INTERNATIONAL STANDARD ISO 14975 First edition 2000-12-01 # **Surface chemical analysis — Information formats** Analyse chimique des surfaces — Protocoles de l'information Reference number ISO 14975:2000(E) #### **PDF** disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2000 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland | Cont | ents | Page | |---------|---------------------------------------------------------|------| | Forewo | ord | iv | | Introdu | uction | v | | 1 | Scope | 1 | | 2 | Normative reference | | | 3 | Terms and definitions | | | 4 | Symbols and abbreviated terms | 1 | | 5 | Description of information formats | 2 | | | A (informative) Examples of specific entries in formats | | | Annex | B (informative) Examples of formatted data | 10 | | Bibliog | graphy | 17 | ISO 14975:2000(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 14975 was prepared by Technical Committee ISO/TC 201, *Surface chemical analysis*, Subcommittee SC 3, *Data management and treatment*. Annexes A and B of this International Standard are for information only. #### Introduction ISO 14976 provides a digital data transfer format for communicating surface chemical analysis data. Since the importance of databases is increasing in many scientific fields, storage and manipulation of spectral data in databases have become necessary. The structure of ISO 14976 is suitable for communication, but database manipulation is quite different from data communication. Information additional to that contained in ISO 14976 is necessary to handle the data in the databases, so this International Standard proposes three formats which define information packages for (1) specimen information, (2) calibration information and (3) data processing information, which are important to manipulate spectral data in databases. The future compatibility of the format is essential. This format is designed to work with ISO 14976 so that software designed to read the latter will still function correctly with these information packages added. This International Standard, therefore, is supplementary to and compatible with ISO 14976. The motivation behind the choices made in defining the textual form of the data files described in this International Standard are important. To make it easy for programmers to implement the format reliably in new software, aspects of the Microsoft Windows™ ".INI" file structure are followed. Most modern computers have facilities to read and write this format from a wide range of computer languages via the Windows Application Programming Interface™. ### Surface chemical analysis — Information formats #### 1 Scope This International Standard specifies a format to supplement ISO 14976 to transfer data for the creation, expansion and revision of a surface chemical analysis spectral database. The format is applied to Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) spectral data. #### 2 Normative reference The following normative document contains provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 14976, Surface chemical analysis — Data transfer format. #### 3 Terms and definitions For the purposes of this International Standard, the following terms and definitions apply. #### 3.1 #### spectral database set of retrievable spectral data #### 3.2 #### information information about specimens and/or the procedures of analyser calibration and/or data processing procedures and/or the information necessary to create spectral databases #### 3.3 #### package set of text lines which describe information on spectral data #### 4 Symbols and abbreviated terms CAS Chemical Abstracts Service DTF data transfer format (as specified in ISO 14976) IUPAC International Union of Pure and Applied Chemistry N/A not applicable #### 5 Description of information formats #### 5.1 General Information is inserted into the comment lines of the DTF or attached to the DTF as packages. As a result, the existing DTF could be used, without alteration, as a carrier for the information packages; these packages occupy the experiment-comment line or the block-comment lines in the DTF, or build blocks outside the DTF. With this structure, the reading program, which utilizes information packages, can look for the format identifiers in either the experiment-comment lines, where they apply to all blocks, or in the block-comment lines, where they apply to just one block, or outside