INTERNATIONAL ISO
STANDARD 14739-1

First edition
2014-12-15

Document management — 3D use of
Product Representation Compact (PRC)
format —

Part 1:
PRC10001

Gestion de documents — Utilisation en 3D du format compact de
représentation de produit (PRC) —

Partie 1: PRC 10001

Reference number

—I/@\— 1SO 14739-1:2014(E)
\@/
Copyright International Organization for Standardization © ISO 20 14’

Provided by IHS under license with ISO Licensee=Universi ity of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014(E)

COPYRIGHT PROTECTED DOCUMENT

© 1S0O 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56 ¢« CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

Copyright International Organization for Standardization © 1S0 2014 - All I‘lghtS reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Contents Page
001 41 =) 4 iii
03 0 \'4
1 Y 60 . 1
2: JAVL00 00 B T A0 W= =] A= 4 L < 1
3 Terms and definitions ... ———————————————— 2
4. Document SyNtaxX CONVENTIONScovmsersemsmssmsessmssmsesssassssssssssssassenssses 2
4.1 COMNVEIITIONIS wrvuerirensrsssssssnsssssssssnsssssssssnsssssssssnsssssssssnssassssssnsssssssssnssasssssnsssssssssnsssssssssnsssssssssnssssassssnssssassssnsnssansss 2
4.2 125°€: 1101 0 (3] 0 ot U 11 2
5 PRC fil€ CONMCEPLS cvvurerrsreerssreesssresssssesssssessssssssssssssssssssssssssssssssesssssessssssssasesssssessssessasssssassssssssesssssesssssessasesssssens 3
5.1 B T 0 O 1 3
5.2 23 0530 11 5
5.3 L0 0N T LT TG =) 1 L0 i) o, 6
5.4 CUrrent data VAlUES ... s sss s ssssssssssssssssassss ssmsssssnssassss sanssnssmssnsnnmssnssnssanssnsanesnns 7
5.5 LY =0 s X = 7
5.6 L 8
5.7 B 0] 123 0= T 8
5.8 Compressed file SECIONS ... —————————_———_—_——_————— 9
5.9 (0000 111 0 T =T0 I o101 L] 0 o 9
5.10 Compressed teSSellation ... —————————————— 9
6 o O) T 0] 4 L= 9
6.1 2T =Y 4 T U () T 9
6.2 20T LT) L o) 11
6.3 | 3O 1 1<) 4 - 13
7 o 2O =] el 74 01T 13
7.1 =Y 1 =) o | 13
7.2 UNCOMPIESSEU LY PES..ciiurrrrsrsessmsmsmsmsnsssssssssssssssassssssssssssssssssasassssssssssssssssssssssassssssssssssssssssssasasasasssssssssssssssanss 14
7.3 L0000 113 00 YT I 4 0L 15
8 5 TS 4 1L L (= 21
8.1 =Y 1 =) o | 21
8.2 20 1 0z Lo 0 0 7 0 21
8.3 Structure and aSSEMDIY ... ——————————————————— 25
8.4 MiSCElIANEOUS DAtA....cceierrrrrrrrserssesersmsssssssssssssssssssssssssssssssssnsssssassssssssssssessnssassnssssssssssssnssnssansnssnssassanssensnsse 45
8.5 00 01 0 11 o 56
8.6 Representation items ... ———————————————_———————— 72
8.7 L 21 o 77
8.8 A=) L L) 83
8.9 B 03 010 (0 2, 114
8 200 10 T 0011 150
820 10 I 1 1 o 7 o < 182
8.12 Mathematical OPerator...u i AR n R s sn R RRR RS 209
9 Y 4 T3 1 =0 D3 010 0 213
9.1 LT3 1 1<) = 213
9.2 Enumeration Of Schema TOKENS ... sssssssssssssssss s sssssssssssssssssssssssssssnssnssnssnsans 214
Copyright Imeﬁ\at?(;‘n‘;l &g’;‘a}i;aﬁon"f‘o‘r VSVl:ain‘daLr&izﬂaiioinr rved 111
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita

No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

9.3 SChema ProCeSSiNg ... s 216
9.4 Schema Requirements and EXamples......cmmmmssssssssssns 222
10 70 I N 103 g U 1) 1 1L 225
10.1 Getnumberofbitsusedtostoreunsignedintegercunisnm—————— 225
10.2 Makeportable32bitSunSigned ... —————————————— 225
10.3 WIIEEDILS s s AR R R 225
I 2 S 11T @ LT 226
10.5 Writefloatashytes..... s s e 226
IO JCT 15 @ LYol B0 U) o) g 7 227
010113 LT 1 10 o 1 g 228
10.8 WritecOmMPresSediNteZEIATTAY .uummsrsrsssssssssssssssssssssssssssssssssss s sssssssss s s ass s assssasns 229
10.9 WritecompPresSediNdiCEAITAYcoumsmsmsmsismsmsnss s sssssssssssssasssssassssssess 229
10.10 WriteunSignediNTeGer ... s s e e s e 230
I 00 11T o L) 0 1L) o 230
10.12 Writeintegerwithvariablebitnumber ... ————————— 230
10.13 Writeunsignedintegerwithvariablebitnumbercom————— 231
10.14 Writedoublewithvariablebitnumber ... —————— 231
10.15 Writenumberofbitsthenunsignedinteger ... ———— 232
10.16 WritecOmpresSedentitytyPe ... ssasasssssssssssasass 232
10.17 WIItEAOUDIE ..o AR e AR RS 233
10.18 Procedure FOor Writedouble ... 270
11 Tessellation COMPresSSioN SUPPOTL ... sssssssssssssasasases 274
3 7 T - . 274
11.2 Huffman AlGOrithIM... iR 275
11.3 Basis PSEUAOCOAE......missssss s —————— 277
Annex A (informative) Example: Triangle ... ssssssssssssssssssssssssssssasassssssss 281
Annex B (informative) List of figures and tables ... ————— 283
13310] 10T ed o ¥ 1] 1, 284

ivy
Copyright International Organization for
Provided by IHS under license with ISO

Standardization © IS0 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is normally
carried out through ISO technical committees. Each member body interested in a subject for which a
technical committee has been established has the right to be represented on that committee.
International organizations, governmental and non-governmental, in liaison with ISO, also take part in
the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 171, Document management applications,
Subcommittee SC 2, Application issues.

ATeAAna A AT sl
Copyright International Organization for Standardization rved \%
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita

No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

http://www.iso.org/patents

ISO 14739-1:2014

Introduction

The data representations in PRC allows 3D design data, typically created in CAD and PLM systems, to be
viewed and interrogated by visualization applications and to be integrated into complex documents.

This document specifies a wide range of data forms. The wide range is necessary to:

— Achieve a high fidelity, visually equivalent representation of 3D design data produced by an
advanced CAD or PLM system without requiring the original application.

— Allow applications to compute high accuracy product shape measurements.

PRC is intended to complement native or open standard CAD and PLM formats as a compact, concise
binary form for visualization and documentation. PRC is not intended as a data format for CAD
interoperability or use in factory automation systems, e.g. automated manufacturing and inspection
systems, which is addressed by the ISO 10303 standards.

Copyright International O‘r:_;‘anization for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

INTERNATIONAL STANDARD ISO 14739-1:2014

Document management — 3D use of Product Representation
Compact (PRC) format —

Part 1:
PRC 10001

1 Scope

This International Standard describes PRC 10001 of a product representation compact (PRC) file format
for three dimensional (3D) content data. This format is designed to be included in PDF (ISO 32000) and
other similar document formats for the purpose of 3D visualization and exchange. It can be used for
creating, viewing, and distributing 3D data in document exchange workflows. It is optimized to store,
load, and display various kinds of 3D data, especially that coming from computer aided design (CAD)
systems.

This International Standard does not apply to:

— Method of electronic distribution
— Converting CAD system generated datasets to the PRC format
— Specific technical design, user interface, implementation, or operational details of rendering
— Required computer hardware and/or operating systems
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 12651:1999, Electronic imaging — Vocabulary

IS0 24517-1:2008, Document management — Engineering document format using PDF — Part 1: Use of
PDF 1.6 (PDF/E-1)

ISO 32000, Document management — Portable document format
IEEE 754, Floating-Point Arithmetic

The OpenGL Graphics System, A Specification, Version 4.1 (Core Profile), July 25, 20101

1 Available at http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf

©1S0 2014 - All rights reserved 1

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 32000-1, ISO 24517-1 and
[SO 12651 and the following apply.

3.1
PRC File Writer
software application which writes a particular PRC file

3.2
PRC File Reader
software application which reads a particular PRC file

3.3
byte
group of eight bits processed as a single unit of data

4 Document syntax conventions
4.1 Conventions

The following conventions are used within this document to describe data within a PRC File.

Terms highlighted in bold within this document signify field names in the description of entity types.
Entity types are denoted in italic.

A table with three columns is used to describe the data within a contiguous portion of the file.

The first column indicates the name of the field. Field names are not unique and can be considered to
have a scope limited to the data class.

The second column describes the type of the data. This might be
— A simple data type such as a Boolean, UnsignedInteger, or Double

— A simple class of data such as PRC_TYPE_TOPO_Body or PtrTopology where the name of the
class is used to define the data stored for that class

— An Array<data class>[<size>] which indicates an array of data of the specified class. An array
has <size> elements. Elements of an array are referenced beginning at 0.

The third column indicates if the field is required or optional. If the field is optional a condition is
described when the field is present. The field may also be described.

4.2 Example Structure

Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 1 — PRC file structure example

Name Type Value

flagl Boolean (Required) describe flagl

data_field1 <data class1> (Optional; if flag1 is TRUE) describe data_field1
data_field2 <data class2> (Optional; if flag1 is FALSE) describe data_field2
topological_body_data |PRC_TYPE_TOPO_Body (Required) describe topological_body_data
data_type <enumerated type> or Integer | (Required) describe data_type

data_of_type3 <data class3> (Optional; if data_type is 1) describe data_type3
data_of_type4 <data class4> (Optional; if data_type is 2) describe data_type4
Size UnsignedInteger (Required) describe size

array_of_type5 Array<data class5>[size] (Required) describe the array of <data class5>

5 PRCfile concepts
5.1 The PRC file

A PRC File is a sequential binary file, written in a way to make the file portable across machine
architectures and operating systems.

PRC is optimized to store various kinds of 3D data, especially those coming from computer-aided design
(CAD) systems. Most of the main constructs of CAD systems are supported within the PRC File Format:

— Assemblies and parts

— Trees of 3D entities (coordinate systems, wireframes, surfaces, and solids)
— Exact geometry representation for curves, surfaces

— Tessellated (triangulated) representation

— Markup data

PRC is meant to be multipurpose. There are two ways to store exact geometry and tessellation
depending on the usage of the file and on the original information:

— Regular compression is used to directly represent CAD data without loss or transformation from
the originating CAD system.

— High compression is used to store very small files, which have a specified physical tolerance from
the originating shape. The tolerance is typically 0,001 mm for exact geometric data and 0,01 mm for
tessellation data.

Each PRC File corresponds to a single model file (see 8.3.3) which defines the root product occurrences
within the FileStructures of the PRC File. A PRC File is a collection of FileStructures which are
independent from each other and can come from various authoring PRC File Writers. A FileStructure is
the representation of an independent physical file denoting an independent 3D part, assembly, etc.
within a PRC file. Hence, there is one header for each FileStructure with specific information and one
global header for the model file which contains information about the PRC File Writer that assembled
all these individual FileStructures into the final PRC File. Header sections gather primarily information
on file version, FileStructure ids and offsets for reading / skipping sections.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Each FileStructure contains one or more product occurrences (see 8.3.10.2). The product occurrences
denote the assembly hierarchy of the FileStructure. A product occurrence can have child nodes, which
are also product occurrences. There is exactly one root product occurrence in each FileStructure. The
root product occurrence is the only entry point to the FileStructure. (refer to Figure 1 below)

In parallel to the FileStructures, the model file also contains an array of root product occurrences that
comprise the starting point for the entire assembly description. A product occurrence may refer to a
corresponding part definition (see 8.3.11) which in turn contains:

— Geometrical data stored in a tree of representation items (see 8.6.3)
— An optional tree of part markups, grouped into annotation entities and views (see 8.7.2)

A product occurrence can contain:

— Atree of product markups

— Filters used to redefine the loading and presentation of data defined in the child product
occurrences or in the part definition (see 8.3.12)

The representation items are defined through a combination of tessellation or topology and geometry
data, which may be highly compressed. The markups are defined by tessellation data.

F.S. Nut

F.S. Bolt
P.0. Bolt
‘P.O‘.V\/‘ash‘er "77| F.S.Washer

[PONUES | P.0. Washer P.D. Washer
o

F.S. Tire

,,

Model File —{ P.O. Tire

P.0. Washers |-
Key:
: — — = Prototype
fffffffffffffffff . - o
— PORIm oo | bsRim o~ Som Object

- P.0. =Product Occurrence
P.0.Rim m P.D. =Product Definition

F.S. =File Structure

Figure 1 —Tessellation data

To optimize reading, a PRC File is arranged so that referenced entities are read before being referenced.
Therefore, the FileStructures are ordered using parts, then subassemblies, and finally, the top (root)
assembly.

A PRC File is composed of one header section, which starts with uncompressed data, one or more
FileStructures, and one model file (PRC_TYPE_ASM_ModelFile) data section at the end, each individually
compressed. Refer to 8.3.10 for more information about the PRC file structure.

A .
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

Table 2 — PRC file structure

ISO 14739-1:2014

Section

Sub Sections

Compression

Description

FileHeader

Uncompressed

Defines originating author of the
file; specifies start, and possibly
end, location of other sections in file

File Structure 1

FileStructureHeader

Uncompressed

Identifiers of other File Structures
referenced from within this
FileStructure;

Schema

Compressed

Description of changes between
minimal version and authoring
version of the FileStructure within
the PRC File Format Specification

Globals

Compressed

Referenced FileStructures and
colors, line styles, and coordinate
systems for each tree entity of the
FileStructure

Tree

Compressed

a description of the tree of items
(product occurrences, part
definitions, representation items,
and markup)

Tesselation

Compressed

All tessellated (triangulated) data in
the leaf entities of the tree
(representation items and
markups).

