INTERNATIONAL STANDARD

ISO 15932

> First edition 2013-12-15

Microbeam analysis — Analytical electron microscopy — Vocabulary

Analyse par microfaisceaux — Microscopie électronique analytique — Vocabulaire

Reference number ISO 15932:2013(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 202, *Microbeam analysis*, Subcommittee SC 1, *Terminology*.

Introduction

Analytical electron microscopy (AEM) is a technique used to qualitatively determine and quantitatively measure the elemental composition and examine the electronic state of the small volume of solid material observed by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). AEM is based on the physical mechanism of electron-stimulated X-ray spectrometry and electron energy loss spectrometry (EELS). AEM also provides structural information from small regions by microdiffraction while still possessing the capability of high-resolution imaging.[[9](#page-26-1)]

As a major sub-field of microbeam analysis (MBA), AEM is widely applied in diverse business sectors (hightechnology industries, basic industries, metallurgy and geology, biology and medicine, environmental protection, trade, etc.) and has a wide business environment for standardization.

The standardization of terminology in a technical field is one of the basic prerequisites for the development of standards on other aspects of that field.

This International Standard is relevant to the international scientific and engineering communities that require an AEM vocabulary that contains consistent definitions of terms, as they are used in the practice of MBA combined with TEM and STEM.

This International Standard is one developed in a package of standards on scanning electron microscopy (SEM; ISO 22493), electron probe X-ray microanalysis (EPMA; ISO 23833), energy-dispersive X-ray spectrometry (EDS; ISO 22309), etc., which have been either already developed or are to be developed by ISO/TC 202, *Microbeam analysis*, to completely cover the field of MBA.

Microbeam analysis — Analytical electron microscopy — Vocabulary

0 Scope

This International Standard defines terms used in the practice of AEM. It covers both general and specific concepts classified according to their hierarchy in a systematic order.

This International Standard is applicable to all standardization documents relevant to the practice of AEM. In addition, some parts of this International Standard are applicable to those documents relevant to the practice of related fields (e.g. TEM, STEM, SEM, EPMA, EDX) for the definition of those terms common to them.

NOTE See also the ISO online browsing platform (OBP): <https://www.iso.org/obp/ui/>

1 Abbreviated terms

2 Definitions of terms used in the physical basis of AEM

2.1

electron optics

science that deals with the trajectory of electrons as they pass through electrostatic and/or electromagnetic fields

[SOURCE: ISO 22493, modified]

2.1.1

electron source

device that generates electrons necessary for forming an electron beam in an electron optical system

2.1.1.1

energy spread

diversity of energy of electrons in the incident beam

[SOURCE: ISO 22493, modified]

2.1.1.2

effective source size

effective dimension of the electron source typically measured at the beam crossover

[SOURCE: ISO 22493, modified]

2.1.2

electron emission

ejection of electrons from the surface of a material under certain excitation conditions

[SOURCE: ISO 22493:2008, 3.1.2]

2.1.2.1

thermionic emission

electron emission which relies on the use of high temperature to enable electrons in the cathode to overcome the work function energy barrier and escape into the vacuum assisted by the application of an external electrostatic field

[SOURCE: ISO 22493, modified]

2.1.2.2

field emission

electron emission caused by the strong electric field on and near the surface of the material

[SOURCE: ISO 22493, modified]

2.1.2.2.1

cold field emission

field emission in which the emission process relies purely on the applied electric field to extract electrons from the cathode operating at ambient temperature

[SOURCE: ISO 22493, modified]

2.1.2.2.2

thermal field emission

field emission in which the emission process relies on both the elevated temperature of the cathode tip and an applied electric field of high voltage 2.1.2.2.2
 Coordight Driver Control or networking permitted without license from IHS

(No reproduction or networking permitted without license from IHS

(Coordight Driver Research Driver Research Driver Research Driver

[SOURCE: ISO 22493, modified]

2.1.3

electron lens

basic component of an electron optical system, using an electrostatic and/or electromagnetic field to change the trajectories of the electrons passing through it

2.1.3.1

electrostatic lens

electron lens employing an electrostatic field formed by a specific configuration of electrodes

2.1.3.2

electromagnetic lens

electron lens employing an electromagnetic field formed by a specific configuration of electromagnetic coils (or permanent magnets) and pole pieces

[SOURCE: ISO 22493:2008, 3.1.3.2]

2.1.4

focusing

converging an electron beam to a minimum diameter using an electron lens

[SOURCE: ISO 22493, modified]

2.1.5

demagnification

numerical value by which the diameter of the electron beam exiting a lens is reduced in comparison to the diameter of the electron beam entering the lens

