TECHNICAL REPORT

ISO/TR 15144-1

First edition 2010-12-15

[Calculation of micropitting load capacity](#page-6-0) [of cylindrical spur and helical gears —](#page-6-0)

Part 1: **Introduction and basic principles**

[Calcul de la capacité de charge aux micropiqûres des engrenages](#page-6-0) [cylindriques à dentures droite et hélicoïdale —](#page-6-0)

Partie 1: Introduction et principes fondamentaux

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 15144-1 was prepared by Technical Committee ISO/TC 60, *Gears*, Subcommittee SC 2, *Gear capacity calculation*.

ISO/TR 15144 consists of the following parts, under the general title *Calculation of micropitting load capacity of cylindrical spur and helical gears*:

⎯ *Part 1: Introduction and basic principles*

Introduction

This part of ISO/TR 15144 provides principles for the calculation of the micropitting load capacity of cylindrical involute spur and helical gears with external teeth.

The basis for the calculation of the micropitting load capacity of a gear set is the model of the minimum operating specific lubricant film thickness in the contact zone. There are many influence parameters, such as surface topology, contact stress level, and lubricant chemistry. Whilst these parameters are known to affect the performance of micropitting for a gear set, it must be stated that the subject area remains a topic of research and, as such, the science has not yet developed to allow these specific parameters to be included directly in the calculation methods. Furthermore, the correct application of tip and root relief (involute modification) has been found to greatly influence micropitting; the suitable values should therefore be applied. Surface finish is another crucial parameter. At present *R*a is used, but other aspects such as *R*z or skewness have been observed to have significant effects which could be reflected in the finishing process applied.

Although the calculation of specific lubricant film thickness does not provide a direct method for assessing micropitting load capacity, it can serve as an evaluation criterion when applied as part of a suitable comparative procedure based on known gear performance.

[Calculation of micropitting load capacity of cylindrical spur and](#page-6-0) [helical gears —](#page-6-0)

Part 1: **Introduction and basic principles**

1 Scope

This part of ISO/TR 15144 describes a procedure for the calculation of the micropitting load capacity of cylindrical gears with external teeth. It has been developed on the basis of testing and observation of oillubricated gear transmissions with modules between 3 mm and 11 mm and pitch line velocities of 8 m/s to 60 m/s. However, the procedure is applicable to any gear pair where suitable reference data is available, providing the criteria specified below are satisfied.

The formulae specified are applicable for driving as well as for driven cylindrical gears with tooth profiles in accordance with the basic rack specified in ISO 53. They are also applicable for teeth conjugate to other basic racks where the virtual contact ratio is less than ε_{on} = 2,5. The results are in good agreement with other methods for normal working pressure angles up to 25°, reference helix angles up to 25° and in cases where pitch line velocity is higher than 2 m/s.

This part of ISO/TR 15144 is not applicable for the assessment of types of gear tooth surface damage other than micropitting.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 53:1998, *Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile*

ISO 1122-1:1998, *Vocabulary of gear terms — Part 1: Definitions related to geometry*

ISO 1328-1:1995, *Cylindrical gears — ISO system of accuracy — Part 1: Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth*

ISO 6336-1:2006, *Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors*

ISO 6336-2:2006, *Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting)*

ISO 21771:2007, *Gears — Cylindrical involute gears and gear pairs — Concepts and geometry*

ISO/TR 13989-1:2000, *Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 1: Flash temperature method*

ISO/TR 13989-2:2000, *Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 2: Integral temperature method*

3 Terms, definitions, symbols and units

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1122-1, ISO 6336-1 and ISO 6336-2 apply.

3.2 Symbols and units

The symbols used in this document are given in Table 1. The units of length metre, millimetre and micrometre are chosen in accordance with common practice. The conversions of the units are already included in the given equations.

Table 1 — Symbols and units

Symbol	Description	Unit
$h_{\rm Y}$	local lubricant film thickness	μm
K_A	application factor	
K_{Ha}	transverse load factor	
$\mathsf{K}_{\mathsf{H}\beta}$	face load factor	
$K_{\rm v}$	dynamic factor	
n ₁	rotation speed of pinion	min^{-1}
\overline{P}	transmitted power	kW
p_{et}	transverse base pitch on the path of contact	mm
$p_{dyn,Y}$	local Hertzian contact stress including the load factors K	N/mm ²
$p_{H,Y}$	local nominal Hertzian contact stress	N/mm ²
Ra	effective arithmetic mean roughness value	μm
Ra_1	arithmetic mean roughness value of pinion	μm
Ra ₂	arithmetic mean roughness value of wheel	μm
$\mathsf{S}_{\mathsf{GF},\mathsf{Y}}$	local sliding parameter	
S_{λ}	safety factor against micropitting	—
$S_{\lambda,min}$	minimum required safety factor against micropitting	
T ₁	nominal torque at the pinion	Nm
U_Y	local velocity parameter	
u	gear ratio	
$V_{g,Y}$	local sliding velocity	m/s
$V_{r1,Y}$	local tangential velocity on pinion	m/s
$V_{r2,Y}$	local tangential velocity on wheel	m/s
$V_{\Sigma,\text{C}}$	sum of tangential velocities at pitch point	m/s
$V_{\Sigma,Y}$	sum of tangential velocities at point Y	m/s
W_{W}	material factor	
W_{Y}	local load parameter	
$X_{\text{but,Y}}$	local buttressing factor	
X_{Ca}	tip relief factor	
X_{L}	lubricant factor	
X_{R}	roughness factor	
$X_{\rm S}$	lubrication factor	
X_Y	local load sharing factor	
Z_{E}	elasticity factor	(N/mm ²) ^{0,5}
Z_1	number of teeth of pinion	
Z_2	number of teeth of wheel	
α_{t}	transverse pressure angle	\circ
$\alpha_{\rm wt}$	pressure angle at the pitch cylinder	\circ
$\alpha_{\theta B,Y}$	pressure-viscosity coefficient at local contact temperature	m^2/N
α_{0M}	pressure-viscosity coefficient at bulk temperature	m^2/N
α_{38}	pressure-viscosity coefficient at 38 °C	m^2/N
$\beta_{\sf b}$	base helix angle	

Table 1 (*continued*)

Table 1 (*continued*)

(all parameters subscript Y have to be calculated with local values)

4 Definition of micropitting

Micropitting is a phenomenon that occurs in Hertzian type of rolling and sliding contact that operates in elastohydrodynamic or boundary lubrication regimes. Micropitting is influenced by operating conditions such as load, speed, sliding, temperature, surface topography, specific lubricant film thickness and chemical composition of the lubricant. Micropitting is more commonly observed on materials with a high surface hardness.

Micropitting is the generation of numerous surface cracks. The cracks grow at a shallow angle to the surface forming micropits. The micropits are small relative to the size of the contact zone, typically of the order 10 - 20 µm deep. The micropits can coalesce to produce a continuous fractured surface which appears as a dull, matte surface during unmagnified visual inspection.

Micropitting is the preferred name for this phenomenon, but it has also been referred to as grey staining, grey flecking, frosting and peeling. Illustrations of micropitting can be found in ISO 10825 [\[8\]](#page-61-1).

Micropitting may arrest. However, if micropitting continues to progress, it may result in reduced gear tooth accuracy, increased dynamic loads and noise. If it does not arrest and continues to propagate it can develop into macropitting and other modes of gear failure.

5 Basic formulae

5.1 General

The calculation of micropitting load capacity is based on the local specific lubricant film thickness λ_{GF} in the contact area and the permissible specific lubricant film thickness λ_{GFP} [\[11\]](#page-61-2). It is assumed that micropitting can occur, when the minimum specific lubricant film thickness $\lambda_{GF,min}$ is lower than a corresponding critical value λ_{GFP} . Both values λ_{GFR} and λ_{GFP} shall be calculated separately for pinion and wheel in the contact area. It has to be recognized that the determination of the minimum specific lubricant film thickness and the permissible specific lubricant film thickness have to be based on the operating parameters.

The micropitting load capacity can be determined by comparing the minimum specific lubricant film thickness with the corresponding limiting value derived from gears in service or from specific gear testing. This comparison will be expressed by the safety factor *S*_λ which shall be equal or higher than a minimum safety factor against micropitting *S*_{λ,min}.

Micropitting mainly occurs in areas of negative specific sliding. Negative specific sliding is to be found along the path of contact (see Figure 1) between point A and C on the driving gear and between point C and E on the driven gear. Considering the influences of lubricant, surface roughness, geometry of the gears and operating conditions the specific lubricant film thickness $\lambda_{\text{GF Y}}$ can be calculated for every point in the field of contact.

5.2 Safety factor against micropitting *S*^λ

To account for the micropitting load capacity the safety factor *S*λ according to equation (1) is defined.

$$
S_{\lambda} = \frac{\lambda_{GF, min}}{\lambda_{GFP}} \ge S_{\lambda, min}
$$
 (1)

where

The minimum specific lubricant film thickness is determined from all calculated local values of the specific lubricant film thickness $\lambda_{\text{GF,Y}}$ obtained by equation (2).

5.3 Local specific lubricant film thickness λ _{GE Y}

For the determination of the safety factor S_λ the local lubricant film thickness h_Y according to Dowson/ Higginson [\[5\]](#page-61-3) in the field of contact has to be known and compared with the effective surface roughness.

$$
\lambda_{GF,Y} = \frac{h_Y}{Ra} \tag{2}
$$

where

 $Ra = 0.5 \cdot (Ra_1 + Ra_2)$ (3)

$$
h_{Y} = 1600 \cdot \rho_{n,Y} \cdot \text{Gm}^{0.6} \cdot U_{Y}^{0.7} \cdot W_{Y}^{-0.13} \cdot S_{GF,Y}^{0.22}
$$
 (4)

Ra is the effective arithmetic mean roughness value;

- $Ra₁$ is the arithmetic mean roughness value of pinion (compare ISO 6336-2);
- *Ra₂* is the arithmetic mean roughness value of wheel (compare ISO 6336-2);
- h_Y is the local lubricant film thickness;
- $\rho_{n,Y}$ is the normal radius of relative curvature at point Y (see clause [10](#page-19-1));
- G_M is the material parameter (see clause [6\)](#page-13-1);
- U_Y is the local velocity parameter (see clause [7\)](#page-14-1);
- W_Y is the local load parameter (see clause [8](#page-16-1));
- *S_{GF,Y}* is the local sliding parameter (see clause [9\)](#page-18-1).

Equation (4) should be calculated in the case of Method B at the seven local points (Y) defined in 5.3 b) using the values for $\rho_{n,Y}$, U_Y , W_Y and $S_{GF,Y}$ that exists at each point Y. The minimum of the seven h_Y ($\lambda_{GF,Y}$) values shall be used in equation (1).

An example calculation is presented in Annex B.

a) Method A

The local specific lubricant film thickness can be determined in the complete contact area by any appropriate gear computing program. In order to determine the local specific lubricant film thickness, the load distribution, the influence of normal and sliding velocity with changes of meshing phase and the actual service conditions shall be taken into consideration.

b) Method B

This method involves the assumption that the determinant local specific lubricant film thickness occurs on the tooth flank in the area of negative sliding. For simplification the calculation of the local specific lubricant film thickness is limited to certain points on the path of contact. For this purpose the lower point A and upper point E on the path of contact, the lower point B and upper point D of single pair tooth contact, the midway point AB between A and B, the midway point DE between D and E as well as the pitch point C are surveyed.

5.4 Permissible specific lubricant film thickness $λ$ **_{GFP}**

For the determination of the permissible specific lubricant film thickness λ_{GFP} different procedures are applicable.

a) Method A

For Method A experimental investigations or service experience relating to micropitting on real gears are used.

Running real gears under conditions where micropitting just occurs the minimum specific lubricant film thickness can be calculated according to [5.3](#page-11-1) a). This value is equivalent to the limiting specific lubricant film thickness which is used to calculate the micropitting load capacity.

Such experimental investigations may be performed on gears having the same design as the actual gear pair. In this case the gear manufacturing, gear accuracy, operating conditions, lubricant and operating temperature have to be appropriate for the actual gear box.

The cost required for this method is in general only justifiable for the development of new products as well as for gear boxes where failure would have serious consequences.

Otherwise the permissible specific lubricant film thickness λ_{GFP} may be derived from consideration of dimensions, service conditions and performance of carefully monitored reference gears operated with the respective lubricant. The more closely the dimensions and service conditions of the actual gears resemble those of the reference gears, the more effective will be the application of such values for the purpose of design ratings or calculation checks.

b) Method B

The method adapted is validated by carrying out careful comparative studies of well-documented histories of a number of test gears applicable to the type, quality and manufacture of gearing under consideration. The permissible specific lubricant film thickness λ_{GFP} is calculated from the critical specific lubricant film thickness λ_{GFT} which is the result of any standardised test method applicable to evaluate the micropitting load capacity of lubricants or materials by means of defined test gears operated under specified test conditions. λ_{GFT} is a function of the temperature, oil viscosity, base oil and additive chemistry and can be calculated according to equation (2) in the contact point of the defined test gears where the minimum specific lubricant film thickness is to be found and for the test conditions where the failure limit concerning micropitting in the standardised test procedure has been reached. The method adapted is validated by carrying out caretal contains

2.67 which is the result of any standardised test method and λ_{GFT} with is the result of any standardised by the result of any standardization of the

The test gears as well as the test conditions (for example the test temperature) have to be appropriate for the real gears in consideration.

Any standardised test can be used to determine the data. Where a specific test procedure is not available or required, a number of internationally available standardised test methods for the evaluation of micropitting performance of gears, lubricants and materials are currently available. Some widely used test procedures are the FVA-FZG-micropitting test [\[7\]](#page-61-4), Flender micropitting test [\[12\],](#page-61-5) BGA-DU micropitting test [\[2\]](#page-61-6) and the micropitting test according to [\[3\]](#page-61-7). Annex A provides some generalised test data (for reference only) that have been produced using the test procedure according to FVA-Information Sheet 54/7 [\[7\]](#page-61-4) where a value for λ_{GFP} can be calculated for a generalised reference allowable using equation A.1.