the DTF. Existing reading programs would interpret these packages as comments intended for human readers and ignore them. In this International Standard, the information packages for "specimen information format", "calibration information format", and "data processing format" are described. It is a modular structure so that compatibility with software previously written is always maintained. #### 5.2 Additional rules and definitions text line: up to 80 characters, followed by carriage return **character:** one alternative from the following set comprising the character SPACE and the 7-bit ASCII character set: where the vertical bar separates alternatives, given between quotation marks. carriage return: 7-bit ASCII character CARRIAGE RETURN followed by 7-bit ASCII character LINE FEED multiple text lines: a set of text lines which identify one item The decimal sign is given as a point in the format items for computer entry and in examples of verbatim computer entries although, in conformance with the ISO/IEC Directives, Part 3, the decimal sign is given as a comma in the rest of the text. #### 5.3 The formats #### 5.3.1 Structures #### 5.3.1.1 Contents of the specimen information package The specimen information package consists of the following items shown in bold, on contiguous lines of the text file. Bold items are defined in 5.3.2. All items shall be present and in the order given. specimen information format identifier host material **IUPAC** chemical name chemical abstracts registry number host material composition bulk purity known impurities structure form of product supplier lot number homogeneity crystallinity material family special material classes specimen mounting ex situ preparation in situ preparation charge control conditions specimen temperature comment on specimen information end of specimen information format identifier #### 5.3.1.2 Contents of calibration information package The calibration information package consists of the following items shown in bold, on contiguous lines of the text file. Bold items are defined in 5.3.2. All items shall be present and in the order given. calibration information format identifier energy scale calibration intensity scale calibration resolution calibration end of calibration information format identifier #### 5.3.1.3 Contents of data processing information package The data processing information package consists of the following items shown in bold, on contiguous lines of the text file. Bold items are defined in 5.3.2. All items shall be present and in the order given. data processing information format identifier data-handling procedure end of data processing information format identifier #### 5.3.2 Definition of the items in the formats #### 5.3.2.1 Specimen information format Items in bold not defined here are defined in 5.2. Texts in italic characters enclosed by quotation marks are used to code the format, although they do not appear in italics in the formatted data. IUPAC nomenclature and CAS registry number are referred to to code the format. specimen information format identifier is the text line: "[ISO_Specimen_Information_Format_1998_October_15]" host material is a text line. This text line starts with "host_material=", followed by a generic description of the specimen. For layered structures, the host material is the "bulk" substance near the surface. **IUPAC** chemical name is a text line. This text line starts with "*IUPAC_chemical_name*=", followed by the IUPAC chemical name of the host material or, if there is no specification, followed by "none", "unknown" or "N/A". **chemical abstracts registry number** is a **text line**. This text line starts with "chemical_abstracts_registry_number=", followed by the CAS registry number of the host material or, if there is no specification, followed by "none", "unknown" or "N/A". **host material composition** is a **text line**. This text line starts with "host_material_composition=", followed by the list of the principal elements present or the chemical formula. When the principal elements' names are used, the composition is given by a real number followed by "mass%" or "atomic%". If the composition cannot be specified, use "-" instead of a real number. **bulk purity** is a **text line**. This text line starts with "bulk_purity=", followed by the purity of the material and guarantor (if possible) or, if there is no specification, followed