[SOURCE: ISO 22493:2008, 3.1.5]

2.2

electron scattering

electron deflection with or without the loss of kinetic energy as a result of collision(s) with target atom(s) or electron(s)

[SOURCE: ISO 22493 and ISO 23833, modified]

2.2.1

elastic scattering

electron scattering in which energy and momentum are conserved in the collision system

[SOURCE: ISO 22493:2008, 3.2.1]

2.2.1.1

zero loss

unscattered and elastically scattered electrons (with only minimal loss of energy due to phonon excitation), giving rise to an intensity peak or the position of which defines zero in the electron energy loss spectrum

2.2.2

inelastic scattering

electron scattering in which energy and/or momentum are not conserved in the collision system

Note 1 to entry: For inelastic scattering, the electron trajectory is modified by plasmon loss, core loss, and other multiple scatterings

[SOURCE: ISO 22493, modified]

2.2.2.1

thermal diffuse scattering

electron scattering which is caused by electron-phonon scattering due to thermal vibration of the lattice

2.2.2.2

plasmon loss

type of energy loss in EELS in which the incident electron is affected by the collective oscillations of free electrons in the specimen and loses kinetic energy as a result

2.2.2.3

inner-shell ionization

excitation of an electron bound in an inner-shell (nonvalence) orbital to an unbound state in the continuum above the Fermi level

2.2.2.4

core loss

energy loss of an electron in the beam caused by excitation of an inner-shell electron

2.2.3

scattering cross-section

hypothetical area normal to the incident radiation that would geometrically intercept the total amount of radiation actually scattered by a scattering atom

Note 1 to entry: Scattering cross-section is usually expressed only as area (m^2) .

[SOURCE: ISO 22493:2008, 3.2.3]

2.3

Bloch wave

wave function of an electron in a periodic crystal potential, which is written as the product of a plane wave envelope function and a periodic function that has the same periodicity as the crystal potential

2.3.1

anomalous absorption

absorption of Bloch wave in a crystalline material when the wave is symmetric and forms its antinodes at the nuclei

2.3.2

anomalous transmission

transmission of Bloch wave in a crystalline material when the wave is antisymmetric and forms its nodes at the nuclei

2.4

coherence

wave property exhibited by electron beams in which two waves share the same frequency and are in phase

Note 1 to entry: Phase shifts between two coherent beams result in interference and generate diffraction patterns.

2.5

TEM

microscopy technique or microscope where images of an ultrathin specimen are obtained by an electron beam that is transmitted through it No reproduce to be the state of the state of the content of the state in interference and generate during county

method for obtaining lattice and crystal structure images by interfering with a transmitted electron

wave a

2.5.1

HREM

method for obtaining lattice and crystal structure images by interfering with a transmitted electron wave and diffracted electron waves using an electromagnetic lens with a small spherical aberration

2.5.2 STEM

transmission electron microscopy technique which rasters the focused electron beam over the specimen

2.5.3

HAADF-STEM

imaging mode in a scanning transmission electron microscope in which images are formed by collecting very high-angle, incoherently scattered electrons with an annular dark-field detector

2.5.4

LAADF-STEM

imaging mode in a scanning transmission electron microscope in which images are formed by collecting low-angle elastic and inelastic scattering electrons with an annular dark-field detector

2.5.5

ABF-STEM

imaging technique of acquiring a bright-field scanning transmission electron microscope image with an annular detector

2.6

electron holography

application of holography techniques to electron waves in which the coherent beam is split into at least two beams by using an electron biprism

2.6.1

electron prism

device which splits the coherent electron beam into several beams in order to obtain an interferogram or hologram

2.7

Lorentz electron microscopy

method for observing magnetic domain structures by use of the transmission electron microscope

2.8

phase-contrast electron microscopy

TEM technique in which small phase shifts in the transmitted beam resulting from interactions with the specimen are converted into amplitude or contrast changes in the image

2.9

electron tomography

reconstruction technique of a three-dimensional structure by the computer-assisted image processing of a series of projected images obtained by continuously tilting the specimen

3 Definitions of terms used in AEM instrumentation

3.1

electron gun

component that produces an electron beam with a well-defined kinetic energy

[SOURCE: ISO 22493:2008, 4.1]

3.1.1

Schottky emission

thermionic electron emission that takes place under an electric field that enhances the emission by lowering the surface barrier 3 **Definitions of terms used in AEM instrumentation**

3.1

electron gun

component that produces an electron beam with a well-defined kinetic energy

[SOURCE: ISO 22493:2008, 4.1]

3.1.1

Schottky emission

lowering the su

[SOURCE: ISO 22493, modified]