5.5 Recommendation for the minimum safety factor against micropitting *S*λ,**min**

For a given application, adequate micropitting load capacity is demonstrated by the computed value of *S*^λ and being greater than or equal to the value $S_{\lambda,min}$, respectively.

Certain minimum values for the safety factor shall be determined. Recommendations concerning these minimum values are made in the following, but values are not proposed.

An appropriate probability of failure and the safety factor shall be carefully chosen to meet the required reliability at a justifiable cost. If the performance of the gears can be accurately appraised through testing of the actual unit under actual load conditions, a lower safety factor and more economical manufacturing procedures may be permissible:

Permissible specific film thickness Safety factor = $\frac{\text{Calculated minimum specific film thickness}}{\sqrt{2}}$

In addition to the general requirements mentioned and the special requirements for specific lubricant film thickness, the safety factor shall be chosen after careful consideration of the following influences.

- reliability of load values used for calculation: If loads or the response of the system to vibration, are estimated rather than measured, a larger safety factor should be used.
- variations in gear geometry and surface texture due to manufacturing tolerances,
- variations in alignment,
- variations in material due to process variations in chemistry, cleanliness and microstructure (material quality and heat treatment),
- variations in lubrication and its maintenance over the service life of the gears.

Depending on the reliability of the assumptions on which the calculations are based (for example load assumptions) and according to the reliability requirements (consequences of occurrence), a corresponding safety factor is to be chosen.

Where gears are produced according to a specification or a request for proposal (quotation), in which the gear supplier is to provide gears or assembled gear drives having specified calculated capacities (ratings) in accordance with this technical report, the value of the safety factor for micropitting is to be agreed upon between the parties. variations in lubrication and its maintenance over the service I
Depending on the reliability of the assumptions on which the
assumptions) and according to the reliability requirements (cons
surface the safety are provide

6 Material parameter *G***^M**

The material parameter G_M accounts for the influence of the reduced modulus of elasticity E_r and the pressure-viscosity coefficient of the lubricant at bulk temperature α_{theta} .

$$
G_{\rm M} = 10^6 \cdot \alpha_{\rm \theta M} \cdot E_{\rm r} \tag{5}
$$

where

*E*_r is the reduced modulus of elasticity (see [6.1](#page-13-2));

 α_{EM} is the pressure-viscosity coefficient at bulk temperature (see [6.2](#page-14-2)).

6.1 Reduced modulus of elasticity *E***^r**

For mating gears of different material and modulus of elasticity E_1 and E_2 , the reduced modulus of elasticity E_1 can be determined by equation (6). For mating gears of the same material $E = E_1 = E_2$ equation (7) may be used.

$$
E_{\rm r} = 2 \cdot \left(\frac{1 - {\nu_1}^2}{E_1} + \frac{1 - {\nu_2}^2}{E_2} \right)^{-1}
$$
 (6)

$$
E_r = \frac{E}{1 - v^2}
$$
 for $E_1 = E_2 = E$ and $v_1 = v_2 = v$ (7)

where

 E_1 is the modulus of elasticity of pinion (for steel: $E = 206000 \text{ N/mm}^2$);

 E_2 is the modulus of elasticity of wheel (for steel: $E = 206000 \text{ N/mm}^2$);

 $ν_1$ is the Poisson's ratio of pinion (for steel: $ν = 0,3$);

 v_2 is the Poisson's ratio of wheel (for steel: $v = 0.3$).

6.2 Pressure-viscosity coefficient at bulk temperature $α_{θM}$

If the data for the pressure-viscosity coefficient at bulk temperature α_{theta} for the specific lubricant is not available, it can be approximated by equation (8) (see [\[9\]\)](#page-61-8).

$$
\alpha_{\text{EM}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{\text{M}} + 273} - \frac{1}{311} \right) \right]
$$
 (8)

where

 α_{38} is the pressure-viscosity coefficient of the lubricant at 38 °C;

 $\theta_{\rm M}$ is the bulk temperature (see clause [14](#page-31-1)).

If no values for α_{38} are available then the following approximated values [\[1\]](#page-61-9) can be used.

where

 η_{38} is the dynamic viscosity of the lubricant at 38 °C.

7 Velocity parameter U_Y

The velocity parameter U_Y describes the proportional increase of the specific lubricant film thickness with increasing dynamic viscosity $η_{θM}$ of the lubricant at bulk temperature and sum of the tangential velocities $ν_{Σ, γ}$.

$$
U_{\Upsilon} = \eta_{\Theta M} \cdot \frac{V_{\Sigma, \Upsilon}}{2000 \cdot E_{r} \cdot \rho_{n, \Upsilon}}
$$
 (12)

where

- *v*_{Σ,Y} is the sum of the tangential velocities (see [7.1](#page-15-2));
- *E*_r is the reduced modulus of elasticity (see [6.1](#page-13-2));
- $\rho_{v,Y}$ is the local normal radius of relative curvature (see clause [10\)](#page-19-1).

7.1 Sum of tangential velocities V_{Σ} **, γ**

The sum of the tangential velocities at a mesh point Y is calculated according to equation (13). The velocity for pinion $v_{r1,Y}$ and wheel $v_{r2,Y}$ in a certain contact point Y on the tooth flank depends on the diameter at pinion d_{Y1} and the diameter at wheel d_{Y2} of point Y.

$$
V_{\Sigma,Y} = V_{r1,Y} + V_{r2,Y} \tag{13}
$$

where

$$
v_{r1,Y} = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{d_{w1}}{2000} \cdot \sin \alpha_{wt} \cdot \sqrt{\frac{d_{Y1}^2 - d_{b1}^2}{d_{w1}^2 - d_{b1}^2}}
$$
(14)

$$
v_{r2,Y} = 2 \cdot \pi \cdot \frac{n_1}{u \cdot 60} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{wt} \cdot \sqrt{\frac{d_{Y2}^2 - d_{D2}^2}{d_{w2}^2 - d_{D2}^2}}
$$
(15)

 $v_{r1,Y}$ is the tangential velocity on pinion (see Figure 1);

 $v_{r2,Y}$ is the tangential velocity on wheel (see Figure 1);

- d_{b1} is the base diameter of pinion;
- d_{b2} is the base diameter of wheel;
- *d*_{w1} is the pitch diameter of pinion;
- *d_{w2}* is the pitch diameter of wheel;
- d_{Y1} is the Y-circle diameter of pinion (see Figure 1 and clause [10\)](#page-19-1);
- d_{y2} is the Y-circle diameter of wheel (see Figure 1 and clause [10](#page-19-1));
- n_1 is the rotation speed of pinion;

 $u = z_2/z_1$ is the gear ratio;

 α_{wt} is the pressure angle at the pitch cylinder.

7.2 Dynamic viscosity at bulk temperature $η_{θM}$

The dynamic viscosity at bulk temperature η_{em} can be calculated according to equation (16).

$$
\eta_{\text{EM}} = 10^{-6} \cdot \nu_{\text{EM}} \cdot \rho_{\text{EM}} \tag{16}
$$

where

 ρ_{EM} is the density of the lubricant at bulk temperature (see [7.2.2\)](#page-16-2).

7.2.1 Kinematic viscosity at bulk temperature $ν_{θM}$

The kinematic viscosity at bulk temperature $v_{\theta M}$ can be calculated from the kinematic viscosity v_{40} at 40 °C and the kinematic viscosity v_{100} at 100 °C on the basis of equation (17). Extrapolation for temperature higher than 140 °C should be confirmed by measurement.

$$
log[log(v_{\theta M} + 0.7)] = A \cdot log(\theta_M + 273) + B \tag{17}
$$

where

$$
A = \frac{\log[\log(\nu_{40} + 0.7)/\log(\nu_{100} + 0.7)]}{\log(313/373)}
$$
(18)

$$
B = \log[\log(\nu_{40} + 0.7)] - A \cdot \log(313)
$$
\n(19)

 θ_{M} is the bulk temperature (see clause [14](#page-31-1));

 v_{40} is the kinematic viscosity of the lubricant at 40 °C;

 v_{100} is the kinematic viscosity of the lubricant at 100 °C.

7.2.2 Density of the lubricant at bulk temperature $\rho_{\theta M}$

If the density of the lubricant at bulk temperature $\rho_{\theta M}$ is not available, it can be approximated based on the density of the lubricant at 15 °C according to equation (20).

$$
\rho_{\theta\text{M}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(\theta_{\text{M}} + 273) - 289}{\rho_{15}} \right]
$$
 (20)

where

 ρ_{15} is the density of the lubricant at 15 °C according to the lubricant data sheet;

 θ_{M} is the bulk temperature (see clause [14](#page-31-1)).

If no data for ρ_{15} is available then equation (21) may be used for approximation of mineral oils.

$$
\rho_{15} = 43.37 \cdot \log v_{40} + 805.5 \tag{21}
$$

 v_{40} is the kinematic viscosity of the lubricant at 40 °C.

8 Load parameter W_Y

The load parameter W_Y can be determined using the local Hertzian contact stress $p_{dyn,Y}$ and the reduced modulus of elasticity *E*r.

$$
W_{\Upsilon} = \frac{2 \cdot \pi \cdot \rho_{\text{dyn},\Upsilon}^2}{E_r^2}
$$
 (22)

where

 $\pi_{dyn,Y}$ is the local Hertzian contact stress according to Method A (see [8.1\)](#page-17-1) or according to Method B (see [8.2\)](#page-17-2); where
 $\pi_{6y\pi,\gamma}$ is the local Hertzian contact stress according to Method A (see 8.1) or according to Method B
 E_i is the reduced modulus of elasticity (see 6.1).
 $\sum_{\text{Corrath-inversal configuration of 34\text{-}r, \text{or } 0.4\text{-}r, \text{or } 0.4\text{-}$

*E*_r is the reduced modulus of elasticity (see [6.1](#page-13-2)).

8.1 Local Hertzian contact stress *p***dyn,Y,A according to Method A**

The local Hertzian contact stress $p_{dyn,Y,A}$ according to Method A should be determined by means of a 3D mesh contact and load distribution analysis procedure. The local nominal Hertzian contact stress determined from the elastic mesh contact model $p_{H,YA}$ is applied to equation (23) to obtain the local Hertzian contact stress *p*dyn,Y,A.

$$
\rho_{\text{dyn,Y,A}} = \rho_{\text{H,Y,A}} \cdot \sqrt{K_{\text{A}} \cdot K_{\text{v}}} \tag{23}
$$

where

 $p_{H, Y,A}$ is the local nominal Hertzian contact stress, calculated with a 3D load distribution program;

 K_A is the application factor (according to ISO 6336-1);

 K_v is the dynamic factor (according to ISO 6336-1).

NOTE Where either K_A or K_V influences are already considered in the 3D elastic mesh contact model either or both K_A and K_V should be set as 1,0 in equation (23).

8.2 Local Hertzian contact stress *p***dyn,Y,B according to Method B**

The local Hertzian contact stress $p_{dyn,Y,B}$ according to Method B is calculated according to equation (24). The required nominal Hertzian contact stress $p_{H,Y,B}$ is obtained by equation (25), see [8.2.1](#page-17-3). The total load in the case of drive trains with multiple transmission paths or planetary gear systems is not quite evenly distributed over the individual meshes. This is to be taken into consideration by inserting a distribution factor *K*γ to follow K_A in equation (24), to adjust the average load per mesh as necessary.

$$
\rho_{\text{dyn,Y,B}} = \rho_{\text{H,Y,B}} \cdot \sqrt{K_{\text{A}} \cdot K_{\text{v}} \cdot K_{\text{H}\alpha} \cdot K_{\text{H}\beta}}
$$
(24)

where

 $p_{H,Y,B}$ is the local nominal Hertzian contact stress (see [8.2.1\)](#page-17-3);

 K_A is the application factor (according to ISO 6336-1);

 K_v is the dynamic factor (according to ISO 6336-1);

- $K_{\text{H}\alpha}$ is the transverse load factor (according to ISO 6336-1). Profile modifications are considered in the factor X_{ν} , see clause 11.
- $K_{\text{H}B}$ is the face load factor (according to ISO 6336-1). Lead modifications are considered in this factor.

NOTE Gears with a total contact ratio ε_r > 2 can only be calculated according to Method A.

8.2.1 Nominal Hertzian contact stress $p_{H,Y,B}$

The nominal Hertzian contact stress $p_{H,Y,B}$ is used to determine the local Hertzian contact stress $p_{dyn,Y,B}$ (see [8.1\)](#page-17-1). To take the influence of different profile modifications into account the load sharing factor X_Y is introduced. For the calculation of the local nominal Hertzian contact stress the local nominal radius of relative curvature is used.

$$
\rho_{H,Y,B} = Z_{E} \cdot \sqrt{\frac{F_{t} \cdot X_{Y}}{b \cdot \rho_{n,Y} \cdot \cos \alpha_{t} \cdot \cos \beta_{b}}}
$$
(25)

where

$$
Z_{E} = \sqrt{\frac{E_{r}}{2\pi}}\tag{26}
$$

 $Z_{\rm E}$ is the elasticity factor (according to ISO 6336-2);

b is the face width;

 F_t is the transverse tangential load at reference cylinder;

 X_Y is the load sharing factor (see clause [11\)](#page-23-1);

*E*_r is the reduced modulus of elasticity (see [6.1](#page-13-2));

 α_t is the transverse pressure angle;

- β_{b} is the base helix angle;
- $\rho_{n,Y}$ is the local normal radius of relative curvature (see clause [10\)](#page-19-1).