by "unknown" or "N/A". The purity is given by a real number, and the units acceptable are mass% and atomic%. The units shall be given. An expression like "4N" is not acceptable. **known impurities** is a **text line**. This text line starts with "known_impurities=", followed by the impurity name(s), concentration(s) and guarantor (if possible) or, if there is no specification, followed by "none", "unknown" or "N/A". The units acceptable are as follows: mass%, atomic%, ppm, ppb, atoms/cm3, and atoms/cm2. The units shall be given. **structure** is a **text line**. This text line starts with "*structure*=", followed by information such as a description of the crystal lattice and orientation, e.g. hexagonal close-packed, and/or comments such as fracture surface at grain boundary, etc., or, if there is no specification, followed by "*unknown*" or "*N/A*". **form of product** is a **text line**. This text line starts with "form_of_product=", followed by the form of the product that the specimen is used for or, if there is no specification, followed by "unknown" or "N/A". **supplier** is a **text line**. This text line starts with "supplier=", followed by the name of the manufacturer and/or supplier of the host material or by a reference to how the host was made or, if there is no specification, followed by "unknown" or "N/A". **lot number** is a **text line**. This text line starts with "*lot_number*=", followed by the code that identifies the production run, etc., or, if there is no specification, followed by "*unknown*" or "*N/A*". **homogeneity** is a **text line**. This text line starts with "homogeneity=", followed by "homogeneous" or "inhomogeneous" or "unknown" or "N/A" or another description of the homogeneity of the specimen if none of these is appropriate. This may be followed by a comment, provided the comment is preceded by ";". **crystallinity** is a **text line**. This text line starts with "*crystallinity*=", followed by "*single*" (single crystal, together with Miller indices of the surface connected by "_") or "*poly*" (polycrystalline) or "*amorphous*" or "*unknown*" or "*N/A*" or another description of the crystallinity of the specimen if none of these is appropriate. This may be followed by a comment, provided the comment is preceded by ";". material family is a text line. This text line starts with "material_family=", followed by "metal" or "inorganic" (inorganic compound) or "organic" (organic compound) or "polymer" or "semi" (semiconductor) or "bio" (biological material) or "composite" or "super_conductive" (super-conductive material) or another description of the crystallinity of the specimen if none of these is appropriate. This may be followed by a comment, provided the comment is preceded by ";". **special material classes** is a **text line**. This text line starts with "special_material_classes=", followed by "rod" (rod or ingot) or "sheet" [sheet or foil (without substrate)] or "film_single" [single-layer thin film or coating (on substrate)] or "film_multi" [multi-layered thin film or multi-layered coating (on substrate)] or "sinter" (sintered material) or "wafer" or "powder" or "fibre" or another description of the special material class of the specimen if none of these is appropriate. This may be followed by a comment, provided the comment is preceded by ";". **specimen mounting** is a **text line**. This line starts with "specimen_mounting=", followed by "mechanical" (mechanically mounted using a screw, spring, etc.) or "mechanically_under_grid" (mechanically pressed to a grid by a spring) or "conductive_adhesive" (fixed by conductive adhesive material) or "nonconductive_adhesive" (fixed by non-conducting adhesive material) or "powder_compact_In" (powder compact in indium foil, indium pressure pad) or "powder_put_into" [powder put into a conductive material (for example, a hole in a copper block)] or another description of the specimen mounting if none of these is appropriate. This may be followed by a comment, provided the comment is preceded by ",". **ex situ preparation** is a **text line**. This text line starts with "ex_situ_preparation=", followed by "none" or "polish" or "cleavage" or "ion" (cut by ion beam) or "powder_compact_steel_pad" (powder compacted using steel pressure pad) or "acetone" (degreased by acetone) or another description of ex situ preparation of the specimen if none of these is