3.1.2

field emission gun

electron gun employing field emissions sources, such as cold field electron emission or Schottky emission

3.1.2.1

cold field emission gun

electron gun employing cold field emission

3.1.2.2

extracting electrode

electrode applying the electrostatic potential to extract electrons from the electron source

[SOURCE: ISO 22493:2008, 4.1.1.1.1]

3.1.2.3

thermal field emission gun

electron gun employing thermal field emission

3.1.3

thermionic emission gun

electron gun employing thermionic emission

3.1.3.1

tungsten hairpin gun

thermionic emission gun employing a tungsten hairpin filament as its cathode

3.1.3.2

LaB6 gun

thermionic emission gun employing a heated block of single-crystal LaB_6 as its cathode

[SOURCE: ISO 22493:2008, 4.1.2.2]

3.1.3.3

anode

electrode in an electron gun, to which a high positive voltage relative to the cathode is applied in order to accelerate the emitted electrons from the cathode

3.1.3.4

cathode

electrode that serves as the electron emitter in the electron gun, which is at a negative electric potential relative to the anode

3.1.3.5

accelerating voltage

electrostatic field between the cathode and the anode, which accelerates an electron beam in an electron gun

3.1.3.6

Wehnelt cylinder

cap-shaped electrode placed between the anode and the cathode in the electron gun, which acts to focus electrons inside the gun and to control the amount of electron emission 3.1.3.1

Notation or existion gun employing a tungsten hairpin filament as its cath

1.3.1.3.1

LaB_B gun

1.3.1.3.2

thermionic emission gun employing a heated block of single-crystal LaB_B a

1.3.1.3.4

fectrode in an

3.1.4

- **brightness**
- *β*

current density per unit solid angle in the beam at the focus position

Note 1 to entry: Brightness is given by the formula

$β = 4i/(\pi^2 d^2 α^2)$ [A/m²⋅sr]

where *i* is the beam current, in amps; *d* is the diameter of the beam crossover, in metres; and α is the beam halfangle, in rads.

3.1.5 reduced brightness *β′*

brightness divided by the electron beam acceleration voltage

Note 1 to entry: Reduced brightness is given by the formula

β′ = β/V

where *V* is the electron beam acceleration voltage and *β* is the brightness.

3.1.6 emission current

total electron current emitted from the cathode

3.1.7

saturation

specific cathode heating condition at which a change in the cathode heating current will result in only a small change in the electron beam current, which is close to its maximum

3.2

electron lens system

combination of various electron lenses to achieve specific electron optics functions

3.2.1

excitation current

electric current flowing in a coil of an electromagnetic lens, which is necessary for the generation of a magnetic field

3.2.2

aberration

divergence from ideal properties of an electron optical element, e.g. lens defects like spherical aberration, chromatic aberration, and diffraction, that degrade the lens optical function

[SOURCE: ISO 22493:2008, 4.2.1]

3.2.2.1

chromatic aberration

lens defect which arises because electrons from the same point in the specimen, but of slightly different energies, will be focused at different positions in the image plane

3.2.2.2 spherical aberration

 $C_{\rm S}$

lens defect arising from the varying strength of an electromagnetic lens with distance from the optic axis, which causes rays further from the optic axis to be focused more strongly than those nearer the optic axis

[SOURCE: ISO 22493, modified]

3.2.2.3

astigmatism

phenomenon in which electrons emerging from a point object are focused to form two separate focal lines at 90° to one another rather than a point focus as formed by a perfectly cylindrical lens

Note 1 to entry: It arises from the lens asymmetric magnetic field caused by machining errors, inhomogeneities in the pole pieces, asymmetry in the lens windings, and imperfect apertures.

[SOURCE: ISO 22493:2008, 4.2.3]

3.2.3

aperture

diaphragm with an axial opening that defines the transmission of the lens

3.2.3.1

aperture angle

half of the angle subtended by the diameter of the aperture at the point of beam focus

3.2.3.2

aperture diffraction

defect which arises at very small aperture diameters because the wave nature of electrons gives rise to a diffraction pattern instead of a point in the Gaussian image plane

3.2.3.3

condenser aperture

diaphragm that is used in a fixed or moveable manner in a condenser lens system in order to select a certain portion of the beam, thereby controlling the size of the illuminated specimen area and the electron beam dose and also enabling the electron beam convergence to be determined

3.2.3.4

objective aperture

diaphragm placed in the back focal plane of the objective lens in order to select an angular subset of electrons with which to form the image

3.2.3.5

selected-area (selector) aperture

moveable diaphragm that is used to select only radiation scattered from a specific area of the specimen to contribute to the formation of a diffraction pattern

3.2.4

stigmator

device that applies weak supplementary magnetic fields to correct astigmatism

3.2.5

condenser lens

electron lens located immediately below the electron gun, which is used to focus the electron beam to varying degrees to control the current and the convergence of the electron beam that passes down the electron column 3.2.5.