Geometry

Compressed

All exact geometry and topology
data of the leaf entities of the
tree(representation items)

Extra Geometry

Compressed

Geometry summary data, which
allow for partial loading of the
FileStructure without loading the
entire geometry

Additional FileStructure sections in
the PRC File

File Structure N

Compressed

Last FileStructure section in the
PRC File

Schema

ModelFile Schema

Compressed

Description of changes between
minimal version and authoring
version of the ModelFile Section of
the PRC File Format Specification

Model File Data

PRC_TYPE_ASM_ModelFile

Compressed

5.2 Versioning

A file format version number is used to define the particular version of this international standard that
a PRC File Reader or PRC File Writer conforms to.

Version numbers consist of the year modulo 2000 followed by three digits representing the day of the
year. This international standard shall have the version 10001, corresponding to the 1st day of the year

2010.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

The current_version is the maximum version number that a PRC File Reader or PRC File Writer
conforms to.

Each FileStructure and the FileHeader are independent and can be copied around or written by PRC File
Writers of different versions. Each of them have their own authoring version and
minimal_version_for_read version numbers. The authoring version represents the version of the
international standard that the PRC File Writer conformed to at the time the FileHeader or the
FileStructure was written. The minimal_version_for_read represents the version of the international
standard that a PRC File Reader shall conform to to successfully read the FileHeader or the
FileStructure. If the current_version of the PRC File Reader 1is less than the
minimal_version_for_read, then the PRC File Reader shall not continue to process the file and report
an error.

If minimal_version_for_read is lower than authoring_version, the PRC File Writer shall write a
schema description in the PRC File providing the differences between the two versions of this
international standard. This description will enable a PRC File Reader to read and skip new information,
since these new data cannot be interpreted as they are from a newer version.

A PRC File schema contains a description of new fields or new entity types added between the
minimal_version_for_read and the authoring_version. See 6.3 for a description of a schema.

A PRC File Reader uses the information in the schema to read and skip new information:

— After reading each entity type, the schema information is queried and new data are skipped
accordingly, following the tokens.

— Each time an entity type is read, if the type is unknown, the schema is searched and its data is
skipped.

5.3 Unique identifiers

5.3.1 General

A PRC File reader/writer shall generate (writer) or interprete (reader) unique identifiers for
information within the PRC File. Each FileStructure within a PRC File has an identifier (UUID) which
uniquely identifies this particular FileStructure among all of the FileStructures within the PRC File.
Within each FileStructure, unique identifiers for referenceable entities are generated using the order
that they are first encountered in the FileStructure. Thus, the first referenceable entity in the
FileStructure has the number 1 as its identifier. Subsequent identifiers of referenceable entities are
incremented by 1.

5.3.2 File structure

A PRC FileStructure is identified by an identifier (see UncompressedUniqueld) which is unique among all
of the FileStructures within a single PRC File.

The method to calculate a unique identifier for a given FileStructure is not part of this international
standard.

This approach offers an advantage, for example, such as when there is some intent to repurpose
FileStructures inside other PRC files without entirely rewriting them.

5.3.3 Base entities

The PRC format provides support for referencing entities. See Entity Types in 8.2.1 for a list of entity
types whose entities are referenceable.

The purpose of using references on entities is to enable an interpreter to handle the same entity several
times without any duplication of data, either by any other program, or by another structure in the same
or another PRC file.

P .
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

A referenceable entity is retrieved using the following:

— The UUID of the FileStructure.
— The entity's unique identifier (a non-zero unsigned 32-bit integer) within the FileStructure.

Just as the FileStructure UUID is unique among all of the FileStructures in the PRC File, the entity
identifier is unique inside a FileStructure for all referenceable entities.

A PRC File Writer shall ensure that two referenceable entities inside the same FileStructure do not have
the same identifier. The next available index within a FileStructure is the maximum value that has been
assigned for identifiers to date, and is stored in the PRC File (see 8.3.4) so it is possible to safely add
new entities to a FileStructure and assign them a unique identifier greater than this maximum value.

Data within the FileStructure tessellation and geometry sections are not accessible from outside the
FileStructure using the approach for referenceable entities. These data are referenced only by data
within the tree section (see 5.1 above) of the same FileStructure. However, it is possible (see 8.4.8) to
reference topological data from outside the particular FileStructure which the topological entity lies in.
This is restricted to faces in the current version of PRC but may be extended to other data in future
versions of the format.

5.3.4 Other systems
In addition to the unique identifier mechanisms described above, this international standard provides
for storage of identifiers from the originating system. The external identifiers and their persistence flag

are stored as information in PRC strictly to support external workflows. These identifiers by themselves
only exist to convey information and do not play any role in PRC.

5.4 Current data values

A PRC File reader and writer shall implement the concept of CURRENT for various data.

NOTE This enables smaller file sizes since duplicate data need not be written to the file. It also enables faster
readers because some of the data is not being read. Default initial values are in parentheses.

— Current name (NULL)

— Current graphics
— Index of layer (-1)
— Index of line style (-1)
— Behavior bit field (-1)

Current values shall be updated as they are encountered in the file. Values shall be reset when
serialization is flushed at the end of every flate-compressed section (see 5.8 Compressed File Sections).

5.5 Userdata

The PRC File format provides a mechanism for a PRC File Writer to write private data within various
sections of a PRC File. Such data shall consist of a bit stream of data containing the size of the bit stream
followed by the specified number of bits. '

NOTE Any PRC File Reader can read the bit stream and can even resave the private data, but it may not be
able to interpret the data. ,

Each FileStructure within a PRC File may contain UserData. UserData are defined in conjunction with an
application unique identifier (UUID) which allows for their interpretation. This application identifier

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 7
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

shall be stored in the FileStructurerHeading. By default, any user data within the FileStructure shall be
assumed to be written by this one writer. However, UserData may contain streams from different
writers. Therefore, different application UUIDs shall be stored accordingly with each of these other
data. UserData are meant to be interpreted only by software which is aware of its meaning according to
a given writers UUID. A conforming PRC File Reader should either ignore those UserData, or interpret
them according to the writers UUID. PRC also allows applications to define special attributes which
behave similarly to UserData,as discussed in 7.3.3.8.

Unique application identifiers are assigned through Adobe Systems, initially, and probably ISO in the
long term.. Each company should have it’s own unique application identifier, and if they want to share
data with another company, they should share application identifiers.

5.6 Units

A conforming writer shall define the units used in a PRC File. This should be done at both the model file
level (see 8.3.3) and at the product occurrence level (see 8.3.10). The unit may come from an actual CAD
file and therefore be considered reliable to represent physical values in the data. If a unit is
valid/reliable, the flag unit_from_CAD_file shall be set to TRUE. However, some formats do not contain
units. Regardless, it is mandatory to define one unit at both the model file level and at the product
occurrence level .

The unit which shall be used is the first valid unit in the ModelFile / ProductOccurrence chain. If a valid
unit is defined at the ModelFile level, it will apply to all product occurrences. Once a valid unit is found,
the remainder of the data shall be interpreted with respect of that unit, even for occurrences higher in
the product occurrence hierarchy.

NOTE In other words, if a product occurrence having no valid unit has a child with a valid unit, it is assumed
that the entire hierarchy of model file and product occurrence are to be interpreted and used according to this
unit.

If no valid unit is found at either the ModelFile level or any ProductOccurrence level (i.e.
unit_from_CAD_file is always set to FALSE), a conforming PRC File Reader shall clearly indicate that the
unit defined is not valid for measurement purposes.

5.7 Tolerances

PRC distinguishes between several notions of tolerances:

— A first notion of tolerance represents the maximum deviation between compressed and original
data, as introduced by the lossy compression of geometry or topology. When provided, this
tolerance shall be a user-defined value which represents a physical length given with a unit.

— A second notion of tolerance is introduced by numerical uncertainty inherent in every 3D
modelling system. This form of tolerance is non-dimensional. Its purpose is to perform consistent
numerical operations. This tolerance value corresponds to coincidence (e.g. of two 3D vertices) and
is generally defined in conjunction with a minimal value representing zero and a maximal value
representing infinity. For instance, a system might define coincidence at 1e-3, zero as any value less
than le-12 and infinity as any value greater than 1e6. Then, additional logic outside the modelling
system should define the unit so that the numerical values can be interpreted by the computer as
physical values (i.e. in a particular unit).

In PRC, the 3D modelling system corresponds to entities in tessellation section (8.8) and topology
section (7.9). Hence the various tolerances stored within these sections are always numerical values
with no unit. A conforming writer shall never store a tolerance which can be directly interpreted as a
physical value.

NOTE For instance, brep_data_compressed_tolerance in 8.9.19 which represents the deviation introduced
between original data and compressed one is stored without unit, even if it might be derived from a user interface

Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

which takes those units into account. Then, outside this 3D modelling system, unit is defined in
ProductOccurrences and ModelFile as discussed in previous chapter. The physical interpretation of those
tolerances should then be done from both indications. For instance, if a tolerance in a topology section is stored as
0,001 and if the unit of the ProductOccurrence it belongs to is 1000 meters, then the physical tolerance on data is
actually 1 meter.

5.8 Compressed file sections

Within a PRC File, all sections, except header sections, are individually compressed with a Flate method.

NOTE This form of compression is considered to be "lossless". It occurs systematically whatever the actual
content of the PRC file, and even if it contains compressed geometry or tessellation.

5.9 Compressed geometry

Compression of geometry results in very small files. This compression is "lossy“ in that the geometry is
an approximation to geometry to within a specified tolerance (typically 0,001mm). See 8.9.21 and
8.9.20 for entities representing compressed geometry. Note that the methodology to determine an
approximation of the original geometry (e.g. analytic recognition) is not part of PRC standard. Only the
resulting entities and the method to store them are described in PRC.

5.10 Compressed tessellation

Compression of tessellation data results in very small files. This compression is "lossy“ in that the
tessellation data is an approximation to tessellation data to within a specified tolerance (typically
0,01lmm). See 8.8.9 for an entity representing compressed tessellation. Tessellation data is not
necessarily generated from or considered as an “approximation” of geometry; it is an alternative way to
convey data. Note that the methodology to determine an approximation of the original tessellation (e.g.
polygon decimation) is not part of PRC standard. Only the resulting entities and the method to store
them are described in PRC.

6 PRC file contents
6.1 Fileheader
6.1.1 General

The Header contains the file version for the authoring version (PRC Format Specification) that the PRC
File Writer is based on and the minimal version for read (PRC Format Specification) that a conforming
PRC File Reader is based on that write/read the data outside of the individual FileStructures in the PRC
File.

Each FileStructure has a identifier which is unique among all of the FileStructures within this PRC File.

Each application has a unique identifier which enables the interpretation of UserData. This identifier
shall be set to 0000 or to a valid application identifier. 0000 indicates that the authoring application is
not “registered” but (as discussed above) there can still be user data from another application in the f11e
Valid identifiers are distributed by Adobe Systems, Inc. upon request.

A valid PRC File shall contain at least one FileStructure.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 9
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 3 — Fileheader

Name

Data Type

Data Description

3 bytes: PR, C

(Required) Characters "PRC"

minimal_version_for_read

UncompressedUnsignedInteger

(Required) Minimal version for
read (see 5.2)

authoring version

UncompressedUnsignedInteger

(Required) Authoring version
(see 5.2)

unique_id_file

UncompressedUniqueld

(Required) Unique ID for file
structure; The first and last
sections of PRC File (before and
after the FileStructures
themselves) are a kind of
special file structure which bear
an ID as well.

unique_id_application

UncompressedUniqueld

(Required) for

application

Unique ID

filestructure_count

UncompressedUnsignedInteger

(Required) Number of
FileStructures in PRC file

file_info

Array
<FileStructureDescription>[filestructure_count]

(Required) Information
describing each FileStructure in
PRC File; the ordering of this
array reflects the ordering of
the FileStructure within the file.

start_offset

UncompressedUnsignedInteger

(Required) Start offset of
ModelFileData section from
beginning of PRC File (in bytes)

end_offset

UncompressedUnsignedInteger

(Required) End offset of
ModelFileData section from
beginning of PRC File (in bytes)

file_count

UncompressedUnsignedInteger

(Required) Number of
uncompressed files that are
saved in the PRC File

files:

Array <UncompressedFiles>[file_count]

(Optional; if file_count is
greater than 0) Array of
uncompressed files stored in
the PRC File

6.1.2 FileStructureDescription

The FileStructureDescription contains information defining a particular FileStructure within the PRC

File:

— Each FileStructure has an identifier which is unique among the FileStructures within a PRC File.

— The starting offset (in bytes from the beginning of the PRC File) of each of the following sections
within a FileStructure: header, globals, tree, tessellation, geometry, and extra geometry.

1N
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 4 — FileStructureDescription

Name

Data Type

Data Description

unique_id

UncompressedUniqueld

(Required) Unique id for this file
structure

UncompressedUnsignedinteger

(Required) Reserved; shall be 0

section_count

UncompressedUnsignediInteger

(Required) Number of sections in
this FileStructure (6 for header,
globals, tree, tesselation, geometry,
and extra geometry)

section_offsets

Array

]

<UncompressedUnsignedinteger>[section_count |each section from the beginning of

(Required) Start offset (in bytes) of

PRC File

6.1.3 UncompressedFiles

Directly embeds private data inside a PRC File. This may be referenced by objects in the same PRC File
using the index of the uncompressed file within this array, and interpreted accordingly. Up to this
version of the PRC File Format Specification, only picture objects make reference to these files (see

8.5.5)
Table 5 — UncompressedFiles
Name Data Type Data Description
count UncompressedUnsignedInteger (Required) Number of uncompressed files

array_of_files

Array<UncompressedBlock>[count] (Required) Arbitrary data to embed within a PRC File

6.2 Filestructure

6.2.1 General

Table 6 — Filestructure

Name

Data Type

Data Description

header

FileStructureHeader

(Required)

schema

FileStructureSchema

(Required) Define the schema for the entities in
this FileStructure which have changed between
the minimal_version_for_ read and the
authoring version

globals

PRC_TYPE_ASM_FileStructureGlobals

(Required) Referenced FileStructures and
colors, line styles, and coordinate systems for
each tree entity of the file structure

tree

PRC_TYPE_ASM_FileStructureTree

(Required) a description of the tree of items
(product occurrences, part definitions,
representation items, and markup)

tessellation

PRC_TYPE_ASM_FileStructureTessellation

(Requireed) All tessellated (triangulated) data
in the leaf entities of the tree (representation
items and markups).