9 Sliding parameter S_{GF,Y}

The sliding parameter S_{GF,Y} accounts for the influence of local sliding on the local temperature. This temperature influences both the local pressure-viscosity coefficient and the local dynamic viscosity and hence the local lubricant film thickness [\[6\]](#page-61-10). The indices "θB,Y" for local contact temperature and "θM" for bulk temperature are used. The local contact temperature $\theta_{B,Y}$ is the sum of the local flash $\theta_{B,Y}$ and the bulk temperature $\theta_{\rm M}$.

$$
S_{GF,Y} = \frac{\alpha_{\theta B,Y} \cdot \eta_{\theta B,Y}}{\alpha_{\theta M} \cdot \eta_{\theta M}}
$$
 (27)

where

 $\alpha_{\text{BB,Y}}$ is the pressure-viscosity coefficient at local contact temperature (see [9.1](#page-18-2));

 $\eta_{\text{0B,Y}}$ is the dynamic viscosity at local contact temperature (see [9.2](#page-19-2));

 α_{EM} is the pressure-viscosity coefficient at bulk temperature (see [6.2](#page-14-2));

 η_{EM} is the dynamic viscosity at bulk temperature (see [7.2](#page-15-1)).

9.1 Pressure-viscosity coefficient at local contact temperature $\alpha_{\text{BB,Y}}$

If the data for the pressure-viscosity coefficient at local contact temperature $\alpha_{\text{0B,Y}}$ for the specific lubricant is not available, it can be approximated by equation (28) (see [\[9\]\)](#page-61-8).

$$
S_{GF,Y} = \frac{\alpha_{BE,Y} \cdot \eta_{BE,Y}}{\alpha_{BM} \cdot \eta_{BM}}
$$
\nwhere
\n
$$
\alpha_{GB,Y}
$$
\nis the pressure-viscosity coefficient at local contact temperature (see 9.1);
\n
$$
\eta_{DB,Y}
$$
\nis the dynamic viscosity at local contact temperature (see 9.2);
\n
$$
\alpha_{GM}
$$
\nis the pressure-viscosity coefficient at bulk temperature (see 6.2);
\n
$$
\eta_{DM}
$$
\nis the dynamic viscosity at bulk temperature (see 7.2).\n9.1 **Pressure-viscosity coefficient at local contact temperature** $\alpha_{BB,Y}$
\nIf the data for the pressure-viscosity coefficient at local contact temperature $\alpha_{BB,Y}$, for the specific lubricant is not available, it can be approximated by equation (28) (see [9]).
\n
$$
\alpha_{BB,Y} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{B,Y} + 273} - \frac{1}{311}\right)\right]
$$
\n(28)
\nWhere
\n
$$
\alpha_{38}
$$
\nis the pressure-viscosity coefficient of the lubricant at 38 °C (see also 6.2);
\n
$$
\theta_{B,Y}
$$
\nis the local contact temperature (see clause 12).
\n13
\n13

where

 α_{38} is the pressure-viscosity coefficient of the lubricant at 38 °C (see also [6.2\)](#page-14-2);

 $\theta_{\rm BY}$ is the local contact temperature (see clause [12\)](#page-30-1).

9.2 Dynamic viscosity at local contact temperature $η_{\theta B,Y}$

The dynamic viscosity at local contact temperature $\eta_{\theta B,Y}$ is determined by equation (29).

$$
\eta_{\theta B,Y} = 10^{-6} \cdot \nu_{\theta B,Y} \cdot \rho_{\theta B,Y}
$$

where

 $v_{\theta B,Y}$ is the kinematic viscosity at local contact temperature (see [9.2.1\)](#page-19-3);

 $\rho_{\rm BRY}$ is the density of the lubricant at local contact temperature (see [9.2.2](#page-19-4)).

9.2.1 Kinematic viscosity at local contact temperature $ν_{\theta B,Y}$

The kinematic viscosity at local contact temperature $v_{\theta B,Y}$ can be calculated from the kinematic viscosity v_{40} at 40 °C and the kinematic viscosity v_{100} at 100 °C on the basis of equation (30). Extrapolation for temperature higher than 140 °C should be confirmed by measurement.

$$
log[log(v_{\theta B,Y} + 0.7)] = A \cdot log(\theta_{B,Y} + 273) + B
$$
\n(30)

where

$$
A = \frac{\log[\log(\nu_{40} + 0.7)/\log(\nu_{100} + 0.7)]}{\log(313/373)}
$$
(31)

$$
B = log[log(v_{40} + 0.7)] - A \cdot log(313)
$$
\n(32)

 $\theta_{\rm BY}$ is the local contact temperature (see clause [12\)](#page-30-1);

 v_{40} is the kinematic viscosity of the lubricant at 40 °C;

 v_{100} is the kinematic viscosity of the lubricant at 100 °C.

9.2.2 Density of the lubricant at local contact temperature $\rho_{\text{BB,Y}}$

If the density of the lubricant at local contact temperature $\rho_{\rm BB}$ is not available, it can be approximated based on the density of the lubricant at 15 °C according to equation (33).

$$
\rho_{\theta B,Y} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(\theta_{B,Y} + 273) - 289}{\rho_{15}} \right]
$$
\n(33)

where

 ρ_{15} is the density of the lubricant at 15 °C according to the lubricant data sheet (see also [7.2.2\)](#page-16-2);

 $\theta_{\rm BY}$ is the local contact temperature (see clause [12\)](#page-30-1).

10 Definition of contact point Y on the path of contact

Contact point Y is located between the SAP (contact point A) and EAP (contact point E) on the path of contact according to Figure 1. It describes the actual contact point between pinion and wheel in a certain meshing position g_{γ} . Equal Contact temperature (see clause 12);
 u_{00} is the kinematic viscosity of the lubricant at 100 °C.
 S.2.2 Donsity of the lubricant at color contact temperature μ_{00} **,**

If the density of the lubricant at fost According to [5.3](#page-11-1), Method B the calculation has to be done for the following contact points:

Y =

• **A** $g_Y = g_A = 0$ mm the path of contact (34)

• AB
$$
g_Y = g_{AB} = (g_\alpha - p_{et})/2
$$

• **B**
$$
g_{\Upsilon} = g_{\text{B}} = g_{\alpha} - p_{\text{et}}
$$

• **C**
$$
g_Y = g_C = \frac{d_{b1}}{2} \cdot \tan \alpha_{wt} - \sqrt{\frac{d_{a1}^2}{4} - \frac{d_{b1}^2}{4} + g_\alpha}
$$

• **D**
$$
g_Y = g_D = p_e
$$

• **DE**
$$
g_Y = g_{DE} = (g_\alpha - p_{et}) / 2 + p_{et}
$$

• **E**
$$
g_Y = g_E = g
$$

$$
g_{\gamma} = g_{\text{C}} = \frac{a_{\text{b1}}}{2} \cdot \tan \alpha_{\text{wt}} - \sqrt{\frac{a_{\text{a1}}}{4} - \frac{a_{\text{b1}}}{4}} + g_{\text{a}}
$$
 the pitch point (37)

The Y-circle diameter of pinion d_{Y1} and wheel d_{Y2} are dependent on the location of contact point Y on the path of contact g_Y and can be calculated according to equation (41) and equation (42).

$$
d_{\gamma_1} = 2 \cdot \sqrt{\frac{{d_{b1}}^2}{4} + \left(\sqrt{\frac{{d_{a1}}^2}{4} - \frac{{d_{b1}}^2}{4}} - g_{\alpha} + g_{\gamma}\right)^2}
$$
(41)

$$
d_{\gamma_2} = 2 \cdot \sqrt{\frac{{d_{b2}}^2}{4} + \left(\sqrt{\frac{{d_{a2}}^2}{4} - \frac{{d_{b2}}^2}{4}} - g_{\gamma}\right)^2}
$$
(42)

where

*g*α is the length of path of contact (see Figure 1).

The transverse radius of relative curvature ρ_{tY} can be determined according to equation (43).

$$
\rho_{t,\Upsilon} = \frac{\rho_{t1,\Upsilon} \cdot \rho_{t2,\Upsilon}}{\rho_{t1,\Upsilon} + \rho_{t2,\Upsilon}}
$$
(43)

where

$$
\rho_{11,2,Y} = \sqrt{\frac{d_{Y1,2}^2 - d_{b1,2}^2}{4}} \tag{44}
$$

 $\rho_{11,2,Y}$ is the transverse radius of curvature of pinion/ wheel at point Y (see Figure 1);

 $d_{b1,2}$ is the base diameter of pinion/ wheel (see Figure 1);

$$
d_{Y1,2}
$$
 is the Y-circle diameter of pinion/ wheel (see above and Figure 1).

The normal radius of relative curvature $\rho_{n,Y}$ can be calculated according to equation (45).

$$
\rho_{n,Y} = \frac{\rho_{t,Y}}{\cos \beta_b} \tag{45}
$$

where

- $\rho_{\rm{.Y}}$ is the transverse relative radius of curvature (see above);
- $\beta_{\rm b}$ is the base helix angle.

11 Load sharing factor *X***^Y**

The load sharing factor X_Y accounts for the load sharing of succeeding pairs of meshing teeth. The load sharing factor is presented as a function of the linear parameter g_Y on the path of contact [\[4\]](#page-61-11).

Due to inaccuracies a preceding pair of meshing teeth may cause an instantaneous increase or decrease of the theoretical load sharing factor, independent of the instantaneous increase or decrease caused by inaccuracies of a succeeding pair of meshing teeth at a later time. The value of X_Y does not exceed 1.0 (for cylindrical gears), which means full transverse single tooth contact. The region of transverse single tooth contact may be extended by an irregularly varying location of a dynamic load.

The load sharing factor X_y depends on the type of gear transmission and on the profile modification. In case of buttressing of helical teeth (no profile modification) the load sharing factor is combined with a buttressing factor $X_{\text{but,Y}}$ [\[4\]](#page-61-11).

11.1 Spur gears with unmodified profiles

The load sharing factor for a spur gear with unmodified profile is conventionally supposed to have a discontinuous trapezoidal shape; see Figure 2. However, due to manufacturing inaccuracies, in each path of double contact the load sharing factor will increase for protruding flanks and decrease for other flanks. The representative load sharing factor is an envelope of possible curves; see Figure 3.

Figure 2 — Load sharing factor for cylindrical spur gears with unmodified profiles and quality grade ≤ 7

$$
X_{\Upsilon} = \frac{Q - 2}{15} + \frac{1}{3} \cdot \frac{g_{\Upsilon}}{g_{\text{B}}}
$$
 for $g_{\text{A}} \le g_{\Upsilon} < g_{\text{B}}$ (46)

$$
X_{\gamma} = 1.0 \qquad \qquad \text{for } g_{\text{B}} \leq g_{\gamma} \leq g_{\text{D}} \qquad \qquad (47)
$$

$$
X_{\Upsilon} = \frac{Q - 2}{15} + \frac{1}{3} \cdot \frac{g_{\alpha} - g_{\Upsilon}}{g_{\alpha} - g_{D}} \qquad \text{for } g_{D} < g_{\Upsilon} \le g_{E} \tag{48}
$$

where

 $Q = 7$ for quality grade ≤ 7 ;

 $Q =$ equals quality grade for grade ≥ 8 .

11.2 Spur gears with profile modification

See Figure 4, Figure 5 and Figure 6.

Figure 4 — Load sharing factor for cylindrical spur gears with optimum profile modification

Figure 5 — Load sharing factor for cylindrical spur gears with optimum profile modification on the addendum of the driven gear and/or the dedendum of the driving gear

Figure 6 — Load sharing factor for cylindrical spur gears with optimum profile modification on the addendum of the driving gear and/or the dedendum of the driven gear

Linear interpolation between the values is possible.

$$
X_{Y} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{Y}}{g_{B}}
$$
 for $g_{A} \le g_{Y} \le g_{AB}$ if $C_{a2} = 0$ µm (49)
\n
$$
X_{Y} = \frac{g_{Y}}{g_{B}}
$$
 for $g_{A} \le g_{Y} \le g_{AB}$ if $C_{a2} = C_{eff}$ (see 14.3) (50)
\n
$$
X_{Y} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{Y}}{g_{B}}
$$
 for $g_{AB} \le g_{Y} \le g_{B}$ if $C_{a1} = 0$ µm (51)
\n
$$
X_{Y} = \frac{g_{Y}}{g_{B}}
$$
 for $g_{AB} \le g_{Y} \le g_{B}$ if $C_{a1} = C_{eff}$ (52)
\n
$$
X_{Y} = 1,0
$$
 for $g_{B} \le g_{Y} \le g_{D}$ if $C_{a2} = 0$ µm (54)
\n
$$
X_{Y} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{\alpha} - g_{Y}}{g_{\alpha} - g_{D}}
$$
 for $g_{D} \le g_{Y} \le g_{DE}$ if $C_{a2} = C_{eff}$ (55)
\n
$$
X_{Y} = \frac{g_{\alpha} - g_{Y}}{g_{\alpha} - g_{D}}
$$
 for $g_{DE} \le g_{Y} \le g_{E}$ if $C_{a1} = 0$ µm (56)
\n
$$
X_{Y} = \frac{g_{\alpha} - g_{Y}}{g_{\alpha} - g_{D}}
$$
 for $g_{DE} \le g_{Y} \le g_{E}$ if $C_{a1} = 0$ µm (56)
\n
$$
X_{Y} = \frac{g_{\alpha} - g_{Y}}{g_{\alpha} - g_{D}}
$$
 for $g_{DE} \le g_{Y} \le g_{E}$ if $C_{a1} = C_{eff}$ (57)

11.3 Buttressing factor $X_{\text{but,Y}}$

Helical gears may have a buttressing effect near the end points A and E of the path of contact, due to the oblique contact lines. This applies to cylindrical helical gears with no profile modification.