Solvective aperture

diaphragm placed in the back focal plane of the objective lens in order to

electrons with which to form the image

3.2.3.5:

selected-drea (selector) aperture

moveable diaphragm that is used

3.2.5.1

cone angle

convergence angle of an incident electron beam

3.2.6

deflection coil

coil that generates a magnetic field to deflect the electron beam

3.2.7

*C*s **corrector**

device that can vary the spherical aberration coefficient (*C*s) of the objective lens

3.2.8

objective lens

first-stage lens in the imaging lens system of AEM, which is used to focus the electron image or probe

3.2.8.1

back focal plane

plane perpendicular to the optic axis of an AEM in which rays leaving the specimen at the same angle come to a focus

3.2.9

intermediate lens

lens inserted between the objective and projector lenses, which magnifies the objective image or diffraction pattern and forms the new image upon the objective plane of the projector lens

3.2.9.1

objective plane

plane where electron beams originating from an object converge to form an image of the object

3.2.10

projector lens

final lens in the imaging system, which magnifies the intermediate image and forms the final image on the recording device

3.3

scanning system

device incorporated in the electron optical system for achieving time-controlled one- or two-dimensional movement of the electron probe on the specimen surface and synchronized signal collection to generate line scans or images

3.4

specimen chamber

compartment in which the goniometer stage containing the specimen is accommodated

3.4.1

goniometer stage

device to move the specimen laterally and vertically and to tilt the specimen by tilting the specimen holder around the longitudinal holder axis

3.4.2

top-entry stage

specimen stage which is inserted from above the pole piece and has rotation symmetry about the optical axis

3.4.3

side-entry stage

specimen stage which is inserted from the side of the column and is useful for material science and tomography because of its large space above the specimen

3.4.4

electron beam-induced contamination

formation of a carbon-rich, polymerized film on a specimen surface as a result of radiation damage of adsorbed hydrocarbon molecules

3.4.5

anti-contamination device

device which suppresses the adsorption of hydrocarbon gas by condensing it using a cold trap chilled by liquid nitrogen

3.4.6

differential pumping

pumping method designed to achieve and maintain specified vacuum levels for chambers connected by diaphragms, which prevent the exchange of large amounts of gas

3.4.7

specimen drift

unintentional movement of the specimen image due to any source (thermal, mechanical, electrical, charging)

3.4.8

environmental TEM

type of TEM which enables the *in situ* observation of the specimen under various conditions, such as low vacuum or high temperature 3.4.7

Specimen drift

unintentional movement of the specimen image due to any source (there
 $\frac{3.4.8}{\text{environment}}$

type of TEM which enables the *in situ* observation of the specimen unival

vacuum or high temperature
 $\frac{C$

fluorescent screen

viewing apparatus which visualizes TEM image and diffraction spots, using visible light emitted from fluorescent material excited by the electron impact

3.6

image wobbler

control for introducing an AC current into the objective lens in order to aid proper alignment of the electron optical elements

3.7

camera length

L

effective distance between the specimen and the plane where diffraction pattern is formed

3.7.1

camera constant

λL

product of the wavelength of the incident electron wave and camera length

Note 1 to entry: Because of the small Bragg angle, the Bragg condition can be given in the first-order approximation

 d≈λL/*r*

where *d* is the lattice plane spacing and *r* is the distance of the diffraction spot from the primary beam.

4 Definitions of terms used in specimen preparation of AEM

4.1

ion milling

thinning technique of sputtering the specimen with an inert gas

4.2

chemical polishing

planarization technique that uses chemical dissolution of a specimen surface

4.3

mechanical polishing

planarization technique that uses abrasives to remove surface material from the specimen

4.4

jet polishing

electrolytic thinning technique for planarization of conductive materials by spraying jets of chemical etchants simultaneously on both sides of a specimen

4.5

supporting film

thin coating film on a grid utilized for holding the specimen for TEM observation

4.5.1

microgrid

specimen supporting film that features myriad micrometre-sized holes

4.6

FIB milling

site-specific thinning technique using abrasion by focused field-emitted gallium atoms accelerated to an energy of 1 keV to 40 keV to thin a particular region of the specimen **4.4**
 electrolytic thinning technique for planarization of conductive materials

etchants simultaneously on both sides of a specimen
 4.5
 supporting film

thin coating film on a grid utilized for holding the specim

radiation damage

electron beam-induced structural deterioration of the specimen arising from ionization and electron knock-on