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

11

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

items)

Table 6 (continued)
Name Data Type Data Description
(Required) All exact geometry and topology data
Geometry PRC_TYPE_ASM_FileStructureGeometry of the leaf entities of the tree (representation

extra_geometry | PRC_TYPE_ASM_FileStructureExtraGeometry

(Required) Geometry summary data, which
allow for partial loading of the file structure
without loading the entire geometry

6.2.2 FileStructureHeader

A FileStructureHeader defines various properties of a FileStructure:

— The minimal file version of the a conforming PRC File Reader;

— The authoring version of a conforming PRC File Writer that wrote this FileStucture;

— The unique ID of this FileStructure; this ID shall be the same as the identifier in the PRC File Header

section;

— The unique ID of the conforming PRC File Writer creating this file structure;

— Avariable number of private uncompressed data files.

Table 7 — FileStructureHeader

Name

Data Type

Data Description

3 bytes: PR, C

(Required) Characters "PRC"

minimal_version_for_read

UncompressedUnsignedInteger

(Required) Minimal version for
read (see 5.2)

authoring_version

UncompressedUnsignedInteger

(Required) Authoring version
(see 5.2)

unique_id_file UncompressedUniqueld (Required) Unique ID of this
FileStructure

unique_id_application UncompressedUniqueld (Required) Unique ID for
application

file_count UncompressedUnsignedInteger (Required) Number of
uncompressed files

files Array <UncompressedFile>[file_count] (Required) Array of

uncompressed data

6.2.3 FileStructureSchema

Each FileStructure in a PRC File may represent a different version of the PRC Format Specification
written by a different application (PRC File Writer). Each FileStructure shall define the schema for
changes (new entities and new data fields to existing entities) for the entities that are stored within it.
See 6.3 for a description of the facilities for describing a schema.

172
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

6.3 PRC Schema

6.3.1 General

A schema describes changes between versions of PRC File Format Specification. See 5.2 for a basic
description of versioning in PRC. This mechanism allows information to be added for a given entity type
(schema_type) and still be readable by previous versions of the software.

Only those types which have changed between the minimal_version_for_read and authoring version
require a schema description, and only if they are present in the file.

Table 8 — PRC Schema

Name Data Type Data Description
schema_count | UnsignedInteger (Required) Number of entity types that have
changed between minimal version for read and
authoring version
schemas Array (Required) Schema definition of each type that
<Entity_schema_definition>[schema_count] |has changed

6.3.2 Entity_schema_definition

This provides the schema definition for an entity type in a PRC File. The entity is described by an array
of schema tokens which in turn should be viewed as a list of versioned blocks which describe versions
of the entity. See 9.3.20 for a description.

Table 9 — Entity_schema_definition

Name Data Type Data Description ’
entity_type UnsignedInteger (Required) entity_type represents the entity type, such as
8.10.1, that is being described by the array of schema
tokens. E
token_count UnsignedInteger (Required) Number of tokens describing this entity type
schema_tokens |Array (Required) Array of schema tokens describing this entity
<UnsignedInteger>[token_count] |type

7 PRC basic types
7.1 General

All data within a physical PRC File exists in a section which is a contiguous stream of bytes which starts
and ends on a byte boundary. A section may be either uncompressed (header sections) or compressed
(all other sections).

Data within an uncompressed section is written so that individual variables occupy a specific number of
bytes.

Data within a compressed section has been written in a bit-by-bit manner with no restrictions on
individual variables crossing byte boundaries. At the end of the section, the last byte is padded with
zero bits, the entire section is compressed using flate (see Bibliography) and the compressed section is
written to the file. At this point, the current name and current graphics are reset.

Reading one section is independent from reading other sections and one can skip directly to a section
since the offset (in bytes) of the section from the beginning of the file is known as it is also stored in the
PRC File.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 13
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

7.2 Uncompressed types

7.2.1 UncompressedUnsignedInteger

This type represents writing an unsigned integer. An unsigned integer is converted into a 4 byte array
of unsigned characters which is independent of machine byte ordering using the algorithm
MakePortable32BitsUnsigned.

Table 10 — UncompressedUnsignedInteger

Name Data Type Data Description

4 bytes (Required) 4 bytes representing unsigned integer

7.2.2 UncompressedBlock

The purpose of this function is to write the number of bytes being written followed by the specified
number of bytes without the need to further interpret the content of the byte stream.

Table 11 — UncompressedBlock

Name Data Type Data Description
block_size UncompressedUnsignedInteger (Required) size (bytes) of uncompressed block
block Byte stream of the specified size (Required) Block of specified size

7.2.3 UncompressedFiles

This type represents writing the data for multiple uncompressed file data.

Table 12 — UncompressedFiles

Name Data Type Data Description

file_count UncompressedUnsignedInteger (Required) Number of
uncompressed Files

files Array (Required) Array of uncompressed
<UncompressedBlock>[file_count] file data

7.2.4 UncompressedUniqueld

This saves information on uniqueid in uncompressed mode.

Table 13 — UncompressedUniqueld

Name Data Type Data Description
unique_id0 UncompressedUnsignedInteger (Required)
unique_id1 UncompressedUnsignedInteger (Required)
unique_id2 UncompressedUnsignedInteger (Required)
unique_id3 UncompressedUnsignedInteger (Required)
Copyright Inermational Organization for Standarcization © 1SO 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

7.3 Compressed types

7.3.1 General

ISO 14739-1:2014

The following types are used to define data contained within compressed sections of the PRC File. Each

type may start or end at any bit position within a byte in the compressed section.

7.3.2 Atomic Types

7.3.2.1 Bits(n)

Writes n-number of bits from left to right.
7.3.2.2 Boolean

Boolean values shall be written as a single bit

Table 14 — Boolean

Name Data Type Data Description

Bits(1) (Required) Single bit in a bit stream

7.3.2.3 Character

Characters will be written as a single 8 bits.

Table 15 — Character

Name Data Type Data Description
Bits(8) (Required) Single character in a bit
stream

7.3.2.4 Integer

This requires a special algorithm. See 10.11.
7.3.2.5 IntegerWithVariableBitNumber

This requires a special algorithm. See 10.12.

7.3.2.6 UnsignedInteger

This requires a special algorithm. See 10.10.
7.3.2.7 UnsignedIntegerWithVariableBitNumber

This requires a special algorithm. See 10.13.
7.3.2.8 NumberOfBitsThenUnsignedInteger

This requies a special algorithm. See 10.15.
7.3.2.9 Float

This requires a special algorithm. See 10.5.
7.3.2.10 Double

This requires a special algorithm. See 10.17.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

15

ISO 14739-1:2014

7.3.2.11 DoubleWithVariableBitNumber

This requires a special algorithm. See 10.14.

7.3.3 Compound Types

7.3.3.1 CompressedEntityType

This requires a special algorithm. See 10.16.

7.3.3.2 CompressedUniqueld

This saves information on uniqueid in compressed mode. See 5.3

Table 16 — CompressedUniqueld

Name Data Type Data Description
unique_id0 Unsignedinteger (Required)
unique_id1 UnsignedInteger (Required)
unique_id2 UnsignedInteger (Required)
unique_id3 UnsignedInteger (Required)

7.3.3.3 String

This is a UTF8-encoded string without a terminating NULL character. The number of characters does
not include a terminating null character.

Table 17 — String

Name Data Type Data Description

null_flag Boolean (Required) TRUE if the string is not
NULL; else FALSE

size UnsignedInteger (Optional; if null_flag is TRUE) Size
of character array

string Array <Character>[size] (Optional; if null_flag is TRUE)
Array of characters in String

7.3.3.4 CharacterArray

This requires a special algorithm. See 10.6.

7.3.3.5 ShortArray

This requires a special algorithm. See 10.7.

7.3.3.6 CompressedIntegerArray

This requires a special algorithm. See 10.8.

7.3.3.7 CompressedIndiceArray

This requires a special algorithm. See 10.9.

1c
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

7.3.3.8 UserData

ISO 14739-1:2014

Applications that write a PRC File may store an arbitrary bit stream of private data for the following

data types:

— Subtypes of PRC_TYPE_ASM

— Subtypes of PRC_TYPE_RI

— Subtypes of PRC_TYPE_MKP

— Subtypes of PRC_TYPE_MISC

All those entities have UserData at the end of their data definition.

Table 18 — UserData

Name Data Type Data Description

stream_size UnsignedInteger (Required) Number of bits in the
UserDataStream

stream UserDataStream (Optional; if stream_size > 0)
Arbitrary bit stream of stream_size
length

7.3.3.8.1 UserDataStream

Table 19 — UserDataStream

Name Data Type Data Description

section_count UnsignedInteger (Required) Number of UserData sub
sections in the bit stream

sub_sections Array (Required) Array of sub-sections

<UserDataSubSection>[section_count]

7.3.3.8.2 UserDataSubSection

Name Data Type Data Description

same_flag Boolean (Required) Same Application UUID as FileStructure

unique_id_application CompressedUniqueld | (Optional; if same_flag is FALSE) Application UUID

stream_size Unsignedinteger (Required) Number of bits in the bit stream for this user
data subsection

stream Bits(n) (Optional; if stream_size is > 0) Arbitrary bit stream of the
stream_size length

7.3.4 Parameter Range Types

7.3.4.1 Infinite_param

The constant infinite_param shall have the double precision floating point value 12345. It is used to
represent infinity, and as -infinite_param also minus infinity, for parameter values in interval.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

17

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

7.3.4.2 Interval

An Interval is a subset of R% It is represented by two double precision numbers defining the minimum
and maximum values of the interval. An interval is defined to be all values between the minimum and
maximum

minimum <t < maximum

The minimum shall not be smaller than -infinite_param and the maximum shall not be larger than
infinite_param. Infinite or semi-infinite intervals may be specified by using infinite_param to represent
infinity. The following are examples of intervals:

— [0.0,1.0]
— [-infinite_param, infinite_param]
— [0.0, infinite_param)]

The primary use of an interval is to define the domain of a curve. For a non-periodic curve, whether an
open or closed curve, the interval defines the domain of legal parameter values for the curve. For a
periodic closed curve, such as a circle or periodic closed NURBS curve, the interval defines the period
(i.e. the length of the interval) as well as the primary domain of the curve. Any value is a legal parameter
when evaluated modulo the period. For a periodic open curve, such as a proper subset of a circle, the
interval defines the valid subset of R! that is the domain of legal parameter values.

Table 20 — Interval

Name Data Type Data Description
min_value Double (Required) Minimum value
max_value Double (Required) MaximumValue

7.3.4.3 Parameterization

Parameterization data provide a way to reparameterize a curve and to define the domain of the curve.
The domain of the curve define legal parameter values.

Two doubles, coeff a and coeff b, are used to reparameterize a curve towards its implicit
parameterization.

The evaluation formula to calculate the implicit parameter from a parameter is:

implicit_parameter <« . coeff_a * parameter + coeff_b

If there is no reparameterization of the curve, coeff_a shall be set to 1.0 and coeff_b shall be set to 0.0.
In this case implicit_parameter equals the specified parameter.

Parameterization data also contain an interval used to define the domain of the curve. This interval
restricts the curve before applying the reparameterization formula. The reparameterization formula
can be used to calculate the implicit_interval from the given interval in the same way that it is used to
calculate the implicit_parameter from a given parameter.

All curves shall have an interval to define the legal parameter values of the curve. In the case of base
curves (curves not defined by reference to other curves), this interval defines the domain of definition
for the curve. For curves which are defined in terms of other curves, the interval represents a subset of
the curve which may be the entire curve or a portion of it. The interpretation of the interval depends
upon the curve being periodic or non-periodic (see the definition of Interval).

10 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

For instance, a circle has the implicit domain of [0.0, 2] and a line has the implicit domain of [-
infinite_param, infinite_param]. A portion of the circle might be limited to [0.0, mt].

Table 21 — Parameterization

Name Data Type Data Description
trim_interval Interval (Required) trim interval
coeff a Double (Required) Coeff_a
coeff b Double (Required) Coeff b

As an example, consider a circle. It has an implicit parameterization on the interval [0.0, 2m]. For this
case:

— Coeffa=1.0
— Coeff b=0.0
— Interval =[0.0, 2m]

To reparameterize the circle so the parameter values are in the interval [0.0, 1.0] would give

— Coeffa=2m
— Coeff b=0.0
— Interval =[0.0, 1.0]

To define a semi circle

— Coeff a=1.0

— Coeff b=0.0

— Interval = [-t/2.0, /2.0]
7.3.4.4 Domain

A Domain is a subset of R? that is used to define the domain of definition of a surface. It is represented
by a 2D vector defining the minimum UV parameter values and a 2D vector defining the maximum UV
parameters.

The domain of the surface is

minimum U < u £ maximum U
minimum V € v < maximum V

The interval in U (or V) when used with a specific surface definition will define a surface that is open,
closed, or periodic in that parameter. For a non-periodic surface, whether an open or closed surface, the
interval defines the domain of legal parameter values for the surface. For a periodic closed surface, such
as a cone or periodic closed NURBS surface, the interval defines the period (i.e. the length of the
interval) as well as the primary domain of the surface. Any value is a legal parameter when evaluated
modulo the period. For a periodic open surface, such as a proper subset of a cone, the interval defines
the valid subset of R? that is the domain of legal parameter values.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 19
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 22 — Domain

Name Data Type Data Description
min_uv Vector2d (Required) Minimum U and V
max_uv Vector2d (Required) Maximum U and V

7.3.4.5 UVParameterization

This describes a reparameterization of a surface towards implicit parameterization. Coeff_a shall be set
to 1.0 and Coeff b shall be set to 0.0 if there is no reparameterization.

The evaluation formula is:
If (swap_uv is FALSE) {

implicit_param.u « u_param_coeff_a * param.u + u_param_coeff_b
implicit_param.v « v_param_coeff_a * param.v + v_param_coeff b

}else{

implicit_param.u « v_param_coeff_a * param.v + v_param_coeff_b

implicit_param.v < u_param_coeff_a * param.u + u_param_coeff_b

}
Table 23 — UVParameterization
Name Data Type | Data Description
swap_uv Boolean |(Required) swap_uv TRUE implies swap the uv param; FALSE implies do not

swap

suface_domain |Domain |(Required) The domain of the surface is specified in numbers before the previous
reparameterization formula is aplied.

u_param_coeff a | Double (Required)

v_param_coeff a | Double (Required)

u_param_coeff b | Double (Required)

v_param_coeff b | Double (Required)

7.3.5 Basic Geometry Types

7.3.5.1 Vector2d

Representation of a 2D vector. This type may be used to represent either 2D positions or vectors. The
context shall be used to determine if a position or vector is meant.