Figure 7 — Buttressing factor, $X_{\text{but,Y}}$

The buttressing is expressed by means of a factor $X_{\text{but,Y}}$; see Figure 7, marked by the following values.

$$
g_{AU}-g_A = g_E - g_{EU} = 0.2 \text{ mm} \cdot \sin\beta_b \tag{58}
$$

with

 $g_A = 0$ mm;

 $g_{\overline{E}}=g_{\alpha}$ (see Figure 1).

$$
X_{\text{but,A}} = X_{\text{but,E}} = 1.3 \qquad \qquad \text{if } \varepsilon_{\beta} \ge 1.0 \tag{59}
$$

$$
X_{\text{but,A}} = X_{\text{but,E}} = 1 + 0.3 \cdot \varepsilon_{\beta} \tag{60}
$$

$$
X_{\text{but,AU}} = X_{\text{but,EU}} = 1.0 \tag{61}
$$

$$
X_{\text{but, Y}} = X_{\text{but, A}} - \frac{g_Y}{0.2 \text{ mm} \cdot \sin \beta_b} \cdot (X_{\text{but, A}} - 1) \qquad \text{for } g_A \le g_Y < g_{\text{AU}} \tag{62}
$$

$$
X_{\text{but,Y}} = 1.0 \qquad \qquad \text{for } g_{\text{AU}} \le g_{\text{Y}} \le g_{\text{EU}} \tag{63}
$$

$$
X_{\text{but,Y}} = X_{\text{but,E}} - \frac{g_{\alpha} - g_{\gamma}}{0.2 \text{ mm} \cdot \sin \beta_{\text{b}}} \cdot (X_{\text{but,E}} - 1) \qquad \text{for } g_{\text{EU}} < g_{\gamma} \le g_{\text{E}} \tag{64}
$$

where

 ε_B is the overlap ratio.

11.4 Helical gears with ^εβ **< 1 and unmodified profiles**

Helical gears with a contact ratio $\varepsilon_{\alpha} \ge 1$ and overlap ratio ε_{β} < 1, have still poor single contact of tooth pairs. Hence, they can be treated similar to spur gears, considering the geometry in the transverse plane, as well as the buttressing effect. See Figure 8. $G = G_0$ (see Figure 1).
 $X_{\text{but,A}} = X_{\text{but,E}} = 1.3$ if c_{B}
 $X_{\text{but,A}} = X_{\text{but,E}} = 1.0$ if c_{B}
 $X_{\text{but,A}} = X_{\text{but,E}} - 1.0$ for g
 $X_{\text{but,Y}} = X_{\text{but,E}} - \frac{g_{\text{Y}}}{0.2 \text{ mm} \cdot \sin \beta_{\text{b}}} \cdot (X_{\text{but,A}} - 1)$ for g
 $X_{\text{but,Y$

Figure 8 — Load sharing factor for cylindrical helical gears with ^εβ **< 1 and unmodified profiles, including the buttressing effect**

The load sharing factor is obtained by multiplying the X_Y in [11.1](#page-23-2) with the buttressing factor $X_{but,Y}$ in [11.3](#page-25-1).

11.5 Helical gears with ^εβ **< 1 and profile modification**

Helical gears with a contact ratio $\varepsilon_{\alpha} \ge 1$ and overlap ratio ε_{β} < 1, have still poor single contact of tooth pairs. Hence, they can be treated similar to spur gears, considering the geometry in the transverse plane. See Figure 9, Figure 10 and Figure 11.

Figure 11 — Load sharing factor for cylindrical helical gears with ^εβ **< 1 and optimum profile modification on the addendum of the driving gear and/or the dedendum of the driven gear**

The load sharing factor is obtained by multiplying the X_Y in [11.2](#page-24-1) with the buttressing factor $X_{but,Y}$ in [11.3](#page-25-1).

11.6 Helical gears with ^ε^β **≥ 1 and unmodified profiles**

The buttressing effect of local high mesh stiffness at the end of oblique contact lines for helical gears with $\varepsilon_\alpha \geq 1$ and $\varepsilon_\beta \geq 1$, is assumed to act near the ends A and E along the helix teeth over a constant length, which corresponds to a transverse relative distance 0,2 mm \cdot sin β _b; see Figure 12. See also [11.3](#page-25-1) and Figure 7.

Figure 12 — Load sharing factor for cylindrical helical gears with ^ε^β **≥ 1 and unmodified profiles**

The load sharing factor is obtained by multiplying the value $1/\varepsilon_{\alpha}$, representing the mean load, with the buttressing factor $X_{\text{but,Y}}$.

$$
X_{Y} = \frac{1}{\varepsilon_{\alpha}} \cdot X_{\text{but},Y} \tag{65}
$$

where

 ε_{α} is the transverse contact ratio.

11.7 Helical gears with ^ε^β **≥ 1 and profile modification**

Tip relief on the pinion (respectively wheel) reduces X_Y in the range DE-E (respectively A-AB) and increases *X*_Y in the range AB-DE, see Figure 13, Figure 14 and Figure 15. The extensions of tip relief at both ends A-AB and DE-E of the path of contact are assumed to be equal and to result in a contact ratio ε_a = 1 for unloaded gears; see Figure 13.

Figure 13 — Load sharing factor for cylindrical helical gears with ^ε^β **≥ 1 and optimum profile modification**

The ranges are marked by the following values. Linear interpolation between these values is possible.

$$
X_{\gamma} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{2 \cdot \varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}\right] \cdot X_{\text{but, Y}} \qquad \text{for } g_{\text{A}} \le g_{\gamma} \le g_{\text{AB}} \qquad \text{if } C_{\text{a1}} = C_{\text{eff}} \text{ and } C_{\text{a2}} = 0 \text{ µm}
$$
 (66)

$$
X_{\gamma} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{2 \cdot \varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}\right] \cdot \frac{g_{\gamma}}{g_{AB}} \qquad \text{for } g_{A} \le g_{\gamma} \le g_{AB} \qquad \text{if } C_{a1} = 0 \text{ µm and } C_{a2} = C_{\text{eff}} \tag{67}
$$

$$
X_{Y} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{\varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}\right] \cdot \frac{g_{Y}}{g_{AB}} \qquad \text{for } g_{A} \le g_{Y} \le g_{AB} \qquad \text{if } C_{a1} = C_{a2} = C_{\text{eff}} \tag{68}
$$

$$
X_{\Upsilon} = \frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{2 \cdot \varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}
$$
 for $g_{AB} \le g_{\Upsilon} \le g_{DE}$ if $C_{a1} = 0$ µm and $C_{a2} = C_{eff}$ (69)

if $C_{a1} = C_{\text{eff}}$ and $C_{a2} = 0$ µm

$$
X_{\gamma} = \frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{\varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}
$$
 for $g_{AB} \le g_{\gamma} \le g_{DE}$ if $C_{a1} = C_{a2} = C_{eff}$ (70)

$$
X_{\gamma} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{2 \cdot \varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}\right] \cdot \frac{g_{\alpha} - g_{\gamma}}{g_{\alpha} - g_{\text{DE}}}
$$
 for $g_{\text{DE}} \le g_{\gamma} \le g_{\text{E}}$ if $C_{\text{a1}} = C_{\text{eff}}$ and $C_{\text{a2}} = 0 \text{ }\mu\text{m}$ (71)

$$
X_{Y} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{2 \cdot \varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)}\right] \cdot X_{\text{but},Y} \qquad \text{for } g_{\text{DE}} \le g_{Y} \le g_{\text{E}} \qquad \text{if } C_{\text{a1}} = 0 \text{ µm and } C_{\text{a2}} = C_{\text{eff}} \tag{72}
$$

$$
X_{\Upsilon} = \left[\frac{1}{\varepsilon_{\alpha}} + \frac{(\varepsilon_{\alpha} - 1)}{\varepsilon_{\alpha} \cdot (\varepsilon_{\alpha} + 1)} \right] \cdot \frac{g_{\alpha} - g_{\Upsilon}}{g_{\alpha} - g_{\text{DE}}} \qquad \text{for } g_{\text{DE}} \le g_{\Upsilon} \le g_{\text{E}} \qquad \text{if } C_{\text{a1}} = C_{\text{a2}} = C_{\text{eff}} \tag{73}
$$

12 Contact temperature $θ_{\text{B,Y}}$

 \sim

The local contact temperature $\theta_{\rm B}$ is defined as the sum of bulk temperature $\theta_{\rm M}$ and local flash temperature $\theta_{\rm fly}$. As a result of friction in the teeth mesh, the flash temperature $\theta_{\rm fly}$ varies along the path of contact. Hence the local flash temperature $\theta_{\parallel,Y}$ has to be determined for every desired point Y in the field of contact. For simplification the bulk temperature θ_M is assumed as constant.

$$
\theta_{\text{B,Y}} = \theta_{\text{M}} + \theta_{\text{fl},\text{Y}} \tag{74}
$$

where

 $\theta_{\text{H,Y}}$ is the local flash temperature (see clause [13\)](#page-30-2);

 $\theta_{\rm M}$ is the bulk temperature (see clause [14](#page-31-1)).

13 Flash temperature θ**fl,Y**

The flash temperature $\theta_{\parallel,Y}$ of the gear flanks is rapidly fluctuating in contact. In every mesh position different rolling and sliding conditions occur. Furthermore the local contact load varies along the path of contact. These conditions cause a continuous variation of the flash temperature which can be calculated according to Blok [13] by equation (75).

$$
\theta_{\rm fl,\,Y} = \frac{\sqrt{\pi}}{2} \cdot \frac{\mu_{\rm m} \cdot p_{\rm dyn,\,Y} \cdot 10^6 \cdot |v_{\rm g,\,Y}|}{B_{\rm M1} \cdot \sqrt{v_{\rm r1,\,Y}} + B_{\rm M2} \cdot \sqrt{v_{\rm r2,\,Y}}} \cdot \sqrt{8 \cdot \rho_{\rm n,\,Y} \cdot \frac{p_{\rm dyn,\,Y}}{1000 \cdot E_{\rm r}}}
$$
(75)

where

$$
V_{g,Y} = V_{r1,Y} - V_{r2,Y} \tag{76}
$$

$$
B_{\rm M1} = \sqrt{\rho_{\rm M1} \cdot c_{\rm M1} \cdot \lambda_{\rm M1}} \tag{77}
$$

$$
B_{\text{M2}} = \sqrt{\rho_{\text{M2}} \cdot c_{\text{M2}} \cdot \lambda_{\text{M2}}}
$$
 (78)

$V_{g,Y}$	is the local sliding velocity;
$B_{\rm M1}$	is the thermal contact coefficient of pinion (see Table 2);
B_{M2}	is the thermal contact coefficient of wheel (see Table 2);
$\mu_{\rm m}$	is the mean coefficient of friction (see 14.1);
$p_{\text{dyn,Y}}$	is the local Hertzian contact stress (see 8.1 and 8.2);
$V_{r1,Y}$	is the local tangential velocity on pinion (see 7.1);
$V_{r2,Y}$	is the local tangential velocity on wheel (see 7.1);
$\rho_{n,Y}$	is the local normal radius of relative curvature (see clause 10);
E_{r}	is the reduced modulus of elasticity (see 6.1).

Table 2 — Material properties of steel

14 Bulk temperature $θ$ M

The bulk temperature θ_M is the equilibrium temperature of the surface of the gear teeth before they enter the contact zone. The bulk temperature θ_M should be measured or calculated by an adequate method. If this is not possible θ_M can be approximated according to equation (79) (compare [\[10\]\)](#page-61-12).

$$
\theta_{\rm M} = \theta_{\rm oil} + 7400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\nu}}{a \cdot b}\right)^{0.72} \cdot \frac{X_{\rm S}}{1.2 \cdot X_{\rm Ca}}\tag{79}
$$

where

$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1000} \tag{80}
$$

P is the transmitted power;

a is the centre distance;

b is the face width;

 θ_{oil} is the lubricant inlet or oil sump temperature;

- $\mu_{\rm m}$ is the mean coefficient of friction (see [14.1](#page-32-1));
- *H*_v is the load losses factor (see [14.2\)](#page-33-1);
- X_{Ca} is the tip relief factor (see [14.3\)](#page-34-1);
- X_S is the lubricant factor (see [14.4\)](#page-35-1).

14.1 Mean coefficient of friction μ_m

The mean coefficient of friction *µ*m depends on the gear geometry, the surface roughness, the tangential velocity, the tangential load and the dynamic viscosity of the lubricant. It can be approximated by equation (81).

$$
\mu_{\rm m} = 0.045 \cdot \left(\frac{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm Hg} \cdot K_{\rm Hg} \cdot F_{\rm bt} \cdot K_{\rm By}}{b \cdot v_{\Sigma, \rm C} \cdot \rho_{\rm n, C}} \right)^{0.2} \cdot \left(10^3 \cdot \eta_{\rm \theta oil} \right)^{-0.05} \cdot X_{\rm R} \cdot X_{\rm L}
$$
 (81)

where

$$
X_{\rm R} = 2.2 \cdot \left(\frac{Ra}{\rho_{\rm n,C}}\right)^{0.25} \tag{82}
$$

 $X_{\rm R}$ is the roughness factor;

- *F*_{bt} is the nominal transverse load in plane of action;
- K_A is the application factor (according to ISO 6336-1);

 K_{B_Y} is the helical load factor (see below);

- $K_{\text{H}\alpha}$ is the transverse load factor (according to ISO 6336-1);
- *K*_{Hβ} is the face load factor (according to ISO 6336-1);
- K_v is the dynamic factor (according to ISO 6336-1);
- *v*_{Σ, C} is the sum of the tangential velocities at the pitch point (see [7.1](#page-15-2));
- η_{boil} is the dynamic viscosity at inlet or oil sump temperature;
- $\rho_{\text{n.c}}$ is the normal radius of relative curvature at the pitch diameter;
- *Ra* is the effective arithmetic mean roughness value (see [5.3\)](#page-11-1);
- X_L is the lubricant factor (see Table 3).

ISO/TR 15144-1:2010(E)

The helical load factor K_{Bγ} takes into account an increasing friction for increasing total contact ratio (see Figure 16).

Figure 16 — Helical load factor K_{By}

Table 3 — Lubricant factor, *X***^L**

14.2 Load losses factor *H***^v**

The load losses factor H_v is calculated according to equation (86) and (87).

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_{\alpha}\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \qquad \text{if} \qquad \varepsilon_{\alpha} < 2 \tag{86}
$$

$$
H_{\rm v} = 0.5 \cdot \varepsilon_{\alpha} \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \qquad \qquad \text{if} \qquad \varepsilon_{\alpha} \ge 2 \qquad (87)
$$

where

*z*₁ is the number of teeth of pinion; *z***₂** is the number of teeth of wheel; $\beta_{\rm b}$ is the base helix angle; ε_1 is the addendum contact ratio of the pinion; ε is the addendum contact ratio of the wheel: ε_{α} is the transverse contact ratio.