appropriate. If ex situ preparation is carried out by a series of the above procedures, **multiple text lines** are used, and the label for each text line is numbered, i.e. "ex_situ_preparation_1=", "ex_situ_preparation_2=", etc. The number indicates the order of the ex situ preparation procedures. If different kinds of ex situ preparation are carried out simultaneously, the ex situ preparation procedures are combined with "+" following the single label "ex_situ_preparation=". The text line may be followed by a comment, provided the comment is preceded by ",". in situ preparation is a text line. This text line starts with "in_situ_preparation", followed by "none" or "ion" (ion sputtering, together with ion gun voltage, ion gun current and ion species connected by "_") or "cleavage" or "heating" or "scratch" or another description of the in situ preparation of the specimen if none of these is appropriate. If in situ preparation is carried out by a series of the above procedures, multiple text lines are used, and the label for each text line is numbered, i.e. "in_situ_preparation_1=", "in_situ_preparation_2=", etc. The number indicates the order of the in situ preparation procedures. If different kinds of in situ preparation are carried out simultaneously, the in situ preparation procedures are combined with "+" following the single label "in_situ_preparation=". The text line may be followed by a comment, provided the comment is preceded by ";". charge control condition is a text line. This text line starts with "charge control condition=", followed by "none" or "flood" (flood gun, together with flood gun voltage and flood gun current connected by "") or "screen" (cover with mesh, metal foil, etc.) or another description of the charge control condition of the specimen if none of these is appropriate. If charge control procedures are carried out by a series of the above operations, multiple text lines are used, and the label for each text line is numbered, i.e. "charge_control_condition_1=", "charge_control_condition_2=", etc. The number indicates the order of the charge control procedures. If different kinds of charge control procedure are carried out simultaneously, each charge control condition is combined with "+" following the single label "charge_control_condition=". The text line may be followed by a comment, provided the comment is preceded by ";". specimen temperature is a text line. This text line starts with "specimen temperature=", followed by the ambient temperature or heating temperature or, if there is no specification, followed by "unknown". The temperature is given in kelvins and expressed by a real number followed by "K". The text line may be followed by a comment, provided the comment is preceded by ";". comment on specimen information is a text line. This text line starts with "comment=", followed by the comment. If multiple text lines are necessary, each text line starts with a numbered label, i.e. "comment 1=", "comment 2=", etc. If there is no comment, it is not necessary to attach any word after "comment=". end of specimen information format identifier is the text line: "[end of specimen information format]" #### 5.3.2.2 **Calibration information format** calibration information format identifier is the text line: ``` for AES "[ISO AES Calibration Information Format 1998 October 15]" for XPS "[ISO XPS Calibration Information Format 1998 October 15]" ``` energy scale calibration is a text line. This text line starts with "energy_scale_calibration_feature_label=", followed by the technique, the element name and the transition used for the calibration. The technique and element name are connected with "_". This text line is followed by the text line which starts with "energy_scale_calibration_feature_measured_energy=", followed by the energy scale label and measured peak value. The energy scale label and measured peak value are connected with "_". If calibration is done by using multiple peaks, each technique and element name are indicated with the numbered label "energy_scale_calibration_feature_label_1=" and energy scale label and measured peak value are indicated with the numbered label "energy_scale_calibration_feature_measured_energy_1=". This combination is followed by "energy_scale_calibration_feature_label_2=" and "energy_scale_calibration_feature_measured_energy_2=", and so on. When the charge control condition