4.8

microtome

mechanical instrument used to slice specimens into electron transparent thin sections for TEM observation

4.9

dimple grinder

mechanical polishing instrument used to form a small dimple on a specimen which has been previously polished to a parallel-sided plate on the order of 100 µm

4.10

conductive coating

thin coating of conductive carbon or metal produced on the surface of non-conductive specimens to minimize charging problems during TEM observation

4.11

replica

duplication of specimen surface irregularities obtained by the exfoliation of a plastic or carbonaceous film from the specimen surface

4.12

extraction replica

replica which contains precipitates or inclusions fixed on a coated plastic or carbonaceous film created by stripping the film from the specimen surface

5 Definitions of terms used in AEM image formation and processing

5.1

Moiré effects

formation of Moiré fringes caused by the superposition of the periodicity of the specimen features and the grating of picture points forming the scanned image or by the superposition of interference patterns from crystals exhibiting different orientation or lattice spacing 5 **Definitions of terms used in AEM image formation and processing**

Moire² effects

Moire² effects for the periodic of the superposition of the periodicity of the specimen features and

the grading of picture points

5.2

contrast

C

difference in signal between two arbitrarily chosen points (P_1, P_2) of interest in the image field, normalized by the maximum possible signal available under the particular operating conditions

Note 1 to entry: Contrast is given by the formula

 $C = |S_2 - S_1| / S_{\text{max}} (0 < C < 1)$

where S_2 and S_1 are the signals of two arbitrarily chosen points (P₂ and P₁, respectively), and S_{max} is the maximum possible signal available under the particular operating conditions.

5.3

analogue image processing

operation of treating and manipulating the image information-carrying signals as continuously varying quantities

[SOURCE: ISO 22493:2008, 5.5]

digital image processing

operation in which the image information-carrying signals are treated and manipulated as discrete variables, i.e. digitized

[SOURCE: ISO 22493:2008, 5.6]

5.4.1

Fourier transform

mathematical operation that decomposes a signal into its constituent frequencies

5.4.1.1

fast Fourier transform

FFT

efficient algorithm to compute the discrete Fourier transform

5.4.1.2

inverse fast Fourier transform

IFFT

efficient algorithm to compute the inverse of the discrete Fourier transform

5.5

bright-field image

image formed using only the non-scattered beam, selected by observation of the back focal plane of the objective lens and using the objective aperture to cut out all diffracted beams

5.6

dark-field image

image formed by a diffracted beam only by using the objective aperture for selection or by collecting the diffracted beam with an annular dark-field detector

5.7

weak-beam method

image formed using a weakly excited diffracted beam, which can provide sharp contrast at dislocations because the highly strained areas contribute significantly to the beam intensity

5.8

lattice image

image formed by the interference of transmitted and diffracted beams from a very thin specimen and which corresponds to the periodic lattice structure of the specimen Image formed by a diffracted beam only by using the objective aperture for selection or by collecting the spatial diffracted beam, which can provide sharp contrast at dislocations beames to method image formed using a weak

5.9

defocus imaging

method of imaging under out-of-focus conditions, which is utilized when observing Fresnel fringes, lattice images, and structural images

5.9.1

underfocus imaging

imaging condition in which the objective lens current is weakened slightly from that of just focus to enhance contrast in bright/dark-field imaging

5.9.2

overfocus imaging

imaging condition in which the objective current is slightly strengthened from that of the focus to enhance contrast in bright/dark-field imaging

5.9.3 Scherzer focus

*Δf*Scherzer

defocusing condition in which high-resolution images of the phase object are formed by shifting the phase of the diffracted beam by 0.5π which maximizes the spatial frequency of the first zero of the contrast transfer function

Note 1 to entry: *Δf*_{Scherzer} is given by the formula

 *Δf*Scherzer = −1,2(*C*s*λ*)1/2

where C_s is the spherical aberration, and λ is the electron wavelength.