14.3 Tip relief factor X_{Ca}

The elastic deformation of the meshing teeth results in overload on the tip in the area of high sliding. The tip relief factor X_{Ca} according to Figure 17 considers the positive influence of the profile modification on this overload. *X*_{Ca} is a relative tip relief factor which depends on the actual values of tip relief *C*_{a1}, *C*_{a2}, the effective tip relief *C*eff, the ratio of addendum contact ratios and the direction of power flow.

Figure 17 — Tip relief factor X_{Ca}

The curves in Figure 17 can be approximated by the following equations:

 $X_{\text{Ca}} = 1 + 0.24 \cdot \varepsilon_{\text{max}} + 0.71 \cdot \varepsilon_{\text{max}}^2$ if pinion drives wheel and $\varepsilon_1 > 1, 5 \cdot \varepsilon_2$ and $C_{a1} \ge C_{eff}$ (88) if pinion drives wheel and $\varepsilon_1 \leq 1.5 \cdot \varepsilon_2$ and $C_{a2} \geq C_{\text{eff}}$ if wheel drives pinion and $\varepsilon_1 > (2/3) \cdot \varepsilon_2$ and $C_{a1} \ge C_{\text{eff}}$ if wheel drives pinion and $\varepsilon_1 \leq (2/3) \cdot \varepsilon_2$ and $C_{a2} \geq C_{\text{eff}}$ Figure 17 — Tip rel

The curves in Figure 17 can be approximated by the follow
 $X_{\text{Ca}} = 1 + 0.24 \cdot \varepsilon_{\text{max}} + 0.71 \cdot \varepsilon_{\text{max}}^2$ if pinion drive

if pinion drive

if wheel drive

if wheel drive

if wheel drive

Copyrigh

ISO/TR 15144-1:2010(E)

where

 C_{eff} is the effective tip relief (see below);

ε_{max} is the maximum value, ε_1 or ε_2 .

C_{eff} is the effective tip relief, that amount of tip relief which compensates for the elastic deformation of the teeth in single pair contact.

$$
C_{\text{eff}} = \frac{K_{\text{A}} \cdot F_{\text{t}}}{b \cdot c'}
$$
 for spur years (90)

$$
C_{\text{eff}} = \frac{K_{\text{A}} \cdot F_{\text{t}}}{b \cdot c_{\text{ya}}}
$$
 for helical years (91)

where

b is the face width;

c' is the single stiffness of a tooth pair per unit face width (according to ISO 6336-1);

*c*γα is the mean value of mesh stiffness per unit face width (according to ISO 6336-1);

 F_t is the transverse tangential load at reference cylinder;

 K_A is the application factor (according to ISO 6336-1).

Tip relief factor as described above applies to gears of ISO accuracy grade ≤ 6, in accordance with ISO 1328-1. For less accurate gears, *X*Ca is to be set equal to 1; see also ISO 6336-1.

14.4 Lubrication factor X_S

The lubrication factor takes into account a better heat transfer for dip lubrication than for injection lubrication. The following values apply.

 X_S = 1,2 for injection lubrication;

 $X_{\rm S}$ = 1,0 for dip lubrication;

 $X_{\rm S}$ = 0,2 for gears submerged in oil.

Annex A

(informative)

Calculation of the permissible specific lubricant film thickness λ **_{GFP} for oils with a micropitting test result according to FVA-Information Sheet 54/7**

The following information in this annex is provided as reference only and should not be interpreted as generalised part of the procedure defined in this Technical Report.

One test procedure used to evaluate the micropitting load capacity of gear lubricants is the FVA-FZGmicropitting test according to FVA-Information Sheet 54/7 [\[7\].](#page-61-4)

For mineral oils investigated in this test procedure λ_{GFP} can be taken from Figure A.1 depending on the nominal oil viscosity and the failure load stage SKS reached in the test C-GF/8,3/90. Interpolation between the stated values is possible.

Figure A.1 — Minimum permissible specific lubricant film thickness for mineral oils as function of nominal lubricant viscosity and failure load stage SKS of the FVA-FZG micropitting test C-GF/8,3/90 with *R***a = 0,50 µm**

For other test conditions or different lubricants than presented in Figure A.1 the critical specific lubricant film thickness λ_{GFT} in contact point A of the specified test gears type C-GF is calculated at the reached failure load stage according to equation (2). The required gear geometry of the test gears type C-GF is specified in FVA-Information Sheet 54/7. In this case the permissible specific lubricant film thickness λ_{GFP} is defined according to equation (A.1). The material factor W_w takes into account the influence of gear material different from the case carburised standardised test gears type C-GF. Copyright Internation Figure A.1 — Minimum permissible specific lubricant

Trialiture load state

C-GF/8,3/90 with F

For other test conditions or different lubricants than presentices

the condition Provided by INS under

$$
\lambda_{\text{GFP}} = 1.4 \cdot W_{\text{W}} \cdot \lambda_{\text{GFT}} \tag{A.1}
$$

where

 W_w is the material factor (see Table A.1);

 λ_{GFT} is the specific lubricant film thickness ascertained by tests (see [5.3\)](#page-11-1).

ISO/TR 15144-1:2010(E)

NOTE If no value for the failure load stage SKS of the lubricant is available, use the value λ_{GFP} of the lubricant for failure load stage SKS 5.

Table A.1 – Material factor, W_w

Annex B (informative)

Example calculation

In the following annex an example calculation is presented. The calculation sequence has been provided to follow a logical approach with relation to the input data.

The example calculates the safety factor S_λ of a specific gear set when compared to an allowable λ_{GFP} value. Whilst any suitable test method can be used to determine the allowable λ_{GFP} value the calculation provided uses a λ_{GFD} established by the FVA-FZG micropitting test (Method B) as outlined in Annex A.

The result of this example is confirmed by experimental investigations. The gears were obviously micropitted and had profile deviations of approximately 10 µm.

B.1 Input

B.1.1 Input of gear data

ISO/TR 15144-1:2010(E)

B.1.2 Input of material data

B.1.3 Input of operating data

B.1.4 Input of lubricant data

B.2 Calculation of the current specific lubricant film thickness

B.2.1 Calculation of gear geometry (according to ISO 21771)

basic values:

$$
m_{t} = \frac{m_{n}}{\cos \beta}
$$
\n
$$
d_{1} = z_{1} \cdot m_{t}
$$
\n
$$
d_{2} = z_{2} \cdot m_{t}
$$
\n
$$
d_{3} = 196,74 \text{ mm}
$$
\n
$$
d_{4} = \arctan\left(\frac{\tan \alpha_{n}}{\cos \beta}\right)
$$
\n
$$
d_{1} = 1
$$
\n
$$
\alpha_{t} = \arctan\left(\frac{\tan \alpha_{n}}{\cos \beta}\right)
$$
\n
$$
d_{1} = d_{1} \cdot \cos \alpha_{t}
$$
\n
$$
d_{1} = 1
$$
\n
$$
d_{1} = 20 \cdot \cos \alpha_{t}
$$
\n
$$
d_{1} = \frac{2 \cdot a}{u + 1}
$$
\n
$$
d_{1} = \frac{2 \cdot a}{u + 1}
$$
\n
$$
d_{1} = \frac{2 \cdot a}{u + 1}
$$
\n
$$
d_{1} = \frac{2 \cdot a}{u + 1}
$$
\n
$$
d_{1} = \frac{2 \cdot a}{u + 1}
$$
\n
$$
d_{1} = 200 \text{ mm}
$$
\n
$$
d_{1} = 22.428 \text{ cm}
$$
\n
$$
\beta_{1} = 200 \text{ mm}
$$
\n
$$
d_{1} = 22.428 \text{ cm}
$$
\n
$$
\beta_{1} = 200 \text{ mm}
$$
\n
$$
d_{1} = 22.428 \text
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} \qquad \qquad \varepsilon_{\gamma} = 1,411
$$

$$
g_{\alpha} = 0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin \alpha_{wt} \qquad \qquad g_{\alpha} = 45,519 \text{ mm}
$$

coordinates of the basic points (A, AB, B, C, D, DE, E) on the line of action (see clause 10):

$$
g_{A} = 0 \text{ mm}
$$
\n
$$
g_{A} = \frac{g_{a} - \rho_{el}}{2}
$$
\n
$$
g_{B} = g_{a} - \rho_{el}
$$
\n
$$
g_{C} = \frac{d_{U1}}{2} \cdot \tan \alpha_{W} - \sqrt{\frac{g_{B1}^{2}}{4} - \frac{g_{U2}^{2}}{4}} + g_{a}
$$
\n
$$
g_{C} = 22.760 \text{ mm}
$$
\n
$$
g_{D} = p_{el}
$$
\n
$$
g_{D} = 32.867 \text{ mm}
$$
\n
$$
g_{D} = 33.893 \text{ mm}
$$
\n
$$
g_{D} = 45.519 \text{ mm}
$$
\n
$$
g_{A1} = 2 \cdot \sqrt{\frac{g_{D1}^{2}}{4} + \sqrt{\frac{g_{B1}^{2}}{4} - \frac{g_{D1}^{2}}{4}} - g_{a} + g_{A}\sqrt{\frac{g_{D1}^{2}}{4} - g_{a} + g_{A}\sqrt{\frac{g_{D1}^{2}}{4}} - g_{A1} + g_{A1} + g_{A2} + g_{A1} + g_{A2} + g_{A1} + g_{A2} + g_{A1} + g_{A2} + g_{A2} + g_{A1} + g_{A2} +
$$

$$
d_{E1} = 2 \cdot \sqrt{\frac{d_{b1}^{2}}{4} + \left(\sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} - g_{a} + g_{E}\right)^{2}}
$$
\n
$$
d_{R2} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{A}\right)^{2}}
$$
\n
$$
d_{R3} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{A}\right)^{2}}
$$
\n
$$
d_{R4} = 221,400 \text{ mm}
$$
\n
$$
d_{R5} = 22 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{B}\right)^{2}}
$$
\n
$$
d_{R4} = 214,394 \text{ mm}
$$
\n
$$
d_{R5} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{B}\right)^{2}}
$$
\n
$$
d_{R2} = 207,998 \text{ mm}
$$
\n
$$
d_{R3} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{C}\right)^{2}}
$$
\n
$$
d_{R4} = 207,998 \text{ mm}
$$
\n
$$
d_{R5} = 207,998 \text{ mm}
$$
\n
$$
d_{R6} = 207,998 \text{ mm}
$$
\n
$$
d_{R7} = 200,000 \text{ mm}
$$
\n
$$
d_{R8} = 214,394 \text{ mm}
$$
\n
$$
d_{R9} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{
$$

transverse radius of relative curvature:

$$
\rho_{t1,A} = \sqrt{\frac{d_{A1}^{2} - d_{b1}^{2}}{4}}
$$
\n
$$
\rho_{t1,AB} = \sqrt{\frac{d_{AB1}^{2} - d_{b1}^{2}}{4}}
$$
\n
$$
\rho_{t1,B} = \sqrt{\frac{d_{B1}^{2} - d_{b1}^{2}}{4}}
$$
\n
$$
\rho_{t1,B} = 22,015 \text{ mm}
$$
\n
$$
\rho_{t1,B} = 28,641 \text{ mm}
$$

$$
\rho_{t1,C} = \sqrt{\frac{{d_{C1}}^2 - {d_{b1}}^2}{4}}
$$
\n
$$
\rho_{t1,C} = 38,148 \text{ mm}
$$
\nCopyright International Organization for Standardization and

\nProofived by HE under license

\nFor *reproductions* of the *in* method, the *in* method

$$
ρ11, D = \sqrt{\frac{d_{D1}^2 - d_{D1}^2}{4}}
$$

\n
$$
ρ11, D = 47,655 mm
$$

\n
$$
ρ12, D = 47,655 mm
$$

\n
$$
ρ2A = 60,908 mm
$$

\n
$$
ρ
$$

$$
\rho_{t,DE} = \frac{\rho_{t1,DE} \cdot \rho_{t2,DE}}{\rho_{t1,DE} + \rho_{t2,DE}}
$$
\n
$$
\rho_{t,DE} = 15,663 \text{ mm}
$$

$$
\rho_{t,E} = \frac{\rho_{t1,E} \cdot \rho_{t2,E}}{\rho_{t1,E} + \rho_{t2,E}}
$$

normal radius of relative curvature:

$$
\rho_{n,A} = \frac{\rho_{t,A}}{\cos \beta_b}
$$
\n
$$
\rho_{n,AB} = \frac{\rho_{t,AB}}{\cos \beta_b}
$$
\n
$$
\rho_{n,B} = 15,663 \text{ mm}
$$
\n
$$
\rho_{n,B} = 17,890 \text{ mm}
$$
\n
$$
\rho_{n,C} = \frac{\rho_{t,C}}{\cos \beta_b}
$$
\n
$$
\rho_{n,C} = 19,074 \text{ mm}
$$
\n
$$
\rho_{n,D} = \frac{\rho_{t,D}}{\cos \beta_b}
$$
\n
$$
\rho_{n,D} = 17,890 \text{ mm}
$$
\n
$$
\rho_{n,D} = 15,663 \text{ mm}
$$

$$
\rho_{n,E} = \frac{\rho_{t,E}}{\cos \beta_b}
$$
 $\rho_{n,E} = 12,285 \text{ mm}$

B.2.2 Calculation of material data

- 1 2 $\frac{2}{2}$ 1 $\frac{1}{r} = 2 \cdot \left(\frac{1 - \nu_1^2}{5} + \frac{1 - \nu_2^2}{5} \right)^{-1}$ $\overline{}$ \overline{a} ⎠ ⎞ $\mathsf I$ $\mathsf I$ $E_r = 2 \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \right)^{-1}$ $E_r = 226374 \text{ N/mm}^2$
- $B_{\text{M1}} = \sqrt{\lambda_{\text{M1}} \cdot \rho_{\text{M1}} \cdot c_{\text{M1}}}$ *B*_{M1} = 12427,4 N/(ms^{0,5}K)

$$
B_{M2} = \sqrt{\lambda_{M2} \cdot \rho_{M2} \cdot c_{M2}}
$$
\n
$$
B_{M2} = 12427.4 \text{ N/(ms}^{0.5} \text{K)}
$$

B.2.3 Calculation of operating conditions

loading:

B.2.3 Calculation of operating conditions

\nloading:

\n
$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1000}
$$
\n
$$
P = 590 \text{ kW}
$$
\nCopyright International Organization for Standardization

\nProofvided by Hs under license to find the number of possible problems.