is carried out, indicate the referencing element name with the transition and referencing peak value following the text line label "energy scale calibration charge compensation=". The referencing element name and peak value are connected with "_". When a flood gun is used, enter "flood" instead of the referencing element name. When a spectrum is calibrated using a defined procedure, the text line starts with "energy_scale_calibration=", followed by the relevant standard document reference (source, number and year) and the tolerance in eV. The document source and number are joined with the year which is, in turn, joined with the tolerance by "_". The text line may be followed by a comment, provided the comment is preceded by ";". When a spectrum is not calibrated, the text line is "energy_scale_calibration=uncalibrated". **intensity scale calibration** is a **text line**. This text line starts with the label "intensity_scale_calibration=", followed by the intensity scale calibration procedure. It is acceptable to indicate only the name(s) of journal(s) or document(s). When **multiple text lines** are necessary to describe the procedure, use the numbered labels "intensity scale calibration 1=", "intensity scale calibration 2=", etc. When a spectrum is calibrated using a defined procedure, the text line starts with "intensity_scale_calibration=", followed by the relevant standard document reference (source, number and year) and textual comment, if appropriate. The document source and number are joined with the year by "_", and the textual comment is preceded by ",". When a spectrum is not calibrated, the text line is "intensity_scale_calibration=uncalibrated". **resolution calibration** is a **text line**. This text line starts with "resolution_calibration=", followed by the resolution scale calibration procedure. When **multiple text lines** are necessary to describe the procedure, use the numbered labels "resolution_calibration_1=", "resolution_calibration_2=", etc. When a spectrum is calibrated using a defined procedure, the text line starts with "resolution_calibration=", followed by the relevant standard document reference (source, number and year) and the energy resolution. The document source and number are joined with the year which is, in turn, joined with the energy resolution by "_". The text line may be followed by a comment, provided the comment is preceded by ";". When a spectrum is not calibrated, the text line is "resolution calibration=uncalibrated". #### end of calibration information format identifier is the text line: "[end_of_calibration_information_format]" #### 5.3.2.3 Data processing information format Items in bold not defined here are defined in 5.2. Text in italic characters enclosed by quotation marks is used to code the format. #### data processing information format identifier is the text line: for AES "[ISO_AES_Data_Processing_Information_Format_1998_October_15]" for XPS "[ISO_XPS_Data_Processing_Information_Format_1998_October_15]" data processing procedure is a text line. This text line starts with "data_processing_procedure=", followed by the specification of the data processing procedure. When different data processing procedures are carried out sequentially, each data processing procedure is indicated in one text line with the numbered labels "data_processing_procedure_1=", "data_processing_procedure_2=", etc. The number indicates the order of the data processing procedures. When a spectrum is not processed, the text line is "data_processing_procedure=unprocessed". #### end of data processing information format identifier is the text line: "[end_of_data_processing_information_format]" ### Annex A (informative) ### **Examples of specific entries in formats** #### A.1 Host material Examples of a generic description of the specimen are stainless steel, gold copper alloy, 6061 Al, polyamide, nylon, alumina and gallium arsenide. For a layered strucuture, for instance, XPS of an ultra-thin metal film on a thick SiO₂ layer on a Si substrate would be "silica" because the XPS would not probe the Si. #### A.2 Host material composition When the chemical formula of a host material is known, the expression could be Li3PO4, SiO2 or W(CO)6. When the composition is expressed as an atomic concentration or a mass concentration, the description could be Au50Cu50atomic% or Fe74Cr18Ni8mass%, respectively. If the composition