
 kilovolt-amperes (9),
 megavolt-amperes (10),
 volt-amperes-reactive (11),
 kilovolt-amperes-reactive (12),
 megavolt-amperes-reactive (13),
 volts-per-degree-Kelvin (176),
 volts-per-meter (177),
 degrees-phase (14),
 power-factor (15),
 webers (178),

--Energy
 joules (16),
 kilojoules (17),
 kilojoules-per-kilogram (125),
 megajoules (126),
 watt-hours (18),
 kilowatt-hours (19),
 megawatt-hours (146),
 watt-hours-reactive (203),
 kilowatt-hours-reactive (204),
 megawatt-hours-reactive (205),
 btus (20),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 671

 kilo-btus (147),
 mega-btus (148),
 therms (21),
 ton-hours (22),

--Enthalpy
 joules-per-kilogram-dry-air (23),
 kilojoules-per-kilogram-dry-air (149),
 megajoules-per-kilogram-dry-air (150),
 btus-per-pound-dry-air (24),
 btus-per-pound (117),

--Entropy
 joules-per-degree-Kelvin (127),
 kilojoules-per-degree-Kelvin (151),
 megajoules-per-degree-Kelvin (152),
 joules-per-kilogram-degree-Kelvin (128),

-- Force
 newton (153),

--Frequency
 cycles-per-hour (25),
 cycles-per-minute (26),
 hertz (27),
 kilohertz (129),
 megahertz (130),
 per-hour (131),

--Humidity
 grams-of-water-per-kilogram-dry-air (28),
 percent-relative-humidity (29),

--Length
 micrometers (194),
 millimeters (30),
 centimeters (118),
 kilometers (193),
 meters (31),
 inches (32),
 feet (33),

--Light
 candelas (179),
 candelas-per-square-meter (180),
 watts-per-square-foot (34),
 watts-per-square-meter (35),
 lumens (36),
 luxes (37),
 foot-candles (38),

--Mass
 milligrams (196),
 grams (195),
 kilograms (39),
 pounds-mass (40),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

672 ANSI/ASHRAE Standard 135-2012

 tons (41),

--Mass Flow
 grams-per-second (154),
 grams-per-minute (155),
 kilograms-per-second (42),
 kilograms-per-minute (43),
 kilograms-per-hour (44),
 pounds-mass-per-second (119),
 pounds-mass-per-minute (45),
 pounds-mass-per-hour (46),
 tons-per-hour (156),

--Power
 milliwatts (132),
 watts (47),
 kilowatts (48),
 megawatts (49),
 btus-per-hour (50),
 kilo-btus-per-hour (157),
 horsepower (51),
 tons-refrigeration (52),

--Pressure
 pascals (53),
 hectopascals (133),
 kilopascals (54),
 millibars (134),
 bars (55),
 pounds-force-per-square-inch (56),
 millimeters-of-water (206),
 centimeters-of-water (57),
 inches-of-water (58),
 millimeters-of-mercury (59),
 centimeters-of-mercury (60),
 inches-of-mercury (61),

--Temperature
 degrees-Celsius (62),
 degrees-Kelvin (63),
 degrees-Kelvin-per-hour (181),
 degrees-Kelvin-per-minute (182),
 degrees-Fahrenheit (64),
 degree-days-Celsius (65),
 degree-days-Fahrenheit (66),
 delta-degrees-Fahrenheit (120),
 delta-degrees-Kelvin (121),

--Time
 years (67),
 months (68),
 weeks (69),
 days (70),
 hours (71),
 minutes (72),
 seconds (73),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 673

 hundredths-seconds (158),
 milliseconds (159),

--Torque
 newton-meters (160),

--Velocity
 millimeters-per-second (161),
 millimeters-per-minute (162),
 meters-per-second (74),
 meters-per-minute (163),
 meters-per-hour (164),
 kilometers-per-hour (75),
 feet-per-second (76),
 feet-per-minute (77),
 miles-per-hour (78),
--Volume
 cubic-feet (79),
 cubic-meters (80),
 imperial-gallons (81),
 milliliters (197),
 liters (82),
 us-gallons (83),

--Volumetric Flow
 cubic-feet-per-second (142),
 cubic-feet-per-minute (84),
 cubic-feet-per-hour (191),
 cubic-meters-per-second (85),
 cubic-meters-per-minute (165),
 cubic-meters-per-hour (135),
 imperial-gallons-per-minute (86),
 milliliters-per-second (198),
 liters-per-second (87),
 liters-per-minute (88),
 liters-per-hour (136),
 us-gallons-per-minute (89),
 us-gallons-per-hour (192),

--Other
 degrees-angular (90),
 degrees-Celsius-per-hour (91),
 degrees-Celsius-per-minute (92),
 degrees-Fahrenheit-per-hour (93),
 degrees-Fahrenheit-per-minute (94),
 joule-seconds (183),
 kilograms-per-cubic-meter (186),
 kilowatt-hours-per-square-meter (137),
 kilowatt-hours-per-square-foot (138),
 megajoules-per-square-meter (139),
 megajoules-per-square-foot (140),
 no-units (95),
 newton-seconds (187),
 newtons-per-meter (188),
 parts-per-million (96),
 parts-per-billion (97),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

674 ANSI/ASHRAE Standard 135-2012

 percent (98),
 percent-obscuration-per-foot (143),
 percent-obscuration-per-meter (144),
 percent-per-second (99),
 per-minute (100),
 per-second (101),
 psi-per-degree-Fahrenheit (102),
 radians (103),
 radians-per-second (184),
 revolutions-per-minute (104),
 square-meters-per-Newton (185),
 watts-per-meter-per-degree-Kelvin (189),
 watts-per-square-meter-degree-kelvin (141),
 per-mille (207),
 grams-per-gram (208),
 kilograms-per-kilogram (209),
 grams-per-kilogram (210),
 milligrams-per-gram (211),
 milligrams-per-kilogram (212),
 grams-per-milliliter (213),
 grams-per-liter (214),
 milligrams-per-liter (215),
 micrograms-per-liter (216),
 grams-per-cubic-meter (217),
 milligrams-per-cubic-meter (218),
 micrograms-per-cubic-meter (219),
 nanograms-per-cubic-meter (220),
 grams-per-cubic-centimeter (221),
 becquerels (222),
 kilobecquerels (223),
 megabecquerels (224),
 gray (225),
 milligray (226),
 microgray (227),
 sieverts (228),
 millisieverts (229),
 microsieverts (230),
 microsieverts-per-hour (231),
 decibels-a (232),
 nephelometric-turbidity-unit (233),
 pH (234),
 grams-per-square-meter (235),
 minutes-per-degree-kelvin (236),

-- Numerical Order Reference
 -- see square-meters (0),
 -- see square-feet (1),
 -- see milliamperes (2),
 -- see amperes (3),
 -- see ohms (4),
 -- see volts (5),
 -- see kilovolts (6),
 -- see megavolts (7),
 -- see volt-amperes (8),
 -- see kilovolt-amperes (9),
 -- see megavolt-amperes (10),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 675

 -- see volt-amperes-reactive (11),
 -- see kilovolt-amperes-reactive (12),
 -- see megavolt-amperes-reactive (13),
 -- see degrees-phase (14),
 -- see power-factor (15),
 -- see joules (16),
 -- see kilojoules (17),
 -- see watt-hours (18),
 -- see kilowatt-hours (19),
 -- see btus (20),
 -- see therms (21),
 -- see ton-hours (22),
 -- see joules-per-kilogram-dry-air (23),
 -- see btus-per-pound-dry-air (24),
 -- see cycles-per-hour (25),
 -- see cycles-per-minute (26),
 -- see hertz (27),
 -- see grams-of-water-per-kilogram-dry-air (28),
 -- see percent-relative-humidity (29),
 -- see millimeters (30),
 -- see meters (31),
 -- see inches (32),
 -- see feet (33),
 -- see watts-per-square-foot (34),
 -- see watts-per-square-meter (35),
 -- see lumens (36),
 -- see luxes (37),
 -- see foot-candles (38),
 -- see kilograms (39),
 -- see pounds-mass (40),
 -- see tons (41),
 -- see kilograms-per-second (42),
 -- see kilograms-per-minute (43),
 -- see kilograms-per-hour (44),
 -- see pounds-mass-per-minute (45),
 -- see pounds-mass-per-hour (46),
 -- see watts (47),
 -- see kilowatts (48),
 -- see megawatts (49),
 -- see btus-per-hour (50),
 -- see horsepower (51),
 -- see tons-refrigeration (52),
 -- see pascals (53),
 -- see kilopascals (54),
 -- see bars (55),
 -- see pounds-force-per-square-inch (56),
 -- see centimeters-of-water (57),
 -- see inches-of-water (58),
 -- see millimeters-of-mercury (59),
 -- see centimeters-of-mercury (60),
 -- see inches-of-mercury (61),
 -- see degrees-Celsius (62),
 -- see degrees-Kelvin (63),
 -- see degrees-Fahrenheit (64),
 -- see degree-days-Celsius (65),
 -- see degree-days-Fahrenheit (66),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

676 ANSI/ASHRAE Standard 135-2012

 -- see years (67),
 -- see months (68),
 -- see weeks (69),
 -- see days (70),
 -- see hours (71),
 -- see minutes (72),
 -- see seconds (73),
 -- see meters-per-second (74),
 -- see kilometers-per-hour (75),
 -- see feet-per-second (76),
 -- see feet-per-minute (77),
 -- see miles-per-hour (78),
 -- see cubic-feet (79),
 -- see cubic-meters (80),
 -- see imperial-gallons (81),
 -- see liters (82),
 -- see us-gallons (83),
 -- see cubic-feet-per-minute (84),
 -- see cubic-meters-per-second (85),
 -- see imperial-gallons-per-minute (86),
 -- see liters-per-second (87),
 -- see liters-per-minute (88),
 -- see us-gallons-per-minute (89),
 -- see degrees-angular (90),
 -- see degrees-Celsius-per-hour (91),
 -- see degrees-Celsius-per-minute (92),
 -- see degrees-Fahrenheit-per-hour (93),
 -- see degrees-Fahrenheit-per-minute (94),
 -- see no-units (95),
 -- see parts-per-million (96),
 -- see parts-per-billion (97),
 -- see percent (98),
 -- see percent-per-second (99),
 -- see per-minute (100),
 -- see per-second (101),
 -- see psi-per-degree-Fahrenheit (102),
 -- see radians (103),
 -- see revolutions-per-minute (104),
 -- see currency1 (105),
 -- see currency2 (106),
 -- see currency3 (107),
 -- see currency4 (108),
 -- see currency5 (109),
 -- see currency6 (110),
 -- see currency7 (111),
 -- see currency8 (112),
 -- see currency9 (113),
 -- see currency10 (114),
 -- see square-inches (115),
 -- see square-centimeters (116),
 -- see btus-per-pound (117),
 -- see centimeters (118),
 -- see pounds-mass-per-second (119),
 -- see delta-degrees-Fahrenheit (120),
 -- see delta-degrees-Kelvin (121),
 -- see kilohms (122),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 677

 -- see megohms (123),
 -- see millivolts (124),
 -- see kilojoules-per-kilogram (125),
 -- see megajoules (126),
 -- see joules-per-degree-Kelvin (127),
 -- see joules-per-kilogram-degree-Kelvin (128),
 -- see kilohertz (129),
 -- see megahertz (130),
 -- see per-hour (131),
 -- see milliwatts (132),
 -- see hectopascals (133),
 -- see millibars (134),
 -- see cubic-meters-per-hour (135),
 -- see liters-per-hour (136),
 -- see kilowatt-hours-per-square-meter (137),
 -- see kilowatt-hours-per-square-foot (138),
 -- see megajoules-per-square-meter (139),
 -- see megajoules-per-square-foot (140),
 -- see watts-per-square-meter-degree-kelvin (141),
 -- see cubic-feet-per-second (142),
 -- see percent-obscuration-per-foot (143),
 -- see percent-obscuration-per-meter (144),
 -- see milliohms (145),
 -- see megawatt-hours (146),
 -- see kilo-btus (147),
 -- see mega-btus (148),
 -- see kilojoules-per-kilogram-dry-air (149),
 -- see megajoules-per-kilogram-dry-air (150),
 -- see kilojoules-per-degree-Kelvin (151),
 -- see megajoules-per-degree-Kelvin (152),
 -- see newton (153),
 -- see grams-per-second (154),
 -- see grams-per-minute (155),
 -- see tons-per-hour (156),
 -- see kilo-btus-per-hour (157),
 -- see hundredths-seconds (158),
 -- see milliseconds (159),
 -- see newton-meters (160),
 -- see millimeters-per-second (161),
 -- see millimeters-per-minute (162),
 -- see meters-per-minute (163),
 -- see meters-per-hour (164),
 -- see cubic-meters-per-minute (165),
 -- see meters-per-second-per-second (166),
 -- see amperes-per-meter (167),
 -- see amperes-per-square-meter (168),
 -- see ampere-square-meters (169),
 -- see farads (170),
 -- see henrys (171),
 -- see ohm-meters (172),
 -- see siemens (173),
 -- see siemens-per-meter (174),
 -- see teslas (175),
 -- see volts-per-degree-Kelvin (176),
 -- see volts-per-meter (177),
 -- see webers (178),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

678 ANSI/ASHRAE Standard 135-2012

 -- see candelas (179),
 -- see candelas-per-square-meter (180),
 -- see degrees-Kelvin-per-hour (181),
 -- see degrees-Kelvin-per-minute (182),
 -- see joule-seconds (183),
 -- see radians-per-second (184),
 -- see square-meters-per-Newton (185),
 -- see kilograms-per-cubic-meter (186),
 -- see newton-seconds (187),
 -- see newtons-per-meter (188),
 -- see watts-per-meter-per-degree-Kelvin (189),
 -- see micro-siemens (190),
 -- see cubic-feet-per-hour (191),
 -- see us-gallons-per-hour (192),
 -- see kilometers (193),
 -- see micrometers (194),
 -- see grams (195),
 -- see milligrams (196),
 -- see milliliters (197),
 -- see milliliters-per-second (198),
 -- see decibels (199),
 -- see decibels-millivolt (200),
 -- see decibels-volt (201),
 -- see millisiemens (202),
 -- see watt-hours-reactive (203),
 -- see kilowatt-hours-reactive (204),
 -- see megawatt-hours-reactive (205),
 -- see millimeters-of-water (206),
 -- see per-mille (207),
 -- see grams-per-gram (208),
 -- see kilograms-per-kilogram (209),
 -- see grams-per-kilogram (210),
 -- see milligrams-per-gram (211),
 -- see milligrams-per-kilogram (212),
 -- see grams-per-milliliter (213),
 -- see grams-per-liter (214),
 -- see milligrams-per-liter (215),
 -- see micrograms-per-liter (216),
 -- see grams-per-cubic-meter (217),
 -- see milligrams-per-cubic-meter (218),
 -- see micrograms-per-cubic-meter (219),
 -- see nanograms-per-cubic-meter (220),
 -- see grams-per-cubic-centimeter (221),
 -- see becquerels (222),
 -- see kilobecquerels (223),
 -- see megabecquerels (224),
 -- see gray (225),
 -- see milligray (226),
 -- see microgray (227),
 -- see sieverts (228),
 -- see millisieverts (229),
 -- see microsieverts (230),
 -- see microsieverts-per-hour (231),
 -- see decibels-a (232),
 -- see nephelometric-turbidity-unit (233),
 -- see pH (234),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 679

 -- see grams-per-square-meter (235),
 -- see minutes-per-degree-kelvin (236),
 ...
 }
-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetEventLogRecord ::= SEQUENCE {

 timestamp [0] BACnetDateTime,
 logDatum [1] CHOICE {

 log-status [0] BACnetLogStatus,
 notification [1] ConfirmedEventNotification-Request,
 time-change [2] REAL
 }

}

BACnetEventNotificationSubscription ::= SEQUENCE {
 recipient [0] BACnetRecipient,
 processIdentifier [1] Unsigned32,
 issueConfirmedNotifications [2] BOOLEAN,
 timeRemaining [3] Unsigned
 }

BACnetEventParameter ::= CHOICE {

-- These choices have a one-to-one correspondence with the Event_Type enumeration with the exception of the
-- complex-event-type, which is used for proprietary event types.

 change-of-bitstring [0] SEQUENCE {
 time-delay [0] Unsigned,
 bitmask [1] BIT STRING,
 list-of-bitstring-values [2] SEQUENCE OF BIT STRING
 },
 change-of-state [1] SEQUENCE {
 time-delay [0] Unsigned,
 list-of-values [1] SEQUENCE OF BACnetPropertyStates
 },

 change-of-value [2] SEQUENCE {
 time-delay [0] Unsigned,
 cov-criteria [1] CHOICE {
 bitmask [0] BIT STRING,
 referenced-property-increment [1] REAL
 }
 },
 command-failure [3] SEQUENCE {
 time-delay [0] Unsigned,
 feedback-property-reference [1] BACnetDeviceObjectPropertyReference
 },

 floating-limit [4] SEQUENCE {
 time-delay [0] Unsigned,
 setpoint-reference [1] BACnetDeviceObjectPropertyReference,
 low-diff-limit [2] REAL,
 high-diff-limit [3] REAL,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

680 ANSI/ASHRAE Standard 135-2012

 deadband [4] REAL
 },
 out-of-range [5] SEQUENCE {
 time-delay [0] Unsigned,
 low-limit [1] REAL,
 high-limit [2] REAL,
 deadband [3] REAL
 },
 -- context tag 7 is deprecated
 change-of-life-safety [8] SEQUENCE {
 time-delay [0] Unsigned,
 list-of-life-safety-alarm-values [1] SEQUENCE OF BACnetLifeSafetyState,
 list-of-alarm-values [2] SEQUENCE OF BACnetLifeSafetyState,
 mode-property-reference [3] BACnetDeviceObjectPropertyReference
 },
 extended [9] SEQUENCE {
 vendor-id [0] Unsigned16,
 extended-event-type [1] Unsigned,
 parameters [2] SEQUENCE OF CHOICE {
 null NULL,
 real REAL,
 unsigned Unsigned,
 boolean BOOLEAN,
 integer INTEGER,
 double Double,
 octet OCTET STRING,
 characterString CharacterString,
 bitstring BIT STRING,
 enum ENUMERATED,
 date Date,
 time Time,
 objectIdentifier BACnetObjectIdentifier,
 reference [0] BACnetDeviceObjectPropertyReference
 }
 },
 buffer-ready [10] SEQUENCE {
 notification-threshold [0] Unsigned,
 previous-notification-count [1] Unsigned32
 },
 unsigned-range [11] SEQUENCE {
 time-delay [0] Unsigned,
 low-limit [1] Unsigned,
 high-limit [2] Unsigned
 },
 -- context tag 12 is reserved for future addenda
 access-event [13] SEQUENCE {
 list-of-access-events [0] SEQUENCE OF BACnetAccessEvent,
 access-event-time-reference [1] BACnetDeviceObjectPropertyReference
 },
 double-out-of-range [14] SEQUENCE {
 time-delay [0] Unsigned,
 low-limit [1] Double,
 high-limit [2] Double,
 deadband [3] Double
 },
 signed-out-of-range [15] SEQUENCE {
 time-delay [0] Unsigned,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 681

 low-limit [1] INTEGER,
 high-limit [2] INTEGER,
 deadband [3] Unsigned
 },
 unsigned-out-of-range [16] SEQUENCE {
 time-delay [0] Unsigned,
 low-limit [1] Unsigned,
 high-limit [2] Unsigned,
 deadband [3] Unsigned
 },
 change-of-characterstring [17] SEQUENCE {
 time-delay [0] Unsigned,
 list-of-alarm-values [1] SEQUENCE OF CharacterString
 },
 change-of-status-flags [18] SEQUENCE {
 time-delay [0] Unsigned,
 selected-flags [1] BACnetStatusFlags
 },
 -- context tag [19] is not used, see note below
 none [20] NULL
 }

-- CHOICE [6] has been intentionally omitted. It parallels the complex-event-type CHOICE [6] of the
-- BACnetNotificationParameters production which was introduced to allow the addition of proprietary event
-- algorithms whose event parameters are not necessarily network-visible.
-- CHOICE [19] has been intentionally omitted. It parallels the change-of-reliability event type CHOICE[19]
-- of the BACnetNotificationParameters production which was introduced for the notification of event state
-- changes to FAULT and from FAULT, which does not have event parameters.

BACnetEventState ::= ENUMERATED {
 normal (0),
 fault (1),
 offnormal (2),
 high-limit (3),
 low-limit (4),
 life-safety-alarm (5),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23. The last enumeration used in this version is 5.

BACnetEventTransitionBits ::= BIT STRING {
 to-offnormal (0),
 to-fault (1),
 to-normal (2)
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

682 ANSI/ASHRAE Standard 135-2012

BACnetEventType ::= ENUMERATED {
 change-of-bitstring (0),
 change-of-state (1),
 change-of-value (2),
 command-failure (3),
 floating-limit (4),
 out-of-range (5),
 -- complex-event-type (6), see comment below
 -- context tag 7 is deprecated
 change-of-life-safety (8),
 extended (9),

 buffer-ready (10),
 unsigned-range (11),
 -- enumeration value 12 is reserved for future addenda
 access-event (13),
 double-out-of-range (14),
 signed-out-of-range (15),
 unsigned-out-of-range (16),
 change-of-characterstring (17),
 change-of-status-flags (18),

 change-of-reliability (19),
 none (20),
 ...
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
 -- 64-65535 may be used by others subject to the procedures and constraints described
 -- in Clause 23. It is expected that these enumerated values will correspond to the use of the
 -- complex-event-type CHOICE [6] of the BACnetNotificationParameters production.

BACnetFaultParameter ::= CHOICE {
 none [0] NULL,
 fault-characterstring [1] SEQUENCE {
 list-of-fault-values [0] SEQUENCE OF CharacterString
 },
 fault-extended [2] SEQUENCE {
 vendor-id [0] Unsigned16,
 extended-fault-type [1] Unsigned,
 parameters [2] SEQUENCE OF CHOICE {
 null NULL,
 real REAL,
 unsigned Unsigned,
 boolean BOOLEAN,
 integer INTEGER,
 double Double,
 octet OCTET STRING,
 characterString CharacterString,
 bitstring BIT STRING,
 enum ENUMERATED,
 date Date,
 time Time,
 objectIdentifier BACnetObjectIdentifier,
 reference [0] BACnetDeviceObjectPropertyReference
 }
 },
 fault-life-safety [3] SEQUENCE {
 list-of-fault-values [0] SEQUENCE OF BACnetLifeSafetyState,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 683

 mode-property-reference [1] BACnetDeviceObjectPropertyReference
 },
 fault-state [4] SEQUENCE {
 list-of-fault-values [0] SEQUENCE OF BACnetPropertyStates
 },
 fault-status-flags [5] SEQUENCE {
 status-flags-reference [0] BACnetDeviceObjectPropertyReference
 }
 }

BACnetFaultType ::= ENUMERATED {
 none (0),
 fault-characterstring (1),
 fault-extended (2),
 fault-life-safety (3),
 fault-state (4),
 fault-status-flags (5)
 }

BACnetFileAccessMethod ::= ENUMERATED {
 record-access (0),
 stream-access (1)
 }

BACnetGroupChannelValue ::= SEQUENCE {
 channel [0] Unsigned16,
 overridingPriority [1] Unsigned (1..16) OPTIONAL,
 value BACnetChannelValue
 }

BACnetKeyIdentifier ::= SEQUENCE {
 algorithm [0] Unsigned8,
 key-id [1] Unsigned8
 }

BACnetLifeSafetyMode ::= ENUMERATED {
 off (0),
 on (1),
 test (2),
 manned (3),
 unmanned (4),
 armed (5),
 disarmed (6),
 prearmed (7),
 slow (8),
 fast (9),
 disconnected (10),
 enabled (11),
 disabled (12),
 automatic-release-disabled (13),
 default (14),
 ...
 }
-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to procedures and constraints described in Clause 23.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

684 ANSI/ASHRAE Standard 135-2012

BACnetLifeSafetyOperation ::= ENUMERATED {
 none (0),
 silence (1),
 silence-audible (2),
 silence-visual (3),
 reset (4),
 reset-alarm (5),
 reset-fault (6),
 unsilence (7),
 unsilence-audible (8),
 unsilence-visual (9),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to procedures and constraints described in
-- Clause 23.

BACnetLifeSafetyState ::= ENUMERATED {
 quiet (0),
 pre-alarm (1),
 alarm (2),
 fault (3),
 fault-pre-alarm (4),
 fault-alarm (5),
 not-ready (6),
 active (7),
 tamper (8),
 test-alarm (9),
 test-active (10),
 test-fault (11),
 test-fault-alarm (12),
 holdup (13),
 duress (14),
 tamper-alarm (15),
 abnormal (16),
 emergency-power (17),
 delayed (18),
 blocked (19),
 local-alarm (20),
 general-alarm (21),
 supervisory (22),
 test-supervisory (23),
 ...
 }
-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to procedures and constraints described in Clause 23.

BACnetLightingCommand ::= SEQUENCE {
 operation [0] BACnetLightingOperation,
 target-level [1] REAL (0.0..100.0) OPTIONAL,
 ramp-rate [2] REAL (0.1..100.0) OPTIONAL,
 step-increment [3] REAL (0.1..100.0) OPTIONAL,
 fade-time [4] Unsigned (100.. 86400000) OPTIONAL,
 priority [5] Unsigned (1..16) OPTIONAL
 }
 -- Note that the combination of level, ramp-rate, step-increment, and fade-time fields is

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 685

-- dependent on the specific lighting operation. See Table 12-67.

BACnetLightingInProgress ::= ENUMERATED {
 idle (0),
 fade-active (1),
 ramp-active (2),
 not-controlled (3),
 other (4)
 }

BACnetLightingOperation ::= ENUMERATED {
 none (0),
 fade-to (1),
 ramp-to (2),
 step-up (3),
 step-down (4),
 step-on (5),
 step-off (6),
 warn (7),
 warn-off (8),
 warn-relinquish (9),
 stop (10)
 }
 -- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values 256-65535 may be used by
 -- others subject to the procedures and constraints described in Clause 23.

BACnetLightingTransition ::= ENUMERATED {
 none (0),
 fade (1),
 ramp (2)
 }
 -- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values 64-255 may be used by
 -- others subject to the procedures and constraints described in Clause 23.

BACnetLimitEnable ::= BIT STRING {
 lowLimitEnable (0),
 highLimitEnable (1)
 }

BACnetLockStatus ::= ENUMERATED {
 locked (0),
 unlocked (1),
 lock-fault (2),
 unused (3),
 unknown (4)
 }

BACnetLogData ::= CHOICE {
 log-status [0] BACnetLogStatus,
 log-data [1] SEQUENCE OF CHOICE {
 boolean-value [0] BOOLEAN,
 real-value [1] REAL,
 enum-value [2] ENUMERATED, -- Optionally limited to 32 bits
 unsigned-value [3] Unsigned, -- Optionally limited to 32 bits
 signed-value [4] INTEGER, -- Optionally limited to 32 bits
 bitstring-value [5] BIT STRING, -- Optionally limited to 32 bits

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

686 ANSI/ASHRAE Standard 135-2012

 null-value [6] NULL,
 failure [7] Error,
 any-value [8] ABSTRACT-SYNTAX.&Type -- Optional
 },
 time-change [2] REAL
 }

BACnetLoggingType ::= ENUMERATED {
 polled (0),
 cov (1),
 triggered (2),
 ...
 }

-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-255 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetLogMultipleRecord ::= SEQUENCE {
 timestamp [0] BACnetDateTime,
 logData [1] BACnetLogData
 }

BACnetLogRecord ::= SEQUENCE {
 timestamp [0] BACnetDateTime,
 logDatum [1] CHOICE {
 log-status [0] BACnetLogStatus,
 boolean-value [1] BOOLEAN,
 real-value [2] REAL,
 enum-value [3] ENUMERATED, -- Optionally limited to 32 bits
 unsigned-value [4] Unsigned, -- Optionally limited to 32 bits
 signed-value [5] INTEGER, -- Optionally limited to 32 bits
 bitstring-value [6] BIT STRING, -- Optionally limited to 32 bits
 null-value [7] NULL,
 failure [8] Error,
 time-change [9] REAL,
 any-value [10] ABSTRACT-SYNTAX.&Type -- Optional
 },
 statusFlags [2] BACnetStatusFlags OPTIONAL
 }

BACnetLogStatus ::= BIT STRING {
 log-disabled (0),
 buffer-purged (1),
 log-interrupted (2)
 }

BACnetMaintenance ::= ENUMERATED {
 none (0),
 periodic-test (1),
 need-service-operational (2),
 need-service-inoperative (3),
 ...
 }
-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to procedures and constraints described in
-- Clause 23.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 687

BACnetNetworkSecurityPolicy ::= SEQUENCE {
 port-id [0] Unsigned8,
 security-level [1] BACnetSecurityPolicy
 }

BACnetNodeType ::= ENUMERATED {

unknown (0),
system (1),
network (2),
device (3),
organizational (4),
area (5),
equipment (6),
point (7),
collection (8),
property (9),
functional (10),
other (11)
}

BACnetNotificationParameters ::= CHOICE {
-- These choices have a one-to-one correspondence with the Event_Type enumeration with the exception of the
-- complex-event-type, which is used for proprietary event types.

 change-of-bitstring [0] SEQUENCE {
 referenced-bitstring [0] BIT STRING,
 status-flags [1] BACnetStatusFlags
 },
 change-of-state [1] SEQUENCE {
 new-state [0] BACnetPropertyStates,
 status-flags [1] BACnetStatusFlags
 },
 change-of-value [2] SEQUENCE {
 new-value [0] CHOICE {
 changed-bits [0] BIT STRING,
 changed-value [1] REAL
 },
 status-flags [1] BACnetStatusFlags
 },
 command-failure [3] SEQUENCE {
 command-value [0] ABSTRACT-SYNTAX.&Type,
 -- depends on ref property
 status-flags [1] BACnetStatusFlags,
 feedback-value [2] ABSTRACT-SYNTAX.&Type
 -- depends on ref property
 },
 floating-limit [4] SEQUENCE {
 reference-value [0] REAL,
 status-flags [1] BACnetStatusFlags,
 setpoint-value [2] REAL,
 error-limit [3] REAL
 },
 out-of-range [5] SEQUENCE {
 exceeding-value [0] REAL,
 status-flags [1] BACnetStatusFlags,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

688 ANSI/ASHRAE Standard 135-2012

 deadband [2] REAL,
 exceeded-limit [3] REAL
 },
 complex-event-type [6] SEQUENCE OF BACnetPropertyValue,
 -- complex tag 7 is deprecated
 change-of-life-safety [8] SEQUENCE {
 new-state [0] BACnetLifeSafetyState,
 new-mode [1] BACnetLifeSafetyMode,
 status-flags [2] BACnetStatusFlags,
 operation-expected [3] BACnetLifeSafetyOperation
 },
 extended [9] SEQUENCE {
 vendor-id [0] Unsigned16,
 extended-event-type [1] Unsigned,
 parameters [2] SEQUENCE OF CHOICE {
 null NULL,
 real REAL,
 unsigned Unsigned,
 boolean BOOLEAN,
 integer INTEGER,
 double Double,
 octet OCTET STRING,
 characterString CharacterString,
 bitstring BIT STRING,
 enum ENUMERATED,
 date Date,
 time Time,
 objectIdentifier BACnetObjectIdentifier,
 propertyValue [0] BACnetDeviceObjectPropertyValue
 }
 },
 buffer-ready [10] SEQUENCE {
 buffer-property [0] BACnetDeviceObjectPropertyReference,
 previous-notification [1] Unsigned32,
 current-notification [2] Unsigned32
 },
 unsigned-range [11] SEQUENCE {
 exceeding-value [0] Unsigned,
 status-flags [1] BACnetStatusFlags,
 exceeded-limit [2] Unsigned
 },
 -- context tag 12 is reserved for future addenda
 access-event [13] SEQUENCE {
 access-event [0] BACnetAccessEvent,
 status-flags [1] BACnetStatusFlags,
 access-event-tag [2] Unsigned,
 access-event-time [3] BACnetTimeStamp,
 access-credential [4] BACnetDeviceObjectReference,
 authentication-factor [5] BACnetAuthenticationFactor OPTIONAL
 },
 double-out-of-range [14] SEQUENCE {
 exceeding-value [0] Double,
 status-flags [1] BACnetStatusFlags,
 deadband [2] Double,
 exceeded-limit [3] Double
 },

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 689

 signed-out-of-range [15] SEQUENCE {
 exceeding-value [0] INTEGER,
 status-flags [1] BACnetStatusFlags,
 deadband [2] Unsigned,
 exceeded-limit [3] INTEGER
 },
 unsigned-out-of-range [16] SEQUENCE {
 exceeding-value [0] Unsigned,
 status-flags [1] BACnetStatusFlags,
 deadband [2] Unsigned,
 exceeded-limit [3] Unsigned
 },
 change-of-characterstring [17] SEQUENCE {
 changed-value [0] CharacterString,
 status-flags [1] BACnetStatusFlags,
 alarm-value [2] CharacterString
 },
 change-of-status-flags [18] SEQUENCE {
 present-value [0] ABSTRACT-SYNTAX.&Type OPTIONAL,
 -- depends on referenced property
 referenced-flags [1] BACnetStatusFlags
 },
 change-of-reliability [19] SEQUENCE {
 reliability [0] BACnetReliability,
 status-flags [1] BACnetStatusFlags,
 property-values [2] SEQUENCE OF BACnetPropertyValue
 }
 -- context tag [20] is not used, see note below
 }
 -- CHOICE [20] has been intentionally omitted. It parallels the 'none' event type CHOICE[20] of
 -- the BACnetEventParameter production which was introduced for the case an object
 -- does not apply an event algorithm

BACnetNotifyType ::= ENUMERATED {
 alarm (0),
 event (1),
 ack-notification (2)
 }

BACnetObjectPropertyReference ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL -- used only with array datatype
 -- if omitted with an array the entire array is referenced
 }

BACnetObjectPropertyValue ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
 -- if omitted with an array the entire array is referenced
 value [3] ABSTRACT-SYNTAX.&Type, --any datatype appropriate for the specified property
 priority [4] Unsigned (1..16) OPTIONAL
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

690 ANSI/ASHRAE Standard 135-2012

BACnetObjectType ::= ENUMERATED { -- see below for numerical order
 alert-enrollment (52),
 access-credential (32),
 access-door (30),
 access-point (33),
 access-rights (34),
 access-user (35),
 access-zone (36),
 accumulator (23),
 analog-input (0),
 analog-output (1),
 analog-value (2),
 averaging (18),
 binary-input (3),
 binary-output (4),
 binary-value (5),
 bitstring-value (39),
 calendar (6),
 channel (53),
 characterstring-value (40),
 command (7),
 credential-data-input (37),
 date-pattern-value (41),
 date-value (42),
 datetime-pattern-value (43),
 datetime-value (44),
 device (8),
 event-enrollment (9),
 event-log (25),
 file (10),
 global-group (26),
 group (11),
 integer-value (45),
 large-analog-value (46),
 life-safety-point (21),
 life-safety-zone (22),
 lighting-output (54),
 load-control (28),
 loop (12),
 multi-state-input (13),
 multi-state-output (14),
 multi-state-value (19),
 network-security (38),
 notification-class (15),
 notification-forwarder (51),
 octetstring-value (47),
 positive-integer-value (48),
 program (16),
 pulse-converter (24),
 schedule (17),
 structured-view (29),
 time-pattern-value (49),
 time-value (50),
 trend-log (20),
 trend-log-multiple (27),
-- numerical order reference

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 691

 -- see analog-input (0),
 -- see analog-output (1),
 -- see analog-value (2),
 -- see binary-input (3),
 -- see binary-output (4),
 -- see binary-value (5),
 -- see calendar (6),
 -- see command (7),
 -- see device (8),
 -- see event-enrollment (9),
 -- see file (10),
 -- see group (11),
 -- see loop (12),
 -- see multi-state-input (13),
 -- see multi-state-output (14),
 -- see notification-class (15),
 -- see program (16),
 -- see schedule (17),
 -- see averaging (18),
 -- see multi-state-value (19),
 -- see trend-log (20),
 -- see life-safety-point (21),
 -- see life-safety-zone (22),
 -- see accumulator (23),
 -- see pulse-converter (24),
 -- see event-log (25),
 -- see global-group (26),
 -- see trend-log-multiple (27),
 -- see load-control (28),
 -- see structured-view (29),
 -- see access-door (30),
 -- value 31 is unassigned
 -- see access-credential (32),
 -- see access-point (33),
 -- see access-rights (34),
 -- see access-user (35),
 -- see access-zone (36),
 -- see credential-data-input (37),
 -- see network-security (38),
 -- see bitstring-value (39),
 -- see characterstring-value (40),
 -- see date-pattern-value (41),
 -- see date-value (42),
 -- see datetime-pattern-value (43),
 -- see datetime-value (44),
 -- see integer-value (45),
 -- see large-analog-value (46),
 -- see octetstring-value (47),
 -- see positive-integer-value (48),
 -- see time-pattern-value (49),
 -- see time-value (50),
 -- see notification-forwarder (51),
 -- see alert-enrollment (52),
 -- see channel (53),
 -- see lighting-output (54),
 ...

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

692 ANSI/ASHRAE Standard 135-2012

 }
-- Enumerated values 0-127 are reserved for definition by ASHRAE. Enumerated values
-- 128-1023 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetObjectTypesSupported ::= BIT STRING {

analog-input (0),
 analog-output (1),
 analog-value (2),
 binary-input (3),
 binary-output (4),
 binary-value (5),
 calendar (6),
 command (7),
 device (8),
 event-enrollment (9),
 file (10),
 group (11),
 loop (12),
 multi-state-input (13),
 multi-state-output (14),
 notification-class (15),
 program (16),
 schedule (17),
 averaging (18),
 multi-state-value (19),
 trend-log (20),
 life-safety-point (21),
 life-safety-zone (22),
 accumulator (23),
 pulse-converter (24),

 event-log (25),
 global-group (26),
 trend-log-multiple (27),

 load-control (28),
 structured-view (29),
 access-door (30),
 -- value 31 is unassigned
 access-credential (32),
 access-point (33),
 access-rights (34),
 access-user (35),
 access-zone (36),
 credential-data-input (37),
 network-security (38),
 bitstring-value (39),
 characterstring-value (40),
 date-pattern-value (41),
 date-value (42),
 datetime-pattern-value (43),
 datetime-value (44),
 integer-value (45),
 large-analog-value (46),
 octetstring-value (47),
 positive-integer-value (48),
 time-pattern-value (49),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 693

 time-value (50),
 notification-forwarder (51),
 alert-enrollment (52),
 channel (53),
 lighting-output (54)
 }

BACnetOptionalCharacterString ::= CHOICE {
 null NULL,
 characterString CharacterString
 }

BACnetPolarity ::= ENUMERATED {
 normal (0),
 reverse (1)
 }

BACnetPortPermission ::= SEQUENCE {
 port-id [0] Unsigned8,
 enabled [1] BOOLEAN
 }

BACnetPrescale ::= SEQUENCE {
 multiplier [0] Unsigned,

moduloDivide [1] Unsigned
}

BACnetPriorityArray ::= SEQUENCE SIZE (16) OF BACnetPriorityValue
 -- accessed as a BACnetARRAY

BACnetPriorityValue ::= CHOICE {
 null NULL,
 real REAL,
 enumerated ENUMERATED,
 unsigned Unsigned,
 boolean BOOLEAN,
 signed INTEGER,
 double Double,
 time Time,
 characterString CharacterString,
 octetString OCTET STRING,
 bitString BIT STRING,
 date Date,
 objectid BACnetObjectIdentifier,
 constructedValue [0] ABSTRACT-SYNTAX.&Type,
 datetime [1] BACnetDateTime
 }

BACnetProcessIdSelection ::= CHOICE {
 processIdentifier Unsigned32,
 nullValu NULL
 }

BACnetProgramError ::= ENUMERATED {
 normal (0),
 load-failed (1),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

694 ANSI/ASHRAE Standard 135-2012

 internal (2),
 program (3),
 other (4),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetProgramRequest ::= ENUMERATED {
 ready (0),
 load (1),
 run (2),
 halt (3),
 restart (4),
 unload (5)
 }

BACnetProgramState ::= ENUMERATED {
 idle (0),
 loading (1),
 running (2),
 waiting (3),
 halted (4),
 unloading (5)
 }

BACnetPropertyAccessResult ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
 -- if omitted with an array then
 -- the entire array is referenced
 deviceIdentifier [3] BACnetObjectIdentifier OPTIONAL,
 accessResult CHOICE {
 propertyValue [4] ABSTRACT-SYNTAX.&Type,
 propertyAccessError [5] Error
 }
 }

BACnetPropertyIdentifier ::= ENUMERATED { -- see below for numerical order
 absentee-limit (244),
 accepted-modes (175),
 access-alarm-events (245),
 access-doors (246),
 access-event (247),
 access-event-authentication-factor (248),
 access-event-credential (249),
 access-event-tag (322),
 access-event-time (250),
 access-transaction-events (251),
 accompaniment (252),
 accompaniment-time (253),
 ack-required (1),
 acked-transitions (0),
 action (2),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 695

 action-text (3),
 activation-time (254),
 active-authentication-policy (255),
 active-cov-subscriptions (152),
 active-text (4),
 active-vt-sessions (5),

 actual-shed-level (212),
 adjust-value (176),
 alarm-value (6),
 alarm-values (7),

align-intervals (193),
 all (8),
 all-writes-successful (9),
 allow-group-delay-inhibit (365),
 apdu-segment-timeout (10),
 apdu-timeout (11),
 application-software-version (12),
 archive (13),
 assigned-access-rights (256),
 attempted-samples (124),
 authentication-factors (257),
 authentication-policy-list (258),
 authentication-policy-names (259),
 authentication-status (260),
 authorization-exemptions (364),
 authorization-mode (261),
 auto-slave-discovery (169),
 average-value (125),
 backup-and-restore-state (338),
 backup-failure-timeout (153),
 backup-preparation-time (339),
 base-device-security-policy (327),
 belongs-to (262),
 bias (14),
 bit-mask (342),
 bit-text (343),
 blink-warn-enable (373),
 buffer-size (126),
 change-of-state-count (15),
 change-of-state-time (16),
 channel-number (366),
 client-cov-increment (127),
 configuration-files (154),
 control-groups (367),
 controlled-variable-reference (19),
 controlled-variable-units (20),
 controlled-variable-value (21),
 count (177),
 count-before-change (178),
 count-change-time (179),
 cov-increment (22),
 cov-period (180),
 cov-resubscription-interval (128),
 covu-period (349),
 covu-recipients (350),
 credential-disable (263),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

696 ANSI/ASHRAE Standard 135-2012

 credential-status (264),
 credentials (265),
 credentials-in-zone (266),
 database-revision (155),
 date-list (23),
 daylight-savings-status (24),
 days-remaining (267),
 deadband (25),
 default-fade-time (374),
 default-ramp-rate (375),
 default-step-increment (376),
 derivative-constant (26),
 derivative-constant-units (27),
 description (28),
 description-of-halt (29),
 device-address-binding (30),
 device-type (31),
 direct-reading (156),
 distribution-key-revision (328),
 do-not-hide (329),
 door-alarm-state (226),
 door-extended-pulse-time (227),
 door-members (228),
 door-open-too-long-time (229),
 door-pulse-time (230),
 door-status (231),
 door-unlock-delay-time (232),
 duty-window (213),
 effective-period (32),
 egress-time (377),
 egress-active (386),
 elapsed-active-time (33),
 entry-points (268),
 enable (133), -- renamed from previous version
 error-limit (34),
 event-algorithm-inhibit (354),
 event-algorithm-inhibit-ref (355),
 event-detection-enable (353),
 event-enable (35),
 event-message-texts (351),
 event-message-texts-config (352),
 event-state (36),
 event-time-stamps (130),
 event-type (37),
 event-parameters (83), -- renamed from previous version
 exception-schedule (38),
 execution-delay (368),
 exit-points (269),
 expected-shed-level (214),
 expiry-time (270),
 extended-time-enable (271),
 failed-attempt-events (272),
 failed-attempts (273),
 failed-attempts-time (274),
 fault-parameters (358),
 fault-type (359),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 697

 fault-values (39),
 feedback-value (40),
 file-access-method (41),
 file-size (42),
 file-type (43),
 firmware-revision (44),
 full-duty-baseline (215),
 global-identifier (323),
 group-members (345),
 group-member-names (346),
 high-limit (45),
 inactive-text (46),
 in-process (47),
 in-progress (378),
 input-reference (181),
 instance-of (48),
 instantaneous-power (379),
 integral-constant (49),
 integral-constant-units (50),
 interval-offset (195),
 is-utc (344),
 key-sets (330),
 last-access-event (275),
 last-access-point (276),
 last-credential-added (277),
 last-credential-added-time (278),
 last-credential-removed (279),
 last-credential-removed-time (280),
 last-key-server (331),
 last-notify-record (173),
 last-priority (369),
 last-restart-reason (196),
 last-restore-time (157),
 last-use-time (281),
 life-safety-alarm-values (166),
 lighting-command (380),
 lighting-command-default-priority (381),
 limit-enable (52),
 limit-monitoring-interval (182),
 list-of-group-members (53),
 list-of-object-property-references (54),
 local-date (56),
 local-forwarding-only (360),
 local-time (57),
 location (58),
 lock-status (233),
 lockout (282),
 lockout-relinquish-time (283),
 log-buffer (131),
 log-device-object-property (132),
 log-interval (134),
 logging-object (183),
 logging-record (184),
 logging-type (197),
 low-limit (59),
 maintenance-required (158),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

698 ANSI/ASHRAE Standard 135-2012

 manipulated-variable-reference (60),
 manual-slave-address-binding (170),
 masked-alarm-values (234),
 maximum-output (61),
 maximum-value (135),
 maximum-value-timestamp (149),
 max-actual-value (382),
 max-apdu-length-accepted (62),
 max-failed-attempts (285),
 max-info-frames (63),
 max-master (64),
 max-pres-value (65),
 max-segments-accepted (167),
 member-of (159),
 member-status-flags (347),
 members (286),
 minimum-off-time (66),
 minimum-on-time (67),
 minimum-output (68),
 minimum-value (136),
 minimum-value-timestamp (150),
 min-actual-value (383),
 min-pres-value (69),
 mode (160),
 model-name (70),
 modification-date (71),
 muster-point (287),
 negative-access-rules (288),
 network-access-security-policies (332),
 node-subtype (207),
 node-type (208),
 notification-class (17), -- renamed from previous version
 notification-threshold (137),
 notify-type (72),
 number-of-apdu-retries (73),
 number-of-authentication-policies (289),
 number-of-states (74),
 object-identifier (75),
 object-list (76),
 object-name (77),
 object-property-reference (78),
 object-type (79),
 occupancy-count (290),
 occupancy-count-adjust (291),
 occupancy-count-enable (292),
 occupancy-lower-limit (294),
 occupancy-lower-limit-enforced (295),
 occupancy-state (296),
 occupancy-upper-limit (297),
 occupancy-upper-limit-enforced (298),
 operation-expected (161),
 optional (80),
 out-of-service (81),
 output-units (82),
 packet-reorder-time (333),
 passback-mode (300),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 699

 passback-timeout (301),
 polarity (84),
 port-filter (363),
 positive-access-rules (302),
 power (384),
 prescale (185),
 present-value (85),
 priority (86),
 priority-array (87),
 priority-for-writing (88),
 process-identifier (89),
 process-identifier-filter (361),
 profile-name (168),
 program-change (90),
 program-location (91),
 program-state (92),
 property-list (371),
 proportional-constant (93),
 proportional-constant-units (94),
 protocol-object-types-supported (96),
 protocol-revision (139),
 protocol-services-supported (97),
 protocol-version (98),
 pulse-rate (186),
 read-only (99),
 reason-for-disable (303),
 reason-for-halt (100),
 recipient-list (102),
 records-since-notification (140),
 record-count (141),
 reliability (103),
 reliability-evaluation-inhibit (357),
 relinquish-default (104),
 requested-shed-level (218),
 requested-update-interval (348),
 required (105),
 resolution (106),
 restart-notification-recipients (202),
 restore-completion-time (340),
 restore-preparation-time (341),
 scale (187),
 scale-factor (188),
 schedule-default (174),
 secured-status (235),
 security-pdu-timeout (334),
 security-time-window (335),
 segmentation-supported (107),
 serial-number (372),
 setpoint (108),
 setpoint-reference (109),
 setting (162),
 shed-duration (219),
 shed-level-descriptions (220),
 shed-levels (221),
 silenced (163),
 slave-address-binding (171),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

700 ANSI/ASHRAE Standard 135-2012

 slave-proxy-enable (172),
 start-time (142),
 state-description (222),
 state-text (110),
 status-flags (111),
 stop-time (143),
 stop-when-full (144),
 structured-object-list (209),
 subordinate-annotations (210),
 subordinate-list (211),
 subscribed-recipients (362),
 supported-formats (304),
 supported-format-classes (305),
 supported-security-algorithms (336),
 system-status (112),
 threat-authority (306),
 threat-level (307),
 time-delay (113),
 time-delay-normal (356),
 time-of-active-time-reset (114),
 time-of-device-restart (203),
 time-of-state-count-reset (115),
 time-synchronization-interval (204),
 time-synchronization-recipients (116),
 total-record-count (145),
 trace-flag (308),
 tracking-value (164),
 transaction-notification-class (309),
 transition (385),
 trigger (205),
 units (117),
 update-interval (118),
 update-key-set-timeout (337),
 update-time (189),
 user-external-identifier (310),
 user-information-reference (311),
 user-name (317),
 user-type (318),
 uses-remaining (319),
 utc-offset (119),
 utc-time-synchronization-recipients (206),
 valid-samples (146),
 value-before-change (190),
 value-set (191),
 value-change-time (192),
 variance-value (151),
 vendor-identifier (120),
 vendor-name (121),
 verification-time (326),
 vt-classes-supported (122),
 weekly-schedule (123),
 window-interval (147),
 window-samples (148),
 write-status (370),
 zone-from (320),
 zone-members (165),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 701

 zone-to (321),
-- -numerical order reference
 -- see acked-transitions (0),
 -- see ack-required (1),
 -- see action (2),
 -- see action-text (3),
 -- see active-text (4),
 -- see active-vt-sessions (5),
 -- see alarm-value (6),
 -- see alarm-values (7),
 -- see all (8),
 -- see all-writes-successful (9),
 -- see apdu-segment-timeout (10),
 -- see apdu-timeout (11),
 -- see application-software-version (12),
 -- see archive (13),
 -- see bias (14),
 -- see change-of-state-count (15),
 -- see change-of-state-time (16),
 -- see notification-class (17),
 -- this property deleted (18),
 -- see controlled-variable-reference (19),
 -- see controlled-variable-units (20),
 -- see controlled-variable-value (21),
 -- see cov-increment (22),
 -- see date-list (23),
 -- see daylight-savings-status (24),
 -- see deadband (25),
 -- see derivative-constant (26),
 -- see derivative-constant-units (27),
 -- see description (28),
 -- see description-of-halt (29),
 -- see device-address-binding (30),
 -- see device-type (31),
 -- see effective-period (32),
 -- see elapsed-active-time (33),
 -- see error-limit (34),
 -- see event-enable (35),
 -- see event-state (36),
 -- see event-type (37),
 -- see exception-schedule (38),
 -- see fault-values (39),
 -- see feedback-value (40),
 -- see file-access-method (41),
 -- see file-size (42),
 -- see file-type (43),
 -- see firmware-revision (44),
 -- see high-limit (45),
 -- see inactive-text (46),
 -- see in-process (47),
 -- see instance-of (48),
 -- see integral-constant (49),
 -- see integral-constant-units (50),
 -- formerly: issue-confirmed-notifications (51), removed in version 1 revision 4.
 -- see limit-enable (52),
 -- see list-of-group-members (53),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

702 ANSI/ASHRAE Standard 135-2012

 -- see list-of-object-property-references (54),
 -- enumeration value 55 is unassigned
 -- see local-date (56),
 -- see local-time (57),
 -- see location (58),
 -- see low-limit (59),
 -- see manipulated-variable-reference (60),
 -- see maximum-output (61),
 -- see max-apdu-length-accepted (62),
 -- see max-info-frames (63),
 -- see max-master (64),
 -- see max-pres-value (65),
 -- see minimum-off-time (66),
 -- see minimum-on-time (67),
 -- see minimum-output (68),
 -- see min-pres-value (69),
 -- see model-name (70),
 -- see modification-date (71),
 -- see notify-type (72),
 -- see number-of-apdu-retries (73),
 -- see number-of-states (74),
 -- see object identifier (75),
 -- see object-list (76),
 -- see object-name (77),
 -- see object-property-reference (78),
 -- see object type (79),
 -- see optional (80),
 -- see out-of-service (81),
 -- see output-units (82),
 -- see event-parameters (83),
 -- see polarity (84),
 -- see present value (85),
 -- see priority (86),
 -- see priority-array (87),
 -- see priority-for-writing (88),
 -- see process-identifier (89),
 -- see program-change (90),
 -- see program-location (91),
 -- see program-state (92),
 -- see proportional-constant (93),
 -- see proportional-constant-units (94),
 -- formerly: protocol-conformance-class (95), removed in version 1 revision 2.
 -- see protocol-object-types-supported (96),
 -- see protocol-services-supported (97),
 -- see protocol-version (98),
 -- see read-only (99),
 -- see reason-for-halt (100),
 -- formerly: recipient (101), removed in version 1 revision 4.
 -- see recipient-list (102),
 -- reliability (103),
 -- see relinquish-default (104),
 -- see required (105),
 -- see resolution (106),
 -- see segmentation-supported (107),
 -- see setpoint (108),
 -- see setpoint-reference (109),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 703

 -- see state-text (110),
 -- see status-flags (111),
 -- see system-status (112),
 -- see time-delay (113),
 -- see time-of-active-time-reset (114),
 -- see time-of-state-count-reset (115),
 -- see time-synchronization-recipients (116),
 -- see units (117),
 -- see update-interval (118),
 -- see utc-offset (119),
 -- see vendor-identifier (120),
 -- see vendor-name (121),
 -- see vt-classes-supported (122),
 -- see weekly-schedule (123),
 -- see attempted-samples (124),
 -- see average-value (125),
 -- see buffer-size (126),
 -- see client-cov-increment (127),
 -- see cov-resubscription-interval (128),
 -- formerly: current-notify-time (129), removed in version 1 revision 3.
 -- see event-time-stamps (130),
 -- see log-buffer (131),
 -- see log-device-object-property (132),
 -- see enable (133), log-enable was renamed to enable in version 1 revision 5
 -- see log-interval (134),
 -- see maximum-value (135),
 -- see minimum-value (136),
 -- see notification-threshold (137),
 -- formerly: previous-notify-time (138), removed in version 1 revision 3.
 -- see protocol-revision (139),
 -- see records-since-notification (140),
 -- see record-count (141),
 -- see start-time (142),
 -- see stop-time (143),
 -- see stop-when-full (144),
 -- see total-record-count (145),
 -- see valid-samples (146),
 -- see window-interval (147),
 -- see window-samples (148),
 -- see maximum-value-timestamp (149),
 -- see minimum-value-timestamp (150),
 -- see variance-value (151),
 -- see active-cov-subscriptions (152),
 -- see backup-failure-timeout (153),
 -- see configuration-files (154),
 -- see database-revision (155),
 -- see direct-reading (156),
 -- see last-restore-time, (157),
 -- see maintenance-required (158),
 -- see member-of (159),
 -- see mode (160),
 -- see operation-expected (161),
 -- see setting (162),
 -- see silenced (163),
 -- see tracking-value (164),
 -- see zone-members (165),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

704 ANSI/ASHRAE Standard 135-2012

 -- see life-safety-alarm-values (166),
 -- see max-segments-accepted (167),
 -- see profile-name (168),
 -- see auto-slave-discovery (169),
 -- see manual-slave-address-binding (170),
 -- see slave-address-binding (171),
 -- see slave-proxy-enable (172),
 -- see last-notify-record (173),
 -- see schedule-default (174),

-- see accepted-modes (175),
 -- see adjust-value (176),

 -- see count (177),
-- see count-before-change (178),
-- see count-change-time (179),
-- see cov-period (180),
-- see input-reference (181),
-- see limit-monitoring-interval (182),
-- see logging-object (183),
-- see logging-record (184),
-- see prescale (185),
-- see pulse-rate (186),
-- see scale (187),
-- see scale-factor (188),
-- see update-time (189),
-- see value-before-change (190),
-- see value-set (191),
-- see value-change-time (192),
-- see align-intervals (193),
-- enumeration value 194 is unassigned
-- see interval-offset (195),
-- see last-restart-reason (196),
-- see logging-type (197),
-- enumeration values 198-201 are unassigned
-- see restart-notification-recipients (202),
-- see time-of-device-restart (203),
-- see time-synchronization-interval (204),
-- see trigger (205),
-- see utc-time-synchronization-recipients (206),
-- see node-subtype (207),
-- see node-type (208),
-- see structured-object-list (209),
-- see subordinate-annotations (210),
-- see subordinate-list (211),

 -- see actual-shed-level (212),
-- see duty-window (213),
-- see expected-shed-level (214),
-- see full-duty-baseline (215),
-- enumeration values 216-217 are unassigned
-- see requested-shed-level (218),
-- see shed-duration (219),
-- see shed-level-descriptions (220),
-- see shed-levels (221),
-- see state-description (222),
-- enumeration values 223-225 are unassigned

 -- see door-alarm-state (226),
 -- see door-extended-pulse-time (227),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 705

 -- see door-members (228),
 -- see door-open-too-long-time (229),
 -- see door-pulse-time (230),
 -- see door-status (231),
 -- see door-unlock-delay-time (232),
 -- see lock-status (233),
 -- see masked-alarm-values (234),

-- see secured-status (235),
-- enumeration values 236-243 are unassigned
-- see absentee-limit (244),
-- see access-alarm-events (245),
-- see access-doors (246),
-- see access-event (247),
-- see access-event-authentication-factor (248),
-- see access-event-credential (249),
-- see access-event-time (250),
-- see access-transaction-events (251),
-- see accompaniment (252),
-- see accompaniment-time (253),
-- see activation-time (254),
-- see active-authentication-policy (255),
-- see assigned-access-rights (256),
-- see authentication-factors (257),
-- see authentication-policy-list (258),
-- see authentication-policy-names (259),
-- see authentication-status (260),
-- see authorization-mode (261),
-- see belongs-to (262),
-- see credential-disable (263),
-- see credential-status (264),
-- see credentials (265),
-- see credentials-in-zone (266),
-- see days-remaining (267),
-- see entry-points (268),
-- see exit-points (269),
-- see expiry-time (270),
-- see extended-time-enable (271),
-- see failed-attempt-events (272),
-- see failed-attempts (273),
-- see failed-attempts-time (274),
-- see last-access-event (275),
-- see last-access-point (276),
-- see last-credential-added (277),
-- see last-credential-added-time (278),
-- see last-credential-removed (279),
-- see last-credential-removed-time (280),
-- see last-use-time (281),
-- see lockout (282),
-- see lockout-relinquish-time (283),
-- formerly: master-exemption (284), removed in version 1 revision 13
-- see max-failed-attempts (285),
-- see members (286),
-- see muster-point (287),
-- see negative-access-rules (288),
-- see number-of-authentication-policies (289),
-- see occupancy-count (290),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

706 ANSI/ASHRAE Standard 135-2012

-- see occupancy-count-adjust (291),
-- see occupancy-count-enable (292),
-- formerly: occupancy-exemption (293), removed in version 1 revision 13
-- see occupancy-lower-limit (294),
-- see occupancy-lower-limit-enforced (295),
-- see occupancy-state (296),
-- see occupancy-upper-limit (297),
-- see occupancy-upper-limit-enforced (298),
-- formerly: passback-exemption (299), removed in version 1 revision 13
-- see passback-mode (300),
-- see passback-timeout (301),
-- see positive-access-rules (302),
-- see reason-for-disable (303),
-- see supported-formats (304),
-- see supported-format-classes (305),
-- see threat-authority (306),
-- see threat-level (307),
-- see trace-flag (308),
-- see transaction-notification-class (309),
-- see user-external-identifier (310),
-- see user-information-reference (311),
-- enumeration values 312-316 are unassigned
-- see user-name (317),
-- see user-type (318),
-- see uses-remaining (319),
-- see zone-from (320),
-- see zone-to (321),
-- see access-event-tag (322),
-- see global-identifier (323),
-- enumeration values 324-325 are unassigned
-- see verification-time (326),
-- see base-device-security-policy (327),
-- see distribution-key-revision (328),
-- see do-not-hide (329),
-- see key-sets (330),
-- see last-key-server (331),
-- see network-access-security-policies (332),
-- see packet-reorder-time (333),
-- see security-pdu-timeout (334),
-- see security-time-window (335),
-- see supported-security-algorithms (336),
-- see update-key-set-timeout (337),
-- see backup-and-restore-state (338),
-- see backup-preparation-time (339),
-- see restore-completion-time (340),

 -- see restore-preparation-time (341),
 -- see bit-mask (342),
 -- see bit-text (343),
 -- see is-utc (344),
 -- see group-members (345),
 -- see group-member-names (346),
 -- see member-status-flags (347),
 -- see requested-update-interval (348),
 -- see covu-period (349),
 -- see covu-recipients (350),
 -- see event-message-texts (351),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 707

 -- see event-message-texts-config (352),
 -- see event-detection-enable (353),
 -- see event-algorithm-inhibit (354),
 -- see event-algorithm-inhibit-ref (355),
 -- see time-delay-normal (356),
 -- see reliability-evaluation-inhibit (357),
 -- see fault-parameters (358),
 -- see fault-type (359),
 -- see local-forwarding-only (360),
 -- see process-identifier-filter (361),
 -- see subscribed-recipients (362),
 -- see port-filter (363),
 -- see authorization-exemptions (364),
 -- see allow-group-delay-inhibit (365),
 -- see channel-number (366),
 -- see control-groups (367),
 -- see execution-delay (368),
 -- see last-priority (369),
 -- see write-status (370),
 -- see property-list (371),
 -- see serial-number (372),
 -- see blink-warn-enable (373),
 -- see default-fade-time (374),
 -- see default-ramp-rate (375),
 -- see default-step-increment (376),
 -- see egress-time (377),
 -- see in-progress (378),
 -- see instantaneous-power (379),
 -- see lighting-command (380),
 -- see lighting-command-default-priority (381),
 -- see max-actual-value (382),
 -- see min-actual-value (383),
 -- see power (384),
 -- see transition (385),
 -- see egress-active (386)
 ...
 }
-- The special property identifiers all, optional, and required are reserved for use in the
-- ReadPropertyMultiple service or services not defined in this standard.
--
-- Enumerated values 0-511 are reserved for definition by ASHRAE. Enumerated values 512-4194303 may be used by
-- others subject to the procedures and constraints described in Clause 23.

BACnetPropertyReference ::= SEQUENCE {
 propertyIdentifier [0] BACnetPropertyIdentifier,
 propertyArrayIndex [1] Unsigned OPTIONAL --used only with array datatype
 -- if omitted with an array the entire array is referenced
 }

BACnetPropertyStates ::= CHOICE {
-- This production represents the possible datatypes for properties that
-- have discrete or enumerated values. The choice must be consistent with the
-- datatype of the property referenced in the Event Enrollment Object.

 boolean-value [0] BOOLEAN,
 binary-value [1] BACnetBinaryPV,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

708 ANSI/ASHRAE Standard 135-2012

 event-type [2] BACnetEventType,
 polarity [3] BACnetPolarity,
 program-change [4] BACnetProgramRequest,
 program-state [5] BACnetProgramState,
 reason-for-halt [6] BACnetProgramError,
 reliability [7] BACnetReliability,
 state [8] BACnetEventState,
 system-status [9] BACnetDeviceStatus,
 units [10] BACnetEngineeringUnits,
 unsigned-value [11] Unsigned,
 life-safety-mode [12] BACnetLifeSafetyMode,
 life-safety-state [13] BACnetLifeSafetyState,
 restart-reason [14] BACnetRestartReason,
 door-alarm-state [15] BACnetDoorAlarmState,
 action [16] BACnetAction,
 door-secured-status [17] BACnetDoorSecuredStatus,
 door-status [18] BACnetDoorStatus,
 door-value [19] BACnetDoorValue,
 file-access-method [20] BACnetFileAccessMethod,
 lock-status [21] BACnetLockStatus,
 life-safety-operation [22] BACnetLifeSafetyOperation,
 maintenance [23] BACnetMaintenance,
 node-type [24] BACnetNodeType,
 notify-type [25] BACnetNotifyType,
 security-level [26] BACnetSecurityLevel,
 shed-state [27] BACnetShedState,
 silenced-state [28] BACnetSilencedState,
 -- context tag 29 reserved for future addenda
 access-event [30] BACnetAccessEvent,
 zone-occupancy-state [31] BACnetAccessZoneOccupancyState,
 access-credential-disable-reason [32] BACnetAccessCredentialDisableReason,
 access-credential-disable [33] BACnetAccessCredentialDisable,
 authentication-status [34] BACnetAuthenticationStatus,
 backup-state [36] BACnetBackupState,
 write-status [37] BACnetWriteStatus,
 lighting-in-progress [38] BACnetLightingInProgress,
 lighting-operation [39] BACnetLightingOperation,
 lighting-transition [40] BACnetLightingTransition
 ...
 }
-- Tag values 0-63 are reserved for definition by ASHRAE. Tag values of 64-254 may be used by others to
-- accommodate vendor specific properties that have discrete or enumerated values, subject to the constraints described
-- in Clause 23.

BACnetPropertyValue ::= SEQUENCE {

propertyIdentifier [0] BACnetPropertyIdentifier,
 propertyArrayIndex [1] Unsigned OPTIONAL, -- used only with array datatypes
 -- if omitted with an array the entire array is referenced
 value [2] ABSTRACT-SYNTAX.&Type, -- any datatype appropriate for the specified property
 priority [3] Unsigned (1..16) OPTIONAL -- used only when property is commandable
 }

BACnetRecipient ::= CHOICE {
 device [0] BACnetObjectIdentifier,
 address [1] BACnetAddress
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 709

BACnetRecipientProcess ::= SEQUENCE {
 recipient [0] BACnetRecipient,
 processIdentifier [1] Unsigned32
 }

BACnetReliability ::= ENUMERATED {

no-fault-detected (0),
no-sensor (1),
over-range (2),
under-range (3),
open-loop (4),
shorted-loop (5),
no-output (6),
unreliable-other (7),
process-error (8),
multi-state-fault (9),
configuration-error (10),
-- enumeration value 11 is reserved for a future addendum
communication-failure (12),

 member-fault (13),
 monitored-object-fault (14),
 tripped (15),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetRestartReason ::= ENUMERATED {

unknown (0),
coldstart (1),
warmstart (2),
detected-power-lost (3),
detected-powered-off (4),
hardware-watchdog (5),
software-watchdog (6),
suspended (7),
...
}

-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values 64-255
-- may be used by others subject to the procedures and constraints described in Clause 23.

BACnetResultFlags ::= BIT STRING {
 first-item (0),
 last-item (1),
 more-items (2)
 }

BACnetScale ::= CHOICE {
 floatScale [0] REAL,

integerScale [1] INTEGER
}

BACnetSecurityKeySet ::= SEQUENCE {
 key-revision [0] Unsigned8, -- 0 if key set is not configured

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

710 ANSI/ASHRAE Standard 135-2012

 activation-time [1] BACnetDateTime, -- UTC time, all wild if unknown
 expiration-time [2] BACnetDateTime, -- UTC time, all wild if infinite
 key-ids [3] SEQUENCE OF BACnetKeyIdentifier
 }

BACnetSecurityLevel ::= ENUMERATED {
 incapable (0), -- indicates that the device is configured to not use security
 plain (1),
 signed (2),
 encrypted (3),
 signed-end-to-end (4),
 encrypted-end-to-end (5)
 }

BACnetSecurityPolicy ::= ENUMERATED {
 plain-non-trusted (0),
 plain-trusted (1),
 signed-trusted (2),
 encrypted-trusted (3)
 }

BACnetSegmentation ::= ENUMERATED {
 segmented-both (0),
 segmented-transmit (1),
 segmented-receive (2),
 no-segmentation (3)
 }

BACnetServicesSupported ::= BIT STRING {
-- Alarm and Event Services
 acknowledgeAlarm (0),
 confirmedCOVNotification (1),
 confirmedEventNotification (2),
 getAlarmSummary (3),
 getEnrollmentSummary (4),
 -- getEventInformation (39),
 subscribeCOV (5),
 -- subscribeCOVProperty (38),
 -- lifeSafetyOperation (37),

-- File Access Services
 atomicReadFile (6),
 atomicWriteFile (7),

-- Object Access Services
 addListElement (8),
 removeListElement (9),
 createObject (10),
 deleteObject (11),
 readProperty (12),
 readPropertyMultiple (14),
 -- readRange (35),
 -- writeGroup (40),
 writeProperty (15),
 writePropertyMultiple (16),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 711

-- Remote Device Management Services
 deviceCommunicationControl (17),
 confirmedPrivateTransfer (18),
 confirmedTextMessage (19),
 reinitializeDevice (20),

-- Virtual Terminal Services
 vtOpen (21),
 vtClose (22),
 vtData (23),

-- Removed Services
 -- formerly: readPropertyConditional (13), removed in version 1 revision 12
 -- formerly: authenticate (24), removed in version 1 revision 11
 -- formerly: requestKey (25), removed in version 1 revision 11

-- Unconfirmed Services
 i-Am (26),
 i-Have (27),
 unconfirmedCOVNotification (28),
 unconfirmedEventNotification (29),
 unconfirmedPrivateTransfer (30),
 unconfirmedTextMessage (31),
 timeSynchronization (32),
 -- utcTimeSynchronization (36),
 who-Has (33),
 who-Is (34),

-- Services added after 1995
 readRange (35), -- Object Access Service
 utcTimeSynchronization (36), -- Remote Device Management Service
 lifeSafetyOperation (37), -- Alarm and Event Service
 subscribeCOVProperty (38), -- Alarm and Event Service
 getEventInformation (39), -- Alarm and Event Service
 writeGroup (40) -- Object Access Services
 }

BACnetSetpointReference ::= SEQUENCE {
 setpointReference [0] BACnetObjectPropertyReference OPTIONAL
 }

BACnetShedLevel ::= CHOICE {
 percent [0] Unsigned,
 level [1] Unsigned,
 amount [2] REAL
 }

BACnetShedState ::= ENUMERATED {
 shed-inactive (0),
 shed-request-pending (1),
 shed-compliant (2),
 shed-non-compliant (3)
 }

BACnetSilencedState ::= ENUMERATED {
 unsilenced (0),

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

712 ANSI/ASHRAE Standard 135-2012

 audible-silenced (1),
 visible-silenced (2),
 all-silenced (3),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to procedures and constraints described in
-- Clause 23.

BACnetSpecialEvent ::= SEQUENCE {
 period CHOICE {
 calendarEntry [0] BACnetCalendarEntry,
 calendarReference [1] BACnetObjectIdentifier
 },
 listOfTimeValues [2] SEQUENCE OF BACnetTimeValue,
 eventPriority [3] Unsigned (1..16)
 }

BACnetStatusFlags ::= BIT STRING {
 in-alarm (0),
 fault (1),
 overridden (2),
 out-of-service (3)
 }

BACnetTimeStamp ::= CHOICE {
 time [0] Time,
 sequenceNumber [1] Unsigned (0..65535),
 dateTime [2] BACnetDateTime
 }

BACnetTimeValue ::= SEQUENCE {
 time Time,
 value ABSTRACT-SYNTAX.&Type -- any primitive datatype; complex types cannot be decoded
 }

BACnetVTClass ::= ENUMERATED {
 default-terminal (0),
 ansi-x3-64 (1),
 dec-vt52 (2),
 dec-vt100 (3),
 dec-vt220 (4),
 hp-700-94 (5),
 ibm-3130 (6),
 ...
 }
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetVTSession ::= SEQUENCE {
 local-vtSessionID Unsigned8,
 remote-vtSessionID Unsigned8,
 remote-vtAddress BACnetAddress
 }

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

21. FORMAL DESCRIPTION OF APPLICATION PROTOCOL DATA UNITS

ANSI/ASHRAE Standard 135-2012 713

BACnetWeekNDay ::= OCTET STRING (SIZE (3))
-- first octet month (1..14) 1 =January
-- 13 = odd months
-- 14 = even months
-- X'FF' = any month
-- second octet weekOfMonth where: 1 = days numbered 1-7
-- 2 = days numbered 8-14
-- 3 = days numbered 15-21
-- 4 = days numbered 22-28
-- 5 = days numbered 29-31
-- 6 = last 7 days of this month
-- X'FF' = any week of this month
-- third octet dayOfWeek (1..7) where 1 = Monday
-- 7 = Sunday
-- X'FF' = any day of week

BACnetWriteStatus ::= ENUMERATED {
 idle 0,
 in-progress 1,
 successful 2,
 failed 3
 }

ReadAccessResult ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 listOfResults [1] SEQUENCE OF SEQUENCE {
 propertyIdentifier [2] BACnetPropertyIdentifier,
 propertyArrayIndex [3] Unsigned OPTIONAL, -- used only with array datatype
 -- if omitted with an array the entire
 -- array is referenced
 readResult CHOICE {
 propertyValue [4] ABSTRACT-SYNTAX.&Type,
 propertyAccessError [5] Error
 }
 } OPTIONAL
 }

ReadAccessSpecification ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 listOfPropertyReferences [1] SEQUENCE OF BACnetPropertyReference
 }

WriteAccessSpecification ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 listOfProperties [1] SEQUENCE OF BACnetPropertyValue
 }

END

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

22. CONFORMANCE AND INTEROPERABILITY

714 ANSI/ASHRAE Standard 135-2012

22 CONFORMANCE AND INTEROPERABILITY

BACnet defines a comprehensive set of object types and application services in the sense that communication requirements
among all levels of control in a distributed, hierarchical building automation system are addressed. There is a need to account
for the reality that not all devices in a building automation system need to support the full functionality of BACnet in order to
perform their tasks.

To reach the overarching goal of this standard - communication between disparate building automation and control devices,
possibly from different manufacturers - two distinct conditions must be met: 1) each implemented BACnet capability must
precisely conform to the requirements of this standard; and 2) devices that seek to interoperate must implement precisely
complementary BACnet capabilities appropriate to the desired form of interoperation. This clause defines how these
conditions are to be met and what it means to conform to BACnet.

22.1 Conformance to BACnet

This subclause specifies the requirements that shall be met in order to conform with BACnet.

22.1.1 Protocol Implementation Conformance Statement (PICS)

All devices conforming to the BACnet protocol shall have a Protocol Implementation Conformance Statement (PICS) that
identifies all of the portions of BACnet that are implemented. This PICS shall contain all of the information described in
22.1.1.1 and shall be in the format found in Annex A.

22.1.1.1 PICS Contents

A PICS is a written document, created by the manufacturer of a device, that identifies the particular options specified by
BACnet that are implemented in the device. A BACnet PICS is considered a public document that is available for use by any
interested party. At a minimum, a BACnet PICS shall convey the following information.

(a) Basic information identifying the vendor and describing the BACnet device.

(b) The BACnet Interoperability Building Blocks supported by the device (see Annex K).

(c) The standardized BACnet device profile to which the device conforms, if any (see Annex L).

(d) All non-standard application services that are supported along with an indication for each service of whether the

device can initiate the service request, respond to a service request, or both.

(e) A list of all standard and proprietary object types that are supported.

(f) For each object type supported,

 1. any optional properties that are supported,
 2. which properties can be written-to using BACnet services,
 3. if the objects can be dynamically created or deleted using BACnet services,
 4. any restrictions on the range of data values for properties.

(g) The data link layer option options, both real and virtual, supported. (See Annexes H and J).

(h) Whether segmented requests are supported.

(i) Whether segmented responses are supported.

22.1.2 Conformance Test

In order to conform to the BACnet protocol, all devices shall pass a conformance test that verifies the correct implementation
of the standard object types and services indicated in the PICS. This conformance test shall consist of a collection of test
cases drawn from a standard test suite in such a way as to test each object type and service for which support is claimed
(positive test) and to test for an appropriate response to errors and standard services and objects that are not implemented to

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

22. CONFORMANCE AND INTEROPERABILITY

ANSI/ASHRAE Standard 135-2012 715

ensure the absence of detrimental behavior (negative test). The details of these tests are prescribed in the companion standard,
"Testing Conformance to BACnet," ASHRAE 135.1.

22.1.3 Data Link and Physical Layers

To conform to the BACnet protocol, all devices shall support one of the five data link layer options, defined in Clauses 7
through 11, and one of the physical layers compatible with that data link layer, except as indicated in 22.1.4.

22.1.4 Conformance with Non-Standard Data Link Layer

Special circumstances may require that a device support a data link and physical layer technology that is not one of the
BACnet options in order to interoperate with other networked devices in a particular situation. Such a device may be said to
conform to BACnet with a non-standard data link layer, provided that the criteria in 22.1.1 through 22.1.2 are met.

A device conforming to the BACnet protocol under the provisions of this subclause may use non-standard protocol layers
other than the data link and physical layers, provided that the non-standard protocol is used to convey a standard BACnet
LSDU that contains application and network layer information defined by this standard and encoded according to the rules of
Clause 20 and Clause 6. Segmentation of the BACnet LSDU is permitted. Annex H provides examples of this for the
Department of Defense Internet protocols and the Novell Internetwork Datagram Protocol.

22.1.5 Minimum Device Requirements

A device that conforms to the BACnet protocol and contains an application layer shall:

(a)
 contain exactly one Device object,
(b)
 execute the ReadProperty service,
(c)
 execute the Who-Has and Who-Is services (and thus initiate the I-Have and I-Am services) unless the device is

an MS/TP slave device,
(d)
 execute the WriteProperty service if the device executes the WritePropertyMultiple, AddListElement or

RemoveListElement services,
(e)
 allow the WriteProperty service to modify any properties that are modifiable by the AddListElement or

RemoveListElement services,
(f)
 execute the WriteProperty service if the device contains any objects with properties that are required to be

writable, and
(g)
 have a configurable device instance that can take on any value across the range 0 .. 4194302.

22.2 BACnet Interoperability

BACnet is intended to provide a single, uniform standard for building control systems, the ultimate goal of which is
"interoperability." Interoperability means the ability of disparate control system devices to work together toward a common
objective through the digital exchange of relevant information. Although interoperability is often thought of in terms of
interconnecting equipment from multiple manufacturers, it is also possible to envision interoperating systems from a single
vendor, possibly equipment of different vintages. Thus, while BACnet enables multi-vendor interoperability, it in no way
requires it.

22.2.1 Interoperability Areas

"Interoperability areas" (IAs) are intended to describe the functionality that is important in practical automation and control
systems to achieve specific operational objectives. The five IAs delineated in this standard are data sharing, alarm and event
management, scheduling, trending, and device and network management. Each IA implies a set of capabilities. Each
capability, in turn, requires that specific elements of BACnet be implemented in a particular device to enable interoperability
in a known and predictable manner with a minimum of field engineering. The selection of which BACnet elements are
required for a particular type of device is indicated in the device profiles presented in Annex L. This section describes the
specific capabilities associated with each IA.

22.2.1.1 Data Sharing

"Data sharing" is the exchange of information between BACnet devices. It may be uni-directional or bi-directional.
Interoperability in this area permits the collection of data for archival storage, graphics, and reports, the sharing of common
sensor or calculated values between devices, carrying out interlocked control strategies, and the modification of setpoints or
other operational parameters of BACnet objects.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

22. CONFORMANCE AND INTEROPERABILITY

716 ANSI/ASHRAE Standard 135-2012

22.2.1.2 Alarm and Event Management

"Alarm and event management" is the exchange of data between BACnet devices related to the occurrence of a predefined
condition that meets specific criteria. Such conditions are called "events" and may be the basis for the initiation of a particular
control action in response or the simple logging of the event's occurrence. The event may also be deemed to represent a
condition that constitutes an "alarm", requiring human acknowledgment and intervention. Interoperability in this area permits
the annunciation and acknowledgment of alarms; the display of data indicating the basis for the alarm annunciation; the
sharing of events for the purpose of logging or distributed control applications; modification of alarm limits and routing; and
the production of summaries of the occurrence of such alarms and events.

BACnet defines two different mechanisms for generating alarms and events. One is called "intrinsic reporting" because it
relies on the use of properties that are part of or "intrinsic" to the object that is being monitored for alarms or events. The
other mechanism is called "algorithmic change reporting." Algorithmic change reporting is more general but it also requires
the overhead of an additional object called the Event Enrollment object. The intrinsic reporting method is preferred under
circumstances where it meets the objectives of the intended application. See Clause 13.

22.2.1.3 Scheduling

"Scheduling" is the exchange of data between BACnet devices related to the establishment and maintenance of dates and
times at which specified output actions are to be taken. Interoperability in this area permits the use of date and time schedules
for starting and stopping equipment and changing control setpoints as well as other analog or binary parameters.

22.2.1.4 Trending

"Trending" is the accumulation of records consisting of a timestamp and a set of one or more logged data values. These
records are collected at specified rates for a specified duration. The values are those of specific properties of specific objects.
"Trending" is distinguished from the real-time plotting of data in that the data are usually destined for long-term storage and
the sampling intervals are usually longer. Interoperability in this area permits the establishment of logging parameters and the
subsequent retrieval and storage of logged data.

22.2.1.5 Device and Network Management

"Device and network management" is the exchange of data between BACnet devices concerning the operation and status of
the devices comprising the BACnet internetwork. Interoperability in this area permits determining which devices are present
on a given network and some of their operational capabilities, including which objects they maintain; the ability to start up
and shut down communication from a particular device; the ability to synchronize the time in those devices that maintain
clocks; the ability to reinitialize the operation of a device's computer; the ability to establish connections as needed; and the
ability to change the connection configuration.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 23. EXTENDING BACnet TO ACCOMMODATE VENDOR PROPRIETARY INFORMATION

ANSI/ASHRAE Standard 135-2012 717

23 EXTENDING BACnet TO ACCOMMODATE VENDOR PROPRIETARY INFORMATION

The objective of BACnet is to provide the mechanisms by which building automation equipment may exchange information.
To aid in interoperability, BACnet defines a standardized set of data structures, called objects, which contain information that
is common to most building systems. BACnet may also be used to exchange non-standardized information between devices
that understand this information. There are four independent areas where BACnet may be extended to exchange non-standard
information:

(a)
 A vendor may define proprietary extended values for enumerations used in BACnet.
(b)
 A vendor may invoke a proprietary service using the PrivateTransfer services.
(c)
 A vendor may add new proprietary properties to a standard object.
(d)
 A vendor may define new proprietary object types.

In each of these cases, the BACnet messages implicitly reference a vendor identification code that serves to unambiguously
specify which vendor's proprietary enumerations, services, properties, or objects were intended. Vendor identification codes
are administrated by ASHRAE and are assigned one per vendor. The special Vendor_Identifier of zero is permanently
assigned to ASHRAE. The Vendor_Identifier for a given device may be determined by reading the Vendor_Identifier
property of the Device object. A list of vendor identification codes may be obtained from the ASHRAE Manager of
Standards.

23.1 Extending Enumeration Values

There may be instances when it is necessary for a vendor to extend BACnet by including additional possible values to an
enumeration. This is accomplished by using enumeration values that are greater than the range reserved for BACnet for a
given enumeration type. Table 23-1 defines those enumerations that may be extended and the range of enumerated values
reserved for BACnet use. All other enumerations, which do not appear in Table 23-1, shall not be extended.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

23. EXTENDING BACnet TO ACCOMMODATE VENDOR PROPRIETARY INFORMATION

718 ANSI/ASHRAE Standard 135-2012

Table 23-1. Extensible Enumerations
Enumeration Name Reserved

Range
Maximum Value

error-class 0-63 65535
error-code 0-255 65535
BACnetAbortReason 0-63 255
BACnetDeviceStatus 0-63 65535
BACnetDoorAlarmState 0-255 65535
BACnetEngineeringUnits 0-255 65535
BACnetEventState 0-63 65535
BACnetEventType 0-63 65535
BACnetLifeSafetyMode 0-255 65535
BACnetLifeSafetyState 0-255 65535
BACnetLifeSafetyOperation 0-63 65535
BACnetLoggingType 0-63 255
BACnetMaintenance 0-255 65535
BACnetObjectType 0-127 1023
BACnetProgramError 0-63 65535
BACnetPropertyIdentifier 0-511 4194303
BACnetPropertyStates 0-63 254
BACnetReliability 0-63 65535
BACnetRejectReason 0-63 255
BACnetRestartReason 0-63 255
BACnetSilencedState 0-63 65535
BACnetVTClass 0-63 65535
BACnetAccessAuthenticationFactorDisable 0-63 65535
BACnetAccessCredentialDisable 0-63 65535
BACnetAccessCredentialDisableReason 0-63 65535
BACnetAccessEvent 0-511 65535
BACnetAccessUserType 0-63 65535
BACnetAccessZoneOccupancyState 0-63 65535
BACnetAuthorizationExemption 0-63 255
BACnetAuthorizationMode 0-63 65535
BACnetLightingOperation 0-255 65535
BACnetLightingTransition 0-63 255

23.2 Using the PrivateTransfer Services to Invoke Non-Standardized Services

BACnet defines a set of application layer services that are specifically tailored to integrating building control systems. While
this standard prescribes a set of application layer services that is intended to be comprehensive, vendors are free to create
additional services. Standard services shall be used when possible.

Vendors may add proprietary services to BACnet using the PrivateTransfer services to invoke them. The service types and
arguments are not restricted by BACnet, but they shall be conveyed using the Confirmed or Unconfirmed PrivateTransfer
services. The protocol mechanisms used in the handling of these APDUs shall perform as specified in this standard.

The format of proprietary application layer services, invoked using PrivateTransfer, shall follow the encoding rules of this
standard.

When using the PrivateTransfer service, it is important to note that segmentation is not permitted for Error APDUs. The
implementor shall ensure that the parameters in the Error APDU do not expand to the point where segmentation is required.

23.3 Adding Proprietary Properties to a Standardized Object

BACnet defines a set of standard objects, each with a set of standard properties that can be accessed and manipulated with
BACnet services. BACnet allows a vendor to add proprietary properties to extend the capabilities of a standard object.
Proprietary properties receive the same support from BACnet services as standard properties and therefore can be accessed
and manipulated in a manner identical to standard properties.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 23. EXTENDING BACnet TO ACCOMMODATE VENDOR PROPRIETARY INFORMATION

ANSI/ASHRAE Standard 135-2012 719

Objects may indicate conformance to an object profile by use of the Profile_Name property.

If a proprietary property is to be a commandable property, additional properties that fulfill the role of the standard
Priority_Array and Relinquish_Default properties shall be provided for each commandable property. The priority arbitration
mechanism described in Clause 19 shall apply.

Vendors may add proprietary properties to a standard object by modifying the object definition within a device. Proprietary
properties are enumerated with Property_Identifier values of 512 and above. These property identifiers can be used in any
BACnet service that uses a Property_Identifier as a parameter.

Proprietary property identifiers implicitly reference the Vendor_Identifier property of the Device object in the device where
they reside. It is entirely possible, and expected, that different vendors will use the same enumeration values to represent
completely different properties.

23.4 Adding Proprietary Object Types to BACnet

To accommodate building applications where the defined set of standardized objects is not adequate, BACnet allows a
vendor to add proprietary object types. Standard object types shall be used when possible. To enhance extensibility, BACnet
provides the same support for proprietary objects as for standard objects.

Objects may indicate conformance to an object profile by use of the Profile_Name property.

23.4.1 Proprietary Object_Type Enumerations

Vendors may add proprietary object types to BACnet by extending the BACnetObjectType enumeration. Proprietary object
types are enumerated with Object_Type values of 128 and above. These Object_Type values may be used in any BACnet
service that uses an Object_Type as a parameter.

23.4.2 Proprietary Property Datatypes

The properties of vendor proprietary objects may include both standard and proprietary datatypes. Proprietary datatypes may
only be constructed from application datatypes defined in 20.2.1.4.

23.4.3 Required Properties in Proprietary Object Types

Non-standard object types shall support the following properties:

 Object_Identifier
 Object_Name
 Object_Type
 Property_List

These properties shall be implemented to behave as they would in standard BACnet objects. This means that the
Object_Identifier and Object_Name properties shall be unique within the BACnet device that maintains them. The
Object_Name string shall be at least one character in length and shall consist of only printable characters. The Property_List
property was added in Protocol Revision 14.

23.5 Restrictions on Extending BACnet

The following restrictions to extending BACnet apply:

(a) APDU types 8 through 15 are reserved for future ASHRAE use.

(b) Services may be added only via the Confirmed- and UnconfirmedPrivateTransfer services. That is, the enumerations

BACnetConfirmedServiceChoice and BACnetUnconfirmedServiceChoice may not be extended.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

720 ANSI/ASHRAE Standard 135-2012

24 NETWORK SECURITY

This clause defines a security architecture for BACnet. Network security in BACnet is optional. The intent of this
architecture is to provide peer entity, data origin, and operator authentication, as well as data confidentiality and integrity.
Other aspects of communications security, such as authorization policies, access control lists, and non-repudiation, are not
defined by this standard. Systems that require these functions may add them to BACnet by using the proprietary extensibility
features provided for by this architecture, or by some other proprietary means.

24.1 Overview

The BACnet network security architecture provides device authentication, data hiding, and user authentication. This has been
accomplished within the constraints that BACnet security should allow for:

(a)
 Application to all BACnet media types (BACnet/IP, MS/TP, etc.)
(b)
 Application to all BACnet device types (devices, routers, BBMDs)
(c)
 Application to all message types (broadcast, unicast, confirmed, and unconfirmed)
(d)
 Application to all message layers (BVLL, network, and application)
(e)
 Placing non-security-aware devices, if physically secure, behind a security proxy firewall router
(f)
 Placing secure devices on non-security-aware networks.

To achieve these network security goals, the BACnet standard is extended with a set of network layer security messages.
Other security standards, such as IPsec and Kerberos, were designed to operate only on TCP/IP networks and as such do not
meet the above requirements. However, the BACnet security architecture was developed by applying the best security
practices of those standards that fit the requirements listed above.

24.1.1 Security Layer

The security functionality is added into the BACnet stack as a set of network layer messages. As such, there is no actual
security layer, although the discussion of security processing is easiest to understand if it is conceptually separated into a
distinct layer. For this reason the security processing and the related messages are referred to as the security layer although in
fact they are part of the network layer.

24.1.2 Shared Keys

The BACnet security model relies on the use of shared secrets called keys. Device and user authentication is achieved
through the use of message signatures and shared signature keys. Data hiding is achieved through encryption of the secure
payload and shared encryption keys.

In BACnet security, keys are always distributed as key pairs, where one half is the signature key and the other half is the
encryption key. There are 6 types of key pairs: General-Network-Access, User-Authenticated, Application-Specific,
Installation, Distribution, and Device-Master.

The General-Network-Access key is used for broadcast network layer messages, for encryption tunnels, and by user interface
devices that cannot authenticate, or are not trusted to authenticate, a user. All devices must be given the General-Network-
Access key pair to interoperate on a BACnet network. BACnet server devices that receive requests signed with the General-
Network-Access key should assume that the User Id and User Role fields included in the message may not have been
properly authenticated by the source device and may want to restrict access accordingly.

The User-Authenticated key is distributed to client devices that are trusted to authenticate a user's identity by some means, or
to devices that do not contain a user interface (where the user identity to use in BACnet messages is configured into the
device and is not based on human interaction). This key is also distributed to BACnet server devices that restrict operations
based on the identity of an authenticated user. Servers that receive requests that are signed with the User-Authenticated key
can assume that the User Id and User Role fields included in the message has been properly authenticated by the client
device, or was configured into a trusted device with no user interface. While the client device may restrict a user's actions
based on its authorization policies prior to sending the message, the server device is also free to restrict access based on the
received User Id and User Role.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 721

An Application-Specific key may be used to provide security boundaries between application areas, such as access control
and HVAC. Application-Specific keys are distributed only to those devices sharing a particular application and can thus be
limited to highly secure communication. Devices using Application-Specific keys for highly secure communications should
be designed to be able to restrict which services can be executed with lesser keys. For example, such devices might be
configured to disallow time synchronization or network configuration via the General-Network-Access key.

Installation keys are distributed temporarily to small sets of devices, usually the configuration tool of a technician and a set of
BACnet devices that require configuration. These keys are provided to allow temporary access to a specific set of controllers
through a configuration tool that would not normally have access to the BACnet network. There may be multiple Installation
keys in use by different devices simultaneously, so that different configuration tools could use different Installation keys, if
desired.

The Distribution keys are used to distribute the General-Network-Access, User-Authenticated, and Application-Specific
keys, which may change over time as needed to meet local security policies. They are also used to distribute the temporary
Installation keys.

The Device-Master keys are used only for the distribution of the Distribution keys and remain the most secure of all key
types because they are unique for every device and their use on the wire is very limited.

24.1.3 Securing Messages

Security is applied at the network layer by creating a new NPDU message type. Plain BACnet messages are secured by
placing the NSDU portion of the message into the Payload of a Security-Payload message. Therefore, when a BACnet APDU
is encapsulated with security information, it is transported as a network layer message and the control bit in the NPCI is
changed to indicate that the message now contains a network layer message rather than an APDU. The security header will
indicate that the encapsulated message is an APDU so that this information is not lost. Upon unwrapping this message, this
control bit will change back so that the plain NPDU will once again indicate that it contains an APDU.

For NPDUs and BVLLs containing NPDUs, the portion of the message starting with the network layer Message_Type field
is placed into the Payload of a Security-Payload message. For BVLL messages that do not contain an NPDU, the original
BVLL is embedded in a Secure BVLL message.

The basic level of security that can be applied to a BACnet message consists of signing each message using HMAC (keyed-
hash message authentication algorithm) and MD5 or SHA-256 (commonly used hash algorithms), and of marking each
message with the source and destination Device instances, a Message Id and a timestamp. Including source and destination
addresses and source and destination device instances assures that messages cannot be spoofed or redirected. However, this
requires that all secure devices, even routers and BBMDs, contain an application layer and device object.

Message Id fulfills several purposes in securing BACnet messages. It is used to detect the replay of messages, to associate
security responses with security requests, and along with the Timestamp field, to provide variability in otherwise identical
messages.

Timestamp is used mainly for prevention of message replay but also serves as a source of variability in the message content
so that messages that are repeated frequently do not generate the same signature. The clocks of secure devices must be
loosely synchronized. If a timestamp on a message is outside the security time window, then an error is returned and clock
issues need to be addressed. Within the security time window, Message Ids are checked to confirm that a message has not
been replayed.

A higher level of security is provided by encrypting BACnet messages so that the content of the message cannot be
determined without the possession of an appropriate key. Even the length of the message can be obscured by using a varying
amount of hidden padding.

24.1.4 Network Security Policies

There are two network trust levels - trusted and non-trusted. Networks can be designated as trusted due to being physically
secure, or due to the use of protocol security (signatures and/or encryption). Non-trusted networks are those which are both
physically non-secure and not configured to require protocol security.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

722 ANSI/ASHRAE Standard 135-2012

BACnet messages that do not have any security information in them are referred to as "plain" messages. Therefore, there are
four corresponding network security policies: plain-trusted (requires physical security; no protocol security applied), signed-
trusted (physical security not required; secured with signatures), encrypted-trusted (physical security not required; secured
with encryption), and plain-non-trusted (not physically secure; no signature or encryption applied). A common example of a
plain-trusted network is an MSTP network where all devices are locked up and no direct network connections are available
outside of the locked space. Devices that do not support the BACnet security messages must reside only on plain-trusted
networks for their communications to be trusted by secure devices. A common example of a plain-non-trusted network would
be the corporate LAN. However, the LAN may be re-designated as signed-trusted or encrypted-trusted by requiring all
BACnet devices on the LAN to implement BACnet security and sign/encrypt all messages.