\nNot for Resale

\nNot for Resale

$$
F_{t} = 2000 \cdot \frac{T_{1}}{d_{1}}
$$
 $F_{t} = 19091 N$

$$
F_{\text{bt}} = 2000 \cdot \frac{T_1}{d_{\text{b1}}} \qquad F_{\text{bt}} = 20316 \text{ N}
$$

local load sharing factor:

(no tooth flank modification, spur gears, gear quality $\leq 7 \rightarrow$ see Figure 2)

$$
X_{A} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{A}}{g_{B}}
$$
 $X_{A} = 0.333$

$$
X_{AB} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{AB}}{g_B} \qquad X_{AB} = 0.5
$$

$$
X_B = 1.0
$$
 $X_B = 1.0$

$$
X_{\rm C} = 1.0 \qquad X_{\rm C} = 1.0
$$

$$
X_{\rm D} = 1.0 \t\t X_{\rm D} = 1.0
$$

$$
X_{\text{DE}} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{\alpha} - g_{\text{DE}}}{g_{\alpha} - g_{\text{D}}}
$$

$$
X_{\rm E} = \frac{1}{3} + \frac{1}{3} \cdot \frac{g_{\alpha} - g_{\rm E}}{g_{\alpha} - g_{\rm D}}
$$

$$
X_{\rm E} = 0.333
$$

elasticity factor:

$$
Z_{\rm E} = \sqrt{\frac{E_{\rm r}}{2 \cdot \pi}} \qquad Z_{\rm E} = 189,812 \, (\text{N/mm}^2)^{0.5}
$$

local Hertzian contact stress:

$$
p_{H,A,B} = Z_{E} \cdot \sqrt{\frac{F_{t} \cdot X_{A}}{b \cdot \rho_{n,A} \cdot \cos \alpha_{t} \cdot \cos \beta_{b}}}
$$
\n
$$
p_{H,A,B,B} = 963 \text{ N/mm}^{2}
$$
\n
$$
p_{H,A,B,B} = 963 \text{ N/mm}^{2}
$$
\n
$$
p_{H,A,B,B} = 963 \text{ N/mm}^{2}
$$
\n
$$
p_{H,A,B,B} = 1045 \text{ N/mm}^{2}
$$
\n
$$
p_{H,B,B} = 1045 \text{ N/mm}^{2}
$$
\n
$$
p_{H,B,B} = 1045 \text{ N/mm}^{2}
$$
\n
$$
p_{H,B,B} = 1383 \text{ N/mm}^{2}
$$
\n
$$
p_{H,C,B} = 1383 \text{ N/mm}^{2}
$$
\n
$$
p_{H,C,B} = 1383 \text{ N/mm}^{2}
$$
\n
$$
p_{H,C,B} = 1339 \text{ N/mm}^{2}
$$

ISO/TR 15144-1:2010(E)

velocity:

$$
v_{r1,A} = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{d_{w1}}{2000} \cdot \sin \alpha_{wt} \cdot \sqrt{\frac{d_{A1}^2 - d_{b1}^2}{d_{w1}^2 - d_{b1}^2}}
$$
\n
$$
v_{r1,A} = 4,834 \text{ m/s}
$$
\n
$$
v_{r1,A} = 4,834 \text{ m/s
$$

$$
v_{r1,E} = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{d_{w1}}{2000} \cdot \sin \alpha_{w} \cdot \sqrt{\frac{d_{E1}^2 - d_{w1}^2}{d_{w1}^2 - d_{w2}^2}}
$$
\n
$$
v_{r1,E} = 19,135 \text{ m/s}
$$
\n
$$
v_{r2A} = 2 \cdot \pi \cdot \frac{n_1}{60 \cdot u} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{w1} \cdot \sqrt{\frac{d_{A2}^2 - d_{B2}^2}{d_{w2}^2 - d_{B2}^2}}
$$
\n
$$
v_{r2A} = 19,135 \text{ m/s}
$$
\n
$$
v_{r2A} = 2 \cdot \pi \cdot \frac{n_1}{60 \cdot u} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{w1} \cdot \sqrt{\frac{d_{A2}^2 - d_{B2}^2}{d_{w2}^2 - d_{B2}^2}}
$$
\n
$$
v_{r2A} = 17,053 \text{ m/s}
$$
\n
$$
v_{r2A} = 2 \cdot \pi \cdot \frac{n_1}{60 \cdot u} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{w1} \cdot \sqrt{\frac{d_{B2}^2 - d_{B2}^2}{d_{w2}^2 - d_{B2}^2}}
$$
\n
$$
v_{r2B} = 2 \cdot \pi \cdot \frac{n_1}{60 \cdot u} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{w1} \cdot \sqrt{\frac{d_{B2}^2 - d_{B2}^2}{d_{w2}^2 - d_{B2}^2}}
$$
\n
$$
v_{r2B} = 14,971 \text{ m/s}
$$
\n
$$
v_{r2B} = 2 \cdot \pi \cdot \frac{n_1}{60 \cdot u} \cdot \frac{d_{w2}}{2000} \cdot \sin \alpha_{w1} \cdot \sqrt{\frac{d_{B2}^2 - d_{B2}^2}{d_{w2}^2 - d_{B2}^2}}
$$
\n
$$
v_{r2B} = 4,939 \text{ m/s}
$$
\n
$$
v_{r2B} = 2 \cdot \pi
$$

 $Ra = 0.5 \cdot (Ra_1 + Ra_2)$ *Ra* = 0,90 µm

B.2.4 Calculation of lubricant data

$$
A = \frac{\log[\log(\nu_{40} + 0.7)/\log(\nu_{100} + 0.7)]}{\log(313/373)}
$$

$$
B = \log[\log(\nu_{40} + 0.7)] - A \cdot \log(313)
$$

$$
B = 8,815
$$

 $log[log(v_{\text{foil}} + 0.7)] = A \cdot log(\theta_{\text{oil}} + 273) + B$ $v_{\text{boil}} = 24,825 \text{ mm}^2/\text{s}$

$$
\rho_{\text{boil}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(\theta_{\text{oil}} + 273) - 289}{\rho_{15}} \right]
$$
\n
$$
\rho_{\text{boil}} = 843.2 \text{ kg/m}^3
$$

$$
\eta_{\text{boil}} = 10^{-6} \cdot \nu_{\text{oil}} \cdot \rho_{\text{oil}} \qquad \eta_{\text{noil}} = 0.021 \text{ N} \cdot \text{s/m}^2
$$

$$
X_{L} = 1,0
$$
 for mineral oil (see Table 3)

 $log[log(v₃₈ + 0.7)] = A \cdot log(38 + 273) + B$ v_{38} = 236,242 mm²/s

$$
\rho_{38} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(38 + 273) - 289}{\rho_{15}} \right]
$$
\n
$$
\rho_{38} = 879.6 \text{ kg/m}^3
$$

$$
\eta_{38} = 10^{-6} \cdot \nu_{38} \cdot \rho_{38}
$$
\n
$$
\eta_{38} = 0,208 \text{ N} \cdot \text{s/m}^2
$$

$$
\alpha_{38} = 2,657 \cdot 10^{-8} \cdot \eta_{38}^{0,1348} \qquad \qquad \alpha_{38} = 2,15 \cdot 10^{-8} \text{ m}^2/\text{N}
$$

$$
X_{\rm S} = 1.2
$$
 for injection lubrication

B.2.5 Calculation of the material parameter

mean coefficient of friction:

$$
X_{\rm S} = 1,2
$$
 for injection lubrication
\nB.2.5 Calculation of the material parameter
\nmean coefficient of friction:
\n
$$
X_{\rm R} = 2,2 \cdot \left(\frac{Ra}{\rho_{\rm n,C}}\right)^{0.25}
$$
\n
$$
X_{\rm R} = 1,025
$$
\n
$$
X_{\rm R} = 1,025
$$
\nCorrostatic International Corrational

\nCorrolli International Corrational

\nCorrolli International

\nCorrolli International

\nNot for Resale

\nNot for Resale

\nNot for Resale

\nNot for Resale

$$
K_{\text{By}} = 1.0 \quad \text{for } \varepsilon_{\gamma} < 2
$$

$$
\mu_{m} = 0.045 \cdot \left(\frac{K_{A} \cdot K_{v} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot F_{bt} \cdot K_{By}}{b \cdot v_{\Sigma,C} \cdot \rho_{n,C}} \right)^{0,2} \cdot \left(10^{3} \cdot \eta_{\theta oil} \right)^{-0,05} \cdot X_{R} \cdot X_{L} \qquad \mu_{m} = 0.048
$$

bulk temperature:

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_{\alpha}\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \quad \text{for } \varepsilon_{\alpha} < 2 \qquad H_{\rm v} = 0,204
$$

 $\varepsilon_{\text{max}} = \varepsilon_1 = \varepsilon_2$

$$
X_{\text{Ca}} = 1.0
$$
 for no profile modification

$$
\theta_{\rm M} = \theta_{\rm oil} + 7400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\rm v}}{a \cdot b}\right)^{0.72} \cdot \frac{X_{\rm S}}{1.2 \cdot X_{\rm Ca}} \qquad \theta_{\rm M} = 153.6 \text{ °C}
$$

material parameter:

$$
log[log(v_{\theta M} + 0.7)] = A \cdot log(\theta_M + 273) + B
$$
\n
$$
v_{\theta M} = 5,824 \text{ mm}^2/\text{s}
$$

$$
\rho_{\text{BM}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(\theta_{\text{M}} + 273) - 289}{\rho_{15}} \right]
$$
\n
$$
\rho_{\text{BM}} = 798.7 \text{ kg/m}^3
$$

$$
\eta_{\theta M} = 10^{-6} \cdot \nu_{\theta M} \cdot \rho_{\theta M}
$$

$$
\alpha_{\theta M} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_M + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\theta M} = 1,183 \cdot 10^{-8} \text{ m}^2/\text{N}
$$
\n
$$
G_M = 10^6 \cdot \alpha_{\theta M} \cdot E_r
$$
\n
$$
G_M = 2678.6
$$

B.2.6 Calculation of the velocity parameter

r ˙ $\mu_{\mathsf{n},\mathsf{B}}$

$$
U_{A} = \eta_{\theta M} \cdot \frac{V_{\Sigma, A}}{2000 \cdot E_{r} \cdot \rho_{n, A}}
$$
\n
$$
U_{AB} = \eta_{\theta M} \cdot \frac{V_{\Sigma, AB}}{2000 \cdot E_{r} \cdot \rho_{n, AB}}
$$
\n
$$
U_{B} = \eta_{\theta M} \cdot \frac{V_{\Sigma, B}}{2000 \cdot E_{r} \cdot \rho_{n, AB}}
$$
\n
$$
U_{B} = 1,572 \cdot 10^{-11}
$$
\n
$$
U_{B} = 1,377 \cdot 10^{-11}
$$

$$
U_{\rm C} = \eta_{\rm \theta M} \cdot \frac{V_{\rm \Sigma,C}}{2000 \cdot E_{\rm r} \cdot \rho_{\rm n,C}}
$$
 $U_{\rm C} = 1,291 \cdot 10^{-11}$

44 © ISO 2010 – All rights reserved Copyright International Organization for Standardization
Provided by IHS under license with ISO No reproduction or networking permitted without license from IHS Not for Resale --
No reproduction or networking permitted wit

 $\eta_{\text{theta}} = 0,005 \text{ N} \cdot \text{s/m}^2$

$$
U_{\rm D} = \eta_{\rm \theta M} \cdot \frac{V_{\Sigma, \rm D}}{2000 \cdot E_{\rm r} \cdot \rho_{\rm n, D}} \qquad U_{\rm D} = 1,377 \cdot 10^{-11}
$$

$$
U_{\rm DE} = \eta_{\rm \theta M} \cdot \frac{V_{\Sigma \rm DE}}{2000 \cdot E_{\rm r} \cdot \rho_{\rm n,DE}}
$$

$$
U_{E} = \eta_{\text{BM}} \cdot \frac{V_{\Sigma,E}}{2000 \cdot E_{r} \cdot \rho_{n,E}}
$$
 $U_{E} = 2,005 \cdot 10^{-11}$

B.2.7 Calculation of the load parameter

2 r 2 Adyn, A 2 *E* $W_A = \frac{p_{dyn,A}^2 \cdot 2 \cdot \pi}{p_{A}^2 \cdot 2 \cdot \pi}$ *W_A* = 1,439·10⁻⁴

$$
W_{AB} = \frac{p_{dyn,AB}^2 \cdot 2 \cdot \pi}{E_r^2}
$$
 W_{AB} = 1,694.10⁻⁴

$$
W_{\rm B} = \frac{p_{\rm dyn,B}^2 \cdot 2 \cdot \pi}{E_{\rm r}^2}
$$
 $W_{\rm B} = 2,966 \cdot 10^{-4}$

$$
W_{\rm C} = \frac{p_{\rm dyn, C}^2 \cdot 2 \cdot \pi}{E_{\rm r}^2}
$$
 $W_{\rm C} = 2.781 \cdot 10^{-4}$

$$
W_{\rm D} = \frac{p_{\rm dyn, D}^2 \cdot 2 \cdot \pi}{E_{\rm r}^2}
$$
 $W_{\rm D} = 2,966 \cdot 10^{-4}$

$$
W_{\rm DE} = \frac{p_{\rm dyn,DE}^2 \cdot 2 \cdot \pi}{E_{\rm r}^2}
$$
 $W_{\rm DE} = 1,694 \cdot 10^{-4}$

$$
W_{\rm E} = \frac{p_{\rm dyn,E}^2 \cdot 2 \cdot \pi}{E_{\rm r}^2}
$$
 $W_{\rm E} = 1,439 \cdot 10^{-4}$