Table 24 — Vector2d

Name Data Type Data Description
x_value Double (Required)
y_value Double (Required)
Copyright In?el?ational Organization for Standardization o o ©150 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

7.3.5.2 Vector3d

Representation of a 3D vector. This type may be used to represent either 3D positions or vectors. The
context shall be used to determine if a position or vector is meant.

Table 25 — Vector3d

Name Data Type Data Description
x_value Double (Required)
y_value Double (Required)
z_value Double (Required)

7.3.5.3 BoundingBox

Define a bounding box with sides parallel to the XYZ coordinate planes using two diagonal corners of
the box. The minimum and maximum shall satisfy

— Xmin < Xmax
— Ymin < Ymax
— Zmin < Zmax

If the above is not satisfied the bounding box is considered invalid.

Table 26 — BoundingBox

Name Data Type Data Description
minimum_corner Vector3d (Required)
maximum_corner Vector3d (Required)

8 Base entities

8.1 General

BASE ENTITIES represent high level concepts such as curves, surfaces, topology, parts, assemblies,
markups, or tessellation data which are stored in a PRC File. Entities are defined by a type name used
for descriptive purposes, a type value which is stored in the PRC File to indicate that the data defining
the entity follows, and an indication if the entity is referenceable. An entity is referenceable if it may be
referenced using a unique identifier.

8.2 Abstract root types
8.2.1 Entity types

Table 27 — Abstract root types entity types

Type Name Type Value
PRC_TYPE_ROOT 0
PRC_TYPE_ROOTBase PRC _TYPE_ROOT+ 1

PRC_TYPE_ROOT_PRCBaseWithGraphics PRC_TYPE_ROOT+ 2

PRC_TYPE_ROOT_PRCBaseNoReference PRC_TYPE ROOT + 3

ATeA AN A AT

Copyright International Organization for Standardization ‘,htS reserved 2 1
Provided by IHS under Jicense with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.2.2 PRC.TYPE_ROOT

An entity of this type in a PRC File is to be interpreted as a NULL pointer or entity depending on the

specific circumstances.

8.2.3 PRC_TYPE_ROOTBase

8.2.3.1 General

This is the abstract root type for any PRC entity.

8.2.3.2 ContentPRCBase

This represents common data for all PRC base entities that are not

base entities have attribute and name information.

Table 28 — ContentPRCBase

eligble to be referenced.. All PRC

eritity_name

Nziine Data Type Data Description
attribute_data AttributeData (Required) Attribute data associated
with the entity
Name (Required) Entity Name

8.2.3.3 ContentPRCRefBase

This represents common data for all PRC base entities that are eligible to be referenced. All PRC base
entities have attribute, name information, a PRC FileStructure unique identifier and a persistent and
non-persistent identifier from the originating CAD file.

277
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

Table 29 — ContentPRCRefBase

ISO 14739-1:2014

Name Data Type Data Description

attribute_data AttributeData (Required) Attribute data associated
with the entity

entity_name Name (Required) Entity Name

unique_id_cad UnsignedInteger (Required) persistent CAD identifier
from originating CAD file

unique_id UnsignedInteger (Required) PRC FileStructure
unique identifier

'8.2.3.3.1AttributeData

A base entity may have zero or more associated attributes.

Table 30 — AttributeData

Name Data Type Data Description

attribute_count | UnsignedInteger (Required) Number of attributes

attributes Array (Required) An array of attributes
<PRC_TYPE_MISC_Attribute>[attribute_count]

8.2.3.3.2 Name

PRC employs the concept of a current_name which retains the name of the last entity being read or
written. If the name of the subsequent entity being read or written is the same as the current name, no
name will be in the file. Otherwise, a name for the entity is read from the file and the current name is
updated to this new name. This is done to optimize on space within the file.

Table 31 — Name

Name Data Type | Data Description

same_name |Boolean |(Required) TRUE implies the name of this entity is the same as the current name;
FALSE implies that a new name is in the file

name String (Optional; if same_name is FALSE) Name of the entity and the current name is set to
this name

8.2.4 PRC_TYPE_ROOT_PRCBaseWithGraphics

8.2.4.1 General

Information for any base PRC entity which can be referenced and which contains graphics.

PRC employs the concept of current graphics content which retains the graphics content of the last
entity being read or written. If the graphics content of the subsequent entity being read or written is the
same as that of the current graphics content, no graphics content will be in the file. Otherwise, a
graphics content for the entity is read from the file and the current graphics content is updated to this
new graphics content. This is done to optimize on space within the file.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

23

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 32 — PRC_TYPE_ROOT_PRCBaseWithGraphics

Name Data Type Data Description

base ContentPRCRefBase (Required) Base information associated with the entity

same_graphics | Boolean (Required) SameGraphicsAsCurrent

graphic_content |GraphicsContent (Optional; if same_graphics is TRUE) Graphical data
associated with the entity and the current graphics content is
set to this graphics content

8.2.4.2 GraphicsContent

index_of line_style represents the index into the array of styles, which is stored in
FileStructurelnternalGlobalData (See section 8.3.5.2below). The array of styles is a set of
PRC_TYPE_GRAPH_Style entities (See 8.5.3) and should have a value less than 65535.

behaviour_bit_field is an unsigned short integer (2 bytes). This bit field controls visibility and removal
of an entity as well as how values of entities (visibility, color, transparency, layer, line pattern, and line
width) are inherited in the tree of entities.

Each value that is subject to inheritance has two bit flags in the behavior_bit_field: one flag is called
Childherit. If ChildHerit is set, the actual value of ParentHerit is ignored and assumed to be FALSE.

The actual value that the entity uses depends on the path of entites from the root of the tree of entites to
this entity and the behavior_bit_field settings along this path.

If there are ChildHerit flags in the tree, it is the lowest node in the tree which has this flag which defines
the value. Else if there are ParentHerit flags in the tree, it is the highest node in the tree which has this
flag which defines the value. Else if there is no flag, the current value is set, if any.

Potential values and meanings of this bit field are:

Table 33 — behavior_bit_field

Name Value Meaning
PRC_GRAPHICS_Show 0x0001 The entity is shown.
PRC_GRAPHICS_ChildHeritShow 0x0002 Shown entity child inheritance.
PRC_GRAPHICS_FatherHeritShow 0x0004 Shown entity parent inheritance.
PRC_GRAPHICS_ChildHeritColor 0x0008 Color/material child inheritance.
PRC_GRAPHICS_ParentHeritColor 0x0010 Color/material parent inheritance
PRC_GRAPHICS_ChildHeritLayer 0x0020 Layer child inheritance.
PRC_GRAPHICS_ParentHeritLayer 0x0040 Layer parent inheritance.
PRC_GRAPHICS_ChildHeritTransparency 0x0080 Transparency child inheritance.
PRC_GRAPHICS_ParentHeritTransparency 0x0100 Transparency parent inheritance
PRC_GRAPHICS_ChildHeritLinePattern 0x0200 Line pattern child inheritance.
PRC_GRAPHICS_ParentHeritLinePattern 0x0400 Line pattern parent inheritance.
PRC_GRAPHICS_ChildHeritLineWidth 0x0800 Line width child inheritance
PRC_GRAPHICS_ParentHeritLineWidth 0x1000 Line width parent inheritance
PRC_GRAPHICS_Removed 0x2000 The entity has been removed and no longer
appears in the tree

271 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 34 — GraphicsContent

Name Data Type Data Description

biased_layer_index UnsignedInteger (Required) layer_index + 1 where
layer_index represents the layer
the entity lies on. It should have a
value less than 65535.

biased_index_of_line_style UnsignedInteger (Required) index_of_line_style + 1
where index_of_line_style
represents the index into the array
of styles, which 1is stored in
FileStructurelnternalGlobalData (See
section 8.3.5.2 below). The array of
styles is a set of
PRC_TYPE_GRAPH_Style entities (See
8.5.3) and should have a value less
than 65535.

behavior_bit_field1 UnsignedCharacter (Required) behavior_bit_field1 is
behavior_bit_field & 0xff

behavior_bit_field2 UnsignedCharacter (Required) behavior_bit_field2 is
behavior_bit_field >> 8

8.2.5 PRC_TYPE_ROOT_PRCBaseNoReference

This is the abstract root type for any PRC entity that can not be referenced.

This type is useful for schema descriptions. For example, EPRCSchema_Parent_Type can be used to
define a new type which has one of three different ancestor types. It can be a child of either
PRC_TYPE_ROOTBase, PRC_TYPE_ROOT_PRCBaseWithGraphics, or
PRC_TYPE_ROOT_PRCBaseNoReference.

PRC_TYPE_ROOTBase: ancestor type would indicate that the new type is a referencable type

PRC_TYPE_ROOT_PRCBaseNoReference: ancestor type would indicate that the new type is not
referencable.

PRC_TYPE_ROOT_PRCBaseWithGraphics.: ancestor type would indicate that the new type is a
referencable type which bear graphics

Examples :

PRC_TYPE_GRAPH_LinePattern has PRC_TYPE_ROOTBase in its ancestor chain
PRC_TYPE_ASM_FileStructure has PRC_TYPE_ROOT_PRCBaseNoReference in its ancestor chain
PRC_TYPE_RI_Curve has PRC_TYPE_ROOT_PRCBaseWithGraphics in its ancestors chain

8.3 Structure and assembly

8.3.1 Entity types

ATeA Afa 4 AT
Copyright International Organization for Standardization ‘,htS reserved 2 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 35 — Structure and assembly entity types

Type Name Type Value Referenceable
PRC_TYPE_ASM PRC_TYPE_ROOT + 300 | no
PRC_TYPE_ASM_ModelFile PRC_TYPE_ASM+ 1 no
PRC_TYPE_ASM FileStructure PRC_TYPE_ASM+ 2 no
PRC_TYPE_ASM FileStructureGlobals PRC TYPE ASM+ 3 no
PRC _TYPE_ASM FileStructureTree PRC_TYPE_ASM+ 4 no
PRC_TYPE_ASM_FileStructureTessellation PRC_TYPE ASM+ 5 no
PRC_TYPE_ASM_FileStructureGeometry PRC _ TYPE ASM+ 6 no
PRC_TYPE_ASM_FileStructureExtraGeometry | PRC_TYPE_ASM+ 7 no
PRC_TYPE_ASM_ProductOccurrence PRC _TYPE ASM+ 8 yes
PRC_TYPE_ASM_PartDefinition PRC_TYPE_ASM+ 9 yes
PRC_TYPE_ASM _Filter PRC_TYPE_ASM+ 10 yes

8.3.2 PRC.TYPE ASM

This is the abstract type for the top level PRC structure.
8.3.3 PRC_TYPE_ASM_ModelFile

8.3.3.1 General

A model file (PRC_TYPE_ASM_ModelFile) is typically created by importing data from a CAD file. There is
only a single PRC_TYPE_ASM_ModelFile entity in a PRC File. The model file contains product
occurrences, which are split into different FileStructures.

units_from_CAD file is to be interpreted as discussed in section Units (See 5.6)
number_of_root_product_occurrences is the number of root product occurrences in the model file.
product_occurrences represents the root product occurrences in the model file.

file_structure_index_in_model_file indicates the index at which the FileStructure should be stored in
memory within a ModelFile (PRC_TYPE_ASM_ModelFile). A conforming PRC File Reader should
reconstitute / maintain FileStructures in memory in the order that they appear in the ModelFile,
regardless of the order in the physical PRC file. In the physical PRC file, the order of file structures shall
be in accordance with their dependencies with other file structures as follows: if a given file structure A
depends on another file structure B (in the sense that A references elements of B), B shall appear first in
the PRC physical file. This restriction does not exist for the memory storage of the file structures.

number_of_file_structures is obtained directly from the header of the PRC File.

2 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 36 — PRC_TYPE_ASM_ModelFile

Name Data Type Data Description

UnsignedInteger (Required)
PRC_TYPE_ASM_ModelFile

Base ContentPRCBase (Required) Base information
associated with the entity

units_from_CAD _file Boolean (Required) Units_from_CAD_file is
TRUE if the units come from a CAD
system and are thus suitable for
measurement; else FALSE

Double (Optional; if units_from_CAD file is
TRUE) Units in multiple of mm
number_of_root_product_occurre | Unsignedinteger (Required)
nces number_of_root_product_occurre
nces
product_occurences Array <ProductOccurrenceReference> | (Required) References to the root
[number_of_root_product_occurre |product occurrences in the model
nces] file
file_structure_index_in_model_fil |Array <UnsignedInteger> | (Required)
e [number_of root_product_occurre |file_structure_index_in_model_fil
nces] e: Indicies to to FileStructure within

the model file; the size of the array
is obtained directly from the header
of the PRC file

user_data UserData (Required) User defined data

8.3.3.2 ProductOccurrenceReference

This defines the unique identifier of the PRC_TYPE_ASM_FileStructure and the index of the root product
occurence in the array of product occurrences within the PRC_TYPE_ASM_FileStructureTree, as
contained within the PRC_TYPE_ASM_FileStructure.

product_occurrence_is_active is reserved for future use, and is currently unused. Its default value
should be TRUE. Its use will be to control storing different versions/configurations of a product in the
same PRC File. Currently, only one can be active at a time but you can switch from one to the other.

Table 37 — ProductOccurrenceReference

Name Data Type Data Description

unique_id CompressedUniqueld (Required) Unique identifier of the
FileStructure that contains this root
product occurrence.

root_index UnsignedInteger (Required) Index of the root product
occurrence within the FileStructure

product_occurence_is_active | Boolean (Required) TRUE if the product
occurrence is active; else FALSE

8.3.4 PRC_TYPE_ASM FileStructure

This type gathers internal data of a file structure as described in PRC_TYPE_ASM_FileStructureTree

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 2 7
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 38 — PRC_TYPE_ASM_FileStructure

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_ASM_FileStructure

Base ContentPRCBase (Required) Base information associated with the
entity

next_available_index Unsignedinteger (Required) next_available_index is used when
re-opening the FileStructure, to be able to safely
add entities with a unique id without overlap to
pre-existing entities.

index_product_occurrence | Unsignedinteger (Required) index_product_occurrence is used to
denote which product occurrence inside the
FileStructure is the unique root.