24.1.5 Device Level Security

Secure Devices are not restricted to residing on trusted networks (plain-trusted, signed-trusted, or encrypted-trusted). Secure
devices may be located on non-trusted networks and rely on end-to-end (device level) security for secure communications.
While trusted networks are created by setting the security policy for a network, and all devices on a trusted network must be
configured with the security policy of the network, end-to-end security is determined on a device by device and request by
request basis.

Secure BACnet devices are configured with a base device security policy that dictates the device's minimum level of security
for sending or receiving messages. This policy may be higher than, but not lower than, the network access security policy.

Incapable Devices (devices that are not capable of processing BACnet security messages or those that have been configured
to not be able to process BACnet security messages) must reside on a plain network (plain-trusted or plain-non-trusted).
Secure devices can also reside on this same network, but their Base_Device_Security_Policy property must be set to PLAIN
if they need to communicate with the incapable devices. Even if the Base_Device_Security_Policy property is set to PLAIN
for interoperability with incapable devices, the secure devices are free to use secured messages, for communicating with other
secure devices, for any traffic that needs to be secured.

24.1.6 Secure Tunnel Mode

The standard allows for a tunnelling mode whereby plain and signed packets arriving at one end of the tunnel (e.g., router A
on subnet A) can be tunnelled to another device (e.g., router B on subnet B across a non-physically-secure network segment).
The tunnelling router applies encryption (and signature if needed) using the General-Network-Access key and forwards the
packet along to the other end of tunnel. Control bits in the security header indicate that the packet has been tunnelled. If a
packet is already encrypted, the tunnelling router passes the message as is.

To avoid inverted networks, it is recommended that only BACnet/IP be used for secure tunnels when connecting non-secure
BACnet/IP or BACnet/Ethernet networks. BACnet/IP is preferred for secure tunnels since it is the only medium through
which full size BACnet packets (1476 octets of APDU) can be transferred when security is enabled. In such installations, all
BACnet products can take advantage of the secure tunnel, not just those that are security aware or only communicate with
smaller PDU sizes.

24.1.7 User Authentication

The BACnet security architecture allows for multiple methods for user authentication. Currently only a single method of user
authentication is defined: Proxied User Authentication.

Proxied User Authentication relies on site policy and trust of selected software to perform user authentication. To allow for
some clients to be trusted to perform user authentication, and some clients that do not perform, or are not trusted to perform,
user authentication, different security keys are provided. Clients with user interfaces that are trusted to perform user
authentication are given the User-Authenticated key, or an Application-Specific key. Other clients that need access to the
network but are not trusted to securely authenticate users are given the General-Network-Access key.

24.1.8 Key Distribution

BACnet security keys are distributed to all devices by a BACnet Key Server. The General-Network-Access, User-
Authenticated, Application-Specific, and Installation keys are bundled into a set and distributed together with a single key
revision number, each device receiving a specific set of keys appropriate for that device. While different devices may receive
different key sets (differing in Application-Specific or Installation keys, for example), the key sets shall share the same
revision number across all devices after a key distribution is complete.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 723

Each BACnet device shall either have a unique factory-fixed Device-Master key, or support initiation of Request-Master-Key
service and execution of the Set-Master-Key service. The Key Server will use a device's Device-Master key to securely
provide the device with a device specific Distribution key. The Key Server will then use the Distribution key to send the
device its set of security keys. Distribution keys are therefore revised separately from other keys, as they may change less
frequently.

A full description of the key distribution protocol is defined in Clause 24.21.3.

All secure devices shall support the key distribution messages defined in this standard. In addition, they may also support
proprietary mechanisms for setting keys. For example, an installation tool may configure an initial key set as part of its
programming and commissioning operations.

24.1.9 Deployment Options

Security deployment always involves careful consideration for balancing costs, complexity, and time of configuration and
maintenance against the likelihood of various attack scenarios and the sensitivity of the data or actions being protected. This
standard provides for a continuum of protection from very simple and coarse grained to very powerful and fine grained.

Using the architecture defined here, very simple deployments can be made. Some deployments may not require a live Key
Server. In these cases, the function of the Key Server is performed by the installation tool(s) and all devices are given infinite
duration keys so that no Key Server is needed after installation. In addition, all key values can be set to be the same value if
only a moderate level of security is needed to protect moderately critical resources.

Also using the architecture defined here, highly specific and highly secure deployment requirements can be met by
segregating collections of devices using Application-Specific keys and tightly controlling the distribution of those keys to a
limited number of devices. In addition, a live Key Server can be used to distribute expiring keys periodically according to site
policy. User information is provided so that fine grained authorization policies (e.g., access control lists) can be based on the
source device and/or the source user or process. The authentication mechanism can be extended to support complex
proprietary methods, if required.

24.1.10 Limitations and Attacks

Highly secure communications between peer devices requires not only the knowledge of the proper key(s), but also the
knowledge of a peer device's device instance number as well. This is because there are attack scenarios where it may be
possible for the source and destination address information (SNET, SADR, DNET, DADR) to be altered. The relative ease or
difficulty of these attacks is affected by the site's physical access policies and the skill and equipment of the attackers.

Altering the addressing information may be accomplished by gaining physical access to a secured device and changing its
MAC address (e.g., by changing its address switches), by causing its IP address to change (e.g., by spoofed DHCP messages
or a physically inserted NAT device), or by placing it on another network, either by physically moving the device or by
remotely rewiring the networks.

Secure devices should not allow their instance numbers to be changed by physical switches after installation; device instance
numbers should only be changeable via secured communications with a configuration tool. Therefore, the device instance
number is the most trustworthy form of identifying the source or destination of a message, and highly secured
communications should always include the destination device instance number (the source instance is always known and
always included).

Devices receiving messages where the device instance of the destination is unknown should act accordingly based on their
internal policies for the operation being requested. The device instance of the source is always known and may be used by the
destination device's internal policies for determining how to handle these messages. In many cases, the knowledge by the
destination of the authorized source instances may be sufficient to relieve the source of having to know the destination's
instance.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

724 ANSI/ASHRAE Standard 135-2012

There are also ways to avoid the condition of a source device not knowing the instance of a destination. For example, the
device instance form of a recipient address should be used rather than the address form, and services like "Subscribe COV"
should record the requesting device instance along with its address.

Secure devices should restrict the setting of their device instance number to communications that are secured with an
Installation key, which may be temporary and unique to the device. Site policies should restrict user access to software that is
authorized to change instance numbers in secure devices. But since this software is likely the same software that can
completely reprogram the devices, this policy may already be in place. Site policies should also restrict physical access to
highly secured devices so that their internal memory cannot be physically tampered with. Here again, this is likely to be an
existing policy for such devices.

Many of the above attacks involve physical access to either secured devices themselves or to the wiring between devices.
Given this opportunity, Denial of Service attacks are trivial and obvious and this standard does not address their prevention.
However, to limit over-the-wire Denial of Service attacks, this standard allows some error conditions to be ignorable. For
example, devices that want to hide from scanners are allowed to ignore messages that are using an unknown key or appear to
be replayed.

In general, error responses are helpful for diagnosing or recovering from some forms of legitimate network problems,
however, some devices may want to limit repeated error responses to repeated receipt of erroneous messages, which may
actually be an attempt at a Denial of Service attack. Legitimate devices should be designed to recover from errors like
outdated key sets or incorrect timestamps in a reasonable manner or should limit their rate of sending unsuccessful messages
to avoid creating an inadvertent Denial of Service attack by repeatedly sending erroneous messages to other secure devices.

24.1.11 Minimum Device Requirements

In order to implement BACnet network security in a device, the device shall:
(a)
 have an application layer;
(b)
 support execution of WriteProperty;
(c)
 be able to track time;
(d)
 have non-volatile re-writable storage in which to retain some run-time and configuration data;
(e)
 not be an MS/TP slave.

In addition, it is recommended that secure devices have a real-time clock that is persistent across resets and extended power
down periods.

24.2 Security Wrapper

All BACnet security messages use the same security wrapper consisting of a header, an optional body, and a required
signature. The format of the wrapper is:

Table 24-1. Security Wrapper Format
Field Name Size

Control 1 octet
Key Revision 1 octet
Key Identifier 2 octets
Source Device Instance 3 octets
Message Id 4 octets
Timestamp 4 octets
Destination Device Instance 3 octets
DNET 2 octets
DLEN 1 octet
DADR Variable
SNET 2 octets
SLEN 1 octet
SADR Variable
Authentication Mechanism 1 octet
Authentication Data Variable
Service Data Variable
Padding Variable
Signature 16 octets

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 725

All multi-octet fields shall be conveyed with the most significant octet first. The DADR and SADR fields shall be encoded as
described in Clause 6.

24.2.1 Security Header Protocol Control Information

Each security message NPDU shall start with a control octet that includes indications of the presence or absence of particular
security header fields.

Bit 7: 1 indicates that the Payload contains a network layer message or a Secure-BVLL.
 0 indicates that the Payload contains an application layer message

Bit 6: 1 indicates that the message is encrypted.
 0 indicates that the message is not encrypted.
 This bit is referred to as the 'encrypted flag' and shall always be 0 when calculating the signature for the message.

Bit 5: Reserved. Shall be 0.

Bit 4: 1 indicates that the Authentication Mechanism and Authentication Data fields are present.
 0 indicates that the Authentication Mechanism and Authentication Data fields are absent.
 The Authentication Mechanism and Authentication Data fields are optionally present on request messages but shall

be absent from response messages (e.g., Complex Ack, Simple Ack, Security Response)

Bit 3: 1 indicates that the Security Wrapper should not be removed, except by the destination device. This bit shall be 1 if

Bit 2 (the 'do-not-decrypt flag') is set to 1.
0 indicates that the Security Wrapper should be removed before placing the message on a plain network segment.
This bit is referred to as the 'do-not-unwrap flag'.

Bit 2: 1 indicates that encryption should not be removed, except by the destination device. If this bit is set to 1, then Bit 3
(the 'do-not-unwrap flag') shall be set to 1. This bit shall not be 1 when Bit 6 ('encrypted flag') is set to 0.
0 indicates that encryption should be removed before placing the message on a network segment that does not
require encryption.
This bit is referred to as the 'do-not-decrypt flag'.

Bit 1: 1 indicates that the message was received from a plain-non-trusted network and that the security information was

placed on the message by the router from the plain-non-trusted network to a trusted-signed or trusted-encrypted
network. Routers should not route plain messages from plain-non-trusted network to a plain-trusted network.
0 indicates that the message originated on a trusted network, or that the originator applied the security header.
This bit is referred to as the 'non-trusted-source flag'.

Bit 0: 1 indicates that the message was secured by an intervening router.

0 indicates that the message was secured by the originator.
This bit is referred to as the 'secured-by-router flag'.

24.2.2 Key Revision

This field shall contain the key revision for the key identified by the Key Identifier field.

This field shall be 0 when the Key Identifier indicates the Device-Master key.

24.2.3 Key Identifier

The Key Identifier field specifies the key that is used to sign the message. If the do-not-decrypt flag has a value of 1, then it
also specifies the key used to decrypt the message. If the do-not-decrypt flag has a value of 0, the General-Network-Access
key is used to decrypt the message as it is the only key that is guaranteed to be known by intermediate routers (see Clause
24.21.1).

24.2.4 Source Device Instance

The Source Device Instance is the Device object instance of the device that applied security to the message.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

726 ANSI/ASHRAE Standard 135-2012

The field shall be restricted to the range 0 through 4194302. This requires that all secure BACnet devices, even those that are
only routers or BBMDs, contain an application layer and a Device object.

Note that this field cannot be used to identify the source device of a message when the secured-by-router flag is set as it will
indicate the router's Device object instance.

24.2.5 Message Id

The Message Id is a 32 bit monotonically increasing counter value that is present in all secure messages. It is used for
matching security responses to security requests, for preventing replay attacks, and along with the Timestamp provides
variability between messages that might otherwise be identical.

In the normal course of operation, a device shall not generate more than one message with the same Message Id within the
security time window.

If a device does not remember its Message Id across resets, then the device may have problems communicating for the first
security time window period. Such a condition should be expected if the device resets within the first security time window
period of a previous reset, and it always resets its Message Id counter to the same value on reset. Waiting 2 *
Security_Time_Window seconds before communicating will overcome this problem.

24.2.6 Timestamp

The Timestamp field, an unsigned 32 bit integer, indicates the time of the message in UTC as seconds since 12:00 AM
January 1, 1970 (standard Unix timestamp).

24.2.7 Destination Device Instance

The Destination Device Instance is the Device object instance of the destination device for the message. A value of 4194303
shall be used in all broadcast messages and when the device instance of the destination device is unknown to the device
applying the security. Secure devices shall attempt to determine the Device object instance of the destination device, and only
if attempts to determine the value fail, shall a secure device resort to the use of 4194303 in unicast messages.

24.2.8 DNET/DLEN/DADR

These fields contain the values of the fields with the same name from the NPCI portion of the message. They are always
present and are included in the security header to allow the signing of the values.

When the message is to be placed onto the destination network, or is received from the destination network, the NPCI will
not contain the DNET/DLEN/DADR fields. Regardless of whether the NPCI contains the DNET/DLEN/DADR fields, the
security header shall contain these fields and they shall contain the correct destination address information.

For the Update-Key-Set, Update-Distribution-Key, and Set-Master-Key, the DNET shall be set to 0 in the security header if
the SNET was 0 in the corresponding Request-Key-Update or Request-Master-Key message.

24.2.9 SNET/SLEN/SADR

These fields correspond to the fields with the same name from the NPCI portion of the message. They are always present and
are included in the security header to allow the signing of the values. As such, the values must be known and filled in by the
device. This is in contrast to non-secure BACnet messages where these fields in the NPCI are only present when added by a
router when routing remote messages.

When a security header is placed in a message by a router on behalf of another device, these fields shall contain the address
information of the originating device and not the address information of the router.

There are exceptions where the values are not known and cannot be filled in by the sending device. In the What-Is-Network
message, the SNET shall be set to 0. In the Request-Key-Update, and Request-Master-Key, the SNET shall be set to 0 only
when the device does not know its network number. However, the SLEN and SADR shall be set to valid values, if they are
known. In the case where a device temporarily does not know its own SADR, such as a BACnet/IP device behind a NAT
firewall, the SLEN shall be set to 0 and the SADR shall be empty. These devices shall learn their SADR by reading the
destination address of any properly authenticated message sent to it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 727

When the message is to be placed onto the source network, or is received from the source network, the NPCI will not contain
the SNET/SLEN/SADR fields. Regardless, the security header shall contain these fields and they shall contain the correct
source address information.

24.2.10 Authentication Mechanism

If present, the Authentication Mechanism field is a 1 octet value that indicates the user authentication mechanism being used.
This field shall be present when the User-Authenticated or an Application-Specific key is used and the PDU type is one that
initiates a request (see below). It shall be absent when the Device-Master, Distribution, or Installation key is used. And it
shall be optional when the General-Network-Access key is used.

User authentication information is not useful in responses or transmission control. User authentication is useful in any PDU
type that initiates a request:

It shall not be included in all other PDU types, but if it is present a receiving device shall ignore it. If user authentication
information is provided in a segmented APDU, the authentication information shall be the same in all segments. User
authentication information in response PDUs and transmission control PDUs shall not be present.

The proxied user authentication mechanism is indicated by a value of 0 and is the only standardized mechanism at this time.

Values in the range 200 through 255 are reserved for vendor specific mechanisms.

24.2.11 Authentication Data

The Authentication Data field is a variable length identifier that provides authentication information in a format specific to
the mechanism defined by the Authentication Mechanism field.

This may be used by the server's authorization mechanism to verify that the user is allowed to perform the requested action.

A client device that authenticates users may be given the User-Authenticated key or an Application-Specific key. It shall
indicate the authenticated user's identity when initiating communication.

This field is always at least three octets in length. The first two octets are an unsigned integer (most significant octet first)
indicating the numeric User Id for the user that is authenticated for this message. The third octet is the user's role or group.
The user role values are site specific values dictated by site policy and are used to group access rights. Example roles are:
HVAC operator, technician, etc.

User Id values represent either unique human users, or processes within a BACnet system. Assignment of the values is based
on local site policy, but they should be unique across all BACnet devices, such that User Id 1234, for example, means the
same regardless of its source or destination.

User Roles 0 and 1 are reserved to mean "the system itself". User Role 0 is used for programmed device-to-device
communication that is not initiated by human action. A User Role of 1 is used for device-to-device communication that is
initiated by an "unknown human", such as the changing of a setpoint based on button presses on a thermostat.

Other User Role values may also be used for device-to-device communication to indicate a particular subsystem that is
performing the action, but those values are not restricted by this standard and are taken from the same set of numbers as are
used for human users and groups. The values 0 and 1 are the only ones that are reserved specifically for this purpose and shall
not be assigned to human user roles.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

728 ANSI/ASHRAE Standard 135-2012

User Id 0 is reserved to indicate that the source user is unknown. It is commonly used in conjunction with User Role 0 or 1.

If the Authentication Mechanism has a value of 0, then the Authentication Data field contains no further information since
the authentication has been performed by the source.

If the Authentication Mechanism has a value of 1 through 199, then the next 2 octets of this field shall be an unsigned integer
(most significant octet first) indicating the length, in octets, of the entire field. The meaning of the remaining octets is not
currently defined by this version of this standard.

If the Authentication Mechanism has a value of 200 through 255, then the next 2 octets of this field shall be an unsigned
integer (most significant octet first) indicating the length, in octets, of the entire field. Following that, the next 2 octets shall
be an unsigned integer (most significant octet first) indicating a BACnet Vendor Identifier. The meaning of the remaining
octets is defined by that vendor.

24.2.12 Service Data

The Service Data field contains security specific data. Its content varies by message type.

The security NPCI message type values are:

X'0A': Challenge-Request
X'0B': Security-Payload
X'0C': Security-Response
X'0D': Request-Key-Update
X'0E': Update-Key-Set
X'0F': Update-Distribution-Key
X'10': Request-Master-Key
X'11': Set-Master-Key

24.2.13 Padding

The padding is present if and only if the message is encrypted. This field is sized to ensure that the length of the data being
encrypted is a multiple of the encryption algorithm's block size. The padding field is added after the signature is calculated.

The last two octets of the padding field are a count (most significant octet first) that indicates the total number of octets of
padding, including the count itself. The values of all remaining octets are unspecified.

Since the count includes itself, and cannot be zero, the padding field is always included if the message is encrypted.

The size of the padding field may be increased, by adding multiples of the block size to the minimum requirement, to allow
devices to hide the true length of their encrypted messages.

24.2.14 Signature

The signature contains an HMAC of the message. See Clause 24.7.4 for details on generating the signature.

The signature (in whole or in part) is also used as the Initialization Vector for the encryption algorithm.

24.3 Security Messages

24.3.1 Challenge-Request

The Service Data for a Challenge-Request message has the following form:

Table 24-2. Challenge-Request Service Data
Message Field Size Description

Message Challenge 1 octet When set to 1, this field indicates that the
Challenge-Request is being sent in response
to a message. Otherwise, the Challenge-
Request is being sent for some other reason

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 729

and the following fields contain random data.
Original Message Id 4 octets The Message Id from the message that caused

the device to issue the challenge.
Original Timestamp 4 octets The timestamp from the message that caused

the device to issue the challenge.

Any device that receives a secure BACnet message may, at the device's discretion, challenge the message source, unless the
secure message was itself a Challenge-Request. Specific cases where a device may want to challenge a message source are as
follows: on receipt of an I-Am or I-Am-Router-To-Network where the source address does not match a previously cached
value, on receipt of a secure message where the source MAC address does not match the source address in the secured NPDU
and both devices are on the same BACnet/IP network, on receipt of a message where SLEN in the security wrapper is 0, and
on receipt of a unicast message where the Destination Device Instance is 4194303. When challenging a specific message, the
Message Challenge field shall be set to 1.

A device may also arbitrarily Challenge another device simply by generating a Challenge-Request with a random Original
Message Id, and any value for the Original Timestamp. When performing a challenge without reference to a specific
message, the Message Challenge field shall be set to 0.

Upon receipt of a Challenge-Request that authenticates correctly according to Clause 24.13, with a Message Challenge field
set to 1, the device shall attempt to verify that it originated the message identified by Original Message Id. If the device
verifies that it did in fact send the message, it shall respond with a Security-Response with a Response Code of Success. If
the device is unable to verify that it sent the specified message such as would occur if its Message Id cache were to overflow,
then the device shall send a Security-Response with the error code cannotVerifyMessageId. If the device determines that it
did not send the message the device shall send a Security-Response with the error code unknownSourceMessage. The device
shall also reset any response timer for the challenged security message to Security_PDU_Timeout.

A device shall wait its Security_PDU_Timeout as specified in its Network Security object before cancelling a request due to
a lack of response.

Upon receipt of a Challenge-Request that authenticates correctly according to Clause 24.13, with a Message Challenge field
set to 0, a device shall respond with a Security-Response with a Response Code of Success.

If the device is unable to generate truly random data for Challenge requests with a Message Challenge field set to 0, the
original Message Id and Original Timestamp fields can be set to values not previously used (ever). To do so, the device needs
to remember the last used values for these fields across resets.

Broadcasts of this Message Type shall be ignored.

Messages of this type shall be sent with the data_expecting_reply bit set to 1 in the NPCI.

Devices that do not know their own MAC address, such as BACnet/IP devices behind a NAT firewall, may use the
Challenge-Request message to determine their own address by examining the DADR in the Security-Response message.

The possible error codes returned in response to a Challenge-Request are listed in Table 24-3 below. For more information on
selecting an error code to return, see Clause 24.16.2.

Table 24-3. Challenge-Request Error Codes
Error Code Ignorable Description

securityNotConfigured Yes If the recipient is not configured for security
on this port.

encryptionNotConfigured Yes If the Encrypted field is set to 1 and the
receiving device is not configured to accept
encrypted messages.

unknownKey Yes If the Key Identifier field indicates a
security key that the receiving device does
not know.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

730 ANSI/ASHRAE Standard 135-2012

duplicateMessage Yes A message with the provided Message Id
has already been received from the source
device within the security time window.

unknownKeyRevision Yes If the Key Revision field indicates a revision
that the receiving device does not know.

malformedMessage Yes If the message size is invalid, or security
parameters are missing or malformed.

badSignature Yes If the signature is not correct. This error
may also be indicated if a decryption error
occurs.

badDestinationAddress Yes If the destination address information is
missing or invalid.

badDestinationDeviceId Yes If the Destination Device Instance is not
4194303 and does not match the local
device instance.

badSourceAddress No If the source address information
(SNET/SLEN/SADR) is invalid.

unknownSourceMessage No The specified message was not sent by the
client. While devices are not required to
track all messages that have been sent, if a
device is capable of detecting that it did not
send the specified message, it shall use this
error code to indicate that it was not the
source of the challenged message.
If the device cannot detect that it did not
send the message, it shall not return this
error code.

cannotVerifyMessageId No The device cannot accurately ascertain
whether or not it sent the specified message.

badTimestamp No The Timestamp in the security header of the
message is not within the allowable
timestamp window of the receiver.

destinationDeviceIdRequired No If the Destination Device Instance in the
security header of a unicast message has the
value 4194303 and the destination device
requires this value to be set correctly for the
operation requested. How a device
determines whether or not it requires the
Destination Device Instance to be set
correctly in any particular request is a local
matter.

encryptionRequired No If the encrypted flag is set to 0 and the
server's policy requires encryption.

sourceSecurityRequired No If the secured-by-router flag is 1 and end-to-
end security is required, or the Do-not-
decrypt flag is 0 and end-to-end encryption
is required for the operation requested.

24.3.2 Security-Payload

The Service Data for a Security-Payload message has the following form:

Table 24-4. Security-Payload Service Data
Message Field Size Description

Payload Length 2 octets The number of octets in the Payload field
Payload Variable The secured NSDU

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 731

The Security-Payload message is used to transfer non-security related BACnet messages between communicating parties. As
with all secure BACnet messages, the message is signed and may be optionally encrypted.

If the recipient of this message cannot process the message for one of the reasons listed below, and if the message was
unicast, a negative Security Response may be returned to the sender with a Response Code as shown in the following table.
Positive Security-Response messages are not generated in response to a Security-Payload message.

The data_expecting_reply bit in the NPCI is set based on the message in the Payload parameter. If the data_expecting_reply
bit in the NPCI is not set, devices are not required to send Security-Responses when reportable errors occur, even if the error
condition is not ignorable. If the data_expecting_reply bit is set, then a Security-Response shall be sent if a non-ignorable
error condition occurs.

The possible error codes returned in response to a Security-Payload message are listed in table 24-5 below. The 'Ignorable'
column indicates whether the device is allowed to silently fail the request and not report the error condition to the requestor.
For more information on selecting an error code to return, see Clause 24.16.2. Note that a device may ignore any request
from a non-trusted source (non-trusted-source flag set by a router) even if the encountered error is not ignorable.

Table 24-5. Security-Payload Error Codes
Error Code Ignorable Description

securityNotConfigured Yes If the recipient is not configured for security
on this port.

encryptionNotConfigured Yes If the Encrypted field is set to 1 and the
receiving device is not configured to accept
encrypted messages.

unknownKey Yes If the Key Identifier field indicates a
security key that the receiving device does
not know.

duplicateMessage Yes A message with the provided Message Id
has already been received from the source
device within the security time window.

unknownKeyRevision Yes If the Key Revision field indicates a
revision that the receiving device does not
know.

malformedMessage Yes If the message size is invalid, or security
parameters are missing or malformed.

badSignature Yes If the signature is not correct. This error
may also be indicated if a decryption error
occurs.

badDestinationAddress Yes If the destination address information is
missing or invalid.

badDestinationDeviceId Yes If the Destination Device Instance is not
4194303 and does not match the local
device instance.

badSourceAddress No If the source address information
(SNET/SLEN/SADR) is invalid.

badTimestamp No The Timestamp in the security header of the
message is not within the allowable
timestamp window of the receiver.

destinationDeviceIdRequired No If the Destination Device Instance in the
security header of a unicast message has the
value 4194303 and the destination device
requires this value to be set correctly for the
operation requested. How a device
determines whether or not it requires the
Destination Device Instance to be set

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

732 ANSI/ASHRAE Standard 135-2012

correctly in any particular request is a local
matter.

encryptionRequired No If the Encrypted field is set to 0 and the
server's policy requires encryption.

sourceSecurityRequired No If the secured-by-router flag is 1 and end-to-
end security is required, or the Do-not-
decrypt flag is 0 and end-to-end encryption
is required for the operation requested.

incorrectKey No The key provided to secure the message
does not indicate sufficient authority to
perform the requested operation.

unknownAuthenticationType No If the user authentication method in the
message is unknown to the device.

accessDenied No The network layer or BVLL request was
denied due to insufficient authorization. See
Clause 24.14.1 for more details.

24.3.3 Security-Response

The Service Data for a Security-Response message has the following form:

Table 24-6. Security-Response Service Data
Message Field Size Description

Response Code 1 octet The type of response (positive
acknowledgment or error code).

Original Message Id 4 octets The Message Id of the message that caused
the response.

Original Timestamp 4 octets The Timestamp of the message that caused
the response.

Response Specific Parameters Variable The contents of this field are dependent on
the value of the Response Code field.

This message is sent as a positive acknowledgment of another security message, or when a security error occurs and the
reporting of that error is allowed by the security policy. A Security-Response message is not sent in response to a broadcast
message, except by a Key Server in response to a broadcast Request-Key-Update that is valid in all aspects, except for the
timestamp. Certain errors may be suppressed if hiding from port scanners is desired.

The reaction of the recipient to this message is a local matter. Usually Security-Response messages that represent errors will
be ignored, logged, or delivered to a human operator.

No errors shall be returned in response to a Security-Response message.

The Security-Response messages are sent in response to a security message and indicate a success or failure to process the
message. All security responses shall be sent with the same level of security (signed or encrypted), with the same Key
Identifier that the original message had except as described in Table 24-7. The Source Device Instance shall be equal to the
Destination Device Instance of the original request, except if the Destination Device Instance was 4194303.

Table 24-7. Security-Response Security Level Exceptions
Response Code Security Applied

securityNotConfigured The Security-Response shall indicate the
General-Network-Access key in the
header's Key Identifier field, shall contain
an all 0 signature, and shall not be
encrypted. Clients receiving this error shall
optionally report this error to a management
entity, and then silently drop it.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 733

encryptionNotConfigured The Security-Response shall be secured
with the General-Network-Access key, and
shall not be encrypted.

unknownKeyRevision The Security-Response shall be secured
with the General-Network-Access key, and
shall not be encrypted. If the local policy
requires encryption, then no security
response shall be generated.

unknownKey The Security-Response shall be secured
with the General-Network-Access key.

Security-Response messages shall not be sent in response to Security-Response messages.

Broadcasts of this Message Type shall be ignored.

Messages of this type shall be sent with the data_expecting_reply bit set to 0 in the NPCI.

The following list defines the allowable security response codes and indicates which ones are general security error codes and
which ones are authorization error codes. For further information on the differentiation of error codes, see Clause 24.16.2.

Table 24-8. Security Response Codes
Value Response Code Type

X'00' success
X'01' accessDenied Authorization
X'02' badDestinationAddress General
X'03' badDestinationDeviceId General
X'04' badSignature General
X'05' badSourceAddress General
X'06' badTimestamp General
X'07' cannotUseKey General
X'08' cannotVerifyMessageId General
X'09' correctKeyRevision General
X'0A' destinationDeviceIdRequired Authorization
X'0B' duplicateMessage General
X'0C' encryptionNotConfigured General
X'0D' encryptionRequired Authorization
X'0E' incorrectKey Authorization
X'0F' invalidKeyData General
X'10' keyUpdateInProgress General
X'11' malformedMessage General
X'12' notKeyServer General
X'13' securityNotConfigured General
X'14' sourceSecurityRequired Authorization
X'15' tooManyKeys General
X'16' unknownAuthenticationType Authorization
X'17' unknownKey General
X'18' unknownKeyRevision General
X'19' unknownSourceMessage General

Descriptions of Response Specific Parameters follow. Response Codes for which no Response Specific Parameters are
defined have no Response Specific Parameters and shall be transmitted without a Response Specific Parameters field.

24.3.3.1 badTimestamp

The Response Specific Parameters for a badTimestamp error are:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

734 ANSI/ASHRAE Standard 135-2012

Table 24-9. badTimestamp Response-Specific Parameters
Message Field Size Description

Expected Timestamp 4 octets The current time of the device that
generated the Security-Response message.

Devices that generate a badTimestamp error shall set the Timestamp field in the security header to the value provided in the
original message to ensure that it will be accepted by the destination device. This is the only case where the Timestamp field
in the security header does not represent the current time in the generating device.

24.3.3.2 cannotUseKey

The Response Specific Parameters for a cannotUseKey error are:

Table 24-10. cannotUseKey Response-Specific Parameters
Message Field Size Description

Key 2 octets The key identifier of the key that the device
is incapable of using. If there is more than
one key provided in the original request that
the device cannot use, the first key
encountered that the device cannot use shall
be indicated.

24.3.3.3 incorrectKey

The Response Specific Parameters for an incorrectKey error are:

Table 24-11. incorrectKey Response-Specific Parameters
Message Field Size Description

Number Of Keys 1 octet The number of Key Identifiers that follow
List Of Known Keys n*2 octets A list of n Key Identifiers that are known to

the device.

The List Of Known Keys is populated with each of the Key Identifiers that the device knows. A device may optionally leave
out of the List Of Known Keys any keys that the device knows will not grant sufficient access if the failed action is retried.

24.3.3.4 unknownAuthenticationType

The Response Specific Parameters for an unknownAuthenticationType error are:

Table 24-12. unknownAuthenticationType Response-Specific Parameters
Message Field Size Description

Original Authentication
Mechanism

1 octet The Authentication Mechanism from the
original request.

Vendor Id 2 octets If the value of the Original Authentication
Mechanism is 200 through 255, then this
shall be set to the Vendor Id provided with
the Authentication Mechanism in the
original message, otherwise this field shall
be 0.

24.3.3.5 unknownKey

The Response Specific Parameters for a unknownKey error are:

Table 24-13. unknownKey Response-Specific Parameters
Message Field Size Description

Original Key 2 octets The Key Identifier of the unknown key.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 735

24.3.3.6 unknownKeyRevision

The Response Specific Parameters for an unknownKeyRevision error are:

Table 24-14. unknownKeyRevision Response-Specific Parameters
Message Field Size Description

Original Key Revision 1 octet The Key revision that is unknown or
otherwise invalid.

24.3.3.7 tooManyKeys

The Response Specific Parameters for a tooManyKeys error are:

Table 24-15. tooManyKeys Response-Specific Parameters
Message Field Size Description

Maximum Number Of Keys 1 octet The maximum number of keys that this
device is capable of be configured with.

24.3.3.8 invalidKeyData

The Response Specific Parameters for a invalidKeyData error are:

Table 24-16. invalidKeyData Response-Specific Parameters
Message Field Size Description

Key 2 octets The Key Identifier of the key that contains
invalid key data.

24.3.4 Request-Key-Update

The Service Data for a Request-Key-Update message has the following form:

Table 24-17. Request-Key-Update Service Data
Message Field Size Description

Set 1 Key Revision 1 octet The Key Revision of the device's first key
set.

Set 1 Activation Time 4 octets The UTC time, in seconds since 12:00 AM
January 1, 1970, at which this key set
becomes valid, before which the device
shall not accept or generate messages with
keys from the set. A value of 0 shall
indicate that the key set is valid
immediately.

Set 1 Expiration Time 4 octets The UTC time, in seconds since 12:00 AM
January 1, 1970, at which this key set
expires after which the device shall no
longer accept or generate messages with
keys from the set. An indefinite expiration
time is encoded as X'FFFFFFFF'.

Set 2 Key Revision 1 octet The Key Revision of the device's second
key set.

Set 2 Activation Time 4 octets The UTC time, in seconds since 12:00 AM
January 1, 1970, at which this key set
becomes valid before which the device shall
not accept or generate messages with keys
from the set. A value of 0 shall indicate that
the key set is valid immediately.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

736 ANSI/ASHRAE Standard 135-2012

Set 2 Expiration Time 4 octets The UTC time, in seconds since 12:00 AM
January 1, 1970, at which this key set
expires after which the device shall no
longer accept or generate messages with
keys from the set. An indefinite expiration
time is encoded as X'FFFFFFFF'.

Distribution Key Revision 1 octet The revision for the Distribution key.

This security message is used by secure devices that either do not have a valid key set, or want to ensure that both of the
device's key sets are still the most current.

If a secure device does not have a valid Distribution key, it shall secure this message with its Device-Master key thus
indicating to the Key Server that a Distribution key is required. If a key set has not been received, the revision number field
shall be 0. In such cases the time fields are meaningless and are ignored by the Key Server.

Upon receipt of a valid Request-Key-Update message secured with the device's Device-Master key, a Key Server device shall
respond to the device with an Update-Distribution-Key message and then send an Update-Key-Set message to the device.

Upon receipt of a valid Request-Key-Update message secured with the device's Distribution key, a Key Server shall respond
to the device with a Security-Response message with a Response Code of correctKeyRevision if the key revision data
provided are the same as the Key Server has recorded for the device and the Key Server does not have an outstanding set of
keys to send to the device. Otherwise the Key Server shall respond to the device with an Update-Key-Set message.

Key Servers shall not restrict execution of this service based on the Authentication Mechanism.

A device shall wait its Security_PDU_Timeout as specified in its Network Security object before cancelling a request due to
a lack of response.

A device that receives no response, or receives an error of unknownKeyRevision in response to a Request-Key-Update
secured with a Distribution key, should retry the request secured with the device's Device-Master key. This allows the device
to obtain a new Distribution key and key set in those cases where the device and the Key Server have become out of sync.

Broadcasts of this Message Type shall be allowed. Non-key Server devices shall ignore broadcasts of this message.

Unicast messages of this type shall have the data_expecting_reply bit set to 1 in the NPCI.

The possible error codes returned in response to a Request-Key-Update are listed in Table 24-18 below. The 'Ignorable'
column indicates whether the device is allowed to silently fail the request and not report the error condition to the requestor.
For more information on selecting an error code to return, see Clause 24.16.2. When executing this service, incorrectKey
shall be considered a general security error and not an authorization error.

Table 24-18. Request-Key-Update Error Codes
Error Code Ignorable Description

securityNotConfigured Yes If the recipient is not configured for
security on this port

encryptionNotConfigured Yes If the Encrypted field is set to 1 and the
server is not configured to accept encrypted
messages.

incorrectKey Yes If the request is not secured with a
Distribution key or Device-Master key.

duplicateMessage Yes A message with the provided Message Id
has already been received from the source
device within the security time window.

unknownKeyRevision Yes If the Key Revision field indicates a
revision that the receiving device does not
know.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 737

malformedMessage Yes If the message size is invalid, or security
parameters are missing or malformed.

badSignature Yes If the signature is not correct. This error
may also be indicated if a decryption error
occurs.

badDestinationAddress Yes If the destination address information is
missing or invalid.

badDestinationDeviceId Yes If the Destination Device Instance is not
4194303 and does not match the local
device instance.

badSourceAddress No If the source address information
(SNET/SLEN/SADR) is invalid.

badTimestamp No The Timestamp in the security header of
the message is not within the allowable
timestamp window of the receiver.

destinationDeviceIdRequired No If the Destination Device Instance in the
security header of a unicast message has
the value 4194303 and the destination
device requires this value to be set
correctly for the operation requested. How
a device determines whether or not it
requires the Destination Device Instance to
be set correctly in any particular request is
a local matter.

encryptionRequired No If the Encrypted field is set to 0 and the
server's policy requires encryption.

notKeyServer No If the message was unicast and the
receiving device is not configured as a Key
Server for the requesting device.

correctKeyRevision No The device's current keys are valid and no
updates for the device are pending.

24.3.5 Update-Key-Set

The Service Data for an Update-Key-Set message has the following form:

Table 24-19. Update-Key-Set Service Data
Message Field Size Description

Control Flags 1 octet Control flags for the Update-Key-Set message.
Set 1 Key Revision 1 octet The Key Revision of the device's first key set.
Set 1 Activation Time 4 octets The UTC time, in seconds since 12:00 AM

January 1, 1970, at which the device is allowed to
start using the first key set. A value of 0 shall
indicate that the key set is valid immediately.

Set 1 Expiration Time 4 octets The UTC time, in seconds since 12:00 AM
January 1, 1970, at which this key set expires
after which the device shall no longer accept or
generate message with keys from the set. An
indefinite expiration time is encoded as
X'FFFFFFFF'.

Set 1 Key Count 1 octet The number of keys in the first key set.
Set 1 Keys Variable The first key set, consisting of a concatenated

sequence of key entries.
Set 2 Key Revision 1 octet The Key Revision of the device's second key set.
Set 2 Activation Time 4 octets The UTC time, in seconds since 12:00 AM

January 1, 1970, at which the device is allowed to
start using the second key set. A value of 0 shall

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

738 ANSI/ASHRAE Standard 135-2012

indicate that the key set is valid immediately.
Set 2 Expiration Time 4 octets The UTC time, in seconds since 12:00 AM

January 1, 1970, at which this key set expires
after which the device shall no longer accept or
generate message with keys from the set. An
indefinite expiration time is encoded as
X'FFFFFFFF'.

Set 2 Key Count 1 octet The number of keys in the second key set.
Set 2 Keys Variable The second key set, consisting of a concatenated

sequence of key entries.

This security message is used to provide keys to secure devices. This message shall always be signed and encrypted with the
destination device's Distribution key.

The message can be used to provide a new key set, to modify an existing key set, or to invalidate an existing key set.

The Control Flags parameter is 1 octet containing a number of control flags as follows:

Upon receipt of a valid Update-Key-Set message signed and encrypted with the device's Distribution key, the device shall
apply the changes to its key set(s).

If key revision, activation time and expiration time are included in the message, they shall replace the key revision, activation
time and expiration time values for the appropriate key set.

If keys are provided in the Update-Key-Set message, and Bit 0 indicates that keys shall be added or updated, the keys
provided in the message shall be added to the appropriate key set if they do not already exist in the key set. If a key with the
same Key Identifier already exists in the key set, then the value for the key shall be replaced with the new key value.

If keys are provided in the Update-Key-Set message, and Bit 0 indicates that keys shall be removed, any key with the
matching Key Identifiers in the appropriate key set shall be removed. If a specified Key Identifier does not exist in the key
set, the request shall succeed as if it had existed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 739

When Bit 0 is set, the Key Size for each key provided may be 0.

A device may optionally apply all changes to shadow key sets and only update the actual key sets when an Update-Key-Set
message is received that has Bit 1 of the Control Flags parameter set to 0. As such, it is a local matter as to whether or not the
modifications to the key sets take effect immediately, or when the final Update-Key-Set message is received.

When replacing key sets, a sequence of 1 or more Update-Key-Set messages is sent to the device. The first message in the
sequence shall have bit 5 and/or bit 2 set to 1 to cause the existing key sets to be cleared. The final message in the sequence
shall have bit 1 set to 0, and all other messages in the sequence shall have bit 1 set to 1. If the key set replacement can be
described in a single message, then that message shall have bit 5 and/or bit 2 set to 1, and bit 1 set to 0.

This message can also be used to add, update or remove one or more keys from one or both of the key sets without replacing
the complete key sets. In such cases, the initial message shall not have bit 5 and bit 2 of the Control Flags parameter set to 1.

When issuing multiple Update-Key-Set messages to a single device, the requesting device shall wait until a Security-
Response message is received before issuing another Update-Key-Set message to the device. As these messages can take
longer than normal to process, the requesting device shall wait at least Update_Key_Set_Timeout + APDU_Timeout as set in
the destination device's Network Security and Device objects for a Security-Response from the device.

In general, when replacing key sets, one of the messages in the sequence shall include the key revisions, activation and
expiration times; the same message need not provide these values for both key sets. The key revisions, activation and
expiration times can also be updated in a device without modifying the key sets.

Update-Key-Set messages shall be executed in order, and the keys shall be applied in the order found in the Update-Key-Set
message. If there are duplicate revisions, expiration dates, or key values, then the last value shall take precedence.

If a key cannot be added to the device's key set, because the local key set table is full, or the key is not usable by the device,
the keys preceding the problem key in the message shall be added, and the other keys shall not be added.

Upon executing the first of a sequence of Update-Key-Set messages, a device shall record the address of the Key Server in
the Last_Key_Server property of the Network Security object. The device shall only accept subsequent Update-Key-Set
messages in the sequence from the same Key Server. Well formed Update-Key-Set messages from other Key Servers shall
result in a keyUpdateInProgress.

If a device is waiting for more Update-Key-Set messages and none are received in 5 * (Update_Key_Set_Timeout +
APDU_Timeout), the device shall consider the sequence of Update-Key-Set messages complete. It is a local matter as to
whether the device updates its key sets based on the partial sequence it received, or whether it drops all changes. When a Key
Server is unable to complete the sequence of updates, it shall retry the complete sequence of updates at a later time.

Devices shall not restrict execution of this service based on the authentication mechanism; knowledge of the device's
Distribution key shall always be sufficient authorization.

Each key entry in the message shall be of the form:

Table 24-20. Key Entry Description
Message Field Size Description

Key Identifier 2 octets The Key Identifier for the key pairs
Key Size 1 octet The size of the key, in octets.
Key Variable The key value, consisting of the signature

key followed by the encryption key.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

740 ANSI/ASHRAE Standard 135-2012

The correct key sizes by algorithm are:

Table 24-21. Key Sizes by Algorithm
Hash algorithm
(key size bytes)

Encryption algorithm
(key size bytes)

Key field size

MD5 (16) AES (16) 32 octets
SHA-256 (32) AES (16) 48 octets

Broadcasts of this Message Type shall be ignored.

Messages of this type shall have the data_expecting_reply bit set to 1 in the NPCI.

The possible error codes returned in response to an Update-Key-Set are listed in Table 24-22 below. The 'Ignorable' column
indicates whether the device is allowed to silently fail the request and not report the error condition to the requestor. For more
information on selecting an error code to return, see Clause 24.16.2.

Table 24-22. Update-Key-Set Error Codes
Error Code Ignorable Description

securityNotConfigured Yes If the recipient is not configured for
security on this port.

incorrectKey Yes If the request is not secured with a
Distribution key.

duplicateMessage Yes A message with the provided Message
Id has already been received from the
source device within the security time
window.

unknownKeyRevision Yes If the Key Revision field indicates a
revision that the receiving device does
not know.

malformedMessage Yes If the message size is invalid, or security
parameters are missing or malformed.

badSignature Yes If the signature is not correct. This error
may also be indicated if a decryption
error occurs.

badDestinationAddress Yes If the destination address information is
missing or invalid.

badDestinationDeviceId Yes If the Destination Device Instance is not
4194303 and does not match the local
device instance.

badSourceAddress No If the source address information
(SNET/SLEN/SADR) is invalid.

badTimestamp No The Timestamp in the security header of
the message is not within the allowable
timestamp window of the receiver.

destinationDeviceIdRequired No If the Destination Device Instance in the
security header of a unicast message has
the value 4194303 and the destination
device requires this value to be set
correctly for the operation requested.
How a device determines whether or not
it requires the Destination Device
Instance to be set correctly in any
particular request is a local matter.

encryptionRequired No If the Encrypted field is set to 0.
sourceSecurityRequired No If the secured-by-router flag is 1, or the

Do-not-decrypt flag is 0.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 741

keyUpdateInProgress No If an Update-Key-Set message is
received from a different Key Server
while waiting for more Update-Key-Set
messages.

cannotUseKey No If the encryption or signature algorithm
of any key provided in the key sets is
based on an algorithm that the device
does not support.

tooManyKeys No If the device cannot be configured with
the number of keys provided for the key
set.

invalidKeyData No If the key data provided for one of the
keys does not match the size required for
the specified algorithms.

24.3.6 Update-Distribution-Key

The Service Data for a Update-Distribution-Key message has the following form:

Table 24-23. Update-Distribution-Key Service Data
Message Field Size Description

Key Revision 1 octet The Key Revision of the device's
Distribution key.

Key Variable The new Distribution key.

This security message is used by the Key Server to provide Distribution keys to secure devices. This message shall always be
signed and encrypted with the destination device's Device-Master key. The Key Revision field of the security header shall be
ignored by the destination device (no revision is associated with the Device-Master Key).

This message is sent either to initially configure a Distribution key into a new device, to update a Distribution key in an
existing device, or to provide a Distribution key at the request of a device.

Upon receiving a valid Update-Distribution-Key message signed and encrypted with the device's Device-Master key, a
device shall replace its Distribution key and respond with a Security-Response message containing a Response Code of
Success.

Devices shall not restrict execution of this service based on the authentication mechanism; knowledge of the device's Device-
Master key shall always be sufficient authorization.

The Key field in the message shall be of the form specified in Table 24-20. The correct key sizes by algorithm are as given in
Table 24-21.

As these messages can take longer than normal to process, the requesting device shall wait at least Update_Key_Set_Timeout
+ APDU_Timeout as set in the destination device's Network Security and Device objects for a Security-Response from the
device.

Broadcasts of this Message Type shall be ignored.

Messages of this type shall have the data_expecting_reply bit set to 1 in the NPCI.

The possible error codes returned in response to an Update-Distribution-Key are listed in Table 24-24 below. The 'Ignorable'
column indicates whether the device is allowed to silently fail the request and not report the error condition to the requestor.
For more information on selecting an error code to return, see Clause 24.16.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

742 ANSI/ASHRAE Standard 135-2012

Table 24-24. Update-Distribution-Key Error Codes

Error Code Ignorable Description
securityNotConfigured Yes If the recipient is not configured for security

on this port.
incorrectKey Yes If the request is not secured with a Device-

Master key.
duplicateMessage Yes A message with the provided Message Id has

already been received from the source device
within the security time window.

malformedMessage Yes If the message size is invalid, or security
parameters are missing or malformed.

badSignature Yes If the signature is not correct. This error may
also be indicated if a decryption error occurs.

badDestinationAddress Yes If the destination address information is
missing or invalid.

badDestinationDeviceId Yes If the Destination Device Instance is not
4194303 and does not match the local device
instance.

badSourceAddress No If the source address information
(SNET/SLEN/SADR) is invalid.

badTimestamp No The Timestamp in the security header of the
message is not within the allowable
timestamp window of the receiver.

destinationDeviceIdRequired No If the Destination Device Instance in the
security header of a unicast message has the
value 4194303 and the destination device
requires this value to be set correctly for the
operation requested. How a device
determines whether or not it requires the
Destination Device Instance to be set
correctly in any particular request is a local
matter.

encryptionRequired No If the Encrypted field is set to 0.
sourceSecurityRequired No If the secured-by-router flag is 1, or the Do-

not-decrypt flag is 0.
cannotUseKey No If the encryption or signature algorithm of

the distribution key provided is based on an
algorithm that the device does not support.

invalidKeyData No If the key data provided for one of the keys
does not match the size required for the
specified algorithms.

24.3.7 Request-Master-Key

The Service Data for a Request-Master-Key message has the following form:

Table 24-25. Request-Master-Key Service Data
Message Field Size Description

Number of Supported Key
Algorithms

1 octet The number of encryption/signature
algorithm pairs that follow.

Encryption and Signature
Algorithms

Variable Lists the encryption algorithms that device
supports. Each algorithm is encoded in 1
octet as per Table 24-30

This security message is generated by a secure device to request a Device-Master key from a Key Server. It is expected that
this message is only used when initially configuring a secure device to work with the Key Server and that the issuance of the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 743

request is the result of a physical interaction with the device. If a secure device times out waiting for a Set-Master-Key
message, the length of the timeout shall be sufficient to allow for human interaction with the Key Server in order to allow the
Key Server to respond to the request. This message is usually globally broadcast, but it may be unicast, or sent as a directed
broadcast in order to get the message through legacy routers.

As the secure device cannot produce a signature, the message shall not include a valid signature (the signature shall be all
zeros) nor be encrypted. The Key Identifier field shall be set to 0. This service might not work if either the Key Server or the
destination device is connected to a network that requires encryption. Secure routers shall, by default, not drop these
messages regardless of the network security policies although secure routers are allowed to be configured to drop these
packets.

This service is inherently insecure and as such its use must be protected through safety precautions taken both by the
implementors of secure BACnet devices and site setup personnel. The expectation is that site policy will dictate whether this
service is to be used on a physically secure network, such as would be accomplished by attaching a BACnet device directly to
the Key Server via a port dedicated for this purpose, or whether this service is allowed to be used on insecure networks
during site setup.

A Key Server that receives this message, and is in a mode that allows it to respond to Request-Master-Key messages, or is
instructed to respond by a user, shall record the algorithms that the device supports, and then generate a Set-Master-Key
message in response. If the device does not support any signature or encryption algorithms allowed for use on the site, the
Key Server shall report the deficiency to the user. The expectation is that a Key Server will only be in a mode that allows a
response to this message if the Key Server has been specifically placed into such a mode. The method for placing a Key
Server into a mode that will support execution of the Set-Master-Key service is a local matter. Key Servers are required to
support such a mode.

Secure BACnet devices that are not configured as Key Servers, and Key Servers that are not in a mode that allows a response
shall silently drop this message.

Messages of this type shall have the data_expecting_reply bit set to 0 in the NPCI.

24.3.8 Set-Master-Key

The Service Data for a Set-Master-Key message has the following form:

Table 24-26. Set-Master-Key Service Data
Message Field Size Description

Key variable The Device-Master key.

This security message is sent by a Key Server in response to a Request-Master-Key message. This message shall not be
encrypted by the source device. The message shall be signed with the Device-Master key thus allowing values for all of
security header fields.

Secure BACnet devices shall ignore messages of this type unless they are specifically placed into a mode in which they will
accept these messages. It is recommended that secure BACnet devices restore themselves to factory defaults, excluding
network communication parameters, when this service is executed in order to protect against theft of confidential
information.

When a device receives this message, and this device has requested and is waiting for, a Device-Master key, the device shall
accept the key from the message, and respond with a Security-Response with an error code of Success. In the case of failure,
the device shall silently drop the request as it cannot secure a negative response and thus the response would not be able to be
transmitted through the secure network to the Key Server.

See the Request-Master-Key description in Clause 24.3.7 for more details on the use of this service.

The Key field in the message shall be of the form specified in Table 24-20. The correct key sizes by algorithm are as given in
Table 24-21.

Broadcasts of this Message Type shall be ignored.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

744 ANSI/ASHRAE Standard 135-2012

Messages of this type shall have the data_expecting_reply bit set to 1 in the NPCI.

24.4 Securing an APDU

When an APDU is to be sent securely, the APDU portion of the message is placed into the Payload parameter of a Security-
Payload message.

Security is applied at the network layer by creating a new NPDU message type. Therefore, when a BACnet APDU is
encapsulated with security information, it is transported as a network layer message so the control bit in the NPCI is changed
to indicate that the message now contains a network layer message rather than an APDU. The security header will indicate
that the encapsulated message is an APDU so that this information is not lost. Upon unwrapping this message, this control bit
will change back so that the resulting NPDU will once again indicate that it contains an APDU.

An example of a secured APDU follows.

0
������

)
�����

)
�����

0
������

)
�����

)
������

0
������

)
�����

J
������

)
�����

)
�����

A������
:
H(/)(

�������
:
H(��(

<�!,
:
)/

<�!�
:
)

<�<
:
H(99(

��!,
:
0/

��!�
:
J

��<
:
H())00..8899JJ(

=����$�
,	��
:
H(/5(

���
�����
:
09/

)
������������
:
H()/(

)
�����D�	
 �1�����
:
H()0(�������	
������

�&�4

,��
��$������
��
����������
��
�����
�������

.
������

8
������

8
������

=����$�
4�
:
H())00..88(

.
������

,��������
:
H(0/.8.J+*(

0
������6���
4�
:
H(///.(

8
����&��3,	��
:
H(/(

)J
��������$������

)
�����$������
=����$�
:
/

)
��������1���
������
:
)0

)
���=���
?����#�
:
/

)
�����$������
 ���
��������
:
/

0
���� ����1��
:
/

.
����=�E
��$�����
��������
:
0

8
����=�E
�&<6
��������
:
9

)
�����4�1�2�
4<
:
H(/)(

9
�������G���
4��������
:
H(/�//M////)(

0
������&������	
4���������
:
H()+99(

������
4�������
:
H(/////)(

<����������
4�������
:
H(/////0(

0
������&�	����
���$��
:
))

0
������

)
�����

J
������

0
������

)
�����

)
�����

��!,
:
0/

��!�
:
J

��<
:
H())00..8899JJ(

<�!,
:
0/

<�!�
:
J

<�<
:
H(99(

�&�4

��<6

��$������

)
�������������S�����
=��������
:
/

D�	
4���������
:
H(/)/8(

�������	
���1���

<���

)
������6���
 ���
:
H()/(

Figure 24-1. An example secured APDU (Read-Property).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 745

24.5 Securing an NPDU

To secure an NPDU, the NSDU (NPDU payload starting with the Message-Type field) shall be placed into the Payload field
of a Security-Payload message.

8
������

)
�����

)
�����

)
�����

A������
:
H(/)(

�������
:
H(M/(

=����$�
,	��
:
H(/5(

)
������������
:
H(M�(

=����$�
4�
:
H(8.J)*0J�(

0
������

.
������

,��������
:
H(0/.8.J+*(

&�	����
���$��
:
.

)
�����=����$�3,	��
:
H(//(

)J
��������$������

0
������<�!,
:
H(/)//(

)
�����D�	
 �1�����
:
E()0(

.
������������
4�������
:
H(/////)(

8
������

<����������
4�������
:
H(.?????(

0
������

)
�����

0
�����

)
�����

��!,
:
)/

��!�
:
J

<�!,
:
)/

<�!�
:
/

�&�4

�������	
������

��<6

��$������

,��
��$������
��
����������
��
�����

�������

0
������D�	
4���������
:
E(/)/8(

��<
:
H())00..8899JJ(J
������

�������	
���1���

<���

Figure 24-2. An example secured NPDU (Who-Is-Router-To-Network).

24.6 Securing a BVLL

BVLLs are divided into 2 groups: those that contain an NPDU, such as Original-Unicast-NPDU or Distribute-Broadcast-To-
Network, and those that do not, such as Register-Foreign-Device or BVLL-Result.

To secure a BVLL message that does not contain an NPDU, the original BVLL shall be placed in the Service Data field of a
Security Wrapper, and that Security Wrapper shall be used as the service data for a Secure-BVLL (BVLC Function X'0C'),
message, as shown in Figure 24-3.

The ability to generate and consume Security Wrappers requires that the sender and receiver of secured BVLL messages are
full BACnet devices with all the requirements thereof.

The Secure-BVLL message consists of the following fields:

Table 24-27. Secure-BVLL Message Fields
Field Size Description

BVLC Type 1-octet BVLL for BACnet/IP (value = X'81')
BVLC Function 1-octet Secure-BVLL (value = X'0C')

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

746 ANSI/ASHRAE Standard 135-2012

BVLC Length 2-octets Length L, in octets, of the Secure-BVLL
message and its contents up to and including the
Signature. It includes the padding if the Secure-
BVLL is encrypted.

Security Wrapper variable As described in the Security Wrapper clause.

<����������
4�������
:
H(/////0(

8
������

)
�����

)
�����

0
������

5A��
,	��
:
H(M)(

5A��
?�������
:
H(/�(

5A��
���$��
:
JJ

)
������������
:
H()/(

=����$�
4�
:
H(88J)*JJ9(

0
������

.
������

,��������
:
H(8.098JM0(

&�	����
���$��
:
8

)
�����5A��
,	��
:
H(M)(

)J
��������$������

)
�����5A��
?�������
:
H(/J(

)
�����D�	
 �1�����
:
H()0(

.
������������
4�������
:
H(/////)(

8
������

0
�����

)
�����

<�!,
:
)/

<�!�
:
J

5A��

�������	
������

5A��

��$������

,��
��$������
��
����������
��
�����

�������

0
������D�	
4���������
:
H(/)/8(

�������	
���1���

<���

<�<
:
H())00..8899JJ(J
������

)
�����

��!,
:
)/

��!�
:
J

��<
:
H(/)/0/./8/9/J(J
������

0
�����

�������S�����
=��������
:
/

6���
4�
:
H(///.(

)
�����

0
������

0
������5A��
���$��
:
8

6���
 ���
:
H()/()
�����

Figure 24-3. An example secured BVLL (Read-Foreign-Device-Table).

BVLL messages that contain an NPDU are transmitted without modification as specified in Annex J. However, there is no
loss of security capability because those NPDUs may be secure NPDUs, containing their own Security Wrappers, based on
the security policies of the network and sending device. If plain (non-secured) NPDUs are not desired in BVLL messages,
then the network security policy of the BACnet/IP network should not be plain.

BBMDs do not perform wrapping/unwrapping functions on forwarded NPDUs the way routers do. The Network Security
Policy that guides such operations in routers applies to an entire BACnet network, and BBMDs only serve to facilitate
broadcasts between distant parts of a single network, which is governed by a single network security policy.

The possible error codes returned in response to a Secure-BVLL message are the same as for the Security-Payload message
and are listed in

Table 24-5. The 'Ignorable' column indicates whether the device is allowed to silently fail the request and not report the error
condition to the requestor. For more information on selecting an error code to return, see Clause 24.16.2.

An example of a BVLL message containing a secure NPDU is shown in Figure 24-4.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 747

4 octets

1 octet

1 octet

2 octets

BVLC Type = X'81'

BVLC Function = X'04'

BVLC Length = 76

1 octetControl = X'80'

Message Id = X'4E535747'

2 octets

3 octets

Timestamp = X'5726890'

Payload Length = 3

1 octetMessage Type = X'00

16 octetsSignature

1 octetDNET = X'0100'

1 octetKey Revision = x'12'

3 octetsSource Instance = X'000001'

4 octets

Destination Instance = X'3FFFFF'

2 octet

1 octet

DNET = 65535

DLEN = 0

BVLL

Security
Header

NSDU

Signature

The signature is
calculated on these

fields.

2 octetsKey Identifier = x'0104'

Security
Service

Data

1 octet

SNET = 20

SLEN = 6

SADR = X'112233445566' 6 octets

2 octet

6 octetsOrig Device = X'112233445566'

1 octet

1 octet

2 octets

Version = X'01'

Control = X'8C'

DNET = 65535
NPCI

1 octetDLEN = 0

SNET = 20

SLEN = 6

SADR = X'112233445566'

Hop Count = 250

2 octets

1 octet

6 octets

Message Type = X'0B'

1 octet

1 octet

Figure 24-4. An example BVLL containing a Secured NPDU (Who-Is-Router-To-Network).

24.7 Securing Messages

The basic level of security that can be applied to a BACnet message consists of signing each message with an HMAC, and of
marking each message with the source and destination device instances, a Message Id and a timestamp.

24.7.1 Message Id

The security header contains a monotonically increasing 32 bit Message Id which fulfills three purposes in securing BACnet
messages. It is used to detect the replay of messages, to associate security responses with security requests and, along with
the Timestamp field, to provide variability in otherwise identical messages.

To thwart replay, the Message Id is required to be unique across the security time window. This allows devices to track all
received Message Id and Timestamp pairs over the security time window in order to detect replaying of messages.

To allow for a more compact Message Id cache, the Message Id is required to be monotonically increasing across the security
time window.

24.7.2 Timestamp

The timestamp in the security header is used to detect the replay of messages.

The timestamp of a received message is compared to the device's local clock. If the timestamp is not within the security time
window, then it is not accepted.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

748 ANSI/ASHRAE Standard 135-2012

Timestamp along with Message Id provide variability in the message content so that messages that are repeated frequently do
not generate the same signature.

24.7.3 Device Identification

All secure messages include the Source Device Instance, Destination Device Instance, SNET, SLEN, SADR, DNET, DLEN,
and DADR fields in the security header. The inclusion of these values allows the security signature to be calculated on the
source and destination device identities in order to stop redirection and identity switching attacks.

Requiring SNET in every secure message imposes the requirement that all secure BACnet devices know their network
numbers.

When the device that applies the security wrapper does not know the device instance of the destination device, and attempts
to determine the value fail, or the protection provided by the device instance is not required for the operation requested, the
value 4194303 shall be used.

When replying to a secure request, the Destination Device Instance can be set to the Source Device Instance of the original
request except when the secured-by-router flag is true. In this case the Source Device Instance identifies the router that
applied the security, not the device that originated the message.

24.7.4 Message Signature

The signature included in all secure messages is computed using HMAC and a secure hash algorithm.

24.7.4.1 Secure Hash Algorithms

The first step in generating the signature is to generate a hash of the message using the secure hash algorithm specified by the
security key. The hash shall be computed over the message contents starting with the octet before the security header (the
Message Type field from the containing NPCI) and ending with the last octet of the Service Data field. For Secure-BVLL
messages the hash shall be computed over the message contents starting with the first octet of the BVLCI (BVLC Type) and
ending with the last octet of the Service Data field.

The signature is always calculated before encryption or after decryption. Before calculating the signature, the encrypted flag
of the control octet must be set to 0. Any padding required for encryption is not included in the input text of the signature.

A hash algorithm is considered "secure" because it is computationally infeasible either to find a message that corresponds to a
given message digest, or to find two different messages that produce the same message digest. Any change to a message will,
with a very high probability, result in a different message digest and thus verification failure.

The output of the secure hash algorithm will be used as the input to one of the keyed-hash message authentication code
(HMAC) algorithms that follows.

24.7.4.1.1 MD5

The MD5 hash algorithm is defined by RFC1321. MD5 is included in the BACnet security framework as it is less
computationally expensive than SHA-256. Sites whose security policies do not require SHA-256 may get better performance
by using MD5. All secure BACnet devices shall support MD5 for use as a secure hash algorithm.

24.7.4.1.2 SHA-256

The SHA-256 hash algorithm is defined in NIST FIPS180-2. This algorithm is more computationally intensive than MD5,
but is included in the BACnet security framework for use at sites that require it. All secure BACnet devices shall support
SHA-256 for use as a secure hash algorithm.

24.7.4.2 HMAC

The HMAC algorithm is defined in section 5 of NIST FIPS198a. The leftmost 16 bytes of the HMAC output shall be used as
the signature in secure BACnet messages.

24.7.5 Encrypted Messages

The BACnet security architecture allows for the encryption of a message's payload. The encryption of a BACnet message is
done using AES. The definition of AES is contained in NIST FIPS 197.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 749

When encrypting a BACnet message, the text to be encrypted starts with the Destination Device Instance and includes all
fields in the security wrapper up to and including the Padding field.

�
������

)J
������

�
������

0
������

)
�����

)
�����

0
������

)
�����

)
������

0
������

)
�����

J
������

)
�����

)
�����

A������
:
H(/)(

�������
:
H(M�(

<�!,
:
)/

<�!�
:
)

<�<
:
H(99(

��!,
:
0/

��!�
:
J

��<
:
H())00..8899JJ(

=����$�
,	��
:
H(/5(

���
�����
:
09/

)
������������
:
H(8/(

)
�����D�	
 �1�����
:
H()0(�������	

������

�&�4

,��

��$������
��

����������

��
�����

�������

.
������

8
������

8
������,��������
:
H(9*0JM+/(

.
������<����������
4�������
:
����	����

���1���
<���
:
����	����

��$������

&�����$
:
����	����

������
4�������
:
H(/////)(

=����$�
4�
:
H(/*�5.8(

0
������

)
�����

J
������

0
������

)
�����

)
�����

��!,
:
����	����

��!�
:
����	����

��<
:
����	����

<�!,
:
����	����

<�!�
:
����	����

<�<
:
����	����

��$������

D�	
4���������
:
H(/)/8(

,���

�������
��

����	����

Figure 24-5. An example encrypted message.

24.7.5.1 Cipher Block Chaining (CBC)

In order to encrypt a complete BACnet message, cipher block chaining (CBC) mode is used. The standard formula for CBC
is:
 Ci = E(K, Pi ��Ci-1) for i = 1,…,k
where:
C0 is the initialization vector,
Ci is the ith block of output,
K is the encryption key,
Pi is the ith block of the portion of the message to encrypt.
����is the XOR operation.
E is the encryption function.
k is the number of blocks that make up the input message.

The initialization vector consists of the first B bytes of the message signature where B is the block size. For AES the block
size is 16. If B is larger than the size of the signature, then the signature shall be repeated a sufficient number of times to be
larger than or equal to B.

24.8 Network Security Network Trust Levels

There are two trust levels that describe the capabilities and security requirements of a device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

750 ANSI/ASHRAE Standard 135-2012

24.8.1 Trusted Networks

A trusted network consists of devices that are trusted either inherently, or because all communications are secured by the
protocol.

When devices are inherently trusted, access to the devices and networks must be controlled. Depending on the installation
policy, this may mean that there are no PCs and there are no direct network connections outside of locked space, or it may be
that all devices are in locked cabinets and all network cabling is in metal conduit. The exact requirements will be determined
on an installation by installation basis. Non-secured messages exchanged on these networks are trusted.

24.8.2 Non-trusted Networks

A non-trusted network is one where access to the network is not controlled, and as such no non-secured messages exchanged
on the network can be trusted. Non-secured messages received from non-trusted networks must not be trusted. In order to
identify such messages when they are routed onto trusted networks, the non-trusted-source flag is set to 1. This allows
devices to identify and optionally ignore or drop messages from non-trusted networks.

Secure BACnet routers shall be configurable to route non-secured messages from non-trusted networks onto trusted
networks. The mechanism for enabling and disabling this feature is a local matter.

24.9 Network Security Policies

There are four standard network security policy levels. The following definitions are presented in increasing order of security
policy level.

The policy level for a network specifies the minimum level of security required for messages on the network. It also specifies
the default level of security for messages that are forwarded onto a network. A secure router will change the security on a
message when it is forwarded onto a network with a different security policy if not restricted by the do-not-unwrap and do-
not-decrypt flags.

24.9.1 Plain-Non-Trusted

Plain-non-trusted networks have no security requirements, and are not physically secure. Devices on these networks are
allowed to generate and consume messages that are not signed. Secure devices on plain-non-trusted networks should assume
that all plain messages are suspect and only execute requests contained in plain messages that are considered harmless.

The router that connects a plain-non-trusted network to a network with a different security policy must be a secure router. If
the router's security policy allows it to route non-secured messages from the plain-non-trusted network onto a secure network,
the router shall add the security wrapper and set the non-trusted-source flag.

24.9.2 Plain-Trusted

Plain-trusted networks have no security requirements but are physically secure. Devices on these networks are allowed to
generate and consume messages that are not signed or encrypted. Devices on plain-trusted networks may assume that all
plain messages are from sources that are allowed to communicate on the network.

Devices on plain-trusted networks should treat plain messages in the same manner as secure messages that use the General-
Network-Access key.

24.9.3 Signed-Trusted

Signed-trusted networks require that all messages be at least signed. All devices connected to signed-trusted networks must
therefore be secure devices. All plain messages received on a signed-trusted network shall be silently dropped.

24.9.4 Encrypted-Trusted

Encrypted-trusted networks require that all messages be encrypted. All devices connected to encrypted-trusted networks must
therefore be secure devices and support encryption. All non-encrypted messages received on an encrypted-trusted network
shall be silently dropped with the notable exceptions of Set-Master-Key, Request-Master-Key and certain Security-Response
messages.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 751

24.10 Network Security

The BACnet security architecture allows both for secure networks and for end-to-end security. Secure networks are created
by setting the security policy for the network and configuring all devices on the secure network with the security policy of the
network. This is accomplished by setting the Network_Access_Security_Policies property of the Network Security object in
all devices on the network. In addition to the Network_Access_Security_Policies property, Devices also have a
Base_Device_Security_Policy property that indicates the minimum level of security that the device requires for non-network
infrastructure requests. This policy dictates the device's minimum level of security for sending or receiving messages.

Messages whose minimum security level is controlled by the Network_Access_Security_Policies are:

Who-Is-Router-To-Network,
I-Am-Router-To-Network,
I-Could-Be-Router-To-Network,
Reject-Message-To-Network,
Router-Busy-To-Network,
Router-Available-To-Network,
Establish-Connection-To-Network,
Disconnect-Connection-To-Network,
What-Is-Network-Number,
Network-Number-Is,
Register-Foreign-Device,
Who-Is,
I-Am

The minimum security level required for all other messages is specified by the Base_Device_Security_Policy.

Each security enabled router contains a network policy table that defines the security policy for each directly connected
network. The network security policy table is defined by the Network_Access_Security_Policies property of the local
Network Security object.

Where the Base_Device_Security_Policy property differs from an entry in the network security policy table, the higher of the
two values shall dictate the minimum level of security for non-infrastructure communication to or from that network.

In contrast, end-to-end security is determined on a device by device and request by request basis. A security enabled device
may contain a more detailed security policy to guide end-to-end secure communications. This policy may require security
based on any number of factors, such as the service being requested, the object or property being operated on, the source of
the request, etc. Note that when a device is located on a non-trusted plain network, the only way for the device to
communicate to devices located on trusted plain networks is to use end-to-end security.

The limitations on device security policy are:

No secure devices shall require that requests be plain. If a device receives a well-formed valid secure request, the
device is not allowed to return an error indicating that the message should have been sent plain.

No secure device connected to a network protected by a security proxy (see Clause 24.18) shall have a device policy
that requires broadcast messages be secured.

If a network contains any incapable devices, then the local policy for the network must be 'plain-trusted' or 'plain-
non-trusted'. If a network contains any devices that do not support encryption, then the local policy for the network
must not be 'encrypted-trusted'.

The security policy of a network specifies the minimum security that messages must have if they are to be accepted
from the network. A network that is physically secure might allow plain messages to be sent between local devices
for efficiency reasons, but a router from that network might be configured to require signed or encrypted messages
for communication beyond the local network.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

752 ANSI/ASHRAE Standard 135-2012

24.11 End-to-End Security

In order to ensure that devices can determine the security expectations of peers, a response to a request shall use the same
level of security as the request. For requests that result in a broadcast response, such as the unconfirmed application service
Who-Is, the responding device is allowed to duplicate and send the response at other security levels as long as the other
security levels do not violate the device's base local security policy or the network security policy over which the message is
sent. The choice to send duplicates at other security levels is a local matter. Note that a device that is incapable of consuming
a broadcast request due to its security level shall not respond in any way to the broadcast request.

24.11.1 Determining Exceptional Security Requirements

A device is allowed to require a higher security level on a per-service, per-object, or per-property basis.

Where the base device security policies and network security policies of communicating devices do not indicate the need for
encryption, a secure device that is not configured to know ahead of time the sensitivity of a particular piece of data that is to
be written to another secure device should attempt to read that data first before writing it without encryption. This is to allow
the receiving device an opportunity to indicate that the data requires encryption by returning the error class SECURITY and
error code ENCRYPTION_REQUIRED. Upon receiving this error, the client device now knows that the data should not be
transmitted in the clear. If the sending device is configured to know ahead of time which data needs encryption, then pre-
reading is not necessary.

24.12 Wrapping and Unwrapping Secure Messages

Messages can be secured either at the source device or en route in a router. Where the security is added or upgraded depends
on the security policies and capabilities of the source device, destination device, and intervening networks.

24.12.1 Wrapping and Unwrapping By Routers

The application and removal of secure wrappers to/from BACnet messages occur at different points in a BACnet network.
Each secure device along the communication path will evaluate the level of security required for the message and whether or
not the message shall be forwarded along its route, or dropped. The rules shall be evaluated in the order presented, and only
the first matching shall be applied to a message.

When unwrapping messages, a router shall validate the security protocol control octet, signature and timestamp, and verify
uniqueness of the Message Id across the timestamp window. If the security protocol control octet, signature or timestamp is
invalid, or the Message Id is not unique, then the message shall not be routed. In such a case, the router shall either remain
quiet, or respond with an appropriate security error code as described in Clause 24.3.

A router may optionally validate the source MAC address, and/or destination device instance, This validation may be done
when security is passed on untouched, removed, or modified. If the validation fails, the router shall silently drop the packet.

When routing messages without changing the security of the packet, a router may optionally validate the security protocol
control octet, signature and timestamp, and verify uniqueness of the Message Id across the timestamp window. If the
validation fails, the router shall silently drop the packet. Routers may optionally pass Security-Response messages secured
according to Table 24-7's exceptions even when the security of the message does not meet the minimum requirements of the
source network.

The rules governing wrapping and routing of messages are:

A router not configured for security processing (i.e., contains no configured security policy table, or does not support security
NPDUs) shall route all messages according to this standard's Clause 6 rules.

The remaining rules only apply to routers configured for security processing:

1.
 A message shall be dropped if any of the following are true:
(a)
 The message is plain and was received on a network with a local policy of 'signed' or 'encrypted'.
(b)
 The message is not encrypted and was received on a network with a local policy of 'encrypted'.
(c)
 The message is signed or encrypted, the non-trusted-source flag is set and the message is to be placed onto a

plain-trusted network.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 753

2.
 A plain message shall be signed with the General-Network-Access key if the security policy of the outgoing port is
'signed'. The do-not-unwrap flag shall be set to 0 and the secured-by-router flag shall be set to 1. If the message was
received on a non-trusted network, then the non-trusted-source flag shall be set to 1.

3.
 A plain message shall be signed and encrypted with the General-Network-Access key if the security policy of the
outgoing port is 'encrypted'. The do-not-decrypt flag shall be set to 0 and the secured-by-router flag shall be set to 1.
If the message was received on a non-trusted network, then the non-trusted-source flag shall be set to 1.

4.
 A signed message shall be encrypted using the General-Network-Access key if the security policy of the outgoing
port is 'encrypted'. The do-not-decrypt flag shall be set to 0.

5.
 A signed message shall be unwrapped if the security policy of the outgoing port is 'plain' and the do-not-unwrap flag
is set to 0.

6.
 An encrypted message shall be decrypted and unwrapped if the security policy of the outgoing port is 'plain' and the
do-not-decrypt and do-not-unwrap flags are set to 0.

7.
 An encrypted message shall be decrypted, but not unwrapped, if the security policy of the outgoing port is not
'encrypted' and the do-not-decrypt flag is set to 0.

8.
 All other messages shall be forwarded as is.

24.12.1.1 Routing Security Errors onto Plain Networks

When a router receives a security error that requires routing and the router has determined that the security wrapper should be
removed before routing the message on, the router shall generate and forward a Reject-Message-To-Network message to the
destination device. The reject reason shall be code 5 indicating that a security error stopped the original message from being
processed by its destination device.

24.12.1.2 Routing To and From Plain Networks

Routers to plain networks shall enhance the security for the plain network and those devices interacting with them by
providing bi-directional device id/address translation for all devices on the plain network.

The most secure form of device identification in a secure BACnet internetwork is the device instance. When messages are
routed to and from a plain network, the device instance information is lost. To overcome this problem, secure routers to plain
networks shall use device id/address translation replacing the SADR/DADR in messages with the device's instance.

When applying a security wrapper to route an incoming plain message onto a secure network, the router shall set, in the
outgoing secure message, an SADR, in both the NPCI and the security wrapper, of length 3 that contains the source device's
device instance, most significant octet first. If the message is a unicast message, the incoming DADR is expected to be a
translated address, 3 octets in length, containing the destination device's instance. The router is responsible for locating the
correct outgoing DADR for the specified destination device instance, and the correct device instance to use for the outgoing
translated SADR for the source device.

When removing a security wrapper to route a secure message onto a plain network, the router shall set, in the outgoing plain
message, an SADR, in the NPCI, of length 3, that contains the source device's device instance, most significant octet first.
This source device instance will be available in the security wrapper of the incoming secure message, either in the Source
Device Instance field if the security wrapper was applied by the source device, or in the SADR field if the security wrapper
was applied by a router. If the message is a unicast message, the DADR is expected to be a translated address, 3 octets in
length, containing the destination device's instance. The router is responsible for locating the correct outgoing untranslated
DADR for the specified device on the plain network.

While the process of locating the correct DADR is a local matter, should a router be required to generate a request to find a
device, the request should be restricted to the DNET specified in the request. If the DADR in a unicast request that is to be
routed from a secure to a plain network, or from a plain to a secure network is not 3 octets in length, the request shall be
dropped. In such cases the router shall generate and return a Reject-Message-To-Network message to the source device with
a reject reason of 6 indicating the addressing information is erroneous. If the SADR is expected to be 3 octets in length when
removing a security wrapper and it is not, a router shall drop the message and return a Reject-Message-To-Network message
to the source device with a reject reason of 6 indicating the addressing information is erroneous.

24.12.2 Securing Response Messages

When a device responds to a secure request, whether it is a network layer request, an application layer request, or a BVLL
request, the Security-Payload or Security-Response message(s) that contains the response shall be secured using the same key
and to the same level (signed or encrypted and the same settings for do-not-unwrap flag and do-not-decrypt flag) as the

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

754 ANSI/ASHRAE Standard 135-2012

request. This requires that security information associated with a request be passed along with the request as it moves
between layers of the protocol so that it can be used to create a response that matches the request. The only exceptions to this
requirement are when the responder is unable to provide the same level of security such as occurs when reporting certain
security errors back to the requestor or when end-to-end security is required in which case the Do-not-unwrap flag is allowed
to be set to 1.

There are some special cases where requests are to be secured as if they were a response to a previously received request.
Unconfirmed requests sent in response to other unconfirmed requests such as I-Am-Router in response to a Who-Is-Router, I-
Am in response to a Who-Is.

COV notifications shall be secured using the same key and to the same level as the SubscribeCOV or SubscribeCOVProperty
request that created the subscription.

The level to which event notifications are secured shall be a local matter and not dependant on the security of the services
used to configure the Notification Class object that directs the events.

All requests that make up a Backup or Restore procedure shall be secured using the same key and to the same level as the
initial ReinitializeDevice request. No operation within a Backup or Restore procedure shall require a different key or higher
level of security if the initial ReinitializeDevice request succeeds.

24.13 Authenticating Messages

Whenever security is removed from a message, either at the destination device or en route through a router where the
destination network policy differs from the source network, the message should be authenticated. The authentication process
consists of validating, in order:

(1)
 validating the Security Header Protocol Control Information
(2)
 message signature
(3)
 source MAC address
(4)
 uniqueness of the Message Id
(5)
 timestamp
(6)
 destination device instance

24.13.1 Validating the Security Header Protocol Control Information

All devices that receive and process or routers that modify the security on a secure message that is to be forwarded onto
another network shall validate the Security Header Protocol Control Information.

If the check fails, the message shall be silently dropped. The check is described in Figure 24-6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 755

<�3���
����	��
:
)

!���	����
���$
:
)

<�3���3
��#���
:
)

<�3���3
��#���
:
)

�������3�	
������
:
)

�������3�	
������
:
)

���3�������
������
:
)

�������	
������
&�������
�������
4����������
����������	
����2

?���

?���

?���

?���

�������

	����

	�� ��

	�� ��

	�� ��

	����

	����

	����

Figure 24-6: Security Header Protocol Control Information Consistency Check

24.13.2 Validating the Signature

All secure devices that receive and process a secure message shall validate the signature of the message. Routers are not
required to validate the signature of a message unless the router changes or removes the security wrapper of the message, or
the router is final destination for the message.

The signature is validated by calculating the signature as described in Clause 24.7.4. The validation succeeds if the calculated
signature is the same as the signature contained in the message.

If the received message is encrypted, before validating the signature, the padding has to be removed. Implementations shall
verify that the padding length is less than the size of the security wrapper and that the remaining security wrapper after
removal of the padding is at least as large as the smallest legal security wrapper.

If the message is a Security-Response conveying the error securityNotConfigured, the signature shall not be validated.

24.13.3 Validating the Source MAC Address

All devices that receive and process or forward a secure message have the option to validate the MAC address that the
message was received from. Validation of the source MAC address is useful when network address translation (NAT) is in
use within the BACnet inter-network.

When validating the source MAC address of a message, there are 3 cases to consider:

(1)
 The message originated from a device that resides on the network from which that the message was received.
(2)
 The message originated from a device that resides on a remote network.
(3)
 The message does not contain source MAC address information in the security header.

When a message is received from a local device, the MAC address should be compared to the signed SADR in the security
header. If the values match, then the source MAC address validation succeeded. If the values do not match, then the check

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

756 ANSI/ASHRAE Standard 135-2012

failed. If the check fails the receiving device has the option to challenge the source of the message by sending a Challenge-
Request to the MAC address (not the SADR from the security header). This check would most likely be employed when the
network is of a type where address translation is an expected behavior, such as BACnet/IP. If the challenge succeeds, then the
source MAC address validation will be considered to have succeeded.

When a message is received from a remote device, the MAC address should be compared against any locally cached value
for a router to the source network. If the MAC address matches the cached value, then the source MAC address validation
succeeded. If the values do not match or the device does not have a locally cached router address for the network, then the
check failed and the receiving device has the option to challenge the router of the message. If the challenge succeeds, then the
source MAC address validation will be considered to have succeeded.

To challenge a router to a network, a device may send a secure unicast Who-Is-Router-To-Network to the MAC address from
the message. If a valid secure I-Am-Router-To-Network is received in response, then the challenge will have succeeded.

An alternative method to challenging the router is to challenge the originator of the message, ensuring that the MAC address
sent to is the address the original message was received from. If the challenge succeeds, then the source device is reachable
via the address the message was received from. This is the only method that is available for validating the route to the Key
Server when the device has not yet been provided with a General-Network-Access key.

If the SLEN field of the security header is 0, then the source address information is not present, and thus not signed. The only
option for validating the source address is to challenge the source device. If the challenge succeeds, then the source MAC
address validation will be considered to have succeeded.

24.13.4 Validating the Destination Device Instance

Secure messages include a Destination Device Instance field that indicates the device that the message is intended for. A
secure device shall only accept a message that has either a Destination Device Instance field of 4194303 or its own device
instance.

A secure device is allowed to refuse unicast requests that have a Destination Device Instance of 4194303. In such cases, the
device shall respond with an error code of destinationDeviceIdRequired. While a device is allowed to refuse unicast requests
with a Destination Device Instance of 4194303, it is strongly recommended that this not be a device's default approach.
Doing so will result in the device being unable to interoperate with incapable devices from plain-trusted networks.

24.13.5 Validating the Message Id

All secure devices that receive and process a secure message shall validate the Message Id of the message. Routers are not
required to validate the Message Id of a message unless the router modifies or removes the security wrapper of the message,
or the router is the final destination for the message.

The Message Id cache is based on:

Packet Reorder Time: a period of time across which out of order packets can be received without causing Message
Id validation problems.

Last Message Id: the largest Message Id received from a device more than Packet Reorder Time seconds ago. This
value is stored for each device from which secure messages are received.

All secure devices shall cache data records about recently received valid messages. The cached data records shall consist of
the Message Id, the source device instance, and the time at which the message was received. In addition, a Last Message Id
value is stored for each secure device being communicated with.

When a message is received, the cache shall be checked and if the Message Id is already present in the cache, or if the
Message Id is less than or equal to the Last Message Id (taking into account wrapping), then the Message Id validation shall
fail. Otherwise the Message Id Validation shall succeed.

If the Message Id validation, destination device instance validation, timestamp validation, and signature validation all pass,
then a new record shall be added to the cache and the Message Id validation shall succeed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 757

The cache holds Message Id, Timestamp, Source Device tuples that are received over the last Packet Reorder Time window.
When an entry in the cache becomes older than Packet Reorder Time, the Message Id is compared to Last Message Id for the
source device (taking into account wrapping) and if it is larger, Last Message Id is set to the Message Id of the entry removed
from the cache,

If no messages are received from a device within Security Time Window seconds, then Last Message Id is cleared for that
device. This is to ensure that devices can wait Security Time Window seconds after power up and then safely re-use any
Message Id without it being rejected as a duplicate.

The size of the cache is a local matter. Determining which entries to remove from the cache when it overflows is a local
matter.

24.13.6 Validating the Timestamp

All secure devices that receive and process a secure message shall validate the Timestamp of the message. Routers shall not
validate the Timestamp of a message unless the router changes or removes the security wrapper of the message, or the router
is the final destination for the message.

The timestamp shall be checked against the clock of the receiving device. If the Timestamp is within +/-
Security_Time_Window seconds of the local time, then the validation shall succeed, otherwise the validation shall fail.

24.14 User Authentication

The BACnet standard provides one standard user authentication mechanism.

24.14.1 Proxied User Authentication

The Proxied Authentication mechanism is identified by an Authentication Mechanism field value of 0. When using this
mechanism, the Authentication Data field only contains the User Id and User Role. The User Id in the message is assumed to
have been authenticated by the source device when the key is anything other than the General-Network-Access key. See also
Clause 24.2.11.

The User Id identifies the user requesting the operation and the User Role identifies the role under which the user is
performing the operation. Secure devices shall not expect to use a fixed set of User Ids or user Roles. User Ids and User
Roles will be assigned during site installation and setup and as such shall be configurable in both client and server devices.
Devices that are capable of providing User Id and User Role values in secure messages shall be capable of being configured
to provide any User Id, User Role value pair for each of the users that it supports. Devices that do not ignore User Id and
User Role values in received messages shall be capable of being configured to accept and process any User Id or User Role
value. The method used to configure User Ids, User Roles and authorization rules is a local matter.

User Roles of 0 and 1 indicate that a request is initiated by "the system itself", that no user authentication was performed, and
no user authentication was required. A User Id of 0 indicates that the actual user identity is unknown and is commonly used
in conjunction with a User Role of 0 or 1.

A server device that receives a request with a User Id that is secured with the User-Authenticated key is allowed to apply
local user authorization to determine whether the user is authorized to perform the requested service. If the user does not have
sufficient rights for the operation, the server device shall return an error. For Confirmed-Request PDUs, a Complex-ACK-
PDU or an Error-PDU conveying a class of SECURITY and an error code of WRITE_ACCESS_DENIED,
READ_ACCESS_DENIED, or ACCESS_DENIED shall be returned. The error code returned depends on the service
requested. For BVLL and network layer messages that expect a response, a Security-Response message shall be returned that
conveys the error code accessDenied. All other requests shall not result in errors being returned.

If a server is not configured to apply authorization rules, then the user authentication information may be ignored. If a server
is configured to apply authorization rules and the message is secured with the General-Network-Access key, it is a local
matter as to whether or not the request is granted. Exceptions to this rule are the Who-Is and Who-Has services which shall
be executed.

The authorization scheme details, and the method of configuring and maintaining the scheme, are a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

758 ANSI/ASHRAE Standard 135-2012

24.15 Time Synchronization Requirements

Because message timestamps are used to prevent replay attacks, secure devices are required to maintain the current time.
Also, because message timestamps are in UTC, secure devices are required to support the UTC_Offset property in their
Device object.

24.15.1 BACnet Time Synchronization Messages

Secure BACnet devices should not accept non-secured TimeSynchronization or UTCTimeSynchronization requests, unless
the local network security policy is plain-trusted. Doing so will leave the secure device vulnerable to replay attacks.

24.15.2 Overcoming Non-synchronized Clocks

The network security architecture relies on devices having loosely synchronized clocks. If there are secure devices within the
system whose clocks are not within the time window of each other, then those devices will be unable to communicate with
each other and the system will be susceptible to replay attacks.

Devices that cannot keep accurate time are open to replay attacks as their clocks drift away from the clocks of the other
secure BACnet devices. It is essential that Time-Synchronization is performed frequently enough to keep all device clocks
well within Security_Time_Window seconds of each other.

It is worth noting that when a secure device is powered off for extremely long periods of time (years), the clock in the device
may drift sufficiently far that it is no longer synchronized with the rest of the devices on the network.

24.15.2.1 Devices Without Real Time Clock Chips

Devices that do not keep time over a reset or while turned off will need to acquire the time before they can communicate
safely.

The preferred method for determining the current time in such cases is for the device to use a special non-repeating Message
Id that is remembered across resets. The device waits 2 * Security_Time_Window and then generates a Challenge request
with the next special Message Id (note that there is no relationship between the Message Id used for this purpose and the last
Message Id used by the device before it reset). The Challenge request shall be sent with an all 0 timestamp.

To generate the next special Message Id to use, a constant value is added to the previously used special Message Id. The
constant, modulo 232, shall be prime. This ensures that when the value wraps, it wraps past 232 to a previously unused value.
Note that larger constants are generally better than smaller ones as more "entropy" is created making the signature, and any
encryption, more secure.

If the secure device does not have the current key set, the Challenge request will have to be aimed at the Key Server and use
the device's Distribution or Device Master key.

Other methods for determining time are described below. Each of the methods outlined requires that the device has the ability
to generate a random value that will be used in the Message Id and/or Timestamp fields of the security header. Use of
standard programming language random functions will not meet this requirement. The device must use its interaction with
the outside world to generate a random value (inter-message delay, total network traffic, values found in DRAM if it is not
cleared on startup, etc.). If the same Message Id value is used each time on startup, then an attacker can record a sequence of
messages when a device resets and then replay them at a later date when the device resets again.

24.15.2.1.1 Monitoring Broadcast Traffic

The device can determine the time by monitoring the network for broadcasts. If a broadcast is seen that is secure and
validates, then the time can be taken from the message and used in a Challenge-Request containing a random Message Id and
aimed at the source of the message. If the challenge succeeds, then the time can be accepted.

24.15.2.1.2 Monitoring For Any Traffic

The device can determine the time by monitoring the network for any traffic. Once a message is received, the source MAC
address can be removed from the message and a Challenge-Request formed and sent to the source of the message. If the
challenge succeeds, then the time can be accepted.

24.15.2.1.3 Wait For TimeSynchronization

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 759

The first two solutions may result in incorrect times being used by the device. If the device chooses a message from a device
that has an invalid time, then the device will end up with the same invalid time.

A third option is for the device to be configured to challenge a time master on restart, or be programmed to remember the
source address of the last successfully processed TimeSynchronization or UTCTimeSynchronization request and challenge
this address on start up. The device should update its time only if the Challenge succeeds.

Alternatively, the device could wait for a TimeSynchronization or UTCTimeSynchronization request. When one is received,
the device should challenge the message source and only accept the time if the Challenge succeeds.

24.16 Integrating the Security Layer into the BACnet Stack

24.16.1 Secure PDU Sizes

The addition of the BACnet security wrapper into the BACnet PDU reduces the amount of space for BACnet NSDUs and
APDUs.

For secure devices, the value of the Max_APDU_Length_Accepted property of the Device object shall be calculated
assuming the largest size of valid Authentication Data the device is configured to accept, and the largest encryption block
size of any BACnet security encryption algorithm the device is configured to use.

Secure routers that are capable of routing between 2 BACnet/IP networks shall be capable of routing BACnet/IP messages
that contain an NSDU of 2000 octets. This allows for 523 octets of authentication data to be included in the security header
when transferring packets between BACnet/IP networks. All other BACnet routers are only required to support routing of
message sizes indicated in Table 24-28.

In order to reduce the chance of inverted networks being used when security tunnels are in place, the maximum APDU for
secure BACnet/IP segments is kept at 1476. To allow for this, the maximum length BACnet/IP NPDU is increased to 1562
for secure BACnet/IP messages. This allows full size non-secured APDUs to be secured and passed through BACnet/IP
networks.

The following table of maximum NSDU and APDU lengths is calculated assuming an Authentication Mechanism of 1 with 2
octets of Authentication Data and an encryption block size of 16 octets.

Table 24-28. Maximum APDU Lengths for Secure BACnet Data Link Layers

Data Link Technology Maximum APDU Length

ISO 8802-3 ("Ethernet"), as defined in Clause 7 1411 octets

ARCNET, as defined in Clause 8 419 octets

MS/TP, as defined in Clause 9 419 octets

Point-To-Point, as defined in Clause 10 419 octets

LonTalk, as defined in Clause 11 131 octets

BACnet/IP, as defined in Annex J 1476 octets

ZigBee, as defined in Annex O 419 octets

When reporting the Max_APDU_Length_Accepted in the APCI of a ConfirmedRequest-PDU, a secure device might be
forced to indicate a value smaller than indicated by its Device object. While this will result in successful communications, the
network bandwidth usage of large segmented messages will be sub-optimal.

Therefore devices responding to ConfirmedRequest-PDUs may ignore the value indicated in the APCI and use the value
indicated in the client's Device object instead, if it is known.

24.16.2 Selecting Error Codes

The security errors can be broken down into two groups: general security layer errors and authorization errors. General
security layer errors are those that are required to be generated and returned by the security layer and indicate a problem with

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

760 ANSI/ASHRAE Standard 135-2012

the formulation of the message itself. Authorization errors may be generated by the security layer, or they may be generated
by another layer of the BACnet stack or by the device's application program.

The order in which the error conditions are checked is important. The general security layer errors are checked in the order
they occur in the service's error table and are checked before any authorization errors. The order in which authorization errors
are checked is not important except that the generic accessDenied error code shall not be generated if one of the other
authorization error conditions exists. This ensures that knowledge imparted by the other authorization error codes is not lost
through the over use of the accessDenied error code. It is recommended that the encryptionRequired error condition be
checked before the incorrectKey error condition because this may help to reduce the amount of failure traffic produced.

If multiple error conditions are present, the condition that is checked first shall be the error that is returned.

Some of the error conditions are ignorable, subject to the restrictions made by the Do_Not_Hide property of the Network
Security object. When an ignorable error occurs, it is a local matter as to whether the device returns the error or does not
respond at all. Note that if multiple errors are present and the one that is checked first is ignorable, then the device has the
choice to either return that error or not respond at all; the device does not have the option to return an error indicating one of
the other error conditions that exist.

24.16.3 Communicating Security Parameters

While the BACnet Security Layer is responsible for securing BACnet PDUs, the other layers of the BACnet stack are usually
the source of the security parameter information. For example, the determination of whether or not any of the data in an
APDU requires a higher level of security than the device's default policy is made by the application program. The
application, network and BVLL layers of the BACnet stack provide security information to the security layer via the
security_parameters ICI parameter.