B.2.8 Calculation of the sliding parameter

local flash temperature:

$$
\theta_{\text{fl},A} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot p_{\text{dyn},A} \cdot |v_{\text{g},A}|}{B_{\text{M1}} \sqrt{v_{\text{r1},A}} + B_{\text{M2}} \sqrt{v_{\text{r2},A}}} \cdot \sqrt{8 \cdot \rho_{\text{n},A} \cdot \frac{p_{\text{dyn},A}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl},AB} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot p_{\text{dyn},AB} \cdot |v_{\text{g},AB}|}{B_{\text{M1}} \sqrt{v_{\text{r1},AB}} + B_{\text{M2}} \sqrt{v_{\text{r2},AB}}} \cdot \sqrt{8 \cdot \rho_{\text{n},AB} \cdot \frac{p_{\text{dyn},AB}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl},AB} = 154.1 \text{ °C}
$$

$$
\theta_{\text{fl,B}} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot \rho_{\text{dyn,B}} \cdot |v_{\text{g,B}}|}{B_{\text{M1}} \sqrt{v_{\text{r1,B}} + B_{\text{M2}} \sqrt{v_{\text{r2,B}}}} \cdot \sqrt{8 \cdot \rho_{\text{n,B}} \cdot \frac{\rho_{\text{dyn,B}}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl,C}} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot \rho_{\text{dyn,C}} \cdot |v_{\text{g,C}}|}{B_{\text{M1}} \sqrt{v_{\text{r1,C}} + B_{\text{M2}} \sqrt{v_{\text{r2,C}}}} \cdot \sqrt{8 \cdot \rho_{\text{n,C}} \cdot \frac{\rho_{\text{dyn,C}}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl,C}} = 0 \text{ °C}
$$
\n
$$
\theta_{\text{fl,D}} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot \rho_{\text{dyn,D}} \cdot |v_{\text{g,D}}|}{B_{\text{M1}} \sqrt{v_{\text{r1,D}} + B_{\text{M2}} \sqrt{v_{\text{r2,D}}}} \cdot \sqrt{8 \cdot \rho_{\text{n,D}} \cdot \frac{\rho_{\text{dyn,D}}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl,D}} = 145,4 \text{ °C}
$$
\n
$$
\theta_{\text{fl,D}} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot \rho_{\text{dyn,DE}} \cdot |v_{\text{g,DE}}|}{B_{\text{M1}} \sqrt{v_{\text{r1,DE}} + B_{\text{M2}} \sqrt{v_{\text{r2,DE}}}} \cdot \sqrt{8 \cdot \rho_{\text{n,DE}} \cdot \frac{\rho_{\text{dyn,DE}}}{1000 \cdot E_r}}
$$
\n
$$
\theta_{\text{fl,E}} = 154,1 \text{ °C}
$$
\n
$$
\theta_{\text{fl,E}} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot \rho_{\text{dyn,DE}} \cdot |v_{\text{g
$$

local contact temperature as sum of bulk and local flash temperature:

$$
\theta_{B,A} = \theta_M + \theta_{fl,A}
$$
\n
$$
\theta_{B,A} = 328.9 \text{ °C}
$$
\n
$$
\theta_{B,A} = 328.9 \text{ °C}
$$
\n
$$
\theta_{B,B} = \theta_M + \theta_{fl,B}
$$
\n
$$
\theta_{B,B} = 307.7 \text{ °C}
$$
\n
$$
\theta_{B,B} = 299.0 \text{ °C}
$$
\n
$$
\theta_{B,D} = \theta_M + \theta_{fl,D}
$$
\n
$$
\theta_{B,D} = \theta_M + \theta_{fl,D}
$$
\n
$$
\theta_{B,D} = 299.0 \text{ °C}
$$
\n
$$
\theta_{B,D} = 307.7 \text{ °C}
$$
\n
$$
\theta_{B,E} = 307.7 \text{ °C}
$$
\n
$$
\theta_{B,E} = 328.9 \text{ °C}
$$

local sliding parameter:

ISO/TR 15144-1:2010(E)

$$
ρEB,A = ρ15 [1-0.7 \t\t\t\t $\frac{(θBA + 273)-289}{ρ15}\n$ \n
$$
ρEB,A = 676.0 kg/m3
$$
\n
$$
ρEB,B = ρ15 [1-0.7 \t\t\t $\frac{(θBA + 273)-289}{ρ15}\n$ \n
$$
ρEB,B = 696.9 kg/m3
$$
\n
$$
ρEB,C = ρ15 [1-0.7 \t\t\t $\frac{(θAB + 273)-289}{ρ15}\n$ \n
$$
ρEB,DE = ρ15 [1-0.7 \t\t\t $\frac{(θAB + 273)-289}{ρ15}\n$ \n
$$
ρEB,DE = ρ15 [1-0.7 \t\t\t $\frac{(θAB + 273)-289}{ρ15}\n$ \n
$$
ρEB,DE = ρ15 [1-0.7 \t\t\t $\frac{(θAB + 273)-289}{ρ15}\n$ \n
$$
ρAB,DE = θ25 [1-0.7 \t\t\t $\frac{(θBE + 273)-289}{ρ15}\n$ \n
$$
ρAB = 696.9 kg/m3
$$
\n
$$
ρAB = 696.9 kg/m3
$$
\n
$$
ρABD = 696.9 kg/m3
$$
\n
$$
ρABD = 696.9 kg/m3
$$
\n
$$
ρABD = 696.9 kg/m3
$$
\n<math display="</math>
$$
$$
$$
$$
$$
$$
$$

 \widehat{A} ISO 2010, \widehat{A} and \widehat{A} is \widehat{A} is a structure of A ⁷ \widehat{A} and \widehat{A} is a structure in this reserved

$$
\alpha_{\text{B,D}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{\text{B,D}} + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\text{B,D}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{\text{B,D}} + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\text{B,D}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{\text{B,D}} + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\text{B,D}} = 5,223 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 5,223 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\alpha_{\text{B,D}} = 4,931 \cdot 10^{-9} \text{ m}^2/\text{N}
$$
\n
$$
\
$$

B.2.9 Calculation of the lubricant film thickness

$$
h_{\rm D} = 1600 \cdot \rho_{\rm n,D} \cdot G_{\rm M}^{0.6} \cdot U_{\rm D}^{0.7} \cdot W_{\rm D}^{-0.13} \cdot S_{\rm GF,D}^{0.22}
$$
\n
$$
h_{\rm D} = 0,136 \text{ }\mu\text{m}
$$
\n
$$
h_{\rm DE} = 1600 \cdot \rho_{\rm n,DE} \cdot G_{\rm M}^{0.6} \cdot U_{\rm DE}^{0.7} \cdot W_{\rm DE}^{-0.13} \cdot S_{\rm GF,DE}^{0.22}
$$
\n
$$
h_{\rm DE} = 0,137 \text{ }\mu\text{m}
$$
\n
$$
h_{\rm E} = 1600 \cdot \rho_{\rm n, E} \cdot G_{\rm M}^{0.6} \cdot U_{\rm E}^{0.7} \cdot W_{\rm E}^{-0.13} \cdot S_{\rm GF, E}^{0.22}
$$
\n
$$
h_{\rm E} = 0,122 \text{ }\mu\text{m}
$$

B.2.10 Calculation of the specific lubricant film thickness

B.3 Calculation of the permissible specific lubricant film thickness

Calculation of the permissible specific lubricant film thickness from the test result of the FZG-FVA micropitting test (Method B) with the reference test gears type C-GF:

The calculation of the reference value λ _{GFT} is done for point A, because the minimum specific lubricant film thickness for gear type C is always at point A! All data of the reference test gears type C-GF have the subscript "Ref".

NOTE The permissible specific lubricant film thickness λ_{GFP} can also be determined from Figure A.1.

B.3.1 Input data of the test gears type C-GF

ISO/TR 15144-1:2010(E)

 d_{b2Ref} = 101,487 mm

 α_{wtRef} = 22,439 $^{\circ}$

 $\varepsilon_{\gamma \text{Ref}}$ = 1,436

 $g_{\alpha \text{Ref}}$ = 19,079 mm

B.3.2 Calculation of gear geometry type C-GF

$$
d_{\text{IRef}} = z_{\text{IRef}} \cdot m_{\text{IRef}}
$$
\n
$$
d_{\text{IRef}} = 72,00 \text{ mm}
$$
\n
$$
d_{\text{2Ref}} = 72,00 \text{ mm}
$$
\n
$$
d_{\text{2Ref}} = 108,00 \text{ mm}
$$

$$
u_{\text{Ref}} = \frac{z_{\text{2Ref}}}{z_{\text{1Ref}}} \qquad \qquad u_{\text{Ref}} = 1.5
$$

$d_{b1Ref} = d_{1Ref} \cdot \cos \alpha_{tRef}$ for $d_{b1Ref} = 67,658 \text{ mm}$

$$
d_{b2Ref} = d_{2Ref} \cdot \cos \alpha_{tRef}
$$

$$
d_{\text{w1Ref}} = \frac{2 \cdot a_{\text{Ref}}}{u_{\text{Ref}} + 1}
$$

$$
d_{\text{w2Ref}} = 2 \cdot a_{\text{Ref}} - d_{\text{w1Ref}}
$$

$$
\alpha_{\text{wIREf}} = \arccos\left[\frac{(z_{\text{1Ref}} + z_{\text{2Ref}}) \cdot m_{\text{1Ref}} \cdot \cos \alpha_{\text{1Ref}}}{2 \cdot a_{\text{Ref}}}\right]
$$

$$
p_{\text{etRef}} = m_{\text{tRef}} \cdot \pi \cdot \cos \alpha_{\text{tRef}}
$$
\n
$$
p_{\text{etRef}} = 13,285 \text{ mm}
$$
\n
$$
\varepsilon_{\text{tRef}} = \frac{z_{\text{tRef}}}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a1Ref}}}{d_{\text{b1Ref}}}\right)^2 - 1} - 1 - \tan \alpha_{\text{wtRef}} \right]
$$
\n
$$
\varepsilon_{\text{tRef}} = 0,722
$$
\n
$$
\varepsilon_{\text{tRef}} = 0,722
$$
\n
$$
\varepsilon_{\text{tRef}} = 0,722
$$
\n
$$
\varepsilon_{\text{tRef}} = 0,714
$$

$$
\varepsilon_{\text{aRef}} = \frac{1}{p_{\text{etRef}}} \cdot \left(\sqrt{\frac{d_{\text{a1Ref}}^2}{4} - \frac{d_{\text{b1Ref}}^2}{4}} + \sqrt{\frac{d_{\text{a2Ref}}^2}{4} - \frac{d_{\text{b2Ref}}^2}{4}} - a_{\text{Ref}} \cdot \sin \alpha_{\text{wIRef}} \right) \qquad \varepsilon_{\text{aRef}} = 1,436
$$

 $\overline{}$

 $\overline{}$

$$
\varepsilon_{\text{BRef}} = \frac{b_{\text{Ref}} \cdot \sin \beta_{\text{Ref}}}{m_{\text{nRef}} \cdot \pi}
$$

$$
\varepsilon_{\text{YRef}} = \varepsilon_{\text{aRef}} + \varepsilon_{\text{BRef}}
$$

 $\mathsf I$

⎣

$$
g_{\alpha Ref} = 0.5 \cdot \left(\sqrt{{d_{a1\text{Ref}}}^2 - {d_{b1\text{Ref}}}^2} + \sqrt{{d_{a2\text{Ref}}}^2 - {d_{b2\text{Ref}}}^2} \right) - {a_{\text{Ref}}} \cdot \sin\alpha_{\text{wtRef}}
$$

$$
g_{\text{AREf}} = 0 \text{ mm}
$$
 $g_{\text{AREf}} = 0 \text{ mm}$

$$
g_{\text{aRef}} = 0.5 \cdot \left(\sqrt{d_{\text{a1Ref}}^2 - d_{\text{b1Ref}}^2} + \sqrt{d_{\text{a2Ref}}^2 - d_{\text{b2Ref}}^2}\right) - a_{\text{Ref}} \cdot \sin \alpha_{\text{wtRef}}
$$
\n
$$
g_{\text{aRef}} = 19.079 \text{ mm}
$$
\n
$$
g_{\text{ARef}} = 0 \text{ mm}
$$
\n
$$
g_{\text{ARef}} = 0 \text{ mm}
$$
\n
$$
g_{\text{ARef}} = 2 \cdot \sqrt{\frac{d_{\text{b1Ref}}^2}{4} + \left(\sqrt{\frac{d_{\text{a1Ref}}^2}{4} - \frac{d_{\text{b1Ref}}^2}{4} - g_{\text{aRef}} + g_{\text{ARef}}}\right)^2}{4}} = g_{\text{aRef}} + g_{\text{ARef}}
$$
\n
$$
g_{\text{A1Ref}} = 68,249 \text{ mm}
$$
\n
$$
g_{\text{A1Ref}} = 68,249 \text{ mm}
$$
\nConjugate lines with 180

\nNo typical the transition or network in terms to an initial without license from HIS