cannot be specified, the expression could be of the form Li-P-O-. #### A.3 Bulk purity An expression could be 99.99mass% checked by NISSAN ARC LTD. #### A.4 Known impurities An expression could be N_0.01mass%, O_0.02mass% checked by NISSAN ARC LTD., or S_4E17atoms/cm3. #### A.5 Forms of product Examples of forms of the product that the specimen is used for are MOSFET, reagent, magnetic disk, single-crystal wafer, stub from corroded fender, and lubricant film on the hard disk. #### A.6 Energy scale calibration When the XPS energy scale calibration is carried out using Cu, Ag and Au, then the expression could be as follows: ``` energy_scale_calibration_feature_label_1=XPS_Cu2p3/2 energy_scale_calibration_feature_measured_energy_1=BE_932.66eV energy_scale_calibration_feature_label_2=XPS_Ag3d5/2 energy_scale_calibration_feature_measured_energy_2=BE_368.27eV energy_scale_calibration_feature_label_3=XPS_Au4f7/2 energy_scale_calibration_feature_measured_energy_3=BE_84.00eV ``` If energy calibration is carried out by the charge compensation procedure by referencing C1s peak value, the expression could be as follows: ``` energy_scale_calibration_charge_compensation=C1s_285eV ``` In the case of AES, examples are as follows: ``` energy_scale_calibration_feature_label_1=AES_CuMVV energy_scale_calibration_feature_measured_energy_1=KE_61.16eV energy_scale_calibration_feature_label_2=AES_AuNVV energy_scale_calibration_feature_measured_energy_2=KE_72.21eV energy_scale_calibration_feature_label_3=AES_CuLVV energy_scale_calibration_feature_measured_energy_3=KE_918.62eV ``` The peak values for the energy scale calibration for XPS and AES are listed in references [9] and [10] in the bibliography. When a spectrum is calibrated using a defined procedure, the expression could be as follows: ``` energy_scale_calibration_procedure=ISO9999_1998_0.25eV ``` #### A.7 Intensity scale calibration Intensity scale calibration procedures are reported in references [11], [12] and [13], and in NPL calibration procedure NPL A1 for AES and NPL calibration procedure NPL X1 for XPS. When a spectrum is calibrated using a defined procedure, the expression could be as follows: intensity_scale_calibration_procedure=ISO9999_1998;attach Cu spectrum #### A.8 Resolution calibration It is recommended that simple expressions are used. "FWHM of $Ag3d5/2_0.97eV$ " means that the energy resolution of the electron energy analyser is estimated by the full width at half maximum of the silver peak $Ag3d_{5/2}$, which equals 0.97eV." When a spectrum is calibrated using a defined procedure, the expression could be as follows: resolution_calibration_procedure=ISO9999_1998_0.5eV #### A.9 Data processing calibration It is acceptable to use abbreviations like "S-G" instead of "Savitzky-Golay". or "Tougaard" instead of "Tougaard background subtraction". One processing procedure is written in one text line. # **Annex B** (informative) ### **Examples of formatted data** # B.1 Example 1: Formats for describing a processed and calibrated X-ray photoelectron spectrum from a supermarket bag ``` [ISO_Specimen_Information_Format_1998_October_15] host_material=polyethylene IUPAC_chemical_name=polyethylene chemical_abstracts_registry_number=9002-88-4 host_material_composition=C2H4 bulk_purity=99.5mass% checked by NISSAN ARC LTD. known_impurities=O_0.3mass%, N_0.1mass% checked by NISSAN ARC LTD. structure=none form_of_product=supermarket bag supplier=Mitsubishi Chemical Co. lot number=961017PE homogeneity=homogeneous crystallinity=amorphous material_family=polymer special_material_classes=sheet specimen_mounting=mechanically_under_grid ex_situ_preparation=degreased by n-hexane in_situ_preparation=none charge_control_conditions=flood+screen specimen_temperature=298K comment=sample is linear low density polyethylene sheet [end_of_specimen_information_format] ``` [ISO_XPS_Calibration_Information_Format_1998_October_15] ``` energy_scale_calibration_feature_label_1=XPS_Cu2p3/2 energy_scale_calibration_feature_measured_energy_1=BE_932.7eV energy_scale_calibration_feature_label_2=XPS_Au4f7/2 energy_scale_calibration_feature_measured_energy_2=BE_84.0eV energy_scale_calibration_charge_compensation=flood_6eV intensity_scale_calibration=NPL_X1 resolution_calibration=FWHM of Ag3d5/2_0.97eV [end_of_calibration_information_format] [ISO_XPS_Data_Processing_Information_Format_1998_October_15] data_processing_procedure_1=smoothing