24.16.4 Detecting and Processing Security Errors

Security errors can be detected both by the security layer and also by the layer of the stack executing a request. For example,
the security layer will detect problems with signatures whereas the application program will detect most authorization errors.
The result is that some security errors are returned in Security-Responses and others will be returned in Error-PDUs or
ComplexACK-PDUs.

When a security error is received by a device, the error information may need to be indicated to the other layers of the
BACnet stack. The security layer indicates the error information via the N-REPORT.indication primitive. The application
layer indicates security errors to the local application program via the SEC_ERR.indication primitive.

Table 24-29 provides a discussion of the different security errors, the conditions that the errors indicate, and possible failover
actions that devices can take.

Table 24-29. Security Errors
Description Suggested Failover Actions

securityNotConfigured
The recipient is not configured for security on
this port.
A Security-Response containing this error will
not be signed nor encrypted by the source
device.

If the source device is allowed to re-generate
the request with no security (a 0 signature and
not encrypted), do so otherwise fail the request.
This error should be reported to a management
entity and then silently dropped.

encryptionNotConfigured
The Encrypted field is set to 1 and the receiving
device is not configured to accept encrypted
messages.
A Security-Response that contains this error
will not contain a valid Original Message Id as
the responding device would be unable to
decrypt the source message to obtain the
MessageId.
A Security-Response containing this error will
never be encrypted by the originator although it

Report to the stack layer that created the
original request to allow it to decide if the
request should be retried with different security
parameters. Since the device cannot match it to
a specific request, all outstanding requests sent
with encryption to the specific device should be
cancelled and retried.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 761

may be encrypted by an intervening router.
unknownKey
The Key Identifier field indicates a security key
that the receiving device does not know.

Report the error to the stack layer that created
the original request to allow it to decide if the
request should be retried with different security
parameters.
If the original request was encrypted, the device
that generated this error would not have been
able to match it to a specific request, all
outstanding requests sent with encryption using
the specific key to the specific device should be
cancelled and retried.

duplicateMessage
A message with the provided Message Id has
already been received from the source device
within the security time window.

If the source device has restarted (within 2 *
Security_Time_Window), this may be due to
issues surrounding the initial MessageId used.
In such cases, the device should stop all
network traffic for a complete Security Time
window, or retry with a larger Message Id. If
traffic is to be halted, then indicate the error to
the stack layer that created the original request
so it has the option to retry later.
If the source device has not recently restarted,
then this error should be reported to a
management entity.

unknownKeyRevision
The Key Revision field indicates a revision that
the receiving device does not know.
A Security-Response containing this error code
should never be encrypted as the intended target
will most likely not be able to decrypt the
message.

If the source device has not recently checked its
Key Revisions with the Key Server (definition
of recently is a local matter), the device should
check them using the Update-Key-Set message.
This failover action should be taken by the
security layer, not the application entity.
The source device should either, resend the
packet if the keys are found to be out of date, or
indicate the error to the stack layer that created
the original request resulting in the request
failing completely.
If the source device has recently checked its
Key Revisions, its local policy is to not check,
or if its keys are found to be current, then this
error should be reported to a management
entity. It is advisable to report this problem to
the management entity regardless because
frequent occurrences of this error indicate a
problem with key distribution or network
robustness.
The device that generates this error should also
check its key revision with the Key Server if it
has not done so recently and its key table does
not indicate that the unknown key revision
recently expired.

malformedMessage
The length of the data received is too short to
contain the security header, service parameters
and the signature or the size of padding is larger
than possible for the data received, etc.

The error should be reported to a management
entity and dropped silently.

badSignature
The signature is not correct. This error may also If the signature of the response is correct, then

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

762 ANSI/ASHRAE Standard 135-2012

be indicated if a decryption error occurs.
This error indicates that either the packet was
tampered with, a network error occurred, the
key values differ, or some other kind of attack
is underway.

the key values are correct. In this case, the error
should be reported to a management entity, and
the packet retried.
If the signature is not correct, then the error
should be reported to a management entity and
dropped silently.

badDestinationAddress
The destination address information is missing
or invalid.
This is an indication that the packet was
modified on route, replayed to the wrong
device, the physical structure of the network has
been tampered with or the address-binding table
in the source device is stale.

If the local binding table is stale in the source
device, the source device should clear the entry
and re-bind to the destination device. The
source device should be able to determine if the
local binding table was stale based on the
information received in the Security-Response
message. If the original packet is still available,
resend it, otherwise indicate the problem to the
stack layer that created the original request and
let that layer regenerate the packet.
If the binding table is not stale, report the
problem to a management entity.

badDestinationDeviceId
The Destination Device Instance does not
match the local device instance.
This is either an indication that a redirection
attack is being attempted, that the local device
has recently changed its device instance, or that
the source device has stale addressing
information.

The source and destination devices should
report the error to a management entity.
If the destination device provides an error
response to the source device, or if the source
device times out waiting for a response, the
source device should clear the entry in its local
binding table and re-bind to the destination
device.

badSourceAddress
The source address information is invalid.
This is an indication that the general network
configuration is incorrect (there is disagreement
on network numbers between routers and
devices), or that the physical structure of the
network has been tampered with.

The source and destination devices should
report the error to a management entity.

badTimestamp
The Timestamp in the security header of the
message is not within the allowable timestamp
window of the receiver.
This indicates a problem with non-synchronized
clocks, or an attempt to replay a message. The
receiver of the Security-Response should be
able to tell if it is a clock issue.

If it is a clock issue, the request could be re-
tried with a timestamp adjusted to suit the other
device.
If it is not retried, the error should be indicated
to the stack layer that created the original
request and reported to a management entity.

destinationDeviceIdRequired
The Destination Device Instance in the security
header of a unicast message has the value
4194303 and the destination device requires this
value to be set correctly for the operation
requested.
This error may be generated by the application
program and returned in an Error-PDU or
ComplexAck-PDU.

The error should be reported to the stack layer
that created the original request and the request
should not be retried with the information
because we cannot be sure that this is the device
the application really should be communicating
with and would thus thwart the protection the
device was trying to achieve by returning the
error.

unknownSourceMessage
This error occurs when a Challenge fails. The device should report the error to a

management entity. The message that was
being Challenged should be dropped and no
response sent to its source device.

cannotVerifyMessageId

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 763

This error occurs when a device has no record
of sending the specified message. This may be
sent if a device generates enough traffic that its
local cache of message history has overflowed
and it is unable to ascertain for sure that it did
not send the message.

The device should report the error to a
management entity. The message that was
being Challenged should be dropped and no
response sent to its source device.

encryptionRequired
This error occurs when an operation requires
encryption but the request was sent in the clear.

If the source device supports encryption for
non-key exchange messages, it should retry the
request with encryption. If the device does not
support encryption, it should report the problem
to a management entity.

sourceSecurityRequired
The secured-by-router flag is 1 and end-to-end
security is required, or the Do-not-decrypt flag
is 0 and end-to-end encryption is required for
the operation requested.
The device's minimum security level requires
end-to-end security this error is generated by
the security layer. The equivalent application
program error class and error code can also be
returned by the application program if the
requirement for end-to-end security is due to
data specific rules. In such a case, the error will
be returned in an Error-PDU or ComplexAck-
PDU.

If the error is in a Security-Response, the error
should be indicated to the stack layer that
created the original request.
The device should retry the request, with
different security parameters.

incorrectKey
The key provided to secure the message does
not indicate sufficient authority to perform the
requested operation.
This error is usually returned by the application
program in an Error-PDU or ComplexACK-
PDU.

If the error is in a Security-Response, the error
should be indicated to the stack layer that
created the original request.
The device should retry the request, with
different security parameters.

notKeyServer
The device that received the Request-Key-
Update message is not configured as a Key
Server or is not configured as the Key Server
for the requesting device.

This error usually indicates that the Key Server
configured to provide keys for the source
device has been moved.
The device should retry the request using a
broadcast address.

keyUpdateInProgress
The destination device is performing a key
update and is unable to perform the request
action.

The error indicates that a different Key Server
is updating the device. The problem should be
reported to a management entity, and the Key
Server should retry the operation at a later time.

cannotUseKey
The destination device is unable to use a key
provided by the Key Server.

This indicates that the Key Server has been
configured to issue keys to a device that it is
unable to accept. The Key Server should report
the problem to a management entity and
attempt to provide all other security keys to the
device.

tooManyKeys
The destination device is unable to fit all of the
keys that the Key Server has provided.

This indicates that the Key Server has been
configured to issue too many keys to a device.
The Key Server should report the problem to a
management entity.

invalidKeyData

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

764 ANSI/ASHRAE Standard 135-2012

The destination device determined that the key
data provided is invalid.

This indicates an implementation error in the
Key Server or in the destination device. Both
devices should report the problem to a
management entity.

unknownAuthenticationType
The user authentication method in the message
is unknown to the device.
This error is usually returned by the security
layer, but might be returned by the application
program depending on which layer is
responsible for authentication checks. It might
also be that the device accepts the whole
security request and passes it to the application
program with authentication mechanism and
data marked as "unknown", letting the device
decide whether the operation can be allowed
without knowing the authentication mechanism
and the user requesting the action. Thus it lets
the decision be that of the application program.

If other authentication methods are known, the
request can be retried with one of those
methods.

accessDenied
The network layer or BVLL request was denied
due to insufficient authorization. See Clause
24.14.1 for more details.
While the security layer may return this error
code, for application layer requests, the
application program should use other related
error codes in Error-PDUs and ComplexACK-
PDUs.

There is no suggested failover action for this
error condition.

24.16.5 Security Errors in Network Layer Initiated Packets

The network layer does not have a mechanism for returning errors in response to a message and thus the information that can
be conveyed in response to an error is limited.

If the network layer detects a security error condition, such as insufficient authorization, the network layer shall convey this
information to the local security layer so that a Security-Response indicating the error condition can be generated. Non-
security errors shall be handled as according to Clause 6.

Network layer messages that embody operations, in contrast to route discovery and traffic management, may require security
stronger than the base security policies. The network layer messages that may require a higher level of security are: Initialize-
Routing-Table, Establish-Connection-To-Network, and Disconnect-Connection-To-Network. All other network layer
messages shall be accepted if they are secured according to the network's security policy.

Reject-Message-To-Network messages shall be secured with the same level of security as the original request. This may
result in intermediate routers being unable to process the Reject-Message-To-Network message. In such cases, the
intermediate routers will not benefit from the information but the source device will.

24.16.6 Security Errors in BACnet/IP BVLL Initiated Packets

The BACnet/IP BACnet Virtual Link Layer does not have a mechanism for providing detailed error information. All it is able
to indicate is that a request failed, it cannot provide details.

If the BACnet/IP BACnet Virtual Link Layer detects a security error condition, such as insufficient authorization, and the
request was received in a Secure-BVLL, the layer shall convey this information to the local security layer so that a Security-
Response indicating the error condition can be generated. Otherwise error conditions shall be handled according to Annex J.

Forwarded-NPDU, Distribute-Broadcast-To-Network, Original-Unicast-NPDU, Original-Broadcast-NPDU are just payload
messages transferring packets from higher levels. They shall not require security higher than the network's local security
policy (although any contained PDU may be rejected due to insufficient security by a higher layer of the BACnet stack).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 765

BVLL messages that embody operations may require stronger security than the local network security policy. The BVLL
messages that may require a higher level of security are: Delete-Foreign-Device-Table-Entry, Read-Broadcast-Distribution-
Table, Read-Foreign-Device-Table, Register-Foreign-Device, and Write-Broadcast-Distribution-Table. As with all responses
BVLC-Result and all of the ACK BVLL PDUs shall be secured to the same level as the original request.

24.16.7 Data Hiding

In secure devices, some data within a device will not be available to all clients. Where a subset of data within an object,
property, or service is restricted, a secure device shall hide the portion of the data for which access is restricted.

24.16.7.1 Hiding Properties

If an object in a secure device contains optional properties for which access to requires a higher level of security, those
properties may be hidden by the secure device. The secure device has the option to return a security error
(ACCESS_DENIED, READ_ACCESS_DENIED, or WRITE_ACCESS_DENIED), or to return a general error
(UNKNOWN_PROPERTY). This method of data hiding is not available for required properties; restricted access to required
properties has to be reported via a security error.

When a special property identifier (ALL or OPTIONAL) is used to access restricted optional properties, the device has the
option to exclude the optional property completely from the result, or to include a security error in its place.

24.16.7.2 Hiding Array Elements

When elements in an array or list have different security requirements, the secure device shall hide elements of the property
by making it appear that the elements do not even exist. The array or list will appear to be shorter, and entries that occur later
in the property will be shifted down to fill the entries which are hidden. This approach to data hiding is not applicable to
arrays or lists for which the length is mandated by the standard.

For example, when reading the Object_List property of the Device object with different security levels may result in a
different value being returned. Where objects have to be completely hidden, the length of the Object_List should be adjusted
so that entries do not show up.

24.16.7.3 Hiding Service Results

For services that report collections of data, such as the alarm summary services, the data returned by the service may change
based on security of the request. For example, if a secure device contains alarm generating objects, for which access to
requires a higher level of security, the alarm summarization services should not return entries for those objects regardless of
whether they meet the summarization criteria or not.

A secure device does not have the option to leave out a required service response parameter, or in any other way modify a
response such that it is inconsistent with the rules for that service response.

24.16.8 Device Identity

24.16.8.1 Security of Device Identity

The device instance is the only secure form of device identity. Network number and MAC address values should not be
considered to be secure as these can be changed due to a network configuration change or can be manipulated through
complicated attacks on a BACnet network.

When referring to another device such as is done in Notification_Class objects, it is always better to refer to the device via the
device instance and not via the device's network number and MAC address. This is also better for handling cases where
device MAC addresses may change, such as when DHCP is in use.

Devices should never use network number or MAC address information to make authorization decisions. The only device
identity information that should be relied upon for making authorization decisions is the device instance.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

766 ANSI/ASHRAE Standard 135-2012

24.16.8.2 Modifying A Device's Identity

Modifying identity information that is used by the security layer can result in problems within the layers of the stack. For
example, changing a device's instance number or network number via a WriteProperty request may result in problems
associating the response with the request.

When critical identity values (device instance, network number, MAC address) are modified by a service, the actual change
of identity shall occur after the response has been sent so that the response is secured with the same identity that the request
was secured with.

A device may, at the implementor's discretion, delay the application of identity value changes until the device is reset.

24.17 BACnet Security In A NAT Environment

A secure foreign device that resides behind a NAT cannot include a correct SADR in secure messages because the device
does not know it. While BBMDs are given static IP addresses, a foreign device's address is not usually static. To overcome
this issue, secure foreign devices that communicate through a NAT to reach the BACnet internetwork may first send a
Challenge-Request message to the BBMD that they intend to register with as a foreign device. The resulting Security-
Response will let them know their SADR as seen by other BACnet devices.

24.18 BACnet Security Proxy

In order to provide security for devices without requiring the devices themselves to be secure, a new type of device called a
Security Proxy is defined.

A BACnet security proxy device is a secure router that strips and adds security on behalf of the devices "behind" it that are
incapable of, or not configured for, secure communications. The proxy will remove security from messages destined for the
protected devices, even if the do-not-unwrap or do-not-decrypt flags are set. The proxy will also determine when security
should be applied to messages that are originated by protected devices and will apply it accordingly. The methods used by a
security proxy device to determine when to apply security, what level of security, and what user information to use are local
matters.

In its simplest form, a security proxy device protects a complete BACnet network or collection of BACnet networks but it is
not restricted to operate in such a manner. A security proxy device could be implemented such that it protects a subset of the
devices on the protected networks.

The BACnet security proxy functionality is optional and is not required to be supported by secure BACnet routers.

24.19 Deploying Secure Device on Non-Security Aware Networks

Where a network is served by a BACnet router that does not forward globally broadcast unknown network messages, global
broadcasts of security messages will not be routed. This limitation will restrict the methods used to deploy secure devices in
existing networks.

In particular, a secure device will be unable to request security keys using broadcast Request-Master-Key or Request-Key-
Update requests. There are three options for deployment in this situation:

(1)
 Connect the device to the Key Server's local network to receive the Device-Master key and Key Server address
information.

(2)
 Provide the device's network number, MAC address and device instance manually to the Key Server and manually
interact with the Key Server to get it to provide a Device-Master key to the device.

(3)
 Enter the Key Server's information into the Last_Key_Server property of the device's Network Security Object, and
then cause the device to request a Device-Master key using a unicast Request_Master_Key directed at the device
indicated by Last_Key_Server.

In order to ensure that other secured messages are routed by the legacy router, secure devices should refrain from relying on
globally broadcast security messages for proper operation.

24.20 Deploying Secure Single Network Installations

BACnet security requires that all devices know their local network numbers. To make support for this requirement for
simpler installers, secure devices can leverage the What-Is-Network-Number and Network-Number-Is services. While this
decreases the installation work required, it results in problems when no routers are deployed in the installation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 767

To ensure that this does not cause problems during the installation process, it is recommended that all secure devices support
an alternate method for configuring the local network number.

24.21 Security Keys

In BACnet security there are six types of keys: General-Network-Access, User-Authenticated, Installation, Application-
Specific, Device-Master, and Distribution. Each key actually consists of a pair of key values, one used for signatures and one
used for encryption.

The General-Network-Access key is used for device and object binding, for encryption tunnels, and by user interface devices
that cannot authenticate or are not trusted to authenticate a user. All secure BACnet devices shall support use of the General-
Network-Access key.

The User-Authenticated key is used by devices that are allowed to authenticate the user's identity that is included in BACnet
messages. It is also given to devices that do not contain a user interface. All secure BACnet devices shall support use of the
User-Authenticated key.

Installation keys are distributed to pairs of devices, usually the configuration tool of a technician and a set of BACnet devices
that require configuration. These keys are provided to allow temporary access to a specific set of controllers through a
configuration tool that should not normally have access to the BACnet network. All secure BACnet devices shall support use
of the Installation key.

In order to provide security boundaries between application areas, such as access control and HVAC, the BACnet security
framework provides Application-Specific keys. All secure devices shall support at least 1 Application Specific key; support
for multiple Application-Specific keys is optional. The semantics of the Application-Specific keys are site-specific, and as
such all devices shall not restrict which Application Specific key identifiers may be accepted into their key sets.

The Device-Master key is a unique key per device that is either given to the device before the device is installed, or provided
to the device by the Key Server during installation. In theory, the Device-Master key is never changed for a device other than
during initial site setup. In practice, a device's master key may have to be changed if a Key Server's key database is lost and
cannot be recovered. The Device-Master key is only used to provide Distribution keys to devices.

Distribution keys are unique per device and are used only to distribute key sets.

24.21.1 Key Identifiers

Keys are identified by their 2-octet key identifier. The identifier indicates which key is to be used and the signature and
encryption algorithms that the key is used with.

The first octet of the Key Identifier field indicates the encryption and signature algorithms to be used. The values are:

Table 24-30. Key Identifier Algorithm Enumeration
Value Algorithm (Encryption/ Signature)

0 AES / MD5
1 AES / SHA-256
2..255 Reserved

The second octet of the Key Identifier indicates the key being used. The values are:

Table 24-31. Key Identifier Key Number Enumeration
Value Key number

0 (not used)
1 Device-Master
2 Distribution
3 Installation
4 General-Network-Access
5 User-Authenticated
6..127 Application-Specific Keys
128..255 Reserved

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

768 ANSI/ASHRAE Standard 135-2012

While the key identifier format would allow the specification of multiple keys of each type (such as the General-Network-
Access key) differing only in the algorithms used, the intent is that only one key of each type would be used in practice.

24.21.2 Key Sets

A key set consists of all of the keys that a BACnet device is configured to have excluding the Device-Master key and the
Distribution key, a time period during which the keys are valid and a key revision number. The key revision number applies
to all of the keys in a key set.

A key shall not be used outside of the timeframe defined for the key set. To allow for variations in clocks between devices, a
key's acceptability shall be determined by using the timestamp placed in the message by the sending device rather than the
local time in the receiving device.

Each BACnet device has two key sets with possibly overlapping valid time periods. This allows a device to have a current
and a new key set for transitioning between key sets. When a device contains 2 valid key sets, the device should secure
messages with the newer of the two key sets as soon as its valid time period will allow.

If the key set's Expiration Date is X'FFFFFFFF', then the key set shall not expire. To allow for this deployment scenario,
devices shall maintain key data in a non-volatile manner and shall not be dependent on a Key Server after a power up or
reset.

A key revision of 0 indicates that the key set has not been configured. Therefore, when the key revision number wraps after
being incremented past 255, it shall wrap back to 1, not 0. If the key set's revision number is 0, then any keys it contains shall
be ignored.

24.21.3 Key Distribution

In general, the keys used by the BACnet security framework are not unique to each device, or device pair. The General-
Network-Access key is shared by all of the BACnet devices and the User-Authenticated key is shared by most devices. In
order to increase the security of the keys, they should be changed periodically.

Device-Master keys must be configured in a secure device and shared with the Key Server before the Key Server can provide
keys to a device. Initial key distribution is discussed in more detail in Clause 24.22.3.

Keys are distributed as a set, excluding the Distribution key which is distributed on its own. The key revision number applies
to all of the keys in the key set.

To protect the keys, the distribution messages shall be encrypted. The encryption algorithm used for distribution of keys shall
be the same encryption algorithm as used with the most secure key in the distribution.

24.22 Key Server

BACnet Key Servers are responsible for the generation and distribution of BACnet security keys. If automatic generation and
distribution of security key updates is required, the BACnet installation will require a permanent Key Server that is
responsible for generating and distributing keys to all of the BACnet devices.

The Key Server is configured with a list of the devices to update, the keys that each should be given, and the period at which
the keys should be distributed. In addition, the Key Server shall allow the operator to initiate a key update at any time.

24.22.1 Key Generation

The Key Server will be responsible for generating all keys, except for factory-fixed Device-Master keys. The algorithm used
to generate the keys shall be a local matter.

The Key Server shall take into account local security policy and device requirements when choosing the algorithms to assign
to generated keys. In order for the General-Network-Access key to work with all devices, it has to use algorithms supported
by all secure devices in the BACnet internetwork. The Key Server shall report the existence of devices that do not support the
minimum security requirements of the local security policy to the local user or a management entity. When determining the
algorithms for Device-Master and Distribution keys, the Key Server should select algorithms that are at least as strong as the
algorithms used by keys that are to be distributed and protected by these keys.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 769

Note that if a Key Server is configured to provide key sets frequently and if the key sets are given long expiration times, it is
possible for the Key Revision to wrap within the expiration time and create conflicts between active Key Revision numbers.
Key Server implementations should take care to avoid such situations.

,���

D�	
���
)
"2�	
��1�����
.%D�	
���
)
"2�	
��1�����
)%

D�	
���
0
"2�	
��1�����
0%

5
��

�

2�

	

��

��

�

��

1

��
��

5
��

�

2�

	

��

��

�

��

1

��
��

�
��

��
��	

@,
��

�@
K

��
��

#

�
��

��
��	

@,
��

�@
K

��
��

#

,���
#����#
��
#����
��
����������
D�	
���)
"��1�����
.%

,) ,0 ,. ,8

,):D�	
���
0
"2�	
��1�����
0%'
����1�����
,���

,0:D�	
���
)
"2�	
��1�����
)%'
!E��������
,���

,.:D�	
���
)
"2�	
��1�����
.%'
����1�����
,���

,8:D�	
���
0
"2�	
��1�����
0%'
!E��������
,���
Figure 24-7: Key Set lifetimes.

The time window in which the Key Server has to distribute a new key set to all devices starts Security_Time_Window
seconds after the key set expires and ends Security_Time_Window seconds before the replacement key set becomes active. If
the Key Server does not complete the generation and distribution within this time window, some devices will be unable to
communicate with each other. See Figure 24-7.

24.22.2 Distribution Method

When the Key Server has generated a new set of keys, the Key Server will increment the Key Revision and distribute the
keys to each device. Each device receives the General-Network-Access key plus any other keys it has been authorized to
receive. The set of keys are sent encrypted to the device using the Distribution key for that device. Distribution keys are
delivered separately using the Device-Master key and need not be distributed as frequently as the key sets.

The Key Server packages the newly generated key set into an Update-Key-Set message, signs and encrypts the message with
the device's Distribution key, and sends it to the device. Upon receipt of a valid sequence Update-Key-Set messages, the
device shall update its key sets as directed. The device shall start using the new key set as soon as its valid time period will
allow.

If the sending of the set of keys to the device is successful, the Key Server shall record the key revisions for both sets for the
device. If the Key Server is unable to update the device, it shall re-try the update periodically until successful.

The Key Server shall update each device. If a device cannot be contacted, or the update fails, then the Key Server shall
continue with the next device. The order in which the Key Server updates devices is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

24. NETWORK SECURITY

770 ANSI/ASHRAE Standard 135-2012

If both of a device's key sets become invalid due to the current time being outside each key set's valid time period, then the
device shall cease generating requests, other than Request-Key-Update messages signed with the device's Distribution key, or
Device-Master key. The device shall periodically request a new key set from the Last_Key_Server. If the Key Server is on a
remote network and the device does not know the MAC address of the router to use, then the device shall use a local MAC
broadcast to transmit the Request-Key-Update message. If the device does not have a value for Last_Key_Server, or does not
receive an update from the Last_Key_Server, the device shall globally broadcast, or send a sequence of directed broadcasts
of, the Request-Key-Update message. The device shall not request a key set more than once every 5 minutes. If, upon power
up, a device detects that its key sets have expired, the device shall wait at least 1 minute after power up before requesting a
key set in order to allow the Key Server to distribute key sets after power outages.

When the Key Server receives a Request-Key-Update from a device where the Key Revision of the message's Distribution
key does not match the recorded Distribution key for the device, the Key Server shall respond with an error code of
unknownKeyRevision and then update the device's Distribution key set with an Update-Distribution-Key message.

For devices that the Key Server is unable to provide a key set to, the Key Server shall continue to periodically attempt to
update the device using the Update-Key-Set message. The period at which the Key Server retries the key update is a local
matter.

The Key Server shall periodically update each device's Distribution key. To update a device's Distribution Key, the Key
Server sends the device an Update-Distribution-Key message that is signed and encrypted with the device's Device-Master
key.

If a device loses its keys, it can request a new set by sending the Key Server a Request-Key-Update message signed with the
device's Device-Master key. To such a request, the Key Server shall respond with an Update-Distribution-Key message.

Under normal operating conditions, after a device has received 2 sets of keys, the Key Server need only update 1 key set by
replacing an expired key set with one that will activate at a future time.

24.22.3 Initial Key Distribution

A Key Server shall provide a mechanism for accepting manually input Device-Master keys. For example, the Key Server
might have a user interface through which the Device-Master key values can be entered for each device, or the Key Server
may be provided with a software tool that will provide keys to the Key Server through a secure channel. This mechanism
allows for devices that have a fixed, factory configured, Device-Master key. All such devices shall provide a method of
reporting the Device-Master key. For example, a device could have the Device-Master key printed on a tear-off label.

As an alternative to having predefined Device-Master keys, secure devices may optionally support initiation of the Request-
Master-Key and execution of the Set-Master-Key messages. It is left up to site policy as to whether or not the use of these
inherently insecure services is allowed during site setup.

For installations that do not use the Request-Master-Key and for devices that have factory-fixed Device-Master keys, Key
Servers shall support interrogation of devices' Network Security objects in order to determine the encryption and signature
algorithms supported before providing key sets.

24.22.4 Key Revision

The Key Revision is only incremented when the data for an existing key is changed (excluding Device Master, Distribution
and Installation keys). The creation of new application keys (keys that heretofore did not exist at all) will also not result in the
Key Revision being incremented.

If the Key Server is reconfigured such that the keys that it supplies to a given device are changed (the device is supposed to
be given a key it was not previously given, or is no longer supposed to receive a key it already has), the Key Server modifies
the device's existing key sets without incrementing the Key Revision. The creation of, or expiration of, Installation Keys shall
not result in the incrementing of the Key Revision for the current Key Sets.

24.22.5 Sites Without Key Servers

Secure BACnet sites are able to be deployed without a permanent Key Server. In such cases, a temporary Key Server is used
to generate and distribute keys sets that do not expire. To do so, key set 1 shall be provided with an Expiration Date of
X'FFFFFFFF' and key set 2 shall be uninitialized and provided with a Key Revision of 0.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 24. NETWORK SECURITY

ANSI/ASHRAE Standard 135-2012 771

Any Key Server that supports such deployment scenarios shall provide a mechanism for documenting all Keys in order to
allow the same keys to be used when devices are added to the system at a later date. It is up to the building owner / operator
to ensure that the Keys are in the possession of a building representative to allow for future upgrades.

Key Servers that support such deployments shall provide a mechanism for accepting manually input keys. This will allow
any such BACnet Key Server to be used to add new devices to an existing installation without the requirement that the
original Key Server be used.

24.22.6 Multiple Key Servers

When there are multiple Key Servers in a BACnet installation, the method by which the Key Servers generate new key sets,
distribute keys between themselves and determine which Key Server distributes keys to which devices is a local matter. In
addition, the method for selecting which Key Server responds to any particular Request-Master-Key service, and the
subsequent sharing of generated Device-Master keys between the Key Servers is a local matter. Multiple Key Server systems
need to ensure that conflicting keys are not provided to secure devices by different Key Servers. The method for ensuring this
is a local matter.

.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

25. REFERENCES

772 ANSI/ASHRAE Standard 135-2012

25 REFERENCES

ANSI/EIA/CEA-709.1-B (2002), Control Network Protocol Specification.

ANSI/IEEE Standard 754 (1985), IEEE Standard for Binary Floating-Point Arithmetic.

ANSI/INCITS 92-1981 (R1998), (formerly ANSI X3.92-1981), Data Encryption Algorithm.

ANSI/INCITS X3.4-1986 (R1997), Information Processing - Coded Character Sets - 7-Bit American National Standard Code
for Information Interchange (7-bit ASCII).

ANSI/TIA/EIA-232-F-1997 (R2002), Interface Between Data Terminal Equipment and Data Communication Equipment
Employing Serial Binary Data Interchange.

ANSI/TIA/EIA-485-A-1998 (R2003), Standard for Electrical Characteristics of Generators and Receivers for Use in Balanced
Digital Multipoint Systems.

ANSI X3.41-1974 (R1990), American National Standard Code Extension Techniques for Use with the 7-bit Coded Character
Set of American National Standard Code for Information Interchange.

ATA 878.1 (1999), ARCNET Local Area Network Standard.

DDN Protocol Handbook, Volumes 1-3, NIC 50004, 50005, and 50006.

Echelon, LonMark� Layer 1-6 Interoperability Guidelines Version 3.3.

FIPS 46-2 (1993), Federal Information Processing Standards - Data Encryption Standard.

FIPS 180-2 (2002), Federal Information Processing Standards - Secure Hash Standard

FIPS 197 (2002), Federal Information Processing Standards - Advanced Encryption Standard

IETF RFC 2616 (1999), Hypertext Transfer Protocol - HTTP/1.1, Internet Engineering Task Force

IETF RFC 2617 (1999), HTTP Authentication: Basic and Digest Access Authentication, Internet Engineering Task Force

IETF RFC 2246 (1999), The TLS Protocol Version 1.0, Internet Engineering Task Force

ISO 7498 (1984), Information processing systems - Open Systems Interconnection - Basic Reference Model.

ISO TR 8509 (1987), Information processing systems - Open Systems Interconnection - service conventions.

ISO 8649 (1988), Information processing systems - Open Systems Interconnection - Service definition for the Association
Control Service Element.

ISO 8802-2 (1998), Information processing systems - Local area networks - Part 2: Logical link control.

ISO/IEC 8802-3 (2000), Information processing systems - Local area networks - Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications.

ISO 8822 (1994), Information processing systems - Open Systems Interconnection - Connection-oriented presentation service
definition.

ISO/IEC 8824 (1990), Information technology - Open Systems Interconnection - Specification of Abstract Syntax Notation One
(ASN.1).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

25. REFERENCES

ANSI/ASHRAE Standard 135-2012 773

ISO/IEC 8825 (1990), Information technology - Open Systems Interconnection - Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1).

ISO 9545 (1994), Information processing systems - Open Systems Interconnection - Application Layer Structure (ALS).

ISO/IEC 10646-1 (2000), IT - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane.

JIS C 6226 (1983), Code of the Japanese Graphic Character Set for Information Interchange. Japan Institute for
Standardization.

Konnex Association, Konnex Handbook Volume 3: System Specifications.

Konnex Association, Konnex Handbook Volume 3: System Specifications, Part 7: Interworking, Chapter 2: Datapoint Types.

Konnex Association, Konnex Handbook Volume 3: System Specifications, Part 7: Interworking, Chapter 3: Standard
Identifier Tables, Annex 1 - Property Identifiers.

Konnex Association, Konnex Handbook Volume 7: Applications Descriptions.

NETSCAPE SSL3 DRAFT302 (1996), The SSL Protocol Version 3.0, Netscape Communications

UNICODE Technical Report# 17-5: Character Encoding Model. The Unicode Consortium.

W3C (2000), Simple Object Access Protocol (SOAP) 1.1, World Wide Web Consortium

W3C (2001), XML Schema Part 0: Primer, World Wide Web Consortium

W3C (2001), XML Schema Part 1: Structures, World Wide Web Consortium

W3C (2001), XML Schema Part 2: Datatypes, World Wide Web Consortium

W3C (2003), Extensible Markup Language (XML) 1.0 (Second Edition), World Wide Web Consortium

WS-I (2004), WS-I Basic Profile 1.0, Web Services Interoperability Organization

Sources for Reference Material

ANSI: American National Standards Institute, 25 West 43rd St., 4th Floor, New York , NY 10036.

DDN: Available from the Defense Data Network Information Center, SRI International, 333 Ravenswood Ave., Room EJ291,
Menlo Park, CA 94025.

Echelon: Echelon Corporation, 550 Meridian Ave., San Jose, CA 95126.

EIA: Electronics Industries Alliance, 2500 Wilson Blvd. Arington, VA 22201.

EIBA: EIB Association (EIBA) s.c.r.l., Neerveldstraat / Rue de Neerveld 105, B-1200 Brussels, Belgium

FIPS: National Institute of Standards and Technology, Gaithersburg, MD 20899.

IEEE: The Institute of Electrical and Electronics Engineers, Inc., 3 Park Ave., 17th Floor, New York, NY 10016.

Internet Engineering Task Force, www.ietf.org.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

25. REFERENCES

774 ANSI/ASHRAE Standard 135-2012

INCITS: The International Committee for Information Technology Standards (INCITS) is sponsored by the Information
Technology Industry Council (ITI), 1250 Eye St. NW, Suite 200, Washington, DC 20005.

ISO: Available from ANSI.

JIS: Available from ANSI.

Konnex Association: Neerveldstraat / Rue de Neerveld 105, B-1200 Brussels, Belgium

LonMark International, 550 Meridian Avenue, San Jose, CA 95126.

Netscape Communications, www.netscape.com

The Unicode Consortium. P.O. Box 391476, Mountain View, CA 94039-1476, USA.

W3C: World Wide Web Consortium, www.w3.org

WS-I: Web Services Interoperability Organization, www.ws-i.org

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX A - PROTOCOL IMPLEMENTATION CONFORMANCE STATEMENT (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 775

ANNEX A - PROTOCOL IMPLEMENTATION CONFORMANCE STATEMENT (NORMATIVE)

(This annex is part of this Standard and is required for its use.)

BACnet Protocol Implementation Conformance Statement

Date: ____________________________
Vendor Name:
Product Name:
Product Model Number:
Application Software Version: _________ Firmware Revision: ________ BACnet Protocol Revision: _____________

Product Description:
__
__
__
__
__
__
__
__

BACnet Standardized Device Profile (Annex L):

�BACnet Operator Workstation (B-OWS)

�BACnet Advanced Operator Workstation (B-AWS)

�BACnet Operator Display (B-OD)

�BACnet Building Controller (B-BC)

�BACnet Advanced Application Controller (B-AAC)

�BACnet Application Specific Controller (B-ASC)
�BACnet Smart Sensor (B-SS)

�BACnet Smart Actuator (B-SA)

List all BACnet Interoperability Building Blocks Supported (Annex K): ___________________________________
__

Segmentation Capability:

�Able to transmit segmented messages Window Size

�Able to receive segmented messages Window Size

Standard Object Types Supported:

An object type is supported if it may be present in the device. For each standard Object Type supported provide the following
data:

1) Whether objects of this type are dynamically creatable using the CreateObject service
2) Whether objects of this type are dynamically deletable using the DeleteObject service

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX A - PROTOCOL IMPLEMENTATION CONFORMANCE STATEMENT (NORMATIVE)

776 ANSI/ASHRAE Standard 135-2012

3) List of the optional properties supported
4) List of all properties that are writable where not otherwise required by this standard
5) List of all properties that are conditionally writable where not otherwise required by this standard
6) List of proprietary properties and for each its property identifier, datatype, and meaning
7) List of any property range restrictions

Data Link Layer Options:

� BACnet IP, (Annex J)
� BACnet IP, (Annex J), Foreign Device
� ISO 8802-3, Ethernet (Clause 7)
� ATA 878.1, 2.5 Mb. ARCNET (Clause 8)
� ATA 878.1, EIA-485 ARCNET (Clause 8), baud rate(s) ____________
� MS/TP master (Clause 9), baud rate(s):
� MS/TP slave (Clause 9), baud rate(s):
� Point-To-Point, EIA 232 (Clause 10), baud rate(s):
� Point-To-Point, modem, (Clause 10), baud rate(s):
� LonTalk, (Clause 11), medium: __________
� BACnet/ZigBee (Annex O) __________
� Other:

Device Address Binding:

Is static device binding supported? (This is currently necessary for two-way communication with MS/TP slaves and certain
other devices.) � Yes � No

Networking Options:

�Router, Clause 6 - List all routing configurations, e.g., ARCNET-Ethernet, Ethernet-MS/TP, etc.
� Annex H, BACnet Tunneling Router over IP
� BACnet/IP Broadcast Management Device (BBMD)
 Does the BBMD support registrations by Foreign Devices? � Yes � No
 Does the BBMD support network address translation? � Yes � No

Character Sets Supported:

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.

� ISO 10646 (UTF-8) � IBM�/Microsoft� DBCS � ISO 8859-1
� ISO 10646 (UCS-2) � ISO 10646 (UCS-4) � JIS X 0208

If this product is a communication gateway, describe the types of non-BACnet equipment/networks(s) that the
gateway supports:

Network Security Options:

� Non-secure Device - is capable of operating without BACnet Network Security

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX A - PROTOCOL IMPLEMENTATION CONFORMANCE STATEMENT (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 777

� Secure Device - is capable of using BACnet Network Security (NS-SD BIBB)
 � Multiple Application-Specific Keys
 � Supports encryption (NS-ED BIBB)
 � Key Server (NS-KS BIBB)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX B - GUIDETO SPECIFYING BACnet DEVICES (INFORMATIVE)

778 ANSI/ASHRAE Standard 135-2012

ANNEX B - GUIDE TO SPECIFYING BACnet DEVICES (INFORMATIVE)

(This annex is not part of this standard but is included for informative purposes only.)

The BIBBs (Annex K) and standardized BACnet device profiles (Annex L) are intended to be a useful tool for people who
design, specify, or operate building automation systems that contain BACnet devices. This classification approach is a
compromise between two conflicting goals. The first goal is to promote interoperability by limiting the various combinations of
BACnet object types and services that can be supported and still conform to this standard. The other goal is to avoid
unnecessarily restricting manufacturers of BACnet devices in the sense that they would be required to provide BACnet
functionality that would never be used by a device except to meet a conformance requirement. Maximum interoperability would
be achieved by requiring all BACnet devices to support exactly the same combination of standard object types and application
services. On the other hand, complete flexibility for manufacturers would inevitably lead to such widespread variation in the
particular object types and application services that are supported that many devices would only partially interoperate.
Interoperability would be limited to the intersection of the application services and object types supported by the devices.

The idea behind the BIBB and device profile model is to combine the portions of the BACnet protocol that are needed to
perform particular functions, and to identify those functions that a system designer would expect in a certain type of device.
When designing or specifying BACnet devices for an automation system, it is appropriate to specify the device profile that best
meets the needs of the application and any additional BIBBs that are also required. Devices can be expected to interoperate with
respect to a given BIBB so long as one device implements the A-side functionality and the other device implements the B-side
functionality.

A particular manufacturer may decide to build a product that supports more BIBBs than required by its device profile. This can
be determined from the PICS.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX C - REMOVED (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 779

ANNEX C - Removed

(This annex has been removed from the standard.)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX D - REMOVED (INFORMATIVE)

780 ANSI/ASHRAE Standard 135-2012

ANNEX D - Removed

(This annex has been removed from the standard.)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 781

ANNEX E - EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

(This annex is not part of this standard but is included for informative purposes only.)

This annex provides examples of the use of application services defined in Clauses 13-17. In these examples, the names of
properties are spelled out in Mixed Case, the values of properties with a datatype of CharacterString are enclosed in double
quotes ("), and the values of enumerated types are spelled out in UPPER CASE. No encoding of parameters is contained in
the examples; only their unencoded, symbolic values are shown. The encoding for these examples may be found in Annex F.

E.1 Alarm and Event Services

E.1.1 Examples of the AcknowledgeAlarm Service

See section E.1.4 for the use of the AcknowledgeAlarm service in conjunction with the ConfirmedEventNotification service and
section E.1.5 for use of the AcknowledgeAlarm service in conjunction with the UnconfirmedEventNotification service.

E.1.2 Example of the ConfirmedCOVNotification Service

The following example illustrates a notification that the present value of a monitored Analog Input object has changed.

Service = ConfirmedCOVNotification
'Subscriber Process Identifier' = 18
'Initiating Device Identifier' = (Device, Instance 4)
'Monitored Object Identifier' = (Analog Input, Instance 10)
'Time Remaining' = 0
'List of Values' = ((Present_Value, 65.0), (Status_Flags, (FALSE, FALSE, FALSE, FALSE)))

E.1.3 Example of the UnconfirmedCOVNotification Service

The following example illustrates a notification that the present value of a monitored Analog Input object has changed.

Service = UnconfirmedCOVNotification
'Subscriber Process Identifier' = 18
'Initiating Device Identifier' = (Device, Instance 4)
'Monitored Object Identifier' = (Analog Input, Instance 10)
'Time Remaining' = 0
'List of Values' = ((Present_Value, 65.0), (Status_Flags, (FALSE, FALSE, FALSE, FALSE)))

E.1.4 Example of the ConfirmedEventNotification Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT

Consider an Analog Input called "Zone1_Temp" that supports intrinsic event reporting. Assume that the temperature in zone one
has just risen to the point that it exceeds the high-limit value, causing the alarm to become active and the TO_OFFNORMAL bit
in the Acked_Transitions property to be cleared. Further assume that there is no associated message text. The device will issue a
ConfirmedEventNotification service request primitive with the following parameters:

Service = ConfirmedEventNotification
'Process Identifier' = 1
'Initiating Device Identifier' = (Device, Instance 4)
'Event Object Identifier' = (Analog Input, Instance 2)
'Time Stamp' = 16

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

782 ANSI/ASHRAE Standard 135-2012

'Notification Class' = 4
'Priority' = 100
'Event Type' = OUT_OF_RANGE
'Notify Type' = ALARM
'AckRequired' = TRUE
'From State' = NORMAL
'To State' = HIGH_LIMIT
'Event Values' = ((Exceeding_Value, 80.1), (Status_Flags, (TRUE, FALSE, FALSE, FALSE)),
 (Deadband, 1.0), (Exceeded_Limit, 80.0))

This PDU will be sent to each device specified by the Notification Class object associated with this Analog Input. Assuming
that the PDU is correctly received, a 'Result(+)' confirm primitive will be received from each recipient as a confirmation that
the message was received. Because the 'AckRequired' parameter has a value of TRUE, it is expected that a human operator
will be notified and will acknowledge the alarm. After this happens, an AcknowledgeAlarm indication primitive will be
received. The parameters in this primitive will be:

Service = AcknowledgeAlarm
'Acknowledging Process Identifier' = 1
'Event Object Identifier' = (Analog Input, Instance 2)
'Event State Acknowledged' = HIGH_LIMIT
'Time Stamp' = 16
'Acknowledgment Source' = "MDL"
'Time Of Acknowledgment' = (21-Jun-1992, 13:03:41.9)

The local BACnet device will locate the appropriate Analog Input object instance, set the TO_OFFNORMAL bit in the
Acked_Transitions property, and issue a 'Result(+)' response primitive. Note that the 'Time Stamp' parameter is a sequence
number in this example, and it has the value that was sent with the ConfirmedEventNotification.

E.1.5 Example of the UnconfirmedEventNotification Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT

Consider an Analog Input called "Zone1_Temp" that supports intrinsic event reporting. Assume that the temperature in zone one
has just risen to the point that it exceeds the high-limit value, causing the alarm to become active and the TO_OFFNORMAL bit
in the Acked_Transitions property to be cleared. Further assume that there is no associated message text. The device will issue
an UnconfirmedEventNotification service request primitive with the following parameters:

Service = UnconfirmedEventNotification
'Process Identifier' = 1
'Initiating Device Identifier' = (Device, Instance 9)
'Event Object Identifier' = (Analog Input, Instance 2)
'Time Stamp' = 16
'Notification Class' = 4
'Priority' = 100
'Event Type' = OUT_OF_RANGE
'Notify Type' = ALARM
'AckRequired' = TRUE
'From State' = NORMAL
'To State' = HIGH_LIMIT
'Event Values' = ((Present_Value, 80.1), (Status_Flags, (TRUE, FALSE, FALSE, FALSE)),
 (Deadband, 1.0), (High_Limit, 80.0))

This PDU will be sent to a particular recipient or broadcast locally, remotely, or globally depending on the value of the
Recipient_List property of the Notification Class object associated with this Analog Input. Because the 'AckRequired' parameter

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 783

has a value of TRUE, it is expected that a human operator will be notified and will acknowledge the alarm. After this happens,
an AcknowledgeAlarm indication primitive will be received. The parameters in this primitive will be:

Service = AcknowledgeAlarm
'Acknowledging Process Identifier' = 1
'Event Object Identifier' = (Analog Input, Instance 2)
'Event State Acknowledged' = HIGH_LIMIT
'Time Stamp' = 16
'Acknowledgment Source' = "MDL"
'Time Of Acknowledgment' = (21-Jun-1992, 13:03:41.9)

The local BACnet device will locate the appropriate Analog Input object instance, set the TO_OFFNORMAL bit in the
Acked_Transitions property, and issue a 'Result(+)' response primitive. Note that the 'Time Stamp' parameter is a sequence
number in this example, and it has the value that was sent with the UnconfirmedEventNotification.

E.1.6 Example of the GetAlarmSummary Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT
 (Analog Input, Instance 3) Zone2_Temp ANALOG_INPUT

A BACnet device attempting to obtain a list of active alarms from another BACnet device would issue the following service
request:

Service = GetAlarmSummary

A typical response to this request would be a 'Result(+)' containing no parameters, indicating that there are no active alarms, or a
'Result(+)', conveying a list of active alarms as shown below.

'List of Alarm Summaries' = (((Analog Input, Instance 2), HIGH_LIMIT, B'011'),
 ((Analog Input, Instance 3), LOW_LIMIT, B'111'))

Notice that the LOW_LIMIT from "Zone2_Temp" was previously acknowledged, but the HIGH_LIMIT from "Zone1_Temp"
was not.

E.1.7 Examples of the GetEnrollmentSummary Service

Example 1: Obtain a summary of all alarms that are not acknowledged.

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT
 (Event Enrollment, Instance 6) CW_Flow_Alarm EVENT_ENROLLMENT

Service = GetEnrollmentSummary
'Acknowledgment Filter' = NOT-ACKED

A typical response to this request would be a 'Result(+)' containing no parameters, indicating that there are no
unacknowledged alarms, or a 'Result(+)', conveying a list of active alarms as shown below.

'List of Enrollment Summaries' = (((Analog Input, Instance 2), OUT_OF_RANGE, HIGH_LIMIT, 100, 4),
 ((Event Enrollment, Instance 6), CHANGE_OF_STATE, NORMAL, 50, 2))

Example 2: Obtain a summary of all event enrollments with a priority in the range 6-10 for which a particular device subscribes.

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

784 ANSI/ASHRAE Standard 135-2012

 (Analog Input, Instance 3) Zone2_Temp ANALOG_INPUT
 (Analog Input, Instance 4) Zone3_Temp ANALOG_INPUT
 (Event Enrollment, Instance 7) CW_Temp_Alarm EVENT_ENROLLMENT
 (Device, Instance 17) Console 1 DEVICE

Service = GetEnrollmentSummary
'Acknowledgment Filter' = ALL
'Enrollment Filter' = ((Device, Instance 17), 9)
'Priority Filter' = (6,10)

A typical response to this request would be a 'Result(+)' containing no parameters, indicating that there are no event enrollments
that meet the specified criteria, or a 'Result(+)', conveying a list of Event Enrollment objects that do meet the criteria as shown
below.

'List of Enrollment Summaries' = (((Analog Input, Instance 2), OUT_OF_RANGE, NORMAL, 8, 4),
 ((Analog Input, Instance 3), OUT_OF_RANGE, NORMAL, 8, 4),
 ((Analog Input, Instance 4), OUT_OF_RANGE, NORMAL, 8, 4),
 ((Event Enrollment, Instance 7), FLOATING_LIMIT, NORMAL, 3, 8))

E.1.8 Example of the GetEventInformation Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 2) Zone1_Temp ANALOG_INPUT
 (Analog Input, Instance 3) Zone2_Temp ANALOG_INPUT

A BACnet device attempting to obtain a list of active events from another BACnet device would issue the following service
request:

Service = GetEventInformation

A typical response to this request would be a 'Result(+)' containing no parameters, indicating that there are no active events,
or a 'Result(+)', conveying a list of active events as shown below.

'List of Event Summaries' = (((Analog Input, Instance 2), HIGH_LIMIT, B'011', ((7-Jun-99,15:35:00.20),

 (*-*-*,*:*:*.*), (*-*-*,*:*:*.*)), ALARM, B'111', (15, 15, 20)),
 ((Analog Input, Instance 3), NORMAL, B'110', ((7-Jun-99, 15:40:00.00),
 (*-*-*,*:*:*:*), (15:45:30.30)), ALARM, B'111', (15, 15, 20)),
 FALSE)

Notice that the to NORMAL transition from Zone2_Temp has not been acknowledged.

E.1.9 Example of the LifeSafetyOperation Service

This example illustrates the use of the LifeSafetyOperation service to reset a trouble condition.

Service = LifeSafetyOperation
'Requesting Process Identifier' = 18
'Requesting Source' = "MDL"
'Request' = RESET
'Object Identifier' = (Life Safety Point, 1)

E.1.10 Example of the SubscribeCOV Service

This example illustrates the use of the SubscribeCOV service to subscribe indefinitely to COV notifications from an Analog
Input object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 785

Service = SubscribeCOV
'Subscriber Process Identifier' = 18
'Monitored Object Identifier' = (Analog Input, Instance 10)
'Issue Confirmed Notifications' = TRUE
'Lifetime' = 0

E.1.11 Example of the SubscribeCOVProperty Service

This example illustrates the use of the SubscribeCOVProperty service to subscribe to COV notifications on the present-value
of an Analog Input object.

Service = SubscribeCOVProperty
'Subscriber Process Identifier' = 18
'Monitored Object Identifier' = (Analog Input, Instance 10)
'Issue Confirmed Notifications' = TRUE
'Lifetime' = 60
'Monitored Property' = (Present_Value)
'COV Increment' = 1.0

E.2 File Access Services

The following examples illustrate typical uses of files. The actual form and content of files is both vendor-specific and
application-specific.

E.2.1 Examples of the AtomicReadFile Service

Example 1: Read data from a file.

Assumed objects: Object Identifier Object Name Object Type
 (File, Instance 1) ChillerData FILE

Service = AtomicReadFile
'File Identifier' = (File, Instance 1)
'Stream Access':
 'File Start Position' = 0
 'Requested Octet Count' = 27

The 'Result(+)' parameters would be:

'End Of File' = FALSE
'Stream Access':
 'File Start Position' = 0
 'File Data ' = "Chiller01 On-Time=4.3 Hours"

Example 2: Read record from a file.

Assumed objects: Object Identifier Object Name Object Type
 (File, Instance 2) ChillerTrendLog FILE

Service = AtomicReadFile
'File Identifier' = (File, Instance 2)
'Record Access':
 'File Start Record' = 14
 'Requested Record Count' = 3

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

786 ANSI/ASHRAE Standard 135-2012

The 'Result(+)' parameters would be:

'End Of File' = TRUE
'Record Access':
 'File Start Record' = 14
 'Returned Record Count' = 2
 'File Record Data' = ((12:00,45.6), (12:15,44.8))

Notice that in this example not all of the requested data are returned.

E.2.2 Examples of the AtomicWriteFile Service

Example 1: Write data to a file.

Assumed objects: Object Identifier Object Name Object Type
 (File, Instance 1) ChillerData FILE

Service = AtomicWriteFile
'File Identifier' = (File, Instance 1)
'Stream Access':
 'File Start Position' = 30
 'File Data' = "Chiller01 On-Time=4.3 Hours"

The 'Result(+)' parameters would be:

'Stream Access':
 'File Start Position' = 30

Example 2: Append two records to a file.

Assumed objects: Object Identifier Object Name Object Type
 (File, Instance 2) ChillerTrendLog FILE

Service = AtomicWriteFile
'File Identifier' = (File, Instance 2)
'Record Access':
 'File Start Record' = -1
 'Record Count' = 2
 'File Record Data' = ((12:00,45.6),
 (12:15,44.8))

The 'Result(+)' parameters would be:

'Record Access':
 'File Start Record' = 14

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 787

E.3 Object Access Services

E.3.1 Example of the AddListElement Service

Example 1. Adding members to a group object.

Assumed objects: Object Identifier Object Name Object Type
 (Group, Instance 3) AHU1_GRAPH GROUP
 (Analog Input, Instance 9) AHU1_SA_TEMP ANALOG_INPUT
 (Analog Input, Instance 10) AHU1_RA_TEMP ANALOG_INPUT
 (Analog Input, Instance 11) AHU1_OAD_POS ANALOG_INPUT
 (Analog Input, Instance 12) AHU1_SA_PRESS ANALOG_INPUT
 (Analog Input, Instance 13) AHU1_CW_VALVE ANALOG_INPUT
 (Analog Input, Instance 14) OA_TEMP ANALOG_INPUT
 (Analog Input, Instance 15) OA_HUMID ANALOG_INPUT

Consider a BACnet device that contains the following group object used for a graphic display:

Property: Object_Identifier = (Group, Instance 3)
Property: Object_Name = "AHU1_GRAPH"
Property: Object_Type = GROUP
Property: Description = "Points for AHU1 graphic"
Property: List_Of_Group_Members = (((Analog Input, Instance 9), (Present_Value, Reliability)),
 ((Analog Input, Instance 10), (Present_Value, Reliability)),
 ((Analog Input, Instance 11), (Present_Value, Reliability)),
 ((Analog Input, Instance 12), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 13), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 14), (Present_Value)))
Property: Present_Value = (65.2, NO_FAULT_DETECTED, 72.4, NO_FAULT_DETECTED, 99,
 NO_FAULT_DETECTED, 0.67, NO_FAULT_DETECTED, "Inches of water", 32,
 NO_FAULT_DETECTED, " % open", 68.3)

The system operator has decided to upgrade the control software in AHU1 to use an enthalpy economizer cycle. As a result, the
operator wants to add a humidity reading to "AHU1_GRAPH". The AddListElement Service primitive is used with the
following parameters:

Service = AddListElement
'Object Identifier' = (Group, Instance 3)
'Property Identifier' = List_Of_Group_Members
'List of Elements' = ((Analog Input, Instance 15),(Present_Value, Reliability))

Assuming the service request succeeds, a 'Result(+)' service primitive will be issued and the object "AHU1_GRAPH" now
has the properties:

Property: Object_Identifier = (Group, Instance 3)
Property: Object_Name = "AHU1_GRAPH"
Property: Object_Type = GROUP
Property: Description = "Points for AHU1 graphic"
Property: List_Of_Group_Members = (((Analog Input, Instance 9), (Present_Value, Reliability)),
 ((Analog Input, Instance 10), (Present_Value, Reliability)),
 ((Analog Input, Instance 11), (Present_Value, Reliability)),
 ((Analog Input, Instance 12), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 13), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 14), (Present_Value)),
 ((Analog Input, Instance 15), (Present_Value, Reliability)))

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

788 ANSI/ASHRAE Standard 135-2012

Property: Present_Value = (65.2, NO_FAULT_DETECTED, 72.4, NO_FAULT_DETECTED, 99,
 NO_FAULT_DETECTED, 0.67, NO_FAULT_DETECTED, "Inches of water", 32,
 NO_FAULT_DETECTED, " % open", 68.3, 42.1, NO_FAULT_DETECTED)

NOTE: In this example the new element was added at the end of the list. This is a logical place because the list must be traversed
to determine if the "new" element already exists. This standard does not require adding new list elements at the end.

E.3.2 Example of the RemoveListElement Service

Example 1: Removing a member of a group.

Assumed objects: Object Identifier Object Name Object Type
 (Group, Instance 3) AHU1_GRAPH GROUP
 (Analog Input, Instance 9) AHU1_SA_TEMP ANALOG_INPUT
 (Analog Input, Instance 10) AHU1_RA_TEMP ANALOG_INPUT
 (Analog Input, Instance 11) AHU1_OAD_POS ANALOG_INPUT
 (Analog Input, Instance 12) AHU1_SA_PRESS ANALOG_INPUT
 (Analog Input, Instance 13) AHU1_CW_VALVE ANALOG_INPUT
 (Analog Input, Instance 14) OA_TEMP ANALOG_INPUT

This is an example of using the RemoveListElement Service to change an existing group object. Assume that a group object
"AHU1_GRAPH" is defined as:

Property: Object_Identifier = (Group, Instance 3)
Property: Object_Name = "AHU1_GRAPH"
Property: Object_Type = GROUP
Property: List_Of_Group_Members = (((Analog Input, Instance 9), (Present_Value, Reliability)),
 ((Analog Input, Instance 10), (Present_Value, Reliability)),
 ((Analog Input, Instance 11), (Present_Value, Reliability)),
 ((Analog Input, Instance 12), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 13), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 14),(Present_Value)))
Property: Present_Value = (65.2, NO_FAULT_DETECTED, 72.4, NO_FAULT_DETECTED, 99.0,
 NO_FAULT_DETECTED, 0.67, NO_FAULT_DETECTED, "Inches of water", 32.0,
 NO_FAULT_DETECTED, % open", 68.3)

A system operator is updating graphic displays and decides that the Description properties in this group are not really used and
wishes to remove them. Even though Description is an element of a property list, it cannot be removed by this service because it
is nested inside the List_Of_Group_Members. A two step process is required as shown below.

The following service request is issued:

Service = RemoveListElement
'Object Identifier' = (Group, Instance 3)
'Property Identifier' = "List_Of_Elements"
'List of Elements' = (((Analog Input, Instance 12), (Present_Value, Reliability, Description)),
 ((Analog Input, Instance 13), (Present_Value, Reliability, Description)))

This service request is successful and the status of the object "AHU1_GRAPH" at this point is:

Property: Object_Identifier = (Group, Instance 3)
Property: Object_Name = "AHU1_GRAPH"
Property: Object_Type = GROUP

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 789

Property: List_Of_Group_Members = (((Analog Input, Instance 9), (Present_Value, Reliability)),
 ((Analog Input, Instance 10), (Present_Value, Reliability)),
 ((Analog Input, Instance 11), (Present_Value, Reliability)),
 ((Analog Input, Instance 14), (Present_Value)))
Property: Present_Value = (65.2, NO_FAULT_DETECTED, 72.4, NO_FAULT_DETECTED, 99.0,
 NO_FAULT_DETECTED, 68.3)

The AddListElement service is now used to replace the group members that were removed but are still needed for the graphic
display.

The following service request is issued:

Service = AddListElement
'Object Identifier' = (Group, Instance 3)
'Property Identifier' = "List_Of_Group_Members"
'List of Elements' = (((Analog Input, Instance 12), (Present_Value, Reliability)),
 ((Analog Input, Instance 13), (Present_Value, Reliability)))

This service request is successful and the "AHU1_GRAPH" is now in the desired form:

Property: Object_Identifier = (Group, Instance 3)
Property: Object_Name = "AHU1_GRAPH"
Property: Object_Type = GROUP
Property: List_Of_Group_Members = (((Analog Input, Instance 9), (Present_Value, Reliability)),
 ((Analog Input, Instance 10), (Present_Value, Reliability)),
 ((Analog Input, Instance 11), (Present_Value, Reliability)),
 ((Analog Input, Instance 14), (Present_Value))
 ((Analog Input, Instance 12), (Present_Value, Reliability)),
 ((Analog Input, Instance 13), (Present_Value, Reliability)))
Property: Present_Value = (65.2, NO_FAULT_DETECTED, 72.4, NO_FAULT_DETECTED, 99.0,
 NO_FAULT_DETECTED, 68.3, 0.67, NO_FAULT_DETECTED, 32.0,
 NO_FAULT_DETECTED)

E.3.3 Example of the CreateObject Service

This is an example of using the CreateObject service to create a file object to be used for a trend log.

Service = CreateObject
'Object Type' = FILE
'List of Initial Values' = ((Object_Name, "Trend 1"), (File_Access_Method, RECORD_ACCESS))

Assuming that the CreateObject service request was correctly received and the device has the ability to create a file object, a
'Result(+)' will be returned conveying the Object_Identifier of the newly created object.

'Object_Identifier' = (File, Instance 13)

Note that in this example only the File_Type and File_Access_Method properties of the new object are initialized as a side effect
of the object creation. The other properties of the object will contain default values provided by the vendor. If these default
values are not acceptable, then initial values for these properties may be included in the 'List of Initial Values' for the
CreateObject service. Alternatively, any writable properties of the object may be initialized or written to via a WriteProperty or
WritePropertyMultiple service request after the object is created.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

790 ANSI/ASHRAE Standard 135-2012

E.3.4 Example of the DeleteObject Service

Assumed objects: Object Identifier Object Name Object Type
 (Group, Instance 6) ZONE1_TEMPS GROUP
 (Group, Instance 7) NotDeletable GROUP

Consider a BACnet device that contains two group objects, "ZONE1_TEMPS" and "NotDeletable". The object "NotDeleteable"
was created and protected at configuration time and may not be deleted by this protocol service.

Example 1: The successful deletion of an object.

The following request service primitive is issued:

Service = DeleteObject
'Object Identifier' = (Group, Instance 6)

The object is deleted and the server issues a 'Result(+)' response primitive.

Example 2: An unsuccessful attempt to delete a group object.

The following request service primitive is issued:

Service = DeleteObject
'Object Identifier' = (Group, Instance 7)

This object is protected and cannot be deleted by this protocol service. The server issues the following response primitive.

'Result(-)'
'Error Type' = (SERVICES, OBJECT_NOT_DELETABLE)

E.3.5 Examples of the ReadProperty Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 5) SPACE_TEMP ANALOG_INPUT

We wish to read the present value for an analog input called "SPACE_TEMP".

Service = ReadProperty
'ObjectIdentifier' = (Analog Input, Instance 5)
'PropertyIdentifier' = Present_Value

Assuming the target machine can locate the object with this ID and the requested properties, the result would be:

'ObjectIdentifier' = (Analog Input, Instance 5)
'PropertyIdentifier' = Present_Value
'Value' = 72.3

The result indicates that the present value of "SPACE_TEMP" is 72.3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 791

E.3.6 Deleted Clause

This clause has been removed.

E.3.7 Examples of the ReadPropertyMultiple Service

Example 1: Parameters for reading multiple properties of a single object.

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 16) SPACE_TEMP ANALOG_INPUT

We wish to read the Present_Value and Reliability of an analog point called "SPACE_TEMP".

Service = ReadPropertyMultiple
'List of Read Access Specifications' = ((Analog Input, Instance 16), (Present_Value, Reliability))

Assuming the target machine can locate the object with this identifier and the requested properties, the result would be:

'List of Read Access Results' = ((Analog Input, Instance 16), ((Present_Value, 72.3),
 (Reliability, NO_FAULT_DETECTED)))

The result indicates that the present value of "SPACE_TEMP" is 72.3 and that it is reliable so far as the device can determine.

Example 2: Parameters for reading the properties of several objects.

Assumed objects: Object Identifier Object Name Object Type
 (Analog Input, Instance 33) CW_STEMP ANALOG_INPUT
 (Analog Input, Instance 34) CW_RTEMP ANALOG_INPUT
 (Analog Input, Instance 35) CW_FLOW ANALOG_INPUT

Suppose we wish to access the present values of three analog inputs in a chilled water system whose properties are grouped
together in objects called "CW_STEMP", "CW_RTEMP", and "CW_FLOW".

Service = ReadPropertyMultiple
'List of Read Access Specifications' = (((Analog Input, Instance 33), (Present_Value)),
 ((Analog Input, Instance 50), (Present_Value)),
 ((Analog Input, Instance 35), (Present_Value)))

Assuming successful access of two out of the three requested values:

'List of Read Access Results' = (((Analog Input, Instance 33), (Present_Value, 42.3)),
 ((Analog Input, Instance 50), (Present_Value, 'Property Access Error' =
 (OBJECT, UNKNOWN_OBJECT))),
 ((Analog Input, Instance 35), (Present_Value, 435.7)))

This result indicates that the supply temperature was successfully accessed and is currently 42.3, and the flow is 435.7. But
access to the present value of the return temperature failed. The error type related to this part of the request is in the Error Class
OBJECT and the specific Error Code is UNKNOWN_OBJECT. This occurred because the object identifier was incorrect,
possibly due to an operator error.

E.3.8 Example of the ReadRange Service

Assumed objects: Object Identifier Object Name Object Type
 (Trend Log, Instance 1) ROOM3TEMP TREND_LOG

We wish to look at the next 4 records within a Trend Log's Log Buffer starting at 23-MAR-1998, 19:52:34.00.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

792 ANSI/ASHRAE Standard 135-2012

The Trend Log's Log Buffer currently only holds 2 Entries which are newer than 23-MAR-1998, 19:52:34.00.

Service = ReadRange
'ObjectIdentifier' = (Trend Log, Instance 1)
'PropertyIdentifier' = Log_Buffer
'Range'
 'By Time'

'Reference Time' = (23-MAR-1998, 19:52:34.00)
'Count' = 4

A typical result might be:

'Result Flags' = (TRUE, TRUE, FALSE)
'Item Count' = 2
'Item Data' = (((23-MAR-1998, 19:54:27.0), 18.0, (FALSE, FALSE, FALSE, FALSE)),
 ((23-MAR-1998, 19:56:27.0), 18.1, (FALSE, FALSE, FALSE, FALSE)))
'First Sequence Number' = 79201

E.3.9 Examples of the WriteProperty Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Value, Instance 1) HW_Setpoint ANALOG_VALUE

We wish to modify the Present_Value of an Analog Value object with an Object_Name of "HW_Setpoint".

Service = WriteProperty
'ObjectIdentifier' = (Analog Value, Instance 1)
'PropertyIdentifier' = Present_Value
'PropertyValue' = 180.0

Assuming the target machine can locate the object with the specified Object_Identifier and modify the Present_Value property,
the result would be the issuance of a 'Result(+)' primitive with no additional parameters. This acknowledgment would be
conveyed to the service requester in a SimpleACK-PDU without parameters.

E.3.10 Examples of the WritePropertyMultiple Service

Assumed objects: Object Identifier Object Name Object Type
 (Analog Value, Instance 5) Room 1 Temp Setpoint ANALOG_VALUE
 (Analog Value, Instance 6) Room 2 Temp Setpoint ANALOG_VALUE
 (Analog Value, Instance 7) Room 3 Temp Setpoint ANALOG_VALUE

We wish to modify the Present_Value of three analog variable objects used in the control of three space temperature loops.

Service = WritePropertyMultiple
'List of Write Access Specifications' = (((Analog Value, Instance 5), (Present_Value, 67.0)),
 ((Analog Value, Instance 6), (Present_Value, 67.0)),
 ((Analog Value, Instance 7)', (Present_Value, 72.0)))

Assuming the responding BACnet-user can locate each of the three objects, the result would be the replacement of the former
values of each of these properties with the provided values and the issuance of a 'Result(+)' primitive with no additional
parameters. This acknowledgment would be conveyed to the service requester in a SimpleACK-PDU without parameters.

E.3.11 Example #1 of WriteGroup Service

We wish to set control group 23 channel 268=1111, channel 269=2222, priority for writing is 8.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 793

Service = WriteGroup
'Group Number' = 23
'Write Priority' = 8
'Change List' = ((268,,1111),(269,,2222))

E.3.12 Example #2 of WriteGroup Service

We wish to set control group 23 channel 12=67.0, channel 13=72.0, priority for writing is 8, inhibit execution delays.

Service = WriteGroup
'Group Number' = 23
'Write Priority' = 8
'Change List' = ((12,,67.0),(13,,72.0))
'Inhibit Delay' = TRUE

E.3.13 Example #3 of WriteGroup Service

We wish to set control group 23 channel 12=1111 at priority 8, channel 13="ABC" at priority 10.

Service = WriteGroup
'Group Number' = 23
'Write Priority' = 8
'Change List' = ((12,,1111),(13,10,"ABC"))

E.4 Remote Device Management Services

E.4.1 An Example of the DeviceCommunicationControl Service

While troubleshooting a problem on a BACnet network, it becomes necessary to stop communication exchanges from a
particular device for a period of five minutes. This is accomplished by means of the DeviceCommunicationControl Service as
follows.

Service = DeviceCommunicationControl
'Time Duration' = 5
'Enable/Disable' = DISABLE
'Password' = "#egbdf!"

E.4.2 An Example of the ConfirmedPrivateTransfer Service

This is an example of a typical proprietary service request using a BACnet confirmed service.

Service = ConfirmedPrivateTransfer
'VendorID' = 25
'Service Number' = 8
'ServiceParameters' = (72.4, X'1649')

Assuming that the service is successfully executed but no results need to be returned to the requesting BACnet-user, a 'Result(+)'
primitive will be returned conveying the following information.

'VendorID' = 25
'Service Number' = 8
'Result Block' = NIL

E.4.3 An Example of the UnconfirmedPrivateTransfer Service

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

794 ANSI/ASHRAE Standard 135-2012

This is an example of a typical proprietary service request using a BACnet unconfirmed service.

Service = UnconfirmedPrivateTransfer
'VendorID' = 18
'Service Number' = 12
'ServiceParameters' = (72.4, X'1649')

Since this is an unconfirmed service, no response is expected.

E.4.4 Example of the ReinitializeDevice Service

This example illustrates the use of the ReinitializeDevice service for requesting a WARMSTART for a device that requires a
password with this service.

Service = ReinitializeDevice
'Reinitialized State of Device' = WARMSTART
'Password' = "AbCdEfGh"

If the password is successfully validated, a 'Result (+)' primitive will be returned and then the device will reinitialize.
Otherwise, a 'Result (-)' primitive will be returned.

E.4.5 Examples of the ConfirmedTextMessageService

This example illustrates the use of the ConfirmedTextMessage service.

Service = ConfirmedTextMessage
'Text Message Source Device' = (Device, Instance 5)
'Message Priority' = NORMAL
'Message' = "P.M. required for PUMP347"

If the ConfirmedTextMessage-Request was successfully received, a 'Result(+)' will be returned. Otherwise, a 'Result(-)' will be
returned.

E.4.6 Examples of the UnconfirmedTextMessage Service

This example illustrates the use of the UnconfirmedTextMessage service.

Service = UnconfirmedTextMessage
'Text Message Source Device' = (Device, Instance 5)
'Message Priority' = NORMAL
'Message' = "P.M. required for PUMP347"

E.4.7 Example of the TimeSynchronization Service

An example of parameter usage for the TimeSynchronization service follows.

Service = TimeSynchronization
'Time'
 'Date' = 17-Nov-92
 'Time' = 22:45:30.7

This request will notify all remote devices that the current time is 30.7 seconds past 10:45 P.M. on November 17, 1992. The
remote devices may use this information to update their internal clocks so that all devices will be synchronized.

E.4.8 Examples of the Who-Has and I-Have Services

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 795

Examples of the parameter usage for the Who-Has and I-Have services follow.

Example 1: Locating the device that contains an object for which the Object_Name is known.

Consider an attempt to locate an object with an object name of "OATemp":

Service = Who-Has
'Object Name' = "OATemp"

Assuming that there is exactly one device that has such an object, the following I-Have service indication would be received:

Service = I-Have
'Device Identifier' = (Device, Instance 8)
'Object Identifier' = (Analog Input, Instance 3)
'Object Name' = "OATemp"

Example 2: Locating the device that contains an object for which the Object_Identifier is known.

Consider an attempt to locate an object with an Object_Identifier of (Analog Input, Instance 3).

Service = Who-Has
'Object Identifier' = (Analog Input, Instance 3)

Assuming that there is exactly one device that has such an object, the following I-Have service indication would be received:

Service = I-Have
'Device Identifier' = (Device, Instance 8)
'Object Identifier' = (Analog Input, Instance 3)
'Object Name' = "OATemp"

E.4.9 Examples of the Who-Is and I-Am Services

Examples of parameter usage for the Who-Is and I-Am services follow.

Example 1: Establishing the network address of a device.

We wish to determine the network address of another BACnet Device, but only its Device Identifier is known.

Service = Who-Is
'Who-Is Device Identifier' = (Device, Instance 3)

Assuming that there is such a device on the network, it responds sometime later using the I-Am service:

Service = I-Am
'I-Am Device Identifier' = (Device, Instance 3)
'Max APDU Length Accepted' = 1024
'Segmentation Supported' = NO_SEGMENTATION
'Vendor Identifier' = 99

The MAC layer source address combined with the network layer SNET and SADR provide all of the addressing information
needed to communicate with the device (Device, Instance 3).

Example 2: Finding out about all network devices.

Suppose we wish to determine which devices are currently on the local network.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

796 ANSI/ASHRAE Standard 135-2012

Service = Who-Is Service

Each of the devices on the network answers, resulting in several I-Am service requests:

Service = I-Am
'I-Am Device Identifier' = (Device, Instance 1)
'Max APDU Length Accepted' = 480
'Segmentation Supported' = SEGMENTED_TRANSMIT
'Vendor Identifier' = 99

Service = I-Am
'I-Am Device Identifier' = (Device, Instance 2)
'Max APDU Length Accepted' = 206
'Segmentation Supported' = SEGMENTED_RECEIVE
'Vendor Identifier' = 33

Service = I-Am
'I-Am Device Identifier' = (Device, Instance 3)
'Max APDU Length Accepted' = 1024
'Segmentation Supported' = NO_SEGMENTATION
'Vendor Identifier' = 99

Service = I-Am
'I-Am Device Identifier' = (Device, Instance 4)
'Max APDU Length Accepted' = 128
'Segmentation Supported' = SEGMENTED_BOTH
'Vendor Identifier' = 66

This procedure can be expanded to find out about all devices in a BACnet internet by including the global network address
(X'FFFF') in the network layer header.

E.5 Virtual Terminal Services

Examples of parameter usage for the VT-Open, VT-Data, and VT-Close services follow. For readability purposes, some of the
examples include imbedded control characters, such as carriage return. These are shown within text strings enclosed in curly
braces, e.g., "{cr}{lf}text".

Establishing a Session with a Default Terminal:

We wish to create a VT-session with the Default-terminal style of operator interface in another BACnet Device.

Service = VT-Open
'VT-class' = ANSI_X3.64
'Local VT Session Identifier' = 5

Assuming that the target machine can create a new VT-session, the 'Result (+)' response might be:

'Remote VT Session Identifier' = 29

The result indicates that target device has accepted the request and created a new session.

Now that a session is established, the operator interface program in the remote device prompts us to sign-on by issuing a VT-
Data request:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX E – EXAMPLES OF BACnet APPLICATION SERVICES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 797

Service = VT-Data
'VT-session Identifier' = 5
'VT-new Data' = "{cr}{lf}Enter User Name:"
'VT-data Flag' = 0

Our operator interface display queue is empty so it can accept all of the incoming characters. Our VT-User therefore issues a
'Result (+)':

'All New Data Accepted' = TRUE

Eventually, our human operator enters his or her name in response to the prompt, causing a VT-Data request to be issued:

Service = VT-Data
'VT-session Identifier' = 29
'VT-new Data' = "FRED{cr}"
'VT-data Flag' = 0

The remote operator interface accepts the incoming characters as well and responds with 'Result (+)':

'All New Data Accepted' = TRUE

Then the remote operator interface echoes the entered characters and another prompt:

Service = VT-Data
'VT-session Identifier' = 5
'VT-new Data' = "FRED{cr}{lf}Enter Password:"
'VT-data Flag' = 1

Our operator interface display queue is empty so it can accept all of the incoming characters. Our VT-User therefore issues
'Result (+)':

'All New Data Accepted' = TRUE

For some reason, FRED decides to cancel this virtual terminal session and signals the operator interface program to do so. The
operator interface program issues a VT-Close request:

Service = VT-Close
'List of Remote VT Session Identifiers' = (29)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

798 ANSI/ASHRAE Standard 135-2012

ANNEX F - EXAMPLES OF APDU ENCODING (INFORMATIVE)

(This annex is not part of the standard but is included for informative purposes only.)

This annex illustrates the use of BACnet encoding rules by showing the encoded APDUs for the examples in Annex E.

F.1 Example Encodings for Alarm and Event Services

F.1.1 Encoding for Example E.1.1 - AcknowledgeAlarm Service

The encoding for example E.1.1 is included in F.1.4 and F.1.5.

F.1.2 Encoding for Example E.1.2 - ConfirmedCOVNotification Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'0F' Invoke ID=15
X'01' Service Choice=1 (ConfirmedCOVNotification-Request)

X'09' SD Context Tag 0 (Subscriber Process Identifier, L=1)
X'12' Subscriber Process Identifier=18
X'1C' SD Context Tag 1 (Initiating Device Identifier, L=4)
X'02000004' Device, Instance 4
X'2C' SD Context Tag 2 (Monitored Object Identifier, L=4)
X'0000000A' Analog Input, Instance Number=10
X'39' SD Context Tag 3 (Time Remaining, L=1)
X'00' Time Remaining=0
X'4E' PD Opening Tag 4 (List Of Values)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'2E' PD Opening Tag 2 (Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42820000' 65.0
 X'2F' PD Closing Tag 2 (Value)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'6F' 111 (STATUS_FLAGS)
 X'2E' PD Opening Tag 2 (Value)
 X'82' Application Tag 8 (Bit String, L=2)
 X'0400' 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)
 X'2F' PD Closing Tag 2 (Value)
X'4F' PD Closing Tag 4 (List Of Values)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'0F' Invoke ID=15
X'01' Service ACK Choice=1 (ConfirmedCOVNotification)

F.1.3 Encoding for Example E.1.3 - UnconfirmedCOVNotification Service

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'02' Service Choice=2 (UnconfirmedCOVNotification-Request)

X'09' SD Context Tag 0 (Subscriber Process Identifier, L=1)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 799

X'12' 18
X'1C' SD Context Tag 1 (Initiating Device Identifier, L=4)
X'02000004' Device, Instance Number=4
X'2C' SD Context Tag 2 (Monitored Object Identifier, L=4)
X'0000000A' Analog Input, Instance Number=10
X'39' SD Context Tag 3 (Time Remaining, L=1)
X'00' 0
X'4E' PD Opening Tag 4 (List Of Values)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'2E' PD Opening Tag 2 (Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42820000' 65.0
 X'2F' PD Closing Tag 2 (Value)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'6F' 111 (STATUS_FLAGS)
 X'2E' PD Opening Tag 2 (Value)
 X'82' Application Tag 8 (Bit String, L=2)
 X'0400' 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)
 X'2F' PD Closing Tag 2 (Value)
X'4F' PD Closing Tag 4 (List Of Values)

F.1.4 Encoding for Example E.1.4 - ConfirmedEventNotification Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'10' Invoke ID=16
X'02' Service Choice=2 (ConfirmedEventNotification-Request)
X'09' SD Context Tag 0 (Process Identifier, L=1)
X'01' Process Identifier=1
X'1C' SD Context Tag 1 (Initiating Device Identifier, L=4)
X'02000004' Device, Instance 4
X'2C' SD Context Tag 2 (Event Object Identifier, L=4)
X'00000002' Analog Input, Instance Number=2
X'3E' PD Opening Tag 3 (Time Stamp)
 X'19' SD Context Tag 1 (SequenceNumber, L=1)
 X'10' 16
X'3F' PD Closing Tag 3 (Time Stamp)
X'49' SD Context Tag 4 (Notification Class, L=1)
X'04' 4
X'59' SD Context Tag 5 (Priority, L=1)
X'64' 100
X'69' SD Context Tag 6 (Event Type, L=1)
X'05' 5 (OUT_OF_RANGE)
X'89' SD Context Tag 8 (Notify Type, L=1)
X'00' 0 (ALARM)
X'99' SD Context Tag 9 (AckRequired, L=1)
X'01' TRUE
X'A9' SD Context Tag 10 (From State, L=1)
X'00' 0 (NORMAL)
X'B9' SD Context Tag 11 (To State, L=1)
X'03' 3 (HIGH_LIMIT)
X'CE' PD Opening Tag 12 (Event Values)
 X'5E' PD Opening Tag 5 (BACnetNotificationParameters, Choice 5=OUT_OF_RANGE)
 X'0C' SD Context Tag 0 (Exceeding Value, L=4)
 X'42A03333' 80.1

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

800 ANSI/ASHRAE Standard 135-2012

 X'1A' SD Context Tag 1 (Status Flags, L=2)
 X'0480' 1,0,0,0 (TRUE, FALSE, FALSE, FALSE)
 X'2C' SD Context Tag 2 (Deadband, L=4)
 X'3F800000' 1.0
 X'3C' SD Context Tag 3 (Exceeded Limit, L=4)
 X'42A00000' 80.0
 X'5F' PD Closing Tag 5 (BACnetNotificationParameters)
X'CF' PD Closing Tag 12 (Event Values)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'10' Invoke ID=16
X'02' Service ACK Choice=2 (ConfirmedEventNotification)

At some future time, an AcknowledgeAlarm-Request is generated:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'07' Invoke ID=7
X'00' Service Choice=0 (AcknowledgeAlarm-Request)

X'09' SD Context Tag 0 (Acknowledging Process Identifier, L=1)
X'01' Acknowledging Process Identifier=1
X'1C' SD Context Tag 1 (Event Object Identifier, L=4)
X'00000002' Analog Input, Instance Number=2
X'29' SD Context Tag 2 (Event State Acknowledged, L=1)
X'03' 3 (HIGH_LIMIT)
X'3E' PD Opening Tag 3 (Time Stamp)
 X'19' SD Context Tag 1 (Sequence Number, L=1)
 X'10' 16
X'3F' PD Closing Tag 3 (Time Stamp)
X'4C' SD Context Tag 4 (Acknowledgment Source, L=4)
X'00' ISO 10646 (UTF-8) Encoding
X'4D444C' "MDL"
X'5E' PD Opening Tag 5 (Time Of Acknowledgment)
 X'2E' PD Opening Tag 2 (Date Time)
 X'A4' Application Tag 10 (Date, L=4)
 X'5C0615FF' June 21, 1992
 X'B4' Application Tag 11 (Time, L=4)
 X'0D032909' 13:03:41.9
 X'2F' PD Closing Tag 2 (Date Time)
X'5F' PD Closing Tag 5 (Time Of Acknowledgment)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'07' Invoke ID=7
X'00' Service ACK Choice=0 (AcknowledgeAlarm)

F.1.5 Encoding for Example E.1.5 - UnconfirmedEventNotification Service

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'03' Service Choice=3 (UnconfirmedEventNotification-Request)

X'09' SD Context Tag 0 (Process Identifier, L=1)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 801

X'01' 1
X'1C' SD Context Tag 1 (Initiating Device Identifier, L=4)
X'02000009' Device, Instance Number=9
X'2C' SD Context Tag 2 (Event Object Identifier, L=4)
X'00000002' Analog Input, Instance Number=2
X'3E' PD Opening Tag 3 (Time Stamp)
 X'19' SD Context Tag 1 (SequenceNumber, L=1)
 X'10' 16
X'3F' PD Closing Tag 3 (Time Stamp)
X'49' SD Context Tag 4 (Notification Class, L=1)
X'04' 4
X'59' SD Context Tag 5 (Priority, L=1)
X'64' 100
X'69' SD Context Tag 6 (Event Type, L=1)
X'05' 5 (OUT_OF_RANGE)
X'89' SD Context Tag 8 (Notify Type, L=1)
X'00' 0 (ALARM)
X'99' SD Context Tag 9 (AckRequired, L=1)
X'01' 1 (TRUE)
X'A9' SD Context Tag 10 (From State, L=1)
X'00' 0 (NORMAL)
X'B9' SD Context Tag 11 (To State, L=1)
X'03' 3 (HIGH_LIMIT)
X'CE' PD Opening Tag 12 (Event Values)
 X'5E' PD Opening Tag 5 (BACnetNotificationParameters, Choice 5=OUT_OF_RANGE)
 X'0C' SD Context Tag 0 (Exceeding Value, L=4)
 X'42A03333' 80.1
 X'1A' SD Context Tag 1 (Status Flags, L=2)
 X'0480' 1,0,0,0 (TRUE, FALSE, FALSE, FALSE)
 X'2C' SD Context Tag 2 (Deadband, L=4)
 X'3F800000' 1.0
 X'3C' SD Context Tag 3 (Exceeded Limit, L=4)
 X'42A00000' 80.0
 X'5F' PD Closing Tag 5 (BACnetNotificationParameters)
X'CF' PD Closing Tag 12 (Event Values)

At some future time, an AcknowledgeAlarm-Request is generated:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'07' Invoke ID=7
X'00' Service Choice=0 (AcknowledgeAlarm-Request)

X'09' SD Context Tag 0 (Acknowledging Process Identifier, L=1)
X'01' Acknowledging Process Identifier=1
X'1C' SD Context Tag 1 (Event Object Identifier, L=4)
X'00000002' Analog Input, Instance Number=2
X'29' SD Context Tag 2 (Event State Acknowledged, L=1)
X'03' 3 (HIGH_LIMIT)
X'3E' PD Opening Tag 3 (Time Stamp)
 X'19' SD Context Tag 1 (Sequence Number, L=1)
 X'10' 16
X'3F' PD Closing Tag 3 (Time Stamp)
X'4C' SD Context Tag 4 (Acknowledgment Source, L=4)
X'00' ISO 10646 (UTF-8) Encoding
X'4D444C' "MDL"

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

802 ANSI/ASHRAE Standard 135-2012

X'5E' PD Opening Tag 5 (Time Of Acknowledgment)
 X'2E' PD Opening Tag 2 (Date Time)
 X'A4' Application Tag 10 (Date, L=4)
 X'5C0615FF' June 21, 1992
 X'B4' Application Tag 11 (Time, L=4)
 X'0D032909' 13:03:41.9
 X'2F' PD Closing Tag 2 (Date Time)
X'5F' PD Closing Tag 5 (Time Of Acknowledgment)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'07' Invoke ID=7
X'00' Service ACK Choice=0 (AcknowledgeAlarm)

F.1.6 Encoding for Example E.1.6 - GetAlarmSummary Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'01' Invoke ID=1
X'03' Service Choice=3 (GetAlarmSummary-Request)

Assuming the service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'01' Invoke ID=1
X'03' Service ACK Choice=3 (GetAlarmSummary-ACK)

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000002' Analog Input, Instance Number=2
X'91' Application Tag 9 (Enumerated, L=1) (Alarm State)
X'03' 3 (HIGH_LIMIT)
X'82' Application Tag 8 (Bit String, L=2) (Acknowledged Transitions)
X'0560' 0,1,1 (FALSE, TRUE, TRUE)
X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000003' Analog Input, Instance Number=3
X'91' Application Tag 9 (Enumerated, L=1) (Alarm State)
X'04' 4 (LOW_LIMIT)
X'82' Application Tag 8 (Bit String, L=2) (Acknowledged Transitions)
X'05E0' 1,1,1 (TRUE, TRUE, TRUE)

F.1.7 Encoding for Example E.1.7 - GetEnrollmentSummary Service

Example 1: Request encoding.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'01' Invoke ID=1
X'04' Service Choice=4 (GetEnrollmentSummary-Request)

X'09' SD Context Tag 0 (Acknowledgment Filter, L=1)
X'02' 2 (NOT_ACKED)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 803

Assuming the service procedure executes correctly, a complex acknowledgment is returned containing the requested values:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'01' Invoke ID=1
X'04' Service ACK Choice=4 (GetEnrollmentSummary-ACK)

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000002' Analog Input, Instance Number=2
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'05' 5 (OUT_OF_RANGE)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'03' 3 (HIGH_LIMIT)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'64' 100
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'04' 4
X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'02400006' Event Enrollment, Instance Number=6
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'01' 1 (CHANGE_OF_STATE)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'00' 0 (NORMAL)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'32' 50
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'02' 2

Example 2: Request encoding.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'02' Invoke ID=2
X'04' Service Choice=4 (GetEnrollmentSummary-Request)

X'09' SD Context Tag 0 (Acknowledgment Filter, L=1)
X'00' 0 (ALL)
X'1E' PD Opening Tag 1 (Enrollment Filter)
 X'0E' PD Opening Tag 0 (Recipient)
 X'0C' SD Context Tag 0 (Device, L=4)
 X'02000011' Device, Instance Number=17
 X'0F' PD Closing Tag 0 (Recipient)
 X'19' SD Context Tag 1 (Process Identifier)
 X'09' 9
X'1F' PD Closing Tag 1 (Enrollment Filter)
X'4E' PD Opening Tag 4 (Priority Filter)
 X'09' SD Context Tag 0 (MinPriority, L=1)
 X'06' 6
 X'19' SD Context Tag 1 (MaxPriority, L=1)
 X'0A' 10
X'4F' PD Closing Tag 4 (Priority Filter)

Assuming the service procedure executes correctly, a complex acknowledgment is returned containing the requested values:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'02' Invoke ID=2
X'04' Service ACK Choice=4 (GetEnrollmentSummary-ACK)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

804 ANSI/ASHRAE Standard 135-2012

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000002' Analog Input, Instance Number=2
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'05' 5 (OUT_OF_RANGE)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'00' 0 (NORMAL)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'08' 8
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'04' 4

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000003' Analog Input, Instance Number=3
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'05' 5 (OUT_OF_RANGE)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'00' 0 (NORMAL)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'08' 8
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'04' 4

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000004' Analog Input, Instance Number=4
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'05' 5 (OUT_OF_RANGE)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'00' 0 (NORMAL)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'08' 8
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'04' 4

X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'02400007' Event Enrollment, Instance Number=7
X'91' Application Tag 9 (Enumerated, L=1) (Event Type)
X'04' 4 (FLOATING_LIMIT)
X'91' Application Tag 9 (Enumerated, L=1) (Event State)
X'00' 0 (NORMAL)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Priority)
X'03' 3
X'21' Application Tag 2 (Unsigned Integer, L=1) (Notification Class)
X'08' 8

F.1.8 Encoding for Example E.1.8 - GetEventInformation Service

X'02' PDU Type = 0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=1)
X'02' Maximum APDU Size Accepted = 206 octets
X'01' Invoke ID = 1
X'1D' Service Choice = 29 (GetEventInformation)

Assuming the service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type = 3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'01' Invoke ID=01

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 805

X'1D' Service ACK Choice = 29, (GetEventInformation-ACK)

X'0E' PD opening Tag 0
 X'0C' SD context Tag 0 (ObjectIdentifier, L=4)
 X'00000002' Analog Input, Instance Number = 2
 X'19' SD context Tag 1 (Enumerated, L=1)
 X'03' 3 (HIGH_LIMIT)
 X'2A' SD context Tag 2 (Bit String, L=2)
 X'0560' 0,1,1 (FALSE, TRUE, TRUE)
 X'3E' PD opening Tag 3
 X'0C' SD context Tag 0 (Time L=4)
 X'0F230014' Time 15:35:00.20
 X'0C' SD context Tag 0 (Time L=4)
 X'FFFFFFFF' Time unspecified
 X'0C' SD context Tag 0 (Time L=4)
 X'FFFFFFFF' Time unspecified
 X'3F' PD closing Tag 3
 X'49' SD context Tag 4 (Enumerated, L=1)
 X'00' 0 (ALARM)
 X'5A' SD context Tag 5 (Bit String, L=2)
 X'05E0' 1,1,1 (TRUE, TRUE, TRUE)
 X'6E' PD opening Tag 6
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'0F' 15 (Priority)
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'0F' 15 (Priority)
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'14' 20 (Priority)
 X'6F' PD closing Tag 6
 X'0C' SD context Tag 0 (ObjectIdentifier, L=4)
 X'00000003' Analog Input, Instance Number = 3
 X'19' SD context Tag 1 (Enumerated, L=1)
 X'00' 0 (NORMAL)
 X'2A' SD context Tag 2 (Bit String, L=2)
 X'05C0' 1,1,0 (TRUE, TRUE, FALSE)
 X'3E' PD opening Tag 3
 X'0C' SD context Tag 0 (Time L=4)
 X'0F280000' Time 15:40:00.00
 X'0C' SD context Tag 0 (Time L=4)
 X'FFFFFFFF' Time unspecified
 X'0C' SD context Tag 0 (Time L=4)
 X'0F2D1E1E' 15:45:30.30
 X'3F' PD closing Tag 3
 X'49' SD context Tag 4 (Enumerated, L=1)
 X'00' 0 (ALARM)
 X'5A' SD context Tag 5 (Bit String, L=2)
 X'05E0' 1,1,1 (TRUE, TRUE, TRUE)
 X'6E' PD opening Tag 6
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'0F' 15 (Priority)
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'0F' 15 (Priority)
 X'21' Application Tag 2 (Unsigned Integer, L=1)
 X'14' 20 (Priority)
 X'6F' PD closing Tag 6

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

806 ANSI/ASHRAE Standard 135-2012

X'0F' PD closing Tag 0
X'19' SD context Tag 1 (Boolean, L=1)
X'00' FALSE (More Events)

F.1.9 Encoding for Example E.1.9 - LifeSafetyOperation

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'0F' Invoke ID=15
X'1B' Service Choice=27 (LifeSafetyOperation-Request)

X'09' SD Context Tag 0 (Requesting Process Identifier, L=1)
X'12' 18
X'1C' SD Context Tag 1 (Requesting Source, L=4)
X'00' ISO 10646 (UTF-8) Encoding
X'4D444C' "MDL"
X'29' SD Context Tag 2 (Request, L=1)
X'04' 4 (RESET)
X'3C' SD Context Tag 3 (Object Identifier, L=4)
X'05400001' Life Safety Point, Instance Number = 1

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'0F' Invoke ID=15
X'1B' Service ACK Choice=27 (LifeSafetyOperation)

F.1.10 Encoding for Example E.1.10 - SubscribeCOV

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'0F' Invoke ID=15
X'05' Service Choice=5 (SubscribeCOV-Request)

X'09' SD Context Tag 0 (Subscriber Process Identifier, L=1)
X'12' 18
X'1C' SD Context Tag 1 (Monitored Object Identifier, L=4)
X'0000000A' Analog Input, Instance Number=10
X'29' SD Context Tag 2 (Issue Confirmed Notifications, L=1)
X'01' 1 (TRUE)
X'39' SD Context Tag 3 (Lifetime, L=1)
X'00' 0

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'0F' Invoke ID=15
X'05' Service ACK Choice=5 (SubscribeCOV)

F.1.11 Encoding for Example E.1.11 - SubscribeCOVProperty

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'0F' Invoke ID=15
X'1C' Service Choice=28 (SubscribeCOVProperty-Request)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 807

X'09' SD Context Tag 0 (Subscriber Process Identifier, L=1)
X'12' 18
X'1C' SD Context Tag 1 (Monitored Object Identifier, L=4)
X'0000000A' Analog Input, Instance Number=10
X'29' SD Context Tag 2 (Issue Confirmed Notifications, L=1)
X'01' 1 (TRUE)
X'39' SD Context Tag 3 (Lifetime, L=1)
X'3C' 60
X'4E' PD Opening Tag 4 (Monitored Property, L=1)

X'09' SD Context Tag 0 (Property Identifier, L=1)
X'55' 85 (PRESENT_VALUE)

X'4F' PD Closing Tag 4 (Property Identifier)
X'5C' SD Context Tag 5 (COV Increment, L=4)
X'3F800000' 1.0

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'0F' Invoke ID=15
X'1C' Service ACK Choice=28 (SubscribeCOVProperty)

F.2 Example Encodings for File Access Services

F.2.1 Encoding for Example E.2.1 - AtomicReadFile Service

Example 1: Read data from a file.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'00' Invoke ID=0
X'06' Service Choice=6 (AtomicReadFile-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (File Identifier)
X'02800001' File, Instance Number=1
X'0E' PD Opening Tag 0 (Stream Access)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Position)
 X'00' 0
 X'21' Application Tag 2 (Unsigned, L=1) (Requested Octet Count)
 X'1B' 27
X'0F' PD Closing Tag 0 (Stream Access)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'00' Invoke ID=0
X'06' Service ACK Choice=6 (AtomicReadFile-ACK)

X'10' Application Tag 1 (Boolean, 0 (FALSE)) (End Of File)
X'0E' PD Opening Tag 0 (Stream Access)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Position)
 X'00' 0
 X'65' Application Tag 6 (Octet String, L>4)
 X'1B' Extended Length=27
 X'4368696C6C65723031204F6E2D54696D653D342E3320486F757273'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

808 ANSI/ASHRAE Standard 135-2012

 "Chiller01 On-Time=4.3 Hours"
X'0F' PD Closing Tag 0 (Stream Access)

Example 2: Read record from a file.