5.9.4

Fresnel fringe

interference fringes that appear near the specimen edge in Fresnel diffraction

5.9.5

structure image

image which is obtained by the interference of the transmitted and diffracted beams under Scherzer focus condition

5.9.6

through-focus method

imaging method of the lattice image and structure image in which a series of images are formed under slightly different defocus conditions

6 Definitions of terms used in AEM image interpretation and analysis

6.1

diffraction contrast

type of scattering contrast which arises from the spatial variation of the intensity of the diffracted beam due to the local variation of the diffraction condition

6.1.1

two-beam approximation

approximation for the calculation of an AEM image in which the transmitted wave and only one diffracted wave are presumed to be excited

6.1.2

bend contour

type of diffraction contrast which arises from the local variation of the excitation error in Bragg diffraction condition due to the bending of the specimen

6.1.3

thickness fringe

contrast observed in a wedge-shaped specimen under excitation of one Bragg diffraction due to the oscillation of the primary beam intensity and reflection intensity thickness fringe
contrast observed in a wedge-shaped specimen under excitation of one Bragg diffraction due to the
oscillation of the primary beam intensity and reflection intensity
6.1.4
Fresnel diffraction
Fresnel diffra

6.1.4

Fresnel diffraction

type of diffraction which occurs when a wave passes through and diffracts in the near field, which creates interference fringes near the edge of the specimen under defocus condition

6.2

phase contrast

image contrast due to the phase shift of scattered waves, which provides high-resolution TEM image

6.2.1

weak phase object approximation

approximation in which the specimen does not change the amplitude of the incident wave but slightly shifts the phase

6.3

scattering contrast

image contrast which arises from the spatial variation of the intensity of atomic scattering due to the local variation of elemental composition

6.4

image simulation

calculation of the image theoretically expected to be formed by various AEM imaging techniques

6.4.1

multi-slice method

algorithm for the simulation of high-resolution TEM images, which treats electrons as incoming waves and treats the interactions with matter as occurring on multiple successive single slices of the specimen

6.4.2

Bethe's method

algorithm for the simulation of high-resolution TEM images, which finds the electron waves in the crystal by solving the Schrodinger equation considering the multiple scattering

6.4.3

contrast transfer function

CTF

function which provides phase shift of the electron wave as a function of a given spherical aberration, scattering angle, and defocus

6.5

lattice defect

crystallographic defect due to the irregularity in the atomic arrangement in the crystal

6.5.1

dislocation

crystallographic linear defect in a crystal structure, which strongly influences many of the properties of materials and has two primary types: edge dislocations and screw dislocations 6.5

No reproduction or the interpretention of the interpretention or rystal

of solicition or the interpretention or the interpretention of the properties of

dislocation

or networking permitted with the set of the inter

6.5.1.1

edge dislocation

dislocation where an extra half-plane of atoms is inserted in the crystal, distorting nearby planes

6.5.1.2

screw dislocation

dislocation comprising a structure in which a helical path is traced around it

6.5.2

Burgers vector

vector that represents the magnitude and direction of the lattice distortion of dislocation in a crystal lattice, which is often denoted by *b*

6.5.3

stacking fault

type of planar defect which arises from the irregularity in stacking sequence of closed-packed atomic planes and is commonly formed in close-packed structures, such as fcc and hcp

6.5.4

grain boundary

interface between two grains in a polycrystalline material

energy-dispersive X-ray spectroscopy

EDS

analytical technique which enables the elemental analysis or chemical characterization of a specimen by analysing characteristic X-rays emitted by the matter in response to electron irradiation

[SOURCE: ISO 23833, modified]

6.6.1

characteristic X-ray

emitted X-ray with a kinetic energy is characteristic of the element from which it is emitted

6.6.2

fluorescence yield

fraction of ionizations of a specific electron shell that result in characteristic X-ray emission

6.6.3

X-ray continuum

emitted X-rays resulting from the deceleration of electrons in the Coulomb field of the nucleus

6.6.4

Bremsstrahlung

electromagnetic radiation which gives a continuous spectrum due to the deceleration of a charged particle such as an electron

6.6.5

take-off angle

angle between the specimen plane and the axis of an EDS detector crystal

[SOURCE: ISO 22493, modified]

6.6.6

dead time

γ

time during which the system is unable to record a photon measurement because it is busy processing a previous event (frequently expressed as a percentage of the total time)

[SOURCE: ISO 23833, modified]

6.6.7

live time

time during which the pulse measurement circuitry is available for the detection of X-ray photons

Note 1 to entry: Live time equals real time for analysis minus dead time. Real time is the time that would be measured with a conventional clock. For X-ray acquisition, real time always exceeds live time.

6.6.8

ZAF correction method

correction method of the quantitative analysis in EDS in which the effect of absorption, fluorescence, and atomic number on characteristic X-ray emission by atoms in the specimen are corrected, while the effect is extremely small in the thin-film specimen in TEM/EDS More represent to reproduce the method of the quantitative analysis in EDS in which the correction method of the quantitative analysis in EDS in which the effect is extremely small in the thin-film specimen in TEM/EDS 6.6.