8.3.5 PRC_TYPE_ASM FileStructureGlobals

8.3.5.1 General

This type gathers global data of a file structure as described in Section 6.2.
Table 39 — PRC_TYPE_ASM FileStructureGlobals

[file_count]

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_ASM_FileStructureGlobals

Base ContentPRCBase (Required) Base information
associated with the entity

file_count UnsignedInteger (Required) Number of referenced
FileStructures

unique_ids Array <CompressedUniqueld> | (Required) Unique ids for

FileStructures within the PRC File
which are referenced by entities in
this FileStructure

global_data

FileStructurelnternalGlobalData (Required)

user_data

UserData

(Required) User defined data

8.3.5.2 FileStructurelnternalGlobalData

8.3.5.2.1 General

This internal structure is used in PRC_TYPE_Asm_FileStructureGlobals.

20
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 40 — FileStructurelnternalGlobalData

Name Data Type Data Description

tess_chord Double (Required) Tessellation chord
height

tess_angle Double (Required) Tessellation angle
(degrees)

serialize_help MarkupSerializationHelper (Required) See below

color_count UnsignedInteger (Required) Number of colors

Colors Array <RgbColor>[color_count] (Required) Array of color
definitions

picture_count

UnsignedInteger

(Required) Number of pictures

Pictures Array <PRC_TYPE_GRAPH_Picture>[picture_count] (Required) Array of pictures
texture_count Unsignedinteger (Required) Number of textures
definitions
Textures Array <PRC_TYPE_GRAPH_TextureDefinition> | (Required) Array of texture
[texture_count] definitions

material_count

UnsignedInteger

(Required) Number of materials

Materials

Array <PRC _TYPE_GRAPH_Material>

[material_count]

(Required) Array of materials

[line_pattern_count]

line_pattern_count | UnsignedInteger (Required) Number of line
patterns
line_patterns Array <PRC_TYPE_GRAPH_LinePattern> | (Required) Array of line patterns

style_count

UnsignedInteger

(Required) Number of styles

Styles Array <PRC_TYPE_GRAPH_Style>[style_count] (Required) Array of category 1 line
styles

fill_count Unsignedinteger (Required) Number of fill patterns

Fills Array <PRC_TYPE_GRAPH_FillPattern>[fill_count] (Required) Array of fill patterns

[ref_coord_count]

ref_coord_count UnsignedInteger (Required) Number of reference
coordinate systems
ref_coords Array <PRC_TYPE_RI_CoordinateSystem> | (Required) Array of reference

coordinate systems

8.3.5.2.2 MarkupSerializationHelper

8.3.5.2.2.1 General

‘This Global data is composed of font information for markup. The following example shows how the
global data is serialized for markup font information.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

29

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 41 — MarkupSerializationHelper

Name Data Type Data Description

default_font_family_name (Required) default_font_family_name defines the case-
sensitive default font family name used for text if a
given font family is not available on the computer. If
this default font family itself is not available on the
computer, the font will be MyriadPro from Adobe

Systems, Inc.

String

font_keys_count UnsignedInteger (Required) Number of fonts

(Required) font_keys_of_font represents several font
keys sharing the same base font name. Indices for font
keys used in ContentMarkupTess are calculated from this
array. For example, if there are two font names
representing 4 and 5 font keys respectively, index #7
would be represented by font_keys[1][3].

font_keys_of_font Array
<FontKeysSameFont>

[font_keys_count]

8.3.5.2.3 FontKeysSameFont

This type describes a list of usages of the same font (referred to by its name) with different metrics and
attributes.

— attributes represents the font attributes, and is a combination of the values in the table below.

Table 42 — FontKeySameFont

Name Data Type Data Description

font_name String (Required) Font Name
character_set | UnsignedInteger (Required) Character Set
key_count UnsignedInteger (Required) Number-of-font-keys
font_key_list | Array<FontKey> [key_count] | (Required)

Table 43 — FontKey

Name Data Type Data Description
font_size UnsignedInteger (Required) font size + 1
font_attributes Character (Required) Font Attributes

The following table contains the possible values for the Character Set.

2N
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

Table 44 — Character Set

Value | Description

0 Roman

1 Japanese

2 Traditional Chinese
3 Korean

4 Arabic

5 Hebrew

6 Greek

7 Cyrillic

8 RightLeft

9 Devanagari

10 Gurmukhi

11 Gujarati

12 Oriya

13 Bengali

14 Tamil

15 Telugu

16 Kannada

17 Malayalam

18 Sinhalese

19 Burmese

20 Khmer

21 Thai

22 Laotian

23 Georgian

24 Armenian

25 Simplified Chinese
26 Tibetan

27 Mongolian

28 Geez

29 EastEuropeanRoman
30 Vietnamese

31 ExtendedArabic

ISO 14739-1:2014

font_attributes represents the font attributes, and is a combination of the following values.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

31

ISO 14739-1:2014

Table 45 — Font attributes

Font attribute | Description

value

2 Bold

4 Italic

8 Underlined

16 Strike-Out

32 Overlined

64 Stretch. In case the font to be used is not the original font, this attribute value indicates that
the text shall be stretched to fit within its bounding box

128 Wire. This attribute value indicates that the original font is a wireframe font.

8.3.5.2.4RgbColor

Color definition with 3 components.

Table 46 — RgbColor

Name Data Type Data Description
Red Double (Required) Red
Green Double (Required) Green
Blue Double (Required) Blue

8.3.6 PRC _TYPE_ASM FileStructureTree

Eachﬁy FileStructure within a PRC file has a FileStructureTree which defines

— the number of parts and part data
— the number of product occurrences and product occurence data

within this FileStructure.

By convention, the data within PRC Files are ordered so that data is defined before it is referenced. In
the case of a FileStructureTree, part data is defined before product occurrence data which may refer to
it, but within the array of part data, the order of the parts is immaterial. This is not the case for product
occurrence data.

Product occurrence data represent an assembly, with a single product occurrence being the root. Each
product occurrence (except the root) may be referenced by only one product occurrence. However,
each product occurrence may refer to multiple product occurrences. The array of product occurence
data should be ordered so that any product occurrence is defined before the product occurrence
referring to it.

The FileStructurelnternalData defines the index of the root product occurrence and the next available
index available to use when assigning unique index (identifiers) to referenceable entities within the
FileStructure.

27
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 47 — PRC_TYPE_ASM_FileStructureTree

Name Data Type Data Description
Unsignedinteger (Required)

PRC_TYPE_ASM_FileStructureTree

Base ContentPRCBase (Required) Base information
associated with the entity

part_count UnsignedInteger (Required) Number of part
definitions

Parts Array <PRC_TYPE_ASM_PartDefinition>[part_count] (Required) An array of part

definitions

<PRC_TYPE_ASM_ProductOccurrence>[product_count]

product_count Unsignedinteger (Required) Number of product
occurrences
Products Array (Required) An array of product

occurrences

internal_data

PRC_TYPE_ASM_FileStructure

(Required)
FileStructurelnternalData

user_data

UserData

(Required) User defined data

8.3.7 PRC_TYPE_ASM FileStructureTessellation

This type gathers tessellation data of a file structure (See 6.2).
Table 48 — PRC_TYPE_ASM_FileStructureTessellation

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_ASM_FileStructureTesssellation
base ContentPRCBase (Required) Base information associated with the entity
tess_count | UnsignedInteger (Required) Number_of_tessellations
tess Array <PRC_TYPE_TESS>[tess_count] | (Required) Content of all tessellations
user_data | UserData (Required) User defined data

8.3.8 PRC_TYPE_ASM FileStructureGeometry

8.3.8.1 General

This type gathers geometry data of a file structure (See 6.2).

e U A AR AN AT e
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

33

ISO 14739-1:2014

Table 49 — PRC_TYPE_ASM_FileStructureGeometry

Name Data Type Data Description

(Required)

Unsignedinteger PRC_TYPE_ASM_FileStructureGeometry

(Required) Base information associated

Base ContentPRCBase with the entity

. (Required) Topological context entities
exact_geometry FileStructureExactGeometry and their assoclated brep bodies
user_data UserData (Required) User defined data

8.3.8.2 FileStructureExactGeometry

The FileStructureExactGeometry section consists of an array of "topological contexts". Each "topological
context”" contains an array of brep bodies contained within that topological context. Every geometrical
and topological entity within a FileStructure may only belong to a single topological context.

A pair of indices (topological context, brep body) uniquely identifies a brep body within the
topolological entities of a FileStructure.

Table 50 — FileStructureExactGeometry

Name Data Type Data Description
topo_context_count UnsignedInteger (Required) Number of topological
contexts
topo_contexts Array (Required) Array of topological contexts
<TopologicalContext>[topo_context_count| | together with its associated brep bodies

8.3.9 PRC_TYPE_ASM FileStructureExtraGeometry

8.3.9.1 General

The extra geometry data is summary data pertaining to the geometry which can be used to enable
partial loading of the file structure without loading the entire geometry. This type gathers summary
information of the exact geometry section, by topological context.

Table 51 — PRC_TYPE_ASM _FileStructureExtraGeometry

Name Data Type Data Description

UnsignedInteger (Required)
PRC_TYPE_ASM_FileStructureExtraGeometry

Base ContentPRCBase (Required) Base information associated
with the entity

extra_geom_count Unsignedinteger (Required) Number of extra geometry
contexts
extra_geom Array (Required)
<ExtraGeometry>[extra_geom_count]
user_data UserData (Required) User defined data
Copyright In?erﬂational Organization for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.3.9.2 ExactGeometry

This is the summary of a topological context.

Table 52 — ExactGeometry

Name Data Type Data Description
Summary GeometrySummary (Required) Summary Data
context_data ContextGraphics (Required) Graphics Context Data

8.3.9.2.1 GeometrySummary
8.3.9.2.1.1 General
This describes the summary list of the bodies of the topological context.

The number_of bodies shall be the same as the number of bodies in the context.

Table 53 — GeometrySummary

Name Data Type Data Description
number_of bodies UnsignedInteger (Required) The number_of bodies shall
be the same as the number of bodies in the
context.
Bodies Array (Required) Graphics information specific to
<BodyInformation>[number_of_bodies] | each body

8.3.9.2.1.2 BodyInformation

This describes the summary information of a body.

The body_serial_type shall be the type of the body that is in the topological context or it shall be set to
PRC_ROOT_TYPE if the body has no geometry. See the section 8.9.15 for details.

Table 54 — BodyInformation

Name Data Type Data Description

body_serial_type | Unsignedinteger | (Required)

tolerance Double (Optional; if body_serial_type is PRC_TYPE_TOPO_BrepDataCompress or
body_serial_type is PRC_TYPE_TOPO_SingleWireBodyCompress or
body_serial_type is PRC_TYPE_TESS_3D_Compress) The tolerance which
corresponds to the compression tolerance for the corresponding entity

8.3.9.2.2 ContextGraphics

8.3.9.2.2.1 General

This describes the summary list of the graphical attributes of entities within the topological context.

The following loop shows how to traverse a topological context to gather Graphiclnformation. A
GraphicIinformation is gathered as soon as there is a graphic content provided for a particular entity :

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 3 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

For (i=0; i<number_o

If (body[i] is PRC

f_body; i++) {
_TYPE_TOPO_BrepData) {

For (j=0; j<body[i].number_of_connex; j++) {
For (k=0; k<body[i].connex[j].number_of _shell; k++) {
For (1=0; I<body[i].connex[j].shell[K].number_of_face; 1++) {
Add_to_output(body[i].connex[j].shell[k].face[l])

}

number_of_treat_type corresponds to the number of entity types for which Graphicsinformation is
stored (currently, only PRC_TYPE_TOPO_Face is supported, so if there are graphics on some faces,
number_of_treat_type is 1, else it is 0).

The current graphics as explained in 8.5 is reset prior to writing/reading the context graphics.

Table 55 — ContextGraphics

Name Data Type Data Description

number_of_treat_type UnsignedInteger (Required) number_of treat_type

treat_types Array <Graphicsinformation>[| (Required) Graphic information for each
number_of_treat_type] type

8.3.9.2.2.2 GraphicsInformation

This describes the particular graphics for one particular type of the topological context.

Table 56 — GraphicsInformation

Name Data Type Data Description

element_type UnsignedInteger (Required)

number_of_element Unsignedinteger (Required) The number_of element
represents the number of elements
collected during a recursive search on
the Context data (including duplicated
elements) as shown in 8.5.

elemeﬁt_information Array (Required) Graphics Information for

<ElementInformation>[number_of_element] | each Element

8.3.9.2.2.3 ElementInformation

This describes the particular graphics for one particular element of the topological context.

2L
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 57 — ElementInformation

Name

Data Type

Data Description

has_graphics

Boolean

(Required) has_graphics is TRUE if
element[i] has graphics

graphic_behavior

ElementGraphicsBehavior

(Optional; if has_graphics is TRUE) If
element[i] has Graphics

8.3.9.2.2.4 ElementGraphicsBehavior

This describes graphics for one particular element of the topological context.

Table 58 — ElementGraphicsBehavior

Name Data Type Data Description

use_context Boolean (Required) use_context is TRUE if use
current graphic context

biased_layer_index UnsignedInteger (Optional; if wuse_context is FALSE)
layer_index + 1 where layer_index
represents the index in the array of layers
stored in FileStructurelnternalGlobalData.

biased_index_of_line_style | Unsignedinteger (Optional; if use_context is FALSE)
index_of_line_style + 1 where

index_of_line_style represents the index
in the array of styles stored in
FileStructurelnternalGlobalData.

behavior_bit_field

Array <UnsignedCharacter>[2]

(Optional; if use_context is
behavior_bit_field
behaviour_bit_field is an unsigned short

integer (2 bytes) . See Section
ContextGraphics for details.

FALSE)

8.3.10 PRC_TYPE_ASM_ProductOccurrence

8.3.10.1 General

A product occurrence defines an assembly tree. In the case of a single part, the product occurrence
points directly to a part definition (PRC_TYPE_ASM_PartDefinition). In the case of a more complex
assembly, a product occurrence is comprised of a list of product occurences.

A product occurrence is comprised of the following data:

— Part definition: A pointer to the corresponding part definition. It can be null.

— Product prototype: A pointer to the corresponding product occurrence prototype. It can be null.

— External data: A pointer to the corresponding external product occurrence. It can be null.

— Children: An array of pointers to the child product occurrences.

The product prototype is the product occurrence of a subassembly or part to be used in the parent
assembly. This prototype acts as a template for a given product occurrence, and lets you link to
information inside the subpart or assembly, such as geometry. When building assemblies from

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

37

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

subassemblies, the tree of children of the product occurrence is duplicated from the prototype
description. For external data, the tree is only described inside the external data product occurrence.
(refer to Figure 1 in Section 5.1)

When the assembly is heterogeneous (originating from different CAD systems), the link is specified
through the external data rather than the prototype.