X'00' PDU type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'12' Invoke ID=18
X'06' Service Request=6 (AtomicReadFile-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (FileIdentifier)
X'02800002' File, Instance Number=2
X'1E' PD Opening Tag 1 (Record Access)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Record)
 X'0E' 14
 X'21' Application Tag 2 (Unsigned, L=1) (Requested Record Count)
 X'03' 3
X'1F' PD Closing Tag 1 (Record Access)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'12' Invoke ID=18
X'06' Service ACK Choice=6 (AtomicReadFile-ACK)

X'11' Application Tag 1 (Boolean, 1 (TRUE)) (End Of File)
X'1E' PD Opening Tag 1(RecordAccess)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Record)
 X'0E' 14
 X'21' Application Tag 2 (Unsigned, L=1) (Returned Record Count)
 X'02' 2
 X'65' Application Tag 6 (Octet String, L>4) (File Record Data)
 X'0A' Extended Length=10
 X'31323A30302C34352E36' "12:00,45.6"
 X'65' Application Tag 6 (Octet String, L>4) (File Record Data)
 X'0A' Extended Length=10
 X'31323A31352C34342E38' "12:15,44.8"
X'1F' PD Closing Tag 1 (Record Access)

F.2.2 Encoding for Example E.2.2 - AtomicWriteFile Service

Example 1: Write data to a file.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'55' Invoke ID=85
X'07' Service Choice=7 (AtomicWriteFile-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (File Identifier)
X'02800001' File, Instance Number=1
X'0E' PD Opening Tag 0 (Stream Access)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Position)
 X'1E' 30
 X'65' Application Tag 6 (Octet String, L>4) (File Data)
 X'1B' Extended Length=27
 X'4368696C6C65723031204F6E2D54696D653D342E3320486F757273'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 809

 "Chiller01 On-Time=4.3 Hours"
X'0F' PD Closing Tag 0 (Stream Access)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'55' Invoke ID=85
X'07' Service ACK Choice=7 (AtomicWriteFile-ACK)
X'09' SD Context Tag 0 (File Start Position, L=1)
X'1E' 30

Example 2: Append two records to a file.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'55' Invoke ID=85
X'07' Service Choice=7 (AtomicWriteFile-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (File Identifier)
X'02800002' File, Instance Number=2
X'1E' PD Opening Tag 1 (Record Access)
 X'31' Application Tag 3 (Signed Integer, L=1) (File Start Record)
 X'FF' -1 (Append to End of File)
 X'21' Application Tag 2 (Unsigned Integer, L=1) (Record Count)
 X'02' 2
 X'65' Application Tag 6 (Octet String, L>4) (File Record Data)
 X'0A' Extended Length=10
 X'31323A30302C34352E36' "12:00,45.6"
 X'65' Application Tag 6 (Octet String, L>4) (File Record Data)
 X'0A' Extended Length=10
 X'31323A31352C34342E38' "12:15,44.8"
X'1F' PD Closing Tag 1 (Record Access)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'55' Invoke ID=85
X'07' Service ACK Choice=7 (AtomicWriteFile-ACK)
X'19' SD Context Tag 1 (File Start Record, L=1)
X'0E' 14

F.3 Example Encodings for Object Access Services

F.3.1 Encoding for Example E.3.1 - AddListElement Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'01' Invoke ID=1
X'08' Service Choice=8 (AddListElement-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'02C00003' Group, Instance Number=3
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'35' 53 (LIST_OF_GROUP_MEMBERS)
X'3E' PD Opening Tag 3 (List Of Elements)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

810 ANSI/ASHRAE Standard 135-2012

 X'0C' SD Context Tag 0 (Object Identifier, L=4)
 X'0000000F' Analog Input, Instance Number=15
 X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'1F' PD Closing Tag 1 (List Of Property References)
X'3F' PD Closing Tag 3 (List Of Elements)

Assuming this service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'01' Invoke ID=1
X'08' Service ACK Choice=8 (AddListElement)

F.3.2 Encoding for Example E.3.2 - RemoveListElement Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'34' Invoke ID=52
X'09' Service Choice=9 (RemoveListElement-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'02C00003' Group, Instance Number=3
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'35' 53 (LIST_OF_GROUP_MEMBERS)
X'3E' PD Opening Tag 3 (List Of Elements)
 X'0C' SD Context Tag 0 (Object Identifier, L=4)
 X'0000000C' Analog Input, Instance Number=12
 X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'1C' 28 (DESCRIPTION)
 X'1F' PD Closing Tag 1 (List Of Property References)

 X'0C' SD Context Tag 0 (Object Identifier, L=4)
 X'0000000D' Analog Input, Instance Number=13
 X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'1C' 28 (DESCRIPTION)
 X'1F' PD Closing Tag 1 (List Of Property References)
X'3F' PD Closing Tag 3 (List Of Elements)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'34' Invoke ID=52
X'09' Service ACK Choice=9 (RemoveListElement)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 811

This second part of the example re-inserts two of the three elements removed above:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'02' Maximum APDU Size Accepted=206 octets
X'35' Invoke ID=53
X'08' Service Choice=8 (AddListElement-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'02C00003' Group, Instance Number=3
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'35' 53 (LIST_OF_GROUP_MEMBERS)
X'3E' PD Opening Tag 3 (List Of Elements)
 X'0C' SD Context Tag 0 (Object Identifier, L=4)
 X'0000000C' Analog Input, Instance Number=12
 X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'1F' PD Closing Tag 1 (List Of Property References)

 X'0C' SD Context Tag 0 (Object Identifier, L=4)
 X'0000000D' Analog Input, Instance Number=13
 X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'1F' PD Closing Tag 1 (List Of Property References)
X'3F' PD Closing Tag 3 (List Of Elements)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'35' Invoke ID=53
X'08' Service ACK Choice=8 (AddListElement)

F.3.3 Encoding for Example E.3.3 - CreateObject Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'56' Invoke ID=86
X'0A' Service Choice=10 (CreateObject-Request)

X'0E' PD Opening Tag 0 (Object Specifier)
 X'09' SD Context Tag 0 (Object Type, L=1)
 X'0A' 10 (File Object)
X'0F' PD Closing Tag 0 (Object Specifier)
X'1E' PD Opening Tag 1 (List Of Initial Values)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'4D' 77 (OBJECT_NAME)
 X'2E' PD Opening Tag 2 (Value)
 X'75' Application Tag 7 (Character String, L>4)
 X'08' Extended Length=8
 X'00' ISO 10646 (UTF-8) Encoding

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

812 ANSI/ASHRAE Standard 135-2012

 X'5472656E642031' "Trend 1"
 X'2F' PD Closing Tag 2 (Value)

 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'29' 41 (FILE_ACCESS_METHOD)
 X'2E' PD Opening Tag 2 (Value)
 X'91' Application Tag 9 (Enumerated, L=1)
 X'00' 0 (RECORD_ACCESS)
 X'2F' PD Closing Tag 2 (Value)
X'1F' PD Closing Tag 1 (List Of Initial Values)

Assuming the service procedure executes correctly, an acknowledgment is returned conveying the new object identifier:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'56' Invoke ID=86
X'0A' Service ACK Choice=10 (CreateObject-ACK)
X'C4' Application Tag 12 (Object Identifier, L=4)
X'0280000D' File, Instance Number=13

F.3.4 Encoding for Example E.3.4 - DeleteObject Service

Example 1: A successful attempt to delete an object.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'57' Invoke ID=87
X'0B' Service Choice=11 (DeleteObject-Request)
X'C4' Application Tag 12 (Object Identifier, L=4)
X'02C00006' Group, Instance Number=6

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'57' Invoke ID=87
X'0B' Service ACK Choice=11 (DeleteObject)

Example 2: An unsuccessful attempt to delete an object.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'58' Invoke ID=88
X'0B' Service Choice=11 (DeleteObject-Request)

X'C4' Application Tag 12 (Object Identifier, L=4)
X'02C00007' Group, Instance Number=7

In this example, the object is assumed to be protected and cannot be deleted by this protocol service. The server issues the
following response:

X'50' PDU Type=5 (BACnet-Error-PDU)
X'58' Original Invoke ID=88
X'0B' Error Choice=11 (DeleteObject)
X'91' Application Tag 9 (Enumerated, L=1) (Error Class)
X'01' 1 (OBJECT)
X'91' Application Tag 9 (Enumerated, L=1) (Error Code)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 813

X'17' 23 (OBJECT_DELETION_NOT_PERMITTED)

F.3.5 Encoding for Example E.3.5 - ReadProperty Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'00' Maximum APDU Size Accepted=50 octets
X'01' Invoke ID=1
X'0C' Service Choice=12 (ReadProperty-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000005' Analog Input, Instance Number=5
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'55' 85 (PRESENT_VALUE)

This request produces the following result:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'01' Invoke ID=1
X'0C' Service ACK Choice=12 (ReadProperty-ACK)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000005' Analog Input, Instance Number=5
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'55' 85 (PRESENT_VALUE)
X'3E' PD Opening Tag 3 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'4290999A' 72.3
X'3F' PD Closing Tag 3 (Property Value)

F.3.6 Deleted Clause

This clause has been removed.

F.3.7 Encoding for Example E.3.7 - ReadPropertyMultiple Service

Example 1: Reading multiple properties of a single object.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'F1' Invoke ID=241
X'0E' Service Choice=14 (ReadPropertyMultiple-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000010' Analog Input, Instance Number=16
X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)

 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
X'1F' PD Closing Tag 1 (List Of Property References)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

814 ANSI/ASHRAE Standard 135-2012

X'F1' Invoke ID=241
X'0E' Service ACK Choice=14 (ReadPropertyMultiple-ACK)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000010' Analog Input, Instance Number=16
X'1E' PD Opening Tag 1 (List Of Results)
 X'29' SD Context Tag 2 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'4E' PD Opening Tag 4 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'4290999A' 72.3
 X'4F' PD Closing Tag 4 (Property Value)

 X'29' SD Context Tag 2 (Property Identifier, L=1)
 X'67' 103 (RELIABILITY)
 X'4E' PD Opening Tag 4 (Property Value)
 X'91' Application Tag 9 (Enumerated, L=1)
 X'00' 0 (NO_FAULT_DETECTED)
 X'4F' PD Closing Tag 4 (Property Value)
X'1F' PD Closing Tag 1 (List Of Results)

Example 2: Reading properties of several objects.

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'02' Invoke ID=2
X'0E' Service Choice=14 (ReadPropertyMultiple-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000021' Analog Input, Instance Number=33
X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
X'1F' PD Closing Tag 1 (List Of Property References)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000032' Analog Input, Instance Number=50
X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
X'1F' PD Closing Tag 1 (List Of Property References)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000023' Analog Input, Instance Number=35
X'1E' PD Opening Tag 1 (List Of Property References)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
X'1F' PD Closing Tag 1 (List Of Property References)

Assuming this service procedure executes correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'02' Invoke ID=2
X'0E' Service ACK Choice=14 (ReadPropertyMultiple-ACK)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 815

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000021' Analog Input, Instance Number=33
X'1E' PD Opening Tag 1 (List Of Results)
 X'29' SD Context Tag 2 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)

 X'4E' PD Opening Tag 4 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42293333' 42.3
 X'4F' PD Closing Tag 4 (Property Value)
X'1F' PD Closing Tag 1 (List Of Results)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000032' Analog Input, Instance Number=50
X'1E' PD Opening Tag 1 (List Of Results)
 X'29' SD Context Tag 2 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'5E' PD Opening Tag 5 (Property Access Error)
 X'91' Application Tag 9 (Enumerated, L=1) (Error Class)
 X'01' 1 (OBJECT)
 X'91' Application Tag 9 (Enumerated, L=1) (Error Code)
 X'1F' 31 (UNKNOWN_OBJECT)
 X'5F' PD Closing Tag 5 (Property Access Error)
X'1F' PD Closing Tag 1 (List Of Results)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00000023' Analog Input, Instance Number=35
X'1E' PD Opening Tag 1 (List Of Results)
 X'29' SD Context Tag 2 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'4E' PD Opening Tag 4 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'43D9D99A' 435.7
 X'4F' PD Closing Tag 4 (Property Value)
X'1F' PD Closing Tag 1 (List Of Results)

F.3.8 Encoding for Example E.3.8 - ReadRange Service

Example 1: Reading records from a Trend Log object.

X'02' PDU Type = 0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=1)
X'02' Maximum APDU Size Accepted = 206 octets
X'01' Invoke ID = 1
X'1A' Service Choice = (26), (ReadRange-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'05000001' Trend Log, Instance Number = 1
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'83' 131 (LOG_BUFFER)
X'7E' PD Opening Tag 7 (By Time)

X'A4' Application Tag 10 (Date, L=4)
X'62031701' March 23, 1998 (Day Of Week Monday)
X'B4' Application Tag 11, (Time, L=4)
X'13342200' 19:52:34.0
X'31' Application Tag 1 (Signed Integer, L=1)
X'04' 4 (Count)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

816 ANSI/ASHRAE Standard 135-2012

X'7F' PD Closing Tag 7 (By Time)

Assuming the service procedure executes correctly, a complex acknowledgment is returned containing the requested data:

X'30' PDU Type = 3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'01' Invoke ID=1
X'1A' Service ACK Choice = (26), (ReadRange-ACK)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'05000001' Trend Log, Instance Number = 1
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'83' 131 (LOG_BUFFER)
X'3A' SD Context Tag 3 (Result Flags, L=2)
X'05C0' 1,1,0 (TRUE, TRUE, FALSE)
X'49' SD Context Tag 4 (Item Count, L=1)
X'02' 2
X'5E' PD Opening Tag 5 (Item Data)
 X'0E' PD Opening Tag 0 (Timestamp)
 X'A4' Application Tag 10 (Date, L=4)

X'62031701' Monday, March 23, 1998
X'B4' Application Tag 11, (Time, L=4)
X'13361B00' 19:54:27.0

 X'0F' PD Closing Tag 0 (Timestamp)
 X'1E' PD Opening Tag 1 (Log Datum)
 X'2C' SD Context Tag 2 (REAL, L=4)
 X'41900000' 18.0
 X'1F' PD Closing Tag 1 (Log Datum)
 X'2A' SD Context Tag 2 (Status Flags, L=2)
 X'0400' 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)
 X'0E' PD Opening Tag 0 (Timestamp)
 X'A4' Application Tag 10 (Date, L=4)

X'62031701' Monday, March 23, 1998
X'B4' Application Tag 11, (Time, L=4)
X'13381B00' 19:56:27.0

 X'0F' PD Closing Tag 0 (Timestamp)
 X'1E' PD Opening Tag 1 (Log Datum)
 X'2C' SD Context Tag 2 (REAL, L=4)
 X'4190CCCD' 18.1
 X'1F' PD Closing Tag 1 (Log Datum)
 X'2A' SD Context Tag 2 (Status Flags, L=2)
 X'0400' 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)
X'5F' PD Closing Tag 5 (Item Data)
X'6B' SD Context Tag 6 (First Sequence Number, L=3)
X'013561' 79201

F.3.9 Encoding for Example E.3.9 - WriteProperty Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'59' Invoke ID=89
X'0F' Service Choice=15 (WriteProperty-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00800001' Analog Value, Instance Number=1
X'19' SD Context Tag 1 (Property Identifier, L=1)
X'55' 85 (PRESENT_VALUE)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 817

X'3E' PD Opening Tag 3 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'43340000' Property Value=180.0
X'3F' PD Closing Tag 3 (Property Value)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'59' Invoke ID=89
X'0F' Service ACK Choice=15 (WriteProperty)

F.3.10 Encoding for Example E.3.10 - WritePropertyMultiple Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'01' Invoke ID=1
X'10' Service Choice=16 (WritePropertyMultiple-Request)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00800005' Analog Value, Instance Number=5
X'1E' PD Opening Tag 1 (List Of Properties)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'2E' PD Opening Tag 2 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42860000' 67.0
 X'2F' PD Closing Tag 2 (Property Value)
X'1F' PD Closing Tag 1 (List Of Properties)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00800006' Analog Value, Instance Number=6
X'1E' PD Opening Tag 1 (List Of Properties)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'2E' PD Opening Tag 2 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42860000' 67.0
 X'2F' PD Closing Tag 2 (Property Value)
X'1F' PD Closing Tag 1 (List Of Properties)

X'0C' SD Context Tag 0 (Object Identifier, L=4)
X'00800007' Analog Value, Instance Number=7
X'1E' PD Opening Tag 1 (List Of Properties)
 X'09' SD Context Tag 0 (Property Identifier, L=1)
 X'55' 85 (PRESENT_VALUE)
 X'2E' PD Opening Tag 2 (Property Value)
 X'44' Application Tag 4 (Real, L=4)
 X'42900000' 72.0
 X'2F' PD Closing Tag 2 (Property Value)
X'1F' PD Closing Tag 1 (List Of Properties)

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'01' Invoke ID=1
X'10' Service ACK Choice=16 (WritePropertyMultiple)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

818 ANSI/ASHRAE Standard 135-2012

F.3.11 Encoding for Example E.3.11 - WriteGroup Service, Example #1

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0A' Service Choice=10 (WriteGroup-Request)

X'09' SD Context Tag 0 (Group Number, L=1)
X'17' 23
X'19' SD Context Tag 1 (Write Priority, L=1)
X'08' 8
X'2E' PD Opening Tag 2 (Change List)
 X'0A' SD Context Tag 0 (Channel, L=2)
 X'010C' 268
 X'22' Application Tag 2 (Unsigned, L=2) (value)
 X'0457' 1111
 X'0A' SD Context Tag 0 (Channel, L=2)
 X'010D' 269
 X'22' Application Tag 2 (Unsigned, L=2) (value)
 X'08AE' 2222
X'2F' PD Closing Tag 2

Note that no response is required for this message since it is of type unconfirmed.

F.3.12 Encoding for Example E.3.12 - WriteGroup Service, Example #2

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0A' Service Choice=10 (WriteGroup-Request)

X'09' SD Context Tag 0 (Group Number, L=1)
X'17' 23
X'19' SD Context Tag 1 (Write Priority, L=1)
X'08' 8
X'2E' PD Opening Tag 2 (Change List)
 X'09' SD Context Tag 0 (Channel, L=1)
 X'0C' 12
 X'44' Application Tag 4 (Real, L=4) (value)
 X'42860000' 67.0
 X'09' SD Context Tag 0 (Channel, L=1)
 X'0D' 13
 X'44' Application Tag 4 (Real, L=4) (value)
 X'42900000' 72.0
X'2F' PD Closing Tag 2
X'39' SD Context Tag 3 (Inhibit Delay, L=1)
X'01' 1

Note that no response is required for this message since it is of type unconfirmed.

F.3.13 Encoding for Example E.3.13 - WriteGroup Service, Example #3

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0A' Service Choice=10 (WriteGroup-Request)

X'09' SD Context Tag 0 (Group Number, L=1)
X'17' 23
X'19' SD Context Tag 1 (Write Priority, L=1)
X'08' 8
X'2E' PD Opening Tag 2 (Change List)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 819

 X'09' SD Context Tag 0 (Channel, L=1)
 X'0C' 12
 X'22' Application Tag Unsigned L=2 (value)
 X'0457' 1111
 X'09' SD Context Tag 0 (Channel, L=1)
 X'0D' 13
 X'19' SD Context Tag 1 (overridingPriority, L=1)
 X'0A' 10
 X'74' Application Tag Charstring L=4 (value)
 X'00' 0 (Charset UTF-8)
 X'414243' "ABC"
X'2F' PD Closing Tag 2

Note that no response is required for this message since it is of type unconfirmed.

F.4 Example Encodings for Remote Device Management Services

F.4.1 Encoding for Example E.4.1 - DeviceCommunicationControl Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'05' Invoke ID=5
X'11' Service Choice=17 (DeviceCommunicationControl-Request)

X'09' SD Context Tag 0 (Time Duration, L=1)
X'05' 5
X'19' SD Context Tag 1 (Enable-Disable, L=1)
X'01' 1 (DISABLE)
X'2D' SD Context Tag 2 (Password, L>4)
X'08' Extended Length=8
X'00' ISO 10646 (UTF-8) Encoding
X'23656762646621' "#egbdf!"

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'05' Invoke ID=5
X'11' Service ACK Choice=17 (DeviceCommunicationControl)

F.4.2 Encoding for Example E.4.2 - ConfirmedPrivateTransfer Service

X'00' PDU Type=0 (BACnet Confirmed-Request-PDU) SEG=0, MOR=0, SA=0)
X'04' Maximum APDU Size Accepted=1024 octets
X'55' Invoke ID=85
X'12' Service Choice=18 (ConfirmedPrivateTransfer)

X'09' SD Context Tag 0 (Vendor ID, L=1)
X'19' 25 (XYZ Controls Company Limited)
X'19' SD Context Tag 1 (Service Number, L=1)
X'08' 8 (XYZ Proprietary Service #8)
X'2E' PD Opening Tag 2 (Service Parameters)
 X'44' Application Tag 4 (Real, L=4)
 X'4290CCCD' 72.4
 X'62' Application Tag 6 (Octet String, L=2)
 X'1649' X'1649'

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

820 ANSI/ASHRAE Standard 135-2012

X'2F' PD Closing Tag 2 (Service Parameters)

Assuming that the service is successfully executed but no results need to be returned to the requesting BACnet-user, a 'Result(+)'
primitive will be returned using a BACnet-ComplexACK-PDU:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'55' Invoke ID=85
X'12' Service Choice=18 (ConfirmedPrivateTransfer-ACK)

X'09' SD Context Tag 0 (Vendor ID, L=1)
X'19' 25
X'19' SD Context Tag 1 (Service Number, L=1)
X'08' 8

F.4.3 Encoding for Example E.4.3 - UnconfirmedPrivateTransfer Service

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'04' Service Choice=4 (UnconfirmedPrivateTransfer-Request)

X'09' SD Context Tag 0 (Vendor ID, L=1)
X'19' 25
X'19' SD Context Tag 1 (Service Number, L=1)
X'08' 8
X'2E' PD Opening Tag 2 (Service Parameters)
 X'44' Application Tag 4 (Real, L=4)
 X'4290CCCD' 72.4
 X'62' Application Tag 6 (Octet String, L=2)
 X'1649' X'1649'
X'2F' PD Closing Tag 2 (Service Parameters)

F.4.4 Encoding for Example E.4.4 - ReinitializeDevice Service

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'02' Invoke ID=2
X'14' Service Choice=20 (ReinitializeDevice-Request)

X'09' SD Context Tag 0 (Reinitialized State Of Device, L=1)
X'01' 1 (WARMSTART)
X'1D' SD Context Tag 1 (Password, L>4)
X'09' Extended Length=9
X'00' ISO 10646 (UTF-8) Encoding
X'4162436445664768' "AbCdEfGh"

Assuming this service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'02' Invoke ID=2
X'14' Service ACK Choice=20 (ReinitializeDevice)

F.4.5 Encoding for Example E.4.5 - ConfirmedTextMessageService

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'03' Invoke ID=3
X'13' Service Choice=19 (ConfirmedTextMessage-Request)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 821

X'0C' SD Context Tag 0 (Text Message Source Device, L=4)
X'02000005' Device, Instance Number=5
X'29' SD Context Tag 2 (Message Priority, L=1)
X'00' 0 (NORMAL)
X'3D' SD Context Tag 3 (Message, L>4)
 X'18' Extended Length=24
 X'00' ISO 10646 (UTF-8) Encoding
 X'504D20726571756972656420666F722050554D50333437' "PM required for PUMP347"

Assuming the service procedure executes correctly, a simple acknowledgment is returned:

X'20' PDU Type=2 (BACnetSimpleACK-PDU)
X'03' Invoke ID=3
X'13' Service ACK Choice=19 (ConfirmedTextMessage)

F.4.6 Encoding for Example E.4.6 - UnconfirmedTextMessage Service

X'10' PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'05' Service Choice=5 (UnconfirmedTextMessage-Request)

X'0C' SD Context Tag 0 (Text Message Source Device, L=4)
X'02000005' Device, Instance Number=5
X'29' SD Context Tag 2 (Message Priority, L=1)
X'00' 0 (NORMAL)
X'3D' SD Context Tag 3 (Message, L>4)
 X'18' Extended Length=24
 X'00' ISO 10646 (UTF-8) Encoding
 X'504D20726571756972656420666F722050554D50333437' "PM required for PUMP347"

Note that no response is required for this message since it is of type unconfirmed.

F.4.7 Encoding for Example E.4.7 - TimeSynchronization Service

X'10' PDU Type=1 (BACnet-Unconfirmed-Service-Request-PDU)
X'06' Service Choice=6 (TimeSynchronization-Request)

X'A4' Application Tag 10 (Date, L=4)
X'5C0B1102' November 17, 1992 (Day of Week = Tuesday)
X'B4' Application Tag 11 (Time, L=4)
X'162D1E46' 22:45:30.70

F.4.8 Encoding for Example E.4.8 - Who-Has and I-Have Services

Example 1: Locating the device that contains an object for which the Object_Name is known.

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'07' Service Choice=7 (Who-Has-Request)

X'3D' SD Context Tag 3 (Object Name, L>4)
 X'07' Extended Length=7
 X'00' ISO 10646 (UTF-8) Encoding
 X'4F4154656D70' "OATemp"

Assuming that exactly one other device has such an object, the following I-Have service indication would be received.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

822 ANSI/ASHRAE Standard 135-2012

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'01' Service Choice=1 (I-Have-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (Device Identifier)
X'02000008' Device, Instance Number=8
X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000003' Analog Input, Instance Number=3
X'75' Application Tag 7 (Character String, L>4) (Object Name)
 X'07' Extended Length=7
 X'00' ISO 10646 (UTF-8) Encoding
 X'4F4154656D70' "OATemp"

Example 2: Locating the device that contains an object for which the Object_Identifier is known.

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'07' Service Choice=7 (Who-Has-Request)

X'2C' SD Context Tag 2 (Object Identifier, L=4)
X'00000003' Analog Input, Instance Number=3

Assuming that exactly one other device has such an object, the following I-Have service indication would be received.

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'01' Service Choice=1 (I-Have-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (Device Identifier)
X'02000008' Device, Instance Number=8
X'C4' Application Tag 12 (Object Identifier, L=4) (Object Identifier)
X'00000003' Analog Input, Instance Number=3
X'75' Application Tag 7 (Character String, L>4) (Object Name)
 X'07' Extended Length=7
 X'00' ISO 10646 (UTF-8) Encoding
 X'4F4154656D70' "OATemp"

F.4.9 Encoding for Example E.4.9 - Who-Is and I-Am Services

Example 1: Establishing the network address of a device with a known Device object identifier, i.e., instance number.

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'08' Service Choice=8 (Who-Is-Request)

X'09' SD Context Tag 0 (Device Instance Range Low Limit, L=1)
X'03' 3
X'19' SD Context Tag 1 (Device Instance Range High Limit, L=1)
X'03' 3

Assuming that there is such a device on the network, it responds some time later using the I-Am service:

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'00' Service Choice=0 (I-Am-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (I-Am Device Identifier)
X'02000003' Device, Instance Number=3
X'22' Application Tag 2 (Unsigned Integer, L=2) (Max APDU Length Accepted)
X'0400' 1024
X'91' Application Tag 9 (Enumerated, L=1) (Segmentation Supported)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 823

X'03' 3 (NO_SEGMENTATION)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Vendor ID)
X'63' 99

Example 2: Finding out about all network devices.

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'08' Service Choice=8 (Who-Is-Request)

Each device on the network responds using the I-Am service:

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'00' Service Choice=0 (I-Am-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (I-Am Device Identifier)
X'02000001' Device, Instance Number=1
X'22' Application Tag 2 (Unsigned Integer, L=2) (Max APDU Length Accepted)
X'01E0' 480
X'91' Application Tag 9 (Enumerated, L=1) (Segmentation Supported)
X'01' 1 (SEGMENTED_TRANSMIT)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Vendor ID)
X'63' 99

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'00' Service Choice=0 (I-Am-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (I-Am Device Identifier)

X'02000002' Device, Instance Number=2
X'21' Application Tag 2 (Unsigned Integer, L=1) (Max APDU Length Accepted)
X'CE' 206
X'91' Application Tag 9 (Enumerated, L=1) (Segmentation Supported)
X'02' 2 (SEGMENTED_RECEIVE)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Vendor ID)
X'21' 33

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'00' Service Choice=0 (I-Am-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (I-Am Device Identifier)
X'02000003' Device, Instance Number=3
X'22' Application Tag 2 (Unsigned Integer, L=2) (Max APDU Length Accepted)
X'0400' 1024
X'91' Application Tag 9 (Enumerated, L=1) (Segmentation Supported)
X'03' 3 (NO_SEGMENTATION)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Vendor ID)
X'63' 99

X'10' PDU Type=1 (Unconfirmed-Service-Request-PDU)
X'00' Service Choice=0 (I-Am-Request)

X'C4' Application Tag 12 (Object Identifier, L=4) (I-Am Device Identifier)
X'02000004' Device, Instance Number=4

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

824 ANSI/ASHRAE Standard 135-2012

X'21' Application Tag 2 (Unsigned Integer, L=1) (Max APDU Length Accepted)
X'80' 128
X'91' Application Tag 9 (Enumerated, L=1) (Segmentation Supported)
X'00' 0 (SEGMENTED_BOTH)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Vendor ID)
X'42' 66

F.5 Example Encodings for Virtual Terminal Services

Establishing a VT session:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'50' Invoke ID=80
X'15' Service Choice=21 (VT-Open-Request)

X'91' Application Tag 9 (Enumerated, L=1) (VT Class)
X'01' 1 (ANSI_X3.64)
X'21' Application Tag 2 (Unsigned Integer, L=1) (Local VT Session Identifier)
X'05' 5

Assuming that the target device can create a new VT-session, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'50' Invoke ID=80
X'15' Service Choice=21 (VT-Open-ACK)

X'21' Application Tag 2 (Unsigned Integer, L=1) (Remote VT Session Identifier)
X'1D' 29

Terminal sign-on. The target device sends a prompt:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'51' Invoke ID=81
X'17' Service Choice=23 (VT-Data-Request)

X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Session Identifier)
X'05' 5
X'65' Application Tag 6 (Octet String, L>4) (VT New Data)
X'12' Extended Length=18
X'0D0A456E7465722055736572204E616D653A' "{cr}{lf}Enter User Name:"
X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Data Flag)
X'00' 0

Assuming that the operator interface device receives the data correctly, a complex acknowledgment is returned:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'51' Invoke ID=81
X'17' Service Choice=23 (VT-Data-ACK)
X'09' SD Context Tag 0 (All New Data Accepted, L=1)
X'01' 1 (TRUE)

Entering user name:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 825

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'52' Invoke ID=82
X'17' Service Choice=23 (VT-Data-Request)

X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Session Identifier)
X'1D' 29
X'65' Application Tag 6 (Octet String, L>4) (VT New Data)
X'05' Extended Length=5
X'465245440D' "FRED{cr}"
X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Data Flag)
X'00' 0

To which the target device would respond:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'52' Invoke ID=82
X'17' Service Choice=23 (VT-Data-ACK)

X'09' SD Context Tag 0 (All New Data Accepted, L=1)
X'01' 1 (TRUE)

Entering password:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'53' Invoke ID=83
X'17' Service Choice=23 (VT-Data-Request)

X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Session Identifier)
X'05' 5
X'65' Application Tag 6 (Octet String, L>4) (VT New Data)
X'15' Extended Length=21
X'465245440D0A456E7465722050617373776F72643A'"FRED{cr}{lf}Enter Password:"
X'21' Application Tag 2 (Unsigned Integer, L=1) (VT Data Flag)
X'01' 1

To which the target device would respond:

X'30' PDU Type=3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X'53' Invoke ID=83
X'17' Service Choice=23 (VT-Data-ACK)
X'09' SD Context Tag 0 (All New Data Accepted, L=1)
X'01' 1 (TRUE)

Terminal sign-off:

X'00' PDU Type=0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=0)
X'01' Maximum APDU Size Accepted=128 octets
X'54' Invoke ID=84
X'16' Service Choice=22 (VT-Close-Request)

X'21' Application Tag 2 (Unsigned Integer, L=1) (List Of Remote VT Session Identifiers)
X'1D' 29

Response:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX F – EXAMPLES OF APDU ENCODING (INFORMATIVE)

826 ANSI/ASHRAE Standard 135-2012

X'20' PDU Type=2 (BACnet-SimpleACK-PDU)
X'54' Invoke ID=84
X'16' Service ACK Choice=22 (VT-Close)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 827

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

(This annex is not part of this standard but is included for informative purposes only.)

Historically, CRC generators have been implemented as shift registers with exclusive OR feedback. This provides an
inexpensive way to process CRC information on a serial bit stream in hardware. Since commercial UARTs do not provide
hardware calculation of CRC, UART-based protocols such as those described in Clauses 9 and 10 must perform this
calculation with software. While this can be done one bit at a time, simulating a shift register with feedback, a much more
efficient algorithm is possible that computes the CRC on an entire octet at once. This annex shows how the CRC may be
computed in this manner. This algorithm is presented as an example and is not intended to restrict the vendor's
implementation of the CRC calculation.

G.1 Calculation of the Header CRC

We begin with the diagram of a hardware CRC generator as shown in Figure G-1. The polynomial used is

HM
C
H*
C
)

Figure G-1. Hardware header-CRC generator.

The hardware implementation operates on a serial bit stream, whereas our calculation must operate on entire octets. To this
end, we follow the operation of the circuit through eight bits of data. The CRC shift register is initialized to X0 (input end) to
X7 (output end), the input data is D0 to D7 (least significant bit first, as transmitted and received by a UART). Within each
block below, the terms are exclusive OR'ed vertically.

input register contents
 |--------------------------------|
D0| X0 X1 X2 X3 X4 X5 X6 X7 |
 |--------------------------------|
D1| X0 X1 X2 X3 X4 X5 X6 |
 | D0 D0 |
X7 X7
D2
D1 D0 D1
X6 X7 X6
D0 D0
X7 X7

D3
D2 D1 D0 D2
X5 X6 X7 X5
D1 D0 D1
X6 X7 X6
D0 D0
X7 X7

Input Output
Z -7XOR XOR Z -1

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

828 ANSI/ASHRAE Standard 135-2012

 |--------------------------------|
D4| X0 X1 X2 X3 |
 | D3 D2 D1 D0 D3 |
 | X4 X5 X6 X7 X4 |
 | D2 D1 D0 D2 |
 | X5 X6 X7 X5 |
 | D1 D0 D1 |
 | X6 X7 X6 |
 | D0 D0 |
X7 X7
D5
D4 D3 D2 D1 D0 D4
X3 X4 X5 X6 X7 X3
D3 D2 D1 D0 D3
X4 X5 X6 X7 X4
D2 D1 D0 D2
X5 X6 X7 X5
D1 D0 D1
X6 X7 X6
D0 D0
X7 X7

D6
D5 D4 D3 D2 D1 D0 D5
X2 X3 X4 X5 X6 X7 X2
D4 D3 D2 D1 D0 D4
X3 X4 X5 X6 X7 X3
D3 D2 D1 D0 D3
X4 X5 X6 X7 X4
D2 D1 D0 D2
X5 X6 X7 X5
D1 D0 D1
X6 X7 X6
D0 D0
X7 X7

D7
D6 D5 D4 D3 D2 D1 D0 D6
X1 X2 X3 X4 X5 X6 X7 X1
D5 D4 D3 D2 D1 D0 D5
X2 X3 X4 X5 X6 X7 X2
D4 D3 D2 D1 D0 D4
X3 X4 X5 X6 X7 X3
D3 D2 D1 D0 D3
X4 X5 X6 X7 X4
D2 D1 D0 D2
X5 X6 X7 X5
D1 D0 D1
X6 X7 X6
D0 D0
X7 X7

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 829

 |--------------------------------|
 | D0 |
 | X7 |
 | D7 D6 D5 D4 D3 D2 D1 D7 |
 | X0 X1 X2 X3 X4 X5 X6 X0 |
 | D6 D5 D4 D3 D2 D1 D0 D6 |
 | X1 X2 X3 X4 X5 X6 X7 X1 |
 | D5 D4 D3 D2 D1 D0 D5 |
 | X2 X3 X4 X5 X6 X7 X2 |
 | D4 D3 D2 D1 D0 D4 |
 | X3 X4 X5 X6 X7 X3 |
 | D3 D2 D1 D0 D3 |
 | X4 X5 X6 X7 X4 |
 | D2 D1 D0 D2 |
 | X5 X6 X7 X5 |
 | D1 D0 D1 |
 | X6 X7 X6 |
 | D0 D0 |
X7 X7

The final block above is the net result of shifting an octet of data through the CRC generator. By performing the indicated
exclusive OR operations, an octet can be processed into the CRC. In order to simplify the required shifting operations, we
define X0 to be the most significant bit of the parallel representation and X7 to be the least significant. Since most
microprocessors number bits in the opposite order, we rename the bits to correspond to standard microprocessor bit
nomenclature. Let C7 = X0, C6 = X1, etc. The final block in the previous table thus becomes:

 |--------------------------------|
X0 X1 X2 X3 X4 X5 X6 X7
C7 C6 C5 C4 C3 C2 C1 C0

D0
C0
D7 D6 D5 D4 D3 D2 D1 D7
C7 C6 C5 C4 C3 C2 C1 C7
D6 D5 D4 D3 D2 D1 D0 D6
C6 C5 C4 C3 C2 C1 C0 C6
D5 D4 D3 D2 D1 D0 D5
C5 C4 C3 C2 C1 C0 C5
D4 D3 D2 D1 D0 D4
C4 C3 C2 C1 C0 C4
D3 D2 D1 D0 D3
C3 C2 C1 C0 C3
D2 D1 D0 D2
C2 C1 C0 C2
D1 D0 D1
C1 C0 C1
D0 D0
C0 C0

or, rearranging vertically (since exclusive OR is commutative) to minimize computation, and recognizing that any term
exclusive OR'ed with itself may be eliminated:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

830 ANSI/ASHRAE Standard 135-2012

 |-------------------------------|
 | D7 D6 D5 D4 D3 D2 D1 |
 | C7 C6 C5 C4 C3 C2 C1 |
 | D6 D5 D4 D3 D2 D1 D0 D7 |
 | C6 C5 C4 C3 C2 C1 C0 C7 |
 | D5 D4 D3 D2 D1 D0 D6 |
 | C5 C4 C3 C2 C1 C0 C6 |
 | D4 D3 D2 D1 D0 D5 |
 | C4 C3 C2 C1 C0 C5 |
 | D3 D2 D1 D0 D4 |
 | C3 C2 C1 C0 C4 |
 | D2 D1 D0 D3 |
 | C2 C1 C0 C3 |
 | D1 D0 D2 |
 | C1 C0 C2 |
 | D0 D1 |
C0 C1

In operation, the CRC register C7-C0 is initialized to all ones. During transmission, the Frame Type, Destination Address,
Source Address, and Length are passed though the calculation before transmission. The ones complement of the final CRC
register value is then transmitted. At the receiving end, the Frame Type, Destination Address, Source Address, Length octets,
and the received CRC octet are passed though the calculation. If all octets are received correctly, then the final value of the
receiver's CRC register will be the constant X'55'.

As an example of usage, consider a Token frame from node X'05' to node X'10'. The frame appears as:

Description Value CRC Register After Octet is Processed
preamble 1, not included in CRC X'55'
preamble 2, not included in CRC X'FF'
 X'FF' (initial value)
frame type = TOKEN X'00' X'55'
destination address X'10' X'C2'
source address X'05' X'BC'
data length MSB = 0 X'00' X'95'
data length LSB = 0 X'00' X'73' ones complement is X'8C'
Header CRC X'8C' X'55' final result at receiver

Thus, the transmitter would calculate the CRC on the five octets X'00', X'10', X'05', X'00', and X'00' to be X'73'. The ones
complement of this is X'8C', which is appended to the frame.

The receiver would calculate the CRC on the six octets X'00', X'10', X'05', X'00', and X'8C' to be X'55', which is the expected
result for a correctly received frame.

G.1.1 Sample Implementation of the Header CRC Algorithm in C

As an example, a C language implementation of the header CRC algorithm is presented. Inputs are the octet to be processed
and the accumulating CRC value. The function return value is the updated CRC value.

In order to minimize shifting, we make use of the bits shifted left out of the least significant octet. In particular, bit 8 will be
exclusive OR'ed with the least significant octet.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 831

Desired result:
 | C7 C6 C5 C4 C3 C2 C1 C0 |
 | C6 C5 C4 C3 C2 C1 C0 C7 |
 | C5 C4 C3 C2 C1 C0 C6 |
 | C4 C3 C2 C1 C0 C5 |
 | C3 C2 C1 C0 C4 |
 | C2 C1 C0 C3 |
 | C1 C0 C2 |
 | C0 C1 |

Shifted 16 bit word:
 | C7 C6 C5 C4 C3 C2 C1 | v
 C7 | C6 C5 C4 C3 C2 C1 C0 | v<<1
 C7 C6 | C5 C4 C3 C2 C1 C0 | v<<2
 C7 C6 C5 | C4 C3 C2 C1 C0 | v<<3
 C7 C6 C5 C4 | C3 C2 C1 C0 | v<<4
 C7 C6 C5 C4 C3 | C2 C1 C0 | v<<5
 C7 C6 C5 C4 C3 C2 | C1 C0 | v<<6
C7 C6 C5 C4 C3 C2 C1 | C0 | v<<7

/* Accumulate "dataValue" into the CRC in crcValue.
/ Return value is updated CRC
/
/ Assumes that "unsigned char" is equivalent to one octet.
/ Assumes that "unsigned int" is 16 bits.
/ The ^ operator means exclusive OR.
*/
unsigned char CalcHeaderCRC(unsigned char dataValue, unsigned char crcValue)
{
 unsigned int crc;

 crc = crcValue ^ dataValue; /* XOR C7..C0 with D7..D0 */

/* Exclusive OR the terms in the table (top down) */
 crc = crc ^ (crc << 1) ^ (crc << 2) ^ (crc << 3)
 ^ (crc << 4) ^ (crc << 5) ^ (crc << 6) ^ (crc << 7);

 /* Combine bits shifted out left hand end */
 return (crc & 0xfe) ^ ((crc >> 8) & 1);
}

G.1.2 Sample Implementation of the Header CRC Algorithm in Assembly Language

As an example, an assembly language implementation of the Header CRC algorithm for the 68HC11 (an eight bit processor
with a simple instruction set) is presented. The routine accumulates the CRC into the variable CRCLO. T1 is a temporary
storage variable. Most instructions act on either accumulator A or B.

HEADERCRC: ;ACCUMULATE THE OCTET (0,X) INTO THE DATA CRC
 LDAB 0,X ;FETCH DATA OCTET (INDEXED OPERATION)
 EORB CRCLO ;D7-D0 EXCLUSIVE OR C7-C0
 STAB CRCLO ;SAVE RESULT
 CLRA ;CLEAR REGISTER A
 ASLD ;SHIFT (A,B) LEFT AS A 16 BIT VALUE
 ; A=(- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO
 ASLD
 ; A=(- - - - - - 7 6) B=(5 4 3 2 1 0 - -)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

832 ANSI/ASHRAE Standard 135-2012

 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO
 ASLD
 ; A=(- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - 7 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO

 ASLD
 ; A=(- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ; (- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - 7 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO
 ASLD
 ; A=(- - - 7 6 5 4 3) B=(2 1 0 - - - - -)
 ; (- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ; (- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - 7 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO
 ASLD
 ; A=(- - 7 6 5 4 3 2) B=(1 0 - - - - - -)
 ; (- - - 7 6 5 4 3) B=(2 1 0 - - - - -)
 ; (- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ; (- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - 7 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO

 ASLD
 ; A=(- 7 6 5 4 3 2 1) B=(0 - - - - - - -)
 ; (- - 7 6 5 4 3 2) B=(1 0 - - - - - -)
 ; (- - - 7 6 5 4 3) B=(2 1 0 - - - - -)
 ; (- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ; (- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - 7 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 EORB CRCLO
 ANDB #0FEH ;CLEAR LSB OF BOTTOM HALF
 ANDA #01H ;CLEAR ALL BUT LSB OF HIGH HALF
 STAA T1
 ; A=(- - - - - - - 1) B=(0 - - - - - - -)
 ; (- - - - - - - 2) B=(1 0 - - - - - -)
 ; (- - - - - - - 3) B=(2 1 0 - - - - -)
 ; (- - - - - - - 4) B=(3 2 1 0 - - - -)
 ; (- - - - - - - 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - - - 6) B=(5 4 3 2 1 0 - -)
 ; (- - - - - - - 7) B=(6 5 4 3 2 1 0 -)
 ; (- - - - - - - -) B=(7 6 5 4 3 2 1 -)
 EORB T1 ;COMBINE LSB OF HIGH HALF
 STAB CRCLO
 RTS

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 833

G.1.3 Other Implementations of the Header CRC Algorithm

Other implementations of the Header CRC algorithm are possible. It may be seen that the new CRC value is a function of the
prior CRC value exclusive OR'ed with the data value. Thus, a lookup table with 256 elements may be used to quickly
determine the new CRC value, using the prior CRC exclusive OR'ed with the data value as an index. The contents of the table
may be computed using the implementations shown in G.1.1 or G.1.2.

G.2 Calculation of the Data CRC

We begin with the diagram of a hardware CRC generator as shown in Figure G-2. The polynomial used is the CRC-CCITT:

H)J
C
H)0
C
H9
C
)

Figure G-2. Hardware data-CRC generator.

The hardware implementation operates on a serial bit stream, whereas our calculation must operate on entire octets. To this
end, we follow the operation of the circuit through eight bits of data. The CRC shift register is initialized to X0 (input end) to
X15 (output end), the input data is D0 to D7 (least significant bit first, as transmitted and received by a UART). Within each
block below, the terms are exclusive OR'ed vertically.

input register contents
 |---|
D0| X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 |
 |---|
D1| X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 |
 | D0 D0 D0 |
X15 X15 X15
D2
D1 D0 D1 D0 D1 D0
X14 X15 X14 X15 X14 X15

D3
D2 D1 D0 D2 D1 D0 D2 D1 D0
X13 X14 X15 X13 X14 X15 X13 X14 X15

D4
D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0
X12 X13 X14 X15 X12 X13 X14 X15 X12 X13 X14 X15

D5
D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1
X12 X13 X14 X15 X12 X13 X14 X15 X12 X13 X14
D4 D4 D4
X11 X11 X11
D0 D0 D0
X15 X15 X15

Input Output
XOR XOR Z -4XOR Z -7Z -5

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

834 ANSI/ASHRAE Standard 135-2012

 |---|
D6| X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
 | D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 |
 | X12 X13 X14 X15 X12 X13 X14 X15 X12 X13 |
 | D5 D4 D5 D4 D5 D4 |
 | X10 X11 X10 X11 X10 X11 |
 | D1 D0 D1 D0 D1 D0 |
X14 X15 X14 X15 X14 X15
D7
D3 D2 D1 D0 D3 D2 D1 D0 D3
X12 X13 X14 X15 X12 X13 X14 X15 X12
D6 D5 D4 D6 D5 D4 D6 D5 D4
X9 X10 X11 X9 X10 X11 X9 X10 X11
D2 D1 D0 D2 D1 D0 D2 D1 D0
X13 X14 X15 X13 X14 X15 X13 X14 X15

X0 X1 X2 X3 X4 X5 X6 X7
D3 D2 D1 D0 D3 D2 D1 D0
X12 X13 X14 X15 X12 X13 X14 X15
D7 D6 D5 D4 D7 D6 D5 D4 D7 D6 D5 D4
X8 X9 X10 X11 X8 X9 X10 X11 X8 X9 X10 X11
D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0
X12 X13 X14 X15 X12 X13 X14 X15 X12 X13 X14 X15

The final block above is the net result of shifting an octet of data through the CRC generator. By performing the indicated
exclusive OR operations, an octet can be processed into the CRC. In order to simplify the required shifting operations, we
define X0 to be the most significant bit of the parallel representation and X15 to be the least significant. Since most
microprocessors number bits in the opposite order, we rename the bits to correspond to standard microprocessor bit
nomenclature. Let C15 = X0, C14 = X1, etc. The final block in the previous table thus becomes:

 |---|
 | X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 |
 |-------------------------------+---------------------------------|
 | C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 |
 |-------------------------------+---------------------------------|
 | C15 C14 C13 C12 C11 C10 C9 C8 |
 | D3 D2 D1 D0 D3 D2 D1 D0 |
 | C3 C2 C1 C0 C3 C2 C1 C0 |
 | D7 D6 D5 D4 D7 D6 D5 D4 D7 D6 D5 D4 |
 | C7 C6 C5 C4 C7 C6 C5 C4 C7 C6 C5 C4 |
 | D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 |
 | C3 C2 C1 C0 C3 C2 C1 C0 C3 C2 C1 C0 |
 |-------------------------------+---------------------------------|

or, rearranging vertically (since exclusive OR is commutative) to minimize computation:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 835

 |-------------------------------+---------------------------------|
 | C15 C14 C13 C12 C11 C10 C9 C8 |
 | D7 D6 D5 D4 D3 D2 D1 D0 |
 | C7 C6 C5 C4 C3 C2 C1 C0 |
 | D7 D6 D5 D4 D3 D2 D1 D0 |
 | C7 C6 C5 C4 C3 C2 C1 C0 |
 | D3 D2 D1 D0 D7 D6 D5 D4 |
 | C3 C2 C1 C0 C7 C6 C5 C4 |
 | D3 D2 D1 D0 |
 | C3 C2 C1 C0 |
 | D3 D2 D1 D0 |
 | C3 C2 C1 C0 |
 |-------------------------------+---------------------------------|

In operation, the CRC register C15-C0 is initialized to all ones. During transmission, the Data are passed though the
calculation before transmission. The ones complement of the final CRC register value is then transmitted with the least
significant octet (C7-C0) first. At the receiving end, all data octets, including the received CRC octets, are passed though the
calculation. If all octets are received correctly, then the final value of the receiver's CRC register will be the constant
X'F0B8':

 | 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 |
 |<------ F -----><------ 0 -----><------ B -----><------ 8 ------>|

As an example of usage, consider a data sequence X'01', X'22', X'30':

Description Value CRC Accumulator After Octet is Processed
 X'FFFF' (initial value)
first data octet X'01' X'1E0E'
second data octet X'22' X'EB70'
third data octet X'30' X'42EF' ones complement is X'BD10'
CRC1 (least significant octet) X'10' X'0F3A'
CRC2 (most significant octet) X'BD' X'F0B8' final result at receiver

Thus, the transmitter would calculate the CRC on the three octets X'01', X'22', and X'30' to be X'42EF'. The ones complement
of this is X'BD10', which is appended to the frame least significant octet first as X'10', X'BD'.

The receiver would calculate the CRC on the five octets X'01', X'22', X'30', X'10', and X'BD' to be X'F0B8', which is the
expected result for a correctly received frame.

G.2.1 Sample Implementation of the Data CRC Algorithm in C

As an example, a C language implementation of the Data CRC algorithm is presented. Inputs are the octet to be processed
and the accumulating CRC value. The function return value is the updated CRC value.

/* Accumulate "dataValue" into the CRC in crcValue.
/ Return value is updated CRC
/
/ Assumes that "unsigned char" is equivalent to one octet.
/ Assumes that "unsigned int" is 16 bits.
/ The ^ operator means exclusive OR.
*/

unsigned int CalcDataCRC(unsigned char dataValue, unsigned int crcValue)
{
 unsigned int crcLow;

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

836 ANSI/ASHRAE Standard 135-2012

 crcLow = (crcValue & 0xff) ^ dataValue; /* XOR C7..C0 with D7..D0 */

 /* Exclusive OR the terms in the table (top down) */
 return (crcValue >>8) ^ (crcLow << 8) ^ (crcLow <<3)
 ^ (crcLow <<12) ^ (crcLow >> 4)
 ^ (crcLow & 0x0f) ^ ((crcLow & 0x0f) << 7);
}

G.2.2 Sample Implementation of the Data CRC Algorithm in Assembly Language

As an example, an assembly language implementation of the Data CRC calculation for the 68HC11 (an eight-bit processor
with a simple instruction set) is presented. The routine accumulates the CRC into the variables CRCLO and CRCHI. T1 and
T2 are temporary storage variables. Most instructions act on either accumulator A or B.

DATACRC: ;ACCUMULATE THE OCTET (0,X) INTO THE DATA CRC
 LDAA 0,X ;FETCH DATA OCTET (INDEXED OPERATION)
 EORA CRCLO ;D7-D0 EXCLUSIVE OR C7-C0
 STAA CRCLO ;SAVE RESULT
 CLRB ;CLEAR REGISTER B
 LSRA ;SHIFT A RIGHT, 0 INTO MSB, LSB INTO CARRY
 RORB ;ROTATE B RIGHT, CARRY INTO MSB
 LSRA
 RORB
 LSRA
 RORB
 LSRA
 RORB
 ; A=(- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ;
 EORA CRCLO
 ANDA #0FH ;MASK OFF ALL BUT LS 4 BITS
 ; A=(- - - - 7 6 5 4) B=(3 2 1 0 - - - -)
 ; (- - - - 3 2 1 0)
 ;
 STAA T1 ;SAVE TEMP RESULT (NOT USED EXCEPT AS TEMP)
 STAB T2
 LSRA ;SHIFT RIGHT 1 BIT
 RORB
 ; A=(- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - 3 2 1) (0 - - - - - - -)
 ;
 EORA CRCLO ;COMBINE PARTIAL TERMS
 EORA T2
 EORB CRCHI ;C8-C15
 EORB T1
 ; A=(- - - - - 7 6 5) B=(4 3 2 1 0 - - -)
 ; (- - - - - 3 2 1) (0 - - - - - - -)
 ; (7 6 5 4 3 2 1 0) (15 14 13 12 11 10 9 8)
 ; (3 2 1 0 - - - -) (- - - - 7 6 5 4)
 ; (- - - - 3 2 1 0)
 ;
 STAA CRCHI ;SAVE RESULT
 STAB CRCLO
 RTS

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX G - CALCULATION OF CRC (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 837

G.2.3 Other Implementations of the Data CRC Algorithm

Other implementations of the Data CRC algorithm are possible. It can be seen that the new CRC value may be factored into
the exclusive OR of two terms. One term is the most significant octet of the prior CRC value. The other term is a function of
the least significant octet of the prior CRC value exclusive OR'ed with the data value. A lookup table with 256 elements may
be used to quickly determine the value of the second term, using the least significant octet of the prior CRC exclusive OR'ed
with the data value as an index. This term may then be exclusive OR'ed with the most significant octet of the prior CRC value
to form the new CRC value. The contents of the table may be computed using the implementation shown in G.2.1 or G.2.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

838 ANSI/ASHRAE Standard 135-2012

ANNEX H - COMBINING BACnet NETWORKS WITH NON-BACnet NETWORKS (NORMATIVE)

(This annex is part of this standard and is required for its use.)

H.1 Mapping Non-BACnet Networks onto BACnet Routers

In addition to providing the means to interconnect multiple BACnet networks, BACnet routers may also be used to provide a
gateway function to non-BACnet networks. Non-BACnet networks are characterized by the use of message structures,
procedures, and medium access control techniques other than those contained in this standard. The mapping from BACnet to
non-BACnet networks is performed by extending the routing table concept to allow non-BACnet devices to be addressable using
BACnet NPCI. Thus, each non-BACnet network is assigned a unique two-octet network number, and each device on the non-
BACnet network is represented by a "MAC address" that may, or may not, correspond to the actual octets used to address the
device using the medium access control in use on the foreign network. Since communication with devices on non-BACnet
networks is, by definition, not standardized here, the specific procedures for interpreting, translating, or relaying messages
received by such a router-gateway from either the BACnet or non-BACnet ports are outside the scope of this standard.

H.2 Multiple "Virtual" BACnet Devices in a Single Physical Device

A BACnet device is one that possesses a Device object and communicates using the procedures specified in this standard. In
some instances, however, it may be desirable to model the activities of a physical building automation and control device through
the use of more than one BACnet device. Each such device will be referred to as a "virtual BACnet device." This can be
accomplished by configuring the physical device to act as a router to one or more "virtual networks." The idea is that each virtual
BACnet device would be associated with a unique DNET and DADR pair, i.e., a unique BACnet address. The physical device
would be expected to perform exactly as if it were a router between the network on which messages for the virtual BACnet
devices are received and a real BACnet network with the same network number as assigned to the virtual BACnet devices.

H.3 Using BACnet with the DARPA Internet Protocols

This subclause describes procedures whereby BACnet messages may be conveyed using the protocols developed by the Defense
Advanced Research Projects Agency (DARPA) of the Department of Defense (DoD). Collectively, these protocols are known as
the Internet Protocol suite. The methodology described in this appendix involves encapsulating/decapsulating BACnet LSDUs
and conveying them across an internet using the capabilities of IP routers, a technique often referred to as "tunneling." Although
this appendix will describe the procedures in terms of a BACnet/Internet Protocol Packet-Assembler-Disassembler, the necessary
functionality could be built into BACnet nodes directly.

H.3.1 BACnet/Internet Protocol Packet-Assembler-Disassembler (B/IP PAD)

A B/IP PAD is a device that implements the BACnet network layer as described in Clause 6 of this standard as well as the DoD
User Datagram Protocol (UDP) and the Internet Protocol (IP).

Upon receipt of a BACnet packet from the local network, the B/IP PAD inspects the NPCI to see if a DNET network number has
been supplied. If so, the B/IP PAD then consults an internal table consisting of entries mapping network numbers, IP addresses
of all B/IP PADs within the BACnet internetwork, and the IP address of an IP router on the local network that represents the next
hop for the IP datagram. If an appropriate entry is found, the B/IP PAD encapsulates the LSDU portion of the BACnet message
(see Figure H-1) in a UDP packet where the LSDU represents the data portion of the packet. The UDP source and destinations
ports shall be set to X'BAC0'. The B/IP PAD shall then send an IP datagram containing the UDP packet to the local IP router
indicating its own IP address as the source address and the IP address of the B/IP PAD corresponding to the DNET contained in
the BACnet message as the destination IP address. If the DNET in the BACnet message is the global broadcast address, this
procedure shall result in the transmission of the BACnet LSDU to all B/IP PADs contained in the table. Conveyance of packets
between B/IP PADs follows standard IP procedures.

Upon receipt of an IP datagram from an IP router, a B/IP PAD shall locate the BACnet process at UDP port X'BAC0', which
shall prepare the data portion of the UDP datagram for transmission as a BACnet message on the local network using the
procedures defined in 6.3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 839

H.3.2 Implementation Notes

An implementation on an 8802-3 LAN might be
configured as shown in Figure H-1. BACnet packets are
differentiated from IP packets and those of other
protocols by the LSAP contained in the LLC header. IP
uses an LSAP of X'06', whereas the BACnet network
layer is identified by an LSAP of X'82'. In the case shown
in the Figure, each packet actually appears twice on the
network, once as a BACnet message and once as an IP
message. B/IP PADs could also be constructed to
implement the IP routing procedure for any IP packet in
addition to performing the BACnet
encapsulation/decapsulation. Such a device would be a
B/IP PAD/Router. This is illustrated in Figure H-2.

For further information about the DoD protocols, consult
the DDN Protocol Handbook referenced in Clause 25.

H.4 Using BACnet with the IPX Protocol

This subclause describes procedures whereby BACnet messages may be conveyed using the protocols developed by Novell
Corporation, which are known as Internetwork Datagram Protocol or, more popularly, IPX. This protocol layer is based on a
subset of the Xerox Network Services (XNS) protocols, in particular using the Packet Exchange Protocol (PEP). The
methodology described in this subclause involves encapsulating/decapsulating BACnet LSDUs and conveying them across an
IPX internetwork using the capabilities of IPX routers, a technique that here will be called IPX Tunneling. Although this
appendix will describe the procedures in terms of a BACnet/IPX packet-assembler-disassembler, the necessary functionality
could be built into BACnet nodes directly.

H.4.1 BACnet/IPX Packet-Assembler-Disassembler (B/IPX PAD)

A B/IPX PAD is a device that implements both the
BACnet network layer as described in Clause 6 of this
standard, as well as the IPX network layer.

Upon receipt of a BACnet packet from the local
network, the B/IPX PAD inspects the NPCI to see if a
DNET network number has been supplied. If so, the
B/IPX PAD then consults an internal table consisting of
entries mapping BACnet network numbers to (IPX
network number, MAC layer address) pairs that
represent all remote B/IPX PADs within the BACnet
internetwork. If an appropriate entry is found, the
B/IPX PAD encapsulates the LSDU portion of the
BACnet message (see Figure 6-1) in an IPX Tunnel
packet (see Figure H-3) where the destination network
and MAC-layer addresses correspond to those of the
remote B/IPX PAD and the destination socket number
shall be set to the BACnet IPX socket number X'87C1'.
The B/IPX PAD shall then send an IPX datagram
containing this tunnel packet to the local IPX router,

Figure H-1. IP tunneling implemented with a B/IP PAD.

Figure H-2. IP tunneling implemented with a B/IP PAD router.

Internet

IP
Router

IP
Router

BACnet
Device

BACnet
Device

BACnet
Device

B/IP
PAD

BACnet
Device

BACnet
Device

BACnet
Device

B/IP
PAD

B

A

Internet

B/IP
PAD/Router

B/IP
PAD/Router

BACnet
Device

BACnet
Device

BACnet
Device

BACnet
Device

BACnet
Device

BACnet
Device

BACnet
Device

BACnet
Device

B

A

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

840 ANSI/ASHRAE Standard 135-2012

indicating its own IPX network number, MAC-layer address, and the BACnet IPX socket number as the source. If the DNET in
the BACnet message is the global broadcast address, this procedure shall result in the transmission of the BACnet LSDU tunnel
packet to all B/IPX PADs contained in the table. Conveyance of packets between B/IPX PADs follows standard IPX routing
procedures.

Upon receipt of an IPX datagram using the BACnet socket, a B/IPX PAD shall prepare the data portion of the BACnet IPX
Tunnel packet for transmission as a BACnet message on the local network using the procedures defined in 6.3.

H.4.2 Implementation Notes

An implementation on an 8802-3 LAN might be configured as shown in Figure H-1. BACnet packets are differentiated from IPX
packets and those of other protocols by the LSAP contained in the LLC header. IPX uses an LSAP of X'E0', whereas the BACnet
network layer is identified by an LSAP of X'82'. In the case shown in the Figure, each packet actually appears twice on the
network: once as a BACnet message and once as an IPX message. B/IPX PADs could also be constructed to implement the IPX
routing procedure for any IPX packet in addition to performing the BACnet encapsulation/decapsulation. Such a device would be
a B/IPX PAD/Router. This is illustrated in Figure H-2.

References

NetWare® System Interface Technical Overview
Addison-Wesley Publishing Company, Reading Massachusetts
ISBN 0-201-57027-0

Figure H-3. Structure of a BACnet IPX tunnel packet.

 ;IPX Header (30 octets)
 dw X'FFFF' ;XNS checksum (not used by IPX)
 dw ? ;packet length (set by IPX)
 db ? ;routers crossed (set by IPX)
 db 4 ;type 4=Packet Exchange Packet
 dd ? ;32 bit dest network number
 db ?,?,?,?,?,? ;dest MAC layer address
 dw X'87C1' ;dest BACnet socket
 dd ? ;32 bit source network number
 db ?,?,?,?,?,? ;source MAC layer address
 dw X'87C1' ;source BACnet socket
 db 546 dup ? ;BACnet LSDU

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 841

H.5 Using BACnet with EIB/KNX

This clause describes how BACnet objects and properties are mapped to corresponding EIB/KNX Datapoints and Functional
Blocks. Functional Blocks are part of the Interworking Model defined by the EIB Association / Konnex Association. In the
following clauses, references to "EIB" also apply to Konnex.

H.5.1 Object Structures

The following subclauses describe the relationship between EIB Functional Blocks and BACnet objects.

H.5.1.1 EIB

EIB Functional Blocks not only describe the semantics of a function in the English language, but also define how to access
the services associated with that function. This is done on the basis of "Datapoints." The Datapoints are divided into two
principal categories, input and output. A Functional Block consists of a non-empty collection of one or more input and output
Datapoints. At least one Datapoint is required.

Functional Blocks are contained within Physical Devices. A Physical Device implements at least one Functional Block. It
may be regarded as a container for, or collection of, Functional Blocks.

H.5.1.2 BACnet

BACnet's object types define functions in terms of semantics and the services used to access these functions. To accomplish
this task, BACnet object types contain properties. An object type consists of a non-empty collection of properties, some of
which are mandatory while others may be optional.

BACnet also defines a Device object and a "BACnet Device" contains a collection of instances of object types. Each BACnet
Device contains one, and only one, Device object. See 12.11. Typically, each physical device corresponds to a single BACnet
Device and therefore contains a single Device object. An exception is described in H.2.

H.5.1.3 Relationship of EIB to BACnet

EIB Functional Blocks are comparable to BACnet object types while EIB Datapoints correlate to BACnet properties.

H.5.2 Mapping Rules for the BACnet Device Object Type

This clause provides rules for the assignment of values to the properties of the BACnet Device object type.

H.5.2.1 Object_Identifier

The Object_Identifier of a Device object is of type BACnetObjectIdentifier and must be unique internetwork-wide [OR:
unique to the entire internetwork]. See 12.11.1. The encoding is defined in 20.2.14. The Object Type field (the upper 10 bits)
contains the enumerated value of the BACnetObjectType. In this mapping, the content of the 22-bit Instance Number field
depends on whether the Object_Identifier is identifying a Device object or some other type of object. Subject to the
uniqueness constraint, a one-to-one mapping of EIB Physical Devices to BACnet Devices can be achieved by setting the
upper 6 bits of the instance number to a unique EIB subnetwork identifier. This could be a part of an EIB Domain Address if
it is available and is unique over all linked projects. The lower 16 bits of the instance number shall be set to the Individual
Address of the EIB device. Other mapping algorithms must also ensure that the Device's BACnetObjectIdentifier remains
unique internetwork wide.

H.5.2.2 Object_Name

This CharacterString is unique internetwork-wide. The string is generated from the EIB Project-Installation ID and the EIB
Individual Address. The Object_Name is "EIB_Project-Installation_ID::EIB_Individual_Address". Example: For an EIB

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

842 ANSI/ASHRAE Standard 135-2012

Project-Installation ID of X'0011' = D'17' and an EIB Individual Address of 1.6.7, the Object_Name string would be
"17::1.6.7".
H.5.2.3 Object_Type

The value of this property shall be DEVICE (= D'8').

H.5.2.4 System_Status

Subclause 12.10.4 lists the values for this BACnet property. EIB device status is determined by two variables:
LoadStateMachine (LSM) and RunStateMachine (RSM). The BACnet OPERATIONAL_READ_ONLY property value is not
supported by EIB devices. Table H-1 lists the relationship between EIB RunStateMachine and EIB LoadStateMachine values
and BACnet System_Status.

Table H-1. Mapping of the EIB device status to BACnet System_Status

26
 BACnet System_Status EIB RunStateMachine 28
 EIB LoadStateMachine

OPERATIONAL running Loaded
OPERATIONAL_READ_ONLY - -
DOWNLOAD_REQUIRED ready Unloaded
DOWNLOAD_IN_PROGRESS ready Loading
NON_OPERATIONAL halted Error

H.5.2.5 Vendor_Name

This CharacterString identifies the manufacturer of the EIB device, with the EIB manufacturer code in parentheses. Example:
"XYZ Company (1)"

H.5.2.6 Vendor_Identifier

This is the unique Vendor Identifier code assigned by ASHRAE. If the vendor has no BACnet Vendor Identifier, this property
shall be set to the Vendor Identifier for EIBA: D'74'.

H.5.2.7 Model_Name

This is the model name of the EIB device as registered with the EIBA / Konnex Association.

H.5.2.8 Firmware_Revision

The firmware revision shall be the mask version of the EIB device. The content is equal to
[EIB::DeviceObject:PID_FIRMWARE_REVISION].

H.5.2.9 Application_Software_Revision

This property is the software revision of the application running on the EIB device. The content is equal to
[EIB::DeviceObject:PID_PROGRAM_VERSION].

H.5.2.10 Protocol_Version

This is the version of the BACnet protocol supported by this device. See 12.11.12.

H.5.2.11 Protocol_Revision

This is the minor revision level of the BACnet protocol supported by this device. See 12.11.13.

H.5.2.12 Protocol_Services_Supported

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 843

This property indicates the BACnet protocol services supported by this device. See 12.11.14.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

844 ANSI/ASHRAE Standard 135-2012

H.5.2.13 Protocol_Object_Types_Supported

This property indicates the BACnet protocol object types supported by this device. See Clause 12.11.15. The protocol object
types supported shall be at least Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, and Binary Value.

H.5.2.14 Object_List

This property is a BACnetARRAY of BACnetObjectIdentifier. See Clause 12.11.16.

H.5.2.15 Max_APDU_Length_Accepted

The value of this property shall be greater than or equal to 50. See Clause 12.11.18.

H.5.2.16 Segmentation_Supported

See Clause 12.11.19.

H.5.2.17 APDU_Timeout

See Clause 12.11.28.

H.5.2.18 Number_Of_APDU_Retries

See Clause 12.11.29.

H.5.2.19 Device_Address_Binding

See Clause 12.11.34.

H.5.2.20 Database_Revision

See Clause 12.11.35. This value shall be updated anytime the EIB device configuration is changed.

H.5.3 Mapping Rules for Other BACnet Object Types

This clause provides rules for the assignment of values to specific properties of these BACnet object types: Analog Input,
Analog Output, Analog Value, Binary Input, Binary Output, and Binary Value.

H.5.3.1 Object_Identifier

An Object_Identifier is a 32-bit number that must be unique within a BACnet Device. The encoding is defined in Clause
20.2.14. The Object Type field (the upper 10 bits) contains the enumerated value of the BACnetObjectType. In this mapping,
the content of the 22-bit Instance Number field depends on whether the Object_Identifier is identifying a Device object or
some other type of object. The Object_Identifiers of other object types must be unique within the BACnet device that contains
them. See Clause 12. Subject to this constraint, the upper 6 bits of the instance number shall uniquely identify each instance of
a mapped object contained within a BACnet Device while the remaining 16 bits shall contain the EIB Individual Address to
simplify diagnostics.

H.5.3.2 Object_Name

This CharacterString is unique within the BACnet Device. The string is generated from the EIB Project-Installation ID, the
EIB Individual Address, and the EIB Functional Block ID - Instance. The Object_Name is "EIB_Project-
Installation_ID::EIB_Individual_Address#Functional_Block_ID-Instance". Example: For an EIB Project-Installation ID of
X'0011' = D'17', an EIB Individual Address of 1.6.7, a Functional Block ID of D'10' and a Functional Block Instance of D'2'
the Object_Name string would be "17::1.6.7#10-2".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 845

H.5.3.3 Object_Type

The value of this property shall be as listed below:

ANALOG-INPUT D'0'
ANALOG-OUTPUT D'1'
ANALOG-VALUE D'2'
BINARY-INPUT D'3'
BINARY-OUTPUT D'4'
BINARY-VALUE D'5'

H.5.3.4 Present_Value

This property contains the present value of the Input / Output / Value. For Binary object types the permissible values are
ACTIVE and INACTIVE. For Analog object types the property value is a REAL.

H.5.3.5 Description

This property contains the EIB group address associated with the Present_Value property as a CharacterString with the
notation "x/y/z", where "x" is the main group, "y" is the subgroup, and "z" is the function.

H.5.3.6 Status_Flags

The values for the status flags shall be set as:

IN_ALARM The value of this flag shall be logical FALSE (0).

FAULT Logical TRUE (1) if the Reliability property does not have a value of NO_FAULT_DETECTED,

otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if manual override can be detected by the EIB device and is executed, otherwise

logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise logical FALSE

(0).

H.5.3.7 Event_State

The value of this property is always set to NORMAL.

H.5.3.8 Reliability

The optional "Reliability" property shall, if implemented, return at least NO_FAULT_DETECTED in case that the EIB
Datapoints' Quality Codes are GOOD, and UNRELIABLE_OTHER in case at least one EIB Datapoint's Quality Code is
BAD. An EIB Datapoint's Quality Code is GOOD if the Datapoint can be read from (Input) or written to (Output); otherwise
its Quality Code is BAD. If an implementation is able to distinguish different sources of a failure, it may return other
reliability codes of type BACnetReliability.

H.5.3.9 Out_Of_Service

The mandatory "Out_Of_Service" property shall be set to TRUE if the corresponding EIB device cannot be reached or the
Present_Value cannot be read from (Input) or written to (Output) the device. Otherwise this property is set to FALSE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

846 ANSI/ASHRAE Standard 135-2012

H.5.3.10 Polarity

The value of this property shall always be NORMAL.

H.5.3.11 Units

The BACnet Analog Input/Output/Value Present_Value is of datatype REAL. The EIB datatypes 8-Bit Unsigned Value, 8-Bit
Signed Value, 2-Octet Unsigned Value, 2-Octet Signed Value, 2-Octet Float Value, 4-Octet Unsigned Value, 4-Octet Signed
Value, and 4-Octet Float Value are mapped into the datatype REAL.

These datatypes encompass a larger number of Datapoint types that are mapped into a REAL with a BACnetEngineeringUnit.
See Table H-2.

Table H-2. EIB Datapoint Types
ID Name Range Units BACnetEngineeringUnits

5.001 DPT_Scaling 0...100 % (98) percent
5.003 DPT_Angle 0...360 ° (90) degrees-angular
5.010 DPT_Value_1_Ucount 0...255 counter pulses
6.010 DPT_Value_1_Count counter value
7.001 DPT_Value_2_Ucount counter pulses

(16-bit unsigned
value)

8.001 DPT_Value_2_Count counter pulses
9.001 DPT_Value_Temp -273...+670760 C (62) degrees-Celsius
9.002 DPT_Value_Tempd -670760...+670760 K (63) degrees-Kelvin
9.003 DPT_Value_Tempa -670760...+670760 K/h (181) degrees-Kelvin-per-

hour
9.004 DPT_Value_Lux 0...670760 Lux (37) luxes
9.005 DPT_Value_Wsp 0...670760 m/s (74) meters-per-second
9.006 DPT_Value_Pres 0...670760 Pa (53) pascals
9.010 DPT_Value_Time1 -670760...+670760 s (73) seconds
9.011 DPT_Value_Time2 -670760...+670760 ms (159) milliseconds
9.020 DPT_Value_Volt -670760...+670760 mV (124) millivolts
9.021 DPT_Value_Curr -670760...+670760 mA (2) milliamperes
12.001 DPT_Value_4_Ucount 0...4294967295 counter pulses
13.001 DPT_Value_4_Count -2147483648...

+2147483647
counter value

14.000 DPT_Value_Acceleration m s-2 (166) meters-per-second-
per-second

14.003 DPT_Value_Activity s-1 (101) per-second
14.005 DPT_Value_Amplitude (unit as

appropriate)

14.006 DPT_Value_AngleRad rad angle (103) radians

14.007 DPT_Value_AngleDeg ° angle (90) degrees-angular

14.008 DPT_Value_Angular_Momentum J s (183) joule-seconds
14.009 DPT_Value_Angular_Velocity rad s-1 (184) radians-per-second
14.010 DPT_Value_Area m2 (0) square-meters
14.011 DPT_Value_Capacitance F (170) farads
14.014 DPT_Value_Compressibility m2 N-1 (185) square-meters-per-

Newton
14.015 DPT_Value_Conductance S = Ω-1 (173) siemens
14.016 DPT_Value_

Electrical_Conductivity
 S m-1 (174) siemens-per-meter

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 847

Table H-2. EIB Datapoint Types (cont.)

ID Name Range Units BACnetEngineeringUnits
14.017 DPT_Value_Density kg m-3 (186) kilograms-per-cubic-

meter
14.019 DPT_Value_Electric_Current A (3) amperes
14.020 DPT_Value_Electric_CurrentDensity A m-2 (168) amperes-per-square-

meter
14.023 DPT_Value_Electric_FieldStrength V m-1 (177) volts-per-meter

14.027 DPT_Value_Electric_Potential V (5) volts
14.028 DPT_Value_Electric_PotentialDifference V (5)volts
14.029 DPT_Value_ElectromagneticMoment A m2 (169) ampere-square-

meters
14.030 DPT_Value_Electromotive_Force V (5) volts
14.031 DPT_Value_Energy J (16) joules
14.032 DPT_Value_Force N (153) newton
14.033 DPT_Value_Frequency Hz = s-1 (27) hertz
14.034 DPT_Value_Angular_Frequency rad s-1 (184) radians-per-second
14.035 DPT_Value_Heat_Capacity J K-1 (127) joules-per-degree-

Kelvin
14.036 DPT_Value_Heat_FlowRate W (47) watts
14.037 DPT_Value_Heat_Quantity J (16) joules
14.038 DPT_Value_Impedance W (47) watts
14.039 DPT_Value_Length m (31) meters
14.040 DPT_Value_Light_Quantity J or lm s (16) joules
14.041 DPT_Value_Luminance cd m-2 (180) candelas-per-square-

meter
14.042 DPT_Value_Luminous_Flux lm (36) lumens
14.043 DPT_Value_Luminous_Intensity cd (179) candelas
14.044 DPT_Value_Magnetic_FieldStrength A m-1 (167) amperes-per-meter

14.045 DPT_Value_Magnetic_Flux Wb (178) webers
14.046 DPT_Value_Magnetic_FluxDensity T (175) teslas
14.047 DPT_Value_Magnetic_Moment A m2 (169) ampere-square-

meters
14.048 DPT_Value_Magnetic_Polarization T (175) teslas
14.049 DPT_Value_Magnetization A m-1 (167) amperes-per-meter

14.050 DPT_Value_MagnetomotiveForce A (3) amperes
14.051 DPT_Value_Mass kg (39) kilograms
14.052 DPT_Value_MassFlux kg s-1 (42) kilograms-per-second
14.053 DPT_Value_Momentum N s (187) newton-seconds

14.054 DPT_Value_Phase_AngleRad rad (103) radians
14.055 DPT_Value_Phase_AngleDeg ° (14) degrees-phase
14.056 DPT_Value_Power W (47) watts
14.057 DPT_Value_Power_Factor cos Φ (15) power-factor
14.058 DPT_Value_Pressure Pa = N m-2 (53) pascals
14.059 DPT_Value_Reactance Ω (4) ohms
14.060 DPT_Value_Resistance Ω (4) ohms
14.061 DPT_Value_Resistivity Ωm (172) ohm-meters
14.062 DPT_Value_SelfInductance H (171) henrys
14.064 DPT_Value_Sound_Intensity W m-2 (189) watts-per-square-

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

848 ANSI/ASHRAE Standard 135-2012

meter
14.065 DPT_Value_Speed m s-1 (74) meters-per-second
14.066 DPT_Value_Stress Pa = N m-2 (53) pascals

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 849

Table H-2. EIB Datapoint Types (cont.)
ID Name Range Units BACnetEngineeringUnits

14.067 DPT_Value_Surface_Tension N m-1 (188) newtons-per-meter
14.068 DPT_Value_Common_Temperature C (62) degrees-Celsius
14.069 DPT_Value_Absolute_Temperature K (63) degrees-Kelvin
14.070 DPT_Value_TemperatureDifference K (63) degrees-Kelvin
14.071 DPT_Value_Thermal_Capacity J K-1 (127) joules-per-degree-

Kelvin
14.072 DPT_Value_Thermal_Conductivity W m-1 K-1 (190) watts-per-meter-per-

degree-Kelvin
14.073 DPT_Value_ThermoelectricPower V K-1 (176) volts-per-degree-

Kelvin
14.074 DPT_Value_Time s (73) seconds
14.075 DPT_Value_Torque N m (160) newton-meters
14.076 DPT_Value_Volume m3 (80) cubic-meters
14.077 DPT_Value_Volume_Flux m3 s-1 (85) cubic-meters-per-

second
14.078 DPT_Value_Weight N (153) newton
14.079 DPT_Value_Work J (16) joules

H.5.3.12 Priority_Array

This is an internal implementation requirement, which is not required to be mapped. See Clause 19.

H.5.3.13 Relinquish_Default

For prioritized writable properties, it is typically required by the mapping that the Present_Value shall remain unchanged
when no active entry (value not equal to NULL) is present. Therefore, the Relinquish_Default shall be set equal to the
Present_Value.

H.5.3.14 Profile_Name

The profile name shall be set to "74-EIB_[Profile]", where [Profile] is the name of the EIB Function Block.

H.5.4 Mappings of EIB Functional Blocks

The following Functional Block mappings are specified in this clause: Analog Input, Analog Output, Analog Value, Binary
Input, Binary Output, Binary Value and Dimming Actuator.

H.5.4.1 Overview

This clause provides mappings of standardized EIB Functional Blocks to BACnet objects. These are intended to provide both
standardized definitions and to serve as illustrative examples of the mapping rules prescribed above. They therefore contain
additional explanations and descriptive text.

For some properties, the mapping may not be to an EIB Datapoint but rather to a static value or to a function that transforms
internal information to a BACnet datatype or format.

H.5.4.2 Analog Input

The Analog Input Functional Block is mapped to the standard BACnet Analog Input object type as the semantics of these two
data structures are identical and the required properties of the BACnet object type can be mapped.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

850 ANSI/ASHRAE Standard 135-2012

Table H-3. Analog Input Mapping

Property Identifier Property Datatype O/R/W1 EIB Mapping
Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value REAL R PID_ANALOG_PRESENT.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R 6
 As specified in H.5.3.9

Units BACnetEngineeringUnits R As specified in H.5.3.11
Min_Pres_Value REAL O As specified in H.5.3.11, range lower value
Max_Pres_Value REAL O As specified in H.5.3.11, range higher value
COV_Increment REAL O 1.0
Profile_Name CharacterString R "74-EIB_AnalogInput"

1 O/R/W = Optional, required Readable or required Writable property (see Clause 12). In the context of the mapping, a
property is always required if defined as mandatory for the BACnet object type, and additional Properties which are
optional in the BACnet specification or are proprietary may be defined as mandatory for the mapping. If a Property is
writable, the Property must also be readable.

H.5.4.3 Analog Output

The Analog Output Functional Block is mapped to the standard BACnet Analog Output object type as the semantics of these
two data structures are identical and the required properties of the BACnet object type can be mapped.

Table H-4. Analog Output Mapping

Property Identifier Property Datatype O/R/W Mapping
Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value REAL W PID_ANALOG_SET.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R 7
 As specified in H.5.3.9

Units BACnetEngineeringUnits R As specified in H.5.3.11
Priority_Array BACnetPriorityArray R As specified in H.5.3.12
Relinquish_Default REAL R As specified in H.5.3.13
Profile_Name CharacterString R "74-EIB_AnalogOutput"

H.5.4.4 Analog Value

The Analog Value Functional Block is mapped to the standard BACnet Analog Value object type as the semantics of these
two data structures are identical and the required properties of the BACnet object type can be mapped.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 851

Table H-5. Analog Value Mapping
Property Identifier Property Datatype O/R/W Mapping

Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value REAL R PID_ANALOG_PRESENT.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R As specified in H.5.3.9
Units BACnetEngineeringUnits R As specified in H.5.3.11
COV_Increment REAL R 1.0
Profile_Name CharacterString R "74-EIB_AnalogValue"

H.5.4.5 Binary Input

The Binary Input Functional Block is mapped to the standard BACnet Binary Input object type as the semantics of these two
data structures are identical and the required properties of the BACnet object type can be mapped.

Table H-6. Binary Input Mapping

Property Identifier Property Datatype O/R/W EIB Mapping
Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value BACnetBinaryPV R PID_BOOLEAN_PRESENT.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R As specified in H.5.3.9
Polarity BACnetPolarity R NORMAL
Profile_Name CharacterString O "74-EIB_BinaryInput"

H.5.4.6 Binary Output

The Binary Output Functional Block is mapped to the standard BACnet Binary Output object type as the semantics of these
two data structures are identical and the required properties of the BACnet object type can be mapped.

Table H-7. Binary Output Mapping

Property Identifier Property Datatype O/R/W EIB Mapping
Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value BACnetBinaryPV W PID_BOOLEAN_SET.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R As specified in H.5.3.9
Polarity BACnetPolarity R NORMAL
Priority_Array BACnetPriorityArray R As specified in H.5.3.12
Relinquish_Default BACnetBinaryPV R As specified in H.5.3.13
Profile_Name CharacterString O "74-EIB_BinaryOutput"

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

852 ANSI/ASHRAE Standard 135-2012

H.5.4.7 Binary Value

The Binary Value Functional Block is mapped to the standard BACnet Binary Value object type as the semantics of these two
data structures are identical and the required properties of the BACnet object type can be mapped.

Table H-8. Binary Value Mapping
Property Identifier Property Datatype O/R/W EIB Mapping

Object_Identifier BACnetObjectIdentifier R As specified in H.5.3.1
Object_Name CharacterString R As specified in H.5.3.2
Object_Type BACnetObjectType R As specified in H.5.3.3
Present_Value BACnetBinaryPV R1 PID_BOOLEAN_SET.Value
Description CharacterString O As specified in H.5.3.5
Status_Flags BACnetStatusFlags R As specified in H.5.3.6
Event_State BACnetEventState R NORMAL
Reliability BACnetReliability O As specified in H.5.3.8
Out_Of_Service BOOLEAN R As specified in H.5.3.9
Profile_Name CharacterString O "74-EIB_BinaryValue"

1 If Present_Value is commandable, then it is required to be writable. This property is required to be writable when
Out_Of_Service is TRUE.

H.5.4.8 Dimming Actuator

The Dimming Actuator Functional Block is mapped to the standard BACnet Analog Value object, which is extended by the
addition of 4 EIB-specific properties.

The present value of the EIB Dimming Actuator is always an Unsigned Integer with a range of 0 to 255 (Unsigned8). These
256 values are linearly mapped to a percentage of the maximum output, i.e., 0 = 0%, 127 = 50%, 255 = 100%. The actual
physical value, if required, must be determined by the application.

The Dimming Actuator Functional Block specifies that the requested target state and current physical state be represented by
different Datapoints. Although implementations may treat this internally as an identical device state (target requested and
current state), this may not be the case when the dimming is the result of ramping or technically required delays. Therefore,
for the two current state properties Present_Value and Present_Bin_Value, the corresponding target properties, Target_Value
and Target_Bin_Value, have been defined.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 853

Table H-9. Dimming Actuator Mapping
Property Identifier Property Datatype S/P1 O/R/W Mapping

Object_Identifier BACnetObjectIdentifier S R As specified in H.5.3.1
Object_Name CharacterString S R As specified in H.5.3.2
Object_Type BACnetObjectType S R As specified in H.5.3.3
Description CharacterString S O As specified in H.5.3.5
Device_Type CharacterString S O Device's functional description from

manufacturer data from ETS
Present_Value REAL S R PID_ANALOG_PRESENT.Value
Status_Flags BACnetStatusFlags S R As specified in H.5.3.6
Event_State BACnetEventState S R NORMAL
Reliability BACnetReliability S O As specified in H.5.3.8
Out_Of_Service BOOLEAN S R As specified in H.5.3.9
Units BACnetEngineeringUnits S R As specified in H.5.3.11
COV_Increment REAL S R 1.0
Profile_Name CharacterString S R "74-EIB_DimmingActuator"
Target_Value REAL P W PID_ANALOG_SET.Value
Present_Bin_Value BACnetBinaryPV P R PID_BOOLEAN_PRESENT.Value
Target_Bin_Value BACnetBinaryPV P W PID_BOOLEAN_SET.Value
Dimming_Control2 REAL P O/W PID_CONTROL_SET.Value

1 S/P = Standard/Proprietary property

2 Because BACnet specifies that a writable property must also be readable, the value returned when the
Dimming_Control property is read shall be 0.0

H.5.4.9 Defining Proprietary Object Types

If it is not possible to map an EIB Functional Block to an existing BACnet object type, a new proprietary object type must be
defined. Such object types shall be assigned an object type enumeration greater than 127 and contain the Profile_Name
property to uniquely identify such object types and to provide a reference to an object-specific profile or description of the
object type. At a minimum, proprietary object types must have the Object_Identifier, Object_Name, Object_Type and
Profile_Name properties. See Clause 23.

H.5.4.10 Defining Proprietary Properties

If it is possible to map a Functional Block to a standard BACnet object type but Datapoints exist within the EIB standard that
cannot be mapped to existing object properties, or if a completely new proprietary object type with proprietary properties is
defined, it will be necessary to define proprietary properties for that object type. Proprietary properties shall be assigned
property identifiers greater than 511 and the profile pointed to by the Profile_Name property of the object type shall provide
the property name, datatype and conformance code for each such profile-specific property. See Clause 23.

H.5.5 Additional Information

This clause provides information on the EIB Functional Blocks Specification.

H.5.5.1 EIB Functional Blocks (FBs)

Within the Functional Block specifications, the Datapoints of a device are called properties and receive a property ID in terms
of a unique name within the description of a functional block. The names of the properties always start with "PID_", as in the
example PID_BOOLEAN_PRESENT.

Each such Datapoint property provides the following state information at run time:

Value: The current value of the property; it may be any kind of Datapoint Type.
Timestamp: Optional; it may be absolute or relative, depending on the device's capabilities.
Qualitycode: Either GOOD or BAD.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

854 ANSI/ASHRAE Standard 135-2012

H.6 Using BACnet with the BACnet/WS Web Services Interface (Annex N)

This clause provides examples of the correspondence between BACnet/WS node attributes to specific properties of BACnet
Objects. For some nodes and attributes, mapping might not be to a BACnet property but rather to a static value or to a
function that transforms internal information to a BACnet datatype or concept.

H.6.1 Typical Mappings of BACnet/WS Attributes to BACnet Object Properties

The "normalized attributes", as defined by Annex N, are designed to provide an interoperable model of selected data to a Web
services client. The following clauses define the correspondence of those attributes with BACnet properties.

H.6.1.1 Display Name

This attribute may correspond to the BACnet property Object_Name, except that DisplayName values do not need to be
unique in the Web services data model.

H.6.1.2 Description

This attribute may correspond to the BACnet property Description.

H.6.1.3 Value and Related Attributes

The mappings for attributes related to the Value attribute, and its ValueType, vary according to BACnet object type, and may
correspond as shown in the following table.

Table H-10. Value and Value Related Attribute Mappings to BACnet Object Properties
BACnet Object

Type
Value ValueType Units Maximum Minimum Resolution

Accumulator Present_Value "Integer" Units Max_Pres_Value
Analog Input Present_Value "Real" Units Max_Pres_Value Min_Pres_Value Resolution
Analog Output Present_Value "Real" Units Max_Pres_Value Min_Pres_Value Resolution
Analog Value Present_Value "Real" Units
Averaging (varies) "Real"
Binary Input Present_Value "Boolean"
Binary Output Present_Value "Boolean"
Binary Value Present_Value "Boolean"
Calendar Present_Value "Boolean"
Command Present_Value "Integer"
Device System_Status "Multistate"
Event Enrollment Event_State "Multistate"
Life Safety Point Present_Value "Multistate"
Life Safety Zone Present_Value "Multistate"
Loop Present_Value "Real" Output_

Units
Maximum_Output Minimum_Output

Multistate Input Present_Value "Multistate"
Multistate Output Present_Value "Multistate"
Multistate Value Present_Value "Multistate"
Pulse Converter Present_Value "Real" Units
Schedule Present_Value (varies)

H.6.1.4 Writable

This attribute may correspond to the PICS conformance statement declaration of writable for the BACnet property to which
this node maps, but it may also vary depending on which user is making the Web services request or on other configuration or
operational criteria.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 855

H.6.1.5 InAlarm

This boolean attribute may correspond to the IN_ALARM flag in the BACnet property Status_Flags. If the IN_ALARM flag
of that property is set to true, then InAlarm shall be true.

H.6.1.6 PossibleValues and WritableValues

The mapping for these attributes varies based on BACnet object type, and may be mapped according to the following table.
The WritableValues attribute is always a subset of the PossibleValues attribute.

Table H-11. PossibleValues and WritableValues Attribute Mappings

BACnet Object Type BACnet Property or Datatype Mapping
Binary Input Active_Text, Inactive_Text properties
Binary Output Active_Text, Inactive_Text properties
Binary Value Active_Text, Inactive_Text properties
Command Action_Text property
Device BACnetDeviceStatus enumeration
Event Enrollment BACnetEventState enumeration
Life Safety Point BACnetLifeSafetyState enumeration
Life Safety Zone BACnetLifeSafetyState enumeration
Multistate Input State_Text property
Multistate Output State_Text property
Multistate Value State_Text property
Schedule (varies)

H.6.1.7 Overridden

This boolean attribute may correspond to the OVERRIDDEN flag in the BACnet property StatusFlags. If the OVERRIDDEN
flag of that property is set to true, then Overridden shall be true.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX H - COMBINING BACnet NETWORKSWITH NON-BACnet NETWORKS (NORMATIVE)

856 ANSI/ASHRAE Standard 135-2012

H.7 Virtual MAC Addressing

H.7.1 General

With the exception of LonTalk, a data link layer with a MAC address size greater than 6 octets shall expose a BACnet Virtual
MAC (VMAC) address of 6 octets or fewer to the BACnet network layer.

The VMAC address shall function analogously as the MAC address of the technologies of Clauses 7, 8, 9, and 11.

A VMAC table shall exist within the data link layer on all BACnet nodes on a BACnet network that employs VMAC
addresses. A VMAC table shall be used to map native MAC addresses of the data link layer to VMAC addresses. The VMAC
table contains VMAC entries corresponding to nodes in the BACnet network.

The data link layer uses native MAC addresses when communicating over its data link. The data link translates from VMAC
addresses to native MAC addresses when BACnet messages are sent out. The data link translates from native MAC addresses
to VMAC addresses when BACnet messages are received. If the address translation fails, the NPDU shall be dropped.

The methods used to maintain a VMAC table are dependent on the specific data link that is using a VMAC table.