by 5 points Savitzky-Golay data_processing_procedure_2=Shirley background subtraction [end_of_data_processing_information_format] ``` # B.2 Example 2: Formats for describing a processed and calibrated X-ray photoelectron spectrum from a multi-layered semiconductor film ``` [ISO_Specimen_Information_Format_1998_October_15] host_material=indium gallium arsenide IUPAC_chemical_name=N/A chemical_abstracts_registry_number=none host_material_composition=In0.52Ga0.48As bulk_purity=99.999mass% checked by NISSAN ARC LTD. known_impurities=S_1.8E17 atoms/cm3 checked by NISSAN ARC LTD. structure=cubic; a=0.5868nm form_of_product=laser diode supplier=Japan Energy lot_number=#2845 homogeneity=homogeneous crystallinity=single_(100) material_family=semi special_material_classes=film_multi; total_thickness = 50nm ``` #### ISO 14975:2000(E) ``` specimen_mounting=mechanical; with 4 screws ex_situ_preparation=ethanol in_situ_preparation=ion_2kV_10uA_Ar charge_control_conditions=none specimen_temperature=298K comment=atomically flat interface [end_of_specimen_information_format] [ISO_XPS_Calibration_Information_Format_1998_October_15] energy_scale_calibration_feature_label_1=XPS_Au4f7/2 energy_scale_calibration_feature_measured_energy_1=BE_84.00eV energy_scale_calibration_feature_label_2=XPS_Cu2p3/2 energy_scale_calibration_feature_measured_energy_2=BE_932.67eV intensity_scale_calibration=uncalibrated;Cu and Au spectra acquired together resolution_calibration=FWHM of Ag3d5/2_0.78eV [end_of_calibration_information_format] [ISO_XPS_Data_Processing_Information_Format_1998_October_15] data_processing_procedure=subtraction of X-ray ghosts [end_of_data_processing_information_format] ``` # B.3 Example 3: Formats for describing a processed and calibrated Auger electron spectrum from powder of an inorganic material ``` [ISO_Specimen_Information_Format_1998_October_15] host_material=strontium chloride IUPAC_chemical_name=strontium dichloride chemical_abstracts_registry_number=0476-85-4 host_material_composition=SrCl2 bulk_purity=99.9mass% checked by NISSAN ARC LTD. known_impurities=N_0.01mass%, O_0.02mass% checked by NISSAN ARC LTD. structure=cubic fluoride; a=0.698nm form_of_product=unknown ``` ``` supplier=Johnson Matthey lot number=EP01007 homogeneity=homogeneous crystallinity=poly material_family=inorganic special_material_classes=powder specimen_mounting=powder_compact_In ex_situ_preparation=none in_situ_preparation=ion_2kV_10uA_Ar charge_control_conditions=none specimen_temperature=298K comment= [end_of_specimen_information_format] [ISO_AES_Calibration_Information_Format_1998_October_15] energy_scale_calibration_feature_label_1=AES_CuMVV energy_scale_calibration_feature_measured_energy_1=KE_61.16eV energy_scale_calibration_feature_label_2=AES_AuNVV energy_scale_calibration_feature_measured_energy_2=KE_72.21eV energy_scale_calibration_feature_label_3=AES_CuLVV energy_scale_calibration_feature_measured_energy_3=KE_918.62eV intensity_scale_calibration=J. Surf. Sci. Soc. Jpn., 15, 376(1994) resolution_calibration=uncalibrated [end_of_calibration_information_format] [ISO_AES_Data_Processing_Information_Format_1998_October_15] data processing procedure 1=smoothing by 7 points Savitzky-Golay ``` data_processing_procedure_2=Shirley background subtraction [end_of_data_processing_information_format] # B.4 Example 4: Formats for describing a processed and calibrated Auger electron spectrum from a kitchen sink [ISO_Specimen_Information_Format_1998_October_15] host material=stainless steel IUPAC_chemical_name=unknown chemical_abstracts_registry_number=unknown host_material_composition=Fe74Cr18Ni8mass% bulk_purity=99.9mass% checked by NISSAN ARC LTD. known_impurities=N_0.01mass%,O_0.02mass% checked by NISSAN ARC LTD. structure=face centered cubic; a=0.359nm form_of_product=sink supplier=Johnson Matthey lot_number=No 15876 purchased on 18 May 1993 homogeneity=homogeneous crystallinity=poly material_family=metal special_material_classes=sheet specimen_mounting=mechanical ex_situ_preparation_1=polish ex_situ_preparation_2=acetone in_situ_preparation=ion_2kV_10uA_Ar charge_control_conditions=none specimen_temperature=298K comment=corroded [end_of_specimen_information_format] [ISO_AES_Calibration_Information_Format_1998_October_15] energy_scale_calibration_feature_label_1=AES_CuMVV energy_scale_calibration_feature_measured_energy_1=KE_61.16eV energy_scale_calibration_feature_label_2=AES_CuLVV