6.6.9

Cliff-Lorimer method

method for the quantitative EDS analysis of a thin specimen, in which proportionality factor, *k*, is used to relate spectral intensity to chemical composition

6.6.9.1

k **factor**

correction factor used in Cliff-Lorimer method, which is experimentally or theoretically determined

6.6.10

EDS detector energy resolution

identifiable minimum energy separation in EDS analysis, which depends upon the detected X-ray energy, the type of detector, and the instrument on which the detector is installed

6.7

electron energy loss spectroscopy

EELS

microscopic elemental and electronic state analysis method using inelastically scattered electrons resulting from interaction with electrons and phonon in the specimen in which the energy loss is measured via an electron spectrometer and interpreted in terms of what caused the energy loss

6.8

energy filter

apparatus which passes electrons with a specific kinetic energy, which is effective for the subtraction of inelastic electron background in image and diffraction pattern formation, and also for the acquisition of energy-filtered images for analytical purposes

6.9

atomic-number effect

effect in which the yield of a characteristic X-ray depends upon the atomic numbers of elements in the specimen due to the back scattering of incident electrons

6.10

Imaging plate

two-dimensional detector which utilizes photostimulated luminescence of europium

6.11

slow-scan CCD camera

CCD camera which uses a lower refreshing rate than an ordinary CCD camera system to improve image quality by increasing the signal-to-noise ratio

6.12

EDS detector

solid-state detector which measures the intensity and the energy of X-rays emitted from the specimen

6.12.1

windowless EDS detector

EDS detector lacking a window material in front of the detector which increases the measurement sensitivity for soft X-rays (< 1 keV) enables the detection of elements with an atomic number larger than that of boron

6.12.2

ultrathin window (UTW) EDS detector

EDS detector which uses an aluminium-coated organic thin film as a window material in front of the detector, increasing the measurement sensitivity for soft X-rays (< 1 keV) and enabling the detection of light elements

6.12.3

beryllium window EDS detector

EDS detector fitted with a beryllium window of 8 μ m to 10 μ m in thickness, which is suitable for measuring hard X-rays (> 1 keV)

6.13

annular dark-field detector

ADF detector

detector used in STEM to collect a dark-field image by integrating the scattered intensity intercepted by an annulus around the transmitted beam

Note 1 to entry: Z-contrast due to Rutherford scattering is obtained with a high-scattering angle, while a darkfield image is obtained with a low-scattering angle.

7 Definitions of terms used in the measurement and calibration of AEM image magnification and resolution

7.1

image resolution

minimum spacing at which two features of an image can be recognized as distinct and separate; for an amorphous thin film, the resolution is obtained from the FFT pattern

[SOURCE: ISO 22493, modified]

7.2

image magnification

M

ratio of a linear dimension, *L*, on the recorded image of the specimen to the corresponding length, *l*, on the specimen itself

Note 1 to entry: Image magnification is given by the formula

 M = *L*/*l*

[SOURCE: ISO 22493 and ISO 23833, modified]

7.2.1

calibration grating

standard reference grating with known pitch used to calibrate the TEM in order to obtain an absolute value of the magnification

[SOURCE: ISO 22493, modified]

7.2.2

diffraction grating replica

standard reference grating with a known pitch used to calibrate the TEM in order to obtain the absolute value of the camera constant

7.3

information limit

theoretical limit of the resolution of HREM, established by the observation of an amorphous specimen and used as a performance index of a TEM

7.4

diffraction limit

focusing limit of an electron optical system having no aberrations, which is dependent only upon the numerical aperture and the electron wavelength and is characterized by the size of the Airy disc

7.5

point resolution

resolution under Scherzer focusing, which is defined as the spatial frequency where the CTF crosses the abscissa for the first time annonpose state of the method or networking the state of the precision or the corresponding length, ζ or networking permitted with the reproduction of the angularization or networking the specifical state is expected

7.6

lattice resolution

resolution under imaging, which corresponds to the periodic lattice structure of the specimen

7.7

Airy disc

diffraction-limited probe size produced by a perfect lens with a circular aperture

reference material

RM

material or substance, one or more of whose property values are sufficiently homogeneous and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials

Note 1 to entry: For the purpose of this International Standard, an RM possesses periodic pattern(s) with the desired range of periodic interval and accuracy to be used for the calibration of the image magnification or camera constant.