H.7.2 Using Device Instance as a VMAC Address

When a particular data link layer specifies that each node's BACnet device instance is to be used as the VMAC address for the
node, then the device instance as a VMAC address shall be transmitted as 3 octets, with the high order octet first, and
formatted as follows:

 Bit Number: 7 6 5 4 3 2 1 0
 |---|---|---|---|---|---|---|---|
 | 0 | 0 | High 6 Bits |
 |---|---|---|---|---|---|---|---|
 | Middle Octet |
 |---|---|---|---|---|---|---|---|
 | Low Octet |
 |---|---|---|---|---|---|---|---|

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

 ANNEX I - COMMANDABLE PROPERTIES WITH MINIMUM ON AND OFF TIMES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 857

ANNEX I - COMMANDABLE PROPERTIES WITH MINIMUM ON AND OFF TIMES (INFORMATIVE)

(This annex is not part of this standard but is included for information purposes only)

This annex is an example of the use of a commandable property with minimum on and off times.

Suppose that we have a binary output object with a 600-second (10-minute) Minimum_On_Time, a 1200-second (20-minute)
Minimum_Off_Time, and NORMAL polarity. The Priority_Array is all NULL, and the Present_Value is INACTIVE (off) due
to the Relinquish_Default and has been INACTIVE for several hours. See Figure I-1(a).

In Figure I-1(b) a write is made to the Present_Value at priority 9 with a value of ACTIVE (on). Logic internal to the request
server writes the value to entry 9 in the Priority_Array. Since the Present_Value has been off for more than 20 minutes, the
change of state can occur immediately. Thus, the Present_Value will take the value ACTIVE and the Change_Of_State_Time
will be set to the time of control.

Because the state of the Present_Value has changed, the minimum on and off time maintenance entity writes the new state of
ACTIVE to entry 6 in the Priority_Array in order to enforce the minimum time. Any further writes to the Present_Value at
priorities numerically greater than 6 (less important) will be entered into the Priority_Array but will not be acted upon due to the
presence of the ACTIVE at priority 6. For example, in Figure I-1(c), a write to Present Value at priority 7 with a value of
INACTIVE will be entered into the Priority_Array but will not be acted upon.

Writes to priorities numerically less than 6 will be entered into the Priority_Array and may cause changes of state due to their
higher priority. This is desired for emergency and fire control.

In Figure I-1(e) the minimum on and off time maintenance entity in the device issues a relinquish (NULL) at priority 6 when the
Minimum_On_Time expires, 10 minutes after the initial write. The remaining entries in the Priority_Array are then examined to
determine the new Present_Value. If no change of state results, then no further action occurs. This would be the case in our
example if no INACTIVE requests at priorities numerically less than 9 had been made.

In our example we had an INACTIVE at priority 7. Thus, in Figure I-1(f), when the Minimum_On_Time expires and the
ACTIVE at priority 6 is relinquished, the value at priority 7 takes control. The Present_Value changes state to INACTIVE. As
before, because the state of the Present_Value has changed, the minimum on and off time maintenance entity writes the new
state of INACTIVE to entry 6 in the Priority_Array in order to enforce the minimum time.

We note that while write to priorities numerically less than 6 are not subject to minimum on and off times, if such writes cause
changes of states the server should still write the new value to priority 6. Thus, if the higher priority request is relinquished
within the minimum time, the minimum will be enforced before any lower priority requests can cause changes of state.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX I - COMMANDABLE PROPERTIES WITH MINIMUM ON AND OFF TIMES (INFORMATIVE)

858 ANSI/ASHRAE Standard 135-2012

Figure I-1. Example of minimum on and off times.

1
2
3
4
5
6
7
8
9
10...
16

default

1
2
3
4
5
6
7
8
9
10...
16

default

1
2
3
4
5
6
7
8
9

10...
16

default

��,4A!4���,4A! 1
2
3
4
5
6
7
8
9
10...
16

default

1
2
3
4
5
6
7
8
9
10...
16

default

1
2
3
4
5
6
7
8
9

10...
16

default

��,4A!

4���,4A!

��,4A!

Priority Array Priority Array

Priority ArrayPriority Array

Priority Array Priority Array

Present Value Present Value

Present ValuePresent Value

Present Value Present Value

4���,4A!

��,4A!

4���,4A!

4���,4A!

4���,4A! 4���,4A!

4���,4A! 4���,4A!

4���,4A! 4���,4A!

4���,4A!
4���,4A!

��,4A! ��,4A!

��,4A!

��,4A!

reset
minimum time

minimum time
expires

reset
minimum time

(a) Idle (b) Write new value at priority = 9

(c) Write new value at priority = 7 (d) No change in present v alue

(e) Minimum on expires (f) Pri = 7 takes effect & minimum off begins

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 859

ANNEX J - BACnet/IP (NORMATIVE)

J.1 General

This normative annex specifies the use of BACnet messaging with the networking protocols originally defined as the result of
research sponsored by the U. S. government's Defense Advanced Research Projects Agency and now maintained by the Internet
Engineering Task Force. This suite of protocols is generally known as the "Internet Protocols."

J.1.1 BACnet/IP (B/IP) Network Definition

A BACnet/IP network is a collection of one or more IP subnetworks (IP domains) that are assigned a single BACnet network
number. A BACnet internetwork consists of two or more BACnet networks. These networks may be BACnet/IP networks or use
the technologies specified in Clauses 7, 8, 9, 11, and Annex O. This standard also supports the inclusion of IP multicast groups
in a fashion analogous to IP subnets, as described below in J.8.

J.1.2 Addressing within B/IP Networks

In the case of B/IP networks, six octets consisting of the four-octet IP address followed by a two-octet UDP port number (both of
which shall be transmitted most significant octet first) shall function analogously to the MAC address of the technologies of
Clauses 7, 8, 9, and 11 with respect to communication between individual devices and inclusion in the Clause 6 NPCI, where a
DADR or SADR is required. This address shall be referred to as a B/IP address. The default UDP port for both directed
messages and broadcasts shall be X'BAC0' and all B/IP devices shall support it. In some cases, e.g., a situation where it is
desirable for two groups of BACnet devices to coexist independently on the same IP subnet, the UDP port may be configured
locally to a different value without it being considered a violation of this protocol. Where the "B/IP broadcast address" is
referred to in this Annex, it means an IP address with the subnet of the broadcasting device in the network portion and all 1's in
the host portion of the address and the UDP port of the devices on the B/IP network in question. An IP multicast address in
conjunction with an appropriate UDP port may be used in lieu of the B/IP broadcast address under the circumstances defined in
J.8.

B/IP devices shall support configurable IP addresses and each shall be able to be set to any valid unicast IP address. B/IP devices
shall also support a configurable UDP port number and shall support, at a minimum, values in the ranges 47808 - 47823 and
49152 - 65535. For B/IP devices that support multiple B/IP ports, the UDP port number for each B/IP port shall be settable
across the above noted valid range.

 J.1.3 B/IP Concept

A BACnet/IP network shall function in concept identically to the other non-IP network types with respect to directed messages
and broadcast messages, including local, remote, and global broadcasts, as defined in 6.3.2: a directed message shall be sent
directly to the destination node; a "local broadcast" shall reach all nodes on a single B/IP network; a "remote broadcast" shall
reach all nodes on a single BACnet network with network number different from that of the originator's network; a "global
broadcast" shall reach all nodes on all networks. The management of broadcasts within a single B/IP network, or between
multiple B/IP networks, or between B/IP and non-B/IP networks, is described in J.4.

J.2 BACnet Virtual Link Layer

The BACnet Virtual Link Layer (BVLL) provides the interface between the BACnet Network Layer (Clause 6) and the
underlying capabilities of a particular communication subsystem. This Annex specifies the BACnet Virtual Link Control
(BVLC) functions required to support BACnet/IP directed and broadcast messages. The purpose and format of each message is
described in the following subclauses.

Note that each BVLL message has at least three fields. The 1-octet BVLC Type field indicates which underlying communication
subsystem or microprotocol is in use. In this case, a BVLC Type of X'81' indicates the use of BACnet/IP as defined in this
Annex. The 1-octet BVLC Function field identifies the specific function to be carried out in support of the indicated
communication subsystem or microprotocol type. The 2-octet BVLC Length field is the length, in octets, of the entire BVLL
message, including the two octets of the length field itself, most significant octet first.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

860 ANSI/ASHRAE Standard 135-2012

J.2.1 BVLC-Result: Purpose

This message provides a mechanism to acknowledge the result of those BVLL service requests that require an acknowledgment,
whether successful (ACK) or unsuccessful (NAK). These are: Write-Broadcast-Distribution-Table (ACK, NAK); Read-
Broadcast-Distribution-Table (NAK only); Register-Foreign-Device (ACK, NAK); Read-Foreign-Device-Table (NAK only);
Delete-Foreign-Device-Table-Entry (ACK, NAK); and Distribute-Broadcast-To-Network (NAK only).

J.2.1.1 BVLC-Result: Format

The BVLC-Result message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'00' BVLC-Result
BVLC Length: 2-octets X'0006' Length, in octets, of the BVLL message
Result Code: 2-octets X'0000' Successful completion
 X'0010 Write-Broadcast-Distribution-Table NAK
 X'0020' Read-Broadcast-Distribution-Table NAK
 X'0030' Register-Foreign-Device NAK
 X'0040' Read-Foreign-Device-Table NAK
 X'0050' Delete-Foreign-Device-Table-Entry NAK
 X'0060' Distribute-Broadcast-To-Network NAK

J.2.2 Write-Broadcast-Distribution-Table: Purpose

This message provides a mechanism for initializing or updating a Broadcast Distribution Table (BDT) in a BACnet Broadcast
Management Device (BBMD).

J.2.2.1 Write-Broadcast-Distribution-Table: Format

The Write-Broadcast-Distribution-Table message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'01' Write-Broadcast-Distribution-Table
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
List of BDT Entries: N*10-octets

N indicates the number of entries in the BDT. Each BDT entry consists of the 6-octet B/IP address of a BBMD followed by a 4-
octet field called the broadcast distribution mask that indicates how broadcast messages are to be distributed on the IP subnet
served by the BBMD. See J.4.3.2.

J.2.3 Read-Broadcast-Distribution-Table: Purpose

The message provides a mechanism for retrieving the contents of a BBMD's BDT.

J.2.3.1 Read-Broadcast-Distribution-Table: Format

The Read-Broadcast-Distribution-Table message consists of three fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'02' Read-Broadcast-Distribution-Table
BVLC Length: 2-octets X'0004' Length, in octets, of the BVLL message

J.2.4 Read-Broadcast-Distribution-Table-Ack: Purpose

This message returns the current contents of a BBMD's BDT to the requester. An empty BDT shall be signified by a list of
length zero.

J.2.4.1 Read-Broadcast-Distribution-Table-Ack: Format

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 861

The Read-Broadcast-Distribution-Table-Ack message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'03' Read-Broadcast-Distribution-Table-Ack
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
List of BDT Entries: N*10-octets

N indicates the number of entries in the BDT whose contents are being returned.

J.2.5 Forwarded-NPDU: Purpose

This BVLL message is used in broadcast messages from a BBMD as well as in messages forwarded to registered foreign
devices. It contains the source address of the original node, or if NAT is being used, the address with which the original node is
accessed, as well as the original BACnet NPDU.

J.2.5.1 Forwarded-NPDU: Format

The Forwarded-NPDU message consists of five fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'04' Forwarded-NPDU
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
B/IP Address of Originating Device: 6-octets
BACnet NPDU from Originating Device: Variable length

J.2.6 Register-Foreign-Device: Purpose

This message allows a foreign device, as defined in J.5.1, to register with a BBMD for the purpose of receiving broadcast
messages.

J.2.6.1 Register-Foreign-Device: Format

The Register-Foreign-Device message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'05' Register-Foreign-Device
BVLC Length: 2-octets X'0006' Length, in octets, of the BVLL message
Time-to-Live 2-octets T Time-to-Live T, in seconds

The Time-to-Live value is the number of seconds within which a foreign device must re-register with a BBMD or risk having its
entry purged from the BBMD's FDT. This value will be sent most significant octet first. See J.5.2.2.

J.2.7 Read-Foreign-Device-Table: Purpose

The message provides a mechanism for retrieving the contents of a BBMD's FDT.

J.2.7.1 Read-Foreign-Device-Table: Format

The Read-Foreign-Device-Table message consists of three fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'06' Read-Foreign-Device-Table
BVLC Length: 2-octets X'0004' Length, in octets, of the BVLL message

J.2.8 Read-Foreign-Device-Table-Ack: Purpose

This message returns the current contents of a BBMD's FDT to the requester. An empty FDT shall be signified by a list of length
zero.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

862 ANSI/ASHRAE Standard 135-2012

J.2.8.1 Read-Foreign-Device-Table-Ack: Format

The Read-Foreign-Device-Table-Ack message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'07' Read-Foreign-Device-Table-Ack
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
List of FDT Entries: N*10-octets

N indicates the number of entries in the FDT whose contents are being returned. Each returned entry consists of the 6-octet B/IP
address of the registrant; the 2-octet Time-to-Live value supplied at the time of registration; and a 2-octet value representing the
number of seconds remaining before the BBMD will purge the registrant's FDT entry if no re-registration occurs. The time
remaining includes the 30-second grace period as defined in Clause J.5.2.3.

J.2.9 Delete-Foreign-Device-Table-Entry: Purpose

This message is used to delete an entry from the Foreign-Device-Table.

J.2.9.1 Delete-Foreign-Device-Table-Entry: Format

The Delete-Foreign-Device-Table-Entry message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'08' Delete-Foreign-Device-Table-Entry
BVLC Length: 2-octets X'000A' Length, in octets, of the BVLL message
FDT Entry: 6-octets

The FDT entry is the B/IP address of the table entry to be deleted.

 J.2.10 Distribute-Broadcast-To-Network: Purpose

This message provides a mechanism whereby a foreign device may cause a BBMD to broadcast a message on all IP subnets in
the BBMD's BDT.

J.2.10.1 Distribute-Broadcast-To-Network: Format

The Distribute-Broadcast-To-Network message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'09' Distribute-Broadcast-To-Network
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
BACnet NPDU from Originating Device: Variable length

J.2.11 Original-Unicast-NPDU: Purpose

This message is used to send directed NPDUs to another B/IP device or router.

J.2.11.1 Original-Unicast-NPDU: Format

The Original-Unicast-NPDU message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'0A' Original-Unicast-NPDU
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
BACnet NPDU: Variable length

J.2.12 Original-Broadcast-NPDU: Purpose

This message is used by B/IP devices and routers which are not foreign devices to broadcast NPDUs on a B/IP network.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 863

J.2.12.1 Original-Broadcast-NPDU: Format

The Original-Broadcast-NPDU message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'0B' Original-Broadcast-NPDU
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
BACnet NPDU: Variable length

J2.13 Secure-BVLL: Purpose

This message is used to secure BVLL messages that do not contain NPDUs. Its use is described in Clause 24.

J.2.13.1 Secure-BVLL: Format

The Secure-BVLL message consists of four fields:

BVLC Type: 1-octet X'81' BVLL for BACnet/IP
BVLC Function: 1-octet X'0C' Secure-BVLL
BVLC Length: 2-octets L Length L, in octets, of the BVLL message
Security Wrapper: Variable length

The BVLL to be secured is placed into the Service Data field of the Security Wrapper. For more details on
securing BACnet message see Clause 24.

J.3 BACnet/IP Directed Messages

B/IP devices shall communicate directly with each other by using the B/IP address of the recipient. Each NPDU shall be
transmitted in a BVLL Original-Unicast-NPDU.

J.4 BACnet/IP Broadcast Messages

This clause defines how BACnet broadcast messages are managed within a B/IP network.

J.4.1 B/IP Broadcast Management, Single IP Subnet

In this case, the B/IP network consists of a single IP subnet. A "local broadcast" shall use the B/IP broadcast address and the
NPDU shall be transmitted in a BVLL Original-Broadcast-NPDU message. Because all nodes are on a single IP subnet, such
messages will automatically reach all nodes. See Figure J-1.

IP Subnet LAN Segment

BACnet Device

Figure J-1. A B/IP network consisting of a single IP subnet.

J.4.2 B/IP Broadcast Management, Multiple IP Subnets

In this case, the BACnet/IP network consists of two or more IP subnets. A "local broadcast" shall use the B/IP broadcast address,
and the NPDU shall be transmitted in a BVLL Original-Broadcast-NPDU message. Because standard IP routers do not forward

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

864 ANSI/ASHRAE Standard 135-2012

such broadcasts, an ancillary device is required to perform this function. This device shall be called a BACnet/IP Broadcast
Management Device (BBMD). See Figure J-2.

IP Subnet 1

IP Subnet 2

LAN Segment

BACnet Device

Internet Router

BBMD

In
te

rn
et

Figure J-2. A B/IP network consisting of two IP subnets.

J.4.3 BBMD Concept

Each IP subnet that is part of a B/IP network comprised of two or more subnets shall have at least one BBMD. Each BBMD
shall possess a table called a Broadcast Distribution Table (BDT). If there are two or more BBMDs on a single subnet, their
BDTs shall not contain any common entries in order to avoid a broadcast forwarding loop. The BDT determines which remote
IP subnets receive forwarded BACnet broadcasts. To reduce BACnet broadcast traffic, it is possible to configure the BDT to
forward broadcasts only to IP subnets where they are required. A BBMD shall be able to be configured to accept Foreign Device
registrations, shall support the two-hop broadcast distribution method, and shall support the execution of all BDT and FDT read
and write messages defined in Clause J.2. Support for the one-hop broadcast distribution method is optional.

J.4.3.1 Broadcast Distribution

There are two ways that a BBMD may distribute broadcast messages to remote IP subnets. The first is to use IP "directed
broadcasts" (also called "one-hop" distribution). This involves sending the message using a B/IP address in which the network
portion of the address contains the subnet of the destination IP subnet and the host portion of the address contains all 1's. While
this method of distribution is efficient, it requires that the IP router serving the destination subnet be configured to support the
passage of such directed broadcasts.

Since not all IP routers are configured to pass directed broadcasts, a BBMD may be configured to send a directed message to the
BBMD on the remote subnet ("two-hop" distribution) which then transmits it using the B/IP broadcast address. Since the use of
one-hop distribution requires an IP router configuration that may or may not be possible, while the two-hop method is always
available, the choice of which method to use in any given case is a local matter.

 J.4.3.2 Broadcast Distribution Table Format

The BDT consists of one entry for the address of the BBMD for the local IP subnet and an entry for the BBMD on each remote
IP subnet to which broadcasts are to be forwarded. Each entry consists of the 6-octet B/IP address with which the BBMD is
accessed and a 4-octet broadcast distribution mask. If the IP router to the subnet performs network address translation (NAT),
then the BDT entry shall contain the global IP address of the IP router. The operation of BBMDs in the presence of NAT is
described in J.7.8. If messages are to be distributed on the remote IP subnet using directed broadcasts, the broadcast distribution
mask shall be identical to the subnet mask associated with the subnet, i.e., all 1's in the network portion of the 4-octet IP address
field and all 0's in the host portion. If messages are to be distributed on the remote IP subnet by sending the message directly to
the remote BBMD, the broadcast distribution mask shall be all 1's. The broadcast distribution masks referring to the same IP
subnet shall be identical in each BDT. The use of the broadcast distribution mask is described in J.4.5.

J.4.4 BBMD Configuration

The configuration of the BACnet-related capability of a BBMD shall consist of supplying it with a BDT. The table may be
supplied by local means or by means of the BVLL Write-Broadcast-Distribution-Table message.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 865

J.4.5 BBMD Operation - Broadcast Distribution

Upon receipt of a BVLL Write-Broadcast-Distribution-Table message, a BBMD shall attempt to create or replace its BDT,
depending on whether or not a BDT has previously existed. If the creation or replacement of the BDT is successful, the BBMD
shall return a BVLC-Result message to the originating device with a result code of X'0000'. Otherwise, the BBMD shall return a
BVLC-Result message to the originating device with a result code of X'0010' indicating that the write attempt has failed.

Upon receipt of a BVLL Read-Broadcast-Distribution-Table message, a BBMD shall load the contents of its BDT into a BVLL
Read-Broadcast-Distribution-Table-Ack message and send it to the originating device. If the BBMD is unable to perform the
read of its BDT, it shall return a BVLC-Result message to the originating device with a result code of X'0020' indicating that the
read attempt has failed.

Upon receipt of a BVLL Original-Broadcast-NPDU message, a BBMD shall construct a BVLL Forwarded-NPDU message and
send it to each IP subnet in its BDT with the exception of its own. The B/IP address to which the Forwarded-NPDU message is
sent is formed by inverting the broadcast distribution mask in the BDT entry and logically ORing it with the BBMD address of
the same entry. This process produces either the directed broadcast address of the remote subnet or the unicast address of the
BBMD on that subnet depending on the contents of the broadcast distribution mask. See J.4.3.2.. In addition, the received
BACnet NPDU shall be sent directly to each foreign device currently in the BBMD's FDT also using the BVLL Forwarded-
NPDU message.

Upon receipt of a BVLL Forwarded-NPDU message, a BBMD shall process it according to whether it was received from a peer
BBMD as the result of a directed broadcast or a unicast transmission. A BBMD may ascertain the method by which Forwarded-
NPDU messages will arrive by inspecting the broadcast distribution mask field in its own BDT entry since masks referring to the
same IP address are required to be identical in all BBMDs. If the message arrived via directed broadcast, or if the source is a
device located on the same IP subnet, a situation which can occur if two or more BBMDs are installed on the same IP subnet, it
was also received by the other devices on the BBMD's subnet. In this case the BBMD merely retransmits the message directly to
each foreign device currently in the BBMD's FDT. Otherwise the message arrived via a unicast transmission and it has not yet
been received by the other devices on the BBMD's subnet. In this case, the message is sent to the devices on the BBMD's subnet
using the B/IP broadcast address as well as to each foreign device currently in the BBMD's FDT. A BBMD on a subnet with no
other BACnet devices (such as a NAT-supporting BBMD, see Clause J.7.8) may omit the broadcast using the B/IP broadcast
address. The method by which a BBMD determines whether or not other BACnet devices are present is a local matter.

Upon receipt of a BVLL Distribute-Broadcast-To-Network message from a registered foreign device, the receiving BBMD shall
transmit a BVLL Forwarded-NPDU message on its local IP subnet using the local B/IP broadcast address as the destination
address. In addition, a Forwarded-NPDU message shall be sent to each entry in its BDT as described above in the case of the
receipt of a BVLL Original-Broadcast-NPDU as well as directly to each foreign device currently in the BBMD's FDT except the
originating node. If the BBMD is unable to perform the forwarding function, or the message was not received from a registered
foreign device, then it shall return a BVLC-Result message to the foreign device with a result code of X'0060' indicating that the
forwarding attempt was unsuccessful.

J.5 Addition of Foreign B/IP Devices to an Existing B/IP Network

J.5.1 Foreign device definition

A "foreign" device is a BACnet device that has an IP subnet address different from those comprising the BACnet/IP network
that the device seeks to join. The foreign device may be a full-time node on the foreign subnet or may be a part-time participant,
as would be the case if the device accessed the Internet via a SLIP or PPP connection. See Figure J-3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

866 ANSI/ASHRAE Standard 135-2012

IP Subnet 1

IP Subnet 2

IP Subnet 3

LAN Segment

BACnet Device

Internet Router

BBMD

Foreign BACnet Device
In

te
rn

et

Figure J-3. The "foreign" BACnet device on Subnet 3 can register to receive broadcasts from devices on
Subnets 1 and 2 by sending a BVLL Register-Foreign-Device message to a BBMD that supports foreign
device registration.

J.5.2 BBMD Operation - Foreign Devices

In order for a foreign device to fully participate in the activities of a B/IP network, the device must register itself with a BBMD
serving one of the IP subnets comprising that network. "Full participation" implies the ability to send and receive both directed
and broadcast messages. Registration consists of sending a BVLL Register-Foreign-Device message to an appropriate BBMD
and receiving a BVLC-Result message containing a result code of X'0000' indicating the successful completion of the
registration. Ascertaining the IP address of such a BBMD is a local matter but could involve the use of a domain nameserver or
the distribution of a numeric IP address to authorized users. The UDP port X'BAC0' shall be considered the default, but the use
of other port values is permitted if required by the local network architecture, e.g., where two B/IP networks share the same
physical LAN.

J.5.2.1 Foreign Device Table

Each device that registers as a foreign device shall be placed in an entry in the BBMD's Foreign Device Table (FDT). Each
entry shall consist of the 6-octet B/IP address of the registrant; the 2-octet Time-to-Live value supplied at the time of
registration; and a 2-octet value representing the number of seconds remaining before the BBMD will purge the registrant's
FDT entry if no re-registration occurs. The number of seconds remaining shall be initialized to the 2-octet Time-to-Live
value supplied at the time of registration plus 30 seconds (see J.5.2.3), with a maximum of 65535.

Two BVLL messages support the maintenance of FDTs and are described in J.5.2.1.1 and J.5.2.1.2.

J.5.2.1.1 Use of the BVLL Read-Foreign-Device-Table Message

Upon receipt of a BVLL Read-Foreign-Device-Table message, a BBMD shall load the contents of its FDT into a BVLL Read-
Foreign-Device-Table-Ack message and send it to the originating device. If the BBMD is unable to perform the read of its FDT,
it shall return a BVLC-Result message to the originating device with a result code of X'0040' indicating that the read attempt has
failed.

J.5.2.1.2 Use of the BVLL Delete-Foreign-Device-Table-Entry Message

Upon receipt of a BVLL Delete-Foreign-Device-Table-Entry message, a BBMD shall search its foreign device table for an entry
corresponding to the B/IP address supplied in the message. If an entry is found, it shall be deleted and the BBMD shall return a
BVLC-Result message to the originating device with a result code of X'0000'. Otherwise, the BBMD shall return a BVLC-
Result message to the originating device with a result code of X'0050' indicating that the deletion attempt has failed.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 867

J.5.2.2 Use of the BVLL Register-Foreign-Device Message

Upon receipt of a BVLL Register-Foreign-Device message, a BBMD capable of providing foreign device support and having
available table entries, shall add an entry to its FDT as described in J.5.2.1 and reply with a BVLC-Result message containing a
result code of X'0000' indicating the successful completion of the registration. A BBMD incapable of providing foreign device
support shall return a BVLC-Result message containing a result code of X'0030' indicating that the registration has failed.

J.5.2.3 Foreign Device Table Timer Operation

Upon receipt of a BVLL Register-Foreign-Device message, a BBMD shall start a timer with a value equal to the Time-to-Live
parameter supplied plus a fixed grace period of 30 seconds. If, within the period during which the timer is active, another BVLL
Register-Foreign-Device message from the same device is received, the timer shall be reset and restarted. If the time expires
without the receipt of another BVLL Register-Foreign-Device message from the same foreign device, the FDT entry for this
device shall be cleared.

J.6 Routing Between B/IP and non-B/IP BACnet Networks

J.6.1 Router Operation

In concept, a router between a B/IP network and a non-B/IP network functions identically to the routers described in Clause 6.
See Figure J-4.

LAN Segment

BACnet Device

Internet Router

BBMD

BACnet Router

BACnet/IP Net 1

Non-BACnet/IP Net 2In
te

rn
et

Figure J-4. A BACnet router can be used to convey messages between devices on a B/IP network and
non-B/IP network using the procedures in Clause 6.

There are two possible differences. First, on the B/IP side, the B/IP address is used in place of the MAC layer address referred to
throughout Clause 6. Second, if B/IP and non-B/IP BACnet devices reside on the same physical LAN, then all traffic is typically
sent and received through a single physical port. The collection of B/IP devices would, in such a case, have a network number
distinct from the network number of the non-B/IP devices. Such a scenario could easily occur on an Ethernet network where
some devices are IP-capable while others are not.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

868 ANSI/ASHRAE Standard 135-2012

J.7 Routing Between Two B/IP BACnet Networks

Although the foreign registration process provides the ability for remote devices to participate in a particular B/IP network, there
may be occasions when it is desirable for two collections of B/IP devices to interoperate more closely. This type of
interoperation can only produce results consistent with the assumptions and intent contained in the original BACnet standard if
the configuration of the two B/IP networks has been coordinated. For example, it is assumed that Device object identifiers are
unique "internetwork wide." If this is not the case, the Who-Is service will produce ambiguous results. Similarly, the Who-Has
service may be useless for dynamic configuration applications if multiple instances of objects with identical object identifiers
exist.

The BACnet standard also assumes that only a single path exists between devices on different BACnet networks and that this
path passes through a BACnet router. The Internet's web topology violates this assumption in that, apart from security
constraints such as "firewalls", any IP device can communicate directly with any other IP device if it knows the device's IP
address.

This clause specifies how B/IP internetworks may be constructed.

J.7.1 B/IP Internetwork Design Considerations

This standard recognizes that BACnet internetworks containing one or more B/IP networks can be configured in a variety of
ways, depending on the requirements of an installation. Any of these configurations shall be deemed to conform to this standard
provided they employ the techniques specified in this clause.

1) Depending on local traffic conditions and security requirements, all B/IP subnets can be configured into a single B/IP

network. This case is dealt with in clauses J.1-6.

2) Creating two or more B/IP networks, each with a unique network number, can be useful for limiting the propagation of local

broadcast messages and for providing security by confining traffic to a particular geographic or logical area.

3) A single device can be configured to provide all the routing for a B/IP internetwork. See Figure J-5. The advantages

include: only a single routing table is required; the possibility of creating multiple paths between B/IP networks is
eliminated; the resulting star topology is easy to conceptualize. The disadvantages are: there is a single point of failure; a
single device could present a traffic bottleneck under heavy load conditions.

LAN Segment

BACnet Device

BBMD

B/IP Router

Net 1 Net 2

Figure J-5. A single B/IP Router can perform all routing for two or more B/IP networks by registering as
a foreign device on each network. It is then "directly connected" to each such network and uses a UDP
port unique to that network for the receipt of communications from its individual nodes. See J.7.2. The
unique UDP port is required to determine a message's origin for the purpose of appending an SNET to the
routed packet. Note that the UDP port associated with the B/IP addresses of the non-router nodes remains
in general X'BAC0'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 869

4) While the functions of BBMDs as specified in J.4 and of BACnet routers as specified in Clause 6 and J.7.2 are entirely
distinct, this standard does not preclude the implementation of BBMD functionality and router functionality in a single
physical device. See Figure J-6.

LAN Segment

BACnet Device

BBMD

Net 1 Net 2

BBMD/Router

Figure J-6. An alternative to the architecture depicted in Figure J-5 is to combine both BBMD and router
functionality in the same physical device as explicitly permitted in J.7.1.

J.7.2 B/IP Routers

B/IP routers adhere to the requirements of Clause 6 with the following differences:

1) The physical ports of Clause 6 routers are replaced by logical ports. Each logical port is identified by the unique B/IP

address of the port's connection to the B/IP network served by the router.

2) The term "directly connected network" in Clause 6 implies a physical LAN connection between a LAN segment and a

physical router port. In this clause "directly connected network" is extended to mean any B/IP network from which a router
can receive local broadcast or IP multicast messages. Such networks are: the B/IP network on which a router resides by
virtue of having an IP network number in common with one of the IP subnets comprising the B/IP network; a B/IP network
in which the router participates as a member of an IP multicast group; or a B/IP network in which a router participates by
having registered as a foreign device with a BBMD serving that network.

3) Networks that are not directly connected are called "remote networks." Remote networks, whether B/IP or non-B/IP, may

be reachable by communicating using B/IP with a router serving the remote network.

J.7.3 B/IP Router Tables

B/IP router tables shall contain the following information for each logical port:

(a) the B/IP address for this port,

(b) if the port is to be used to communicate with nodes on a network directly connected by virtue of the router having an IP

network number in common with one of the IP subnets comprising the B/IP network, the BACnet network number of the
network, else

if the port is to be used to communicate with nodes on a network directly connected by virtue of the router registering as a
foreign device with a BBMD, the BACnet network number of the network served by the BBMD and the B/IP address of the
BBMD offering foreign device registration,

(c) a list of network numbers reachable through this port along with the B/IP address of the next router on the path to each

network number and the reachability status, as defined in 6.6.1, of each such network.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

870 ANSI/ASHRAE Standard 135-2012

Because internetworks involving multiple B/IP networks may be more dynamic than traditional BACnet internetworks,
implementors of B/IP routers may wish to provide a mechanism whereby specific table entries can be selectively activated and
deactivated. The mechanism for accomplishing this is deemed to be a local matter.

J.7.4 B/IP Router Operation

Upon start-up, each B/IP router shall search its routing table for active entries indicating direct connection via foreign
registration with a BBMD. The router shall then proceed to register itself with each such network using the procedures specified
in J.5. At the conclusion of all such registrations, the router shall follow the procedure of 6.6.2 in that it shall broadcast an I-Am-
Router-To-Network message containing the network numbers of each accessible network except the networks reachable via the
network on which the broadcast is being made. Note that networks accessed through a given active UDP port that are not
directly connected, but are reachable by means of communication with another B/IP router shall, upon router startup, be deemed
to be reachable.

Additional router operations with regard to local and remote traffic shall follow the procedures of Clause 6.

J.7.8 BBMD Operation with Network Address Translation

Network Address Translation (NAT) is in widespread use by IP routers and firewalls to connect private subnets to the global
Internet. Using NAT, multiple hosts on a subnet can access the Internet using a single public IP address. BBMD operation
supporting NAT routers is optional for BBMD devices. A single BACnet device may contain several B/IP network ports,
each with its own internal BBMD.

For those B/IP networks that communicate through a NAT router, there are several additional considerations:

a)
 For any single B/IP network, only one device on the local side of the NAT router may be accessible from the global
side. All other devices on the local side of that NAT router need to be on different BACnet networks so that they can
be uniquely addressed using the BACnet network layer. The globally accessible device will contain a BACnet router
to those networks. The globally accessible device may be either a BBMD or a foreign device.

b)
 The NAT router at each subnet location should be configured to port forward B/IP messages to the BBMD. Port

forwarding causes all messages directed to the specified port to be forwarded to a specific local address.

c)
 To enable messages to traverse the Internet, the destination IP address and UDP port in all Forwarded-NPDU

messages shall be the global IP address and UDP port of the destination subnet. This is facilitated by entering the
global B/IP address of each BBMD in the BDT.

d)
 Except when propagating a received Forwarded-NPDU message, the "B/IP Address of Originating Device" field in

Forwarded-NPDU messages is the global IP address and port of the NAT Router through which the BBMD
communicates. This is required so that responding devices on the remote subnet may communicate with the originating
device. Received Forwarded-NPDU messages are propagated as-is to foreign devices and to the local IP subnet as
defined in J.4.5

e)
 A foreign device behind a NAT router should register often with a BBMD to maintain a return path through the

NAT router back to the foreign device. The maximum allowed time between registrations is dependent on the NAT
router, and may be 30 seconds or less.

f)
 Two-hop distribution shall be used in B/IP networks that contain NAT routers, since one-hop distribution is not

possible through NAT routers.

A B/IP internetwork containing NAT Routers can be configured several ways. See Figures J-7 and J-8 for example
configurations.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 871

N

In
te

rn
et N

LAN Segment

BACnet Device

Internet NAT Router

BBMD/Router

B/IP Network 1
Port 47809

N
B/IP Network 1

Port 47809

B/IP Network 2
Port 47808

BR 1

NAT
B

NAT
A

B/IP Network 3
Port 47808

BR 2

Figure J-7. This figure represents a B/IP internetwork that uses the Internet to connect two remote sites.
The NAT devices translate global Internet IP/Port addresses into private addresses. Different networks
behind NAT devices may use the same IP/Port address range as demonstrated here. Both B/IP network 2
and B/IP network 3 use locally-assigned IP addresses from the subnet 192.168.1.* and UDP port 47808.

NAT A Configuration
 Internet IP 201.1.1.1
 Forward 201.1.1.1:47809 � 192.168.1.10:47809

NAT B Configuration
 Internet IP 237.2.2.2
 Forward 237.2.2.2:47809 � 192.168.1.10:47809

BR1 - BBMD/Router Configuration
 Global IP Address 201.1.1.1:47809 (global B/IP address of NAT A)
 B/IP Address Net 1 192.168.1.10:47809
 BDT Net 1 201.1.1.1:47809 (global B/IP address of NAT A, self),

237.2.2.2:47809 (global B/IP address of NAT B)
 B/IP Address Net 2 192.168.1.10:47808
 BDT Net 2 192.168.1.10:47808 (self)

BR2 - BBMD/Router Configuration
 Global IP Address 237.2.2.2:47809 (global B/IP address of NAT B)
 B/IP Address Net 1 192.168.1.10:47809
 BDT Net 1 237.2.2.2:47809 (global B/IP address of NAT B, self),

201.1.1.1:47809 (global B/IP address of NAT A)
 B/IP Address Net 3 192.168.1.10:47808
 BDT Net 3 192.168.1.10:47808 (self)

The broadcast distribution masks in the above BDT configurations are 255.255.255.255 indicating two-hop broadcast
distribution.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

872 ANSI/ASHRAE Standard 135-2012

N

LAN Segment

BACnet Device

Internet NAT Router

BBMD/ROUTER

B/IP
Network 1

Internet Router

C
or

po
ra

te
 In

tr
an

et

BBMD

Foreign Device

In
te

r n
et

BR3

B1

FD1

N

B/IP
Network 1

N

B/IP
Network 1

B/IP Network 2

BR 1

NAT
B

NAT
A

BR 2

NAT
C

FD2

N

Port 47809

Port 47809

Port 47808

B/IP Network 3
Port 47808

B/IP Network 4
Port 47808

B/IP Network 4
Port 47808

Port 47809

Figure J-8. This figure represents a potential WAN with multiple remote sites, with BACnet being
connected via a corporate intranet. In this configuration, the foreign device FD1 can connect to Network
4 using local addresses and to Networks 2 and 3 using the global IP address of the NAT routers. The
foreign device FD2 can only connect to the global IP addresses on the Internet side of the NAT routers.

NAT A Configuration
 Internet IP 201.1.1.1
 Forward 201.1.1.1:47809 � 192.168.1.10:47809

NAT B Configuration
 Internet IP 237.2.2.2
 Forward 237.2.2.2:47809 � 192.168.1.10:47809

NAT C Configuration
 Internet IP 203.3.3.3
 Forward 203.3.3.3:47809 � 192.168.20.10:47809

BR1 - BBMD/Router Configuration
 Global IP Address 201.1.1.1:47809 (global B/IP address of NAT A)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 873

 B/IP Address Net 1 192.168.1.10:47809
 BDT Net 1 201.1.1.1:47809 (global B/IP address of NAT A, self),

237.2.2.2:47809 (global B/IP address of NAT B),
203.3.3.3:47809 (global B/IP address of NAT C)

 B/IP Address Net 2 192.168.1.10:47808
 BDT Net 2 192.168.1.10:47808 (self)

BR2 - BBMD/Router Configuration
 Global IP Address 237.2.2.2:47809 (global B/IP address of NAT B)
 B/IP Address Net 1 192.168.1.10:47809
 BDT Net 1 237.2.2.2:47809 (global B/IP address of NAT B, self),

201.1.1.1:47809 (global B/IP of NAT A),
203.3.3.3:47809 (global B/IP of NAT C)

 B/IP Address Net 3 192.168.1.10:47808
 BDT Net 3 192.168.1.10:47808 (self)

BR3 - BBMD/Router Configuration
 Global IP Address 203.3.3.3:47809 (global B/IP address of NAT C)
 B/IP Address Net 1 192.168.20.10:47809
 BDT Net 1 203.3.3.3:47809 (global B/IP address of NAT C, self),

201.1.1.1:47809 (global B/IP address of NAT A),
237.2.2.2:47809 (global B/IP address of NAT B)

 B/IP Address Net 4 192.168.20.10:47808
 BDT Net 4 192.168.20.10:47808 (self),

192.168.21.10:47808 (B/IP address of BBMD B1)

B1 - BBMD Configuration
 B/IP Address 192.168.21.10:47808
 BDT Net 4 192.168.21.10:47808 (self),

192.168.20.10:47808 (B/IP address of BBMD BR3)

The broadcast distribution masks in the above BDT configurations are 255.255.255.255, indicating two-hop broadcast
distribution.

J.8 Use of IP Multicast within BACnet/IP

BACnet/IP devices that so desire may alternatively use IP multicasting as a method for distributing BACnet broadcast messages,
subject to the constraints imposed in this clause. This is accomplished through the use of an IP class D address which is made up
of a single multicast group identifier rather than a combination of network and host IDs. Such devices shall be referred to as
B/IP-M devices. The use of IP multicasting also requires that devices comprising a multicast group that reside on more than one
IP subnet be served by IP routers capable of supporting IP multicast distribution. (See RFC 1112.) Note that all B/IP-M devices
must also be capable of processing unicast messages and must each have a unique unicast IP address. All B/IP devices sharing a
common IP multicast address should also share a common BACnet network number.

J.8.1 B/IP Multicast (B/IP-M) concept

For the purposes of BACnet/IP, a B/IP-M group functions logically in the same manner as an IP subnet in the previous clauses.
The B/IP multicast group address replaces the B/IP broadcast address for members of the group. The following constraints
apply:

1. If the B/IP-M group is part of a BACnet network with B/IP non-multicast devices, there shall be one, and only one, BBMD

configured to serve the B/IP-M group devices. A BACnet network comprised solely of B/IP-M devices need not have a
BBMD unless foreign devices are to be supported.

2. In order to prevent the receipt of multiple broadcast messages, devices that are in the B/IP-M group and B/IP non-multicast

devices may not share the same IP subnet. Note that this does not necessarily preclude them from sharing the same physical
LAN if the IP router serving the LAN can support multiple IP subnets.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX J - BACnet/IP (NORMATIVE)

874 ANSI/ASHRAE Standard 135-2012

J.8.2 B/IP-M Use of BVLL Messages

B/IP-M devices shall use the Original-Unicast-NPDU BVLL message for directed messages to any B/IP device within the
BACnet/IP network. B/IP-M devices shall use the Original-Broadcast-NPDU BVLL message for the purpose of transmitting
BACnet "local" and "global" broadcasts and shall use the B/IP-M group address as the destination IP address.

J.8.3 B/IP-M BBMD Operation

BBMDs function as described in J.4.5 except that the BBMD serving the B/IP-M group must also be a member of the group and
that the B/IP-M group address is used analogously to the B/IP broadcast address with respect to the B/IP-M group. It is also
required that the BDT entry for each BBMD serving a B/IP-M group shall use a broadcast distribution mask of all 1's to force
"two-hop" BBMD-to-BBMD broadcast distribution. This is to prevent the multiple receipt of broadcast messages that would
occur if the B/IP-M BBMD were on the same IP subnet as any of the B/IP-M devices themselves and a "directed broadcast"
were used. The following paragraphs summarize the relevant operations of BBMDs that serve a B/IP-M group:

Upon receipt of an Original-Broadcast-NPDU via its B/IP-M group address, a BBMD shall forward the message to other entries
in its BDT (as well as to any devices in its FDT if the BBMD also supports foreign device registration) as described in J.4.5.

Upon receipt of a Forwarded-NPDU from a peer BBMD, the BBMD shall re-transmit the message using the B/IP-M group
address (as well as direct it to any devices in its FDT if the BBMD also supports foreign device registration).

Upon receipt of a BVLL Distribute-Broadcast-To-Network message from a registered foreign device, the receiving BBMD shall
transmit a BVLL Forwarded-NPDU message using the B/IP-M group address as the destination address. In addition, a
Forwarded-NPDU message shall be sent to each entry in its BDT as described in Clause J.4.5 as well as directly to each foreign
device currently in the BBMD's FDT except the originating node. Error processing is as described in Clause J.4.5,

J.9 Sources for Internet Information

The RFCs referred to in this Annex are available from:

USC/Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6695

or online at: WWW.ISI.EDU.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 875

ANNEX K - BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in
terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork. In most cases, the "A" device
will act as the user of data (client), and the "B" device will be the provider of this data (server). In addition, certain BIBBs
may also be predicated on the support of certain, otherwise optional, BACnet objects or properties and may place constraints
on the allowable values of specific properties or service parameters.

K.1 Data Sharing BIBBs

These BIBBs prescribe the BACnet capabilities required to interoperably perform the data sharing functions enumerated in
22.2.1.1 for the BACnet devices defined therein.

K.1.1 BIBB - Data Sharing - ReadProperty-A (DS-RP-A)

The A device is a user of data from device B.

BACnet Service Initiate Execute
ReadProperty x

K.1.2 BIBB - Data Sharing-ReadProperty-B (DS-RP-B)

The B device is a provider of data to device A.

BACnet Service Initiate Execute
ReadProperty x

K.1.3 BIBB - Data Sharing-ReadPropertyMultiple-A (DS-RPM-A)

The A device is a user of data from device B and requests multiple values at one time.

BACnet Service Initiate Execute
ReadPropertyMultiple x

K.1.4 BIBB - Data Sharing-ReadPropertyMultiple-B (DS-RPM-B)

The B device is a provider of data to device A and returns multiple values at one time.

BACnet Service Initiate Execute
ReadPropertyMultiple x

K.1.5 Deleted Clause

This clause has been removed.

K.1.6 Deleted Clause

This clause has been removed.

K.1.7 BIBB - Data Sharing-WriteProperty-A (DS-WP-A)

The A device sets a value in device B.

BACnet Service Initiate Execute
WriteProperty x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

876 ANSI/ASHRAE Standard 135-2012

K.1.8 BIBB - Data Sharing-WriteProperty-B (DS-WP-B)

The B device allows a value to be changed by device A.

BACnet Service Initiate Execute
WriteProperty x

K.1.9 BIBB - Data Sharing-WritePropertyMultiple-A (DS-WPM-A)

The A device sets multiple values in device B at one time.

BACnet Service Initiate Execute
WritePropertyMultiple x

K.1.10 BIBB - Data Sharing-WritePropertyMultiple-B (DS-WPM-B)

The B device allows multiple values to be changed by device A at one time.

BACnet Service Initiate Execute
WritePropertyMultiple x

K.1.11 BIBB - Data Sharing-COV-A (DS-COV-A)

The A device is a user of COV data from device B.

BACnet Service Initiate Execute
SubscribeCOV x
ConfirmedCOVNotification x
UnconfirmedCOVNotification x

Support for subscriptions of a limited lifetime is required, and support for subscriptions of indefinite lifetime is optional.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 877

K.1.12 BIBB - Data Sharing-COV-B (DS-COV-B)

The B device is a provider of COV data to device A.

BACnet Service Initiate Execute
SubscribeCOV x
ConfirmedCOVNotification x
UnconfirmedCOVNotification x

Devices claiming conformance to DS-COV-B shall support a minimum of five concurrent subscriptions. Support for
subscriptions of a limited lifetime is required, and support for subscriptions of indefinite lifetime is optional.

K.1.13 BIBB - Data Sharing-COVP-A (DS-COVP-A)

The A device is a user of COV data from device B.

BACnet Service Initiate Execute
SubscribeCOVProperty x
ConfirmedCOVNotification x
UnconfirmedCOVNotification x

Support for subscriptions of a limited lifetime is required, and support for subscriptions of indefinite lifetime is optional.

K.1.14 BIBB - Data Sharing-COVP-B (DS-COVP-B)

The B device is a provider of COV data of an arbitrary property of a specified object to device A.

BACnet Service Initiate Execute
SubscribeCOVProperty x
ConfirmedCOVNotification x
UnconfirmedCOVNotification x

Devices claiming conformance to DS-COVP-B shall support a minimum of five concurrent subscriptions. Support for
subscriptions of a limited lifetime is required, and support for subscriptions of indefinite lifetime is optional.

K.1.15 BIBB - Data Sharing-COV-Unsubscribed-A (DS-COVU-A)

The A device processes unsubscribed COV data from device B.

BACnet Service Initiate Execute
UnconfirmedCOVNotification x

K.1.16 BIBB - Data Sharing-COV-Unsubscribed-B (DS-COVU-B)

The B device generates unsubscribed COV notifications.

BACnet Service Initiate Execute
UnconfirmedCOVNotification x

K.1.17 BIBB - Data Sharing - View - A (DS-V-A)

The A device retrieves values from a minimum set of objects and properties and presents them to the user. Devices claiming
conformance to DS-V-A shall support DS-RP-A. Device A shall be capable of using ReadProperty to retrieve any of the
properties listed below. Device A may use alternate services where support for execution of the alternate service is supported
by Device B.

BACnet Service Initiate Execute
ReadProperty x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

878 ANSI/ASHRAE Standard 135-2012

Devices claiming conformance to DS-V-A shall be capable of reading and displaying the object properties listed in Table K-
1.

Table K-1. Properties for Which Presentation Is Required
Analog Objects Binary Objects Accumulator Averaging

Object_Name
Present_Value
Status_Flags
Units

Object_Name
Present_Value
Status_Flags

Object_Name
Present_Value
Status_Flags
Value_Before_Change
Value_Set
Pulse_Rate

Object_Name
Minimum_Value
Average_Value
Maximum_Value

Command Device Event Enrollment Load Control

Object_Name
Present_Value
In_Process
All_Writes_Successful

Object_Name
System_Status

Object_Name
Event_State
Object_Property_Reference

Object_Name
Present_Value
Status_Flags
State_Description

Loop Multi-state Objects Program Pulse Converter

Object_Name
Present_Value
Status_Flags
Setpoint

Object_Name
Present_Value
Status_Flags

Object_Name
Program_State

Object_Name
Present_Value
Status_Flags
Adjust_Value

The format of a presented property value is unrestricted; the intent of this BIBB is not to impose how, or in what form, a
device displays data values. For example, enumerated values could be displayed as icons, references could be displayed using
the referenced object's name, numerical values could be displayed graphically.

Actions taken by Device A when retrieval of a value for display fails are a local matter.

Devices claiming conformance to this BIBB are not required to support presentation of objects and properties that are
introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for DS-V-A is interoperable with devices that support DS-RP-B and support one or more of the
objects listed in table K-1.

K.1.18 BIBB - Data Sharing - Advanced View - A (DS-AV-A)

The A device retrieves property values and presents them to the user. Device A shall be capable of using ReadProperty to
retrieve any standard property of any standard object type excluding the Life Safety and Access Control objects (e.g., Life
Safety Point, Life Safety Zone, Access Door), except for those properties listed in Table K-2 and any property defined by the
standard as not readable via ReadProperty. Device A may use alternate services where support for execution of the alternate
service is supported by Device B.

BACnet Service Initiate Execute
ReadProperty x

The information conveyed by the properties in Table K-2 can be otherwise determined and as such need not be read and
presented by devices claiming conformance to DS-AV-A.

Table K-2. Excluded Standard Properties
Object_Identifier
Object_Type

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 879

In order to ensure that products that claim support for DS-AV-A are capable of presenting accurate data values across the full
range of values for each data type, devices claiming support for DS-AV-A shall be able to meet the requirements described in
Table K-3.

Table K-3. Presentation Requirements by Datatype
Enumerated Present the complete range of standard values defined for all standard

enumeration types for the Protocol_Revision claimed by the A device.
The actual presentation of the values is unrestricted (text, numeric,
iconic, etc) as long as the individual values are distinguishable.

REAL,
Double

Present the complete value range, including special values such as +-
INF and NaN, unless specifically restricted by the standard for the
property being displayed.

Unsigned,
Unsigned8,
Unsigned16,
Unsigned32

Present the complete value range, unless specifically restricted by the
standard for the property being displayed. The minimum displayable
range for Unsigned by DS-AV-A devices is the same as Unsigned32
with the exception of array indexes, which shall have a minimum
displayable range of Unsigned16. In addition, any Unsigned property
whose value is also used as an array index, such as a Multi-state
object's Present_Value, shall have a minimum displayable range of
Unsigned16.

INTEGER Present the complete value range, unless specifically restricted by the
standard for the property being displayed. The minimum displayable
range for INTEGER shall be -2147483648...2147483647.

Date Present all valid dates, including values that contain unspecified values
(0xFF) or special values (such as 'even days'). Where the month, day
and year fields all contain singular specified values, the content of the
DayOfWeek field may be ignored. The format is unrestricted as long
as each valid value is uniquely presented.

Time Present all valid times, including values that contain unspecified
values. The format is unrestricted as long as each valid value is
uniquely presented.

BIT STRING Present the complete range of standard values defined for all standard
bit string types for the Protocol_Revision claimed by the A device. The
actual presentation of the values is unrestricted (text, numeric, iconic,
etc.) as long as the individual values are distinguishable.

BOOLEAN Present all valid values. The format is unrestricted as long as each
valid value is distinguishable.

NULL Present NULL values. The format is unrestricted as long as NULL is
distinguishable from other values.

BACnetObjectIdentifier Present all valid values. The format is unrestricted as long as each
valid value is distinguishable. It is acceptable that
BACnetObjectIdentifier values be replaced with unique object
identification values such as the object's name, where available.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

880 ANSI/ASHRAE Standard 135-2012

For Character String property values, the A device shall be capable of presenting string values for specific BACnet properties
with at least the number of characters, independent of their encoding, specified in Table K-4.

Table K-4. Minimum Character-String Lengths
Action_Text 32
Application_Software_Version 64
Description 255
Description_Of_Halt 64
Device_Type 64
File_Type 32
Firmware_Revision 64
Inactive_Text/Active_Text 32
Instance_Of 64
Location 64
Model_Name 64
Object_Name 64
Profile_Name 64
State_Text 32
Vendor_Name 64
All other character string properties 32

The above presentation requirements are not required to be applied in all circumstances, but rather shall be available for
every property value in the system. This should allow a product to restrict its presentation under specific conditions yet still
allow the user full access to any specific property value.

The A device shall be capable of reading and presenting all standard forms of the datatypes as defined per the A device's
claimed Protocol_Revision.

Actions taken by Device A when retrieval of a value for display fails are a local matter.

Devices claiming conformance to this BIBB are not required to support presentation of objects and properties that are
introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for DS-AV-A is interoperable with devices that support DS-RP-B.

K.1.19 BIBB - Data Sharing - Modify - A (DS-M-A)

The A device writes properties that are generally expected to be adjusted during normal operation of the system. Devices
claiming support for this BIBB are not expected to be capable of fully configuring BACnet devices, although they are not
inherently restricted from doing so.

BACnet Service Initiate Execute
WriteProperty x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 881

Devices claiming conformance to DS-M-A shall be capable of commanding and relinquishing standard commandable
properties at priority 8 (other priorities may also be supported), and writing the properties listed in Table K-5.

Table K-5. Standard Properties That DS-M-A Devices Shall Be Capable of Writing
Analog Objects,
Binary Objects,
Accumulator,

Averaging,
Loop,

Multi-state
Objects, Pulse

Converter

Command Pulse
Converter

Program Accumulator Loop

Present_Value
Out_Of_Service

Present_Value Adjust_Value Program_Change Value_Before_Change
Value_Set
Pulse_Rate

Setpoint

Devices claiming support for this BIBB shall be capable of writing values within the full range as defined in Table K-6.

Table K-6. Minimum Writable Value Ranges

Datatype Value Range
NULL NULL
Boolean All valid values.
Unsigned8 The complete value range (0..255).
Unsigned16 The complete value range (0..65535).
Unsigned, Unsigned32 The complete value range (0..4294967295) with the exception of array

indexes which shall have a minimum writable range of Unsigned16. In
addition, any Unsigned property whose value is also used as an array index,
such as a Multi-state object's Present_Value, shall have a minimum writable
range of Unsigned16.

INTEGER The complete value range (-2147483648...2147483647)
REAL Valid values across the complete range of the datatype except the special

values such as INF, -INF, NaN, etc. The presision of values that can be
written may be restricted.

Double Valid values across the complete range of the datatype except the special
values such as INF, -INF, NaN, etc. The precision of values that can be
written may be restricted.

Enumerated The standard values defined for the property being modified as defined by the
claimed Protocol_Revision of the A device.

BACnetObjectIdentifier All valid values.
Character String Strings up to lengths described in Table K-4.

Devices claiming conformance to this BIBB are not required to support presentation and modification of objects and
properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for DS-M-A is interoperable with devices that support DS-WP-B and support one or more of the
objects listed in table K-1.

K.1.20 BIBB - Data Sharing - Advanced Modify - A (DS-AM-A)

The A device is able to use WriteProperty to modify any standard property of any standard object type excluding the Life
Safety and Access Control objects (e.g., Life Safety Point, Life Safety Zone, Access Door) where the property is not required
to be read-only, or to which access is otherwise restricted by the standard (e.g., Log_Buffer). Devices shall be capable of
commanding and relinquishing standard commandable properties at any priority. Device A may use alternate services where
support for execution of the alternate service is supported by Device B.

BACnet Service Initiate Execute
WriteProperty x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

882 ANSI/ASHRAE Standard 135-2012

Devices claiming support for this BIBB shall be capable of writing values within the full range as defined in Table K-6.

The A device shall be capable of writing all standard forms of the datatypes as defined per the A device's claimed
Protocol_Revision.

Devices claiming conformance to this BIBB are not required to support presentation and modification of objects and
properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for DS-AM-A is interoperable with devices that support DS-WP-B and support one or more of the
objects listed in Table K-1.

K.1.21BIBB - Data Sharing-WriteGroup-A (DS-WG-A)

The A device uses unicast, multicast or broadcast WriteGroup to target Channel object(s) in device B. The A device shall be
capable of specifying any group number and any channel number.

BACnet Service Initiate Execute
WriteGroup x

The A device modifies object property values in device B by initiating WriteGroup service requests that affect Channel
objects in device B.

K.1.22BIBB - Data Sharing-WriteGroup-Internal-B (DS-WG-I-B)

The B device shall contain one or more Channel objects that may be influenced by WriteGroup service requests from device
A.

BACnet Service Initiate Execute
WriteGroup x

Devices claiming conformance to DS-WG-I-B shall support configuration of Channel object
BACnetDeviceObjectPropertyReference values that contain references to objects inside of device B only.

K.1.23 BIBB - Data Sharing-WriteGroup-External-B (DS-WG-E-B)

The B device shall contain one or more Channel objects that may be influenced by WriteGroup service requests from device
A.

BACnet Service Initiate Execute
WriteGroup x
WriteProperty x

Devices claiming conformance to DS-WG-E-B shall also support DS-WG-I-B and DS-WP-A. The B device shall also
support configuration of Channel object BACnetDeviceObjectPropertyReference values that contain Device Instances
outside of device B, and shall be capable of initiating WriteProperty and optionally WritePropertyMultiple.

K.2 Alarm and Event Management BIBBs

These BIBBs prescribe the BACnet capabilities required to interoperably perform the alarm and event management functions
enumerated in Clause 22.2.1.2 for the BACnet devices defined therein.

K.2.1 BIBB - Alarm and Event-Notification-A (AE-N-A)

The A device processes notifications about alarms and other events.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 883

Devices claiming conformance to AE-N-A shall be able to process notifications from any standard or proprietary event-
generating object of any standard or proprietary event type (excluding the CHANGE_OF_LIFE_SAFETY and/or
BUFFER_READY event types).

K.2.2 BIBB - Alarm and Event-Notification Internal-B (AE-N-I-B)

Device B generates notifications about alarms and other events.

BACnet Service Initiate Execute
ConfirmedEventNotification x1
UnconfirmedEventNotification x

1 Devices that contain only read-only Recipient_List properties and no
Notification Forwarder objects are not required to have the capability
to initiate ConfirmedEventNotification requests.

Devices claiming support for AE-N-I-B shall also claim support for AE-INFO-B.

Devices claiming support for AE-N-I-B shall also support either Intrinsic or Algorithmic reporting. Any device that supports
the generation of event notifications that require operator acknowledgment shall support AE-ACK-B and AE-INFO-B. Any
device that supports the generation of TO_FAULT or TO_OFFNORMAL event notifications shall support AE-INFO-B.

Devices that only support generation of CHANGE_OF_LIFE_SAFETY and/or BUFFER_READY notifications shall not
claim support for this BIBB.

K.2.3 BIBB - Alarm and Event-Notification External-B (AE-N-E-B)

Device B contains an Event Enrollment object that monitors values in another device. Device B is capable of generating
event notifications for alarm conditions based on value(s) in another device. Devices conforming to this BIBB shall conform
to DS-RP-A, AE-N-I-B, and shall support at least 1 Event Enrollment object with an Object_Property_Reference property
that supports references to properties in objects contained in other devices. Any device that supports the generation of event
notifications that require operator acknowledgment shall support AE-ACK-B and AE-INFO-B. Any device that supports the
generation of TO_FAULT or TO_OFFNORMAL event notifications shall support AE-INFO-B.

Devices claiming support for this BIBB shall either support writable Recipient_List properties or support
Notification_Forwarder objects.

Devices that only support Event Enrollment objects that only support generation of CHANGE_OF_LIFE_SAFETY and/or
BUFFER_READY notifications shall not claim support for this BIBB.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

884 ANSI/ASHRAE Standard 135-2012

K.2.4 BIBB - Alarm and Event-ACK-A (AE-ACK-A)

Device A acknowledges alarm/event notifications.

BACnet Service Initiate Execute
AcknowledgeAlarm x

K.2.5 BIBB - Alarm and Event-ACK-B (AE-ACK-B)

Device B processes acknowledgments of previously transmitted alarm/event notifications.

BACnet Service Initiate Execute
AcknowledgeAlarm x

To support this BIBB the device must also support acknowledgeable alarms.

K.2.6 BIBB - Alarm and Event-Alarm Summary-A (AE-ASUM-A)

Device A requests summaries of alarms from device B.

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

BACnet Service Initiate Execute
GetAlarmSummary x

K.2.7 BIBB - Alarm and Event-Alarm Summary-B (AE-ASUM-B)

Device B provides summaries of alarms device A.

BACnet Service Initiate Execute
GetAlarmSummary x

K.2.8 BIBB - Alarm and Event-Enrollment Summary-A (AE-ESUM-A)

Device A requests event enrollments from device B.

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

BACnet Service Initiate Execute
GetEnrollmentSummary x

K.2.9 BIBB - Alarm and Event-Enrollment Summary-B (AE-ESUM-B)

Device B provides event enrollments to device A.

BACnet Service Initiate Execute
GetEnrollmentSummary x

K.2.10 BIBB - Alarm and Event-Information-A (AE-INFO-A)

Device A requests event information from device B.

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 885

BACnet Service Initiate Execute
GetEventInformation x

K.2.11 BIBB - Alarm and Event-Information-B (AE-INFO-B)

Device B provides event information to device A.

BACnet Service Initiate Execute
GetEventInformation x

K.2.12 BIBB - Alarm and Event-LifeSafety-A (AE-LS-A)

Life safety device A is able to process and acknowledge life safety notifications and is able to request silence and reset
operations from life safety device B.

BACnet Service Initiate Execute
LifeSafetyOperation x
ConfirmedEventNotification x
UnconfirmedEventNotification x
AcknowledgeAlarm x

K.2.13 BIBB - Alarm and Event-LifeSafety-B (AE-LS-B)

Life safety device B is able to generate life safety notifications and is able to process silence and reset operations on its life
safety objects.

BACnet Service Initiate Execute
LifeSafetyOperation x
ConfirmedEventNotification x
UnconfirmedEventNotification x

Devices claiming conformance to AE-LS-B shall support at least one instance of a Life Safety Point or Life Safety Zone
object and shall be able to generate ConfirmedEventNotification and UnconfirmedEventNotification service requests
describing CHANGE_OF_LIFE_SAFETY event transitions.

Any device that supports the generation of event notifications that require operator acknowledgment shall support AE-ACK-
B and AE-INFO-B. Any device that supports the generation of TO_FAULT or TO_OFFNORMAL event notifications shall
support AE-INFO-B.

K.2.14 BIBB - Alarm and Event Management - View Notifications - A (AE-VN-A)

Device A presents basic alarm and event notifications to the user. Device A shall support AE-N-A and shall be capable of
presenting any alarm or event notifications covered by AE-N-A to the user. The information conveyed to the user shall
include identification of the event-generating object or the monitored object, the event's timestamp and the event's Message
Text. Any other information conveyed to the user shall be consistent with the data contained in the notification.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x

Device A shall be capable of presenting at least 32 characters of Message Text, although it is suggested that devices claiming
this BIBB be capable of displaying 255 characters of Message Text.

A device claiming support for AE-VN-A is interoperable with devices that support AE-N-I-B.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

886 ANSI/ASHRAE Standard 135-2012

K.2.15 BIBB - Alarm and Event Management - Advanced View Notifications - A (AE-AVN-A)

Device A presents complete alarm and event notifications to the user. Device A shall support AE-VN-A. In addition to the
requirements of AE-VN-A, Device A shall be capable of presenting the event Notification Class, Priority, Notify Type, Ack
Required, To State and Event Values to the user. Device A shall be capable of presenting at least 255 characters of Message
Text.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x

A device claiming support for AE-AVN-A is interoperable with devices that support AE-N-I-B.

K.2.16 BIBB - Alarm and Event Management - View and Modify - A (AE-VM-A)

Device A displays and modifies limits and related parameters in alarm generating objects.

Device A shall support DS-RP-A and DS-WP-A. The A device shall be capable of using ReadProperty to retrieve and
WriteProperty to modify any of the properties listed below. Device A may use alternate services where support for execution
of the alternate service is supported by Device B.

BACnet Service Initiate Execute
ReadProperty x
WriteProperty x

Devices claiming conformance to AE-VM-A shall be capable of reading, presenting and writing alarming related properties
from the following standard object types:

Table K-7. Object Types for Which Presentation Is Required
Accumulator
Analog Input
Analog Output
Analog Value

Event Enrollment
Loop
Pulse Converter

Table K-8. Properties AE-VM-A That Devices Shall Be Capable of Presenting and Modifying

Accumulator Analog Objects Event Enrollment Loop Pulse Converter
High_Limit
Low_Limit
Limit_Monitoring_Interval

High_Limit
Low_Limit
Deadband

Event_Parameters Error_Limit High_Limit
Low_Limit
Deadband

Devices claiming support for this BIBB shall be capable of writing values within the full range as defined in Tables K-6 and
K-4. Such devices need only be capable of presenting and modifying Event_Parameters for the standard algorithms that have
high and low numerical limits, such as OUT_OF_RANGE, and FLOATING_LIMIT

Devices claiming conformance to this BIBB are not required to support presentation and modification of objects and
properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for AE-VM-A is interoperable with devices that support AE-N-I-B.

K.2.17 BIBB - Alarm and Event Management - Advanced View and Modify - A (AE-AVM-A)

Device A configures alarm generating objects and Notification class objects in Device B. Device A shall support DS-RP-A,
DS-WP-A, and DM-OCD-A. The A device shall be capable of using ReadProperty to retrieve and WriteProperty to modify
any of the properties listed below. Device A may use alternate services where support for execution of the alternate service is
supported by Device B. Device A shall be capable of creating/deleting Event Enrollment and Notification Class objects in the
B device.

BACnet Service Initiate Execute

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 887

CreateObject x
DeleteObject x
ReadProperty x
WriteProperty x

Devices claiming conformance to AE-AVM-A shall be capable of reading, presenting and writing alarming-related properties
from the standard object types listed in Table K-9.

Table K-9. Object Types for Which Presentation Is Required
Accumulator
Analog Input
Analog Output
Analog Value
Binary Input

Binary Output
Binary Value
Event Enrollment
Loop
Multi-state Input

Multi-state Output
Multi-state Value
Notification Class
Pulse Converter

Table K-10. Properties That AE-AVM-A Devices Shall Be Capable of Presenting and Modifying
All Object Types1 (from Table K-9) Accumulator Analog Objects

Acked_Transitions2
Event_State2
Event_Enable
Notification_Class
Event_Time_Stamps2

Time_Delay

Pulse_Rate
High_Limit
Low_Limit
Limit_Monitoring_Interval

Limit_Enable
High_Limit
Low_Limit
Deadband

Binary Input, Binary Value Binary Output Event Enrollment

Alarm_Value Feedback_Value2 Object_Property_Reference
Event_Parameters
Notify_Type

Loop Multi-state Input, Multi-state Value Multi-state Output

Error_Limit Alarm_Values
Fault_Values

Feedback_Value1

Notification Class Pulse Converter

Priority
Ack_Required
Recipient_List

Limit_Enable
High_Limit
Low_Limit
Deadband

1 For object types that include these properties.
2 AE-AVM-A devices need only be capable of presenting these properties; not modifying them.

Devices claiming support for this BIBB shall be capable of writing the full range of values as defined in Tables K-6 and K-4.
Such devices shall also be capable of writing any standard form of the Event_Parameters property to any Event Enrollment
object (excluding BUFFER_READY) and any standard form of BACnetDestination to any Notification Class object's
Recipient_List property.

Actions taken by Device A when retrieval of a value for display fails are a local matter.

Devices claiming conformance to this BIBB are not required to support presentation and modification of objects and
properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

A device claiming support for AE-AVM-A is interoperable with devices that support AE-N-I-B or AE-N-E-B.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

888 ANSI/ASHRAE Standard 135-2012

K.2.18 BIBB - Alarm and Event Management - Alarm Summary View - A (AE-AS-A)

Device A presents alarm summary information to the user. Device A uses GetEventInformation to retrieve or update alarm
summary information presented to the user. When confronted with a device that does not support execution of
GetEventInformation, Device A uses GetAlarmSummary instead. Device A may use alternate alarm and event summary
services where support for execution of the alternate service is supported by Device B.

BACnet Service Initiate Execute
GetEventInformation x
GetEnrollmentSummary x
GetAlarmSummary x

Device A is not required to rely solely on the event summary services for retrieval of event information. It may use the
information contained in received event notifications to build the alarm summary. In such a case, a device claiming
conformance to this BIBB shall use the summarization services to update this information. Presentation content and format is
a local matter.

A device claiming support for AE-AS-A is interoperable with devices that support AE-INFO-B, AE-ESUM-B or AE-ASUM-
B.

K.2.19 BIBB - Alarm and Event Management - Event Log View - A (AE-ELV-A)

The A device displays event log data from the B device.

BACnet Service Initiate Execute
ReadRange x

The A device uses ReadRange to retrieve and display the Event Log object's Log_Buffer property. Devices claiming support
for this BIBB shall be capable of presenting Event Logs containing any type event notifications but are not required to
display the Event_Values field of event notifications for Event_Types that are defined in a Protocol_Revision newer than that
of the A device.

The A device has to be able to display the information, with the same data requirments, indicated in AE-VN-A.

A device claiming support for AE-ELV-A is interoperable with devices that support AE-EL-I-B or AE-EL-E-B.

K.2.20 BIBB - Alarm and Event Management - Event Log View and Modify - A (AE-ELVM-A)

The A device displays event log data from the B device and manipulates event log collection parameters in the B device.
Devices claiming support for this BIBB shall support DS-RP-A and DS-WP-A.

BACnet Service Initiate Execute
ReadRange x
ReadProperty x
WriteProperty x

The A device shall be capable of using ReadRange to retrieve and display the Event Log's Log_Buffer property,
ReadProperty to retrieve and display Event Log properties, WriteProperty to modify Event Log properties. The properties
that the A device shall be capable of reading and writing are listed below. Device A may use alternate services where support
for execution of the alternate service is supported by the B Device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 889

Table K11. Event Log Object Properties That AE-ELVM-A Devices Shall Be Capable of Presenting and Modifying
Enable
Start_Time
Stop_Time
Stop_When_Full
Buffer_Size
Record_Count
Total_Record_Count (retrieve only)

Notification_Threshold
Last_Notify_Record (retrieve only)
Event_State (retrieve only)
Notification_Class
Event_Enable
Event_Time_Stamps (retrieve only)

Devices claiming support for this BIBB shall be capable of presenting all of the fields of the Log_Buffer records, and all
types of event notifications but are not required to display the Event_Values field of event notifications for Event_Types that
are defined in a Protocol_Revision newer than that claimed by the A device.

Devices claiming support for this BIBB shall be capable of writing values within the full range as defined in tables K-4 and
K-6.

A device claiming support for AE-ELVM-A is interoperable with devices that support AE-EL-I-B or AE-EL-E-B.

K.2.21 BIBB - Alarm and Event Management - Event Log - Internal - B (AE-EL-I-B)

The B device collects the event notifications in an internal buffer. Each device claiming conformance to AE-EL-I-B must be
able to support at least one Event Log object.

BACnet Service Initiate Execute
ReadRange x

K.2.22 BIBB - Alarm and Event Management - Event Log - External - B (AE-EL-E-B)

The B device collects, in an internal buffer, confirmed and unconfirmed event notifications that are received from other
devices. Each device claiming conformance to AE-EL-E-B must be able to support at least one Event Log object and shall be
capable of logging all forms of event notifications.

BACnet Service Initiate Execute
ReadRange x
ConfirmedEventNotification x
UnconfirmedEventNotification x

K.2.23 BIBB - Alarm and Event-Notification Forwarder-B (AE-NF-B)

Device B forwards alarm and event notifications for other devices.

BACnet Service Initiate Execute

ConfirmedEventNotification x x
UnconfirmedEventNotification x x
AddListElement x
RemoveListElement x

Devices claiming conformance to AE-NF-B shall support the Notification Forwarder object type with configurable
Recipient_List properties that can contain at least 8 entries, and with a Subscribed_Recipients property with at least 8 entries.

The Notification Forwarder objects shall be capable of forwarding all event notifications received by the device. If the
Process_Identifier_Filter properties of the Notification Forwarder objects are not configurable, then at least one Notification
Forwarder object shall have a Process_Identifier_Filter property with a value of NULL or 0 in order to forward notifications
from devices that only send event notifications using local broadcasts.

K.2.24 BIBB - Alarm and Event-Notification Forwarder-Internal-B (AE-NF-I-B)

Device B forwards alarm and event notifications for the local device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

890 ANSI/ASHRAE Standard 135-2012

BACnet Service Initiate Execute

ConfirmedEventNotification x
UnconfirmedEventNotification x
AddListElement x
RemoveListElement x

Devices claiming conformance to AE-NF-I-B shall support the Notification Forwarder object type with configurable
Recipient_List properties that can contain at least 8 entries, and with a Subscribed_Recipients property with at least 8 entries.

K.3 Scheduling BIBBs

These BIBBs prescribe the BACnet capabilities required to interoperably perform the scheduling functions enumerated in
Clause 22.2.1.3 for the BACnet devices defined therein.

K.3.1 BIBB - Scheduling-A (SCHED-A)

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

The A device manipulates schedules and calendars on the B device. The A device must support the DS-RP-A and DS-WP-A
BIBBs.

K.3.2 BIBB - Scheduling-Internal-B (SCHED-I-B)

The B device provides date and time scheduling of the values of specific properties of specific objects within the device. In
addition to supporting the DS-RP-B and DS-WP-B BIBBs, each device claiming conformance to SCHED-I-B shall also be
capable of possessing at least one Calendar and one Schedule object. Devices claiming conformance to SCHED-I-B shall
also support either DM-TS-B or DM-UTC-B.

The Schedule object shall support a writable Weekly_Schedule property and at least 6 entries per day. The Schedule object
shall support a non-empty Exception_Schedule property. The Priority_For_Writing property in the Schedule object shall be
writable.

K.3.3 BIBB - Scheduling-External-B (SCHED-E-B)

The B device provides date and time scheduling of the values of specific properties of specific objects in other devices.
Devices claiming conformance to SCHED-E-B shall also support SCHED-I-B and DS-WP-A. The
List_Of_Object_Property_References property shall support references to objects in external devices and be writable.

K.3.4 BIBB - Scheduling-Readonly-B (SCHED-R-B)

The B device provides read-only Schedule object(s). Each device claiming conformance to SCHED-R-B shall be capable of
possessing at least one Schedule object, support DS-RP-B and either DM-TS-B or DM-UTC-B. The Weekly_Schedule and
Exception_Schedule properties of the Schedule object shall be read-only when accessed directly via BACnet services, but
may be modifiable by other means.

This BIBB is primarily included in the BACnet standard to allow gateway devices to indicate support for exposing the
content of schedules found in devices from other protocols.

K.3.5 BIBB - Scheduling-Advanced View and Modify-A (SCHED-AVM-A)

The A device manipulates schedules and calendars on the B device. The A device must shall support the DM-OCD-A, DS-
RP-A and DS-WP-A BIBBs.

BACnet Service Initiate Execute
CreateObject x
DeleteObject x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 891

ReadProperty x
WriteProperty x

The A device uses ReadProperty to retrieve for presentation and WriteProperty to modify each of the Schedule and Calendar
properties listed below. The A device shall be capable of using the CreateObject and DeleteObject services to create and
delete Schedule and Calendar objects on the B device. Device A may use alternate services where support for execution of
the alternate service is supported by Device B.

Table K-12. Properties SCHED-AVM-A That Devices Shall Be Capable of Presenting and Modifying
Schedule Calendar

Effective_Period
Weekly_Schedule
Exception_Schedule
Schedule_Default
List_Of_Object_Property_References
Priority_For_Writing
Out_Of_Service

Date_List

The A device shall support the creation, presentation and modification of all forms of the Weekly_Schedule,
Exception_Schedule and Date_List properties with the following limitations. At a minimum, the A device shall be capable of
handling Exception_Schedule properties with up to 255 entries, and 12 BACnetTimeValue tuples per entry,
Weekly_Schedule properties with up to 6 entries per day, and Date_List properties with up to 32 entries.

Devices claiming support for this BIBB shall be capable of creating, deleting, presenting, and modifying Schedule objects
that schedule any of the following types:

 REAL, ENUMERATED, Unsigned32

and which may contain NULL values and shall be capable of changing the datatype that a Schedule object schedules.
Schedule objects contain a number of properties that need to be consistent in the datatype of the values they contain. Devices
claiming support for this BIBB shall be prepared to interact, allow display and modification of, Schedule objects that are self-
inconsistent. A self-inconsistent Schedule object is one in which the scheduled values in the Weekly_Schedule,
Exception_Schedule, and Schedule_Default properties are not all of the same datatype or in which the controlled objects are
not all of the same datatype or are of a datatype different than the scheduled values.

The A device shall be capable of creating, deleting, presenting and modifying schedules in any B device regardless of the B
device's claimed Protocol_Revision.

The A device shall be capable of creating, deleting, presenting and modifying schedule objects that do not contain an
Exception_Schedule.

Devices claiming support for this BIBB shall be capable of providing times and values in the time/value pairs within the full
range as defined in Tables K-4 and K-6.

Actions taken by Device A when retrieval of a value for display fails are a local matter.

A device claiming support for SCHED-AVM-A is interoperable with devices that support any of the B side schedule BIBBs.

K.3.6 BIBB - Scheduling-View and Modify-A (SCHED-VM-A)

The A device manipulates schedules and calendars on the B device. The A device shall support the DS-RP-A and DS-WP-A
BIBBs.

BACnet Service Initiate Execute
ReadProperty x
WriteProperty x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

892 ANSI/ASHRAE Standard 135-2012

Device A shall be capable of using ReadProperty to retrieve for presentation and WriteProperty to modify each of the
Schedule and Calendar properties listed below. Device A may use alternate services where support for execution of the
alternate service is supported by Device B.

Table K-13. Properties That SCHED-VM-A Devices Shall Be Capable of Presenting and Modifying
Schedule Calendar

Effective_Period Date_List
Weekly_Schedule
Exception_Schedule

The A device shall support the presentation and modification of all forms of the Weekly_Schedule, Exception_Schedule and
Date_List properties with the following limitations. At a minimum, the A device shall be capable of handling
Exception_Schedule properties with up to 255 entries, and 12 BACnetTimeValue tuples per entry, Weekly_Schedule
properties with up to 6 entries per day, and Date_List properties with up to 32 entries.

Devices claiming support for this BIBB shall be capable of presenting, and modifying Schedule objects that schedule any of
the following types:

 REAL, ENUMERATED, Unsigned32

and which may contain NULL values.

The A device shall be capable of presenting and modifying schedules in any B devices regardless of the B device's claimed
Protocol_Revision.

The A device shall be capable of presenting and modifying schedule objects that do not contain an Exception_Schedule.

Devices claiming support for this BIBB shall be capable of providing times and values in the time/value pairs within the full
range as defined in Table K-6.

A device claiming support for SCHED-VM-A is interoperable with devices that support any of the B-side schedule BIBBs.

K.3.7 BIBB - Scheduling-Weekly Schedule-A (SCHED-WS-A)

The A device manipulates the weekly schedule portion of schedules on the B device. The A device shall support the DS-RP-
A and DS-WP-A BIBBs.

BACnet Service Initiate Execute
ReadProperty x
WriteProperty x

The A device shall be capable of using ReadProperty to retrieve for presentation and WriteProperty to modify each of the
Schedule properties listed below. Device A may use alternate services where support for execution of the alternate service is
supported by Device B.

Table K-14. Properties That SCHED-WS-A Devices Shall Be Capable of Presenting and Modifying
Schedule

Weekly_Schedule
Schedule_Default

The A device shall support the presentation and modification of all forms of the Weekly_Schedule, property with the
following limitations. At a minimum, the A device shall be capable of handling Weekly_Schedule properties with up to 6
entries per day.

Devices claiming support for this BIBB shall be capable of presenting, and modifying Schedule objects that schedule any of
the following types:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 893

 ENUMERATED, REAL

and which may contain NULL values.

The A device shall be capable of presenting and modifying Schedule objects of the forms defined in Protocol_Revision 0 and
Protocol_Revision 4.

K.3.8 BIBB - Scheduling-Weekly Schedule Internal-B (SCHED-WS-I-B)

The B device provides weekly scheduling of the values of specific properties of specific objects within the device via
Schedule objects that do not contain Exception_Schedules. In addition to supporting the DS-RP-B and DS-WP-B BIBBs,
each device claiming conformance to SCHED-WS-I-B shall also be capable of possessing at least one Schedule object.
Devices claiming conformance to SCHED-WS-I-B shall also support either DM-TS-B or DM-UTC-B.

BACnet Service Initiate Execute
ReadProperty x
WriteProperty x
TimeSynchonization x
UTCTimeSynchronization x

The Schedule object shall support at least 6 entries per day in the Weekly_Schedule property. The schedule shall support the
scheduling of BACnetBinaryPV values. The Priority_For_Writing property in the Schedule object shall be writable.

K.4 Trending BIBBs

These BIBBs prescribe the BACnet capabilities required to interoperably perform the trending functions enumerated in
Clause 22.2.1.4 for the BACnet devices defined therein.

K.4.1 BIBB - Trending-Viewing and Modifying Trends-A (T-VMT-A)

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

The A device displays trend data from the B device and manipulates trend log collection parameters in the B device.

BACnet Service Initiate Execute
ReadRange x

K.4.2 BIBB - Trending-Viewing and Modifying Trends Internal-B (T-VMT-I-B)

The B device collects the trend log data records in an internal buffer. Each device claiming conformance to T-VMT-I-B must
be able to support at least one Trend Log object.

BACnet Service Initiate Execute
ReadRange x

K.4.3 BIBB - Trending-Viewing and Modifying Trends External-B (T-VMT-E-B)

The B device is capable of trending properties of objects contained in other devices. The B device shall support T-VMT-I-B
and DS-RP-A. The Log_Interval and Log_DeviceObjectProperty properties must be writable.

The Trend Log objects must be capable of trending REAL, Unsigned, INTEGER, BOOLEAN, Bit String, Enumerated and
NULL values.

K.4.4 BIBB - Trending-Automated Trend Retrieval-A (T-ATR-A)

The A device responds to a notification that a trend log is ready with new data and acquires the new data from the log.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

894 ANSI/ASHRAE Standard 135-2012

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x
ReadRange x

Devices claiming conformance to T-ATR-A must be able to process BUFFER_READY event notifications generated by
Trend Log objects and Event Enrollment objects.

K.4.5 BIBB - Trending-Automated Trend Retrieval-B (T-ATR-B)

 The B device notifies the A device that a trending buffer has acquired a predetermined number of data samples using the
BUFFER_READY event algorithm either intrinsically in the Trend Log object or algorithmically using an Event Enrollment
object.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x
ReadRange x

Devices claiming conformance to T-ATR-B must support the Trend Log object.

K.4.6 BIBB - Trending-Viewing and Modifying Multiple Values-A (T-VMMV-A)

This BIBB has been deprecated and is included solely for historical purposes. This BIBB should not be used when describing
the functionality of BACnet devices.

The A device displays data from a Trend Log Multiple object in the B device and manipulates Trend Log Multiple object
collection parameters in the B device.

BACnet Service Initiate Execute
ReadRange x

K.4.7 BIBB - Trending-Viewing and Modifying Multiple Values Internal-B (T-VMMV-I-B)

The B device collects the multiple-data log records in an internal buffer. Each device claiming conformance to T-VMMV-I-B
shall be able to support at least one Trend Log Multiple object.

BACnet Service Initiate Execute
ReadRange x

K.4.8 BIBB - Trending-Viewing and Modifying Multiple Values External-B (T-VMMV-E-B)

The B device is capable of logging multiple properties of multiple objects contained in other devices. The B device shall
support T-VMMV-I-B and DS-RPM-A. The Log_Interval and Log_DeviceObjectProperty properties shall be writable.

K.4.9 BIBB - Trending-Automated Multiple Value Retrieval-A (T-AMVR-A)

The A device responds to a notification that a Trend Log Multiple object is ready with new data and acquires the new data
from the log.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x
ReadRange x

Devices claiming conformance to T-AMVR-A shall be able to process BUFFER_READY event notifications generated by
Trend Log Multiple objects and Event Enrollment objects.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 895

K.4.10 BIBB - Trending-Automated Multiple Value Retrieval-B (T-AMVR-B)

The B device notifies the A device that a Trend Log Multiple object's buffer has acquired a predetermined number of data
samples using the BUFFER_READY event algorithm either intrinsically in the Trend Log Multiple object or algorithmically
using an Event Enrollment object.

BACnet Service Initiate Execute
ConfirmedEventNotification x
UnconfirmedEventNotification x
ReadRange x

Devices claiming conformance to T-AMVR-B shall support the Trend Log Multiple object.

K.4.11 BIBB - Trending-View-A (T-V-A)

The A device displays trend data from the B device. Within the context of this BIBB, the term "trend object" shall refer to
both Trend Log and Trend Log Multiple objects.

BACnet Service Initiate Execute
ReadRange x

The A device uses ReadRange to retrieve and display trend object Log_Buffer properties.

Devices claiming support for this BIBB shall be capable of presenting data from trend objects for the following types of data:

 BOOLEAN, REAL, ENUMERATED, Unsigned32, INTEGER, BIT STRING, NULL

Devices claiming conformance to a Protocol_Revision less than 7 are not required to support these interactions with Trend
Log Multiple objects. The A device need not be capable of interoperating with Trend Logs of the form defined in
Protocol_Revision 1.

A device claiming support for T-V-A is interoperable with devices that support T-VMT-I-B.

K.4.12 BIBB - Trending-Advanced View and Modify-A (T-AVM-A)

The A device displays trend data from the B device and manipulates trend log collection parameters in the B device. Devices
claiming support for this BIBB shall support DS-RP-A and DS-WP-A. Within the context of this BIBB, the term "trend
object" shall refer to both Trend Log and Trend Log Multiple objects.

BACnet Service Initiate Execute
CreateObject x
DeleteObject x
ReadProperty x
ReadRange x
WriteProperty x

The A device shall be capable of using ReadRange to retrieve and display trend object Log_Buffer properties, ReadProperty
to retrieve and display trend object properties, WriteProperty to modify trend object properties, and CreateObject and
DeleteObject to create and delete trend objects, Event Enrollment and Notification Class objects. The properties that the A
device shall be capable of reading and writing are listed below. Device A may use alternate services where support for
execution of the alternate service is supported by the B Device.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

896 ANSI/ASHRAE Standard 135-2012

Table K-14. Trend Object Properties That T-AVM-A Devices Shall Be Capable of Presenting and Modifying
Enable
Start_Time
Stop_Time
Log_DeviceObjectProperty
Logging_Type
Log_Interval
Align_Intervals
Interval_Offset
COV_Resubscription_Interval
Client_COV_Increment

Stop_When_Full
Buffer_Size
Record_Count
Total_Record_Count (retrieve only)
Notification_Threshold
Last_Notify_Record (retrieve only)
Event_State (retrieve only)
Notification_Class
Event_Enable
Event_Time_Stamps (retrieve only)

In addition, devices claiming support for T-AVM-A shall be capable of creating and configuring Event Enrollment objects to
monitor trend objects using the BUFFER_READY algorithm. The A device shall also be capable of creating and configuring
Notification Class objects (as described in AE-AVM-A) for setup of Automated Trend Retrieval.

Devices claiming support for this BIBB shall be capable of presenting trend object data of the following types:

 BOOLEAN, REAL, ENUMERATED, Unsigned32, INTEGER, BIT STRING, NULL

Devices claiming support for this BIBB shall be capable of writing values within the full range as defined in tables K-6 and
K-4.

A device claiming support for T-AVM-A is interoperable with devices that support T-VMT-I-B or T-VMMV-I-B.

Devices claiming conformance to a Protocol_Revision less than 7, are not required to support these interactions with Trend
Log Multiple objects nor properties added to the Trend Log object in Protocol_Revision 7. The A device need not be capable
of interoperating with Trend Logs of the form defined in Protocol_Revision 1.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 897

K.4.13 BIBB - Trending-Archival-A (T-A-A)

The A device archives trend data from Trend Log and Trend Log Multiple objects in the B device. The A device shall
support T-ATR-A and T-AMVR-A and shall be capable of using the BUFFER_READY notifications to ensure that trend
data is retrieved using ReadRange and archived before the trend data is removed from the Log_Buffer property due to the
addition of newly collected samples. The archived data shall be stored in non-volatile storage for future access.

A device claiming support for T-A-A is interoperable with devices that support T-ATR-B or T-AMVR-B.

Devices claiming conformance to a Protocol_Revision less than 7, are not required to support these interactions with Trend
Log Multiple objects and thus do not need to support T-AMVR-A.

K.5 Device and Network Management BIBBs

These device management BIBBs prescribe the BACnet capabilities required to interoperably perform the device
management functions enumerated in Clause 22.2.1.5 for the BACnet devices defined therein. The network management
BIBBs prescribe the BACnet capabilities required to interoperably perform network management functions.

K.5.1 BIBB - Device Management-Dynamic Device Binding-A (DM-DDB-A)

The A device seeks information about device attributes of other devices and interprets device announcements.

BACnet Service Initiate Execute
Who-Is x
I-Am x

K.5.2 BIBB - Device Management-Dynamic Device Binding-B (DM-DDB-B)

The B device provides information about its device attributes and responds to requests to identify itself.

BACnet Service Initiate Execute
Who-Is x
I-Am x

K.5.3 BIBB - Device Management-Dynamic Object Binding-A (DM-DOB-A)

The A device seeks address information about objects.

BACnet Service Initiate Execute
Who-Has x
I-Have x

K.5.4 BIBB - Device Management-Dynamic Object Binding-B (DM-DOB-B)

The B device provides address information about its objects upon request.

BACnet Service Initiate Execute
Who-Has x
I-Have x

K.5.5 BIBB - Device Management-DeviceCommunicationControl-A (DM-DCC-A)

The A device exercises communication control over the B device.

BACnet Service Initiate Execute
DeviceCommunicationControl x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

898 ANSI/ASHRAE Standard 135-2012

Support for requests of a limited duration is required, and support for requests of an indefinite duration is optional.

K.5.6 BIBB - Device Management-DeviceCommunicationControl-B (DM-DCC-B)

The B device responds to communication control exercised by the A device.

BACnet Service Initiate Execute
DeviceCommunicationControl x

Support for requests of a limited duration is required, and support for requests of an indefinite duration is optional.

K.5.9 BIBB - Device Management-Text Message-A (DM-TM-A)

The A device initiates the transmission of text messages. The interpretation and subsequent processing of the messages is a
local matter.

BACnet Service Initiate Execute
ConfirmedTextMessage x1
UnconfirmedTextMessage x1

1 The A device must support initiation of at least one of these services.

K.5.10 BIBB - Device Management-Text Message-B (DM-TM-B)

The B device processes the text messages.

BACnet Service Initiate Execute
ConfirmedTextMessage x
UnconfirmedTextMessage x

K.5.11 BIBB - Device Management-TimeSynchronization-A (DM-TS-A)

The A device provides time synchronization to B devices. The time parameter contained in the service request contains the
date and time as determined by the clock in the device issuing the service request. Normally this will be "local time," i.e., the
time in the local time zone corrected for daylight savings time as appropriate.

BACnet Service Initiate Execute
TimeSynchronization x

Devices claiming conformance to DM-TS-A must support the Time_Synchronization_Recipients property of the Device
object.

K.5.12 BIBB - Device Management-TimeSynchronization-B (DM-TS-B)

The B device interprets time synchronization messages from the A device.

BACnet Service Initiate Execute
TimeSynchronization x

Devices claiming conformance to DM-TS-B must support the Local_Time and Local_Date properties of the Device object.

K.5.13 BIBB - Device Management-UTCTimeSynchronization-A (DM-UTC-A)

The A device provides time synchronization to B devices. The time parameter contained in the service request contains
"Coordinated Universal Time" (UTC). For all practical purposes, UTC is synonymous with Greenwich Mean Time, the time
at the zero or Greenwich meridian.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 899

BACnet Service Initiate Execute
UTCTimeSynchronization x

Devices claiming conformance to DM-UTC-A must support the Time_Synchronization_Recipients property of the Device
object.

K.5.14 BIBB - Device Management-UTCTimeSynchronization-B (DM-UTC-B)

The B device interprets time synchronization messages from the A device.

BACnet Service Initiate Execute
UTCTimeSynchronization x

Devices claiming conformance to DM-UTC-B must support the Local_Time, Local_Date, UTC_Offset, and
Daylight_Saving_Status properties of the Device object.

K.5.15 BIBB - Device Management-ReinitializeDevice-A (DM-RD-A)

The A device is authorized to reinitialize the B device.

BACnet Service Initiate Execute
ReinitializeDevice x

Devices claiming conformance to DM-RD-A shall be able to initiate ReinitializeDevice requests containing the Password
parameter. Devices claiming conformance to DM-RD-A are only required to support the WARMSTART and COLDSTART
service choices.

K.5.16 BIBB - Device Management-ReinitializeDevice-B (DM-RD-B)

The B device performs reinitialization requests from the A device. The optional password field shall be supported.

BACnet Service Initiate Execute
ReinitializeDevice x

Devices claiming conformance to DM-RD-B are only required to support the WARMSTART and COLDSTART service
choices.

K.5.17 BIBB - Device Management-Backup and Restore-A (DM-BR-A)

The A device reads the files that contain the configuration of the B device and writes those files to the B device should it
need to be restored to its previously backed-up state.

BACnet Service Initiate Execute
AtomicReadFile x
AtomicWriteFile x
CreateObject x
ReinitializeDevice x

Devices claiming conformance to DM-BR-A are required to support all service choices of the ReinitializeDevice service. In
addition, devises claiming conformance to DM-BR-A shall support the device A capabilities as described in Clause 19.1.

K.5.18 BIBB - Device Management-Backup and Restore-B (DM-BR-B)

The B device provides its configuration file to the A device and allows the A device to write this file to recover its
configuration in the event of a failure.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

900 ANSI/ASHRAE Standard 135-2012

BACnet Service Initiate Execute
AtomicReadFile x
AtomicWriteFile x
ReinitializeDevice x

Devices claiming conformance to DM-BR-B are required to support all service choices of the ReinitializeDevice service. In
addition, devices claiming conformance to DM-BR-B shall support the device B capabilities as described in Clause 19.1.
Once a Restore procedure has been initiated on the device, the Read_Only property of configuration File objects shall contain
the value FALSE and the File_Size property of the configuration File objects shall be writable if the size of the configuration
file can change based on the device's configuration.

If the configuration file objects are not guaranteed to exist once a Restore procedure has been initiated, then the device must
support execution of the CreateObject service.

K.5.19 BIBB - Device Management-Restart-A (DM-R-A)

The A device processes restart notifications.

BACnet Service Initiate Execute
UnconfirmedCOVNotification x

K.5.20 BIBB - Device Management-Restart-B (DM-R-B)

The B device informs the A device(s) each time it restarts.

BACnet Service Initiate Execute
UnconfirmedCOVNotification x

Devices claiming conformance to DM-R-B shall support the Last_Restart_Reason, Restart_Notification_Recipients, and
Time_Of_Device_Restart properties of the Device object.