A product occurrence has at most one parent.

Table 59 — PRC_TYPE_ASM_ProductOccurrence

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_ASM_ProductOc
currence

Base PRCBaseWithGraphics (Required)

references_product_o | ReferencesOfProductOccurrence (Required)

ccurence

product_behavior Character (Required)

product_behavior

represents the various
flags for the product. In
this version of PRC, only
PRC_PRODUCT_BEHAVIOU
R SUPPRESSED == 0x01 is
used. The other flags
should be set to 0.

product_information |Productinformation (Required)

has_transform Boolean (Required) TRUE if there is
a transformation; else
FALSE

Location Transformation (Optional; if has_transform

is TRUE) location
transforms entities in the
product occurrence to its
parent space.

entity_ref_count UnsignedInteger (Required) Number of
references
entity_reference Array (Required)
<PRC_TYPE_MISC_EntityReference>[entity_ref_count] entity_reference is the
referenced entities with
possible modifiers

towards their nominal
definition, which may
include location, color, and
visibility.

20 .
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

Table 59 (continued)

ISO 14739-1:2014

Name

Data Type

Data Description

Markups

MarkupData

(Required) markups
represents the markups of
this product occurrence
(as opposed to part
definition markups); these
are grouped into
annotations.

number_of views

Unsignedinteger

(Required) Number of

views

Views

Array <PRC_TYPE_MKP_View>[number_of_views]

views
views
contain
specific

(Required)
represents the
which can
annotations or
display parameters.

has_filter

Boolean

(Required) TRUE if
product occurrence has
entity_filter; else FALSE

entity_filter

PRC_TYPE_ASM_Filter

(Optional; if has_filter is
TRUE) entity_filter is a
specific filter applied when
loading data from product
prototypes denoting sub-
assemblies.

number_of_display_fil | UnsignedInteger (Required) Number of
ters display_filters
display_filters Array (Required) display_filters

<PRC_TYPE_ASM_Filter>[number_of_display_filters]

represents the filters to
use for display. Several
filters can be specified, but
only one can be active (see
8.3.12).

number_of_scene_par | UnsignedInteger (Required) Number of

ameters scene_display_parameter
s

scene_display_param |Array (Required)

eters

<PRC_TYPE_GRAPH_SceneDisplayParameter[number_of_sc
ene_param|

scene_display_parameter
s is reserved for future
use.

user_data

UserData

(Required) User defined
data

8.3.10.2 ReferencesOfProductOccurrence

8.3.10.2.1 General

For a given file structure, the product occurrences should be ordered based on the following criteria:

— A product prototype in the same file structure should be stored before any occurrences that use it.

L A TeA Anaa AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under !ibense with ISO
No reproduction or networking permitted without license from IHS

39

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— External data in the same file structure should be stored before any occurrences that use it.
— A child occurrence should be stored before its parent.
— A part definition can be referenced several times in the same file structure.

(See to Figure 1 in Section 5.1.)

Table 60 — ReferencesOfProductOccurrence

Name Data Type Data Description

biased_index_part UnsignedInteger (Required) index_part + 1
where index_part represents
the index of the part
definition in the array of part
definitions of the same
FileStructure.

biased_index_prototype UnsignedInteger (Required) index_prototype
+ 1 where index_prototype
represents the index of the
product prototype in the
FileStructure product
occurrences array.

prototype_in_same_file_struc | Fileldentifier (Optional; if index_prototype
ture is NOT -1)
prototype_in_same_file_stru
cture indicates whether the
prototype is in the same
FileStructure.

biased_index_external_data UnsignedInteger (Required)
index_external_data + 1
where index_external_data
represents the index of the
external data.

external_data_in_same_file_st | Fileldentifier (Optional; if
ructure index_external_data is NOT -
1)

external_data_in_same_file_
structure indicates whether
the external data is in the
same FileStructure.

number_of_child_product_oc | Unsignedinteger (Required) Number of child
currences product occurrences
index_child_occurrence Array (Required)
<UnsignedInteger>[number_of_child_product | index_child_occurrence,
_occurrences] which is mandatory in the
same file structure,

represents the index of the
child product occurrence.

8.3.10.2.2 Fileldentifier

This is the identifier of the FileStructure that the prototype or external data if it is different from the
FileStructure that the product occurrence lies in.

AN :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 61 —Fileldentifier

Name Data Type Data Description

Flag

Boolean (Required) flag is TRUE if the entity exists
in the same FileStructure;

unique_id CompressedUniqueld (Optional; if flag is FALSE) the identifier of

the FileStructure that the entity lies in

8.3.10.3 Productinformation

8.3.10.3.1 General

This is used to save general information associated with a product occurrence.

Table 62 — Productinformation

Name Data Type Data Description

unit_from_CAD_file Boolean (Required) unit_from_CAD_file indicates
whether the unit is read from the native
CAD file.

Unit Double (Required) unit represents the units in
mm.

product_information_flags | Character (Required) product_information_flags is
described in PRCProductFlag.

product_load_status Integer (Required) product_load_status is

described in EPRCProductLoadStatus.

8.3.10.3.2 PRCProductFlag

These flags represent characteristics of product occurrences.

A product occurrence can be:

Default: The product occurrence is the default container, configuration, or view. This means that it
is loaded by default in the originating CAD system.

Internal: when used as a prototype of another product occurrence, this product occurrence does
not come from a different physical file. Hence it should belong to the same file structure.

Container: The product occurrence acts as a repository of child occurrences that do not necessarily
have relationships between them. This is useful for situations where a single CAD file can
correspond to a whole database of parts and assemblies.

Configuration: This is a specific arrangement of a product with respect to its whole hierarchy. Some
parts may differ or are in a different position. For example, consider the case of an automobile
where the steering wheel may be either on the left or right side.

View: A product occurrence which is a view refers to another product occurrence (its prototype) to
denote a particular setting of visibilities and position within the same hierarchy.

If none of these flags is specified, a product occurrence is referred to as regular. If the product
occurrence has no parent, it is similar to a configuration. A product occurrence with no parent leads to a
different FileStructure, unless it is internal, meaning that it represents a part, subassembly, or assembly

et A A AT e
Copyright International Organization for Standardization ‘,htS reserved 4'1
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita

No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

hierarchy inside the same FileStructure. If the flag is PRC_PRODUCT_FLAG_REGULAR or
PRC_PRODUCT_FLAG_CONTAINER all other flags are ignored. Otherwise, the flags are legal in any
combination.

Table 63 — PRCProductFlag

Value | Type Name

0x00 | PRC_PRODUCT_FLAG_REGULAR
0x01 | PRC_PRODUCT_FLAG_DEFAULT
0x02 | PRC_PRODUCT_FLAG_INTERNAL
0x04 | PRC_PRODUCT_FLAG_CONTAINER
0x08 | PRC_PRODUCT_FLAG_CONFIG
0x10 | PRC_PRODUCT_FLAG_VIEW

8.3.10.3.3 EPRCProductLoadStatus

This represents the status of a loading of a product occurence that may exist in a different file. This
status represents the availability of that external resource at the time the PRC file was created.

Table 64 — EPRCProductLoadStatus

Value | Type Name Description

0 KEPRCProductLoadStatus_Error Unknown status

1 KEPRCProductLoadStatus_NotLoaded Loading error. For example, there is a missing file

2 KEPRCProductLoadStatus_NotLoadable | Not loadable. For example, something prevents the file from
being loaded.

3 KEPRCProductLoadStatus_Loaded The product was successfully loaded

8.3.10.4 MarkupData

This is all the data that are related to Markup for a part or a product.
Table 65 — MarkupData

Name Data Type Data Description
number_of_linked_items UnsignedInteger (Required)
linked_items Array (Required) array of linked items

<PRC_TYPE_MISC_MarkupLinkedItem>[numb
er_of Inked_items]

number_of _leaders UnsignedInteger (Required)

Leaders Array (Required) array of leaders
<PRC_TYPE_MKP_Leader>number_of_leader

s]

number_of_markups UnsignedInteger (Required)
Copyright Inllier?ational Organization for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 65 (continued)
Markups ArrayOf[PRC_TYPE_MKP_Markup] (Required) array of markups
number_of annotation_e UnsignedInteger (Required)
ntities
annotation_entities Array (Required) array of annotation
<AnnotationEntities>[number_of_annotation | entities
_entities]

8.3.10.5 AnnotationEntities

An annotation entity can be a:
PRC_TYPE_MKP Annotationltem
PRC_TYPE_MKP_AnnotationSet
PRC_TYPE_MKP_AnnotationReference
8.3.11 PRC_TYPE_ASM_PartDefinition

This represents a part definition.
A part consists of:

— A Bounding _box
— views represents the views which can contain annotations or specific display parameters.

Table 66 — PRC_TYPE_ASM_PartDefinition

Name Data Type Data Description

UnsignedInteger (Required)
PRC_TYPE_ASM_PartDefinition

Base PRC_TYPE_ROOT_PRCBaseWithGraphics (Required)

bounding_box BoundingBox (Required)

number_of_representatio | Unsignedinteger (Required)

n_items

representation_items Array (Required) A collection of
<PRC_TYPE_RI>[number_of_representatio | visible representation_items
n_items] containing geometrical data;

Copyright International Org:;iz‘:;ign %F‘&aﬁdard‘iz‘;&i’o’;‘;hts reserved 43

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 66 (continued)

Name Data Type Data Description

Markups MarkupData (Required) markups
representing the markups of
this part definition (as opposed
to product occurrence
markups); these are grouped
into annotations.

number_of_views UnsignedInteger (Required) Number of views

Views Array (Required) Array of views data

<PRC_TYPE_MKP_View>[number_of_views]
user_data UserData (Required) User defined data

8.3.12 PRC_TYPE_ASM_Filter

8.3.12.1 General

This entity specifies the filtering between parts and assemblies. A filter denotes the particular usage of a
subpart or product occurrence within a more complex one. It has the following purposes:

— Torepresent only those items that are of interest in the complex assembly.

— To configure the display accordingly.

Table 67 — PRC_TYPE_ASM _Filter

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_ASM_Filter
Base ContentPRCBase (Required) Base information
associated with the entity
is_active Boolean (Required) is_active: indicates

whether this filter corresponds to the
active layout when loading the file.

layer_filter

ContentLayerFilterltems

(Required) Layer filter

entity_filter

ContentEntityFilterltems

(Required) Entity filter

user_data

UserData

(Required) User defined data

8.3.12.2 ContentLayerFilterItems

This saves information for filtering of entities by layer: only entities having certain layer specifications
will keep the show status they have without the filter. All other entities will be set to no show.

AA
Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 68 — ContentLayerFilterltems

Name Data Type Data Description

b_is_inclusive Boolean (Required) b_is_inclusive indicates
whether the elements inside the filter
shall be retained.

number_of layers UnsignedInteger (Required) Number of layers

Layers Array <Unsignedinteger>[number_of_layers] (Required) Layer index

8.3.12.3 ContentEntityFilterltems

This saves information for a filtering directly by entities: only entities referred to in the array will keep
the show status they have without the filter. All other entities will be set to no show.

Table 69 — ContentEntityFilterltems

Name Data Type Data Description
b_is_inclusive Boolean (Required) b_is_inclusive indicates
whether the elements inside the filter
shall be retained.
number_of_entities | Unsignedinteger (Required) Number of entities
Entities Array <PRC_TYPE_MISC_EntityReference> | (Required) Basic entity information
[number_of_entities]

8.4 Miscellaneous Data

8.4.1 Entity Types

This section gathers types allowing for entities’ referencing and positioning.

Table 70 — Miscellaneous data entity types

Type Name Type Value Referenceable
PRC_TYPE_MISC PRC_TYPE_ROOT + 200 no
PRC_TYPE_MISC_Attribute PRC_TYPE_MISC + 1 No
PRC_TYPE_MISC_CartesianTransformation | PRC TYPE_MISC + 2 No
PRC_TYPE_MISC_EntityReference PRC_TYPE_MISC + 3 No
PRC_TYPE_MISC_MarkupLinkedItem PRC _TYPE_MISC + 4 No
PRC_TYPE_MISC_ReferenceOnPRCBase PRC TYPE_MISC + 5 No
PRC_TYPE_MISC_ReferenceOnTopology PRC _TYPE_MISC + 6 No
PRC_TYPE_MISC_GeneralTransformation PRC_TYPE_MISC +7 No

8.4.2 PRC_TYPE_MISC

This is the base type for PRC_TYPE_MISC entity types.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

45

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.4.3 PRC_TYPE_MISC Attribute

8.4.3.1 General

This represents the storage of an attribute which has a single title and a variable number of key/value

pairs.

For example, an attribute might contain the coordinates of the center of gravity, which would be
represented by an attribute with title "Center of Gravity" and three key/value pairs (X =, 5), (Y =, 10)

and (Z =, 20).
Table 71 — PRC_TYPE_MISC Attribute
Name Data Type Data Description
. (Required)

Unsignedinteger PRC_TYPE_MISC_Attribute
attribute_title AttributeEntry (Required) Attribute title
number_of_attributes | UnsignedInteger (Required) Number of attribute

Key/Value pairs

Array <Attribute

attributes

Key/Value>[number_of _attributes]

(Required) Array of Key/Value pairs

8.4.3.2 AttributeEntry

This represents the storage of an attribute title represented by either a string or an integer containing a

predefined string.

The following are valid integer titles and their predefined character strings:

Table 72 — PRC_TYPE_MISC Attribute AttributeEntry

AL
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Integer Value | Title

2 Title

3 Subject

4 Author

5 Keywords

6 Comments

7 Template

8 Last Saved By

9 Revision Number
10 Total Editing Time
11 Last Printed

12 Create Time/Date
13 Last saved Time/Date
14 Number of Pages
15 Number of Words

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 72 (continued)

Integer Value | Title
16 Number of Characters
17 Thumbnail
18 Name of Creating Application
19 Security
Attributes with a title beginning with either “_PRC_RESERVED_ATTRIBUTE“ or

“_PRC_EXTERNAL_ATTRIBUTE" can be used in the same way as UserData as discussed in section 5.5.
They are considered as conveying proprietary information which should not be interpreted by a
conforming PRC File Reader. This proprietary information is to be interpreted together with the
application UUID of the FileStructure the attribute belongs to, unless the first 4 key/value pairs of the
attribute are:

— “_PRC_APPLICATION_UUID_1“ integer,
— “_PRC_APPLICATION_UUID_2“ integer,
— “_PRC_APPLICATION_UUID_3“ integer,
— “_PRC_APPLICATION_UUID_4“ integer

which indicates an alternate application UUID for the data to be interpreted.