7.8.1

certified reference material

CRM

reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure, which establishes its traceability to an accurate realization of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence

7.9

excitation current

electric current applied to the coil of the magnetic lens

7.10

glass scale

ruler on which a fine scale is drawn and is utilized as the reference scale to measure the distance in the digitized image after digitizing it with an image scanner

8 Definitions of terms used in electron diffraction in AEM

8.1

transmitted wave

electron wave which is either unscattered or forward scattered by the specimen and is coincident with the optic axis

8.2

diffracted wave

electron wave which has undergone Bragg diffraction in the specimen

8.3

Bragg diffraction

physical process of particularly strong scattering of the incident electron beam at certain angles relative to the atomic planes in a crystal due to constructive interference in accordance with the Bragg diffraction relation

[SOURCE: ISO 22493, modified]

8.3.1

Bragg diffraction relation

mathematical expression which relates the wavelength of the incident radiation and the spacing of the atomic planes of a crystal to the angles, between the radiation beam and the atomic planes, at which diffraction takes place Note that the section of the section wave which is eithe

Note 1 to entry: The relation is given by the formula

 $\lambda = 2d$ sin θ_B

where λ is the wavelength; *d* is the lattice spacing; and θ_B is the Bragg angle.

8.3.2

kinematical diffraction

diffraction process in which only one Bragg diffraction is excited in the thin specimen and absorption is negligible

8.3.3

dynamical diffraction

diffraction process in which multiple Bragg diffraction are excited in the specimen

8.3.3.1

double diffraction

Bragg diffractions doubly excited in a vertically stacked bicrystal

8.3.3.2

Kikuchi lines

structure observed in the background of the diffraction pattern, which is formed by a Bragg diffraction of inelastically scattered electrons

8.3.4

selected area electron diffraction

diffraction technique in which an area of the specimen is selected by using the selector diaphragm in front of the intermediate lens

8.3.5

microdiffraction

diffraction technique in which diffraction spots are obtained from micrometre-sized regions of the specimen by use of a small electron probe

8.3.6

convergent-beam electron diffraction

diffraction technique in which diffractions over several incident angles simultaneously take place by converging the electron trajectories in a cone onto the specimen

8.4

Miller index

notation system in crystallography for planes and directions in crystal lattices, in which a family of lattice planes or directions is determined by three integers *h, k, l* structure observed in the background of the diffraction pattern, where the final selected area decrease there are diffraction
alifarction technique in which an area of the specimen is selected from diffraction technique i

8.5

reciprocal space

space defined by reciprocal lattice vectors that is useful for translating diffraction patterns into crystal structures

8.5.1

reciprocal lattice

set of all vectors *K* determined such that exp(i*R·K*)=1 for all lattice point position vectors *R*

8.5.2

Ewald sphere

sphere defined in the reciprocal lattice with a radius of $1/\lambda$ (λ ; electron wavelength) and centre located along the incident electron beam direction at a distance of $1/\lambda$ from a particular reciprocal point

8.5.3

zone axis

crystallographic direction, designated [*uvw*], can be defined by the intersection of a number of crystal planes (*h1, k1 ,l1… hi, ki, li*) such that all of the planes satisfy the so-called Weiss zone law; *hu + kv + lw = 0*

8.5.3.1

Weiss zone law

law which permits crystallographic planes and directions to be determined by using the relationship *hu + kv + lw = 0* when Miller plane (*hkl*) is parallel to direction (*uvw*)

8.5.4

extinction distance

periodicity in depth of the electron intensity oscillation between the primary beam and the Bragg reflected beam

8.5.5

excitation error

parameter describing the small deviation from the exact Bragg condition

Bibliography

- [1] ISO 704, *Terminology work — Principles and methods*
- [2] ISO 1087-1, *Terminology work Vocabulary Part 1: Theory and application*
- [3] ISO 10241 (all parts), *Terminological entries in standards*
- [4] ISO 22493, *Microbeam analysis Scanning electron microscopy Vocabulary*
- [5] ISO 23833, *Microbeam analysis Electron probe microanalysis (EPMA) Vocabulary*
- [6] Reimer L. *Transmission Electron Microscopy*. Springer-Verlag, Berlin, Fifth Edition, 2007
- [7] Cullity D., & Stock S.R. *Elements of X-ray diffraction*. Prentice Hall College Div, 2001
- [8] Guinier A. X-ray Diffraction: In Crystals, Imperfect Crystal, and Amorphous Bodies, (Dover Pubns; Reprint, 1994)
- [9] *Introduction to Analytical Electron Microscopy* ed. by Hren J.J., Goldstein J.I., Joy D.C. Plenum Press, New York, 1979
- [10] *Principles of Analytical Electron Microscopy* ed. by Joy D.C., Romig A.D., Goldstein J.I. Plenum Press, New York, 1986

ISO 15932:2013(E)

ICS 01.040.37;37.020

Price based on 21 pages