K.5.21 BIBB - Device Management-List Manipulation-A (DM-LM-A)

Many BACnet object types have properties that are lists of a particular datatype. The A device can add and remove list
elements in properties of objects in the B device.

BACnet Service Initiate Execute
AddListElement x
RemoveListElement x

K.5.22 BIBB - Device Management-List Manipulation-B (DM-LM-B)

The B device responds to requests to add or remove list elements.

BACnet Service Initiate Execute
AddListElement x
RemoveListElement x

K.5.23 BIBB - Device Management-Object Creation and Deletion-A (DM-OCD-A)

BACnet allows object instances to be dynamically created and deleted. The A device may dynamically create and delete the
object types supported by the B device.

BACnet Service Initiate Execute
CreateObject x
DeleteObject x

K.5.24 BIBB - Device Management-Object Creation and Deletion-B (DM-OCD-B)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 901

The B device creates and deletes object instances based on requests from the A device. The object types whose dynamic
creation and deletion is supported shall be enumerated in the Standard Object Types Supported section of device B's PICS.

BACnet Service Initiate Execute
CreateObject x
DeleteObject x

K.5.25 BIBB - Device Management-Virtual Terminal-A (DM-VT-A)

The A device initiates a virtual terminal session and exchanges data with the B device.

BACnet Service Initiate Execute
VT-Open x
VT-Close x x
VT-Data x x

K.5.26 BIBB - Device Management-Virtual Terminal-B (DM-VT-B)

The B devices permits the establishment of a virtual terminal session and exchanges data with the A device.

BACnet Service Initiate Execute
VT-Open x
VT-Close x x
VT-Data x x

K.5.27 BIBB - Network Management-Connection Establishment-A (NM-CE-A)

The A device commands a half-router to establish and terminate connections as needed for communication with other
devices.

BACnet Network Layer Message Initiate Execute
Establish-Connection-To-Network x
Disconnect-Connection-To-Network x

K.5.28 BIBB - Network Management-Connection Establishment-B (NM-CE-B)

The B device executes commands to establish and terminate connections as needed.

BACnet Network Layer Message Initiate Execute
Establish-Connection-To-Network x
Disconnect-Connection-To-Network x

K.5.29 BIBB - Network Management-Router Configuration-A (NM-RC-A)

The A device may query and change the configuration of routers and half-routers.

BACnet Network Layer Message Initiate Execute
Who-Is-Router-To-Network x
I-Am-Router-To-Network x
I-Could-Be-Router-To-Network x
Initialize-Routing-Table x
Initialize-Routing-Table-Ack x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

902 ANSI/ASHRAE Standard 135-2012

K.5.30 BIBB - Network Management-Router Configuration-B (NM-RC-B)

The B device responds to router management commands and must meet the requirements for BACnet Routers as stated in
Clause 6.

BACnet Network Layer Message Initiate Execute
Who-Is-Router-To-Network x x
I-Am-Router-To-Network x x
Initialize-Routing-Table x
Initialize-Routing-Table-Ack x

K.5.31 BIBB - Device Management-Automatic Network Mapping-A (DM-ANM-A)

The A device finds all devices currently connected to the BACnet internetwork that support DM-DDB-B and presents the list
of those devices to the user. A device claiming support for this BIBB shall support DM-DDB-A.

The A device is not required to report the presence of devices located on the far side of a non-connected PTP link.

A device claiming support for DM-ANM-A is interoperable with devices that support DM-DDB-B.

K.5.32 BIBB - Device Management-Automatic Device Mapping-A (DM-ADM-A)

The A device is capable of determining and presenting a list of all objects contained in any BACnet device. Devices claiming
support for this BIBB shall also support DS-RP-A to retrieve and display the Object_Name property of any object in any
BACnet device. Device A may use alternate services where support for execution of the alternate service is supported by
Device B.

A device claiming support for DM-ADM-A is interoperable with all BACnet devices.

K.5.33 BIBB - Device Management-Automatic Time Synchronization-A (DM-ATS-A)

The A device provides periodic time synchronization to B devices. In order to support all types of BACnet devices, the A
device shall be capable of periodically sending TimeSynchronization and UTCTimeSynchronization services to recipients
listed in the A device's Time_Synchronization_Recipients and UTC_Time_Synchronization_Recipients properties.

BACnet Service Initiate Execute
TimeSynchronization x
UTCTimeSynchronization x

Devices claiming conformance to DM-ATS-A shall support non-empty Time_Synchronization_Recipients and
UTC_Time_Synchronization_Recipients properties in its Device object and shall support all forms of the BACnetRecipient
in both properties.

A device claiming support for DM-ATS-A is interoperable with devices that support DM-TS-B or DM-UTC-B.

K.5.34 BIBB - Device Management-Manual Time Synchronization-A (DM-MTS-A)

The A device provides time synchronization to B devices at the request of the operator. In order to support all types of
BACnet devices, the A device shall be capable of sending both TimeSynchronization and UTCTimeSynchronization services
to any, or all, BACnet devices in the BACnet internetwork.

BACnet Service Initiate Execute
TimeSynchronization x
UTCTimeSynchronization x

A device claiming support for DM-MTS-A is interoperable with devices that support DM-TS-B or DM-UTC-B.

K.5.35 BIBB - Network Security BIBBs

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 903

These network security BIBBs prescribe the BACnet capabilities required to interoperably perform the network security
functions described in Clause 24.

K.5.35.1 BIBB - Network Security - Secure Device (NS-SD)

The Secure Device BIBB describes the basic functionality that all secure BACnet devices shall support.

BACnet Network Layer Message Initiate Execute
Challenge-Request x
Security-Payload x x
Security-Response x x
Request-Key-Update x
Update-Key-Set x
Update-Distribution-Key x
What-Is-Network-Number x x
Network-Number-Is x x

Devices claiming support for this BIBB shall support a Device-Master key, Distribution key, General-Network-Access key,
Installation key, User-Authenticated and at least 1 Application-Specific key. A secure device is allowed to limit the number
of Application-Specific keys it can contain, but it shall not limit which Application-Specific Key Identifier (6 .. 127) values it
accepts.

Secure devices shall support MD5 and SHA-256 for signing secure BACnet messages, and AES for encrypting BACnet
messages. Secure devices are allowed to restrict their use of encryption to key exchange only.

K.5.35.2 BIBB - Network Security - Encrypted Device (NS-ED)

The Encrypted Device BIBB is claimed by devices that are capable of using encryption for all BACnet communications.
Devices claiming this BIBB shall support NS-SD and shall be able to encrypt all BACnet messages except the Request-
Master-Key and Set-Master-Key services which by definition cannot be encrypted.

K.5.35.3 BIBB - Network Security - Multi-Application Device (NS-MAD)

The Multi-Application Device BIBB is claimed by devices that are capable of using more than 1 Application-Specific
security key. Devices claiming this BIBB shall support NS-ED, shall be able to be configured with at least 5 Application-
Specific security keys (the key identifier key numbers to be selected by site policy, not by the implementation), and shall be
able to use any of its configured Application-Specific keys to encrypt all BACnet messages except the Request-Master-Key
and Set-Master-Key services which by definition cannot be encrypted.

K.5.35.4 BIBB - Network Security-Device Master Key-A (NS-DMK-A)

The A device is capable of providing Device-Master to secure devices.

BACnet Network Layer Message Initiate Execute
Request-Master-Key x
Set-Master-Key x

K.5.35.5 BIBB - Network Security-Device Master Key-B (NS-DMK-B)

The B device is capable of accepting Device-Master keys via the Requeste-Master-Key and Set-Master-Key services.

BACnet Network Layer Message Initiate Execute
Request-Master-Key x
Set-Master-Key x

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX K – BACnet INTEROPERABILITY BUILDING BLOCKS (BIBBs) (NORMATIVE)

904 ANSI/ASHRAE Standard 135-2012

K.5.35.6 BIBB - Network Security-Key Server (NS-KS)

The Key Server BIBB describes the functionality that all BACnet Key Servers shall support.

BACnet Network Layer Message Initiate Execute
Request-Key-Update x
Update-Key-Set x
Update-Distribution-Key x
Request-Master-Key x
Set-Master-Key x

A device claiming the Key Server BIBB shall support the NS-SD BIBB, NS-DMK-A BIBB and all of the functionality
described in Clause 24.22 with the exception of the optional temporary key server functionality described in Clause 24.22.4.
The device shall support a configurable key distribution period with a range of at least 1 day to 1 year.

A device claiming the Key Server BIBB that provides any other BACnet functionality shall be capable of having the Key
Server functionality disabled while allowing the other BACnet functionality to operate normally.

K.5.35.7 BIBB - Network Security-Temporary Key Server (NS-TKS)

The Temporary Key Server BIBB describes the functionality required to configure keys in installations that do not have a
permanent Key Server installed.

BACnet Network Layer Message Initiate Execute
Request-Key-Update x
Update-Key-Set x
Update-Distribution-Key x
Request-Master-Key x
Set-Master-Key x

A device claiming the Temporary Key Server BIBB shall support the NS-SD BIBB, NS-DMK-A BIBB and the functionality
described in Clause 24.22. Temporary Key Servers need not be able to support periodic updating of Key Sets in secure
devices.

A device claiming the Temporary Key Server BIBB that provides any other BACnet functionality shall be capable of having
the Key Server functionality disabled while allowing the other BACnet functionality to operate normally.

K.5.35.8 BIBB - Network Security-Secure Router (NS-SR)

The Secure Router BIBB describes the basic functionality that all secure BACnet routers shall support.

A device claiming the Secure Router BIBB shall be a BACnet router or BACnet half-router and shall support the NS-SD and
NS-ED BIBBs. Secure BACnet routers shall support individually configurable security levels for each port and shall support
all security levels (plain-non-trusted, plain-trusted, signed-trusted, and encrypted-trusted) for each port. A secure router shall
support the largest NPDU for each port that it supports based on the medium connected to the port.

K.5.35.9 BIBB - Network Security-Security Proxy (NS-SP)

The Secure Proxy BIBB describes the basic functionality that all secure BACnet Security Proxy devices shall support.

A device claiming the Security Proxy BIBB shall support the NS-SR BIBB and shall also support at least 1 port that can be
configured to be plain-trusted for which it acts as a security proxy.

Security proxy devices shall provide the functionality to protect a complete network of non-secured BACnet devices as
described in Clause 24.18 BACnet Security Proxy. The optional ability to protect a subset of the devices is not required by
this BIBB.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 905

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

(This annex is part of this Standard and is required of its use.)

This annex provides descriptions of six "standardized" types of BACnet devices. Any device that implements all the required
BACnet capabilities for a particular device type and interoperability area may claim to be a device of that particular type.
Devices may also provide additional capabilities and shall indicate these capabilities in their PICS.

L.1 Operator Interfaces

L.1.1 BACnet Operator Workstation (B-OWS)
'The B-OWS is an operator interface with limited capabilities relative to a B-AWS. The B-OWS is used for monitoring and
basic control of a system, but differs from a B-AWS in that it does not support configuration activities, nor does it provide
advanced troubleshooting capabilities.

The B-OWS profile is targeted at the daily operator who needs the ability to monitor basic system status and to perform
simple modifications to the operation of the system.

The B-OWS profile enables the specification of the following:

Data Sharing
• Presentation of data (i.e., reports and graphics)
• Ability to modify setpoints and parameters

Alarm and Event Management
• Operator notification and presentation of event information
• Alarm acknowledgment by operators
• Alarm summarization
• Adjustment of analog alarm limits

Scheduling
• Modification of calendars and schedules
• Display of the start and stop times (schedule) of scheduled devices
• Display of calendars

Trending
• Display of trend data

Device and Network Management
• Ability to find other BACnet devices
• Ability to synchronize the time in devices across the BACnet internetwork at the request of the operator

L.1.2 BACnet Advanced Operator Workstation (B-AWS)

The B-AWS is the advanced operator's window into a BACnet system. It is primarily used to monitor the performance of a
system and to modify parameters that affect the operation of a system. It may also be used for configuration activities that are
beyond the scope of this standard.

The B-AWS profile is targeted at a building operator or technician with a higher level of technical ability. It provides support
for limited configuration actions and ongoing commissioning activities.

The B-AWS profile enables the specification of the following:

Data Sharing
• Presentation of data (i.e., reports and graphics)
• Ability to monitor the value of all BACnet object types, including all required and optional properties
• Ability to modify setpoints and parameters

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

906 ANSI/ASHRAE Standard 135-2012

Alarm and Event Management
• Operator notification and presentation of event information
• Alarm acknowledgment by operators
• Alarm summarization
• Adjustment of alarm limits
• Adjustment of alarm routing
• Creation of new Event Enrollment and Notification Class objects
• Presentation of Event Logs

Scheduling
• Modification of calendars and schedules
• Display of the start and stop times (schedule) of scheduled devices
• Display of calendars
• Creation of new calendars and schedules

Trending
• Modification of the parameters of a trend log
• Display of trend data
• Creation of new Trend Log objects

Device and Network Management
• Ability to find other BACnet devices
• Ability to find all objects in BACnet devices
• Ability to silence a device on the network that is transmitting erroneous data
• Ability to synchronize the time in devices across the BACnet internetwork at the request of the operator
• Ability to cause a remote device to reinitialize itself
• Ability to backup and restore the configuration of other devices
• Ability to command half-routers to establish and terminate connections

L.1.3 BACnet Operator Display (B-OD)

The B-OD is a basic operator interface with limited capabilities relative to a B-OWS. It is not intended to perform direct
digital control. The B-OD profile could be used for wall-mounted LCD devices, displays affixed to BACnet devices; hand-
held terminals or other very simple user interfaces.

The B-OD profile enables the specification of the following:

Data Sharing
• Presentation of basic data
• Ability to modify setpoints and parameters

Alarm and Event Management
• Operator notification and presentation of event information

Scheduling
• No minimum requirements

Trending
• No minimum requirements

Device and Network Management
• Ability to find other BACnet devices

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 907

L.2 BACnet Building Controller (B-BC)

A B-BC is a general-purpose, field-programmable device capable of carrying out a variety of building automation and control
tasks. It enables the specification of the following:

Data Sharing
• Ability to provide the values of any of its BACnet objects
• Ability to retrieve the values of BACnet objects from other devices
• Ability to allow modification of some or all of its BACnet objects by another device
• Ability to modify some BACnet objects in other devices

Alarm and Event Management
• Generation of alarm / event notifications and the ability to direct them to recipients
• Maintain a list of unacknowledged alarms / events
• Notifying other recipients that the acknowledgment has been received
• Adjustment of alarm / event parameters

Scheduling
• Ability to schedule output actions, both in the local device and in other devices, both binary and analog, based on date and

time

Trending
• Collection and delivery of (time, value) pairs

Device and Network Management
• Ability to respond to queries about its status
• Ability to respond to requests for information about any of its objects
• Ability to respond to communication control messages
• Ability to synchronize its internal clock upon request
• Ability to perform re-initialization upon request
• Ability to upload its configuration and allow it to be subsequently restored
• Ability to command half-routers to establish and terminate connections

L.3 BACnet Advanced Application Controller (B-AAC)

A B-AAC is a control device with limited resources relative to a B-BC. It may be intended for specific applications and
supports some degree of programmability.

Data Sharing
• Ability to provide values for any of its BACnet objects upon request
• Ability to allow modification of some or all of its BACnet objects by another BACnet device

Alarm and Event Management
• Generation of limited alarm and event notifications and the ability to direct them to recipients
• Tracking acknowledgments of alarms from human operators
• Adjustment of alarm parameters

Scheduling
• Ability to schedule actions in the local device based on date and time

Trending
• No requirement

Device and Network Management
• Ability to respond to queries about its status
• Ability to respond to requests for information about any of its objects
• Ability to respond to communication control messages

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

908 ANSI/ASHRAE Standard 135-2012

• Ability to synchronize its internal clock upon request
• Ability to perform re-initialization upon request

L.4 BACnet Application Specific Controller (B-ASC)

A B-ASC is a controller with limited resources relative to a B-AAC. It is intended for use in a specific application and
supports limited programmability. It enables specification of the following:

Data Sharing
• Ability to provide the values of any of its BACnet objects
• Ability to allow modification of some or all of its BACnet objects by another device

Alarm and Event Management
• No requirement

Scheduling
• No requirement

Trending
• No requirement

Device and Network Management
• Ability to respond to queries about its status
• Ability to respond to requests for information about any of its objects
• Ability to respond to communication control messages

L.5 BACnet Smart Actuator (B-SA)

A B-SA is a simple control device with limited resources; it is intended for specific applications.

Data Sharing
• Ability to provide values for any of its BACnet objects upon request
• Ability to allow modification of some or all of its BACnet objects by another device

Alarm and Event Management
• No requirement

Scheduling
• No requirement

Trending
• No requirement

Device and Network Management
• Ability to respond to queries about its status
• Ability to respond to requests for information about any of its objects

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 909

L.6 BACnet Smart Sensor (B-SS)

A B-SS is a simple sensing device with very limited resources.

Data Sharing
• Ability to provide values for any of its BACnet objects upon request

Alarm and Event Management
• No requirement

Scheduling
• No requirement

Trending
• No requirement

Device and Network Management
• Ability to respond to queries about its status
• Ability to respond to requests for information about any of its objects

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX L - DESCRIPTIONS AND PROFILES OF STANDARDIZED BACnet DEVICES (NORMATIVE)

910 ANSI/ASHRAE Standard 135-2012

L.7 Profiles of the Standard BACnet Devices

The following tables indicate which BIBBs shall be supported by each device type for each interoperability area.

Data Sharing

B-AWS B-OWS B-OD B-BC B-AAC B-ASC
38 B-SA 39 B-SS

DS-RP-A,B DS-RP-A,B DS-RP-A,B DS-RP-A,B DS-RP-B DS-RP-B DS-RP-B DS-RP-B
DS-RPM-A DS-RPM-A DS-RPM-A,B DS-RPM-B
DS-WP-A DS-WP-A DS-WP-A DS-WP-A,B DS-WP-B DS-WP-B DS-WP-B

DS-WPM-A DS-WPM-A DS-WPM-B DS-WPM-B
DS-AV-A DS-V-A DS-V-A
DS-AM-A DS-M-A DS-M-A

Alarm & Event Management

B-AWS B-OWS B-OD B-BC B-AAC B-ASC B-SA B-SS
AE-N-A AE-N-A AE-N-A AE-N-I-B AE-N-I-B

AE-ACK-A AE-ACK-A AE-ACK-B AE-ACK-B
 AE-INFO-B AE-INFO-B
 AE-ESUM-B

AE-AS-A AE-AS-A
AE-AVM-A AE-VM-A
AE-AVN-A AE-VN-A AE-VN-A

AE-ELVM-A2

Scheduling

B-AWS B-OWS B-OD B-BC B-AAC B-ASC B-SA B-SS
SCHED-AVM-A SCHED-VM-A SCHED-E-B SCHED-I-B

Trending

B-AWS B-OWS B-OD B-BC B-AAC B-ASC B-SA B-SS
T-AVM-A T-V-A T-VMT-I-B

 T-ATR-B

Device & Network Management

B-AWS B-OWS B-OD B-BC B-AAC B-ASC B-SA B-SS
DM-DDB-A,B DM-DDB-A,B DM-DDB-A,B DM-DDB-A,B DM-DDB-A,B DM-DDB-B DM-DDB-B1 DM-DDB-B1
DM-ANM-A
DM-ADM-A
DM-DOB-B DM-DOB-B DM-DOB-B DM-DOB-B DM-DOB-B DM-DOB-B DM-DOB-B1 DM-DOB-B1
DM-DCC-A DM-DCC-B DM-DCC-B DM-DCC-B
DM-MTS-A DM-MTS-A DM-TS-B

or
DM-UTC-B

DM-TS-B
or

DM-UTC-B

DM-OCD-A
DM-RD-A DM-RD-B DM-RD-B
DM-BR-A DM-BR-B

1 Not required if the device is a BACnet MS/TP Slave.
2 Not required for devices claiming conformance to a Protocol_Revision less than 7.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX M – GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENT (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 911

ANNEX M - GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENTS (INFORMATIVE)

[This annex is not part of this standard. It is merely informative and does not contain requirements for conformance to the
standard.]

The Alarm and Event Priorities and Network Priorities defined in 13.4.1 broadly categorize the alarm and event notification
priorities. This annex provides examples of various alarms and events that could be assigned into these categories.

Table M-1 extends Table 13-5 by adding semantic meaning to the priority classifications. The subsequent narrative details
the classifications and provides examples of various alarm and event priorities in an interoperable system.

Table M-1. Message Groups Priorities
Message Group Priority Range Network Priority Brief Description

Life Safety

00 - 31 Life Safety Message Notifications related to an immediate threat to
life, safety or health such as fire detection or
armed robbery

Property Safety

32 - 63 Life Safety Message Notifications related as an immediate threat to
property such as forced entry

Supervisory

64 - 95 Critical Equipment Message Notifications related to improper operation,
monitoring failure (particularly of Life Safety or
Property Safety monitoring), or monetary loss

Trouble

96 - 127 Critical Equipment Message Notifications related to communication failure
(particularly of Life Safety or Property Safety
equipment)

Miscellaneous
Higher Priority
Alarm and Events

128 - 191 Urgent Message Higher-level notifications related to occupant
discomfort, normal operation, normal
monitoring, or return to normal

Miscellaneous
Lower Priority
Alarm and Events

192 - 255 Normal Message Lower-level notification related to occupant
discomfort, normal operation, normal
monitoring, or return to normal.

M.1 Life Safety Message Group (0 - 31)

This message group includes any event report related to an immediate threat to life, safety or health. Examples include fire
detection, armed robbery and medical emergency.

M.1.1 Life Safety Message Group Examples

Criteria for membership in a particular life safety message group vary from jurisdiction to jurisdiction. The examples below
are intended to clarify the intent of the grouping and are not meant to be prescriptive.

Event Description/Examples

Reliable Fire Alarms Fire alarm events produced by reliable fire alarm detection devices. Examples might

include smoke detectors and heat detectors.

Life Safety Process Alarms A process or equipment alarm that indicates an immediate threat to life, safety or
health belongs at this priority. Examples might include carbon monoxide or
explosive vapor detection and toxic chemical release.

Fire Alarms Requiring Verification Fire alarm events requiring verification report. Examples might include pull stations
and alarmed fire exit doors. This category is separated from reliable fire alarm
because of the potential for false alarms caused by vandals or environmental
contamination.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX M – GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENT (INFORMATIVE)

912 ANSI/ASHRAE Standard 135-2012

Medical Alarms Immediate threats to life or health due to medical emergencies. Examples might
include heart attack or stroke alarm and falls with injuries.

Hold Up And Duress Alarms Potential threats to life, safety or health due to criminal activity belong at this

priority. Examples might include armed robbery, kidnapping, and bomb threats.

Panic Alarms Any condition requiring immediate outside intervention to prevent or reduce threats
to life, safety, or health.

Life Safety PreAlarm Alerts Conditions that are likely to become full-fledged Life Safety threats momentarily or
tentative detection of Life Safety threats. Examples include fire prealarm or toxic gas
nearing the alarm level.

Life Safety Return To Normal Reporting or recording of returns to normal after a Life Safety Alarm or Alert.
Examples include resetting a fire pull station or discontinuing a medical alarm.

M.2 Property Safety Message Group (32 - 63)

Any event report related as an immediate threat to property belongs in this group. Example events include forced entry,
unlocked doors, and equipment above the allowed operating temperature.

M.2.1 Property Safety Message Group Examples

Event Description/Examples

Burglar Alarms and Forced Door Alarms Improper intrusion into a secure area where there is potential for property

damage or theft. Examples include motion detected in an unoccupied space,
locked door forced open, and broken exterior glass.

Security Alarms Potential intrusion or unauthorized occupant alarms. Examples include interior
door improperly opened or person without proper ID.

Watchman Tour Alarms Alarms related to a predefined watch tour or other manual property supervision
not being properly conducted. Examples include watchman late to station and
watchman station out of order.

Property Process Alarms Any process or equipment alarm that indicates a direct threat to property not
covered elsewhere. Examples include freeze alarm and low duct pressure with
danger of collapse.

Door Held Open Alarms Alarms related to a door or other opened items that were previously opened
properly and should now be closed and locked, but are not. An example would
be a door propped open past normal business hours.

Property Safety Return To Normal Reporting or recording of returns to normal after a Property Safety Alarm.
Examples include locking door held open and resetting a burglar alarm.

M.3 Supervisory Message Group (64 - 95)

Any event report related to improper operation, monitoring failure (particularly of Life Safety or Property Safety monitoring),
or monetary loss belongs in this group. Example events include fire sprinkler valve shut off, communication failure and
excessive energy use.

M.3.1 Supervisory Message Group Examples

Event Description/Examples

Fire Supervision (tamper) Fire alarm and suppression components that are supervised against tampering. Examples

include sprinkler valve shutoff and uninterruptable power supply disable.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX M – GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENT (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 913

Security Supervision (tamper) Security and burglar alarm components that are supervised against tampering. Examples

include box tamper switches and uninterruptable power supply disable.

Energy Alarms Loss of energy management control likely to result in monetary loss. Examples include
failure to control electrical demand within allowed limits and failure of incoming energy
sources such as gas or steam.

Early Warning Alerts Warnings used to eliminate future problems by initiating early corrective action.
Examples include security video recording tape low and standby generator fuel tank not
full.

Energy Warnings Problems with energy management control that could result in monetary loss if left
uncorrected. Examples include failure of loads to shed for automated electrical demand
control, or reductions in available incoming energy sources such as low gas pressure.

Supervisory Return To Normal Reporting or recording of return to normal after a Supervisory off-normal report. An
example is a fire sprinkler valve returning to normal.

M.4 Trouble Message Group (96 - 127)

Any event report related to communication failure (particularly of Life Safety or Property Safety equipment) belongs in this
group.

M.4.1 Trouble Message Group Examples

Event Description/Examples

Fire Trouble (equipment failure) Failure of fire alarm and suppression components. Examples include loss of

communication with fire alarm components or failure of a smoke detector.

Security and Burglar Trouble Failure of security and burglar alarm components. Examples include loss of
(equipment failure) communication with security components or failure of an intrusion detector.

Communication Equipment Failure Trouble Failure of equipment used for communication (but not directly related to

fire or security applications). Examples include Local Area Network
component failure, telephone system component failure, and Building
Automation System communication failure.

Process Trouble Problems with general processes or equipment not operating correctly.
Examples include HVAC interlocks failing to operate, equipment not
responding to commands, and control programs not operating.

Energy Warnings Problems with energy management control that could result in monetary
loss if left uncorrected. Examples include failure of loads to shed for
automated electrical demand control, or reductions in available incoming
energy sources such as low gas pressure.

Communication Equipment Warning Trouble Warnings or troubles with equipment used for communication (but not
directly related to fire or security applications). Examples include degraded
throughput, excessive message retries, or low buffer warnings.

Trouble Return To Normal Reporting or recording of return to normal after a Trouble off-normal
report. An example is communication returning to normal.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX M – GUIDE TO EVENT NOTIFICATION PRIORITY ASSIGNMENT (INFORMATIVE)

914 ANSI/ASHRAE Standard 135-2012

M.5 Miscellaneous Higher Priority Message Group (128 - 191)

Any higher-level event report related to occupant discomfort, normal operation, normal monitoring, or return to normal
belongs in this group. Example events include normal event logging, room temperature above setpoint and test result logging.

M.5.1 Miscellaneous Higher Priority Group Examples

Event Description/Examples

Equipment And Industrial Supervision Used for miscellaneous supervision of equipment or processes that are not likely to

result in risks to people or property, or in loss of money.

Comfort Alarm Reporting of temperature, humidity, noise levels or other conditions that will cause
occupant discomfort with accompanying loss of productivity and discontent can be
reported using this priority. Examples include high or low occupied space
temperature, high or low humidity, and high carbon dioxide levels.

System Status Normal Simple status changes to the normal or passive states that do not imply any problem
or required action. Examples include preprogrammed or timed changes, and
preprogrammed triggers operating properly.

Comfort Normal Reporting of occupied space temperature, humidity, noise levels, or other conditions
returning to their normal values after a comfort alarm or warning.

M.6 Miscellaneous Lower Priority Message Group (192 - 255)

Any lower-level event report related to occupant discomfort, normal operation, normal monitoring, or return to normal
belongs in this group. Example events include normal event logging, room temperature above setpoint, return to normal
events and test result logging.

M.6.1 Miscellaneous Lower Priority Group Examples

Event Description/Examples

System Events Simple system events that only require simple logging or noting for future reference can use

this priority. Examples include access granted or denied and normal watchtour station
reached.

System Status Active Simple status changes to the active state that do not imply any problem or required action can
use this priority. Examples include preprogrammed or timed changes and preprogrammed
triggers operating properly.

Comfort Warning Reporting of temperature, humidity, noise levels, or other conditions that are out of the usual
range and could eventually lead to occupant discomfort with accompanying loss of
productivity and discontent can be reported using this priority. Examples include high or low
occupied space temperature, high or low humidity, and high carbon dioxide levels.

Test and Diagnostic Events Reporting of normal test results or normal diagnostics such as fire alarm walk test events can
use this priority.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 915

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

(This annex is part of this standard and is required for its use.)

This annex defines a data model and Web service interface for integrating facility data from disparate data sources with a
variety of business management applications. The data model and access services are generic and can be used to model and
access data from any source, whether the server owns the data locally or is acting as a gateway to other standard or
proprietary protocols.

Implementations of the services described in this standard shall conform to the Web Services Interoperability Organization
(WS-I) Basic Profile 1.0, which specifies the use of Simple Object Access Protocol (SOAP) 1.1 over Hypertext Transfer
Protocol -- HTTP/1.1 (RFC2616) and encodes the data for transport using Extensible Markup Language (XML) 1.0 (Second
Edition), which uses the datatypes and the lexical and canonical representations defined by the World Wide Web Consortium
XML Schema.

Clients may determine the version of the BACnet/WS standard that a server implements by querying a specific numerical
value as defined in Clause N.9. The numerical value for the version described in this document is 1.

There are three distinct usages of datatype names in this standard. Datatype names beginning with a lowercase letter, such as
"string", and "nonNegativeInteger", refer to datatypes defined by the XML Schema standard. Datatype names beginning with
an uppercase letter, such as "Real" or "Multistate" refer to the value types defined in Clause N.8.9. Datatype names used in a
"typical language binding signature" are arbitrary and are for illustrative purposes only.

N.1 Data Model

The data structures and methods used to store information internally in a BACnet/WS server are a local matter. However, in
order to exchange that information using Web services, this standard establishes a minimal set of requirements for the
structuring and association of data exchanged with a BACnet/WS server.

A node is the fundamental primitive data element in the BACnet/WS data model. Nodes are arranged into a hierarchy in the
data model. The topmost node in the hierarchy is known as the root node. A root node has children, but no parent. Every
other node has a single parent and may optionally have children. The network visible state of a node is exposed as a
collection of attributes.

Any node may have a value. The possible types for a node's value are limited to the primitive datatypes "String",
"OctetString", "Real", "Integer", "Multistate", "Boolean", "Date", "Time", "DateTime", and "Duration". Nodes that have a
value may also have other attributes related to that value, such as minimum, writable, etc.

An attribute is a single aspect or quality of a node, such as its value or its writability. Every node exposes a collection of
attributes. Some attributes are required for all nodes, and some are conditionally required based on the value of other
attributes. Some of the attributes are localizable and may return different values based on an option in a service request.
Attributes are described more fully in Clause N.8.

Attributes may themselves have attributes that define a single aspect or quality of the original attribute. This standard
supports this recursion syntactically, but does not define or require that any of the standardized attributes have attributes
themselves at this time. Servers may provide proprietary attributes for any node or attribute at any level in the hierarchy.

A path is a character string that is used to identify a node or an attribute of a node. The hierarchy of nodes is reflected in a
path as a hierarchy of identifiers arranged as a delimited series, similar to the arrangement of identifiers in a Uniform
Resource Locator (URL) for the World Wide Web. A path like "/East Wing/AHU #5/Discharge Temp" identifies a node, and
a path like "/East Wing/AHU #5/Discharge Temp:InAlarm" identifies the InAlarm attribute of that node. Paths are described
more fully in Clause N.2.

To allow for an arbitrary number of logical arrangements of nodes, a single node may logically appear to be in more than one
place in the hierarchy through the use of a reference node. Reference nodes may be used to build alternate logical

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

916 ANSI/ASHRAE Standard 135-2012

arrangements of nodes since the children of a reference node may differ from that of its referent node. Reference nodes are
described more fully in Clause N.4.

The arrangement of data nodes into hierarchies and the naming of those nodes is generally a local matter. However, this
standard also defines a number of standardized nodes with standardized names and locations that allow clients to obtain basic
information about the server itself. These standardized nodes are described more fully in Clause N.9.

N.2 Paths

A path is a character string that is used to identify a node or a specific attribute. The hierarchy of nodes is reflected in a path
as a hierarchy of node identifiers arranged as a delimited series separated by forward slash ("/") characters. Similarly, the
hierarchy of attributes is reflected in a path as a hierarchy of attribute identifiers arranged as a delimited series separated by
colon (":") characters.

Certain services accept an optional attribute path on the end of a node path. If an attribute path is not specified to those
services, the Value attribute is assumed. The attribute path is separated from the node path with a colon.

The concatenated path form is:

[/node-identifier[/node-identifier]…][:attribute-identifier[:attribute-identifier]…]

where square brackets indicate optionality and "…" indicates repetition of the previous element.

Examples: "/aaa" "/aaa/bbb" "/aaa/bbb/ccc:Description" "/aaa/bbb/ccc:Description:.foo"

All identifiers are case sensitive and shall be of non-zero length. Identifiers are not localizable and are not affected by the
"locale" or "canonical" service options. A path with no node identifier ("") refers to the root of the hierarchy, and ":attribute-
identifier" is the syntax for accessing the attributes of the root node.

Only printable characters may be used to construct path identifiers, and, as an additional restriction, all characters equivalent
to the ANSI X3.4 "control characters" (those less than X'20') are not allowed, and neither are any characters equivalent to the
following ANSI X3.4 characters: / \ : ; | < > * ? " [] { }

Node identifiers beginning with a period (".") character and attribute identifiers not beginning with a period (".") character are
reserved for use by ASHRAE. This restriction separates node and attribute identifiers that are defined by this standard from
those that are defined by the server, perhaps based on user input. Server defined node identifiers shall not start with a period,
so that "/aaa/.first-floor" is invalid but "/aaa/first-floor" is valid. Conversely, all server defined attribute identifiers shall start
with a period, so that "/aaa:MyNewAttribute" is invalid but "/aaa:.MyNewAttribute" is valid. This asymmetry is based on the
expected common usage where most node identifiers will be server defined and most attributes are standard, making the use
of periods the exception rather than the norm.

Space characters are allowed and are significant in identifiers; however, it is recommended that identifiers should not begin
or end with space characters.

N.3 Normalized Points

Most building automation protocols, both standard and proprietary, have the concept of organizing data into "points" that
have "values." In addition to their values, points often contain data such as "point description" or "point is in alarm." But
these data may be named, structured, and/or accessed differently in different protocols.

To ensure that a Web service client can retrieve data without knowing these naming and access-method details, this standard
defines "normalized points." This means that the common attributes of points available in the majority of building data
models are exposed using a common set of names.

In this data model, nodes with a NodeType (see Clause N.8.5) of "Point" are required to have a value and have a common
collection of attributes that may be used to map to these data from other protocols. Some data may not be available in some
protocols, in which case either the normalized attribute is absent, or it has a reasonable default value.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 917

N.4 Reference Nodes

A node that refers to another node somewhere else in the hierarchy is termed a "reference node." The node to which it refers
is its "referent node". A reference node reflects most of the attributes of its "referent node", including its type, so that for most
purposes, the reference node is indistinguishable from its referent node. The use of reference nodes allows a node's data to
appear in more than one place in the hierarchy.

Multiple hierarchies may be supported on a server. Automated discovery of those hierarchies may be done by starting at the
root, or any other starting point, and using the Children attribute to enumerate the available nodes in a structured fashion.
Two or more paths in different hierarchies may express different relationships for a single object. To denote this, and so that
apparent duplicates of an object can be discerned, a node can refer to another node somewhere else in the hierarchy. It is
arbitrary and a local matter which node is the referent node and which is the reference node. Multiple reference nodes can
point to the same referent node, or alternately can daisy chain, one to one another, ultimately leading to a referent they all
have in common which is not a reference node. There shall be at least one referent node which is not a reference node, as it is
forbidden to create a loop of references.

One network-visible distinction between a reference node and its referent node is in the presence of a Reference attribute in
the reference node. This attribute contains a path to the referent node. The Reference attribute is present in a node if and only
if that node is a reference node.

In most cases, the distinction of whether a node is a reference node or not is unnecessary. But in those cases where the client
needs to make a distinction, it can check for the presence of a Reference and act accordingly. A client can also determine, for
any given node, if there are reference nodes that refer to it. This may be done with the Aliases attribute.

Except for the attributes Children, Aliases, Attributes, and Reference, any attribute read from the reference node will have the
same value as when read from the referent node. The reason for this is that, when references are used to create different
relationships between nodes, the nodes are not fundamentally changed by that association. Therefore, only the attributes
involved in expressing the relationships between nodes, namely Children, Aliases, Attributes, and Reference, are expected to
be different depending on which path was used to access the node. The Attributes node only changes as needed to reflect the
changing presence or absence of the Children, Aliases or Reference attributes. Otherwise, the contents of the Attributes
attribute is unchanged.

A reference node may point to another reference node, but it is not allowed to refer to itself, nor is it allowed to create a loop
of references.

For example, the paths "/Geographic/East Wing/Air Handler 5/Discharge Temp" and "/Cooling/Chiller Manager/Air Handler
5/Terminal Box 345-A" express two different relationships for Air Handler 5. If the geographic relationship was modeled
first, then for the cooling distribution relationship, the node identified by "/Cooling/Chiller Manager/Air Handler 5" would be
a reference node with its Reference Attribute containing the path "/Geographic/East Wing/Air Handler 5".

N.5 Localization

BACnet/WS supports the creation of products that are specifically designed for particular regions of the world. The
designation of a natural language, paired with a set of notational customs, such as date and number formats, is referred to as a
"locale". A BACnet/WS server may support multiple locales simultaneously, and several of the attributes of a node are
accessible for different locales (see Clauses N.11.4, N.11.5, and N.11.6). For example, in a server that supports multiple
locales, the DisplayName attribute can be used to get a user interface presentation name for the node in more than one
language. Specifying a locale in a service also allows the client to request dates, times and numbers in a format appropriate to
that locale.

N.6 Security

BACnet/WS does not define its own authentication mechanism; rather, this standard specifies the use of lower level Web
service authentication methods defined by other standards. Some servers might not support or require any authentication at
all. Others might provide authentication by means of a simple username and password using HTTP Basic authentication

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

918 ANSI/ASHRAE Standard 135-2012

(defined by section 2 of HTTP Authentication: Basic and Digest Access Authentication) secured through an SSL (Secure
Sockets Layer, defined by SSL Protocol Version 3.0) or TLS (Transport Layer Security, defined by TLS Protocol Version
1.0) connection. Some servers may be secured through public key certificates or more advanced options that are currently in
development or yet to be defined.

For specification simplicity and increased interoperability, servers shall claim support for one or both of the following
authentication and authorization mechanisms: "None"; "HTTP Basic through SSL or TLS".

In addition to authentication, some forms of authorization can also occur before the Web services defined by this standard are
invoked. For example, some Web services host environments (e.g., Application Servers) can be configured to limit users'
access to certain services based on HTTP path or SOAP method.

The content and format of errors returned from these lower level authentication and authorization methods varies and is not
specified by this standard since the services defined by this standard were never invoked.

When a Web service request successfully passes through the lower levels, and the services defined by this standard are
invoked, additional authentication and authorization operations may be performed by those services and the content and
format of errors resulting from such operations are fully defined by this standard. The configuration of authentication and
authorization policies, at any level, is a local matter.

N.7 Sessions

The Web services defined by this standard are stateless and establish no sessions between clients and servers. There is no
requirement for any information to be retained on the server from one service invocation to the next. Service options such as
"locale" that could be held in a session on the server are instead maintained by the client in a service options string that is
provided to the server for each service invocation.

N.8 Attributes

A node is exposed to Web services as a collection of named attributes. There are two forms of attributes: those that are a
primitive datatype, and those that are an array of primitive datatypes. Only the Value attribute is writable with the services
defined by this standard.

While some attributes are specified as optional, the presence of those attributes on a given node is not expected to change
dynamically. Clients can assume that the collection of available attributes will remain relatively stable in operation and
normally will be changed only by a reconfiguration or reprogramming of the server and not in the normal course of
operation. For example, even though the default value for the InAlarm attribute is "false", the InAlarm attribute is not
expected to be absent when the node is not in alarm and present only when the node is in alarm. Generally, if an attribute can
have a value that is different from its default during the normal course of operation, then the attribute should be present at all
times.

The server may provide proprietary attributes for any node or attribute anywhere in the hierarchy of the data model.
Proprietary attributes shall begin with a period ('.') character to distinguish them from standard attributes. The datatype and
set of possible values for these attributes are not defined by this standard.

N.8.1 Primitive Attributes

The datatype of a primitive attribute in this standard is defined using its XML Schema datatype name, such as "boolean",
"nonNegativeInteger", and "double". See Clause N.10 for details of how these are encoded for use in Web services.

The datatype of some attributes, such as Value and Minimum, is dependent on the value of the ValueType attribute. This is
more fully described in Clause N.8.9.

N.8.2 Enumerated Attributes

Some primitive attributes are enumerations. Enumerated attributes are of datatype XML Schema "string", but the set of
allowed values is defined by this standard. Additionally, some enumerated attributes are localizable (see Clause N.5). In that
case, the non-localized set of values is defined by this standard, but the localized strings are a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 919

N.8.3 Array Attributes

Array attributes are attributes that contain an array of primitive values. Each element in the array has the same primitive
datatype. The contents of an array attribute may be accessed either as an array of separate elements or as a single
concatenation of all the elements.

The datatype of an array element in this standard is defined using its XML Schema datatype name, such as "boolean",
"nonNegativeInteger", and "double". See Clause N.10 for details of how these are encoded for use in Web services.

When array attributes are accessed with a service that returns an array, such as getArray, the array elements are returned as
individual strings. However, when accessed with a service that returns a single string, such as getValue, the array values are
concatenated into a single string by separating the array elements with a ';' (semicolon) character, for example,
"high;medium;low". The values of the individual array elements are not permitted to contain semicolons.

The server shall retain a constant order for the elements of an array attribute. Clients of services such as getArrayRange can
therefore depend on this behavior to read the array an element at a time.

N.8.4 Attribute Summary

Some attributes are always required, and some are conditionally required, based on criteria outlined in the following table.
The datatype referred to in the table is an XML Schema datatype name. See Clause N.10 for more information on encoding
for Web services. Attributes that are not listed as Localizable are never affected by the "locale" service option (see Clause
N.11.4) and are always encoded in their non-localizedcanonical form (see Clause N.11.6).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

920 ANSI/ASHRAE Standard 135-2012

Table N-1. Attribute Summary
Attribute Identifier Datatype Array Enum-

erated
Local-
izable

Presence

"NodeType" string No Yes No Required
"NodeSubtype" string No No Yes Optional
"DisplayName" string No No Yes Optional
"Description" string No No Yes Optional
"ValueType" string No Yes No Required
"Value" (varies - see N.8.9) No No Yes Required if ValueType is not "None"
"Units" string No Yes Yes Required if ValueType is "Real" or

"Integer"
"Writable" boolean No No No Required if ValueType is not "None"
"InAlarm" boolean No No No Optional
"Minimum" (varies - see N.8.9) No No Yes Optional
"Maximum" (varies - see N.8.9) No No Yes Optional
"Resolution" (varies - see N.8.9) No No Yes Optional
"MinimumLength" nonNegativeInteger No No No Optional and only present if ValueType is

"String"
"MaximumLength" nonNegativeInteger No No No Optional and only present if ValueType is

"String"
"IsMultiLine" boolean No No No Optional
"Attributes" string Yes No No Required
"WritableValues" string Yes No Yes Required if ValueType is "Multistate" or

"Boolean" and Writable is true
"PossibleValues" string Yes No Yes Required if ValueType is "Multistate" or

"Boolean"
"Overridden" boolean No No No Optional
"ValueAge" double (seconds) No No Yes Optional
"Aliases" string Yes No No Required if there are reference nodes

referring to this node (see Clause N.4)
"Children" string Yes No No Optional
"Reference" string No No No Present if and only if the node is a

reference node (see Clause N.4)
"HasHistory" boolean No No No Required if ValueType is not "None"
"SinglyWritableLocales" string Yes No No Present if and only if ValueType is

"String" and Writable is true
"HasDynamicChildren" boolean No No No Optional

N.8.5 NodeType

This required attribute indicates the general classification of a node. It is intended as a hint to a client application about the
contents of a node, and is not intended to convey an exact definition. The list of values for this attribute is not extensible.
Further refinement of classification is provided by the NodeSubtype attribute. The allowable values for this attribute are:

{"Unknown", "System", "Network", "Device", "Functional", "Organizational", "Area", "Equipment",
"Point", "Collection", "Property", "Other"}

The "Unknown" type may be used for data that originated in another source and for which no type information is known. The
"System" type may be used to designate an entire mechanical system. The "Network" type may be used to represent a
communications network, and the "Device" type could be used to represent a physical device on that network. The
"Functional" type can be used to represent a single system component such as a control module or a logical component such
as a function block. The "Organizational" type is intended to represent business concepts such as departments or people. The
"Area" type represents a geographical concept such as a campus, building, floor, etc. A "Point" represents a single point of
data, either a physical input or output of a control or monitoring device, or a software calculation or configuration setting. An
"Equipment" type may be used to represent a single piece of equipment that may be a collection of "Points". A "Collection"
is just a generic container used to group things together such as a collection of references to all space temperatures in a
building. The "Property" type is intended to model data that is logically part of the parent node. The "Other" type is used for
everything that does not fit into one of these broad categories.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 921

N.8.6 NodeSubtype

This optional attribute is a string of printable characters whose content is not restricted. It provides a more specific
classification of the node. For example, when the NodeType attribute has a value of "Area", the NodeSubtype attribute could
have a value such as "Campus", "Building", or "Floor". This attribute may be localized, possibly returning different locale-
appropriate values when a "locale" service option is specified.

N.8.7 DisplayName

This optional attribute is a string of printable characters whose content is not restricted. It is used to provide a short (10-30
character) descriptive name or title for display to humans in user interfaces. It should be localized if localization is supported,
returning possibly different locale-appropriate values when a "locale" service option is specified. A client may retrieve this
attribute in any locale the server supports for use in creating multilingual displays. The values of the DisplayName attributes
do not need to be unique among sibling nodes.

A DisplayName attribute may be different from the path identifier used to access the node. For example, for the node
identified by the path "/Building 12/Room 225", the DisplayName could be "Bob's Office" in one locale and "Bureau de
Bob" in another locale, or it could just be "Room 225" in all locales.

N.8.8 Description

This optional attribute is a string of printable characters whose content is not restricted. This attribute may be localized,
possibly returning different locale-appropriate values when a "locale" service option is specified.

N.8.9 ValueType

This required attribute indicates the datatype of the Value attribute and attributes restricting the Value attribute. If the node
has no value, then this attribute shall have the value "None". The list of values for this attribute is not extensible. The
allowable values for this attribute are:

{"None", "String", "OctetString", "Real", "Integer", "Multistate", "Boolean", "Date", "Time", "DateTime",
"Duration"}

The "None" type is used when the node does not have a value. The "String" type is used for nodes that have character string
values that are intended to be human readable. An "OctetString" is used to contain arbitrary binary data that is typically not
human readable. A "Real" is a floating point value, for example 75.6. An "Integer" is for values that that are expressed in
whole numbers, for example, 1234. A "Multistate" is a value that is a choice from a set of named states, for example, {"high",
"medium", "low"}. A "Boolean" is a choice between exactly two named states, such as "on" and "off", one of which is
considered true and the other false. A "Date" is used to represent values that are calendar dates. A "Time" is used to represent
a time of day. A "DateTime" is used to represent an exact moment in time, specifying both a date and a time. A "Duration"
represents a time span, such as "5 seconds."

The representation of all value types other than "None" and "OctetString" may be affected by the "locale" service option if
the server supports localization for a particular locale or locales. See Clauses N.5 and N.11.4.

The effect of this attribute on the datatype of Value and related attributes is summarized in the following table. The datatypes
referred to in the table are XML Schema datatype names. See Clause N.10 for more information on encoding of Web
services. Attributes whose datatype is listed as n/a in the table shall not be present in the node.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

922 ANSI/ASHRAE Standard 135-2012

Table N-2. Effect of ValueType Attribute

N.8.10 Value

This optional attribute represents the value of the node. The datatype of this attribute is indicated by the ValueType attribute.
The Value attribute is present if and only if the value of the ValueType attribute is not "None". When the ValueType attribute
of the node is "String" or "Multistate", then the values of this attribute may be localized based on the "locale" service option.
See Clause N.11.4.

N.8.11 Units

This optional attribute defines the engineering units for the Value attribute of the node. If the ValueType attribute is "Real" or
"Integer", then this attribute is required to be present, but may have the value of "no-units". This attribute may optionally be
present for other values of the ValueType attribute.

This attribute's value is available in two forms. If the "canonical" service option is false, then the value of this attribute is a
string whose contents are not restricted and may be appropriate to the requested locale. If the "canonical" service option is
true, then the value of this attribute is restricted to be exactly equal to one of the enumeration identifiers, such as "degrees-
Celsius", "inches-of-water", etc., which are defined by the ASN.1 production for BACnetEngineeringUnits in Clause 21.

This attribute is extensible to support units other than those defined by this standard. In the case where the units of the node's
value does not match one of the units defined in this standard, the value returned for this attribute when the "canonical"
service option is true shall be "other", and the value returned when the "canonical" service option is false shall be a string
whose contents are not restricted and may be appropriate to the requested locale.

N.8.12 Writable

This optional attribute indicates whether the Value attribute is writable through Web services. This attribute shall be present
if and only if the Value attribute is present.

N.8.13 InAlarm

This optional attribute indicates whether this node is "in alarm" or not. The meaning of "in alarm" is a local matter. If the
concept of "in alarm" is not appropriate to this node, then this attribute shall not be present.

N.8.14 Minimum

This optional attribute indicates the minimum value of the Value attribute. The datatype of this attribute is defined in Clause
N.8.9.

ValueType
Attribute Value

Value Attribute
Datatype

Minimum
Attribute
Datatype

Maximum
Attribute
Datatype

Resolution Attribute
Datatype

"None" n/a n/a n/a n/a
"String" string n/a n/a n/a
"OctetString" base64Binary n/a n/a n/a
"Real" double double double double
"Integer" integer integer integer integer
"Multistate" string n/a n/a n/a
"Boolean" boolean n/a n/a n/a
"Date" date date date integer (days)
"Time" time time time double (seconds)
"DateTime" dateTime dateTime dateTime double (seconds)
"Duration" double (seconds) double (seconds) double (seconds) double (seconds)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 923

N.8.15 Maximum

This optional attribute indicates the maximum value of the Value attribute. The datatype of this attribute is defined in Clause
N.8.9.

N.8.16 Resolution

This optional attribute indicates the smallest change that can be represented in the value of the Value attribute. The datatype
of this attribute is defined in Clause N.8.9.

N.8.17 MinimumLength

This optional attribute indicates the minimum length, in characters, for the value of the Value attribute when the ValueType
attribute is equal to "String".

N.8.18 MaximumLength

This optional attribute indicates the maximum length, in characters, for the value of the Value attribute when the ValueType
attribute is equal to "String".

N.8.19 IsMultiLine

This optional attribute indicates that the value of the Value attribute, when the ValueType attribute is equal to "String", is
intended to be capable of containing multiple lines of text. The value might not actually contain multiple lines at any given
time, and it is not intended that IsMultiLine change dynamically based on the contents of the value. This attribute is primarily
used as a hint to a user interface to display or edit the text in a manner capable of supporting multiple lines.

If the value contains multiple lines, the lines are separated by the character equivalent to the ANSI X3.4 control character
known as "new line" or "line feed" (X'0A'). In all cases, the Value attribute is returned as a single string since the Value
attribute is not an array attribute.

If IsMultiLine is missing or false, the presence of, acceptance of, or rejection of "new line" characters is a local matter.

N.8.20 Attributes

This required attribute is an array containing all of the names of the attributes present in this node.

N.8.21 WritableValues

This optional attribute is an array containing all of the string values that may be written to the Value attribute of a node
whose ValueType is equal to "Multistate" or "Boolean".

N.8.22 PossibleValues

This optional attribute is an array containing all of the possible string values for the Value attribute of a node whose
ValueType is equal to "Multistate" or "Boolean". For nodes that have a ValueType attribute equal to "Boolean", the first
entry in the array corresponds to "true", and the second entry corresponds to "false".

N.8.23 Overridden

This optional attribute indicates that the value of the Value attribute has been overridden by some means. For physical inputs
or outputs, this shall mean that the Value attribute is no longer tracking changes to the physical input or that the physical
output is no longer reflecting changes made to the Value attribute.

N.8.24 ValueAge

This optional attribute indicates the time, in seconds, since the time when the value of the Value attribute was last
successfully updated in the server. Caching is permitted in gateways; this attribute shall indicate the age of the cached value.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

924 ANSI/ASHRAE Standard 135-2012

N.8.25 Aliases

This optional attribute contains the collection of paths that identify reference nodes that refer to this node.

N.8.26 Children

This optional attribute is an array that contains the collection of identifiers for the children of this node on a given path. Each
of these identifiers can be used to construct a new path to a child node according to the rules set forth in Clause N.2. Note
that the child identifiers specified by this attribute do not start with a '/' character, so when constructing a new path to a child
node, the '/' separator will need to be used between the original path and the child identifier.

Absence of this attribute shall indicate that the node has no children. Therefore, if the node has children, this attribute is
required to be present. If the node has no children, this attribute shall either be absent or present and empty.

N.8.27 Reference

This optional attribute is present if and only if the node is a reference node. The value of this attribute is a path to a referent
node. See Clause N.4.

N.8.28 HasHistory

This optional attribute indicates that there are historical records for this node. Clients may use this to determine if the
getHistoryPeriodic is applicable to this node.

N.8.29 SinglyWritableLocales

This optional attribute is an array that contains the collection of locales that can be used with the writeSingleLocale service
option to set individual localized values for a String node. This attribute is present if and only if the ValueType attribute
equals "String" and the Writable attribute is true. The collection of singly writable locales shall be a subset of the collection
returned by the getSupportedLocales service.

If the server supports writing values for multiple locales on a given String node, then the SinglyWritableLocales attribute
shall contain all of the locales which may be individually written and retained.

If a String node does not support the writing of individual values for different locales, then it is a local matter as to whether
the server shall return one of its supported locales or an empty array for this attribute.

If the server declares multiple locales in SinglyWritableLocales and those locales are individually written to with separate
values using the writeSingleLocale service option, then the server shall retain those values separately and return the
appropriate value, based on the locale service option, when the node is subsequently read.

It is a local matter as to how these values are stored and whether individual storage is preallocated for each singly writable
locale or if space is allocated only when separate values are needed. Note that when writing, if the writeSingleLocale service
option is false, the logical behavior is that all writable locales are written simultaneously and a server with dynamic allocation
may take that opportunity to revert to having only one copy of the string value since all the writable locales will contain the
same value.

N.8.30 HasDynamicChildren

This optional attribute indicates that the node has a dynamic collection of children that are expected to change over time. If
this attribute is missing or false, then clients can assume that the children nodes are relatively stable and are changed by a
reconfiguration or reprogramming of the server and not in the normal course of operation. If this attribute is true, then clients
should assume that the children nodes may change at any time and should reread the Children attribute as needed.

N.9 Standard Nodes

While the arrangement of data nodes into hierarchies and the naming of those nodes is generally a local matter, this standard
also defines a number of standardized nodes with standardized names and locations that allow clients to obtain basic

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 925

information about the server. These standard nodes all have names beginning with a period (".") character to distinguish them
from other nodes in the server whose presence, structure and behavior is not defined by this standard.

The locations, names, types, and presence requirements of the standard nodes are summarized in the following table.

Table N-3. Standard Nodes
Node Path ValueType NodeType Presence Meaning of the Value

/.sysinfo "None" "Other" Required The /.sysinfo node is just a container for
the following nodes; it has no value

/.sysinfo/.vendor-name "String" "Other" Required The name of the vendor of this server
(unrestricted contents)

/.sysinfo/.model-name "String" "Other" Required The model name and/or number of this
server (unrestricted contents)

/.sysinfo/.software-version "String" "Other" Required The version/revision of the software
running in this server (unrestricted
contents)

/.sysinfo/.standard-version "Integer" "Other" Required The version of the standard that the
server is implementing, as defined in the
prolog to this Annex.

N.10 Encodings

This clause defines how data is encoded for use in the Web services defined by this standard.

N.10.1 Canonical Form

This standard defines a canonical form for attribute values to allow for unambiguous machine processing. The localized
forms are more suited for presentation to humans, and the canonical forms are more suited for parsing and processing by
machines.

The datatypes defined for the various attributes in Clause N.8.4 are XML Schema datatypes. The XML Schema standard
("XML Schema Part 2: Datatypes") defines a "lexical representation" and a "canonical representation" for each of these
datatypes. The "canonical form" defined by this standard is equal to one of the XML Schema representations, selected
according to the following table. All attributes not indicated as "Localizable" in Clause N.8.4 shall always be encoded in their
canonical form.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

926 ANSI/ASHRAE Standard 135-2012

Table N-4. Examples of Localized and Canonical Forms

XML Schema
Datatype

XML Schema encoding
rule used for the

BACnet/WS Canonical
Form

Example value in BACnet/WS
Localized Form

Corresponding value in
BACnet/WS Canonical Form

double XML Schema "Lexical
Representation"

"7,345.23" or "7 345,23"

"7345.23" or "7.34523E3"

boolean XML Schema "Canonical
Representation"

"On" or "Run" "true"

integer XML Schema "Canonical
Representation"

"7,345" or "7 345" "7345"

date XML Schema "Lexical
Representation"

"13-Aug-2005" or "8-13-2005" or
"13/08/05"

"2005-08-13"

time XML Schema "Canonical
Representation"

"2:03:04 PM EST" or "14:03:04 EST" "19:03:04Z"

dateTime XML Schema "Canonical
Representation"

"2:03:04 PM 13-Aug-2005 EST" "2005-08-13T19:03:04Z"

base64Binary XML Schema "Lexical
Representation"

(no Localized Form) "ZWcgaW/hZ+UuLi4="

N.10.2 Service Parameters

Web service toolkits (software libraries) typically provide "language bindings" that provide a mapping between the native
formats of data values in memory and the encoded format used on the wire in a Web service call.

Many of the services defined by this standard have service parameters (function arguments and return values) that are
polymorphic. For example, the same service can be used to return a ValueAge attribute, which is of datatype double, and a
Writable attribute, which is of datatype boolean. To accomplish this polymorphism without using complex datatypes on the
wire, the Web service method signatures of these services defines these parameters to be the XML Schema datatype "string".

Because these polymorphic service parameters are all declared to be of XML Schema datatype "string", the language
bindings will bind all of these parameters to the native representation of a character string.

The information in this standard, combined with the information provided by the ValueType attribute, together give the client
all the information it needs to unambiguously map between a polymorphic service parameter and a native format.

The mapping between the canonical form of an attribute value and a polymorphic service parameter string follows the rules
defined by the XML Schema standard for encoding datatypes for use in XML instance documents. The result of following
these rules is simply that the same sequence of characters is sent on the wire for a polymorphic parameter as would be sent if
that parameter had been declared to be of the specific datatype being encoded.

For example: The "Start" service parameter of the getHistoryPeriodic service is declared with a specific XML Schema
datatype of "dateTime". The characters sent on the wire for this parameter would be in the form "2004-06-27T19:44Z". In
contrast, the return parameter for the getValue service is declared to be an XML Schema datatype of "string". However, if the
getValue service is used to read the Value attribute for a node whose ValueType attribute is "DateTime", the characters sent
on the wire for the return parameter would also be in the form "2004-06-27T19:44Z".

The mechanism for, and the configuration of, the mapping between the non-canonical (localized) form of an attribute value
and a polymorphic service parameter string, such as localized date formats, is a local matter.

N.11 Service Options

Some services accept service options that modify their behavior or their return values.

Individual options are specified in string form as simply "option-name" or "option-name=option-value". For example,
"readback", or "locale=en-UK". When multiple options are combined into a single string, they are separated by a semicolon,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 927

such as "readback;locale=en-UK". White space is significant and shall not be stripped during parsing. The option-value is not
constrained with the exception that it shall not contain a semicolon.

The '=' character and option-value may be omitted for boolean options. If a boolean option name is present without an option-
value, then it assumes the value "true". Options with a default value of "true" will have to be explicitly set to "false". If an
option-name is specified more than once in the string, the last one takes precedence.

The strings used for option-name and option-value are not subject to the effects of the "locale" and "canonical" options. The
option names are from the fixed set defined in this standard. The "Datatype" referred to in the following table is the XML
Schema datatype name. This datatype defines the canonical format for the option value when represented as a string.

Table N-5. Service Options
Option Name Datatype Default if Not Specified

"readback" boolean False
"errorString" string (see Clause N.13)
"errorPrefix" string empty string
"locale" string varies based on server configuration
"writeSingleLocale" boolean false
"canonical" boolean False
"precision" nonNegativeInteger 6
"noEmptyArrays" boolean False

N.11.1 readback

This option causes services that set a value or values to attempt to read back the value or values just written and return the
results.

N.11.2 errorString

This option specifies the string to be returned for errors rather than the default format defined by Clause N.13.

Changing the error string may simplify client calculations or presentations. For example, if the client requires "-1" to be
returned for errors to aid in some numerical calculations, it would specify a service option of "errorString=-1". If the client is
filling a report and wants blank strings returned for errors, it would specify a service option of "errorString=".

N.11.3 errorPrefix

This option specifies the string to be returned in front of the default format defined by Clause N.13. Changing the error prefix
may be desired if the default format could possibly conflict with a real value. Whereas the errorString service option is
intended to define the entire contents of the error string, the errorPrefix merely prefixes the default format to allow clients to
get the original error information in addition to a customized prefix. If both errorString and errorPrefix are specified, the
resultant error string is the errorPrefix followed by the errorString.

N.11.4 locale

This option specifies the locale that shall be used for formatting of date/time values, units, numbers and string values by the
server. The format of the locale option is: "locale=language-tag", where language-tag is in the form described by RFC 3066.
For example, the locale string for US English is "en-US", and Canadian French is "fr-CA", and the corresponding service
options would be formatted as "locale=en-US" and "locale=fr-CA".

The value of the locale service option must match exactly one of the strings returned from the getSupportedLocales service.
There is no language fallback or hierarchical matching mechanism.

In services which read data from a node such as the getValue, getValues, or getArray services, the server is required to accept
all values for the "locale" option which are returned by the getSupportedLocales service. When writing data to a node with
services such as the setValue or setValues services, the server shall accept all values for the "locale" option which are
returned in the WritableLocales attribute of the node. The error WS_ERR_LOCALE_NOT_SUPPORTED shall be returned
if a locale is specified that the server does not support.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

928 ANSI/ASHRAE Standard 135-2012

The values available in the WritableLocales attribute of a node shall be a subset of the values returned by the
getSupportedLocales service.

A server shall be configurable to associate a date, time and numeric formats with each locale. When a localized value is
requested, the server shall return the string formatted according to the format for the specified locale. For example, a server
should be able to support localized time and date formats such as "2004/06/15 8:00am" or "15-Jun-2004, 08:00:00" and
numeric formats such as "1,234.56" or "1 234,56". This will help to ensure that all servers used within an installation will be
capable of presenting data in a consistent manner.

In some cases, the "locale" option may be overridden by the "canonical" option. This is described in Clause N.11.6.

N.11.5 writeSingleLocale

This option applies only to setting the values for nodes with a ValueType of "String". The default behavior of a server is to
set the value for the Value attribute in all locales, regardless of the "locale" service option. This is safer than setting only one
locale because the client might not be aware of which locales are in use, and setting only one might lead to inconsistent
values across locales. For clients that are aware of the different locales and want to set different values for the different
locales, this service option allows the client to override this default behavior and write only one locale at a time.

If this option is true, then the locale service option, if present, shall be equal to one of the locales listed in the
SinglyWritableLocales attribute for the node being written, otherwise, an invalid locale error is returned.

If this option is true and no "locale" option is specified, then string values are set only in the default locale. If the default
locale is not one of those listed in the SinglyWritableLocales for the node being written, then an invalid locale error is
returned.

N.11.6 canonical

This option is intended to override certain localized string formats. The "canonical form" is a locale-independent standardized
form, as defined in Clause N.10.1, that can be parsed in a consistent manner when node values are intended to be processed
by machine rather than to be presented to humans.

The interaction between the "locale" and "canonical" options is summarized in the following table. Attributes not listed in
this table are not affected.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 929

Table N-6. Locale and Canonical Options
Attribute Name Effect of "locale" Effect of "canonical"

Value, when ValueType is
"String"

The server may return and accept different values for
different locales. For reading, server shall use the
"locale" option to select the returned value. For
writing, the "locale" option is ignored (all locales are
written) unless the "writeSingleLocale" option is true.

Ignored.

Value, when ValueType is
"Multistate"

The server may return and accept different values for
different locales. For any given locale, these values
shall be one of the values returned for the
"PossibleValues" attribute for that locale.

Ignored.

Value, when ValueType is
"Real", "Integer",
"DateTime", "Date",
"Time", "Duration", or
"Boolean"

Value is formatted according to a server configuration
to be appropriate to the requested locale.

Overrides "locale". The
format is defined in N.10.1

Value, when ValueType is
"OctetString"

Ignored. Ignored.

DisplayName May return different values for different locales. Ignored.
PossibleValues May return different values for different locales. Ignored.
WritableValues May return different values for different locales. Ignored.
Units Value is formatted according to a server configuration

to be appropriate to the requested locale.
Overrides "locale". The
format is defined in N.8.11.

Description May return different values for different locales. Ignored.
ValueAge, Minimum,
Maximum, and Resolution

Value is formatted according to a server configuration
to be appropriate to the requested locale.

Overrides "locale". The
format is defined in N.10.1.

N.11.7 precision

This option specifies the number of digits after the decimal point for the floating point value of any requested attribute. The
value shall be rounded, not truncated. For example, "precision=2" makes "123.45673" into "123.46". This applies to
fractional seconds in time-related values as well.

N.11.8 noEmptyArrays

This option specifies that the server should not return empty arrays, and should return an error instead. This is primarily for
Web services language bindings that do not correctly process arrays with no elements in them.

N.12 Services

This clause defines the Web services that provide the means to access and manipulate the data in the server.

N.12.1 getValue Service

This required service is used to retrieve a single value for a single attribute of a single node. This service always returns its
results as a single string.

This service can be used to retrieve primitive attributes, such as Value, and array attributes, such as PossibleValues. The
format of this string result is dictated by the attribute's datatype and the service options.

If this service is used for an array attribute, then the array elements shall be concatenated into a single semicolon-delimited
string that can be easily split at the client since the element strings are not allowed to contain semicolon characters. If the
client would rather retrieve an array of individual strings, it can use the getArray or getArrayRange service instead.

A typical programming language signature for this service is:

CString getValue(CString options, CString path)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

930 ANSI/ASHRAE Standard 135-2012

N.12.1.1 Structure

The structure of the getValue service primitives is shown in the following table. The terminology and symbology used in this
table are explained in Clause 5.6.

Table N-7. Structure of getValue Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path

Result

M
M
M

M(=)
M(=)
M(=)

M

M(=)

N.12.1.2 Argument

This parameter shall convey the parameters for the getValue confirmed service request.

N.12.1.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.1.2.2 Path

This parameter, of type XML Schema string, shall contain a path as defined in Clause N.2.

N.12.1.3 Result

This parameter, of type XML Schema string, shall contain the results of the service call. This parameter is polymorphically
encoded, as defined in Clause N.10.2. The result shall be either a valid value or an error string. The format of error strings is
defined by Clause N.13.

N.12.1.4 Service Procedure

The service will attempt to find the node and attribute specified by the Path parameter, and if successful, shall format its
value into a string according to the rules specified in Clauses N.8.10, N.10.1 and N.11. If the Path parameter refers to an
array attribute, then the formatted string representations of the individual elements are concatenated into a single string using
the semicolon (';') character as the delimiter between elements. If an attribute identifier is not specified by the Path parameter,
the Value attribute is assumed.

The getValue service, and all the various "get" methods, are allowed to return a result without consulting any other network
node, either because the data is cached or because the origin of the data is the server itself. If the server, for any internal
reason, is unable to return a value according to its normal means of execution, then the result returned shall be
WS_ERR_OTHER. If for an external reason, the server is unable to contact an external source of the data according to its
normal means of execution, then the result returned shall be WS_ERR_COMMUNICATION_FAILED. This will be typical
when, for example, the server attempts to establish communication with the device serving the data, and that device fails to
respond.

The error conditions and responses are summarized in the following table:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 931

Table N-8. Error Conditions for the getValue Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is not
currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out of
range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal character. WS_ERR_PATH_SYNTAX
The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present in
the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other reason. WS_ERR_OTHER

N.12.2 get Values Service

This optional service is similar to the getValue service with the exception that it takes multiple paths and returns multiple
results, one for each path. This service always returns its results as a non-empty array of strings.

A typical programming language signature for this service is:

CString[] getValues(CString options, CString paths[])

N.12.2.1 Structure

The structure of the getValues service primitives is shown in the following table. The terminology and symbology used in
this table are explained in Clause 5.6.

Table N-9. Structure of getValues Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Paths

Result

M
M
M

M(=)
M(=)
M(=)

M

M(=)

N.12.2.2 Argument

This parameter shall convey the parameters for the getValues confirmed service request.

N.12.2.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.2.2.2 Paths

This parameter, of type array of XML Schema string, shall contain an array of path strings as defined in Clause N.2.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

932 ANSI/ASHRAE Standard 135-2012

N.12.2.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. Each entry in the array is
either a valid value or an error string. Each entry is polymorphically encoded, as defined in Clause N.10.2 The format of error
strings is defined by Clause N.13.

N.12.2.4 Service Procedure

This service will process the entries in the Paths parameter starting with the first entry in the array. Each entry is evaluated
separately in the same manner as the getValue service and the results of that evaluation are entered into the corresponding
entry in the return array. If there is an error condition that prevents the processing of the Paths parameter, if the Paths
parameter is of zero length, or if the server can determine that the same error would be returned for each entry in the return
array, then the result of the service shall be an array of one element containing the error string.

The error conditions and responses are summarized in the following table:

Table N-10. Error Conditions for the getValues Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is not
currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out of
range.

WS_ERR_OPTION_OUT_OF_RANGE

The Paths parameter array has no members. WS_ERR_LIST_OF_PATHS_IS_EMPTY
The path could not be parsed or contains an illegal character. WS_ERR_PATH_SYNTAX
The node identified by the path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present in
the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other reason. WS_ERR_OTHER

N.12.3 getRelativeValues Service

This optional service is similar to the getValues service with the exception that it takes a single base path that specifies a node
or attribute, and a list of additional sub paths that are appended to the base path to form a complete path. A typical use of this
service would be for the base path to represent a path to a node and the sub paths to be a list of attributes, but the service is
not limited to that usage. This service always returns its results as a non-empty array of strings.

A typical programming language signature for this service is:

CString[] getRelativeValues(CString options, CString basePath, CString paths[])

N.12.3.1 Structure

The structure of the getRelativeValues service primitives is shown in the following table. The terminology and symbology
used in this table are explained in Clause 5.6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 933

Table N-11. Structure of getRelativeValues Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Base Path
 Paths

Result

M
M
M
M

M(=)
M(=)
M(=)
M(=)

M

M(=)

N.12.3.2 Argument

This parameter shall convey the parameters for the getRelativeValuesconfirmed service request.

N.12.3.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.3.2.2 Base Path

This parameter, of type XML Schema string, shall contain either an empty string or a complete and valid path string as
defined in Clause N.2 that identifies a node or attribute. This path shall end with a node identifier or an attribute identifier,
not a path delimiter ('/' or ':'). If this parameter is an empty string, then each of the paths in the Paths parameter becomes the
full path for evaluation.

N.12.3.2.3 Paths

This parameter, of type array of XML Schema string, shall contain an array of path fragments that when appended to the
Base Path parameter form a complete and valid path as defined in Clause N.2. Since the Base Path parameter does not not
end with a delimiter, and may be empty, these path fragments shall begin with a delimiter ('/' or ':') in order to form a
complete path.

N.12.3.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. Each entry in the array is
either a valid value or an error string. Each entry is polymorphically encoded, as defined in Clause N.10.2. The format of
error strings is defined by Clause N.13.

N.12.3.4 Service Procedure

This service will process the entries in the Paths parameter starting with the first entry in the array. Each entry is evaluated
separately in the same manner as if the getValue service were called with a path equal to the Base Path parameter
concatenated with the entry being processed, and the results of that evaluation are entered into the corresponding entry in the
return array.

The error conditions and responses are summarized in the following table:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

934 ANSI/ASHRAE Standard 135-2012

Table N-12. Error Conditions for the getRelativeValues Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this
function.

WS_ERR_NOT_AUTHORIZED

The Options parameter could not be parsed correctly or
had illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is
not currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is
out of range.

WS_ERR_OPTION_OUT_OF_RANGE

The Paths parameter array has no members. WS_ERR_LIST_OF_PATHS_IS_EMPTY
The path could not be parsed or contains an illegal
character.

WS_ERR_PATH_SYNTAX

The node identified by the path parameter does not
exist.

WS_ERR_NODE_NOT_FOUND

The attribute specified in the Path parameter is not
present in the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other
reason.

WS_ERR_OTHER

N.12.4 getArray Service

This optional service can be used to retrieve array attributes such as Children or PossibleValues as an array of strings rather
than as a single concatenated string. The format of the strings in the array is dictated by the attribute's datatype and the
service options. This service shall not be used on attributes that are not arrays. If the entire array is too large to return with
this service, the client can use multiple calls to the getArrayRange service instead.

If this service is provided, then the getArraySize service shall also be provided. This service is required to be provided if the
getArrayRange service is provided.

A typical programming language signature for this service would be:

CString[] getArray(CString options, CString path)

N.12.4.1 Structure

The structure of the getArray service primitives is shown in the following table. The terminology and symbology used in this
table are explained in Clause 5.6.

Table N-13. Structure of getArray Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path

Result

M
M
M

M(=)
M(=)
M(=)

M

M(=)

N.12.4.2 Argument

This parameter shall convey the parameters for the getArray confirmed service request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 935

N.12.4.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.4.2.2 Paths

This parameter, of type XML Schema string, shall contain a path string as defined in Clause N.2.

N.12.4.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. If the service succeeds, the
result will be an array of valid result strings. Each entry is polymorphically encoded, as defined in Clause N.10.2. If the array
attribute has no members, the result array shall be empty unless the noEmptyArrays service option is true, in which case the
result array shall contain a single entry for the WS_ERR_EMPTY_ARRAY error condition. If the service fails, the result will
be an array containing a single entry containing the error string. The format of error strings is defined by Clause N.13.

N.12.4.4 Service Procedure

The service will attempt to find the node and attribute specified by the Path parameter, and if successful, will format its value
into an array of strings according to the rules specified in Clauses N.8.10, N.10.1 and N.11.

The error conditions and responses are summarized in the following table:

Table N-14. Error Conditions for the getArray Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is
not currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out
of range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal
character.

WS_ERR_PATH_SYNTAX

The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present
in the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

The requested array contains no data (the array size is 0)
and the noEmptyArrays service option is true.

WS_ERR_EMPTY_ARRAY

The attribute specified in the Path parameter is not an array
attribute.

WS_ERR_NOT_AN_ARRAY

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other
reason.

WS_ERR_OTHER

If any errors occur, the result of the service shall be an array of one entry containing the error string.

N.12.5 getArrayRange Service

This optional service can be used to retrieve only a portion of an array attribute such as Children or PossibleValues as an
array of strings. The format of the strings in the array is dictated by the attribute's datatype and the service options. This
service shall not be used on attributes that are not arrays.

If this service is provided, then the getArray and getArraySize service shall also be provided.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

936 ANSI/ASHRAE Standard 135-2012

A typical programming language signature for this service would be:

CString[] getArrayRange(CString options, CString path, unsigned index, unsigned count)

N.12.5.1 Structure

The structure of the getArrayRange service primitives is shown in the following table. The terminology and symbology used
in this table are explained in Clause 5.6.

Table N-15. Structure of getArrayRange Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path
 Index
 Count

Result

M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)

M

M(=)

N.12.5.2 Argument

This parameter shall convey the parameters for the getArrayRange confirmed service request.

N.12.5.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.5.2.2 Path

This parameter, of type XML Schema string, shall contain a path string as defined in Clause N.2.

N.12.5.2.3 Index

This parameter, of type XML Schema nonNegativeInteger, shall contain the starting index, where the first entry in the array
is index zero.

N.12.5.2.4 Count

This parameter, of type XML Schema nonNegativeInteger, shall contain the number of array entries to return, starting at the
Index parameter. A count of zero shall be invalid.

N.12.5.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. If the service succeeds, the
result shall be an array of valid result strings. Each entry is polymorphically encoded, as defined in Clause N.10.2. If the
service fails, the result shall be an array containing a single entry containing the error string. The format of error strings is
defined by Clause N.13.

N.12.5.4 Service Procedure

The service shall attempt to find the node and attribute specified by the Path parameter, and if successful, shall format its
value into an array of strings according to the rules specified in Clauses N.8.10, N.10.1 and N.11, starting at the index
specified by the Index parameter and proceeding for the number of entries specified by the Count parameter. If fewer than the
specified count of entries exist after the specified index, the result array shall be truncated to contain only the valid entries.

The error conditions and responses are summarized in the following table:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 937

Table N-16. Error Conditions for the getArrayRange Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is
not currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out
of range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal
character.

WS_ERR_PATH_SYNTAX

The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present
in the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

The index parameter is outside the range of indices for the
specified attribute.

WS_ERR_INDEX_OUT_OF_RANGE

The count parameter is zero. WS_ERR_COUNT_IS_ZERO
The requested array range contains no data (the result is of
zero length) and the noEmptyArrays service option is true.

WS_ERR_EMPTY_ARRAY

The attribute specified in the Path parameter is not an array
attribute.

WS_ERR_NOT_AN_ARRAY

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other
reason.

WS_ERR_OTHER

If any errors occur, the result of the service shall be an array of one entry containing the error string.

N.12.6 getArraySize Service

This optional service can be used to retrieve the number of entries in an array attribute. This service shall not be used for
attributes that are not arrays.

This service is required to be provided if the getArray service is provided.

A typical programming language signature for this service is:

CString getArraySize(CString options, CString path)

N.12.6.1 Structure

The structure of the getArraySize service primitives is shown in the following table. The terminology and symbology used in
this table are explained in Clause 5.6.

Table N-17. Structure of getArraySize Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path

Result

M
M
M

M(=)
M(=)
M(=)

M

M(=)

N.12.6.2 Argument

This parameter shall convey the parameters for the getArraySize confirmed service request.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

938 ANSI/ASHRAE Standard 135-2012

N.12.6.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.6.2.2 Paths

This parameter, of type XML Schema string, shall contain a path string as defined in Clause N.2.

N.12.6.3 Result

This parameter, of type XML Schema string, shall contain the results of the service call. If the service succeeds, the result
shall be an XML Schema nonNegativeInteger. This parameter is polymorphically encoded, as defined by Clause N.10.2. If
the service fails, the result shall contain the error string. The format of error strings is defined by Clause N.13.

N.12.6.4 Service Procedure

The service shall attempt to find the node and attribute specified by the Path parameter, and if successful, shall return the
number of entries in that array attribute.

The error conditions and responses are summarized in the following table:

Table N-18. Error Conditions for the getArraySize Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is not
currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out of
range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal character. WS_ERR_PATH_SYNTAX
The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present in
the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

The attribute specified in the Path parameter is not an array
attribute.

WS_ERR_NOT_AN_ARRAY

Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other reason. WS_ERR_OTHER

N.12.7 setValue Service

Thisoptional service is used to set a new value for a single attribute of a single node. The format of the new value is dictated
by the attribute's datatype and the service options. This service always returns its results as a single string.

If the service option "readback" is true, then, after setting the value, this service shall read the value back and the result shall
be as if the client had called getValue using the same path and service options. This allows the client to see the effects of any
value modification by the server as well as check for errors.

Only the Value attribute is writable.

This service is required to be provided if the setValues service is provided.

A typical programming language signature for this service is:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 939

CString setValue(CString options, CString path, CString Value)

N.12.7.1 Structure

The structure of the setValue service primitives is shown in the following table. The terminology and symbology used in this
table are explained in Clause 5.6.

Table N-19. Structure of setValue Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path
 Value

Result

M
M
M
M

M(=)
M(=)
M(=)
M(=)

M

M(=)

N.12.7.2 Argument

This parameter shall convey the parameters for the setValue confirmed service request.

N.12.7.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.7.2.2 Path

This parameter, of type XML Schema string, shall contain a path as defined in Clause N.2.

N.12.7.2.3 Value

This parameter, of type XML Schema string, shall contain a new value for the node. This parameter is polymorphically
encoded, as defined in Clause N.10.2, and is in the same format as that which would be returned by the getValue service for
the same path and service options.

N.12.7.3 Result

This parameter, of type XML Schema string, shall contain the results of the service call. The result is either an empty string, a
valid value if the "readback" service option is true, or an error string. This parameter is polymorphically encoded, as defined
in Clause N.10.2.. The format of error strings is defined by Clause N.13.

N.12.7.4 Service Procedure

The service shall attempt to find the node and attribute specified by the Path parameter, and if successful, shall set its value
from the given Value parameter according to the formatting rules specified in Clauses N.8.10, N.10.1 and N.11 If an attribute
identifier is not specified by the Path parameter, the Value attribute shall be assumed.

If the server supports multiple locales and this service is used to set the value of a node whose ValueType attribute is
"String", then the new value shall be set equally for all writable locales unless the "writeSingleLocale" service option is true,
in which case it shall be set only for the locale specified by the "locale"service option. See the definitions for the
SinglyWritableLocales attribute and the writeSingleLocale service option in Clauses N.8.29 and N.11.5 for more
information.

If the server supports multiple locales and this service is used to set the value of a node whose ValueType attribute is
"Multistate", then the Value parameter shall match exactly one of the strings returned for the WritableValues attribute for the
locale specified by the service options.

If multiple locales are supported by the server and this service is used to set the value of a node whose ValueType attribute is
"Boolean", then the new value shall match exactly one of the strings returned for the WritableValues attribute for the locale
specified by the service options, or it may be equal to "true" or "false" if the "canonical" service option is TRUE.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

940 ANSI/ASHRAE Standard 135-2012

If the service option "readback" is true, then, after setting the value, the server shall perform the same operations as
prescribed for the getValue service, using the same path and service options. If there is any failure during the readback
portion of execution, then the result returned by setValue shall be WS_ERR_READBACK_FAILED.

If the service option "readback" is false, then this service shall return an empty string upon success.

The error conditions and responses are summarized in the following table:

Table N-20. Error Conditions for the setValue Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is not
currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out of
range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal character. WS_ERR_PATH_SYNTAX
The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
An attribute other than Value is specified. WS_ERR_ILLEGAL_ATTRIBUTE
The attribute specified in the Path parameter is not present in
the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

The Value attribute is not writable. WS_ERR_NOT_WRITABLE
The given value is not formatted properly. WS_ERR_VALUE_FORMAT
The given value is out of range. WS_ERR_VALUE_OUT_OF_RANGE
Any other error occurred setting the value. WS_ERR_WRITE_FAILED
The readback failed. WS_ERR_READBACK_FAILED
Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to update the requested value, for some other reason. WS_ERR_OTHER

N.12.8 setValues Service

This optional service is similar to the setValue service with the exception that it takes multiple paths and values and returns
multiple results, one for each path. This service always returns its results as a non-empty array of strings.

If this service is provided, then the setValue service shall also be provided.

A typical programming language signature for this service is:

CString[] setValues(CString options, CString paths[], CString values[])

N.12.8.1 Structure

The structure of the setValues service primitives is shown in the following table. The terminology and symbology used in this
table are explained in Clause 5.6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 941

Table N-21. Structure of setValues Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Paths
 Values

Result

M
M
M

M(=)
M(=)
M(=)

M

M(=)

N.12.8.3 Argument

This parameter shall convey the parameters for the setValues confirmed service request.

N.12.8.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.8.2.2 Paths

This parameter, of type array of XML Schema string, shall contain an array of path strings as defined in Clause N.2.

N.12.8.2.3 Values

This parameter, of type array of XML Schema string, shall contain an array of new values corresponding to the Paths
parameter. Each entry in this array shall be polymorphically encoded, as defined in Clause N.10.2 and shall have the same
format as that which would be returned by the getValue service for the corresponding path with the same service options.

N.12.8.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. Each entry in the array is
either an empty string, a valid value if the "readback" service option is true, or an error string. Each entry is polymorphically
encoded, as defined in Clause N.10.2.. The format of error strings is defined by Clause N.13.

N.12.8.4 Service Procedure

This service will process the entries in the Paths parameter and the corresponding entries in the Values parameter, starting
with the first entry in each array. Each pair of entries shall be evaluated separately in the same manner as the setValue service
and the results entered into a corresponding entry in the return array. If there is an error condition that prevents the processing
of the Paths parameter, if the Paths parameter is of zero length, or if the server can determine that the same error would be
returned for each entry in the return array, then the result of the service shall be an array of one element containing the error
string.

The error conditions and responses are summarized in the following table:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

942 ANSI/ASHRAE Standard 135-2012

Table N-22. Error Conditions for the setValues Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is not
currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out of
range.

WS_ERR_OPTION_OUT_OF_RANGE

The Paths parameter array has no members. WS_ERR_LIST_OF_PATHS_IS_EMPTY
The path could not be parsed or contains an illegal character. WS_ERR_PATH_SYNTAX
The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
The attribute specified in the Path parameter is not present in
the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

An attribute other than Value is specified. WS_ERR_ILLEGAL_ATTRIBUTE
The Value attribute is not writable. WS_ERR_NOT_WRITABLE
The given value is not formatted properly. WS_ERR_VALUE_FORMAT
The given value is out of range. WS_ERR_VALUE_OUT_OF_RANGE
Any other error occurred setting the value. WS_ERR_WRITE_FAILED
The readback failed. WS_ERR_READBACK_FAILED
Communications with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to update the requested value, for some other reason. WS_ERR_OTHER

N.12.9 getHistoryPeriodic

This optional service returns a predictable result of periodic point-in-time trend samples. Each string in the array contains the
trended value or an error string in the same format as would be returned from the getValue service for the same path and
service options.

The client specifies the sampling for this trend series, regardless of the sampling rate or timestamps of the data stored in the
historical records of the server. If there is a mismatch in the requested sample times and the actual sample times, the server
shall resample the data, as requested by the client through the Resample Method parameter, to find a value for the requested
sample time.

The first sample returned corresponds to the Start parameter, and the remaining samples are spaced apart according to the
Interval parameter. The Count parameter specifies the total number of samples to return.

A typical programming language signature for this service is:

CString[] getHistoryPeriodic (CString options, CString path, CDateTime start, double interval, unsigned count, CString
resampleMethod)

N.12.9.1 Structure

The structure of the getHistoryPeriodic service primitives is shown in the following table. The terminology and symbology
used in this table are explained in Clause 5.6.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 943

Table N-23. Structure of getHistoryPeriodic Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options
 Path
 Start
 Interval
 Count
 Resample Method

Result

M
M
M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)

M

M(=)

N.12.9.2 Argument

This parameter shall convey the parameters for the getHistoryPeriodic confirmed service request.

N.12.9.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

N.12.9.2.2 Path

This parameter, of type XML Schema string, shall contain a path string as defined in Clause N.2.

N.12.9.2.3 Start

This parameter, of type XML Schema dateTime, shall specify the starting date and time, inclusive, for the results.

N.12.9.2.4 Interval

This parameter, of type XML Schema double, shall specify the time interval, in seconds, between the returned values. An
interval of zero is invalid.

N.12.9.2.5 Count

This parameter, of type XML Schema nonNegativeInteger, shall contain the number of values to return. A count of zero is
invalid.

N.12.9.2.6 Resample Method

This parameter, of type XML Schema string, shall contain one of the string values described in the following table. Servers
shall support all standard resample methods.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

944 ANSI/ASHRAE Standard 135-2012

Table N-24. getHistoryPeriodic Resample Method Definitions
Parameter Value Description

"interpolation" Each data sample returned is determined by straight line interpolation between the real
sample before and the real sample after the specified point in time.
If the source Trend Log has a fixed interval and one of the real samples is missing then
an error shall be returned for the sample.
If one of the real samples is an error then an error shall be returned for the sample.

"average" Each data sample returned is the average of all collected samples within the time
period. The time period is of length Interval and is centered on the returned sample
time.
If all samples are missing from the sample window, then an error shall be returned for
the sample.
If one or more, but not all, samples are missing from the sample window, the average
will be calculated over those that are present.

"after" Each data sample returned is the value of the closest real sample at or after the
specified point in time.
If the source Trend Log has a fixed interval and the closest sample after is missing,
then an error shall be returned for the sample.
If the closest sample after is an error, then an error shall be returned for the sample.

"before" Each data sample returned is the value of the closest real sample at or before the
specified point in time.
If the source Trend Log has a fixed interval and the closest sample before is missing,
then an error shall be returned for the sample.
If the closest sample before is an error, then an error shall be returned for the sample.

"closest" Each data sample returned is the value of the closest real sample at, before or after the
specified point in time.
If the source Trend Log has a fixed interval and the closest sample is missing, then an
error shall be returned for the sample.
If the closest sample is an error, then an error shall be returned for the sample.

"default" The server shall use the most appropriate resample method. The server is not restricted
to the standard resample methods and may use any proprietary method suited to the
data.

N.12.9.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. If the service succeeds, the
result shall be an array of valid result strings. Each member of the array is polymorphically encoded, as defined in Clause
N.10.2. If the service fails, the result shall be an array containing a single entry containing the error string. The format of
error strings is defined by Clause N.13.

N.12.9.4 Service Procedure

The service shall attempt to find historical records for the node specified by the Path parameter, and if successful, shall
format a series of historical values into an array of strings according to the rules specified in Clauses N.8.10, N.10.1 and
N.11, starting at the date and time specified by the Start parameter, and proceeding in time increments of the Interval
parameter, for the number of entries specified by the Count parameter. If an attribute identifier is specified by the Path
parameter, it shall specify the Value attribute.

If there is a mismatch in the requested sample times and the actual sample times, the server shall resample the data by some
means, such as interpolation, to find a value for the requested sample time. If the data is known to the server to not be
available at the requested sample time, it shall return a WS_ERR_NO_DATA_AVAILABLE error for that sample time in
the Results array.

If there is an error condition that prevents the retrieval or processing of the requested data, then the result of the service shall
be an array of one element containing the error string. If the server can determine that the same error would be returned for
each entry in the results array, then the result of the service may be an array of one element containing the error string.

The error conditions and responses are summarized in the following table:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 945

Table N-25. Error Conditions for the getHistoryPeriodic Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or
had illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains a locale specifier that is
not currently supported.

WS_ERR_LOCALE_NOT_SUPPORTED

The Options parameter contains an unsupported option WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out
of range.

WS_ERR_OPTION_OUT_OF_RANGE

The path could not be parsed or contains an illegal
character.

WS_ERR_PATH_SYNTAX

The node identified by the Path parameter does not exist. WS_ERR_NODE_NOT_FOUND
An attribute other than Value is specified. WS_ERR_ILLEGAL_ATTRIBUTE
The attribute specified in the Path parameter is not present
in the specified node.

WS_ERR_ATTRIBUTE_NOT_FOUND

The Count parameter is 0. WS_ERR_COUNT IS_ZERO
The Interval parameter is 0. WS_ERR_INTERVAL_IS_ZERO
No data is available for a sample interval. WS_ERR_NO_DATA_AVAILABLE
There is no history available for this node. WS_ERR_NO_HISTORY
Communication with the device failed. WS_ERR_COMMUNICATION_FAILED
Unable to return the requested value, for some other
reason.

WS_ERR_OTHER

N.12.10 getDefaultLocale

This required service retrieves the locale that the server has configured for its default locale. The return value is a locale
string as defined in Clause N.11.4. The empty string ("") shall be returned if there is no default locale, in which case the
canonical form shall be used for all values.

A typical programming language signature for this service is:

CString getDefaultLocale (CString options)

N.12.10.1 Structure

The structure of the getDefaultLocale service primitives is shown in the following table. The terminology and symbology
used in this table are explained in Clause 5.6.

Table N-26. Structure of getDefaultLocale Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options

Result

M
M

M(=)
M(=)

M

M(=)

N.12.10.2 Argument

This parameter shall convey the parameters for the getDefaultLocale confirmed service request.

N.12.10.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

946 ANSI/ASHRAE Standard 135-2012

N.12.10.3 Result

This parameter, of type XML Schema string, shall contain the results of the service call. If the service succeeds, the result
shall be a locale string as defined in Clause N.11.4 or an empty string. If the service fails, the result shall contain the error
string. The format of error strings is defined by Clause N.13.

N.12.10.4 Service Procedure

The service shall return the locale string for the configured default locale. The service shall ignore the "locale" service option,
if present. The empty string ("") shall be returned if there is no default locale.

The error conditions and responses are summarized in the following table:

Table N-27. Error Conditions for the getDefaultLocale Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or
had illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out
of range.

WS_ERR_OPTION_OUT_OF_RANGE

N.12.11 getSupportedLocales

This required service can be used to retrieve the list of locales supported by the server. Each entry in the returned array is a
locale string as defined in Clause N.11.4. If the server does not support multiple locales, then this service shall return only the
default locale. If the server does not support localization, and only uses the canonical form, then an array with no entries shall
be returned unless the noEmptyArrays service option is true, in which case the result array shall contain a single entry for the
WS_ERR_EMPTY_ARRAY error condition.

A typical programming language signature for this service is:

CString[] getSupportedLocales (CString options)

N.12.11.1 Structure

The structure of the getSupportedLocales service primitives is shown in the following table. The terminology and symbology
used in this table are explained in Clause 5.6.

Table N-28. Structure of getSupportedLocales Service Primitives
Parameter Name Req Ind Rsp Cnf

Argument
 Options

Result

M
M

M(=)
M(=)

M

M(=)

N.12.11.2 Argument

This parameter shall convey the parameters for the getSupportedLocales confirmed service request.

N.12.11.2.1 Options

This parameter, of type XML Schema string, shall contain a string of service options as defined in Clause N.11.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 947

N.12.11.3 Result

This parameter, of type array of XML Schema string, shall contain the results of the service call. If the service succeeds, the
result shall be an array of valid result strings. The result array may be empty unless the noEmptyArrays service option is true,
in which case the result array shall contain a single entry for the WS_ERR_EMPTY_ARRAY error condition. If the service
fails, the array shall contain a single entry containing the error string. The format of error strings is defined by Clause N.13.

N.12.11.4 Service Procedure

The service shall collect all the locale strings that are in use in the server. If the server does not support multiple locales, then
this service shall return only the default locale. The service shall ignore the "locale" service option, if present.

The error conditions and responses are summarized in the following table:

Table N-29. Error Conditions for the getSupportedLocales Service
Situation Error

The service user could not be authenticated. WS_ERR_NOT_AUTHENTICATED
The service user is not authorized to perform this function. WS_ERR_NOT_AUTHORIZED
The Options parameter could not be parsed correctly or had
illegal characters.

WS_ERR_OPTIONS_SYNTAX

The Options parameter contains an unsupported option. WS_ERR_OPTION_NOT_SUPPORTED
The Options parameter contains an option value in an
unsupported format.