Table 73 — AttributeEntry

Name Data Type Data Description

flag Boolean (Required) flag is TRUE if tiltle of the
attribute is an integer else flag is
FALSE

integer_title UnsignedInteger (Optional; if flag is TRUE) Title is an
integer

string_title String (Optional; if flag is FALSE) Title is a
string

8.4.3.3 AttributeKey/Value

PRC allows for six different kinds of attribute data, represented by the following key:

— 0 represents an invalid type
— 1represents a 32 bit integer
— 2 represents a floating point

— 3 represents a 32 bit integer interpreted as seconds since midnight UTC, January 1st 1970, not
counting leap seconds.

— 4 represents a UTF-8 character string

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 47
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— 5 represents a 64 bit integer interpreted as seconds since midnight UTC, January 1st 1970, not
counting leap seconds.

Table 74 — AttributeKey/Value

Name Data Type Data Description

title AttributeEntry (Required) Title of Key/Value Pair

(Required) Key determines what of 4

type Unsignedinteger legal types of attributes is to follow
value Integer (Optional; if type is 1)

value Double (Optional; if type is 2)

value Integer (Optional; if type is 3)

value String (Optional; if type is 4)

value_msp Integer (Optional; if type is 5) most

significant part of the 64 bit value

(Optional; if type is 5) least significant
value_lsp UnsignedInteger part of the 64 bit value. The 64 bit
value is value_msp <<32 + value_lsp

8.4.4 PRC_TYPE_MISC_CartesianTransformation

This represents a 3D transformation. Only the following flags are acceptable in defining a
PRC_TYPE_MISC_CartesianTransformation:

Table 75 — PRC_TYPE_MISC CartesianTransformation_name

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x04 PRC_TRANSFORMATION_Mirror Mirror

0x08 PRC_TRANSFORMATION_Scale Uniform scale
0x10 PRC_TRANSFORMATION_NonUniformScale | Non uniform scale

Table 76 — PRC_TYPE_MISC_CartesianTransformation

Name Data Type Data Description

name Unsignedinteger | (Required) PRC_TYPE_MISC_CartesianTransformation_name

transform | Transformation | (Required) Data defining the cartesian transformation which is limited to the
above table

8.4.5 PRC_TYPE_MISC_EntityReference

This general type can be used to reference any referenceable entity. The data stored in the reference
may include a line style, visibility, position or other property, and can be used to overwrite properties of
the referenced entity.

A0 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 77 — PRC_TYPE_MISC_EntityReference

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_MISC_EntityReference
content_entity_reference | ContentEntityReference (Required)
user_data UserData (Required) User defined data

8.4.6 PRC_TYPE_MISC MarkupLinkedItem

8.4.6.1 General

This is used to establish a cross reference between markup and geometry. It contains a reference to the
geometry in a PRC File as well as a reference to the product occurrence to which the given instance of
the geometry belongs.

For example, consider the case of a distance dimension between a part contained in two product
occurrences (assemblies). The dimension will have two MarkupLinkedItems, the first pointing to the
first product occurrence and referencing the part, the second pointing to the second product occurrence
and referencing the part as well.

Table 78 — PRC_TYPE_MISC MarkupLinkedltem

Name Data Type Data Description

Unsignedinteger (Required)
PRC_TYPE_MISC_MarkupLinkedItem
content_entity_reference | ContentExtendedEntityReference (Required) Reference to a remote product
occurrence
show_markup Boolean (Required) If TRUE, show/hide markup when

showing/hiding the referenced entity

delete_markup Boolean (Required) If TRUE, delete markup when
deleting the referenced entity

show_leader Boolean (Required) If TRUE, show the leader when
showing/hiding the referenced entity

delete_leader Boolean (Required) If TRUE, delete the leader when
deleting the referenced entity

user_data UserData (Required) User defined data

8.4.6.2 ContentExtendedEntityReference

Stores data to reference entities in remote product occurrences.

Table 79 — ContentExtendedEntityReference

Name Data Type Data Description
content_entity_reference | ContentEntityReference (Required) Reference to a remote product
occurrence
reference_data ReferenceData (Required) Reference data for the entity
Copyright International Org:;iz‘:;ign %?&a‘ndar(ﬂ‘iz‘gtiﬁa—;hts reserved 49

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.4.7 PRC_TYPE_MISC_ReferenceOnPRCBase

This describes a reference to a referenceable entity. Referenceable entity types are a subset of the PRC
base entities (see section 8.2.1 for the specific subset). Referenceable topological entities are handled
separately (see 8.4.8).

A reference to an entity consists of the UUID of the FileStructure the referenced entity lies in (if
different from the FileStructure this entity is in) and the index of the referenced entity within this

FileStructure.
Table 80 — PRC_TYPE_MISC_ReferenceOnPRCBase
Name Data Type Data Description
. (Required)
Unsignedinteger PRC_TYPE_MISC_ReferenceOnPRCBase
type_of_entity Unsignedinteger (Regulred) This is the type of the target
entity
(Required) TRUE if this reference is to
flag Boolean an entity in same File Structure as this

entity exists in else FALSE

(Optional if flag is FALSE) Unique
identifier of target FileStructure if
different from this FileStructure; See
Section Error! Reference source not
found. for details

different_unique_id | CompressedUniquelD

(Required) Unique identifer within

unique_id UnsignedInteger target File Structure

8.4.8 PRC_TYPE_MISC_ReferenceOnTopology

8.4.8.1 General

This describes a reference to a topological entity.

The following describe the data needed to locate the target entity:

— The type of topological entity being referenced shall be one of those in ReferenceOnTopology
Entities (See 8.4.8.3)

— If the target entity has a body in the Exact Geometry Section of the target FileStructure, additional
information is required to locate the target entity.

Table 81 — PRC_TYPE_MISC_ReferenceOnTopology

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_MISC_ReferenceOnTopology

type UnsignedInteger (Required) type of the topolocial entity
being referenced

flag Boolean (Required) flag is TRUE if the target
entity has a body in the Exact Geometry
Section of the target FileStructure

data AdditionalTargetData (Optional; if flag is TRUE) Data defining
the reference to the target entity

n
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

8.4.8.2 AdditionalTargetData

This is used only within PRC_TYPE_MISC_ReferenceOnTopology.

ISO 14739-1:2014

The unique identifier of the target FileStructure is stored here if it is different from the FileStructure of
the entity currently being read or written.

To locate the target entity within the target FileStructure requires the following:

— The index of the topological context of the target entity.

— The index of the body within the topological context.

— In addition, most topological entities need other indices within the body to identify themselves. The
number of additional indices and an array of index values indicate other index values that are
needed to uniquely identify the target entity. At present, the only topological entity which may be
referenced is a PRC_TYPE_TOPO_Face. For this, the requisite data would be:

— Number of additional indices is 1

— The array would consist of one Unsigned Integer which would be the index of the face within

the body.

Table 82 — AdditionalTargetData

Name

Data Type

Data Description

flag

Boolean

(Required) TRUE if the target entity
is in the same FileStructure as this
entity -

unique_id

CompressedUniqueld

(Optional; if flag is FALSE) Unique
identifier of the FileStructure the
target entity lies in

index_of _topological_index

UnsignedInteger

(Required) Index of the topological
context of the target entity within
the FileStructure

index_of_body

UnsignedInteger

(Required) Index of the body within
the topological context of the target
entity

number_of _indices

UnsignedInteger

(Required) Number of additional
indices needed to locate the target
entity

indices

Array

<UnsignedInteger>[number_of_indices]

(Required) Array of additional
indices

8.4.8.3 ReferenceOnTopology Entities

The only topological entity which may be referenced is a PRC_TYPE_TOPO_Face.

The follow topological entities may be referenced in future versions:

— PRC_TYPE_TOPO_MultipleVertex

— PRC_TYPE_TOPO_UniqueVertex

— PRC_TYPE_TOPO_WireEdge

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

51

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— PRC_TYPE_TOPO_Edge
— PRC_TYPE_TOPO_Loop
— PRC_TYPE_TOPO_Shell

— PRC_TYPE_TOPO_Connex

8.4.9 PRC_TYPE_MISC GeneralTransformation

This is a general 3D transformation consisting of the sixteen coordinates of a 4x4 matrix.
To use a 4x4 matrix to convert a 3D position of vector, one pre multiplies by the matrix, that is,

New_3D_PointOrVector « matrix * Old_3D_PointOrVector

The coefficients are stored in the following order:

Matrix (First number is row, second number is column). For example, translation is represented by
Tx=M[0][3], Ty = M[1][3], Tz=M[2][3]

Storage order:

M[0][0]

| =] :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 83 — PRC_TYPE_MISC_GeneralTransformation

Name Data Type Data Description
UnsignedInteger (Requred)
PRC_TYPE_MISC GeneralTransformation
general_transform | Array <Double>[16] (Required) 16 Coefficients of
transformation

8.4.10 ContentEntityReference

8.4.10.1 General

This represents the data defining a reference to any referenceable entity.

The index_of_local_coordinate_system may be -1 indicating no local coordinate system is present.
Otherwise, the value given is the index into the array of reference coordinate systems defined in 8.3.5.2.

If the referenced entity does not exist, no futher information should be stored. If the reference does
exist, data describing the unique identifier of the referenced entity will be present in the PRC File.

Table 84 — ContentEntityReference

Name Data Type Data Description
base PRCBaseWithGraphics (Required)
index_of local_coordinate | UnsignedInteger (Required)

Index_of_local_coordinate_system or -
1 if none present

flag Boolean (Required) TRUE if the referenced
entity exists (i.e. is not NULL)

reference_data ReferenceData (Optional; if flag is TRUE) Define the
unique identifier of the reference
entity.

8.4.10.2 ReferenceData

PRC_TYPE_MISC_ReferenceOnTopology should be used to reference an entity, whenever referencing a
referencable topological entity. Any other value is an error.

Table 85 — ReferenceData

Name Data Type Data Description

topo_reference PRC_TYPE_MISC_ReferenceOnTopology (Optional if reference is to a
referenceable topological entity)

non_topo_reference | PRC_TYPE_MISC_ReferenceOnPRCBase (Optional; if reference is to a non-
topological entity)

8.4.11 Transformation

The Transformation associated with an entity is defined as either 2D or 3D depending upon the
dimension of the entity containing the transformation.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 53
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

NOTE

— A cartesian transformation that is used to represent a 3D cartesian transformation shall be orthogonal and
shall not have homogeneous values. Non-orthogonal or homogeneous transformations are used only for the

transformations used in textures.

— PRC_TYPE_MISC GeneralTransformation is a transformation but only matrix coefficients are stored, as
described in section 8.4.9.

The Transformation is defined by its behavior which can be any combination (except as noted above) of

Table 86 — Transformation type names

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x04 PRC_TRANSFORMATION_Mirror Mirror

0x08 PRC_TRANSFORMATION Scale Uniform scale
0x10 PRC_TRANSFORMATION_NonUniformScale Non uniform scale
0x20 PRC_TRANSFORMATION_NonOrtho Non orthogonal
0x40 PRC_TRANSFORMATION_Homogeneous Homogeneous

A 3D transformation is defined by a 4x4 matrix. By default, this matrix is the identity. The following
table is used to determine the 3D transformation.

Table 87 — 3D Transformation

Name Data Type Data Description

behavior Character (Required) behavior determines the type of data used to define the
transformation; each bit of the behavior determines if the transformation
has that data

translation Vector3D (Optional; behavior & PRC_TRANSFORMATION_Translate is TRUE)
Define the transformation translation
translate -> mat[0][3] mat[1][3] mat[2][3]

non_ortho_matrix |Array (Optional; behavior & PRC_TRANSFORMATION_NonOrtho is TRUE)

<Vector3D>[3] | Define the non orthogonal matrix

nonortho.xaxis -> mat[0][0] mat[1][0] mat[2][0]
nonortho.yaxis -> mat[0][1] mat[1][1] mat[2][1]
nonortho.zaxis -> mat[0][2] mat[1][2] mat[2][2]
The vectors are unit vectors

A
Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 87 (continued)

rotation Array (Optional; behavior & PRC_TRANSFORMATION_Rotate is TRUE and
<Vector3D>[2] |behavior & PRC_TRANSFORMATION_NonOrtho is FALSE)

Define an orthogonal matrix with 2 unit vectors, X and Y. Z is the cross
product of X and Y if no mirror. Else, it is the cross product of Y and X.

rotate.xaxis -> mat[0][0] mat[1][0] mat[2][0]

rotate.yaxis -> mat[0][1] mat[1][1] mat[2][1]

If no mirror, rotate.xaxis X rotate.yaxis -> mat[0][2] mat[1][2] mat[2][2]
where X is the cross product

If mirror, rotate.yaxis X rotate.xaxis -> mat[0][2] mat[1][2] mat[2][2]
where X is the cross product

The vectors are unit vectors

non_uniform_scale |Vector3D (Optional; behavior & PRC_TRANSFORMATION_NonUniformScale is
TRUE)

Scale factor for X, y, and z component of the matrix.

non_uniform_scale.x to column mat[0][0] mat[1][0] mat[2][0]
non_uniform_scale.y to column mat[0][1] mat[1][1] mat[2][1]
non_uniform_scale.z to column mat[0][2] mat[1][2] mat[2][2]

scale Double (Optional; behavior & PRC_TRANSFORMATION_Scale is TRUE and
behavior & PRC_TRANSFORMATION_NonUniformScale is FALSE)

Define the scale
apply scale to the 3x3 submatrix mat[0][0] ... mat[3][3]

homogeneous Array (Optional; behavior & PRC_TRANSFORMATION_Homogeneous is TRUE)
<Double>[4] Define the homogeneous coordinate: %, y, z, w.

Homogeneous.x -> mat[3][0]

Homogeneous.y -> mat[3][1]

Homogeneous.z -> mat[3][2]

Homogeneous.w -> mat[3][3]

A 2D transformation is defined by a 3x3 matrix. By default, this matrix is the identity. Then the
following table is used to determine the 2D transformation.