energy_scale_calibration_feature_measured_energy_2=KE_918.62eV intensity_scale_calibration=J. Surf. Sci. Soc. Jpn., 15, 376(1995) resolution calibration=uncalibrated [end_of_calibration_information_format] [ISO_AES_Data_Processing_Information_Format_1998_October_15] data_processing_procedure=smoothing by 7 points Savitzky-Golay [end_of_data_processing_information_format] ### B.5 Example 5: Formats for describing a processed and calibrated X-ray photoelectron spectrum from a lubricant film on a magnetic disk [ISO_Specimen_Information_Format_1998_October_15] host_material=carbon overlayer IUPAC_chemical_name=none chemical_abstracts_registry_number=none host_material_composition=C bulk_purity=99.99mass%, same as target;hot isothermal pressed carbon known_impurities=O, N, F structure=amorphous form_of_product=magnetic disk supplier=DENKI KAGAKU KOGYO KABUSHIKI KAISHA lot_number=DA2150-AC04, 15 Oct.1996 homogeneity=homogeneous crystallinity=amorphous material_family=inorganic special_material_classes=film_single specimen_mounting=mechanical ex_situ_preparation_1=stamping out ex situ_preparation_2=acetone in_situ_preparation=ion_2kV_5nA_Ar; ion sputtered for surface cleaning charge_control_conditions=none specimen_temperature=298K #### ISO 14975:2000(E) ``` comment_1=diamond-like protective carbon layer comment_2=magnetic disk having lubricating layer [end_of_specimen_information_format] [ISO_XPS_Calibration_Information_Format_1998_October_15] energy_scale_calibration_feature_label_1=XPS_Cu2p3/2 energy_scale_calibration_feature_measured_energy_1=BE_932.66eV energy_scale_calibration_feature_label_2=XPS_Ag3d5/2 energy_scale_calibration_feature_measured_energy_2=BE_368.27eV energy_scale_calibration_feature_label_3=XPS_Au4f7/2 energy_scale_calibration_feature_measured_energy_3=BE_84.00eV intensity_scale_calibration=J. Surf. Sci. Soc. Jpn., 16, 434(1995) resolution_calibration=uncalibrated [end_of_calibration_information_format] [ISO_XPS_Data_Processing_Information_Format_1998_October_15] data_processing_procedure_1=smoothing by 5 points S-G data_processing_procedure_2=Tougaard background removal(B=2866eV2, C=1633eV2) [end_of_data_processing_information_format] ``` ### **Bibliography** - [1] IUPAC Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F and H, Pergamon Press, Oxford, 1979. - [2] A Guide to IUPAC Nomenclature of Organic Compounds, Blackwell Scientific Publications, Oxford, 1993. - [3] IUPAC Compendium of Macromolecular Nomenclature, Blackwell Scientific Publications, Oxford, 1991. - [4] IUPAC Nomenclature of Inorganic Chemistry, Third Edition, Blackwell Scientific Publications, Oxford, 1990. - [5] IUBMB Biochemical Nomenclature and Related Documents, Second Edition, Portland Press, London, 1992. - [6] The CAS Registry Handbook Number Section Supplements, American Chemical Society, Columbus, 1980. - [7] DENCH, W.A., HAZEL, L.B., and SEAH, M.P.: VAMAS surface chemical analysis standard data transfer format with skeleton decoding program, *Surface and Interface Analysis*, November 1988, Vol. 13, Nos 2 and 3, pp. 63-122. - [8] BRYSON, C.E., and MACGUIRE, G.E.: AES/XPS Contributors Form, *Surface Science Spectra*, 1992, Vol. 1, No. 1, pp. 141-161. - [9] SEAH, M.P., GILMORE, I.S., and BEAMSON, G.: XPS Binding energy calibration of electron spectrometers: 5 Re-evaluation of the reference energies, *Surface and Interface Analysis*, August 1998, Vol. 26, No. 9, pp. 642-649. - [10] SEAH, M.P.: AES Energy calibration of electron spectrometers: IV A re-evaluation of the reference energies, *Journal of Electron Spectroscopy and Related Phenomena*, December 1998, Vol. 97, No. 3, pp. 235-241. - [11] YOSHITAKE, M., and YOSHIHARA, K.: Round Robin on the Energy Dependence of Sensitivity in Auger Electron Spectroscopy, *Journal of the Surface Science Society of Japan*, August 1994, Vol. 15, No. 6, pp. 376-383. - [12] YOSHITAKE, M., and YOSHIHARA, K.: Characterisation of XPS "Secondary-Standard" Spectra for the COMMON DATA PROCESSING SYSTEM, *Journal of The Surface Science Society of Japan*, July 1995, Vol. 16, No. 7, pp. 434-440. - [13] SEAH, M.P.: Channel Electron Multipliers Quantitative Intensity Measurement Efficiency, Gain, Linearity and Bias Effects, *Journal of Electron Spectroscopy and Related Phenomena*, February 1990, Vol. 50, Nos 1 and 2, pp. 137-157. ICS 35.240.70; 71.040.40 Price based on 17 pages © ISO 2000 - All rights reserved