WS_ERR_OPTION_VALUE_FORMAT

The Options parameter contains an option value that is out
of range.

WS_ERR_OPTION_OUT_OF_RANGE

The requested array contains no data (the array size is 0)
and the noEmptyArrays service option is true.

WS_ERR_EMPTY_ARRAY

If any error occurs, the result of the service shall be an array of one entry containing the error string.

N.13 Errors

For maximum interoperability with a wide range of clients, these Web services avoid returning complex (constructed)
datatypes by returning both valid data and errors in the same result string.

The default error string encoding is "? error-number error-message". More specifically, the string shall be composed of: a
question mark character, followed by a single space character, followed by a standardized error number defined in the
following table, in decimal form, followed by a single space character, followed by an informative human-readable error
message whose content is a local matter.

The default error encoding can be overridden by the client with the "errorString" service option (see Clause N.11.2 for
examples). When the default format is overridden by the "errorString" service option, the string defined for the errorString
option shall form the entire string generated for an error.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX N - BACnet/WS WEB SERVICES INTERFACE (NORMATIVE)

948 ANSI/ASHRAE Standard 135-2012

Table N-30. Error Numbers
Error Name Error Number Example Error Message

WS_ERR_OTHER 0 "Unspecified Error"
WS_ERR_NOT_AUTHENTICATED 1 "Not Authenticated"
WS_ERR_NOT_AUTHORIZED 2 "Not Authorized"
WS_ERR_OPTIONS_SYNTAX 3 "Bad Options Syntax"
WS_ERR_OPTION_NOT_SUPPORTED 4 "Option Not Supported"
WS_ERR_OPTION_VALUE_FORMAT 5 "Bad Option Value Format"
WS_ERR_OPTION_OUT_OF_RANGE 6 "Option Out of Range"
WS_ERR_LOCALE_NOT_SUPPORTED 7 "Locale Not Supported"
WS_ERR_PATH_SYNTAX 8 "Bad Path Syntax"
WS_ERR_NODE_NOT_FOUND 9 "Node Not Found"
WS_ERR_ATTRIBUTE_NOT_FOUND 10 "Attribute Not Found"
WS_ERR_ILLEGAL_ATTRIBUTE 11 "Illegal Attribute"
WS_ERR_VALUE_FORMAT 12 "Bad Value Format"
WS_ERR_VALUE_OUT_OF_RANGE 13 "Value Out of Range"
WS_ERR_INDEX_OUT_OF_RANGE 14 "Index Out of Range"
WS_ERR_NOT_WRITABLE 15 "Not Writable"
WS_ERR_WRITE_FAILED 16 "Write Failed"
WS_ERR_LIST_OF_PATHS_IS_EMPTY 17 "No Paths Provided "
WS_ERR_COUNT_IS_ZERO 18 "Requested Count is Zero"
WS_ERR_INTERVAL_IS_ZERO 19 "Requested Interval is Zero "
WS_ERR_NO_HISTORY 20 "No History"
WS_ERR_NO_DATA_AVAILABLE 21 "No Data Available"
WS_ERR_EMPTY_ARRAY 22 "Empty Array"
WS_ERR_NOT_AN_ARRAY 23 "Not an Array"
WS_ERR_COMMUNICATION_FAILED 24 "Communication with the

Remote Device Failed"
WS_ERR_READBACK_FAILED 25 "The Readback Failed"

N.14 Extending BACnet/WS

The data model defined by this standard can be extended in the following ways:

1. Extended information that might be considered to be a property of a node may be modeled by adding children nodes with a
NodeType of "Property". This allows for the extended property data to be arbitrarily complex.

2. Node classification can be extended by local application of the NodeSubtype attribute. Any string value can be used for
the localized value of the Units attribute. However, if the corresponding canonical value of the Units attribute cannot be
expressed as defined in Clause N.8.11, then the canonical value of that attribute shall be "other".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 949

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

O.1 General

This normative annex specifies the use of BACnet messaging with the services described in the ZigBee® Specification and
the ZigBee Commercial Building Automation Profile Specification. These ZigBee documents, as amended and extended by
the ZigBee Alliance, are deemed to be included in this standard by reference.

O.2 ZigBee Overview

A ZigBee network is a set of wireless nodes that cooperate by forming a mesh network over which messages hop, from node
to node, to reach a destination.

ZigBee uses an IEEE 64-bit address, called an EUI64, to identify a ZigBee node on the network.

A ZigBee cluster may be described as a particular service, and a ZigBee endpoint as a port. A ZigBee application profile is an
interoperable domain, such as the Commercial Building Automation Profile. ZigBee applications advertise and support
clusters on endpoints.

ZigBee devices have up to 240 endpoints. Applications may use endpoints numbered 1-240, but there is no correlation
between application and endpoint number. Endpoint 0 is reserved for use by the ZigBee Device Object (ZDO) for discovery
services.

Each endpoint provides one Simple Descriptor that describes the application profile and services supported by that endpoint.
Services are identified by a list of input and output clusters.

Clusters have mandatory and optional attributes (analogous to BACnet properties) and commands. Commands may also be
vendor defined and include a two-octet Manufacturer Code field (analogous to the BACnet vendor identifier).

ZigBee network broadcasts are discouraged for normal operation because a broadcast message must be propagated to all
nodes in the network. All nodes must repeat the message, and each node must wait until there is a clear channel to transmit.
The interval from the initial transmission to when the final node forwards the message can be a significant amount of time
and reduce much of the network bandwidth during this interval.

ZigBee network multicasting can be configured to stop propagating a multicast beyond the proximity of a target group of nodes.

ZigBee supports groups and multicast addressing to a group. Membership in a group is indicated by a GroupID entry in the
ZigBee stack's group table. Each entry maps a 16-bit GroupID to a set of endpoints. GroupID endpoint mapping is specific to
each node. When a group addressed message reaches a node and the node is a member of the group, the message is sent to each
of the mapped endpoints.

ZigBee supports the creation of bindings that map a cluster to one or more targets. A sender of a ZigBee message may specify a
cluster instead of an address as a destination and let one or more ZigBee bindings resolve the cluster to a set of targets. A
binding may be a multicast binding that maps to a GroupID, which targets a group of nodes.

There are many reasons for the existence of more than one BACnet/ZigBee network on a single ZigBee network. A few such
reasons are described below.

A single large ZigBee network may have groups of BACnet/ZigBee nodes that are each geographically clumped together such
that inter-clump communication is more efficient through wired routers than across the wireless network. Making each clump a
separate BACnet/ZigBee network would be a more optimal solution.

If there is an increase in the number of BACnet nodes and/or traffic on BACnet/ZigBee network so that the BACnet traffic load
through the BACnet/ZigBee router is undesirable, one option is to split the one BACnet/ZigBee network into separate

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

950 ANSI/ASHRAE Standard 135-2012

BACnet/ZigBee networks, each on its own ZigBee network. However, depending on the wireless environment, each new
ZigBee network may not have the wireless mesh density to produce the required redundant routes between ZigBee nodes. A
single ZigBee network, with many BACnet/ZigBee networks, does not decrease the wireless mesh density, but it does share the
BACnet traffic load between the BACnet/ZigBee routers.

The above example also covers the desire to reduce latency introduced by wireless hops between ZigBee nodes. A
BACnet/ZigBee network might be spread out such that some BACnet/ZigBee nodes are too many wireless hops away from a
BACnet/ZigBee router. If such BACnet/ZigBee nodes were moved to a new BACnet/ZigBee network, such that a
BACnet/ZigBee router is closer (in wireless hops) to the BACnet/ZigBee nodes, wireless hop latency would be reduced.

O.3 Definitions

A BACnet/ZigBee node or router is a BACnet node or router using ZigBee as a data link layer under its BACnet network
layer.

A BACnet/ZigBee network is a group of BACnet/ZigBee nodes on the same ZigBee network that operate as a BACnet
network.

NOTE: There may be more than one BACnet/ZigBee network on a ZigBee network.

O.4 Unicast Addressing

The ZigBee Generic Tunnel (GT) cluster is a cluster that contains common attributes for tunneling non-ZigBee protocols.
The BACnet Protocol Tunnel (BP) cluster is a cluster that indicates that BACnet is being tunneled on the endpoint upon
which these two clusters exist. The BACnet Protocol Tunnel and Generic Tunnel clusters, together on an endpoint, identify a
node as a BACnet/ZigBee node and as having the capability of transferring BACnet NPDUs.

An endpoint that contains the BACnet Protocol Tunnel and Generic Tunnel cluster on its Simple Descriptor input and output
cluster lists is called a BACnet endpoint. A BACnet endpoint is a BACnet/ZigBee node's access to a BACnet/ZigBee
network.

BACnet unicast messages shall be sent to a BACnet endpoint. All received unicast messages shall have a BACnet endpoint
as a source.

The Application Profile Identifier field of the BACnet endpoint's Simple Descriptor shall be the ZigBee Commercial
Building Automation Profile identifier.

A non-routing node shall have one BACnet endpoint. A router shall have a BACnet endpoint for each of its BACnet/ZigBee
network ports.

O.5 Broadcast Addressing

A BACnet local broadcast message shall be sent on a BACnet/ZigBee network using a ZigBee group address such that all
(and only) the BACnet endpoints on the target BACnet/ZigBee network receive the message. All received group-addressed
messages shall have a BACnet endpoint as a source.

A BACnet/ZigBee node shall support groups and group addressing. A BACnet/ZigBee node shall support the ZigBee Cluster
Library Groups clusters that can be used to modify a ZigBee node's group table, and therefore its ZigBee group membership.

ZigBee group membership and ZigBee binding is a local matter that may be accomplished through the ZigBee application
interface or with standard ZigBee commands from an external source, such as a wireless configuration tool.

Multiple BACnet/ZigBee networks on a single ZigBee network shall each be mapped to a single unique ZigBee GroupID. A
BACnet router between such BACnet/ZigBee networks would be a member of each group (see Figure O-2).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 951

There are many reasons for the existence of more than one BACnet/ZigBee network on a single ZigBee network. A few such
reasons are described below.

A single large ZigBee network may have groups of BACnet/ZigBee nodes that are each geographically clumped together
such that inter-clump communication is more efficient through wired routers than across the wireless network. Making each
clump a separate BACnet/ZigBee network would be a more optimal solution.

See more notes about working with large numbers of BACnet nodes and separating BACnet/ZigBee networks in Clause O.2.

O.6 BACnet/ZigBee Data Link Layer (BZLL)

A BACnet/ZigBee Data Link Layer (BZLL) shall exist for each BACnet endpoint on a BACnet/ZigBee node. The BZLL
provides the data link layer between the BACnet Network Layer (see Clause 6) and a single BACnet/ZigBee network.

Figure O-1 shows an example of a non-routing BACnet/ZigBee node that is using endpoint 6 as the BACnet endpoint. All
nodes on the BACnet network to which this node belongs have membership in the ZigBee group specified by the ZigBee
GroupID X'ABCD'. This allows a local BACnet broadcast to be sent as a ZigBee group multicast. GroupID X'ABCD' and
endpoint 6 are used here only as an example. Any GroupID that is unique on the ZigBee network may be used. Any endpoint
that is unique to the node may be used as a BACnet endpoint.

In Figure O-1, incoming group multicasts are passed through the Group Table and mapped to endpoint 6. When the BZLL
wants to send a BACnet broadcast message, it shall send the message to the BACnet Protocol Tunnel cluster that corresponds
to GroupID X'ABCD' in the ZigBee Binding Table.

I�$5��
����2

Group Table (incoming multicast)

EP6 <- ABCD
. . .

5�����
���#��2
��	��

BACnet Protocol (BP)

Clusters

A=��
,����

5�����
�����������
��	��

Binding Table (outgoing multicast)

Generic Tunnel (GT)

BACnet

Endpoint

6

(EP6)

EP6 & BP cluster -> ABCD
EP6 & GT cluster -> ABCD

. . .

&�������

�������

5������I�$5��
<���
���2
��	��
"5I��%

Figure O-1. Diagram of BZLL and other layers and entities on a non-routing BACnet/ZigBee node.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

952 ANSI/ASHRAE Standard 135-2012

5�����
���#��2
��	��

5������I�$5��
<���
���2
��	��
"5I��
0%

I�$5��
����2

Group Table (incoming multicast)

EP6 <- ABCD
EP28 <- 5678
. . .

A=��

,����

5�����
�����������
��	��

Binding Table (outgoing multicast)

EP6 & BP cluster -> ABCD
EP6 & GT cluster -> ABCD
EP28 & BP cluster -> 5678
EP28 & GT cluster -> 5678
. . .

&�������
�������

BACnet Protocol (BP)

&�������
�������

Generic Tunnel (GT)

BACnet

Endpoint

28

(EP28)

A=��

,����

Clusters

5������I�$5��
<���
���2
��	��
"5I��
)%

BACnet Protocol (BP)

Generic Tunnel (GT)

BACnet

Endpoint

6

(EP6)

Clusters

Figure O-2. Diagram of BZLL and other layers and entities on a BACnet/ZigBee router.

Figure O-2 shows entities on a BACnet/ZigBee router that routes to two BACnet/ZigBee networks. A BACnet router routing
between two BACnet/ZigBee networks shall have a BZLL for each BACnet/ZigBee network. Each BZLL shall use a
separate BACnet endpoint. The ZigBee Binding and Group tables each have entries corresponding to BZLL 1 and BZLL 2 to
map the GroupIDs and corresponding BACnet endpoints together for send and receive.

O.6.1 BZLL VMAC Table Management

A BACnet/ZigBee node shall conform to the Annex H.7 Virtual MAC Addressing.

The BZLL shall use VMAC addresses. Each VMAC address shall be the device instance of the BACnet Device object on the
node in which the BZLL resides. All BACnet/ZigBee nodes shall have a Device object.

A BZLL shall manage a VMAC table. The VMAC entry field MAC Address shall be a ZigBee EUI64 and BACnet endpoint.

The VMAC table shall be maintained by the BZLL by using the commands and responses of the ZigBee Generic Tunnel
cluster on the BZLL's BACnet endpoint. These commands are specified in the ZigBee Commercial Building Automation
Profile Specification.

The VMAC address of the BZLL, the Protocol Address attribute of the Generic Tunnel cluster on the corresponding BACnet
endpoint, and the device instance of the BACnet Device object shall be the same value. When one of these is modified, then
the others shall be changed to the same value. All of these may be stored in one memory location on the node.

The Protocol Address attribute is of the ZigBee data type Octet String, which is a sequence of octets with a maximum size of
255.

The BZLL shall support all mandatory commands of the Generic Tunnel cluster and BACnet Protocol Tunnel cluster. Table
O-1 lists the commands that shall be utilized to access, advertise, and modify the attribute Protocol Address.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 953

Table O-1. Generic Tunnel Cluster Commands
ZigBee Command Description

Match Protocol Address Sent to all network nodes to request a matching Protocol Address
attribute.

Match Protocol Address Response Response to the sender of a Match Protocol Address command if
the Protocol Address attribute matches.

Advertise Protocol Address Sent to one or all network nodes to indicate the sender's Protocol
Address.

Read Attribute Sent to one or all nodes to request each receiver's Protocol
Address.

Read Attribute Response Response to the sender of a Read Attribute command containing
the attribute value or indicating an error.

Write Attribute Sent to a single node to change the receiver's Protocol Address.
Write Attribute Response Response to the sender of a Write Attribute command confirming

the command execution or indicating an error.

The BZLL may create a ZigBee binding that maps its BACnet endpoint and Generic Tunnel cluster to the ZigBee GroupID
used by the BACnet/ZigBee network (see Figure O-1). This binding allows the above commands to be issued as a group
multicast to all nodes in the BACnet/ZigBee network.

On startup, a router shall issue a group multicast Read Attribute command requesting the Protocol Address attribute from the
BZLL on all nodes in the BACnet/ZigBee network. Each node receiving the Read Attribute command shall respond with the
VMAC address for that BZLL. When a response is received, the router shall create a VMAC entry for the responding node.

On startup, a node shall issue a group multicast Advertise Attribute command indicating Protocol Address attribute (VMAC
address) to all nodes in the BACnet network. When a node acquires a new VMAC address for the BZLL, the node shall issue
a group multicast Advertise Attribute command indicating the Protocol Address attribute (new VMAC address).

To be able to detect new nodes on the network, the BZLL on a router shall periodically issue a Read Attribute command
requesting the Protocol Address attribute from all network nodes. The period at which a router requests all Protocol Address
attributes is a local matter.

To facilitate removal of an obsolete VMAC entry, the following procedure shall be used: After an interval, if there has been
no activity indicating a node's VMAC address for a node represented by a VMAC entry, then the BZLL shall issue a Read
Attribute command requesting the node's Protocol Address attribute (VMAC address). If the node fails to respond, the
VMAC entry shall be removed. The interval of no activity before a node's Protocol Address attribute is requested is a local
matter.

If a node advertises or responds with a new VMAC address, the node's VMAC entry shall be updated.

There shall be no duplicate VMAC addresses in the VMAC table. If a duplicate address is received, a BACnet router shall
keep only the most recently verified VMAC address. Otherwise, the means by which a node detects, verifies and prevents
duplicate VMAC addresses is a local matter.

Other than the requirements above, the means by which a node maintains a VMAC table is a local matter.

O.6.2 BZLL Transfer NPDU

A BZLL on a node shall transfer BACnet NPDUs to a BZLL on another node using the APSDE-DATA primitives described
in the ZigBee Specification. A BACnet NPDU shall be transferred as a ZigBee ASDU from an output BACnet Protocol
Tunnel cluster to an input BACnet Protocol Tunnel cluster.

The ZigBee ASDU that is passed to the APSDE-DATA.request to transfer a BACnet NPDU shall be a ZigBee Cluster
Library (ZCL) client to server frame as shown in Figure O-3.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX O - BACnet OVER ZigBee AS A DATA LINK LAYER (NORMATIVE)

954 ANSI/ASHRAE Standard 135-2012

Frame Control 1 octet X'01'

Transaction Sequence
Number

1 octet X'00' to X'FF', incrementing with each new
request command

Command Identifier 1 octet X'00' Transfer NPDU request command

Frame Payload N octets BACnet NPDU

Figure O-3. ZCL Frame as ZigBee ASDU with BACnet NPDU Payload.

A BACnet unicast NPDU shall be transferred using a ZigBee unicast by specifying the EUI64 and BACnet endpoint of the
target as parameters of the APSDE-DATA.request.

A BACnet broadcast NPDU shall be transferred using the BACnet Protocol Tunnel cluster as a destination. The cluster and
source endpoint will be used to resolve, through a ZigBee binding, to a ZigBee group.

O.6.3 BZLL Generic Tunnel Cluster Support

The BZLL shall support the ZigBee Generic Tunnel cluster attributes described below.

O.6.3.1 Maximum Incoming Transfer Size

The Maximum Incoming Transfer Size attribute shall be the maximum ZigBee ASDU size, in octets, that may be received by
the BZLL. This value is related to the maximum BACnet APDU size described in Clause O.7.

O.6.3.2 Maximum Outgoing Transfer Size

The Maximum Outgoing Transfer Size attribute shall be the maximum ZigBee ASDU size, in octets, that can be sent by the
BZLL. This value is related to the maximum BACnet APDU size described in Clause O.7.

O.6.3.3 Protocol Address

The Protocol Address attribute shall be the VMAC address of the BZLL, which is the BACnet device instance.

O.7 Maximum Payload Size

Each BACnet endpoint shall support a ZigBee ASDU size that includes the maximum BACnet APDU size plus the octets in
the ZCL and BACnet NPDU headers. The ZigBee ASDU may be fragmented at the source node and reassembled at the
destination node. The ZigBee stack options controlling fragmentation/reassembly and payload sizes will ultimately determine
the maximum ZigBee APDU size and therefore shall be set accordingly.

O.8 Vendor Specific Commands

The ZigBee Cluster Library frame specification defines a method for sending vendor specific commands. Use of these
commands is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 955

ANNEX P-BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

(This annex is part of this standard and is required for its use.)

In the physical access control industry there are a number of established standards and defacto standards for authentication
factor formats as well as numerous proprietary formats that are widely used. Because the access control industry is rapidly
changing and evolving due to government mandates and the emergence of new technology, it is expected that new
authentication factor formats will continue to emerge on a regular basis.

Due to the wide variety of authentication factor formats, a specific BACnet ASN.1 encoding for each format is not practical.
In addition, because of the vast variety in the size and structure of the authentication factor formats, a single common
structure that defines all different formats is considered too complex and therefore not feasible.

The BACnet structure BACnetAuthenticationFactor is used to encapsulate an authentication factor value. Additional
attributes are included that identify the authentication factor format and encoding scheme. The structure has the following
fields:

Format-Type This enumeration (BACnetAuthenticationFactorType) specifies the internal
representation of the authentication factor value in the 'value' field. The value of this
field defines how the authentication factor data in the 'value' field is encoded.

Format-Class This is a site-specific identifier used to distinguish between different authentication
factor value formats that have the same format type. When Format-Type is
UNDEFINED, Format_Class shall have a value of zero.

Value This is an octet string that holds the authentication factor value. The internal format
used is specified by the value in the format-type field. The encoding of the
authentication factor value is defined in the corresponding entry in Table P-1.

Encapsulating the authentication factor values in an octet string is advantageous because it allows BACnet devices to read,
write and use authentication factors without having explicit knowledge of the encoding/decoding of all or any of the
authentication factor formats. The rules for encoding and decoding are typically required only by the credential reader and the
access credential provisioning device (e.g., a workstation).

Table P-1. Authentication Factor Value Encoding Rules
Format Type

(BACnetAuthenticationFactorType)
Authentication Factor Format

Description Authentication Factor Value Encoding1
UNDEFINED Undefined - no authentication

factor value is specified
Octet String Size = 0

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

956 ANSI/ASHRAE Standard 135-2012

Format Type
(BACnetAuthenticationFactorType)

Authentication Factor Format
Description Authentication Factor Value Encoding1

ERROR Error - this is used when the
authentication factor value is not
the value expected, or could not
be interpreted as expected.

Octet String Size = n

Octet [1] = error reason, as follows:

0 = Unspecific error

1 = Parity failure

2 = Too few data

3 = Too much data

4 = Incomplete read

5 = Too Large

128..255 = Any proprietary error reason

Octet[2..3] = authentication factor format type expected
(if unknown or cannot be determined use UNDEFINED)

Octet[4..n] = data array that can be used to store the
erroneous data

CUSTOM Custom (proprietary, or industry

standard) format - each format
specified is identified by the
vendor ID and the proprietary
format ID

Octet String Size = n

Octet[1..2] = BACnet vendor-id (i.e., unsigned 16)

Octet[3..4] = proprietary type id (i.e., unsigned 16)

Octet[5..n] = data array that holds proprietary format

SIMPLE_NUMBER16 Simple unsigned number with

range [0 .. 65535]
Octet String Size = 2,

Octet[1..2] = number (i.e., unsigned 16-bit number)

SIMPLE_NUMBER32 Simple unsigned number with

range [0 .. 4294967295]
Octet String Size = 4,

Octet[1..4] = number (i.e., unsigned 32-bit number)

SIMPLE_NUMBER56 Simple unsigned number with

range [0 .. 72057594037927935]

Typically used for DESFire card
Serial Numbers

Octet String Size = 7,

Octet[1..7] = number (i.e., unsigned 56-bit number)

SIMPLE_ALPHA_

NUMERIC Simple alpha numeric string Octet String Size = n,

Octet[1] = length of character string in octets including
character set specifier (max 255)

Octet[2] = character set specifier (as specified in 20.2.9
excluding DBCS, i.e., a value of X'01')

Octet[3..n] = string of characters (encoded as specified in
20.2.9)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 957

Format Type
(BACnetAuthenticationFactorType)

Authentication Factor Format
Description Authentication Factor Value Encoding1

ABA_TRACK2 Magnetic stripe card format
(BCD2 format) as developed by
the banking industry (ABA).

Octet String Size = 15,

Octet[1..10 (MS nibble)] = primary account number (19
digits)

Octet[10 (LS nibble) - 12(MS nibble)] = 4 digit expiration
date in form "MMYY"

Octet[12 (LS nibble)..13] = 3 digit service code

Octet[14..15] = discretionary data (4 digits)

WIEGAND26 Standard 26-bit Wiegand format

as defined by the SIA standard
(SIA AC-01). It is separated into
facility code and card number.

Octet String Size = 3

Octet[1] = facility-code (i.e., unsigned 8-bit number)

Octet[2..3] = card-number (i.e., unsigned 16-bit number)

WIEGAND37 37 bit Wiegand format with a 35

bit card number. (HID 37 bit
format. - H10302)

Octet String Size = 5

Octet[1..5] = card-number (i.e., unsigned 40-bit number
with range (0..34359738367))

WIEGAND37_ FACILITY 37 bit Wiegand format with a 16

bit facility code and 19 bit card
number. (HID 37 bit format with
facility code. - H10304)

Octet String Size = 5

Octet[1..2] = facility-code (i.e., unsigned 16-bit number)

Octet[3..5] = card-number (i.e., unsigned 24-bit number
with range (0..524287))

FACILITY16_CARD32

Non-standard Wiegand variants
that have 32 bit card number and
16 bit facility code formats.

Octet String Size = 6

Octet[1..2] = facility-code (i.e., unsigned 16-bit number)

Octet[3..6] = card-number (i.e., unsigned 32-bit number)

FACILITY32_CARD32

Non-standard Wiegand variants
that have 32 bit card number and
32 bit facility code formats.

Octet String Size = 8

Octet[1..4] = facility-code (i.e., unsigned 32-bit number)

Octet[5..8] = card-number (i.e., unsigned 32-bit number)

FASC_N Federal Agency Smart Credential

- Number.

Includes only agency code,
system code and credential
number.

Octet String Size = 8

Octet[1..2] = agency-code (i.e., unsigned 16-bit number)

Octet[3..4] = system-site code (i.e., unsigned 16-bit
number)

Octet[5..8] = credential number (i.e., unsigned 32-bit
number)

 -- refer to NIST technical implementation Guidance
document for more details

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

958 ANSI/ASHRAE Standard 135-2012

Format Type
(BACnetAuthenticationFactorType)

Authentication Factor Format
Description Authentication Factor Value Encoding1

FASC_N_BCD Federal Agency Smart Credential
- Number (BCD2 format)

Includes only agency code,
system code and credential
number.

Octet String Size = 7

Octet[1..2] = agency-code (4-digit BCD number)

Octet[3..4] = system-site code (4-digit BCD number)

Octet[5..7] = credential number (6-digit BCD number)

-- refer to NIST technical implementation Guidance
document for more details

FASC_N_LARGE Federal Agency Smart Credential

- Number.

Includes all FASC-N data fields
excluding start sentinel, end
sentinel, field separators and
LRC.

Octet String Size = 19

Octet[1..2] = agency code (i.e., unsigned 16-bit number)

Octet[3..4] = system/site code (i.e., unsigned 16-bit
number)

Octet[5..8] = credential number (i.e., unsigned 32-bit
number)

Octet[9] = series code (i.e., unsigned 8-bit number)

Octet[10] = credential code (i.e., unsigned 8-bit number)

Octet[11..15] = person identifier (i.e., Unsigned 40-bit
number)

Octet[16] = organizational category (i.e., unsigned 8-bit
number)

Octet[17..18] = organizational identifier (i.e., unsigned
16-bit number)

Octet[19] = association category (i.e., unsigned 8-bit
number)

-- refer to NIST technical implementation Guidance
document for more details

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 959

Format Type
(BACnetAuthenticationFactorType)

Authentication Factor Format
Description Authentication Factor Value Encoding1

FASC_N_LARGE_BCD Federal Agency Smart Credential
- Number. (BCD2 format)

Includes all FASC-N data fields
excluding start sentinel, end
sentinel, field separators and
LRC.

Octet String Size = 16

Octet[1..2] = agency-code (4-digit BCD number)

Octet[3..4] = system-site code (4-digit BCD number)

Octet[5..7] = credential number (6-digit BCD number)

Octet[8 (MS nibble)] = series code (1-digit BCD number)

Octet[8 (LS nibble)] = credential code (1-digit BCD
number)

Octet[9..13] = credential number (10-digit BCD number)

Octet[14 (MS nibble)] = organizational category (1 digit
BCD number)

Octet[14 (LS nibble)..16(MS nibble)] = organizational
identifier (4 digit BCD number)

Octet[16 (LS nibble)] = association category (1 digit BCD
number)

-- refer to NIST technical implementation Guidance
document for more details

GSA75 GSA 75 bit (FASC-N plus expiry

date)
Octet String Size = 12

Octet[1..2] = agency-code (i.e., unsigned 16-bit number)

Octet[3..4] = system-site code (i.e., unsigned 16-bit
number)

Octet[5..8] = credential number (i.e., unsigned 32-bit
number)

Octet[9..12] = expiry date (4 octets encoded as specified
in Clause 20.2.12)

CHUID Card Holder Unique Identifier

(CHUID), without Asymmetric
Key and without Authentication
Key MAP.

See SP 800-73 Section 1.8.3
(Figure 1 & 2 pg 12 of the TIG
2.3)

Octet String Size = 45

Octet[1..8] = FASC-N as specified in FASC_N

Octet[9..12] = agency code (4 ANSI.X3.4 characters as
defined in SP 800-73 (Section 6.4, p. 34, of the TIG 2.3)

Octet[13..16] = organization identifier (4 ANSI.X3.4
characters as defined in SP 800-73 (Section 6.4, p. 34, of
the TIG 2.3)

Octet[17..25] = DUNS number (9 ANSI.X3.4 numeric
characters as defined in SP 800-73 (Figures 1 & 2 of the
TIG 2.3)

Octet[26..41] = GUID (IPv6 address as defined in SP
800-73 (Figures 1 & 2 of the TIG 2.3)

Octet[42..45] = Expiry Date expiry date (4 octets encoded
as specified in Clause 20.2.12)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

960 ANSI/ASHRAE Standard 135-2012

Format Type
(BACnetAuthenticationFactorType)

Authentication Factor Format
Description Authentication Factor Value Encoding1

CHUID_FULL Complete Card Holder Unique
Identifier stored as data string.
The data elements are decoded
using the CHUID tags which are
embedded in the data string.

See SP 800-73 Section 1.8.3
(Figure 1 & 2 pg 12 of the TIG
2.3)

Octet String Size = n (maximum size = 3397)

Octet[1..n] = CHUID data string

-- Octet encoding is defined in SP 800-73 (Figure 1 & 2
of the TIG 2.3) using CHUID Tags.

GUID Global unique identifier
represented as IPv6 address

Octet String Size = 16

-- Refer to RFC 2373 for format description and
encoding

CBEFF_A Common Biometric Exchange

File Format (CBEFF) Patron
format A

Octet String Size = n

Octet[1..n] = CBEFF data

-- NIST CBEFF Patron Format A (CBEFF) content
formatted

CBEFF_B Common Biometric Exchange

File Format (CBEFF) Patron
format B

Octet String Size = n

Octet[1..n] = CBEFF data

-- NIST CBEFF Patron Format B (BioAPI) content
formatted

CBEFF_C Common Biometric Exchange

File Format (CBEFF) Patron
format C

Octet String Size = n

Octet[1..n] = CBEFF data

-- NIST CBEFF Patron Format C (ANSI Standard
X9.84) content formatted

USER_PASSWORD User name and password Octet String Size = n,

Octet[1] = length of user name string in octets including
character set specifier (max 255)

Octet[2] = character set specifier for user name string (as
specified in 20.2.9 excluding DBCS, i.e., a value of X'01')

Octet[3..m] = string of characters for user name (encoded
as specified in Clause 20.2.9)

Octet[m+1] = length of password string in octets
including character set specifier (max 255)

Octet[m+2] = character set specifier for password string
(as specified in 20.2.9 excluding DBCS, i.e., a value of
X'01')

Octet[m+3..n] = string of characters for password
(encoded as specified in Clause 20.2.9)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX P – BACnet ENCODING OF STANDARD AUTHENTICATION FACTOR FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 961

1 Multi-octet fields shall be conveyed with the most significant octet first.
2 In BCD (binary coded decimal) format, each octet holds two 4-bit BCD encoded decimal digits. Bits 7 to 4 convey the most
significant digit, while Bits 3 to 0 convey the least significant digit.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

962 ANSI/ASHRAE Standard 135-2012

ANNEX Q - XML DATA FORMATS (NORMATIVE)

(This annex is part of this standard and is required for its use.)

This annex defines formats for XML data exchanged between various BAS systems. This data may have a variety of
purposes and may be conveyed through files or by other means.

Q.1 Introduction

The Extensible Markup Language (XML) is a format for structured text that can be used to represent a variety of data in a
machine-readable form. The XML syntax used in this standard conforms to the "Extensible Markup Language (XML) 1.0
(Fifth Edition)", and the XML datatypes used in this standard, indicated by the prefix "xs:", refer to the datatypes defined by
"XML Schema Part 2: Datatypes Second Edition."

This syntax allows data structure definitions, such as those in Clause 21, and instances of those definitions to be represented
in XML. The syntax is optimized for efficient representation of BACnet data and is sufficiently flexible not to be limited to
modeling BACnet data exclusively. Additionally, the syntax allows for human language descriptions, range restrictions, and
usage information to be added to the basic data structure definitions.

Q.1.1 Design

This XML syntax is designed to provide a common syntax and data model that can be used to represent both standard and
proprietary data types along with any accompanying descriptive information. It is a general data definition and instance
language rather than a syntax specific for the data defined in this standard. To allow the flexibility to present proprietary data
along with standard data with a consistent syntax and data model, the syntax uses a datatype-centric form, such as <String
name="present-value" value="75"> and <Boolean name="proprietary-value" value="true"> rather than a syntax specific to
standard BACnet data names, such as <PresentValue>75</PresentValue>. This allows any kind of data, standard or
proprietary, to be represented in the future without changing the XML schema or the code for the low level parsing of the
XML into a native form for higher level processing to consume.

For the purposes of document brevity and human readability, this syntax represents data in XML attribute form rather than
element body text form wherever possible. However, this representation choice does not limit extensibility of the data model
because, like the attributes in the BACnet Web services data model described in Annex N, most attributes defined in this
annex can be extended to have attributes of their own using an extension syntax defined in Clause Q.7. This allows XML
brevity for the common cases without limiting extensibility when needed.

With the exception of the <Documentation> element, which contains rich text XHTML-formatted documentation, this
standard does not use mixed content in any element body. So simple consumers that ignore formatted documentation only
need to process attribute text and simple element body text.

Validation of this syntax may be accomplished with XML data validators such as XML Schema. These validators can be
used to validate the type and range of data in elements and attributes of the syntax itself. This syntax is also intended to
represent a higher-level data model, such as BACnet objects and properties. Higher level data model validation, such as
whether a property is allowed in a given object or whether its value is within its declared minimum and maximum limits, is
beyond the capabilities of XML syntax validators like XML Schema and shall therefore be performed as needed by the
application consuming this XML.

To simplify processing and avoid the definition of potentially complex scoping rules, all datatype definitions are given
globally unique names. The management of the names to ensure global uniqueness is a local matter to the organization
producing the XML and should at least consist of a prefix for the name that is unique to an organization and then have the
organization manage everything that follows that prefix. For brevity, if an organization has a BACnet Vendor ID, the prefix
can consist of that ID as a decimal number followed by a dash character ('-'). In all cases, however, a reversed domain name,
like "com.companyname.controlsdivision.", can be used as a prefix to ensure global uniqueness.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 963

Q.1.2 Syntax Examples

Some examples using the Clause 21 datatypes will provide an introduction to the form and capabilities of the syntax. The full
details of the XML elements and attributes are defined in Clauses Q.3 and Q.4, and a description of the data model and the
type system is described in Clause Q.5.

Enumerations in Clause 21 are defined as a mapping between an unsigned value and a textual identifier.

BACnetFileAccessMethod ::= ENUMERATED {
 record-access (0),
 stream-access (1)
 }

The definition of that same enumeration in XML creates the mapping with a series of named unsigned values.

<Definitions>
 <Enumerated name="0-BACnetFileAccessMethod">
 <NamedValues>
 <Unsigned name="record-access" value="0" />
 <Unsigned name="stream-access" value="1" />
 </NamedValues> </Enumerated>
</Definitions>

An XML representation of a value of that enumeration uses the textual identifier rather than the number when the type is
known.

<Enumerated type="0-BACnetFileAccessMethod " value="record-access" />

Some enumerations in BACnet are extensible, however, and in those cases, and in cases where the type is not known, a
number is used in place of the textual identifier. This is discussed in more detail later.

Bit Strings in Clause 21 are similarly defined as a mapping between a bit position and a textual identifier.

BACnetEventTransitionBits ::= BIT STRING {
 to-offnormal (0),
 to-fault (1),
 to-normal (2)
 }

The definition of that bit string in XML also defines the mapping with a series of named unsigned values, where the value
specifies the bit position.

<Definitions>
 <BitString name="0-BACnetEventTransitionBits" length="3">
 <NamedBits>
 <Bit name="to-offnormal" bit="0" />
 <Bit name="to-fault" bit="1" />
 <Bit name="to-normal" bit="2" />
 </NamedBits>
 </BitString>
</Definitions>

An XML representation of a value of that bit string is a list of the textual identifiers for the bits that are set.

<BitString type="0-BACnetEventTransitionBits" value="to-offnormal;to-normal" />

Similar to the extensible enumeration case, if a textual representation of a bit is not known, then a number indicating its bit-
position is used instead.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

964 ANSI/ASHRAE Standard 135-2012

Constructed data definitions in Clause 21 define a set of named members and can also specify context tags, optionality, and
comments about the data members.

BACnetPropertyReference ::= SEQUENCE {
 propertyIdentifier [0] BACnetPropertyIdentifier,
 propertyArrayIndex [1] Unsigned OPTIONAL --used only with array datatype
 -- if omitted with an array the entire array is referenced
 }

In XML, this sequence also specifies names, context tags, optionality, and can even capture comments:

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier" />
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true"
 comment="Used only with array datatype. If omitted, the entire array is referenced."/>
 </Sequence>
</Definitions>

An XML representation of a value of that sequence may provide values for each member that is present, using a
representation appropriate to that member's type, and omit optional members that are not present.

<Sequence type="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" value="present-value" />
</Sequence>

Choices in Clause 21 are defined as a choice of named members with specified types.

BACnetClientCOV ::= CHOICE {
 real-increment REAL,
 default-increment NULL
 }

In XML, this choice is also defined as a choice of named members with specified types.

<Definitions>
 <Choice name="0-BACnetClientCOV">
 <Choices>
 <Real name="real-increment"/>
 <Null name="default-increment"/>
 </Choices>
 </Choice>
</Definitions>

An XML representation of a value of that choice indicates which member is chosen and gives a value for it.

<Choice type="0-BACnetClientCOV">
 <Real name="real-increment" value="75.0" />
</Choice>

Variable length collections of identical members are defined in Clause 21 using the SEQUENCE OF construct.

BACnetDailySchedule ::= SEQUENCE {
 day-schedule [0] SEQUENCE OF BACnetTimeValue
 }

In XML, this collection is represented by the SequenceOf element which takes a 'memberType' attribute.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 965

<Definitions>
 <Sequence name="0-BACnetDailySchedule">
 <SequenceOf name="day-schedule" contextTag="0" memberType="0-BACnetTimeValue"/>
 </Sequence>
</Definitions>

An XML representation of a value of that SEQUENCE OF provides a collection of unnamed members of the appropriate
type.

<Sequence type="0-BACnetDailySchedule ">
 <SequenceOf name="day-schedule">
 <Sequence>
 <Time name="time" value="08:00:00.00"/>
 <Unsigned name="value" value="1"/>
 </Sequence>
 <Sequence>
 <Time name="time" value="15:00:00.00"/>
 <Unsigned name="value" value="0"/>
 </Sequence>
 </SequenceOf>
</Sequence>

Q.2 Document Structure

The XML elements and attributes defined in this annex may be used for a variety of purposes and are always enclosed in a
<CSML> element.

Q.2.1 <CSML>

The XML syntax defined by this annex is enclosed in the element <CSML> ("Control Systems Modeling Language") that
has a single optional attribute, 'defaultLocale', and an xml namespace of "http://www.bacnet.org/CSML/1.0".

 The valid child elements of <CSML> are any number and combination of the <Definitions> element and the data elements
<Any>, <Array>, <BitString>, <Boolean>, <Choice>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>,
<Enumerated>, <Integer>, <List>, <Null>, <Object>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>,
<Sequence>, <SequenceOf>, <String>, <Time>, <TimePattern>, <Unsigned>, and <WeekNDay>, all described elsewhere in
this annex.

Q.2.1.1 'defaultLocale'

This optional attribute of <CSML>, of type xs:language, specifies the locale (language plus optional country tag) that
becomes the "default locale" for the enclosed elements. All human language data in the enclosed elements is for the default
locale unless otherwise indicated.

If this attribute is not present, then the default locale for the document remains unspecified. In this case, the interpretation of
any human language content is a local matter, and the use of the 'locale' attribute to specify alternate locales is not permitted
elsewhere in the document.

Q.2.1.2 <Definitions>

This optional child element of <CSML> provides the "definition context" as used in this annex. There may be multiple
<Definitions> elements under a <CSML> element and these definitions may appear in any position and in any order, with the
only restriction that data types shall be defined before they are used.

One of the fundamental functions of this XML syntax is to define new data structures. Child elements of <Definitions>
provide named definitions that are globally available for use as type definitions for instances, or to be extended by other
definitions.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

966 ANSI/ASHRAE Standard 135-2012

The valid child elements of <Definitions> are any number and combination of the data elements <Any>, <Array>,
<BitString>, <Boolean>, <Choice>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>,
<Integer>, <List>, <Null>, <Object>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>,
<SequenceOf>, <String>, <Time>, <TimePattern>, <Unsigned>, and <WeekNDay>, all described elsewhere in this annex.

For example, the following <Sequence> element creates a globally available definition for "0-BACnetAddress" by enclosing
the <Sequence> element within the <Definitions> element.

<Definitions>
 <Sequence name="0-BACnetAddress">
 <Unsigned name="network-number"/>
 <OctetString name="mac-address"/>
 </Sequence>
</Definitions>

The following represents an instance of that <Sequence> that refers to its definition using the 'type' attribute.

<Sequence type="0-BACnetAddress">
 <Unsigned name="network-number" value="888" />
 <OctetString name="mac-address" value="AC101801BAC0" />
</Sequence>

Q.3 Expressing BACnet Datatypes in XML

BACnet data is expressed in XML using the data elements <Any>, <Array>, <BitString>, <Boolean>, <Choice>, <Date>,
<DatePattern>, <DateTime>, <DateTimePatern>, <Double>, <Enumerated>, <Integer>, <List>, <Null>, <ObjectIdentifier>,
<ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>, <TimePattern>,
<Unsigned>, and <WeekNDay>.

While no two datatypes are the same, the various types do have many things in common. The characteristics that are common
to all datatypes are described in Clauses Q.3.1 and Q.3.2; the characteristics that are common to groups of datatypes are
described in Clauses Q.3.3 through Q.3.10; and finally, the characteristics of the individual datatypes are described in Clauses
Q.3.11 and Q.3.12.

Q.3.1 Common Attributes

All BACnet data elements share a common set of optional attributes. In addition to the common attributes described here,
each primitive data element may also define a specific set of required or optional attributes of its own. This is done in
individual clauses that define those data elements.

Q.3.1.1 'name'

This optional attribute, of type xs:string, provides a name for the element. A name may or may not be required, based on the
element's context. For example, a name is required for definitions, and for <Sequence>, <Choice>, and <Object> members,
but not for <Array>, <List>, and <SequenceOf> members. When used in a definition context, the 'name' provides a globally
unique name for the defined type, which other elements may refer to by using the 'type', 'extends', or 'overlays' attributes.

As systems change over time, it is expected that the definitions of types will change. Versioning of a type can be
accomplished within the 'name' attribute of an element. The name should be prefixed with the vendor ID of the implementor
followed by a hyphen character. A suffix may be added to indicate newer definitions. The content of the suffix is a local
matter.

The allowed string values for 'name' attributes are restricted and shall conform to the limitations of a "node-identifier" as
described in Clause N.2. The semicolon character shall be used to delimit names in a list, such as in the 'requiredWith'
attribute in Clause Q.3.1.12.

For example, the 'name' attribute is used below to define the type name "0-BACnetDeviceObjectReference" and also to define
the names of the two members. Note that in this example the name uses the ASHRAE vendor identifier.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 967

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true" />
 <ObjectIdentifier name="objectIdentifier" contextTag="1" />
 </Sequence>
</Definitions>

An XML representation of an instance of that type assigns values to the members by identifying the member by its name.
Optional elements that do not have a value are simply omitted from the XML.

<Sequence type="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="objectIdentifier" value="analog-input,0" />
</Sequence>

Q.3.1.2 'type'

This optional attribute, of type xs:string, indicates the type of the element when that element is an instance of a previously
defined type.

This is required only in contexts that cannot otherwise determine the type unambiguously. For example, if an instance of a
<Sequence> is explicitly given a 'type' attribute, then the types of its members are known and the 'type' attribute is not
required on the members. If present in this case, however, it shall be exactly equal to the type specified for that member in its
definition, unless the defined type is <Any>, in which case it is limited to the types allowed by the definition for the <Any>.
Conversely, if the definition is <Any>, an instance shall always specify the type if an explicit type is known.

See Clause Q.5 for further description of the use and rules for the 'type' attribute.

Q.3.1.3 'extends'

This optional attribute, of type xs:string, indicates the name of the existing defined type that is being extended by or within a
new definition. If the new definition is not making any structural changes, then the 'type' attribute shall be used rather than
the 'extends' attribute. See the description of the 'type' attribute for more information on this distinction.

The XML element type of the existing definition shall match the new definition with the exception that, if the existing
definition is <Any>, then the new definition can be of any type.

See Clause Q.5 for further description of the use and rules for the 'extends' attribute.

Q.3.1.4 'overlays'

This optional attribute, of type xs:string, indicates the name of an existing type that is being augmented with extra metadata.
It is used instead of the 'type' attribute to identify the existing type. It is used for elements in the <Definitions> section but
does not create a new definition and cannot make any structural changes; therefore, the 'name', and 'extends' attributes are not
used either.

The XML element type of the existing definition shall match the overlay element type.

A likely use for the "overlays" attribute could be to provide additional localization information to existing type definitions
(e.g., translation information made available in a separate "language pack" file).

For example, the following provides Spanish display names for the members of the 0-BACnetDeviceObjectReference type,
which was defined elsewhere.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

968 ANSI/ASHRAE Standard 135-2012

<Definitions>
 <Sequence overlays="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier">
 <DisplayName locale="es">Identificador del Dispositivo</DisplayName>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier">
 <DisplayName locale="es">Identificador del Objeto</DisplayName>
 </ObjectIdentifier>
 </Sequence>
</Definitions>

Q.3.1.5 'displayName'

This optional attribute, of type xs:string, provides a brief human-readable text to associate with the value of an element. This
is intended to be a short descriptive identifier (approximately 30 characters or less) for this data element usable for human
interface displays like dialog boxes and menus. The text consists of a single line of plain printable characters with no
formatting markup. Because the XML representation may wrap and indent attribute values, all contiguous whitespace should
be collapsed into a single space for display. The text provided in the "displayName" attribute is in the default locale. The
<DisplayName> child element is used to provide display names in alternate locales.

The default value for this attribute is the value of the 'name' attribute, or "" (empty string) if no 'name' attribute is present.

For example, in the following, the default locale is set to "en", so the 'displayName' attribute provides the English display
names, and <DisplayName> child elements are used to provide display names for other locales.

<CSML defaultLocale="en">
 <Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" displayName="Device Identifier">
 <DisplayName locale="es">Identificador del Dispositivo</DisplayName>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier" displayName="Object Identifier">
 <DisplayName locale="es">Identificador del Objeto</DisplayName>
 </ObjectIdentifier>
 </Sequence>
 </Definitions>
<CSML>

Q.3.1.6 'description'

This optional attribute, of type xs:string, provides a human readable description of an element. This is intended to be a
reasonably complete description of the purpose or use of an element, but does not provide for any "rich text" formatting
capabilities. It could be usable as "hover text", "tool tip" or "pop-up help". The text consists of plain printable characters with
no formatting markup or line breaks. Because the XML representation may wrap and indent attribute values, all contiguous
whitespace should be collapsed into a single space for display. The text provided in the 'description' attribute is in the default
locale. The <Description> child element is used to provide descriptions in alternate locales. Full "rich text" formatted
documentation is provided by the <Documentation> child element.

The default value for this is "" (empty string).

For example, in the following, the default locale is set to "en", so the 'description' attribute provides the English descriptions,
and <Description> child elements are used to provide descriptions for other locales.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 969

<CSML defaultLocale="en">
 <Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" description="The unique device identifier of the
 device containing the referenced object">
 <Description locale="es">El identificador de dispositivo único del dispositivo que contiene
 el objeto referido</Description>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier" description="The object identifier of the referenced
 object">
 <Description locale="es">El identificador del objeto del objeto referido</Description>
 </ObjectIdentifier>
 </Sequence>
 </Definitions>
<CSML>

Q.3.1.7 'comment'
This optional attribute, of type xs:string, provides a human-readable comment for an element. This is usually a technical note
intended for readers of the XML itself, rather than users of the data, as DisplayName, Description, and Documentation are
intended. Due to its limited audience, it is not localizable.

The default value for this is "" (empty string).

For example, in the following, an internal comment copied from Clause 21 is intended for readers of the XML, not user
interfaces.

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier" />
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true"
 comment="Used only with array datatype. If omitted, the entire array is referenced."/>
 </Sequence>
</Definitions>

Q.3.1.8 'writable'

This optional attribute, of type xs:boolean, specifies whether the data value is generally expected to be writable. Security
concerns or temporary modes of operations may make the data value not writable at any given time, but this attribute
represents the general case.

The default value for this attribute is "false".

The following example declares a property of the File Object to be writable.

<Definitions>
 <Object name="0-FileObject">
 …
 <Boolean name="archive" writable="true" … />
 …
 </Object >
</Definitions>

Q.3.1.9 'readable'

This optional attribute, of type xs:boolean, specifies whether the data value is generally expected to be readable using simple
value reading services (e.g., ReadProperty or getValue()). Security concerns or temporary modes of operations may make the
data value not readable at any given time, but this attribute represents the general case. An example where this is "false" is
the Log_Buffer property of the Trend Log object.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

970 ANSI/ASHRAE Standard 135-2012

The default value for this attribute is "true".

This example shows that, while rare, some properties are not readable using the simple-value reading services.

<Definitions>
 <Object name="0-TrendLogObject">
 …
 <List name="log-buffer" readable="false" … />
 …
 </Object >
</Definitions>

Q.3.1.10 'commandable'

This optional attribute, of type xs:boolean, specifies whether the data value is commandable using BACnet's command
prioritization mechanism described in Clause 19. While "commandable" often implies "writable", the two attributes
nonetheless have independent values. It is possible for a definition to declare that commandable="true" and writable="false",
meaning that, by default, the property is not externally writable, at any priority, but is nevertheless commandable in nature.

The default value for this attribute is "false".

The following example declares that the Present Value of an Analog Output Object is writable and commandable.

<Definitions>
 <Object name="0-AnalogOutputObject">
 …
 <Real name="present-value" writable="true" commandable="true" … />
 …
 </Object >
</Definitions>

The following example shows a present value that is not externally writable but is nevertheless commandable and, as such,
has a priority array and default value.

<Definitions>
 <Object name="999-InternalScheduleResult">
 …
 <Real name="present-value" writable="false" commandable="true" … />
 <Array name="priority-array" … />
 <Real name="default-value" … />
 …
 </Object >
</Definitions>

Q.3.1.11 'associatedWith'

This optional attribute, of type xs:string, indicates a peer element that this element is associated with. The value of this
attribute is equal to the value of the 'name' attribute of the referenced peer element. This is primarily for human user interface
purposes, to define hints for grouping related elements or to form a display hierarchy from an otherwise flat list of peers.
Only one such relationship can be formed for a given element, so that it is not possible to define multiple associations that
could result in a grouping conflict or the display of an element in more than one place.

This attribute appears on the dependent or subservient element(s) in a relationship, if such a relationship exists. For example,
if there is a many-to-one relationship, then the 'associatedWith' attribute is present on the "many" elements and contains the
name of the "one" element. If only two elements are involved, the one that is seen as secondary or dependent is given the
'associatedWith' attribute, which refers to the name of the primary element.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 971

An example is a commandable property in a BACnet object. The Priority_Array and Relinquish_Default properties both have
an 'associatedWith' attribute which refers to the name of the Present_Value property.

The choice of a "primary" element may be seem arbitrary in some groups of peers that have no clear hierarchy or dependency
relationship. However, the choice of a primary element is nonetheless important because it may influence a user interface to
put that selected element at the top of the list of associated peers. For example, all of the properties associated with intrinsic
alarming are equal peers, but they may wish to be "associated with" the Event_Enable property as the "primary" since it
exists for all algorithms.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers of
this XML syntax should be designed defensively to deal with malformed or circular relationships.

The association created by 'associatedWith' is distinct from 'requiredWith'. Elements that are "associated" with each other are
nonetheless still independently optional, whereas 'requiredWith' defines constraints to optionality.

The default value for this attribute is "" (empty string), which means that there is no association.

The following example associates the Priority Array property with the commandable Present Value property.

<Definitions>
 <Object name="0-AnalogOutputObject">
 …
 <Array name="priority-array" associatedWith="present-value" … />
 …
 </Object>
</Definitions>

Q.3.1.12 'requiredWith'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is tied
to. When any of the named peer elements is present, then the current element will be present as well. No implication is made
about the reverse situation - if all of the peer elements are absent, the current element may be present or absent for other
reasons. The value of this attribute is equal to a semicolon-separated concatenation of the values of the 'name' attributes of the
referenced peer elements.

One of the purposes of this attribute is to allow clients to avoid attempts to read the "dependent" optional elements if the
"primary" optional element is known to be absent.

An example is the Inactive_Text property indicating that it is 'requiredWith' the Active_Text property.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers of
this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of two optional properties so that if either is present then they are both present.

<Definitions>
 <Object name="0-BinaryInputObject">
 …
 <String name="inactive-text" optional="true" requiredWith="active-text" … />
 <String name="active-text" optional="true" requiredWith="inactive-text" … />
 …
 </Object>
</Definitions>

The following example connects the presence of three optional properties so that if any is present, then they are all present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

972 ANSI/ASHRAE Standard 135-2012

<Definitions>
 <Object name="0-BinaryInputObject">
 …
 <DateTime name="change-of-state-time" optional="true"
 requiredWith="change-of-state-count,time-of-state-count-reset" … />
 <Unsigned name="change-of-state-count" optional="true"
 requiredWith="change-of-state-time,time-of-state-count-reset" … />
 <DateTime name="time-of-state-count-reset" optional="true"
 requiredWith="change-of-state-time,change-of-state-count" … />
 …
 </Object>
</Definitions>

Q.3.1.13 'requiredWithout'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is tied
to. When any of the named peer elements is absent, then the current element will be present. No implication is made about
the reverse situation - if all of the peer elements are present, the current element may be present or absent for other reasons.
The value of this attribute is equal to a semicolon-separated concatenation of the values of the 'name' attributes of the
referenced peer elements.

One of the purposes of this attribute is to allow clients to know that, if an optional element is absent, then another is available,
often as an alternative for a related purpose.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers of
this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of two optional properties so that if either is absent then the other shall be
present.

<Definitions>
 <Object name="0-ScheduleObject">
 …
 <String name="weekly-schedule" optional="true" requiredWithout="exception-schedule" … />
 <String name="exception-schedule" optional="true" requiredWithout="weekly-schedule" … />
 …
 </Object>
</Definitions>

Q.3.1.14 'notPresentWith'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is tied to
in a negative way. When any of the named peer elements is present, then the current element will be absent. No implication is
made about the reverse situation. If all of the peer elements are absent, the current element may be present or absent for other
reasons. The value of this attribute is equal to a semicolon-separated concatenation of the values of the 'name' attributes of the
referenced peer elements.

This attribute usually appears on the dependent element(s) in a relationship. For example, if there is a many-to-one
relationship, then the 'notPresentWith' attribute is present on the "many" elements and contains the name of the "one"
element. If only two elements are involved, then the one that is seen as dependent is given the 'notPresentWith' attribute,
which refers to the name of the primary element. If neither is dependent, then the choice of primary is arbitrary, or they may
each refer to each other.

One of the purposes of this attribute is to allow clients to know which sets of properties are mutually exclusive and to thus
avoid attempts to read the "dependent" optional elements if the "primary" optional element is known to be present.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 973

Since XML data exchanged between systems is often of dynamic in origin and thus not certifiably correct ahead of time,
consumers of this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of three optional properties where two are present as a pair but are mutually
exclusive with a third.

<Definitions>
 <Object name="999-ExampleObject">
 …
 <Real name="high-limit" optional="true" requiredWith="low-limit" notPresentWith="limits" … />
 <Real name="low-limit" optional="true" requiredWith="high-limit" notPresentWith="limits" …/>
 <Sequence name="limits" optional="true" notPresentWith="high-limit;low-limit" … />
 …
 </Object>
</Definitions>

Q.3.1.15 'writableWhen'

This optional attribute, of type xs:restriction of xs:string, indicates the conditions under which the data value may be writable.
The choices for the value and their meanings are defined in the following table.

Table Q-1. Standard Rules for Writability Requirements
Attribute Value Meaning

"out-of-service" When Out_Of_Service is TRUE
"commandable" When this property is commandable
"other" Non-standard requirement. Descriptive text should be provided by

<WritableWhen> elements

The default value for this attribute is "" (empty string) unless one or more <WritableWhen> child elements is specified, in
which case, the default value is "other". Therefore, a <WritableWhen> child element may be present without requiring the
presence of the 'writableWhen' attribute. However, if a value for the 'writableWhen' attribute is specified and is not equal to
"other", then <WritableWhen> child elements are not inherited and no <WritableWhen> child elements shall be specified in
the same context.

When this attribute is equal to "other", optional <WritableWhen> elements can be used to provide localized text to describe
the nonstandard condition.

A common case in Clause 12 objects is the requirement that Present Value be writable when Out Of Service is true.

<Definitions>
 <Object name="0-AnalogInputObject">
 …
 <Real name="present-value" writableWhen="out-of-service" … />
 …
 </Object>
</Definitions>

Q.3.1.16 'requiredWhen'

This optional attribute, of type xs:restriction of xs:string, indicates the conditions under which optional elements shall be
present. The choices for the value and their meanings are defined in the following table.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

974 ANSI/ASHRAE Standard 135-2012

Table Q-2. Standard Rules for Presence Requirement
Attribute Value Meaning

"intrinsic-supported" If the object supports intrinsic reporting
"cov-notify-supported" If the object supports COV reporting
"cov-subscribe-supported" If the device supports execution of either the SubscribeCOV or

SubscribeCOVProperty service
"present-value-commandable" If Present_Value is commandable
"segmentation-supported" If Segmentation of any kind is supported
"virtual-terminal-supported" If Virtual Terminal services are supported
"time-sync-execution" If the device supports the execution of the TimeSynchronization service
"utc-time-sync-execution" If the device supports the execution of the UTCTimeSynchronization

service
"time-master" If the device is a Time Master
"backup-restore-supported" If the device supports the backup and restore procedures
"slave-proxy-supported" If the device is capable of being a Slave-Proxy device
"slave-discovery-supported" If the device is capable of being a Slave-Proxy device that implements

automatic discovery of slaves
"other" Non-standard requirement. Descriptive text should be provided by

<RequiredWhen> elements

The default value for this attribute is "" (empty string) unless one or more <RequiredWhen> child elements is specified, in
which case, the default value is "other". Therefore, a <RequiredWhen> child element may be present without requiring the
presence of the 'requiredWhen' attribute. However, if a value for the 'requiredWhen' attribute is specified and is not equal to
"other", then <RequiredWhen> child elements are not inherited and no <RequiredWhen> child elements shall be specified in
the same context.

When this attribute is equal to "other", optional <RequiredWhen> elements can be used to provide localized text to describe
the nonstandard condition.

Many properties in Clause 12 objects have their presence dependent on a standard condition.

<Definitions>
 <Object name="0-DeviceObject">
 …
 <Unsigned name="max-segments-accepted" optional="true"
 requiredWhen="segmentation-supported" … />
 …
 </Object>
</Definitions>

Q.3.1.17 'writeEffective'

This optional attribute, of type xs:restriction of xs:string, is an indication of when a write to this value will be effective. The
choices are: "immediately", "delayed", "on-program-restart", and "on-device-restart". The actual time delay associated with
the "delayed" case is not specified, but it is nonetheless an indication that the effect of the write should not be expected to be
immediate.

The default value for this attribute is "immediately".

This example shows that a setting controlling how much memory is allocated to audit logs is effective only after the next
device restart.

<Definitions>
 <Object name="999-MemoryControlObject ">
 …
 <Unsigned name="max-audit-log-space" units="percent" writeEffective="on-device-restart" … />
 …
 </Object>
</Definitions>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 975

Q.3.1.18 'optional'

This optional attribute, of type xs:boolean, used only in definitions, indicates that this element may not be present in an
instance of this definition. This attribute can only be set to "true" when an element is initially defined. Subsequent definitions
that inherit the element may set the value to "false" if the element will always be present in instances of that new definition,
or they may set the 'absent' attribute to "true" to indicate that the element will never be present in an instance of that new
definition.

An example case for this is where the standard definition of a BACnet Analog Input declares the Description property to be
optional by setting the 'optional' attribute to "true", but a specific vendor's extension to that type declares that every instance
will have a Description property present by setting the 'optional' attribute to "false", or it declares that every instance will
never have a Description property present by setting the 'absent' attribute to "true".

The default value of this attribute is "false".

See the description of the 'absent' attribute for an example of the interaction between the 'optional' and 'absent' attributes.

Q.3.1.19 'absent'

This optional attribute, of type xs:boolean, used only in definitions, indicates that an optional element will not be present in
instances of that definition.

The default value of this attribute is "false".

An example of the use of this attribute is where the standard definition for BACnetDeviceObjectReference has the
'deviceIdentifier' field marked as optional, but a specific vendor's device does not support references outside the device, so it
can derive a new definition from the standard definition and set the 'absent' attribute on the 'deviceIdentifier' field to be "true"
so that clients of that device do not try to write a deviceIdentifier to it.

In a standard definitions file:

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" optional="true" … />
 <ObjectIdentifier name="objectIdentifier" optional="true" … />
 </Sequence>
</Definitions>

In a vendor-specific file:

<Definitions>
 <Sequence name="999-LimitedDeviceObjectReference" extends="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" absent="true" />
 </Sequence>
</Definitions>

Q.3.1.20 'variability'

This optional attribute, of type xs:restriction of xs:string, indicates when and how the value of this element is expected to
change over time. The choices are: "constant", "configuration-setting", "operation-setting", and "status". A value marked as
"constant" is expected to not change, so clients can just read it once or use the value provided in XML. Values marked as
"configuration-setting" are expected to be non-volatile settings that are made only during configuration or commissioning.
Values marked as "operation-setting" are user settings like setpoints, alarm limit, etc. that are expected to change relatively
infrequently, whether by operator or programmed control events. Values marked "status" are potentially continuously
variable values representing the live status of calculated or measured quantities.

The default value of this attribute is undefined, meaning that the variability of the element is unknown.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

976 ANSI/ASHRAE Standard 135-2012

In this example, the definition of an object indicates that the "max-audit-log-space" property is a value that is intended to be
set when the device is commissioned, not as an on-going part of its operation, and therefore changes infrequently. It also
indicates that the "audit-log-alarm-limit" is expected to be changed by an outside entity occasionally during the course of
operation of the device, and that the "audit-log-space-used" is a status value that changes by itself at any time.

<Definitions>
 <Object name="999-MemoryControlObject ">
 …
 <Unsigned name="max-audit-log-space" variability="configuration-setting" … />
 <Unsigned name="audit-log-alarm-limit" variability="operation-setting" … />
 <Unsigned name="audit-log-space-used" variability="status" … />
 …
 </Object>
</Definitions>

Q.3.1.21 'volatility'

This optional attribute, of type xs:restriction of xs:string, indicates how values that are written are retained. The choices are
"volatile", "nonvolatile", and "nonvolatile-limited-writes". The "volatile" case indicates that a written value may be forgotten
over device resets and power failures. The "nonvolatile" case indicates that values are intended to survive device resets and
power failures. And the "nonvolatile-limited-writes" is an extension to "nonvolatile" that indicates that the value is written to
a form of memory that has a limited number of write cycles before wearing out, indicating to clients that this value should not
be continuously changed.

The default value of this attribute is undefined, meaning that the volatility of the element is unknown.

In this example, the definition of an object indicates that the "output-percent" property is a volatile commanded value that
will likely not survive a device reset or power failure and should therefore be checked or refreshed periodically as needed. It
also indicates that the "alarm-threshold" should not be continuously written to as a part of normal operation.

<Definitions>
 <Object name="999-FanControlObject ">
 …
 <Unsigned name="output-percent" volatility="volatile" … />
 <Unsigned name="alarm-threshold" volatility="nonvolatile-limited-writes" … />
 …
 </Object>
</Definitions>

Q.3.1.22 'contextTag'

This optional attribute, of type xs: nonNegativeInteger, indicates the context tag that should be used when encoding this
element in ASN.1 according to the rules in Clause 20. If this attribute is absent, then the element is "application tagged"
according to the rules in Clause 20.

If this attribute is absent, then the element is "application tagged" when encoding in ASN.1.

For example, because the deviceIdentifier field of the BACnetDeviceObjectReference construct is optional, the fields are
context tagged.

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true" />
 <ObjectIdentifier name="objectIdentifier" contextTag="1" />
 </Sequence>
</Definitions>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 977

Q.3.1.23 'propertyIdentifier'

This optional attribute, of type xs:nonNegativeInteger, indicates the property identifier that is to be used when accessing this
element's value as a BACnet property.

If this attribute is absent, then the element is not intended to be accessed as a BACnet property.

The following example declares that the Present_Value of an Analog Output object is accessible with property identifier 85.

<Definitions>
 <Object name="0-AnalogOutputObject">
 …
 <Real name="present-value" propertyIdentifier="85" … />
 …
 </Object >
</Definitions>

Q.3.2 Common Child Elements

All BACnet data elements share a common set of optional child elements. In addition to the common elements described
here, each primitive data element may also define a specific set of required or optional child elements of its own. This is done
in individual clauses that define those data elements.

Q.3.2.1 <DisplayName>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'displayName' attribute. This
element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value. Display names in
the default locale shall use the 'displayName' attribute. The <DisplayName> element is therefore only for locales different
from the default. The text consists of plain printable characters with no formatting markup or line breaks.

See the description for the 'displayName' attribute for an example of the <DisplayName> element.

Q.3.2.2 <Description>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'description' attribute. This
element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value. Descriptions in the
default locale shall use the 'description' attribute. The <Description> element is therefore only for locales different from the
default. The text consists of plain printable characters with no formatting markup or line breaks.

See the description for the 'description' attribute for an example of the <Description> element.

Q.3.2.3 <Documentation>

This optional child element, of type "mixed content" (plain text and XHTML markup), is used to provide formatted "rich
text" documentation on the purpose and use of an element. This element has a optional 'locale' attribute, of type xs:language,
that identifies the locale for the text. Since there is no attribute form for the <Documentation> information, the 'locale'
attribute is optional for this element; its absence indicates that the text is for the default locale. The "mixed content" type
allows plain text combined with markup consisting of well-formed XML elements conforming to the XHTML namespace
"http://www.w3.org/1999/xhtml".

The following example shows some formatted text in a <Documentation> element.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

978 ANSI/ASHRAE Standard 135-2012

<Definitions>
 <Object name="999-ExampleObject">
 <Real name="a-good-property" … >
 <Documentation locale="en">This property documentation contains bold words
 and is spread over several lines (all <i>white space</i> in XHTML is collapsed to a
 single space)</Documentation>
 </Real>
 </Object >
</Definitions>

Q.3.2.4 <WritableWhen>

This optional child element, of type xs:string, is used to provide localized display text for the writability condition when the
'writableWhen' attribute has the value of "other". This element has an optional 'locale' attribute, of type xs:language, that
identifies the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale. While the
'writableWhen' attribute is an enumeration of fixed strings as defined by this standard, the <WritableWhen> element contains
variable text consisting of plain printable characters with no formatting markup or line breaks.

For example, if the writability condition is not one of the standard conditions, then the 'writableWhen' attribute has the value
of "other" and the <WritableWhen> elements provide the display text (the default locale in this example is "en").

<Unsigned name="trendMemoryAllocation" writableWhen="other">
 <WritableWhen>The Device object's Device Status property is "download required"</WritableWhen>
</Unsigned>

If a <WritableWhen> element is present in a context without the 'writableWhen' attribute, the 'writableWhen' attribute is
implicitly assigned the value "other".

For example, the following shows that it is not necessary to include writableWhen="other" in a context with
<WritableWhen> elements.

<Unsigned name="aux-input">
 <WritableWhen>The "Aux Disable" property is TRUE</WritableWhen>
</Unsigned>

Q.3.2.5 <RequiredWhen>

This optional child element, of type xs:string, is used to provide localized display text for the presence requirements when the
'requiredWhen' attribute has the value of "other". This element has an optional 'locale' attribute, of type xs:language, that
identifies the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale. While the
'requiredWhen' attribute is an enumeration of fixed strings as defined by this standard, the <RequiredWhen> element contains
variable text consisting of plain printable characters with no formatting markup or line breaks.

For example, if the presence requirement is not one of the standard conditions, then the 'requiredWhen' attribute has the value
of "other" and the <RequiredWhen> elements provide the display text (the default locale in this example is "en").

<Unsigned name="auxbaud" optional="true" requiredWhen="other">
 <RequiredWhen>The device is configured as a gateway</RequiredWhen>
</Unsigned>

If a <RequiredWhen> element is present in a context without the 'requiredWhen' attribute, then the 'requiredWhen' attribute is
implicitly assigned the value "other".

For example, the following shows that it is not necessary to include requiredWhen="other" in a context with
<RequiredWhen> elements.

<Unsigned name="aux-limit">
 <RequiredWhen>The object is configured to supports aux input<RequiredWhen>
</Unsigned>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 979

Q.3.2.6 <Extensions>

This optional child element is used to hold extra information that is not directly supported by the elements and attributes
defined by this annex. Each extended piece of information, represented as child elements of the <Extensions> element, is
identified by its 'name' attribute. Extended data is not restricted in type or depth.

There are no requirements for processing extensions. Consumers of the XML defined in this annex are allowed to consume
extensions that are known to the consumer and to ignore the rest.

Extension mechanisms are described more fully in Clause Q.7.

Q.3.3 Named Values

Most primitive data elements can have special values that are represented by textual identifiers rather than, or in addition to,
their raw value form. Some of these values may have special meanings and can actually be outside the normal restricted
range of values. For example, a number normally restricted to a range of 0 to 100 may use 255 as a special value to indicate
"invalid" or "unused".

In all cases, the mapping from the underlying value form to the human presentation form is done by an optional
<NamedValues> child element, the children of which provide the individual mappings. Note that the main element's 'value'
attribute remains appropriately formatted for its datatype, and, with the exception of the <Enumerated> element, does not
become equal to the 'name' attribute of the named value. Rather, it simply matches the 'value' attribute of a named value. The
<Enumerated> element is the exception to this because it's 'value' attribute can be formatted to match either the string 'name'
of a named value or a named value's numeric 'value' attribute.

Q.3.3.1 <NamedValues>

The container element for the definition of named values is <NamedValues>. The types of the child elements of
<NamedValues> are appropriate to the mapping that is required and are described in the table below.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

980 ANSI/ASHRAE Standard 135-2012

Table Q-3. Types and Meanings of the Child Elements of <NamedValues>
Data Element Type Child Element

Type
Meaning of Child Elements

<Enumerated> <Unsigned> The value of the <Unsigned> element provides the
numeric value for the encoded enumeration choice,
and the 'displayName' attribute can be used to
provide a textual presentation of the enumeration
choice. If a value is not provided, the next
available value is automatically assigned, starting
at 0, in the order of the child elements in the XML.

<Boolean> <Boolean> Two <Boolean> elements, one with a value of
"true" and the other with a value of "false", may be
use to provide a 'displayName' attribute that can be
used as an alternate textual presentation the
underlying values of "true" and "false".

<BitString>
<Date>
<DatePattern>
<DateTime>
<DateTimePattern>
<Double>
<Integer>
<ObjectIdentifier>
<ObjectIdentifierPattern>
<OctetString>
<Real>
<String>
<Time>
<TimePattern>
<Unsigned>
<WeekNDay>

(same as enclosing
element)

The child elements provide the definition of special
values. These values may be outside the range of
valid values created by 'maximum' and 'minimum'
and 'resolution' attributes.

The 'displayName' attributes of these special values
may be used in place of the actual underlying
value, if desired and appropriate, or this
information may simply be used to allow the
special values to be considered valid even though
they are otherwise outside the valid range.

An example <Enumerated> shows the use of <Unsigned> child elements to define textual names for the enumerated values
states and assign the equivalent numeric value.

<Enumerated name="0-BACnetObjectType" minimum="128" maximum="1023" … >
 <NamedValues>
 <Unsigned name="accumulator" value="23" … />
 <Unsigned name="analog-input" value="1" … />
 …
 <Unsigned name="trend-log" value="20" … />
 </NamedValues>
</Enumerated>

An example <Boolean> shows the use of <Boolean> child elements to assign alternate text for the boolean states "true" and
"false". Also shown is an example usage of the <NamedValues>.

<Boolean name="issueConfirmedNotifications" … >
 <NamedValues>
 <Boolean name="confirmed" value="true" displayName="Confirmed" … />
 <Boolean name="unconfirmed" value="false" displayName="Unconfirmed" … />
 </NamedValues>
</Boolean>

<Boolean name="issueConfirmedNotifications" value="true"…>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 981

Note that in the example of an instance value immediately above, the actual value of the
'issueConfirmedNotifications'<Boolean> is not "confirmed". Rather the value is "true", since its type is xs:boolean. However,
the true value may be mapped by a Human Interface to "Confirmed" for display purposes. The <Boolean> elements in the
<NamedValues> are given names for inheritance and overlay reasons, not for use as the value of the main <Boolean>. The
<NamedValues> element can only appear in a definition context because adding new named values constitutes a structural
change to the data. When inheriting a <NamedValues> element from a definition, the newly specified child elements are
logically added to the end of the list of existing child elements of the inherited <NamedValues>. The order of the child
elements is significant since it is used for auto numbering. See Clause Q.5 for more on definitions and inheritance.

While likely rare, named values can be used for bit strings to represent specific combinations of bits. As always, named
values are for human interface purposes and do not affect the 'value' attribute of an instance of the BitString.

<Definitions>
 <BitString name="999-WidgetStatusFlags" length="2">
 <NamedBits>
 <Bit bit="0" name="too-hot"/>
 <Bit bit="1" name="too-cold"/>
 <NamedBits>
 <NamedValues>
 <BitString name="ok" displayName="All is well" value="">
 <BitString name="error" displayName="Confused" value="too-hot;too-cold">
 <NamedValues>
 </BitString>
</Definitions>

When primitive data elements are used as child elements of <NamedValues>, there are optional attributes,
'displayNameForWriting', 'notForWriting' and 'notForReading', and an optional child element, <DisplayNameForWriting>,
that are available to them to provide extra information specifically for their use in the context of <NamedValues>. These
attributes and this child element have no meaning outside of that context.

Q.3.3.2 'displayNameForWriting'

This optional attribute, of type xs:string, provides an alternate display name for use when the named value is used for writing,
as opposed to when it is presented as a result of reading.

An example of this is an Enumeration representing alarm states where the value zero is presented as "No Alarm" when read,
and "Reset" when written.

The default value of this attribute is the value of the 'displayName' attribute.

In this example, the "false" state has a different presentation when read than it does when written. This can be used to provide
the "adjective for reading, verb for writing" pattern.

<Boolean name="tripwire">
 <NamedValues>
 <Boolean name="tripped" value="true" displayName="Tripped" … />
 <Boolean name="armed" value="false" displayName="Armed" displayNameForWriting="Reset"/>
 </NamedValues>
</Boolean>

Q.3.3.3'notForWriting'

This optional attribute, of type xs:boolean, is an indicator that a special value or a mapped enumeration value is not to be
used for writing. It may appear when read, but an attempt to write it will likely be unsuccessful.

The default value of this attribute is "false".

An example of this is an Enumeration representing alarm states where the value zero is the only value that can be written. In
this case, every child of <NamedValues> other than the one for the value zero is marked as 'notForWriting'.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

982 ANSI/ASHRAE Standard 135-2012

Using the "tripwire" example from the description of the 'displayNameForWriting' attribute , if the "tripped" state is not
allowed to be written, then that fact can be declared by using the 'notForWriting' attribute on the "true" state.

<Boolean name="tripwire">
 <NamedValues>
 <Boolean name="tripped" value="true" displayName="Tripped" notForWriting="true" />
 <Boolean name="armed" value="false" displayName="Armed" displayNameForWriting="Reset"/>
 </NamedValues>
</Boolean>

Q.3.3.4 'notForReading'

This optional attribute, of type xs:boolean, is an indicator that a special value is not to be used when displaying a value as a
result of reading. It may appear as a special writable choice, but the corresponding underlying value should be presented
when read.

The default value of this attribute is "false".

An example of this is an Unsigned value representing the number of records collected, where zero is displayed numerically
along with all other values, but the only value that is writable is a special value named "Clear" which also has the numeric
value of zero but is marked 'notForReading' so that it is only used as a named choice for writing and is not used when the
read value is zero.

<Unsigned name="recordCount" minimumForWriting="0" maximumForWriting="0">
 <NamedValues>
 <!-- this is marked notForReading, so 0 will show as "0" when read -->
 <Unsigned name="clear" value="0" displayNameForWriting="Clear" notForReading="true"/>
 </NamedValues>
</Unsigned>

Q.3.3.5 <DisplayNameForWriting>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'displayNameForWriting'
attribute. This element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value.
Display names for writing in the default locale shall use the 'displayNameForWriting' attribute. The
<DisplayNameForWriting> element is therefore only for locales different from the default.

Q.3.4 Named Bits

A Bit String data element can have a textual representation of its constituent bits. In this case, the mapping from the
underlying bit position value to the human presentation form is done by an optional <NamedBits> child element, the
children of which provide the individual mappings.

Q.3.4.1 <NamedBits>

The container element for the definition of named bits for a <BitString> element is the optional child element <NamedBits>.
The child elements of <NamedBits> are <Bit> elements.

Q.3.4.2 <Bit>

This optional child element of <NamedBits> provides an individual bit definition for the <BitString> data element. It is not
usable by any other data element. The <Bit> element indicates a bit position with the 'bit' attribute, and optionally a bit name
with the 'name' attribute. The 'bit' attribute, of type xs:nonNegativeInteger, is required in initial definitions, and is used to
specify the bit position, with bit 0 being the least significant bit. The 'name' attribute, of type xs:string. is optional and
provides a name for use in referencing the bit by name in the 'value' attribute or the <Value> child element of the
<BitString>. For bits in bit strings defined in the standard, the name shall exactly match the bit name specified in the Clause
21 ASN.1 production for the enclosing datatype.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 983

The following example shows a definition of the BACnetLogStatus bit string. The bits are named, so they may be referenced
by instances of this type. The example instance of this bit string type has two of the bits set.

<Definitions>
 <BitString name="0-BACnetLogStatus" length="3">
 <NamedBits>
 <Bit bit="0" name="log-disabled" displayName="Disabled"/>
 <Bit bit="1" name="buffer-purged" displayName="Purged"/>
 <Bit bit="2" name="log-interrupted" diaplayName="Interrupted"/>
 <NamedBits>
 </BitString>
</Definitions>

<BitString name="logStatus" type="0-BACnetLogStatus" value="buffer-purged,log-interrupted" />

The value of a <BitString> can also be represented in a <Value> child element of the <BitString>. In this case, individual
<Bit> elements are used to indicate which bits are true. The following is equivalent to the preceeding:

<BitString name="logStatus" type="0-BACnetLogStatus">
 <Value>
 <Bit name="buffer-purged"/>
 <Bit name="log-interrupted"/>
 </Value>
</BitString>

An instance cannot add new bits, change bit positions, or exceed the length of its type definition. If an instance of a
<BitString> has no type definition, however, it can use the <Value> element to give names and assign positions to the bits
on-the-fly. Note that in this case, it is required to specify the length because it cannot get the length from its definition.

<BitString name="nodef" length="5">
 <Value>
 <Bit name="high-speed" bit="2"/>
 <Bit name="overheated" bit="4"/>
 </Value>
</BitString>

If it is not necessary or possible to name the individual bits or to refer to an existing definition, a bit string can be represented
numerically in the following fashions with no definition for the bits:

<BitString name="referenced-bitstring" length="3" value="1;2"/>

<BitString name="referenced-bitstring" length="3">
 <Value>
 <Bit bit="1"/>
 <Bit bit="2"/>
 </Value>
</BitString>

Q.3.5 Primitive Values

The primitive data elements, other than <Null>, each have a way to represent their value in XML. Most use only the 'value'
attribute of an appropriate type, but the <String> and <OctetString> also have extended forms of value for large or multi-
locale values.

The primitive data elements <BitString>, <Boolean>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>,
<Enumerated>, <Integer>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <Real>, <String>, <Time>, <TimePattern>,
<Unsigned>, and <WeekNDay> all can specify their values in attribute form as described in this clause. In addition to the
attribute form of value, the data elements <OctetString> and <String> can also specify their values in element form using the
<Value> child element.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

984 ANSI/ASHRAE Standard 135-2012

Q.3.5.1 'value'

This optional attribute, of the type specified in Table Q-4, provides the value for the data element.

Table Q-4. XML Datatype for 'value' Attribute
Data Element 'value' Attribute Type

<Null> n/a
<Boolean> xs:boolean
<Unsigned> xs:nonNegativeInteger
<Integer> xs:integer
<Real> xs:float
<Double> xs:double
<OctetString> xs:hexBinary
<String> xs:string
<BitString> xs:string
<Enumerated> xs:string
<Date> xs:date
<DatePattern> xs:string
<DateTime> xs:dateTime
<DateTimePattern> xs:string
<Time> xs:time
<TimePattern> xs:string
<ObjectIdentifier> xs:string
<ObjectIdentifierPattern> xs:string
<WeekNDay> xs:string

For the <OctetString> element, the 'value' attribute, of type xs:hexBinary, is in hexadecimal format, which is easier to process
both for humans and machines, but is not as succinct as xs:base64Binary for large amounts of data. If a short amount of data
is to be conveyed, the attribute form should be used. However, if a large amount of data is to be conveyed, the optional
<Value> child element, of type xs:base64Binary, should be used. The threshold to select between the two methods is a local
matter. Since the 'value' attribute and the <Value> child element are two ways to specify the same value, they are mutually
exclusive in the same XML context, and when one is present, it overrides the other that may have been inherited.

For the <String> element, the 'value' attribute represents the data value in the default locale. Values in other locales, or values
containing character data unsuitable for XML attributes, are represented using the optional child element <Value>. Since the
'value' attribute and a <Value> child element specifying the default locale are two ways to specify the same value, they are
mutually exclusive in the same XML context, and when one is present, it overrides the other that may have been inherited.

For the <BitString> element, the 'value' attribute represents the concatenation of all bits that are set (equal to true). If a short
amount of data is to be conveyed, the attribute form should be used. However, if a large amount of data is to be conveyed, the
optional <Value> child element should be used. The threshold to select between the two methods is a local matter. Since the
'value' attribute and the <Value> child elements are two ways to specify the same value, they are mutually exclusive in the
same XML context, and when one is present, it overrides the other that may have been inherited.

Q.3.5.2 'unspecifiedValue'

This optional attribute, of type xs:boolean, indicates that a value for a <Date>, <DateTime>, <Time> or <ObjectIdentifier> is
unspecified. For <Date>, <DateTime> and <Time>, this condition is encoded in binary as all octets equal to 255. For
<ObjectIdentifier>, the binary encoding for the type portion is a local matter and the instance portion shall be set to 4194303.

For example, in this pair of date properties, only the start date is specified.

<Date name="start-date" value="2008-06-15" />
<Date name="end-date" unspecifiedValue="true" />

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 985

This attribute applies only to the <Date>, <DateTime>, and <Time> data elements. Its default value is "true" but becomes
"false" when a 'value' attribute is provided.

The 'value' attribute, the <Value> element, and the 'unspecifiedValue' attribute are all mutually exclusive and shall not be
present in the same context. The presence of any one of them in an instance overrides any one that was inherited from a
definition.

Q.3.5.3 'charset'

This optional attribute, of type xs:nonNegativeInteger, describes the character set that was used to encode BACnet character
string data.

This attribute applies only to <String> elements. If not present, then the character set is unknown or undefined. It is used only
for recording the character set encoding used by a BACnet device.

The 'charset' attribute is indivisibly part of the value of the element and is not specified or inherited separately from the 'value'
attribute or the <Value> element. If a 'value' attribute or <Value> element is specified in an instance without a 'charset'
attribute, then the character set reverts to unknown or undefined. The 'charset' attribute shall not be specified without also
specifying the 'value' attribute or the <Value> element in the same context.

Q.3.5.4 'codepage'

This optional attribute, of type xs:nonNegativeInteger, describes the code page that was used to encode BACnet character
string data. This attribute has meaning only when the 'charset' attribute has the value "dbcs". This attribute applies only to the
string value in the default locale.

This attribute applies only to <String> elements and shall be present if and only if the 'charset' attribute is present and has the
value "dbcs".

The 'codepage' attribute is indivisibly part of the value of the element and is not specified or inherited separately from the
'value' attribute or the <Value> element. If a 'value' attribute or <Value> element is specified in an instance without a
'codepage' attribute, or the 'charset' attribute is present and does not have the values of "dbcs", then the 'codepage' attribute
reverts to undefined. The 'codepage' attribute shall not be specified without also specifying the 'value' attribute or the
<Value> element in the same context.

Q.3.5.5 'length'

This optional attribute, of type xs:nonNegativeInteger, specifies the length of Bit String data, in bits. This is the length of the
actual data bits and does not include any extra encoding overhead.

The default value of this attribute is undefined, meaning the length of the Bit String is variable or not known. An unknown
length is acceptable for definitions when a value for the <BitString> is not provided. However, the length of a <BitString>
value is required to be known to properly process the value. Therefore, if a 'length' attribute is not specified on the definition
of a <BitString>, then it shall be present on any instance that contains a value.

This attribute only applies to <BitString> elements.

Q.3.5.6 <Value>

This optional child element provides the value for the <String> and <OctetString> data elements. It is not usable by any other
data element.

For the <String> element, the optional <Value> child element, of type xs:string, contains the value for a particular locale. If
the optional 'locale' attribute, of type xs:language, is specified, then the value is for that locale. If the 'locale' attribute is
missing, then the value is for the default locale.

The 'value' attribute, when used, represents the value in the default locale. Short values in the default locale should use the
attribute form, while longer values should use the element form. The threshold to select between the two is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

986 ANSI/ASHRAE Standard 135-2012

Values in other locales, or values containing character data unsuitable for XML attributes, are represented using the optional
child element <Value>.

For the <OctetString>, the 'value' attribute, of type xs:hexBinary, is in hexadecimal format which is easier for human creation
and consumption but is not as efficient as xs:base64Binary for large amounts of data. If a short amount of data is to be
conveyed, the attribute form is simpler to process. However, if a large amount of data is to be conveyed, the optional
<Value> child element, of type xs:base64Binary, can be used to reduce the size of the XML.

Q.3.6 Range Restrictions

Primitive data that expresses a continuous range of values can have that range restricted by optional attributes. These
attributes can be used to specify the high and low ends of the range and the minimum increment of the values.

The attributes that are used for restricting the range of primitive data elements are specified in the following clauses. In the
case of the <ObjectIdentifier> element, the range restrictions apply to the instance portion of the value only.

The type and applicability of the range restriction attributes are summarized in the following table.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 987

Table Q-5. Range Restriction Attributes
Data Element Attribute Name Attribute Type

<Date> minimum
maximum
minimumForWriting
maximumForWriting

xs:date

<DateTime> minimum
maximum
minimumForWriting
maximumForWriting

xs:dateTime

resolution xs:time
<Double> minimum

maximum
minimumForWriting
maximumForWriting
resolution

xs:double

<Enumerated> minimum
maximum
minimumForWriting
maximumForWriting

xs:nonNegativeInteger

<Integer> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:integer

<ObjectIdentifier> minimum
maximum
minimumForWriting
maximumForWriting

xs:nonNegativeInteger

<Real> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:float

<Time> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:time

<Unsigned> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:nonNegativeInteger

Q.3.6.1 'minimum'

This optional attribute, of the type specified in Table Q-5, provides the inclusive lower bound on the continuous range of
values.

The default value of this attribute is undefined, meaning that the value is unlimited or that the limit is unknown. An example
of this attribute is given in the description of the 'maximumForWriting' attribute.

Q.3.6.2 'maximum'

This optional attribute, of the type specified in Table Q-5, provides the inclusive upper bound on the continuous range of
values.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

988 ANSI/ASHRAE Standard 135-2012

The default value of this attribute is undefined, meaning that the value is unlimited or that the limit is unknown. An example
of this attribute is given in the description of the 'maximumForWriting' attribute.

Q.3.6.3 'minimumForWriting'

This optional attribute, of the type specified in Table Q-5, provides the inclusive lower bound on the continuous range of
values when the value is written.

The default value of this attribute is the value of the 'minimum' attribute. An example of this attribute is given in the
description of the 'maximumForWriting' attribute.

Q.3.6.4 'maximumForWriting'

This optional attribute, of the type specified in Table Q-5, provides the inclusive upper bound on the continuous range of
values when the value is written.

The default value of this attribute is the value of the 'maximum' attribute. An example of this is a value that has separate read
and write ranges. This <Unsigned> can read values up to 150%, but can't be written with a value greater than 100%.

<Unsigned name="motor-speed" minimum="0" maximum="150" units="percent"
 minimumForWriting="0" maximumForWriting="100" />

Q.3.6.5 'resolution'

This optional attribute, of the type specified in Table Q-5, provides the minimum increment that occurs between values. If
this attribute is specified, then the value will be in increments of this attribute, starting at the value of the 'minimum' attribute
if it is specified, or starting at zero if the 'minimum' attribute is not specified.

The default value of this attribute is undefined, meaning that the resolution of the value is set by the capabilities of the
underlying XML data type of the 'value' attribute.

In this example, a normally continuous <Real> declares that it only represents values in increments of 10, starting at -35. So
the valid values are -35, -25, -15, -5, 5, 15, 25, and 35.

<Real name="position" minimum="-35.0" maximum="35.0" resolution="10.0" />

Q.3.7 Engineering Units

Primitive data elements that express a continuous range of values often have known engineering units associated with those
values. The attributes and child element defined here only apply to the numeric data types <Double>, <Integer>, <Real>, and
<Unsigned>.

Q.3.7.1 'units'

This optional attribute describes the engineering units for the numeric value, if known. The value of the attribute is an
x:string. This string is either a decimal formatted number, in the same form as xs:nonNegativeInteger, or a string that matches
exactly one of the ASN.1 enumeration names of the BACnetEngineeringUnits production in Clause 21 (i.e., "meters-per-
second-per-second", "square-meters", … "watts-per-square-meter-degree-kelvin").

The default value of this attribute is "no-units". See the description of the <Units> element for an example usage.

Q.3.7.2 <Units>

This optional child element, of type xs:string, is used to provide localized display text for the units. This element has an
optional 'locale' attribute, of type xs:language, that identifies the locale for the text. If the 'locale' attribute is absent, then the
text is for the default locale. While the string form of the 'units' attribute is an enumeration of fixed strings as defined by this
standard, the <Units> element is a free-form plain text whose content is a local matter.

As an example of usage of standard engineering units, a property in a temperature sensor might be:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 989

<Real name="temperature" units="degrees-Celsius">
 <Units locale="en">ºC</Units>
 <Units locale="de">Grad Celsius</Units>
</Real>

If the engineering units is not one of the standard units, then the 'units' attribute is a decimal formatted number, in the same
format as xs:nonNegativeInteger, and the <Units> elements may be used to provide the display text (the default locale in this
example is "en").

<Real name="snailspeed" units="1000">
 <Units>Inches/Week</Units>
 <Units locale="de">Zoll/Woche</Units>
</Real>

Q.3.8 Data Validity

Data elements that express live data from measurements or calculations may become unreliable or unavailable for some
reason and this syntax supports additional qualifiers to indicate the validity of the data values.

These data validity qualifiers are allowed on any primitive data element and apply to the value of that element. They are also
allowed on any constructed data element and apply to the values of all the child elements that constitute the value of the
construction, unless overridden by a child element's individual data validity qualifiers.

Values may have varying degrees of validity. Data that is known to be in error is represented with the 'error' attribute, while
the 'valueAge' attribute can be used to let the client gauge the staleness of a value that was retrieved or calculated successfully
at some point in the past.

Display text for nonstandard error conditions is provided with optional child elements.

Q.3.8.1 'valueAge'

This optional attribute, of type xs:nonNegativeInteger, indicates the number of seconds since the last successful update of the
value of an element. Note that, like the value of a dynamic quantity itself, the value of this attribute is only accurate at the
moment the XML is generated.

Absence of this attribute indicates that the age of the value is unknown. This attribute is not inherited from a definition, so its
presence in a definition is meaningless.

Q.3.8.2 'error'

This optional attribute, of type xs:nonNegativeInteger, indicates an error that affects the validity of the value of an element. If
the 'error' attribute is present, then the value of the element should not be trusted to be valid. The error numbers are defined
Clause N.13. When this attribute is equal to 0, meaning "unspecified error", optional <Error> elements can be used to provide
localized text to describe the error condition.

When no known error condition exists, this attribute shall be absent. This attribute is not inherited from a definition, so its
presence in a definition is meaningless.

See the description of the <Error> element for an example usage.

Q.3.8.3 <Error>

This optional child element, of type xs:string, is used to provide localized display text for the error condition when the 'error'
attribute is present and has the value zero. This element has an optional 'locale' attribute, of type xs:language, that identifies
the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale. The <Error> element is a single
line plain text string whose contents is a local matter.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

990 ANSI/ASHRAE Standard 135-2012

For example, if an error is not caused by one of the standard conditions, then the 'error' attribute has the value of zero and the
<Error> elements can be used to provide the display text (the default locale in this example is "en").

<Real name="zone-temp" error="0">
 <Error>The device is not feeling well today</Error>
 <Error locale="de">Es ist heute nicht gesund</Error>
</Real>

When no known error condition exists, the <Error> elements and the 'error' attribute shall be absent. The 'error' attribute and
the <Error> elements are not inherited from a definition. However, the 'error' attribute and/or <Error> elements may be
specified without specifying a value to indicate that a value inherited from a definition is no longer valid.

If an <Error> element is present in a context without the 'error' attribute, the 'error' attribute is implicitly assigned the value
"0".

For example, the following shows that it is not necessary to include error="0" in a context with <Error> elements.

<Real name="aux-temp">
 <Error>No aux device attached</Error>
</Real>

Q.3.9 Length Restrictions

Primitive data elements that have variable length, <String>, <BitString>, and <OctetString>, can have their length restricted
by optional attributes.

The attributes that are used for restricting the length of primitive data elements are specified in the following clauses.

The type and applicability of the range restriction attributes are summarized in Table Q-6.