\nNo the probability of Risele

\nNot for Resale

$$
d_{A2Ref} = 2 \cdot \sqrt{\frac{d_{b2Ref}^2}{4} + \left(\sqrt{\frac{d_{a2Ref}^2}{4} - \frac{d_{b2Ref}^2}{4}} - g_{ARef}\right)^2}
$$
\n
$$
d_{A2Ref} = 118,350 \text{ mm}
$$
\n
$$
\rho_{t1,AREf} = \sqrt{\frac{d_{A1Ref}^2 - d_{b1Ref}^2}{4}}
$$
\n
$$
\rho_{t1,CREf} = \sqrt{\frac{d_{W1Ref}^2 - d_{b1Ref}^2}{4}}
$$
\n
$$
\rho_{t2,AREf} = \sqrt{\frac{d_{A2Ref}^2 - d_{b2Ref}^2}{4}}
$$
\n
$$
\rho_{t2,AREf} = 30,443 \text{ mm}
$$
\n
$$
\rho_{t2,CREf} = \sqrt{\frac{d_{W2Ref}^2 - d_{b2Ref}^2}{4}}
$$
\n
$$
\rho_{t2,CREf} = 30,443 \text{ mm}
$$
\n
$$
\rho_{t2,CREf} = \frac{\rho_{t1,AREf} \cdot \rho_{t2,AREf}}{\rho_{t1,AREf} + \rho_{t2,AREf}}
$$
\n
$$
\rho_{t,AREf} = \frac{\rho_{t1,AREf} \cdot \rho_{t2,AREf}}{\rho_{t1,AREf} + \rho_{t2,AREf}}
$$
\n
$$
\rho_{t,AREf} = \frac{\rho_{t1,AREf} \cdot \rho_{t2,AREf}}{\rho_{t1,CREf} + \rho_{t2,CREf}}
$$
\n
$$
\rho_{t,CREf} = \rho_{n,AREf} = 3,907 \text{ mm}
$$
\n
$$
\rho_{t,CREf} = \rho_{n,CREf} = 8,382 \text{ mm}
$$

B.3.3 Calculation of material data type C-GF

B.3.4 Calculation of operating conditions of FVA-FZG micropitting test

ISO/TR 15144-1:2010(E)

$$
v_{r1, \text{ARef}} = 2 \cdot \pi \cdot \frac{n_{\text{IRef}}}{60} \cdot \frac{d_{w1 \text{Ref}}}{2000} \cdot \sin \alpha_{w1 \text{Ref}} \cdot \sqrt{\frac{d_{\text{A1} \text{Ref}}^2 - d_{\text{b1} \text{Ref}}^2}{d_{w1 \text{Ref}}^2 - d_{\text{b1} \text{Ref}}^2}} \qquad v_{r1, \text{ARef}} = 1,056 \text{ m/s}
$$

$$
v_{r1, \text{CRef}} = 2 \cdot \pi \cdot \frac{n_{\text{IRef}}}{60} \cdot \frac{d_{\text{w1Ref}}}{2000} \cdot \sin \alpha_{\text{w1Ref}}
$$

$$
v_{r2, \text{ARef}} = 2 \cdot \pi \cdot \frac{n_{\text{Ref}}}{60 \cdot u_{\text{Ref}}} \cdot \frac{d_{\text{w2Ref}}}{2000} \cdot \sin \alpha_{\text{w1Ref}} \cdot \sqrt{\frac{d_{\text{A2Ref}}^2 - d_{\text{b2Ref}}^2}{d_{\text{w2Ref}}^2 - d_{\text{b2Ref}}^2}}
$$
\n
$$
v_{r2, \text{ARef}} = 4,782 \text{ m/s}
$$

$$
v_{r2, \text{CRef}} = 2 \cdot \pi \cdot \frac{n_{\text{Ref}}}{60 \cdot u_{\text{Ref}}} \cdot \frac{d_{\text{w2Ref}}}{2000} \cdot \sin \alpha_{\text{w1Ref}}
$$

$$
v_{g,AREf} = v_{r1,AREf} - v_{r2,AREf}
$$

\n
$$
v_{g,AREf} = -3,726 \text{ m/s}
$$

\n
$$
v_{\Sigma,AREf} = v_{r1,AREf} + v_{r2,AREf}
$$

\n
$$
v_{\Sigma,AREf} = 5,838 \text{ m/s}
$$

$$
v_{\Sigma, \text{CRef}} = v_{r1, \text{CRef}} + v_{r2, \text{CRef}}
$$
\n
$$
v_{\Sigma, \text{CRef}} = 6,583 \text{ m/s}
$$
\n
$$
Ra_{\text{Ref}} = 0.5 \cdot (Ra_{1\text{Ref}} + Ra_{2\text{Ref}})
$$
\n
$$
Ra_{\text{Ref}} = 0.50 \text{ µm}
$$

B.3.5 Calculation of lubricant data

$$
\theta_{\text{oilRef}} = \theta_{\text{oil}} = 90 \text{ °C}
$$
\n
$$
\eta_{\text{oolRef}} = \eta_{\text{ool}} = 0.021 \text{ N} \cdot \text{s/m}^2
$$
\n
$$
X_{\text{SRef}} = 1.2 \qquad \qquad \text{for injection lubrication}
$$

B.3.6 Calculation of the permissible specific lubricant film thickness

$$
X_{\text{RRef}} = 2.2 \cdot \left(\frac{Ra_{\text{Ref}}}{\rho_{\text{n,CRef}}}\right)^{0.25}
$$

$$
K_{\text{ByRef}} = 1.0 \quad \text{for } \varepsilon_{\gamma} < 2
$$

$$
\Sigma K_{\text{Ref}} = K_{\text{ARef}} \cdot K_{\text{vRef}} \cdot K_{\text{H}\alpha\text{Ref}} \cdot K_{\text{H}\beta\text{Ref}} \cdot K_{\text{B}\gamma\text{Ref}}
$$

$$
\mu_{\text{mRef}} = 0.045 \cdot \left(\frac{\sum K_{\text{Ref}} \cdot F_{\text{btRef}}}{b_{\text{Ref}} \cdot v_{\Sigma, \text{CRef}} \cdot \rho_{\text{n, CRef}}}\right)^{0.2} \cdot \left(10^3 \cdot \eta_{\text{boilRef}} \right)^{-0.05} \cdot X_{\text{RRef}} \cdot X_{\text{L}} \qquad \mu_{\text{mRef}} = 0.061
$$

$$
H_{\text{vRef}} = \left(\varepsilon_{1\text{Ref}}^2 + \varepsilon_{2\text{Ref}}^2 + 1 - \varepsilon_{1\text{er}}^2\right) \cdot \left(\frac{1}{z_{1\text{Ref}}} + \frac{1}{z_{2\text{Ref}}}\right) \cdot \frac{\pi}{\cos \beta_{1\text{Ref}}} \quad \text{for } \varepsilon_{\alpha} < 2 \qquad H_{\text{vRef}} = 0,195
$$

$$
X_{\text{CaRef}} = 1.0
$$
 for no profile modification

$$
\theta_{\text{MRef}} = \theta_{\text{oilRef}} + 7400 \cdot \left(\frac{P_{\text{Ref}} \cdot \mu_{\text{mRef}} \cdot H_{\text{vRef}}}{a_{\text{Ref}} \cdot b_{\text{Ref}}}\right)^{0.72} \cdot \frac{X_{\text{SRef}}}{1.2 \cdot X_{\text{CaRef}}} \qquad \theta_{\text{MRef}} = 115.3 \text{ °C}
$$

 $log[log(V_{6MRef} + 0,7)] = A \cdot log(\theta_{MRef} + 273) + B$

$$
\rho_{\text{6MRef}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{(\theta_{\text{MRef}} + 273) - 289}{\rho_{15}} \right]
$$
\n
$$
\rho_{\text{6MRef}} = 825.5 \text{ kg/m}^3
$$

 $\eta_{\text{6MRef}} = 10^{-6} \cdot V_{\text{6MRef}} \cdot \rho_{\text{6MRef}}$ + $\eta_{\text{6MRef}} = 0.010 \text{ N} \cdot \text{s/m}^2$

$$
\alpha_{\text{6MRef}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{\text{MRef}} + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\text{6MRef}} = 1,440 \cdot 10^{-8} \text{ m}^2
$$

$$
G_{\text{MRef}} = 10^6 \cdot \alpha_{\text{6MRef}} \cdot E_{\text{rRef}}
$$

$$
U_{\text{ARef}} = \eta_{\text{6MRef}} \cdot \frac{V_{\Sigma, \text{ARef}}}{2000 \cdot E_{\text{rRef}} \cdot \rho_{\text{n}, \text{ARef}}}
$$
\n
$$
U_{\text{ARef}} = 3,398 \cdot 10^{-11}
$$

$$
W_{\text{AREf}} = \frac{p_{\text{dyn,ARE}}^2 \cdot 2 \cdot \pi}{E_{\text{rRef}}^2} \qquad \qquad W_{\text{AREf}} = 1.738 \cdot 10^{-4}
$$

$$
\theta_{fl,ARef}=\frac{\sqrt{\pi}}{2}\cdot\frac{10^6\cdot\mu_{mRef}\cdot\rho_{dyn,ARef}\cdot\left|v_{g,ARef}\right|}{\textit{B}_{M1Ref}\sqrt{v_{r1,ARef}}+\textit{B}_{M2Ref}\sqrt{v_{r2,ARef}}}\cdot\sqrt{8\cdot\rho_{n,ARef}\cdot\frac{\textit{p}_{dyn,ARef}}{1000\cdot\textit{E}_{rRef}}}\qquad\qquad\theta_{fl,ARef}=77.3\text{ }^{\circ}\text{C}
$$

 $\theta_{\text{B,AREf}} = \theta_{\text{MRef}} + \theta_{\text{fl,AREf}}$

$log[log(*v*_{0B,AREf} + 0,7)] = A \cdot log(*θ*_{B,AREf} + 273) + B$

$$
\rho_{\theta B, \text{AREf}} = \rho_{15} \cdot \left[1\!-\!0.7 \cdot \frac{\left(\theta_{B, \text{AREf}} + 273\right)\!-\!289}{\rho_{15}}\right]
$$

 $\eta_{\theta B, ARef} = 10^{-6} \cdot V_{\theta B, ARef} \cdot \rho_{\theta B, ARef}$ ($\rho_{\theta B, ARef} = 0,003 \text{ N} \cdot \text{s/m}^2$)

$$
\alpha_{\theta B, \text{AREf}} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{B, \text{AREf}} + 273} - \frac{1}{311} \right) \right]
$$
\n
$$
\alpha_{\theta B, \text{AREf}} = 9,655 \cdot 10^{-9} \text{ m}^2/\text{N}
$$

$$
S_{GF,AREf} = \frac{\alpha_{\theta B,AREf} \cdot \eta_{\theta B,AREf}}{\alpha_{\theta MRef} \cdot \eta_{\theta MRef}}
$$

\n
$$
h_{AREf} = 1600 \cdot \rho_{n,AREf} \cdot G_{MRef}^{0.6} \cdot U_{AREf}^{0.7} \cdot W_{AREf}^{-0.13} \cdot S_{GF,AREf}^{0.22}
$$

\n
$$
\lambda_{GFT} = \lambda_{GFARef} = \frac{h_{AREf}}{Ra_{Ref}}
$$

\n
$$
\lambda_{GFP} = 1, 4 \cdot W_W \cdot \lambda_{GFT}
$$

\n
$$
\lambda_{GFP} = 1, 4 \cdot W_W \cdot \lambda_{GFT}
$$

\n
$$
\lambda_{GFP} = 0, 219
$$

\n
$$
\lambda_{GFP} = 0, 210 - \lambda_{GFP}
$$

\n
$$
\lambda_{GFP} = 0, 210 - \lambda_{GFP}
$$

 v_{6MRef} = 12,473 mm²/s

$$
\eta_{\text{~0MRef}} = 0.010 \text{ N} \cdot \text{s/m}^2
$$

$$
\alpha_{\text{6MRef}} = 1,440.10^{-8} \text{ m}^2/\text{N}
$$

 $G_{MRef} = 3258,7$

$$
J_{\text{AREf}} = 3,398.10^{-1}
$$

$v_{\theta B, ARef}$ = 3,335 mm²/s

 $\rho_{\rm \theta B, ARef}$ = 771,4 kg/m³

B.4 Calculation of the micropitting safety factor

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \qquad S_{\lambda} = 0.62
$$

Bibliography

- [1] AGMA 925-A03, Effect of Lubrication on Gear Surface Distress, 2003.
- [2] BGA-DU P602, Gear Micropitting Procedure. Test Procedure for the Evaluation of Micropitting Performance of Spur and Helical Gears. 2008.
- [3] Buzdygon, K.J., Cardis, A.B., A Short Procedure to Evaluate Micropitting Using the New AGMA Designed Gears. AGMA Fall Technical Meeting, 2004.
- [4] Det Norske Veritas, Classif. Note 41.2, Calculation of gear rating for marine transmissions. 1993.
- [5] Dowson, D.; Higginson, G.R., Elastohydrodynamic Lubrication. Pergamon Press, Oxford, 1966.
- [6] Elstorpff, M.-G., Einflüsse auf die Grübchentragfähigkeit einsatzgehärteter Zahnräder bis in das höchste Zeitfestigkeitsgebiet. Dissertation Technische Universität München, 1993.
- [7] FVA-Information Sheet 54/7, Test procedure for the investigation of the micropitting capacity of gear lubricants. 1993.
- [8] ISO 10825:1995, *Gears — Wear and damage to gear teeth — Terminology.*
- [9] McGrew, J.M., et al., Elastohydrodynamic Lubrication-Preliminary Design Manual. Tech. Rep. AFAOL Tr-70-27, WP AFB, Ohio (USA), November 1970.
- [10] Oster, P., Beanspruchung der Zahnflanken unter Bedingungen der Elastohydrodynamik. Dissertation Technische Universität München, 1982.
- [11] Schrade, U., Einfluss von Verzahnungsgeometrie und Betriebsbedingungen auf die Graufleckentragfähigkeit von Zahnradgetrieben. Dissertation Technische Universität München, 2000.
- [12] Theißen, J., Eignungsnachweise von Schmierölen für Industriegetriebe. 11th International Colloquium, 13. - 15.1.1998, Technische Akademie Esslingen, 1998.
- [13] Theyse, F.H., *Die Blitztemperaturmethode nach Blok und ihre praktische Anwendung bei Zahnrädern*. Schmiertechnik 1, S. pp. 22-29, 1967.

ISO/TR 15144-1:2010(E)

ICS 21.200 Price based on 55 pages