Table Q-6. Length Restriction Attributes

Data Element Attribute Name Attribute Type
<BitString> minimumLength

maximumLength
minimumLengthForWriting
maximumLengthForWriting

xs:nonNegativeInteger

<OctetString> minimumLength
maximumLength
minimumLengthForWriting
maximumLengthForWriting

xs:nonNegativeInteger

<String> minimumLength
maximumLength
minimumLengthForWriting
maximumLengthForWriting
minimumEncodedLength
maximumEncodedLength
minimumEncodedLengthForWriting
maximumEncodedLengthForWriting

xs:nonNegativeInteger

Q.3.9.1 'minimumLength'

This optional attribute, of the type specified in Table Q-6, provides the inclusive lower bound on the length of the value. For
the <String> element, this indicates the length, in characters, as represented in XML. For the <OctetString> element, this
represents the length in octets of the underlying binary data, not its character representation in XML. For the <BitString>
element, this represents the length in bits of the underlying binary data, not including any binary encoding overhead, and not
its character representation in XML.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is unknown.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 991

Q.3.9.2 'maximumLength'

This optional attribute, of the type specified in Table Q-6, provides the inclusive upper bound on the length of the value. For
the <String> element, this indicates the length, in characters, as represented in XML. For the <OctetString> element, this
represents the length in octets of the underlying binary data, not its character representation in XML. For the <BitString>
element, this represents the length in bits of the underlying binary data, not including any binary encoding overhead, and not
its character representation in XML.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is unknown.

Q.3.9.3 'minimumLengthForWriting'

This optional attribute, of the type specified in Table Q-6, provides the inclusive lower bound on the length of the value when
written. For the <String> element, this indicates the length, in characters, as represented in XML. For the <OctetString>
element, this represents the length in octets of the underlying binary data, not its character representation in XML. For the
<BitString> element, this represents the length in bits of the underlying binary data, not including any binary encoding
overhead, and not its character representation in XML.

The default value of this attribute is the value of the 'minimumLength' attribute.

Q.3.9.4 'maximumLengthForWriting'

This optional attribute, of the type specified in Table Q-6, provides the inclusive upper bound on the length of the value when
written. For the <String> element, this indicates the length in characters, as represented in XML. For the <OctetString>
element, this represents the length in octets of the underlying binary data, not its character representation in XML. For the
<BitString> element, this represents the length in bits of the underlying binary data, not including any binary encoding
overhead, and not its character representation in XML.

The default value of this attribute is the value of the 'maximumLength' attribute.

Q.3.9.5 'minimumEncodedLength'

This optional attribute, of the type specified in Table Q-6, provides the inclusive lower bound on the length of the encoded
value, in octets, when it is encoded for BACnet as described in Clause 20. This attribute is applicable only to the <String>
element.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is unknown.

Q.3.9.6 'maximumEncodedLength'

This optional attribute, of the type specified in Table Q-6, provides the inclusive upper bound on the length of the encoded
value, in octets, when it is encoded for BACnet as described in Clause 20. This attribute is applicable only to the <String>
element.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is unknown.

Q.3.9.7 'minimumEncodedLengthForWriting'

This optional attribute, of the type specified in Table Q-6, provides the inclusive lower bound on the length of the encoded
value, in octets, when it is encoded for writing with BACnet as described in Clause 20. This attribute is applicable only to the
<String> element.

The default value of this attribute is the value of the 'minimumEncodedLength' attribute.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

992 ANSI/ASHRAE Standard 135-2012

Q.3.9.8 'maximumEncodedLengthForWriting'

This optional attribute, of the type specified in Table Q-6, provides the inclusive upper bound for writing on the length of the
encoded value, in octets, when it is encoded for writing with BACnet as described in Clause 20. This attribute is applicable
only to the <String> element.

The default value of this attribute is the value of the 'maximumEncodedLength' attribute.

Q.3.10 Collections

Some constructed values are variable sized collections of elements of the same type. The three types of collections defined in
this annex are <Array>, <List>, and <SequenceOf>.

Structurally in XML, these three are identical. The difference between them is in their use for modeling BACnet data, where
their names correspond to the types of access methods available through BACnet services. Following the semantics of the
like-named BACnet constructs, lists are not expected to contain identical members but Arrays and SequenceOfs may. See
Clause Q.6.

All three types of collection have optional attributes that are specific to collections. These attributes can be applied to the
<Array>, <List>, and <SequenceOf> elements.

If the type of the members is not a built in type or a previously defined type, an anonymous type can be declared using the
<MemberTypeDefinition> child element instead of the 'memberType' attribute. The 'memberType' attribute cannot be used
simultaneously with the <MemberTypeDefinition> child element.

Q.3.10.1 'minimumSize'

This optional attribute, of type xs:nonNegativeInteger, indicates the minimum size that the collection is likely to be able to
reach. Variable sized collections typically have zero as a minimum size, but fixed size collections do not. Fixed sized
collections shall specify both 'minimumSize' and 'maximumSize' as the same value.

The default value of this attribute is "0".

Q.3.10.2 'maximumSize'

This optional attribute, of type xs:nonNegativeInteger, indicates the maximum size that the collection is likely to be able to
reach. Fixed sized collections shall specify both 'minimumSize' and 'maximumSize' as the same value.

The default value of this attribute is undefined, implying an unlimited or unknown maximum size.

Q.3.10.3 'memberType'

This optional attribute, of type xs:string, indicates the name of the existing defined type that is to be used as the type of the
members of the collection. This can be either the name of a type defined elsewhere in XML, or the name of one of the built-
in types: "Any", "Array", "BitString", "Boolean", "Choice", "Date", "DatePattern", "DateTime", "DateTimePattern",
"Double", "Enumerated", "Integer", "List", "Null", "Object", "ObjectIdentifier", "ObjectIdentifierPattern", "OctetString",
"Real", "Sequence", "SequenceOf", "Time", "TimePattern", "Unsigned", or "WeekNDay".

All members of the collection shall be of the same type. If a collection of different types is desired, then a 'memberType' of
"Any" can be used.

If the type of the members is not a built-in type or a previously defined type, an anonymous type can be declared using the
<MemberTypeDefinition> child element instead of the 'memberType' attribute. The 'memberType' attribute cannot be used
simultaneously with the <MemberTypeDefinition> child element.

The default value of this attribute is "Any", unless the <MemberTypeDefinition> element is present, in which case the value
of this attribute is undefined.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 993

An inherited 'memberType' attribute cannot be changed, and a subsequent <MemberTypeDefinition> element cannot
override it. Therefore, once defined, the member type of a collection cannot change.

An example of the 'memberType' attribute is given in the description of the <MemberTypeDefinition> element.

Q.3.10.4 <MemberTypeDefinition>

This optional child element is used to provide an anonymous in-line definition for the type of the members of a collection.
The <MemberTypeDefinition> element has a required single child element that defines the type for the members. The child
element may use the 'extends' attribute to refer to another type that it is extending. The 'name' of the child element is ignored
and the 'type' and 'overlays' attributes are not applicable.

This example shows the three kinds of member type definitions for three different <SequenceOf> elements. The
<SequenceOf> named "listOfEventSummaries" defines an anonymous type for its members using the
<MemberTypeDefinition> element, the <SequenceOf> named "eventTimeStamps" uses the 'memberType' attribute to refer
to a previously defined type, and the <SequenceOf> named "eventPriorities" uses the 'memberType' attribute to refer to the
built-in primitive type "Unsigned".

<Sequence name="0-GetEventInformation-ACK">
 <SequenceOf name="listOfEventSummaries" …>
 <MemberTypeDefinition>
 <Sequence>
 …
 <SequenceOf name="eventTimeStamps" memberType="0-BACnetTimeStamp" … />
 …
 <SequenceOf name="eventPriorities" memberType="Unsigned" … />
 </Sequence>
 </MemberTypeDefinition>
 </SequenceOf>
 <Boolean name="moreEvents"…/>
</Sequence>

An inherited <MemberTypeDefinition> element cannot be changed, and a subsequent 'memberType' attribute cannot
override it. Therefore, once defined, the member type of a collection cannot change.

Q.3.11 Representing Primitive Data

Primitive data is represented by a single XML element and its associated metadata. The data elements available for modeling
primitive BACnet data are: <BitString>, <Boolean>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>,
<Enumerated>, <Integer>, <Null>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Time>,
<TimePattern>, <Unsigned>, <WeekNDay>. These are individually described more fully in the following clauses.

Q.3.11.1 <Null>

The BACnet Null data is encoded with the XML element <Null>. Other than the common attributes and child elements
described in Clauses Q.3.1 and Q.3.2, there are no other attributes or child elements for this element.

Q.3.11.2 <Boolean>

BACnet Boolean data is encoded with the element <Boolean>. In addition to the common attributes and child elements
described in Clauses Q.3.1 and Q.3.2, the <Boolean> element can also have the value specifier described in Clause Q.3.5,
and the named values described in Clause Q3.3.

Q.3.11.3 <Unsigned>

BACnet Unsigned Integer data is encoded with the element <Unsigned>. In addition to the common attributes and child
elements described in Clauses Q.3.1 and Q.3.2, the <Unsigned> element can also have the value specifier described in Clause
Q.3.5, the range restrictions described in Clause Q.3.6, the named values described in Clause Q.3.3, and the units specifier
described in Q.3.7.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

994 ANSI/ASHRAE Standard 135-2012

Q.3.11.4 <Integer>

BACnet Signed Integer data is encoded with the element <Integer>. In addition to the common attributes and child elements
described in Clauses Q.3.1 and Q.3.2, the <Integer> element can also have the value specifier described in Clause Q.3.5, the
range restrictions described in Clause Q.3.6, the named values described in Clause Q.3.3, and the units specifier described in
Q.3.7.

Q.3.11.5 <Real>

BACnet Real data is encoded with the element <Real>. In addition to the common attributes and child elements described in
Clauses Q.3.1 and Q.3.2, the <Real> element can also have the value specifier described in Clause Q.3.5, the range
restrictions described in Clause Q.3.6, the named values described in Clause Q.3.3, and the units specifier described in Q.3.7.

Q.3.11.6 <Double>

BACnet Double data is encoded with the element <Double>. In addition to the common attributes and child elements
described in Clauses Q.3.1 and Q.3.2, the <Double> element can also have the value specifier described in Clause Q.3.5, the
range restrictions described in Clause Q.3.6, the named values described in Clause Q.3.3, and the units specifier described in
Q.3.7.

Q.3.11.7 <OctetString>

BACnet Octet String primitive data is encoded with the element <OctetString>. In addition to the common attributes and
child elements described in Clauses Q.3.1 and Q.3.2, the <OctetString> element can also have the value specifier described in
Clause Q.3.5, the length restrictions described in clause Q.3.9, and the named values described in Clause Q.3.3.

Q.3.11.8 <String>

BACnet Character String primitive data is encoded with the element <String>. In addition to the common attributes and child
elements described in Clauses Q.3.1 and Q.3.2, the <String> element can also have the value specifiers described in Clause
Q.3.5, the length restrictions described in clause Q.3.9, and the named values described in Clause Q.3.3.

Q.3.11.9 <BitString>

BACnet BitString primitive data is encoded with the XML element <BitString>. In addition to the common attributes and
child elements described in Clauses Q.3.1 and Q.3.2, the <BitString> element can also have the value specifiers described in
Clause Q.3.5, the length restrictions described in clause Q.3.9, and the named values described in Clause Q.3.3.

The value of a <BitString>, expressed in the 'value' attribute, is an xs:string containing a semicolon-separated list of named or
numeric bits that are "true". Identifiers for bits that are "false" are not present in the value string. The names for the named bit
values are defined as child <Bit> elements in the optional <NamedBits> element. The individual bits in the value string are
identified either by textual identifier, matching exactly the 'name' attribute of a <Bit> element, or numerically, representing
the numerical bit position within the bit string. For readability, the name form is preferred to the numeric form, when
possible.

An alternate form of the value may be contained in an optional <Value> child element. The children of the <Value> element
are <Bit> elements. Only the <Bit> elements that are present are true. If the <BitString> has a defined type, the <Bit>
elements in the <Value> are restricted to the set that was defined in the type definition. For readability, the name form is
preferred to the numeric form, when possible.

Q.3.11.10 <Enumerated>

BACnet Enumerated primitive data is encoded with the element <Enumerated>. In addition to the common attributes and
child elements described in Clauses Q.3.1 and Q.3.2, the <Enumerated> element can also have the value specifier described
in Clause Q.3.5, the range restrictions described in Clause Q.3.6, and the named values described in Clause Q.3.3.

An extensible Enumerated data range may be defined with the range restrictions attributes. If neither 'minimum' nor
'maximum' are present, then the enumeration is not extensible and only the values specified by the named values are possible.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 995

The value of an <Enumerated> element is an xs:string. This string is either a decimal formatted number, in the same form as
xs:nonNegativeInteger, or a string that matches exactly the 'name' attribute of a child element of <NamedValues>. For
readability, the name form is preferred to the numeric form, when possible.

For nonextensible Enumerations, if the number format is used, it shall match the value of one of the child elements of
<NamedValue>. For extensible Enumerations, the numeric value is not restricted to match a child element of
<NamedValues>, but its value may be restricted by the 'minimum' and 'maximum' attributes, if present.

Q.3.11.11 <Date>

BACnet Date data that represents either a single specific date or a wholly "unspecified" date is encoded with the element
<Date>. In addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the <Date> element
can also have the value specifiers described in Clause Q.3.5, the range restrictions described in Clause Q.3.6, and the named
values described in Clause Q.3.3.

Q.3.11.12 <DatePattern>

BACnet Date data that is allowed to contain individually "unspecified" fields is encoded with the element <DatePattern>. In
addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the <DatePattern> element can
also have the value specifier described in Clause Q.3.5 and the named values described in Clause Q.3.3.

The value of a <DatePattern> element is an xs:string. The format of the string value is "YYYY-MM-DD" or "YYYY-MM-
DD W", where:

YYYY is either a four-digit year or a single asterisk ("*") character to indicate "unspecified",

MM is either a two-digit month or a single asterisk ("*") character to indicate "unspecified",

DD is either a two-digit day of the month or a single asterisk ("*") character to indicate "unspecified",

W is either the one-digit day of the week (1=Monday) or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The YYYY, MM and DD fields are
separated by a single dash ("-") character and the optional W field is separated from the DD field by a single space character.
It the W field is not present, then neither is the space separator.

The W field is required to be present if any of the YYYY, MM, or DD fields is "unspecified". It is allowed to be absent only
if the YYY, MM, and DD specify a single date and the W field can thus be calculated unambiguously. When a field is
"unspecified", it is encoded for BACnet binary communications as the value 255.

The allowed special values for the date fields are defined in Clause 21.

Q.3.11.13 <DateTime>

BACnet DateTime data that represents either a single specific date and time or a wholly "unspecified" date and time is
encoded with the element <DateTime>. In addition to the common attributes and child elements described in Clauses Q.3.1
and Q.3.2, the <DateTime> element can also have the value specifiers described in Clause Q.3.5, the range restrictions
described in Clause Q.3.6, and the named values described in Clause Q.3.3.

Q.3.11.14 <DateTimePattern>

BACnet DateTime data that is allowed to contain individually "unspecified" fields is encoded with the element
<DateTimePattern>. In addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the
<DateTimePattern> element can also have the value specifier described in Clause Q.3.5 and the named values described in
Clause Q.3.3.

The value of a <DateTimePattern> element is an xs:string. The format of the string value is "YYYY-MM-DD hh:mm:ss.nn "
or "YYYY-MM-DD W hh:mm:ss.nn ", where:

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

996 ANSI/ASHRAE Standard 135-2012

YYYY is either a four-digit year or a single asterisk ("*") character to indicate "unspecified",

MM is either a two-digit month or a single asterisk ("*") character to indicate "unspecified",

DD is either a two-digit day of the month or a single asterisk ("*") character to indicate "unspecified",

W is either the one-digit day of the week (1=Monday) or a single asterisk ("*") character to indicate "unspecified",

hh is either a two-digit hour or a single asterisk ("*") character to indicate "unspecified",

mm is either a two-digit minute or a single asterisk ("*") character to indicate "unspecified",

ss is either a two-digit second or a single asterisk ("*") character to indicate "unspecified",

nn is either the two-digit hundredths or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The YYYY, MM and DD fields are
separated by a single dash ("-") character and the optional W field is separated from the DD field and from the hh field by a
single space character. It the W field is not present, then neither is the preceding space separator. The hh, mm, and ss fields
are separated from each other by a single colon (":") character and the nn field is separated from the ss field by a single
period (".") character. When a field is "unspecified", it is encoded for BACnet binary communications as the value 255.

The W field is required to be present if any of the YYYY, MM, or DD fields is "unspecified". It is allowed to be absent only
if the YYY, MM, and DD specify a single date and the W field can thus be calculated unambiguously. When a field is
"unspecified", it is encoded for BACnet binary communications as the value 255.

The allowed special values for the date fields are defined in Clause 21.

Q.3.11.15 <Time>

BACnet Time data that represents either a single specific time or a wholly "unspecified" time is encoded with the element
<Time>. In addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the <Time> element
can also have the value specifiers described in Clause Q.3.5, the range restrictions described in Clause Q.3.6, and the named
values described in Clause Q.3.3.

Q.3.11.16 <TimePattern>

BACnet Time data that that is allowed to contain individually "unspecified" fields is encoded with the element
<TimePattern>. In addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the <Time>
element can also have the value specifier described in Clause Q.3.5 and the named values described in Clause Q.3.3.

The value of an <TimePattern> element is an xs:string. The format of the string value is "hh:mm:ss.nn", where:

hh is either a two-digit hour or a single asterisk ("*") character to indicate "unspecified",

mm is either a two-digit minute or a single asterisk ("*") character to indicate "unspecified",

ss is either a two-digit second or a single asterisk ("*") character to indicate "unspecified",

nn is either the two-digit hundredths or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The hh, mm, and ss fields are separated
by a single colon (":") character and the nn field is separated from the ss field by a single period (".") character. When a field
is "unspecified", it is encoded for BACnet binary communications as the value 255.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 997

Q.3.11.17 <ObjectIdentifier>

BACnet Object Identifier primitive data is encoded with the element <ObjectIdentifier>. In addition to the common attributes
and child elements described in Clauses Q.3.1 and Q.3.2, the <ObjectIdentifier> element can also have the value specifiers
described in Clause Q.3.5, the range restrictions described in Clause Q.3.6, and the named values described in Clause Q.3.3.

The value of an <ObjectIdentifier> elements is an xs:string. The format of this string is "T,N", where

T represents the type and is either a decimal number with no leading zeroes, or a standard type name exactly equal to the
names specified in the definition for BACnetObjectTypes in Clause 21, or from the XML definition of "0-
BACnetObjectType", if available.

N represents the instance number and is a decimal number with no leading zeroes.

When the "unspecifiedValue" attribute is true, the value encoded for BACnet binary communications for the type field is a
local matter and the instance field shall be encoded as the value 4194303.

Q.3.11.18 <ObjectIdentifierPattern>

BACnet Object Identifier primitive data that allows independent specification of type and instance is encoded with the
element <ObjectIdentifierPattern>. In addition to the common attributes and child elements described in Clauses Q.3.1 and
Q.3.2, the <ObjectIdentifierPattern> element can also have the value specifiers described in Clause Q.3.5, the range
restrictions described in Clause Q.3.6, and the named values described in Clause Q.3.3.

The value of an <ObjectIdentifierPattern> elements is an xs:string. The format of this string is "T,N", where

T is either a type identifier or a single asterisk ("*") character to indicate "unspecified", The type identifier is either a decimal
number with no leading zeroes, or a standard type name exactly equal to the names specified in the definition for
BACnetObjectTypes in Clause 21, or from the XML definition of "0-BACnetObjectType", if available.

N is either an instance number or a single asterisk ("*") character to indicate "unspecified". The instance number is a decimal
number with no leading zeroes.

When the type is "unspecified", the value encoded for BACnet binary communications is a local matter. When the instance
number is "unspecified", it shall be encoded for BACnet binary communications as the value 4194303.

Q.3.11.19 <WeekNDay>

BACnetWeekNDay primitive data is encoded with the element <WeekNDay>. In addition to the common attributes and child
elements described in Clauses Q.3.1 and Q.3.2, the <WeekNDay> element can also have the value specifier described in
Clause Q.3.5 and the named values described in Clause Q.3.3.

The value of an <WeekNDay> elements is an xs:string. The format of the string value is "M,W,D", where:

M is either a decimal month identifier or an asterisk ("*") character to indicate "unspecified",

W is either a decimal week identifier or an asterisk ("*") character to indicate "unspecified",

D is either a decimal day-of-week identifier or an asterisk ("*") character to indicate "unspecified".

The numeric fields do not have leading zeros. The M, W, and D fields are separated by a comma (",") character. The range
and meaning of the numeric values for M, W and D is described in the BACnetWeekNDay production in Clause 21. When a
field is "unspecified", it is encoded for BACnet binary communications as the value 255.

Q.3.12 Representing Constructed Data

Constructed data is represented by an XML element that contains one or more child elements that provide the value for the
construct.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

998 ANSI/ASHRAE Standard 135-2012

Q.3.12.1 <Sequence>

BACnet SEQUENCE constructed data is encoded with the element <Sequence>. In addition to the common attributes and
child elements described in Clauses Q.3.1 and Q.3.2, the <Sequence> element can also have optional child elements
representing the members of the sequence.

For modeling BACnet data, the allowed child elements of <Sequence> are: <Any>, <BitString>, <Boolean>, <Choice>,
<Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>, <Integer>, <Null>,
<ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay>. For modeling abstract data, <Sequence> additionally allows the child
elements <Array>, <List>, and <Object>.

The 'name' attribute of a child element in a <Sequence> is significant. It is used to match this child element with a
corresponding child element in a type definition. The name of a child element in a <Sequence> shall be unique among the
sibling elements of the <Sequence>.

Named child elements provided in an instance shall exist in the type definition and shall be of the same element type, with
the exception that the <Any> element in a definition can be replaced by any appropriate data element in an instance.

The order of definition of sequence members in XML is significant, as it is in Clause 21. New named elements added as part
of a new definition using the 'extends' attribute are added to the end of the existing elements in the sequence. The order of
sequence members in an instance is not significant, because the members are matched by their corresponding 'name' attribute
and not by position.

Q.3.12.2 <Choice>

BACnet CHOICE constructed data is encoded with the element <Choice>. In addition to the common attributes and child
elements described in Clauses Q.3.1 and Q.3.2, the <Choice> element can also have an optional <Choices> child element that
defines the available choices and a single child data element holding the currently chosen data.

The single named child data element provides the value for the <Choice> and shall exist in the <Choices> element and shall
be of the same element type, with the exception that the <Any> element in a definition can be replaced by any data element
in an instance.

A single named child data element provided in a definition of a <Choice> can be used to provide a default value for the type.
A child data element in an instance of that type replaces the default child data element from the definition since there can
only be one chosen element at a time.

Q.3.12.2.1 <Choices>

The list of possible choices for a <Choice> type is provided by the <Choices> element, which is an optional child element of
<Choice>. All of the child elements of <Choices> shall have non-empty 'name' attributes with values unique among their
sibling elements.

For modeling BACnet data, the allowed child elements of <Choices> are the data elements: <Any>, <BitString>, <Boolean>,
<Choice>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>, <Integer>, <Null>,
<ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay>. For modeling abstract data, <Choices> additionally allows the child data
elements <Array>, <List>, and <Object>.

The order of the definition of choice members in <Choices> is not significant. The 'name' attributes of the child elements are
significant and are used to match the child element in an instance or overlay with a corresponding child element in a type
definition. The names shall be unique among sibling elements.

The <Choices> element can only appear in a definition context, since adding new choices constitutes a structural change to
the data. When inheriting a <Choices> element from a definition, the newly specified child elements are logically added to
the list of existing child elements of the inherited <Choices> but in no prescribed order.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 999

Q.3.12.2.2 'allowedChoices'

This optional attribute, of type xs:string, indicates a restricted list of the available choices that are allowed to be present in an
instance. The value of this attribute is a semicolon-separated concatenation of the 'name' attributes of the child elements of
the <Choices> element. This is typically used by a derived type to restrict the available choices that it inherited from its
definition.

The default value for this attribute is "" (empty string), which means that there are no restrictions on what child elements of
<Choices> can be present in an instance.

Q.3.12.3 <Array>

The BACnetARRAY construct is encoded with the element <Array>. In addition to the common attributes and child
elements described in Clauses Q.3.1 and Q.3.2, the <Array> element can also have the additional capabilities of Collections
elements described in Clause Q.3.10.

The child elements in a <Array> are not required to have 'name' attributes, and the order of the elements in an instance is
significant. When 'name' attributes are not provided, the child elements specify the values for the array, in order, starting with
array index 1.

Although the child elements of <Array> are not required to have 'name' attributes, when provided, the 'name' attribute
indicates the indexed position in the array for which the child element is providing a value. This provides for a compact
representation in XML where the majority of the array members are equal to their default values. Array positions that are not
provided a value with an appropriately named child element retain their default value from their definition. If a 'name'
attribute is provided, it shall be formatted as an xs:nonNegativeNumber, indicating the index position in the array. The first
position in an array is index 1. If the 'name' attribute is omitted, then the child element is assigned to the next higher index in
the array, starting with index 1.

Child elements provided in a type definition of a <Array> can be used to provide a default value for the type. However, any
child elements in an instance of that type completely replace the default child elements since instance values of Collections
are not merged with their definition.

Q.3.12.4 <List>

The "List of" construct is encoded with the element <List>. In addition to the common attributes and child elements
described in Clauses Q.3.1 and Q.3.2, the <List> element can also have the additional capabilities of Collections elements
described in Clause Q.3.10.

The child elements in a <List> do not have 'name' attributes, and the order of the elements in an instance is not significant.

Child elements provided in a type definition of a <List> can be used to provide a default value for the type. However, any
child elements in an instance of that type completely replace the default child elements since instance values of Collections
are not merged with their definition.

Q.3.12.5 <SequenceOf>

BACnet SEQUENCE OF constructed data that is not designated as a BACnetARRAY or a "List of" is encoded with the
element <SequenceOf>. In addition to the common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the
<SequenceOf> element can also have the additional capabilities of Collections elements described in Clause Q.3.10.

The child elements in a <SequenceOf> do not have 'name' attributes, and the order of the elements in an instance is
significant.

Child elements provided in a type definition of a <SequenceOf> can be used to provide a default value for the type. However,
any child elements in an instance of that type completely replace the default child elements since instance values of
Collections are not merged with their definition.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

1000 ANSI/ASHRAE Standard 135-2012

Q.3.13 Representing Data of Unknown Type

Data whose type is not known or not restricted by a definition is represented by BACnet in ASN.1 as ABSTRACT-
SYNTAX.&Type, and is represented in XML using the <Any> element.

Q.3.13.1 <Any>

The BACnet ABSTRACT-SYNTAX.&Type place-holder is represented with the XML element <Any>. In addition to the
common attributes and child elements described in Clauses Q.3.1 and Q.3.2, the <Any> element can also have an attribute,
'allowedTypes', that defines which actual types are allowed to replace the <Any>. The <Any> element is only allowed in a
definition context. Instances shall replace the <Any> with an actual primitive or constructed data type, subject to the
'allowedTypes' restrictions.

Q.3.13.1.1 'allowedTypes'

This optional attribute, of type xs:string, indicates a list of types that are allowed to be substituted for an <Any> element. This
attribute is only allowed on an <Any> element. The value of this attribute is equal to a semicolon-separated concatenation of
the strings suitable for use as a 'type' attribute value.

The default value for this attribute is "" (empty string), which means that there are no restrictions on what datatypes can be
substituted for the <Any>.

Q.4 Expressing BACnet Objects and Properties in XML

BACnet objects are represented in XML by the <Object> element. The properties of a BACnet object are expressed as child
elements of the <Object> element and use the 'propertyIdentifier' attribute to specify the property identifier to use when
accessing the property using BACnet binary services.

Q.4.1 <Object>

BACnet Objects are represented by the <Object> element. In addition to the common attributes and child elements described
in Clauses Q.3.1 and Q.3.2, the <Object> element can also have child elements representing the properties of the object.

The allowed child elements of <Object> are: <Any>, <Array>, <BitString>, <Boolean>, <Choice>, <Date>, <DatePattern>,
<DateTime>, <DateTimePattern>, <Double>, <Enumerated>, <Integer>, <List>, <Null>, <ObjectIdentifier>,
<ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>, <TimePattern>,
<Unsigned>, and <WeekNDay>.

The 'name' attribute of the child elements is significant and is used to match a child element in an instance with a
corresponding child element in a type definition. The names shall be unique among sibling elements.

Named child elements provided in an instance shall exist in the type definition and shall be of the same element type, with
the exception that the <Any> element in a definition can be replaced by any appropriate data element in an instance.

The order of the definition of child elements in <Object> is not significant. New named elements added as part of a new
definition using the 'extends' attribute are added to the list of child elements in no prescribed order.

Q.5 Definitions, Types, Instances, and Inheritance

This annex specifies not only an XML syntax, but also an underlying data model that is expressed by the XML. This data
model has a type and instance system similar to many programming languages.

An element's "type" defines the set of attributes and child elements that it is allowed to have. Every element has a type,
whether explicitly or implicitly specified.

A "definition" is a named element that can be referred to by another element by using the 'type', 'extends', or 'overlays'
attribute. To alert the processor that a named type definition is being created, elements that are to be used as definitions are

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1001

declared within a "definition context", which means that the element is a direct child element of a <Definitions> element.
There are no limits on the number of definition contexts in an XML document. However, to simplify processing, there is a
requirement that definitions be declared before they are used. Because definitions cannot be redefined, and are not scoped by
context or depth, they are required to be globally unique. Because of this, if a definition is encountered that has already been
processed, it shall be discarded. Overlays may be used to augment existing definitions without changing them structurally,
See Clause Q.3.1.4.

The terms "type" and "definition" are mostly synonymous and are often used interchangeably in this annex, but the term
"definition" always refers to a referenceable element (a "typedef" in some languages), whereas the term "type" can also refer
to anonymous types created inline within another definition and to the built-in types like "String".

An "instance" is an element that refers to a definition element using the 'type' attribute. If no 'type' attribute is provided, the
element's definition is implicitly identified by the element's XML tag name. For example, <String name="foo"> is equivalent
to <String name="foo" type="String">. So, every element has a definition even when the 'type' attribute is not explicitly
given.

The syntax defined in this annex is used for both definitions and instances. The two contexts are mostly identical: definitions
can have values, which can be considered their "default values", and instances can change previously defined metadata like
'maximum'. However, there are some restrictions that are noted in this clause and elsewhere. For example, an instance cannot
add new child elements to <NamedValues> or add new members to a <Sequence>. Those actions can only take place in a
definition context.

Elements "inherit" from their definition by logically copying every attribute and child element of the definition into
themselves and then adding or overlaying the attributes and child elements that are specified for the element itself. Most
attributes and child elements are inherited without modification, but there are a few exceptions, such as the interactions
between 'value' and <Value>. These exceptions are described in the individual clauses that define the attributes or child
elements involved.

Even though some attributes, like 'requiredWith', are interpreted as a concatenated list of strings, newly specified attribute
value are not merged with inherited values. Attribute values are replaced in their entirety when a new value is specified.
Element-based lists, like <NamedValues>, <NamedBits>, and <Choices>, however, are merged with their definitions, with
new child elements being logically added to the list of exiting child elements.

Because of this logical copying behavior, the term "inherit" is used in this annex to mean not only the process of adopting the
existing members of a <Sequence> or <Object> when making an extension, as is the common use of the term in Object
Oriented languages, but also the process of receiving all the attributes and child elements logically from an element's
definition. In this data model, even elements that represent "primitive" data, like <Unsigned> are actually composed of
multiple parts, like 'maximum' and 'value', each of which would be modeled in Object Oriented languages as individual
properties or member variables of an "Unsigned" class or type and which may have default values that were defined when
they were declared or that were overridden by subsequent definitions or constructors. Those properties or member variables
are all logically part of any instance of that type and retain ("inherit" in this annex) their default values unless overridden by
the instance. This XML syntax and data model is designed to support that expected behavior.

For example, given this definition for a Real element named "999-Percent":

<Definitions>
 <Real name="999-Percent" value="50" minimum="0" maximum="100" units="percent" />
</Definitions>

Consider the following two other definitions.

<Definitions>
 <Real name="999-LimitedPercent1" type="999-Percent" minimum="10" maximum="90"/>
</Definitions>

<Definitions>
 <Real name="999-LimitedPercent2" value="50" minimum="10" maximum="90" units="percent"/>
</Definitions>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

1002 ANSI/ASHRAE Standard 135-2012

The types defined by "999-LimitedPercent1" and "999-LimitedPercent2" are logically equivalent because 999-
LimitedPercent1 inherited the 'value' and 'units' attributes from its definition, "999-Percent", and overrode the 'minimum' and
'maximum' attributes to new values, while the "999-LimitedPercent2" specifies all attributes itself without the use of a
previous definition.

The above example also shows that a definition can specify any attributes that are allowed by its type, including 'value'. So
consider some instances of "999-Percent":

<Real type="999-Percent" />

<Real type="999-Percent" value="50" />

<Real type="999-Percent" value="25" />

<Real type="999-Percent" value="25" maximum="50" />

The first two instances are identical because the all of the attributes of the definition "999-Percent" are inherited by all
instances, making the value="50" in the second instance redundant. However, the third instance changes the value and so the
'value' attribute is required. The fourth instance shows not only that values can be changed in instances but that any non-
structural metadata can be changed as well. The meaning of "nonstructural" is defined in the description of the 'type' attribute.

Therefore, those four instances of "999-Percent" are logically equivalent to these four elements, respectively.

<Real value="50" minimum="0" maximum="100" units="percent" />

<Real value="50" minimum="0" maximum="100" units="percent" />

<Real value="25" minimum="0" maximum="100" units="percent" />

<Real value="25" minimum="0" maximum="50" units="percent" />

The copying behavior of the definition is cascaded as needed until elements with inherent definitions are reached. If, while
copying a set of child elements, one of the child elements itself has a 'type' or 'extends' attribute, before that child element's
own attributes and child elements are considered, the contents of its definition are logically copied into it.

For example, given these three definitions:

<Definitions>
 <Unsigned name="999-UnlimitedPercent" units="percent" />
 <Unsigned name="999-NormalPercent" type="999-UnlimitedPercent" maximum="100"/>
 <Unsigned name="999-LimitedPercent" type="999-NormalPercent" minimum="10" maximum="90"/>
</Definitions>

These two instances are logically equivalent:

<Unsigned type="999-LimitedPercent" value="75"/>
<Unsigned value="75" minimum="10" maximum="90" units="percent"/>

So far, these examples have been making new definitions by making nonstructural changes to existing definitions. In these
cases, the 'type' attribute was used within the definition context, rather than 'extends'. This is because an action like specifying
maximum="100" in the definition for "999-NormalPercent" above was not changing the data model. The 'maximum' attribute
is always part of the data model for the <Unsigned> element, so this is a nonstructural change.

When structural changes are needed, the 'extends' attribute is used instead. This alerts the processor that changes to the data
model are allowed and, typically, that new child elements of a <Sequence>, <Object>, <Choices>, or <NamedValues>
element are being added.

For example, consider this definition for the type named "999-base".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1003

<Definitions>
 <Sequence name="999-base">
 <Real name="foo"/>
 </Sequence>
</Definitions>

The following extension creates a new definition for a type named "999-derived", which is based on "999-base".

<Definitions>
 <Sequence name="999-derived" extends="999-base">
 <Real name="bar"/>
 </Sequence>
</Definitions>

An instance of "999-derived" thus contains the members defined in "999-base" as well as those added in "999-derived".

<Sequence type="999-derived">
 <Real name="foo" value="1.0"/>
 <Real name="bar" value="2.0"/>
</Sequence>

The 'extends' attribute is only used in the definition context, but is not limited to the outermost element that is defining the
new type. When used on an inner element, a new anonymous type is created as an extension of the referenced type. Thus,
anonymous types are either fully defined in-line without the use of the 'extends' attribute, or are an extension of an existing
type by using the 'extends' attribute.

The following example shows all four methods of assigning a type for a new member. The "simple-member" uses a built-in
type with no need for the 'type' or 'extends' attributes. The "typed-member" refers to the "999-derived" type using the 'type'
attribute. The "full-anonymous-type-member" fully defines its anonymous type in-line, also without the use of the 'type' or
'extends' attributes. The "extension-anonymous-type-member" extends an existing type using the 'extends' attribute.

<Definitions>
 <Sequence name="999-example-1">
 <Real name="simple-member"/>
 <Sequence name="typed-member" type="999-derived"/>
 <Sequence name="full-anonymous-type-member">
 <Real name="foo" />
 <Real name="bar" />
 </Sequence>
 <Sequence name="extension-anonymous-type-member" extends="999-base">
 <Real name="bar" />
 </Sequence>
 </Sequence>
</Definitions>

The result is that the last three members defined above all have child members named "foo" and "bar". The first three
methods are all used in Clause 21 data structures; the fourth is a capability only of this XML syntax, since no Clause 21 data
structure is an extension of another.

An instance of that sequence, providing a value for each member, looks like this.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

1004 ANSI/ASHRAE Standard 135-2012

<Sequence type="999-example-1">
 <Real name="simple-member" value="55"/>
 <Sequence name="typed-member"
 <Real name="foo" value="1"/>
 <Real name="bar" value="2" />
 </Sequence>
 <Sequence name="full-anonymous-type-member">
 <Real name="foo" value="1"/>
 <Real name="bar" value="2" />
 </Sequence>
 <Sequence name="extension-anonymous-type-member">
 <Real name="foo" value="1"/>
 <Real name="bar" value="2" />
 </Sequence>
</Sequence>

The 'type' attribute on an element is required only where it cannot be determined from the context in which the element
appears. In the above example, the 'type' attribute for the three structured members of "999-example-1" was not given,
because child elements are always matched by name with their corresponding child element in the definition of their parent
element. This matching continues up the ancestor chain until the context cannot be determined, at which point a 'type',
'extends', or 'overlays' attribute shall be present to provide a context for all the descendant elements. The 'type' attribute is not
disallowed in contexts where it can be inferred, but it is not required, and should be left off where brevity of XML is
desirable.

In this example, the 'type' attribute is required to define the type for the member "propertyIdentifier".

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier/>
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true" />
 </Sequence>
</Definitions>

In an XML representation of a value of that member, the use of the 'type' attribute on the outer element sets the context for
interpretation of the inner element; therefore, the 'type' attribute is not needed on the "propertyIdentifier" member because it
is known from the definition of 0-BACnetPropertyReference.

<Sequence type="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" value="present-value" />
</Sequence>

The use of the 'type' attribute indicates that an element is an instance of a previously defined type definition and that its
attributes and child elements do not cause any structural changes. Conversely, the use of the 'extends' attribute indicates that
structural changes are allowed and expected. Consequently, the 'type' attribute can be used in any context, but the 'extends'
attribute can only be used in a definition context where a new type is being created.

A "structural change" is defined as one that adds a new member to a <Sequence> or <Object>, adds a new choice to a
<Choice>, changes the member type of an <Array>, <List> or <SequenceOf>, adds any new named values, or changes the
'optional', 'absent', or 'contextTag' attributes. Changes other than this are considered nonstructural. Typically, non-structural
changes are limited to assigning a value for the data, but in some cases, other nonstructural metadata may be changed as well.

For an example of a nonstructural change, consider the definition:

<Definitions>
 <Sequence name="999-base">
 <Real name="foo"/>
 </Sequence>
</Definitions>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1005

A new definition can be made from that without making structurally changes to "999-base" by using the 'type' attribute in a
definition context. Below, the existing member is only given new metadata; in this case, new limits.

<Definitions>
 <Sequence name="999-limited-base" type="999-base">
 <Real name="foo" minimum="0.0" maximum="100.0" />
 </Sequence>
</Definitions>

If, however, a structure change is needed, the 'extends' attribute is used instead of the 'type' attribute. Below, the derived type
adds a new member.

<Definitions>
 <Sequence name="999-limited-base" extends="999-base">
 <Real name="bar" />
 </Sequence>
</Definitions>

Inheriting <NamedValues> is only allowed in a definition context and involves overlaying existing child elements and adding
new ones to the end.

For example, this enumeration definition creates an enumeration where red=0, green=1, and blue=6.

<Definitions>
 <Enumerated name="999-base-enum">
 <NamedValues>
 <Unsigned name="red" />
 <Unsigned name="green" />
 <Unsigned name="blue" value="6"/>
 </NamedValues>
 </Enumerated>
</Definitions>

An extension to that enumeration adds displayName attributes to the existing red, green, and blue named values and adds
new named values for purple and yellow. The order of existing named values is deliberately skewed in this example to
illustrate that it does not matter since they have already been assigned values, but the order of the newly added purple and
yellow is significant.

<Definitions>
 <Enumerated name="999-extended-enum" extends="999-base-enum">
 <NamedValues>
 <Unsigned name="green" displayName="Green"/>
 <Unsigned name="purple" displayName="Purple"/>
 <Unsigned name="blue" displayName="Blue"/>
 <Unsigned name="yellow" displayName="Yellow"/>
 <Unsigned name="red" displayName="Red"/>
 </NamedValues>
 </Enumerated>
</Definitions>

The above extension logically has an ordered list of named values.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

1006 ANSI/ASHRAE Standard 135-2012

<NamedValues>
 <Unsigned name="red" displayName="Red" />
 <Unsigned name="green" displayName="Green" />
 <Unsigned name="blue" displayName="Blue" value="6"/>
 <Unsigned name="purple" displayName="Purple" />
 <Unsigned name="yellow" displayName="Yellow" />
</NamedValues>

This ordering means that the automatically assigned values for purple and yellow will be 7 and 8, respectively. Since this was
not obvious from the definition of "999-extended-enum", enumerations should explicitly assign values when those
enumerations are mapped to external data or where the numerical values are otherwise significant outside of XML.

Inheriting <Choices> is only allowed in a definition context and involves overlaying existing child elements and adding new
ones to the list of choices (order is not significant).

For example, this choice definition creates two choices and defines the default value of the choice itself to be the "joe"
choice.

<Definitions>
 <Choice name="999-base-choice">
 <Choices>
 <Unsigned name="fred" displayName="Fred"/>
 <Real name="joe" displayName="Joe"/>
 </Choices>
 <Real name="joe"/>
 </Choice>
</Definitions>

An extension to that choice changes a displayName of the existing choices and adds a new "bob" choice. Additionally, it
changes the default value of the choice itself to be "bob" rather then the default value for "999-base-choice", which was "joe".
The order of existing choices is deliberately skewed in this example to illustrate that it does not matter, and the order of the
resulting list of choices is not significant either.

<Definitions>
 <Choice name="999-extended-choice" extends="999-base-choice">
 <Choices>
 <Real name="joe" displayName="Joseph"/>
 <Double name="bob" displayName="Robert"/>
 <Unsigned name="fred" displayName="Frederick"/>
 </Choices>
 <Real name="bob"/>
 </Choice>
</Definitions>

Q.6 Binary Encoding and Access Rules

The BACnet binary encoding of the primitive data elements defined in this annex is implied by the element's name and
matches expected encoding for the like-named structures and primitives defined in Clauses 20 and 21.

The <DateTime> and <DateTimePattern> elements are considered "primitive" data in XML but are actually encoded in
binary as the BACnetDateTime sequence defined in Clause 21. When encoding the weekday field of a <DatePattern> or
<DateTimePattern> element, if the weekday field is not specified in the XML, it shall be calculated to the appropriate value
for encoding in the binary.

The 'contextTag' attribute provides the context tag to use when required and its absence implies that the appropriate
application tag shall be used instead.

The accessibility of the data using BACnet services is also implied by the element's name and the 'propertyIdentifier'
attribute. When used as child elements of an <Object>, the <List> and <Array> elements imply the appropriate behavior for

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1007

BACnet "List of" and "BACnetARRAY of" properties when accessed using BACnet binary services. Individual members of
<Array> and <List> types may thus be addressable through the use of array indexes or list manipulation services, whereas
<SequenceOf> types are always treated as a whole. For all child elements of an <Object>, the 'propertyIdentifier' attribute
provides the property number that can be used to access the data with BACnet binary services.

Q.7 Extensibility

Both the XML syntax and the data it represents can be extended.

Q.7.1 XML extensions

Documents conforming to this standard can be extended through the use of XML attributes and elements from other XML
namespaces. XML attributes from other namespaces are allowed on any standard element, and elements from other
namespaces are allowed under any standard element that already has child elements defined for it in this standard. With the
exception of the <Documentation> element, this standard does not use mixed content, so any element other than
<Documentation> that uses body text may not be extended with elements from other namespaces.

Q.7.2 Data Model Extensions

Extensions to the data represented by this standard XML syntax is accomplished with the <Extensions> element defined in
Clause Q.3.2.6. Normally, these extensions represent data that is beyond what is accessible through standard BACnet binary
services but which may be of interest to the consumer of the XML, or they may represent extended data that is accessible
through BACnet Web services or by other means.

Standard elements and attributes can both be extended with proprietary attributes. The names of proprietary attributes shall
begin with a period character (".") to prevent conflict with standard attribute names. While not required, it is recommended
that proprietary attributes also use a vendor-specific prefix, following the required period character, to prevent conflicts
among proprietary attributes.

Standard attributes, like displayName, can be extended with standard attributes that are appropriate to their datatypes. While
this clause provides the syntax and method for extending the standard attributes, it makes no requirement that consumers of
this XML understand or process any of these extensions. When extending standard attributes, the names used for the
extensions use the naming convention of the corresponding attributes in the Annex N data model and are shown in the
following table. The table also indicates an "effective type" which defines the standard element type that shall be used as the
child of <Extensions> when extending the standard attribute.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

1008 ANSI/ASHRAE Standard 135-2012

Table Q-7. Standard Attribute Extensibility
Attribute Name Extension Name Effective Type

type n/a1 n/a1
extends n/a1 n/a1
overlays n/a1 n/a1
displayName "DisplayName" <String>
displayNameForWriting "DisplayNameForWriting" <String>
description "Description" <String>
writable "Writable" <Boolean>
readable "Readable" <Boolean>
commandable "Commandable" <Boolean>
associatedWith "AssociatedWith" <String>
requiredWith "RequiredWith" <String>
requiredWithout "RequiredWithout" <String>
notPresentWith "NotPresentWith" <String>
writableWhen "WritableWhen" <String>
requiredWhen "RequiredWhen" <String>
writeEffective "WriteEffective" <Enumerated>
optional "Optional" <Boolean>
absent "Absent" <Boolean>
variability "Variability" <Enumerated>
volatility "Volatility" <Enumerated>
contextTag "ContextTag" <Unsigned>
propertyIdentifier "PropertyIdentifier" <Unsigned>
notForWriting "NotForWriting" <Boolean>
notForReading "NotForReading" <Boolean>
minimum "Minimum" varies2
maximum "Maximum" varies2
minimumForWriting "MinimumForWriting" varies2
maximumForWriting "MaximumForWriting" varies2
resolution "Resolution" varies2
minimumLength "MinimumLength" <Unsigned>
maximumLength "MaximumLength" <Unsigned>
minimumLengthForWriting "MinimumLengthForWriting" <Unsigned>
maximumLengthForWriting "MaximumLengthForWriting" <Unsigned>
minimumEncodedLength "MinimumEncodedLength" <Unsigned>
maximumEncodedLength "MaximumEncodedLength" <Unsigned>
minimumEncodedLengthForWriting "MinimumEncodedLengthForWriting" <Unsigned>
maximumEncodedLengthForWriting "MaximumEncodedLengthForWriting" <Unsigned>
minimumSize "MinimumSize" <Unsigned>
maximumSize "MaximumSize" <Unsigned>
memberType "MemberType" <String>
allowedTypes "AllowedTypes" <String>
allowedChoices "AllowedChoices" <String>
bit "Bit" <Unsigned>
units "Units" <String>
value n/a1 n/a1
charset n/a1 n/a1
codepage n/a1 n/a1
length n/a1 n/a1
error n/a1 n/a1
locale n/a1 n/a1

1 The attributes marked as n/a are not extensible because they are not "metadata". They are either used to define the
data type or they are an indivisible part of the data value.
2 The effective type of the range restriction attributes is based on the enclosing element. The effective type is
<Unsigned> for the enclosing types <Enumerated>, <ObjectIdentifier>, and <ObjectIdentifierPattern>, and is equal
to the enclosing type for all others.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX Q - XML DATA FORMATS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1009

The following example shows the standard attribute, 'maximumLength', being extended with the standard attributes 'writable'
and 'writeEffective', and the standard element <String> being extended with a proprietary attribute ".999-
WritePrivilegeLevel".

<Definitions>
 <Object name="999-ExampleObject">
 <String name="write-me" writable="true" maximumLength="50">
 <Extensions>
 <Unsigned name="MaximumLength" writable="true" writeEffective="on-device-restart" />
 <Integer name=".999-WritePrivilegeLevel" value="6" />
 </Extensions>
 </String>
 </Object >
</Definitions>

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX R - MAPPING NETWORK LAYER ERRORS (NORMATIVE)

1010 ANSI/ASHRAE Standard 135-2012

ANNEX R - MAPPING NETWORK LAYER ERRORS (NORMATIVE)

(This annex is part of this standard and is required for its use.)

This annex describes the mapping of network layer and BVLL layer errors to application errors to allow for reporting of
errors up the BACnet stack to the application program. This allows recording of errors by the application entity in a singular
format.

There is no requirement that all of these errors be passed to the application layer, but when errors are provided to the
application layer, these mappings shall be used. There are cases, such as the receipt of Reject-Message-To-Network
messages, where there is no simple method for associating the error with the original request.

Table R-1. Mapping Security-Response Response Codes to Error Class and Error Code Pairs
Security-Response Response Code Error Class / Error Code

success SECURITY / SUCCESS
accessDenied SECURITY / ACCESS_DENIED
badDestinationAddress SECURITY / BAD_DESTINATION_ADDRESS
badDestinationDeviceId SECURITY / BAD_DESTINATION_DEVICE_ID
badSignature SECURITY / BAD_SIGNATURE
badSourceAddress SECURITY / BAD_SOURCE_ADDRESS
badTimestamp SECURITY / BAD_TIMESTAMP
cannotUseKey SECURITY / CANNOT_USE_KEY
cannotVerifyMessageId SECURITY / CANNOT_VERIFY_MESSAGE_ID
correctKeyRevision SECURITY / CORRECT_KEY_REVISION
destinationDeviceIdRequired SECURITY / DESTINATION_DEVICE_ID_REQUIRED
duplicateMessage SECURITY / DUPLICATE_MESSAGE
encryptionNotConfigured SECURITY / ENCRYPTION_NOT_CONFIGURED
encryptionRequired SECURITY / ENCRYPTION_REQUIRED
incorrectKey SECURITY / INCORRECT_KEY
invalidKeyData SECURITY / INVALID_KEY_DATA
keyUpdateInProgress SECURITY / KEY_UPDATE_IN_PROGRESS
malformedMessage SECURITY / MALFORMED_MESSAGE
notKeyServer SECURITY / NOT_KEY_SERVER
securityNotConfigured SECURITY / SECURITY_NOT_CONFIGURED
sourceSecurityRequired SECURITY / SOURCE_SECURITY_REQUIRED
tooManyKeys SECURITY / TOO_MANY_KEYS
unknownAuthenticationType SECURITY / UNKNOWN_AUTHENTICATION_TYPE
unknownKey SECURITY / UNKNOWN_KEY
unknownKeyRevision SECURITY / UNKNOWN_KEY_REVISION
unknownSourceMessage SECURITY / UNKNOWN_SOURCE_MESSAGE

Table R-2. Mapping Reject-Message-To-Network Reasons to Error Class and Error Code Pairs
Reject-Message-To-

Network Reason
Error Class / Error Code

0 COMMUNICATION / OTHER
1 COMMUNICATION / NOT_ROUTER_TO_DNET
2 COMMUNICATION / ROUTER_BUSY
3 COMMUNICATION / UNKNOWN_NETWORK_MESSAGE
4 COMMUNICATION / MESSAGE_TOO_LONG
5 COMMUNICATION / SECURITY_ERROR
6 COMMUNICATION / ADDRESSING_ERROR

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX R - MAPPING NETWORK LAYER ERRORS (NORMATIVE)

ANSI/ASHRAE Standard 135-2012 1011

Table R-3. Mapping BVLL Errors to Error Class and Error Code Pairs

Error Condition Error Class / Error Code
Write-Broadcast-Distribution-Table
NAK

COMMUNICATION / WRITE_BDT_FAILED

Read-Broadcast-Distribution-Table
NAK

COMMUNICATION / READ_BDT_FAILED

Register-Foreign-Device NAK COMMUNICATION /
REGISTER_FOREIGN_DEVICE_FAILED

Read-Foreign-Device-Table NAK COMMUNICATION / READ_FDT_FAILED
Delete-Foreign-Device-Table-Entry
NAK

COMMUNICATION / DELETE_FDT_ENTRY_FAILED

Distribute-Broadcast-To-Network
NAK

COMMUNICATION /
DISTRIBUTE_BROADCAST_FAILED

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1012 ANSI/ASHRAE Standard 135-2012

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

(This annex is not part of this standard but is included for information only.)

This annex provides examples of the use of secure messages defined in Clause 24. All of the examples are written from the
point of view of secure device 1 (SecDev1), whose messages are shown in the left-hand column. Messages from all other
devices are shown in the right-hand column.

S.1 Example of an Initial Key Distribution

In this example, SecDev1, has just been connected to the BACnet network and is manually manipulated to request a Device-
Master key. SecDev1 is not connected to a temporary physically secure network in this example; not all sites would accept
this form of initial key distribution as it is inherently insecure. It would be better to connect SecDev1 to a physically secured
port on the KeyServer that is dedicated to providing initial key sets to devices.

; Send a request for a Device-Master key.

Request-Master-Key(
Control = NPDU,
Key Revision = 0,
Key Id = 0/0,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = any valid value (may be incorrect),
Destination Device Instance = 4194303,
DNET = 65535,
DADR = empty,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Number_Of_Encryption_Algs = 1,
 Supported_Encryption_Algs = (0),
 Number_Of_Signature_Algs = 2,
 Supported_Signature_Algs = (0, 1),
Padding = not present,
Signature = all 0s)

 ; The Key Server responds with a Device-Master key.

Set-Master-Key(
Control = NPDU,
Key Revision = 0,
Key Id = 1/1,
Source Device Instance = KeyServer1,
Message Id = MsgId1,
Timestamp = current time (TimeStamp1),
Destination Device Instance = SecDev1,
DNET = 0,
DADR = SecDev1MAC,
SNET = KeyServer1Net,
SADR = KeyServer1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Key = any valid key,
Padding = not present,
Signature = as generated

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1013

; Acknowledge receipt of the Device-Master key.

Security-Response(
Control = NPDU,
Key Revision = current revision,
Key Id = 1/1,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = KeyServer1,
DNET = KeyServer1Net,
DADR = KeyServer1MAC,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Response Code = 0 (success),
 Originating Message Id = MsgId1,
 Original Timestamp = TimeStamp1
Padding = not present,
Signature = as generated)

; Request the Key Server provide a full set of keys.

Request-Key-Update(
Control = NPDU, Encrypted
Key Revision = 0,
Key Id = 1/1,
Source Device Instance = SecDev1,
Message Id = anything,
Timestamp = current time,
Destination Device Instance = KeyServer1,
DNET = KeyServer1Net,
DADR = KeyServer1MAC,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Set 1 Key Revision = 0,
 Set 1 Key Expiration Time = any valid value,
 Set 2 Key Revision = 0,
 Set 2 Key Expiration Time = any valid value,
 Distribution Key Revision = 0,
Padding = present,
Signature = all 0s)

 ; Key Server provides a Distribution key first.

Update-Distribution-Key(
Control = NPDU, Encrypted
Key Revision = 0,
Key Id = 1/1,
Source Device Instance = KeyServer1,
Message Id = MsgId1,
Timestamp = TS1,
Destination Device Instance = SecDev1,
DNET = 0,
DADR = SecDev1MAC,
SNET = KeyServer1Net,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1014 ANSI/ASHRAE Standard 135-2012

SADR = KeyServer1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Key Revision = any valid value,
 Key = any valid value,
Padding = present,
Signature = as generated)

; Acknowledge receipt of the Distribution key.

Security-Response(
Control = NPDU, Encrypted
Key Revision = 0,
Key Id = 1/1,
Source Device Instance = SecDev1,
Message Id = anything,
Timestamp = current time,
Destination Device Instance = KeyServer1,
DNET = KeyServer1Net,
DADR = KeyServer1MAC,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Response Code = 0,
 MsgId1,
 TS1,
 Response Specific Parameters = not present,
Padding = present,
Signature = as generated)

 ; Key Server then provides all other keys.

Update-Key-Set(
Control = NPDU, Encrypted
Key Revision = distribution key revision,
Key Id = 1/2,
Source Device Instance = KeyServer1,
Message Id = MsgId2,
Timestamp = TS2,
Destination Device Instance = SecDev1,
DNET = 0,
DADR = SecDev1MAC,
SNET = KeyServer1Net,
SADR = KeyServer1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 <parameters describing key sets appropriate for
SecDev1>,
Padding = present,
Signature = as generated

; Acknowledge receipt of keys.

Security-Response(
Control = NPDU, Encrypted
Key Revision = distribution key revision,
Key Id = 1/2,
Source Device Instance = SecDev1,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1015

Message Id = anything,
Timestamp = current time,
Destination Device Instance = KeyServer1,
DNET = KeyServer1Net,
DADR = KeyServer1MAC,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Response Code = 0,
 MsgId2,
 TS2,
 Response Specific Parameters = not present,
Padding = present,
Signature = as generated)
; Determine local network number now that the
; device has a General-Network-Access key.

Security-Payload(
Control = NPDU
Key Revision = current key revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = anything,
Timestamp = current time,
Destination Device Instance = 4194303,
DNET = 0,
DADR = empty,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Type = What-is-Network-Number,
Padding = not present,
Signature = as generated)

 ; A device on the local network provides the network
; number.

Security-Payload(
Control = NPDU
Key Revision = current key revision,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = anything,
Timestamp = current time,
Destination Device Instance = 4194303,
DNET = SecDev2Net,
DADR = empty,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Type = Network-Number-Is,
 Network Number = SecDev2Net,
 Configured Flag = any valid value,
Padding = not present,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1016 ANSI/ASHRAE Standard 135-2012

Signature = as generated)

S.2 Example of Device Startup

In this example, SecDev1, has just been powered up. It has its security keys but does not have time nor a network number. In
this example, the message that allows the device to determine the current time is a broadcast packet. The device might also
wait for a unicast directed at it, or it might collect any unicast packet aimed at any device in order to retrieve the time.

 ; First broadcast message sent on the network after the
; device startup (this could also be a unicast message
; sent to SecDev1).

Security-Payload(
Control = APDU
Key Revision = current key revision,
Key Id = 1/4,
Source Device Instance = SecDev3,
Message Id = anything,
Timestamp = current time,
Destination Device Instance = 4194303,
DNET = 65535,
DADR = empty,
SNET = SecDev3Net,
SADR = SecDev3MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 …,
Padding = not present,
Signature = as generated)

; Request the local network number.

Security-Payload(
Control = NPDU
Key Revision = current key revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = a random value,
Timestamp = current time (derived from initial msg),
Destination Device Instance = SecDev2,
DNET = 0,
DADR = empty,
SNET = 0,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Type = What-is-Network-Number,
Padding = not present,
Signature = as generated)

 ; A device on the local network provides the network
; number.

Security-Payload(
Control = NPDU
Key Revision = current key revision,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = MsgId1,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1017

Timestamp = Timestamp1,
Destination Device Instance = 4194303,
DNET = SecDev2Net,
DADR = empty,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Type = Network-Number-Is,
 Network Number = SecDev2Net,
 Configured Flag = any valid value,
Padding = not present,
Signature = as generated)

; Challenge the device to validate the learned
; timestamp and network number.

Challenge-Request(
Control = NPDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = MsgId2,
Timestamp = TimeStamp2,
Destination Device Instance = SecDev2,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Challenge = 1,
 Original Message Id = MsgId1,
 Original Timestamp = TimeStamp1,
Padding = not present,
Signature = as generated)

 ; The challenge response, allowing SecDev1 to trust the
; time and local network number.

Security-Response(
Control = NPDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Response Code = 0 (success),
 Originating Message Id = MsgId2,
 Original Timestamp = TimeStamp2
Padding = not present,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1018 ANSI/ASHRAE Standard 135-2012

Signature = as generated)

S.3 Examples of Secured Confirmed Requests

S.3.1 ReadProperty Example

In this example, SecDev1, is reading a property from SecDev2.

; Send a ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Confirmed-Request-PDU(
 service = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-name),
Padding = not present,
Signature = as generated)

 ; A positive response to the ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Complex-Ack(
 service-ACK-choice = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-name,
 propertyValue = "Lighting Controller 201"),
Key = any valid key,
Padding = not present,
Signature = as generated

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1019

S.3.2 ReadProperty Error Example

In this example, SecDev1, is reading a property from SecDev2 for which it does not have sufficient authorization.

; Send a ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = 0,
Authentication Data = 10,
Service Data =
 Confirmed-Request-PDU(
 service = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = device-address-binding),
Padding = not present,
Signature = as generated)

 ; A negative response to the ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Error (
 error-choice = ReadProperty,
 error-class = security,
 error-code = read-access-denied),
Key = any valid key,
Padding = not present,
Signature = as generated

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1020 ANSI/ASHRAE Standard 135-2012

S.3.3 Segmented ReadProperty Example

In this example, SecDev1, is reading a property from SecDev2, and the response requires segmentation.

; Send a ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Confirmed-Request (
 invokeID = 2,
 service = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-list),
Padding = not present,
Signature = as generated)

 ; First segment of a segmented response.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 ComplexACK(
 segmented-message = True,
 more-follows = True,
 invokeID = 2,
 sequence-number = 0,
 proposed-window-size = 2,
 service-ACK-choice = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-name,
 propertyValue = …),
Key = any valid key,
Padding = not present,
Signature = as generated

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1021

; SegmentAck to set the window size.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 SegmentACK (
 negative-ACK = False,
 server = False,
 original-invokeID = 2,
 sequence-number = 0,
 actual-window-size = 2),
Padding = not present,
Signature = as generated)

 ; First segment of the first window.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 ComplexACK(
 segmented-message = True,
 more-follows = True,
 invokeID = 2,
 sequence-number = 1,
 proposed-window-size = 2,
 service-ACK-choice = ReadProperty,
 …),
Key = any valid key,
Padding = not present,
Signature = as generated

 ; Second segment of the first window.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1022 ANSI/ASHRAE Standard 135-2012

Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 ComplexACK(
 segmented-message = True,
 more-follows = True,
 invokeID = 2,
 sequence-number = 2,
 proposed-window-size = 2,
 service-ACK-choice = ReadProperty,
 …),
Key = any valid key,
Padding = not present,
Signature = as generated

; Send a SegmentAck for the first window.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 SegmentACK (
 negative-ACK = False,
 server = False,
 original-invokeID = 2,
 sequence-number = 2,
 actual-window-size = 2),
Padding = not present,
Signature = as generated)

 ; First segment of the second window and last segment.

Security-Payload(
Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1023

SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 ComplexACK(
 segmented-message = True,
 more-follows = False,
 invokeID = 2,
 sequence-number = 3,
 proposed-window-size = 2,
 service-ACK-choice = ReadProperty,
 …),
Key = any valid key,
Padding = not present,
Signature = as generated)

; Send a SegmentAck for the final segment.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 SegmentACK (
 negative-ACK = False,
 server = False,
 original-invokeID = 2,
 sequence-number = 3,
 actual-window-size = 2),
Padding = not present,
Signature = as generated)

S.4 Security Challenge Example

In this example, SecDev1, is reading a property from SecDev2, and SecDev2 challenges SecDev1 to ensure that it is the true
source of the message.

; Send a ReadProperty request.

Security-Payload(
Control = APDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = MsgId1,
Timestamp = TimeStamp1,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1024 ANSI/ASHRAE Standard 135-2012

DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Confirmed-Request-PDU(
 service = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-name),
Padding = not present,
Signature = as generated)
 ; Challenge SecDev1 to ensure it originated the message.

Challenge-Request(
Control = NPDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = MsgId2,
Timestamp = TimeStamp2,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Message Challenge = 1,
 Original Message Id = MsgId1,
 Original Timestamp = TimeStamp1,
Padding = not present,
Signature = as generated)

; Answer the Challenge.

Security-Response(
Control = NPDU,
Key Revision = current revision,
Key Id = 1/4,
Source Device Instance = SecDev1,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev2,
DNET = SecDev2Net,
DADR = SecDev2MAC,
SNET = SecDev1Net,
SADR = SecDev1MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Response Code = 0 (success),
 Originating Message Id = MsgId2,
 Original Timestamp = TimeStamp2
Padding = not present,
Signature = as generated)

 ; Send a response to the ReadProperty request.

Security-Payload(

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

ANSI/ASHRAE Standard 135-2012 1025

Control = APDU,
Key Revision = 0,
Key Id = 1/4,
Source Device Instance = SecDev2,
Message Id = any valid value,
Timestamp = current time,
Destination Device Instance = SecDev1,
DNET = SecDev1Net,
DADR = SecDev1MAC,
SNET = SecDev2Net,
SADR = SecDev2MAC,
Authentication Mechanism = not present,
Authentication Data = not present,
Service Data =
 Complex-Ack(
 service-ACK-choice = ReadProperty,
 objectIdentifier = SecDev2,
 propertyIdentifier = object-name,
 propertyValue = "Lighting Controller 201"),
Key = any valid key,
Padding = not present,
Signature = as generated

S.5 Secure-BVLL Example

In this example, SecDev1, reads the Broadcast Distribution Table from SecDev2.

; Send Read-Broadcast-Distribution-Table request.

Secure-BVLL(
Security Wrapper = Security-Payload(
 Control = NPDU,
 Key Revision = current revision,
 Key Id = 1/4,
 Source Device Instance = SecDev1,
 Message Id = any valid value,
 Timestamp = current time,
 Destination Device Instance = SecDev2,
 DNET = SecDev2Net,
 DADR = SecDev2MAC,
 SNET = SecDev1Net,
 SADR = SecDev1MAC,
 Authentication Mechanism = 0,
 Authentication Data = 10,
 Service Data =
 Read-Broadcast-Distribution-Table ()
 Padding = not present,
 Signature = as generated)
)

 ; Send a response.

Secure-BVLL(
Security Wrapper = Security-Payload(
 Control = NPDU,
 Key Revision = current revision,
 Key Id = 1/4,
 Source Device Instance = SecDev2,
 Message Id = any valid value,

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

ANNEX S - EXAMPLES OF SECURE BACnet MESSAGES (INFORMATIVE)

1026 ANSI/ASHRAE Standard 135-2012

 Timestamp = current time,
 Destination Device Instance = SecDev1,
 DNET = SecDev1Net,
 DADR = SecDev1MAC,
 SNET = SecDev2Net,
 SADR = SecDev2MAC,
 Authentication Mechanism = not present,
 Authentication Data = not present,
 Service Data =
 Read-Broadcast-Distribution-Table -
Ack(
 …)
 Padding = not present,
 Signature = as generated)
)

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1027

HISTORY OF REVISIONS

Protocol Summary of Changes to the Standard

Version Revision
1 NA ANSI/ASHRAE 135-1995

Approved by the ASHRAE Standards Committee June 28, 1995; by the ASHRAE
Board of Directors June 29, 1995; and by the American National Standards Institute
December19, 1995.

1 NA Addendum a to ANSI/ASHRAE 135-1995
Approved by the ASHRAE Standards Committee January 23, 1999; by the
ASHRAE Board of Directors January 27, 1999; and by the American National
Standards Institute October 1, 1999.

1.
 Add Annex J - BACnet/IP and supporting definitions

1 1 Addendum b to ANSI/ASHRAE 135-1995
Approved by the ASHRAE Standards Committee February 5, 2000; by the
ASHRAE Board of Directors February 10, 2000; and by the American National
Standards Institute April 25, 2000.

1.
 Inconsistencies are eliminated in the definitions of the Analog and Binary
Value object types

2.
 Any device that receives and executes UnconfirmedEventNotification
service requests must support programmable process identifiers

3.
 Modify each event-generating object type to contain the last timestamp for
each acknowledgeable transition

4.
 Modify the Notification Class object by requiring that the 'Notification
Class' property be equivalent to the instance number of the Notification
Class object

5.
 Modify the Event Notification services to make the 'To State' parameter
mandatory for notifications of type ACK_NOTIFICATION

6.
 A new BACnetDeviceObjectPropertyReference production is added and
its use in the Event Enrollment and Schedule object types is specified

7.
 Add a Multi-state Value object type
8.
 Add an Averaging object type
9.
 Change all 'Process Identifier' properties and parameters to Unsigned32
10.
 Change the Multi-state Input object type to correct flaws related to fault

detection and reporting and achieve consistency with the proposed Multi-
state Value object type

11.
 Add a Protocol_Revision property to the Device object type
12.
 The File object type is changed to allow truncation and partial deletion

operations
13.
 A new ReadRange service is added to permit reading a range of data items

from a property whose datatype is a list or array of lists
14.
 A new UTCTimeSynchronization service is introduced and related

changes are made to properties in the Device object type
15.
 Add a Trend Log object type
16.
 The UnconfirmedCOVNotification service is extended to allow

notifications without prior subscription as a means of distributing globally
important data to a potentially large number of recipients

17.
 Add eight new BACnet engineering units.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1028 ANSI/ASHRAE Standard 135-2012

1 2 Addendum c to ANSI/ASHRAE 135-1995
Approved by the ASHRAE Standards Committee June 23, 2001; by the ASHRAE
Board of Directors June 28, 2001; and by the American National Standards Institute
September 7, 2001.

1.
 Add a new Life Safety Point object type that represents the characteristics
of initiating and indicating devices in the fire, life safety, and security
applications

2.
 Add a new Life Safety Zone object type that represents the characteristics
associated with an arbitrary group of BACnet Life Safety Point and Life
Safety Zone objects

3.
 Add functionality to the existing BACnet alarm and event features needed
to support the Life Safety Point and Life Safety Zone object types

4.
 Add a new LifeSafetyOperation service that provides silence and reset
capabilities needed for life safety systems

5.
 Add a new subclause to 19 to describe the use of existing BACnet services
to provide backup and restore capability

6.
 Define a new service, SubscribeCOVProperty, to allow COV notifications
for arbitrary properties of an object with subscriber-specified COV
increments

7.
 Add Vendor ID to proprietary MS/TP frames
8.
 Add a new service, GetEventInformation, that provides enough

information to acknowledge alarms

1 2 Addendum d to ANSI/ASHRAE 135-1995
Approved by the ASHRAE Standards Committee June 23, 2001; by the ASHRAE
Board of Directors June 28, 2001; and by the American National Standards Institute
September 7, 2001.

1.
 Replace Clause 22 with a new clause entitled "Conformance and
Interoperability".

2.
 Update Annex A, "Protocol Implementation Conformance Statement".
3.
 Add a new Annex K entitled "BACnet Interoperability Building Blocks

(BIBBs)".
4.
 Add a new Annex L entitled "Descriptions and Profiles of Standardized

BACnet Devices".

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1029

1 2 Addendum e to ANSI/ASHRAE 135-1995
Approved by the ASHRAE Standards Committee June 23, 2001; by the ASHRAE
Board of Directors June 28, 2001; and by the American National Standards Institute
September 7, 2001.

 Add the capability for devices to advertise the maximum number of

segments of a segmented APDU that they can receive.

1 2 ANSI/ASHRAE 135-2001
A consolidated version of the standard that incorporates all of the known errata and
revisions up to Addendum e to ANSI/ASHRAE 135-1995.

1 2 ANSI/ASHRAE 135-2001 (reprinted May, 2002)
This reprinted version incorporated all errata known as of April 12, 2002.

1 3 Addendum b to ANSI/ASHRAE 135-2001
Approved by the ASHRAE Standards Committee January 25, 2003; by the
ASHRAE Board of Directors January 30, 2003; and by the American National
Standards Institute April 3, 2003.

1.
 Remove UTC timestamps from Trend Logs and guarantee Trend Log
record ordering.

1 3 EN ISO 16484-5 2003

This ISO standard contains the same technical content as Version 1 Revision 3 of
ANSI/ASHRAE Standard 135-2001. It also includes all errata approved as of April
24, 2003.

1 4 Addendum a to ANSI/ASHRAE 135-2001
Approved by the ASHRAE Standards Committee October 5, 2003; by the
ASHRAE Board of Directors January 29, 2004; and by the American National
Standards Institute February 15, 2004.

1.
 Add Partial Day Scheduling to the Schedule object.
2.
 Enable reporting of proprietary events by the Event Enrollment object.
3.
 Allow detailed error reporting when all ReadPropertyMultiple accesses

fail.
4.
 Remove the Recipient property from the Event Enrollment object.
5.
 Add the capability to issue I-Am responses on behalf of MS/TP slave

devices.
6.
 Add a new silenced mode to the DeviceCommunicationControl service.
7.
 Add 21 new engineering units.
8.
 Specify the behavior of a BACnetARRAY when its size is changed.
9.
 Clarify the behavior of a BACnet router when it receives an unknown

network message type.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1030 ANSI/ASHRAE Standard 135-2012

1 4 Addendum c to ANSI/ASHRAE 135-2001
Approved by the ASHRAE Standards Committee October 5, 2003;by the ASHRAE
Board of Directors January 29, 2004; and by the American National Standards
Institute February 15, 2004.

1.
 Allow Life Safety objects to advertise supported mode.
2.
 Add Unsilence Options to the LifeSafetyOperation Service.
3.
 Specify the relationship between the Event_Type and Event_Parameter

properties.
4.
 Add a new Accumulator Object Type.
5.
 Add a new Pulse Converter Object Type.
6.
 Standardize event notification priorities.
7.
 Define Abort reason when insufficient segments are available.
8.
 Add new Error Codes and specify usage.

1 4 Addendum d to ANSI/ASHRAE 135-2001
Approved by the ASHRAE Standards Committee October 5, 2003; by the
ASHRAE Board of Directors January 29, 2004; and by the American National
Standards Institute February 15, 2004.

1.
 Add clauses describing BACnet-EIB/KNX mapping.

1 4 ANSI/ASHRAE 135-2004
A consolidated version of the standard that incorporates all of the known errata and
revisions up to Addendum d to ANSI/ASHRAE 135-2001.

1 4 ANSI/ASHRAE 135-2004 (reprinted October, 2005)
This reprinted version incorporated all errata known as of September 30, 2005.

1 5 Addendum a to ANSI/ASHRAE 135-2004
Approved by the ASHRAE Standards Committee October 3, 2004; by the
ASHRAE Board of Directors February 10, 2005; and by the American National
Standards Institute February 10, 2005.

1.
 Revise Life Safety Point and Life Safety Zone objects to modify their
behavior when placed out of service.

1 5 Addendum c to ANSI/ASHRAE 135-2004

Approved by the ASHRAE Standards Committee September 29, 2006 and by the
ASHRAE Board of Directors September 29, 2006; and by the American National
Standards Institute October 2, 2006.

1.
 Add BACnet/WS Web Services Interface.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1031

1 5 Addendum d to ANSI/ASHRAE 135-2004
Approved by the ASHRAE Standards Committee June 24, 2006, and by the
ASHRAE Board of Directors June 29, 2006; and by the American National
Standards Institute June 30, 2006.

1.
 Add a new Structured View object type.
2.
 Allow acknowledgment of unseen TO_OFFNORMAL event notification.
3.
 Relax the Private Transfer and Text Message BIBB requirements.
4.
 Exclude LIFE_SAFETY and BUFFER_READY notifications from the

Alarm Notifications BIBBs.
5.
 Establish the minimum requirements for a BACnet device with an

application layer.
6.
 Remove the requirement for the DM-DOB-A BIBB from the B-OWS and

B-BC device profiles.
7.
 Relax mandated values for APDU timeouts and retries when configurable,

and change default values.
8.
 Fix EventCount handling error in MS/TP Master Node State Machine.
9.
 Permit routers to use a local network number in Device_Address_Binding.
10.
 Identify conditionally writable properties.
11.
 Specify Error returns for the AcknowledgeAlarm service.

1 6 Addendum e to ANSI/ASHRAE 135-2004

Approved by the ASHRAE Standards Committee January 27, 2007, by the
ASHRAE Board of Directors March 25, 2007; and by the American National
Standards Institute March 26, 2007.

1.
 Add a new Load Control object type.

1 6 Addendum f to ANSI/ASHRAE 135-2004
Approved by the ASHRAE Standards Committee January 27, 2007, and by the
ASHRAE Board of Directors March 25, 2007, and by the American National
Standards Institute March 26, 2007.

1.
 Add new Access Door object type.

1 6 Amendment 1 to EN ISO 16484-5 2007
This amendment to the ISO standard contains the same technical content as the
cumulative changes in Addenda a, c, d, e, and f to ANSI/ASHRAE Standard 135-
2004.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1032 ANSI/ASHRAE Standard 135-2012

1 7 Addendum b to ANSI/ASHRAE 135-2004
Approved by the ASHRAE Standards Committee October 12, 2008, by the
ASHRAE Board of Directors October 24, 2008, and by the American National
Standards Institute October 27, 2008.

1.
 Add a new Event Log object type.
2.
 Add a new Global Group object type. (Removed after third public review.)
3.
 Add a new Trend Log Multiple object type.
4.
 Harmonize the Trend Log object with the new Event Log and Trend Log

Multiple objects.
5.
 Define a means for a device to provide a notification that it has restarted.
6.
 Define a means to configure a device to periodically send time

synchronization messages.
7.
 Extend the number of character sets supported. (Removed after first public

review.)
8.
 Enable devices other than alarm recipients to acknowledge alarms.
9.
 Allow MS/TP BACnet Data Expecting Reply frames to be broadcast.
10.
 Revise the Clause 5 state machines to handle slow servers. (Removed after

second public review.)
11.
 Add new Error Codes and specify usage.
12.
 Add new Reliability enumeration to objects with a Reliability property.

1 7 Addendum m to ANSI/ASHRAE 135-2004

Approved by the ASHRAE Standards Committee October 12, 2008, by the
ASHRAE Board of Directors October 24, 2008, and by the American National
Standards Institute October 27, 2008.

1.
 Resolve Foreign Device registration grace period and remaining time
ambiguities.

2.
 Improve Clause 5 FillWindow segment timeout constraints.
3.
 Clarify the Priority Filter parameter in the GetEventEnrollment service

request.
4.
 Allow alarms to be re-acknowledged successfully.
5.
 Add requirements to Alarm and Event BIBBs.
6.
 Remove B-BC requirements for BIBBs without use cases.
7.
 Clarify that a device may support only the ReinitializeDevice restart

choices.
8.
 Clarify DeviceCommunicationControl and ReinitializeDevice interactions.
9.
 Define "object."
10.
 Add a Deadband property to the Loop object.
11.
 Correct the TO_FAULT conditions in the Life Safety objects' Reliability

properties.
12.
 Clarify the Trend Log's acquisition of Status_Flags.

1 7 ANSI/ASHRAE 135-2008

A consolidated version of the standard that incorporates all of the known errata and
Addenda a, b, c, d, e, f and m to ANSI/ASHRAE 135-2004.

1 7 EN ISO 16484-5 2010
This ISO standard contains the same technical content as Version 1 Revision 7 of
ANSI/ASHRAE Standard 135-2008. It also includes all errata approved as of May
6, 2009.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1033

1 8 Addendum q to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 24, 2009; by the
ASHRAE Board of Directors January 28, 2009; and by the American National
Standards Institute January 29, 2009.

1.
 Allow unicast I-Ams.
2.
 Define virtual addressing for data links with MAC addresses longer than 6

octets.
3.
 Define the use of ZigBee as a BACnet data link layer.

1 9 Addendum j to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

7.

1 9 Addendum l to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

1 9 Addendum o to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

1.
 Accommodate remote operator access and NAT in Annex J BACnet/IP.

1 9 Addendum r to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

1.
 Clarify transitions in FLOATING_LIMIT and OUT_OF_RANGE events.
2.
 Clarify router action when a network is marked as temporarily

unreachable.
3.
 Clarify the destination MAC used when replying to a broadcast DER

frame.
4.
 Clarify the handling of write priorities greater than 16.
5.
 Clarify LogDatum presentation.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1034 ANSI/ASHRAE Standard 135-2012

1 9 Addendum s to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

1.
 Clarify the circumstances that cause the File object's Archive property to
be set to TRUE or FALSE.

2.
 Require support for COV subscriptions of at least 8 hours' lifetime.

1 9 Addendum v to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 20, 2009; by the ASHRAE
Board of Directors June 24, 2009; and by the American National Standards Institute
June 25, 2009.

1.
 Fix the MS/TP TokenCount Value.
2.
 Clarify "Supported".
3.
 Remove NM-CE-A from Device Profiles.

1 10 Addendum h to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Change Device_Busy to Busy and apply to the Command Object type.
2.
 Prevent overflow and underflow in Pulse_Converter object's Count

property.
3.
 Add context tags to Clause 21 production BACnetPropertyStates.
4.
 Add new BACnetEngineering Units.
5.
 Define COV notification service Error returns.
6.
 Remove non-support for automatic cancellation of COV subscriptions.
7.
 [This section was removed from this addendum]
8.
 Add even and odd day support in Dates.

1 10 Addendum k to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Add support for UTF-8.
2.
 Change JIS Reference.

1 10 Addendum n to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Add support for long Backup and Restore preparation times.

1 10 Addendum t to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Add XML data formats.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1035

1 10 Addendum u to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Clarify the use of RejectPDUs.
2.
 Add error code UNSUPPORTED_OBJECT_TYPE for CreateObject

service.
3.
 Add new Abort and Error codes.
4.
 Specify proper Errors when attempting access to the Log_Buffer property.

1 10 Addendum w to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Add more primitive value objects.

1 10 Addendum x to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Fix the Criteria for COV for Load Control.
2.
 Clarify Trend Log Time Stamp.
3.
 Clarify ReadRange on Lists.
4.
 Clarify Results of Using Special Property Identifiers.

1 10 Addendum y to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American National
Standards Institute January 28, 2010.

1.
 Specify Deployment Options for MS/TP.

1 11 Addendum g to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 26, 2010; by the ASHRAE
Board of Directors June 30, 2010; and by the American National Standards Institute
July 1, 2010.

1.
 Update BACnet Network Security

1 11 Addendum p to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 26, 2010; by the ASHRAE
Board of Directors June 30, 2010; and by the American National Standards Institute
July 1, 2010.

1.
 Add a new Global Group object type.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1036 ANSI/ASHRAE Standard 135-2012

1 11 Addendum z to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee June 26, 2010; by the ASHRAE
Board of Directors June 30, 2010; and by the American National Standards Institute
July 1, 2010.

1.
 Add Event_Message_Texts.
2.
 Add UnconfirmedEventNotification to Automated Trend Retrieval BIBBs.
3.
 Modify MS/TP State Machine to Ignore Data Not For Us
4.
 Add New Engineering Units
5.
 Add Duplicate Segment Detection

1 12 Addendum ab to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 29, 2011; by the
ASHRAE Board of Directors February 2, 2011; and by the American National
Standards Institute February 3, 2011.

1.
 Add More Standard Baud Rates for MS/TP

1 12 Addendum ac to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 29, 2011; by the
ASHRAE Board of Directors February 2, 2011; and by the American National
Standards Institute February 3, 2011.

1.
 Clarify the Usage of Dates and Times.

1 12 Addendum ag to ANSI/ASHRAE 135-2008
Approved by the ASHRAE Standards Committee January 29, 2011; by the
ASHRAE Board of Directors February 2, 2011; and by the American National
Standards Institute February 3, 2011.

1.
 Prevent BBMD Broadcast Storms.
2.
 Align BIBBs for Automated Trend Retrieval.

1 12 Addendum ah to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 29, 2011; by the
ASHRAE Board of Directors February 2, 2011; and by the American National
Standards Institute March 3, 2011.

1.
 Remove ReadPropertyConditional.

1 12 ANSI/ASHRAE 135-2010
A consolidated version of the standard that incorporates all of the known errata and
Addenda g, h, j, k, l, n, o, p, q, r, s, t, u, v, w, x, y, z, ab, ac, ag and ah to
ANSI/ASHRAE 135-2008.

1 12 EN ISO 16484-5 2012
This ISO standard contains the same technical content as Version 1 Revision 12 of
ANSI/ASHRAE Standard 135-2010.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1037

1 13 Addendum ad to ANSI/ASHRAE 135-2010
Approved by the ASHRAE Standards Committee June 25, 2011; by the ASHRAE
Board of Directors June 29, 2011; and by the American National Standards Institute
June 30, 2011.

1.
 Provide Examples of Encoding Tag Numbers Greater than 14
2.
 Allow Feedback_Value to be used to calculate Elapsed_Active_Time
3.
 Add READ_ACCESS_DENIED condition to ReadProperty and

ReadPropertyMultiple
4.
 Remove Unqualified Frame Reference in USE_TOKEN
5.
 Align the Loop Object's Out_Of_Service Behavior with Other Objects
6.
 Add DM-DDB-A to the Device Profile B-AAC
7.
 Clarify Requirements for BBMDs
8.
 Restrict BBMD Foreign Device Forwarding
9.
 Restrict ReadRange 'Count' to INTEGER16

1 13 Addendum ae to ANSI/ASHRAE 135-2010

Approved by the ASHRAE Standards Committee June 25, 2011; by the ASHRAE
Board of Directors June 29, 2011; and by the American National Standards Institute
June 30, 2011.

1.
 Add a "Too large" error condition to the ERROR authentication encoding
2.
 Simplify the Initialization of Negative and Positive Access Rules
3.
 Replace Master_Exemption Property of the Access Credential Object Type
4.
 Add Fault Enumeration to Door_Status in Access Door Object Type
5.
 Clarify the behavior of Door_Unlock_Delay_Time and Present_Value of

Access Door

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

1038 ANSI/ASHRAE Standard 135-2012

1 13 Addendum af to ANSI/ASHRAE 135-2010
Approved by the ASHRAE Standards Committee June 25, 2011; by the ASHRAE
Board of Directors June 29, 2011; and by the American National Standards Institute
June 30, 2011.

1.
 Remove Annex C and Annex D
2.
 Clarify Optionality of Properties Related to Intrinsic Event Reporting
3.
 Clarify Optionality of Properties Related to Change of Value Reporting
4.
 Ensure that Pulse_Rate and Limit_Monitoring_Interval are Always Together
5.
 Clarify when Priority_Array and Relinquish_Default are allowed to be

Present
6.
 Clarify when Segmentation Related Properties are Allowed to be Present
7.
 Clarify when Virtual Terminal Related Properties are Allowed to be Present
8.
 Clarify when Time Sync Interval Properties are Allowed to be Present
9.
 Clarify when Backup and Restore Properties are Allowed to be Present
10.
 Clarify when the Active_COV_Subscriptions Property is Allowed to be

Present
11.
 Clarify when the Slave Proxy Properties are Allowed to be Present
12.
 Clarify when the Restart Related Properties are Allowed to be Present
13.
 Clarify when the Log_DeviceObjectProperty Property is Allowed to be

Present
14.
 Clarify when the Clock Aligning Properties are Allowed to be Present
15.
 Clarify when the Occupancy Counting Properties are Allowed to be Present
16.
 Add the Ability to Configure Event Message Text
17.
 Add an Event Detection Enable / Disable Property
18.
 Add the Ability to Dynamically Suppress Event Detection
19.
 Add the Ability to Specify a Different Time Delay for TO_NORMAL

Transitions
20.
 Add the Ability to Inhibit the Evaluation of Fault Conditions
21.
 Separate the Detection of Fault Conditions from Intrinsic Reporting
22.
 Ensure that Event Notifications are not Ignored due to Character Set Issues
23.
 Make the Event Reporting Property Descriptions Consistent
24.
 Identify the Property in each Object that is Monitored by Intrinsic Reporting
25.
 Change the Description of the Reliability Property
26.
 Improve Fault Detection in Event Enrollment Objects
27.
 Add the Ability for some Objects Types to Send Only Fault Notifications
28.
 Add a Notification Forwarder Object Type
29.
 Reduce the Requirements on Notification-Servers
30.
 Add an Alert Enrollment Object Type
31.
 Improve the Specification of Event Reporting

1 14 Addendum aa to ANSI/ASHRAE 135-2010

Approved by the ASHRAE Standards Committee June 23, 2012; by the ASHRAE
Board of Directors June 27, 2012; and by the American National Standards Institute
July 26, 2012.

1.
 Add Channel Object Type
2.
 Add WriteGroup Service

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

HISTORY OF REVISIONS

ANSI/ASHRAE Standard 135-2012 1039

1 14 Addendum ao to ANSI/ASHRAE 135-2010
Approved by the ASHRAE Standards Committee October 2, 2012; by the
ASHRAE Board of Directors October 26, 2012; and by the American National
Standards Institute October 27, 2012.

1. Update ReadRange Example
2. Add Present Value Range to Value Objects
3. Clarify Reject-Message-To-Network reason #3 DNET
4. Prevent Reliance on Static Router BindingsClarify when Priority_Array and

Relinquish_Default are allowed to be Present
5. Add Property_List Property

1 14 Addendum ak to ANSI/ASHRAE 135-2010

Approved by the ASHRAE Standards Committee June 23, 2012; by the ASHRAE
Board of Directors June 27, 2012; and by the American National Standards Institute
June 28, 2012.

1. Specify Address Range Requirements
2. Specify 'abort-reason' Values
3. Add Serial_Number Property

1 14 Addendum i to ANSI/ASHRAE 135-2010

Approved by the ASHRAE Standards Committee October 2, 2012; by the ASHRAE
Board of Directors October 26, 2012; and by the American National Standards
Institute October 27, 2012.

1. Add Lighting Output Type

1 14 ANSI/ASHRAE 135-2012
A consolidated version of the standard that incorporates all of the known errata and
Addenda i, aa, ad, ae, af, ak and ao to ANSI/ASHRAE 135-2010.

1 14 EN ISO 16484-5 2013
This ISO standard contains the same technical content as Version 1 Revision 14 of
ANSI/ASHRAE Standard 135-2012.

NA = Not Applicable because the Protocol_Revision property was first defined in Addendum b to
ANSI/ASHRAE 135-1995.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

NOTICE

INSTRUCTIONS FOR SUBMITTING A PROPOSED CHANGE TO
THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This standard is maintained under continuous maintenance procedures by a Standing Standard Project Committee (SSPC) for
which the Standards Committee has established a documented program for regular publication of addenda or revisions, includ-
ing procedures for timely, documented, consensus action on requests for change to any part of the standard. SSPC consider-
ation will be given to proposed changes within 13 months of receipt by the manager of standards (MOS).

Proposed changes must be submitted to the MOS in the latest published format available from the MOS. However, the MOS
may accept proposed changes in an earlier published format if the MOS concludes that the differences are immaterial to the
proposed change submittal. If the MOS concludes that a current form must be utilized, the proposer may be given up to
20 additional days to resubmit the proposed changes in the current format.

ELECTRONIC PREPARATION/SUBMISSION OF FORM
FOR PROPOSING CHANGES

An electronic version of each change, which must comply with the instructions in the Notice and the Form, is the preferred
form of submittal to ASHRAE Headquarters at the address shown below. The electronic format facilitates both paper-based
and computer-based processing. Submittal in paper form is acceptable. The following instructions apply to change proposals
submitted in electronic form.

Use the appropriate file format for your word processor and save the file in either a recent version of Microsoft Word (pre-
ferred) or another commonly used word-processing program. Please save each change proposal file with a different name (for
example, “prop01.doc,” “prop02.doc,” etc.). If supplemental background documents to support changes submitted are
included, it is preferred that they also be in electronic form as word-processed or scanned documents.

For files submitted attached to an e-mail, ASHRAE will accept an electronic signature (as a picture; *.tif, or *.wpg) on the
change submittal form as equivalent to the signature required on the change submittal form to convey non-
exclusive copyright.

Submit an e-mail containing the change proposal files to:
change.proposal@ashrae.org

Alternatively, mail paper versions to:
ASHRAE

Manager of Standards
1791 Tullie Circle, NE

Atlanta, GA 30329-2305

Or fax them to:
Attn: Manager of Standards

404-321-5478

The form and instructions for electronic submittal may be obtained from the Standards section of ASHRAE’s Home
Page, www.ashrae.org, or by contacting a Standards Secretary via phone (404-636-8400), fax (404-321-5478), e-mail
(standards.section@ashrae.org), or mail (1791 Tullie Circle, NE, Atlanta, GA 30329-2305).

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

FORM FOR SUBMITTAL OF PROPOSED CHANGE TO AN
ASHRAE STANDARD UNDER CONTINUOUS MAINTENANCE

NOTE: Use a separate form for each comment. Submittals (Microsoft Word preferred) may be attached to e-mail (preferred),
or submitted in paper by mail or fax to ASHRAE, Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305.
E-mail: change.proposal@ashrae.org. Fax: +1-404/321-5478.

1. Submitter:

Affiliation:

Address: City: State: Zip: Country:

Telephone: Fax: E-Mail:

I hereby grant ASHRAE the non-exclusive royalty rights, including non-exclusive rights in copyright, in my proposals. I
understand that I acquire no rights in publication of the standard in which my proposals in this or other analogous form is used.
I hereby attest that I have the authority and am empowered to grant this copyright release.

Submitter’s signature: ___ Date: ____________________________

2. Number and year of standard:

3. Page number and clause (section), subclause, or paragraph number:

4. I propose to: [] Change to read as follows [] Delete and substitute as follows
(check one) [] Add new text as follows [] Delete without substitution

Use underscores to show material to be added (added) and strike through material to be deleted (deleted). Use additional pages if needed.

5. Proposed change:

6. Reason and substantiation:

7. Will the proposed change increase the cost of engineering or construction? If yes, provide a brief explanation as
to why the increase is justified.

[] Check if additional pages are attached. Number of additional pages: _______
[] Check if attachments or referenced materials cited in this proposal accompany this proposed change. Please verify that all
attachments and references are relevant, current, and clearly labeled to avoid processing and review delays. Please list your
attachments here:

Rev. 1-7-2013

All electronic submittals must have the following statement completed:

I (insert name) , through this electronic signature, hereby grant
ASHRAE the non-exclusive royalty rights, including non-exclusive rights in copyright, in my proposals. I understand that I
acquire no rights in publication of the standard in which my proposals in this or other analogous form is used. I hereby attest
that I have the authority and am empowered to grant this copyright release.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

POLICY STATEMENT DEFINING ASHRAE’S CONCERN
FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s
members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and
components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted
standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and
outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other
responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure,
continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new
and revised standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date standards and design considerations as the material is
systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek
out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and
guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s
intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope
operates. However, energy source selection and the possible environmental impact due to the energy source and energy
transportation will be considered where possible. Recommendations concerning energy source selection should be made by
its members.

�������	
���	
���
���
����������������
�����������
���
����
���������
�
��� �!
"###����������$%�
&��
�������������
���	��$��
��#'

����������
������������'
������������'
��
������������
��
������
�����
��
��$����
����
��
���
���������
#������
��� �!(�
�����
#������
�����������

About ASHRAE
ASHRAE, founded in 1894, is an international organization of some 50,000 members. ASHRAE fulfills its mission of
advancing heating, ventilation, air conditioning, and refrigeration to serve humanity and promote a sustainable world
through research, standards writing, publishing, and continuing education.

For more information or to become a member of ASHRAE, visit www.ashrae.org.

To stay current with this and other ASHRAE standards and guidelines, visit www.ashrae.org/standards.
— · —

ASHRAE also offers its standards and guidelines on CD-ROM or via an online-access subscription that provides
automatic updates as well as historical versions of these publications. For more information, visit the Standards and
Guidelines section of the ASHRAE Online Store at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this
standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE standards and guidelines will no
longer be distributed with copies of the standards and guidelines. ASHRAE provides
these addenda, errata, and interpretations only in electronic form in order to promote
more sustainable use of resources.

ASHRAE · 1791 Tullie Circle NE · Atlanta, GA 30329 · www.ashrae.org

Product code: 86439 3/13

ISO 16484-5:2014(E)

ICS 35.240.99; 91.040.01

Price	based	on	1039	pages	

©	ISO	2014	–	All	rights	reserved