Table 88 — 2D Transformation

Name Data Type Data Description

behavior Character (Required) behavior determines the type of data used to define the
transformation; each bit of the behavior determines if the transformation
has that data

translation Vector3D (Optional; behavior & PRC_TRANSFORMATION_Translate is TRUE)

Define the transformation translation
translate -> mat[0][2] mat[1][2]

non_ortho_matrix | Array (Optional; behavior & PRC_TRANSFORMATION_NonOrtho is TRUE)
<Vector3D>[3] | Define the non orthogonal matrix

nonortho.xaxis -> mat[0][0] mat[1][0]

nonortho.yaxis -> mat[0][1] mat[1][1]

The vectors are unit vectors.

: ATeA Ana A AT

Copyright International Organization for Standardization ,htS reserved 5 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita

No reproduction or. hetworking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 88 (continued)

rotation Array (Optional; behavior & PRC_TRANSFORMATION_Rotate is TRUE and
<Vector3D>[2] | behavior & PRC_TRANSFORMATION_NonOrtho is FALSE)

xaxis -> mat[0][0] mat[1][0]
yaxis -> mat[0][1] mat[1][1]
The vectors are unit vectors.

non_uniform_scale | Vector3D (Optional; behavior & PRC_TRANSFORMATION_NonUniformScale is
TRUE)

Scale factor for x, y.
non_uniform_scale.x to column mat[0][0] mat[1][0]
non_uniform_scale.y to column mat[0][1] mat[1][1]

scai{e Double (Optional; behavior & PRC_TRANSFORMATION_Scale is TRUE and
; behavior & PRC_TRANSFORMATION_NonUniformScale is FALSE)

Define the scale
apply scale to the 2x2 submatrix mat[0][0] ... mat[1][1].

horhogeneous Array (Optional; behavior & PRC_TRANSFORMATION_Homogeneous is TRUE)
<Double>[4] Define the homogeneous coordinate: x, y, w.

Homogeneous.x -> mat[2][0]

Homogeneous.y -> mat[2][1]

8.5 Graphics
8.5.1 Entity types

Table 89 — Graphics entity types

Type Name Type Value Referenceable
PRC_TYPE_GRAPH PRC_TYPE_ROOT + 700
PRC_TYPE_GRAPH_Style PRC_TYPE_GRAPH + 1 yes
PRC_TYPE_GRAPH _Material PRC TYPE GRAPH + 2 yes
PRC_TYPE_GRAPH_Picture PRC_TYPE_GRAPH + 3 no
PRC_TYPE_GRAPH_TextureApplication PRC_TYPE GRAPH + 11 yes
PRC_TYPE_GRAPH_TextureDefinition PRC_TYPE GRAPH + 12 yes
PRC_TYPE_GRAPH_TextureTransformation PRC_TYPE GRAPH + 13 no
PRC_TYPE_GRAPH_ LinePattern PRC_TYPE GRAPH + 21 yes
PRC_TYPE_GRAPH_FillPattern PRC_TYPE_GRAPH + 22 no
PRC_TYPE_GRAPH_DottingPattern PRC_TYPE_GRAPH + 23 yes
PRC_TYPE_GRAPH_HatchingPattern PRC_TYPE_GRAPH + 24 yes
PRC_TYPE_GRAPH_SolidPattern PRC_TYPE_GRAPH + 25 yes
PRC_TYPE_GRAPH_VpicturePattern PRC TYPE GRAPH +26 yes
PRC_TYPE_GRAPH_AmbientLight PRC_TYPE_GRAPH + 31 yes
PRC_TYPE_GRAPH_PointLight PRC_TYPE_GRAPH + 32 yes
PRC_TYPE_GRAPH_DirectionalLight PRC_TYPE _GRAPH + 33 yes

Copyright Inereational Organizaton for Standardization © 1SO 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 89 (continued)
PRC_TYPE_GRAPH_SpotLight PRC_TYPE_GRAPH + 34 yes
PRC_TYPE_GRAPH_SceneDisplayParameters PRC_TYPE_GRAPH + 41 yes
PRC_TYPE_GRAPH_Camera PRC_TYPE_GRAPH + 42 yes

8.5.2 PRC_TYPE_GRAPH

The abstract type for miscellaneous graphic elements not included in part geometry, topology,
tesselation, or markups. Includes line and fill styles and patterns, colors, textures, pictures, lighting
scenes, and camera angles. Graphic elements may be applied to other elements, such as part surfaces or
markups.

8.5.3 PRC_TYPE_GRAPH_ Style

This type contains all information used to describe the style of a line.

line_width represents the line width in millimeters.

is_vpicture indicates that the drawing style is a VPicture pattern instead of a line pattern. This style
is to be found in the pattern array instead of the line pattern array (see
FileStructurelnternalGlobalData Section 8.3.5.2).

is_material indicates that the color style is a material instead of a plain color. This style is to be
found in the material array instead of the color array (see FileStructurelnternalGlobalData Section

8.3.5.2).

material_index is the index into the material array. (see FileStructurelnternalGlobalData Section
8.3.5.2).

color_index is the index into the color array. (see FileStructurelnternalGlobalData Section 8.3.5.2).

transparency values can range from 0 (transparent) to 255 (opaque).

— rendering_parameters
Table 90 — PRC_TYPE_GRAPH_Style
Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_Style

base ContentPRCRefBase (Required) Base information associated
with the entity

line_width Double (Required) line width

is_vpicture Boolean (Required) is_vpicture

biased_patern_index Unsignedinteger (Required) value is either
line_pattern_index + 1 or vpicture_index
+1

is_material Boolean (Required) is_material

biased_color_index UnsignedInteger (Required) value is either color_index + 1
or material_index + 1

Copyright International Orgzzlz'f;;lgn%F‘Sna%dard‘lz‘;nonjhts reserved 57

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 90 (continued)

is_transparency Boolean (Required) If TRUE, transparency is
defined

transparency Character (Optional; if is_transparency is TRUE)
transparency

is_rendering_parameters | Boolean (Required) If TRUE, rendering_parameters
are defined

rendering_parameters Character (Optional; if is_rendering parameters is
TRUE) rendering_parameters

flagl Boolean (Required) Not currently used (set FALSE)

flag2 Boolean (Required) Not currently used (set FALSE)

Table 91 — PRC_TYPE_GRAPH_Style rendering parameters

Rendering parameter Value
special-culling strategy applies 0x01
front culling applies (ignored if no special-culling strategy) | 0x02
back culling applies (ignored if no special-culling strategy) | 0x04
no light applied to the corresponding object 0x08

8.5.4 PRC_TYPE_GRAPH Material

This type defines basic material appearance with colors and alphas.

ambient_index: index into the RGB array (see Section 8.3.5.2)
diffuse_index: index into the RGB array (see Section 8.3.5.2)
emissive_index: index into the RGB array (see Section 8.3.5.2)

specular_index: index into the RGB array (see Section 8.3.5.2)

Table 92 — PRC_TYPE_GRAPH_Material

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_Material
base ContentPRCRefBase | (Required) Base information associated with the entity
biased_ambient_index | Unsignedinteger (Required) ambient_index + 1
biased_difuse_index UnsignedInteger (Required) diffuse_index + 1
biased_emissive_index | UnsignedInteger (Required) emissive_index + 1
biased_specular_index | UnsignedInteger (Required) specular_index + 1
shininess Double (Required) shininess
ambient_alpha Double (Required) ambient_alpha (0.0 -> 1.0)
difuse_alpha Double (Required) diffuse_alpha (0.0 -> 1.0)

o
Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 92 (continued)

emissive_alpha Double (Required) emissive_alpha (0.0 -> 1.0)

specular_alpha Double (Required) specular_alpha (0.0 -> 1.0)

The definitions for shininess, anbient_alpha, diffuse_alpha, emissive_alpha, and specular_alpha are
identical to the definitions in OpenGL.

8.5.5 PRC_TYPE_GRAPH_Picture

8.5.5.1 General

This type is used to define pictures embedded in the file.
Table 93 — PRC_TYPE_GRAPH_Picture

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_GRAPH_Picture
base ContentPRCBase (Required) Base information associated with the

entity

format EPRCPictureDataFormat | (Required) format
biased_uncompressed_file_index | Unsignedinteger (Required) uncompressed_file_index + 1
pixel_width UnsignedInteger (Required) pixel_width
pixel_height UnsignedInteger (Required) pixel_height

pixel_width and pixel_height are the size of the picture expressed in pixels. When format is 0 or 1,
pixel width and pixel height fields are ignored. When format is one of {2,3,4,5} the size of the picture
buffer when uncompressed shall be at least pixel width * pixel height * number of components per pixel

8.5.5.2 EPRCPictureDataFormat

This object is used for the format of the Picture.

Table 94 — EPRCPictureDataFormat

Value | Type Name Type Description
0 KEPRCPicture_PNG PNG format buffer
1 KEPRCPicture_JPG JPEG format buffer
2 KEPRCPicture. BITMAP_RGB_BYTE flate-formatted pixel data.
Each element is an RGB triplet (3 components).
3 KEPRCPicture BITMAP_RGBA_BYTE | flate-formatted pixel data.
Each element is an RGBA triplet (4 components).
4 KEPRCPicture_BITMAP_GREY_BYTE | flate-formatted pixel data.
Each element is a single luminance value (1 component).
5 KEPRCPicture_BITMAP_GREYA_BYTE | flate-formatted pixel data.
Each element is a luminance/alpha pair (2 components).

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 59
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.5.6 PRC_TYPE_GRAPH_TextureApplication

This type contains a definition of the complete texture pipe (multiple texturing) to be applied.

— material_generic_index represents an index in the material array (see
FileStructurelnternalGlobalData Section 8.3.5.2). This index should correspond to a
PRC_TYPE_GRAPH_Material, which defines the basic material parameters of the texture.

— texture_definition_index represents an index in the texture definition array (see Section 8.3.5.2).
— next_texture_index represents an index in the material array (see Section 8.3.5.2). This index
should correspond to a PRC_TYPE_GRAPH_TextureApplication, which is used as the next level of

texture in multiple texturing. This index is set to -1 if it is the last level of texture.

— uv_coordinates_index represents the texture mapping coordinates index (see
PRC_TYPE_TESS_FACE section 8.8.6 and below).

Table 95 — PRC_TYPE_GRAPH_TextureApplication

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_GRAPH_TextureApplication

base ContentPRCRefBase (Required) Base information
associated with the entity

biased_material_generic_index | Unsignedinteger (Required) material_generic_index
+1

biased_texture_definition_index | Unsignedinteger (Required)
texture_definition_index + 1

biased_next-texture_index UnsignedInteger (Required) next_texture_index + 1

biased_uv_coordinates_index UnsignedInteger (Required) uv_coordinates_index +
1

uv_coordinates_index denotes the set of UV coordinates to consider in the PRC TYPE TESS Face for
textured entities, as there might be several UV coordinates for each point.

See: number_of_texture_coordinate_indexes in PRC TYPE TESS_Face.

For example, a simple triangle with TWO texture coordinates index 1is described by
(normal,{texturel,texture2},point,

normal, {texturel,texture2},point,
normal, {texturel,texture2},point).

UV_coordinate_index indicates which of texturel or texture2 should be used.
8.5.7 PRC_TYPE_GRAPH_TextureDefinition

This type contains a single set of texture parameters to be used in a TextureApplication.

A definition for the unique variables follows:

— picture_index represents the index in the picture array (see FileStructurelnternalGlobalData
Section 8.3.5.2).

— texture_dimension represents the dimension of the image. It's possible values are 1, 2, and 3 (1
and 3 are reserved for future use).

N :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— texture_mapping_attributes is a bit field that represents the procedure used to apply the texture
(see texture mapping attributes table below). This information can be combined with additional
information, such as intensity, and involves color or alpha components.

— size_texture_mapping_attributes_intensities can be set either to 0 or to the number of
procedures deduced from texture_mapping_attributes. If it is set to 0, the intensity is set to 1.
Otherwise, its values should be in the range [0.0,1.0] and should correspond to each nonzero bit of
texture_mapping_attributes, respectively. The same is true for
size_texture_mapping_attributes_components, for which the default value is
PRC_TEXTURE_MAPPING_COMPONENTS_RGBA (see texture mapping attributes table below).
Multiple procedures for texture application are reserved for future use. Therefore
size_texture_mapping_attributes_intensities and
size_texture_mapping_attributes_components contain at most one element. If
texture_mapping _attributes = PRC_ TEXTURE_MAPPING_DIFFUSE, then
size_texture_mapping_attributes_intensities = 0. For each bit of texture_mapping_attributes
with a value of 1, intensity will be 1.0 by default. If
size_texture_mapping_attributes_components = 0, then for each bit of
texture_mapping_attributes with a value of 1, components will be
PRC_TEXTURE_MAPPING_COMPONENTS_RGBA by default. Or:

texture_mapping_attributes = PRC_TEXTURE-MAPPING_DIFFUSE
size_texture_mapping_attributes_intensities = 1
texture_mapping_attributes_intensities[0] = 1.0
size_texture_mapping_attributes_components = 1
texture_mapping_attributes_components[0] = PRC_TEXTURE_MAPPING_COMPONENTS_RGBA
— texture_function : see texture function table below.

— blend_src_rgb, blend_dst_rgb, blend_src_alpha, blend_dst_alpha; blending modes are reserved
for future use.

— texture_applying_mode : see texture application mode table below.
= alpha_test : reserved for future use.
— alpha_test_reference : threshold value for alpha test; used in conjunction with alpha_test.
— texture_wrapping_mode_s : Repeating mode; U direction; see wrapping mode table below.
[texture_wrapping mode_t : Repeating mode; V direction; see wrapping mode table below.

— texture_wrapping mode_r : Repeating mode; W direction (for multi dimension textures) ; see
wrapping mode table below.

— texture_transformation : optional transformation on texture coordinates.

Table 96 — PRC_TYPE_GRAPH_TextureDefinition

Name Data Type Data Description
UnsignedInteger (Required)
Copyright International Org:;iz‘:;ign %F‘&aﬁdard‘iz‘;&i’o’;‘;hts reserved 61

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Name Data Type Data Description
PRC_TYPE_GRAPH_TextureDefinition
base ContentPRCRefBase (Required) Base information
associated with the entity
biased_picture_index UnsignedInteger (Required) picture_index + 1
texture_dimension Character (Required) texture dimension = 2
(1 and 3 are reserved for future
use)
texture_mapping_type Integer (Required) texture mapping type
texture_mapping_operator Integer (Optional; if texture_mapping_type
is4)
texture mapping operator
has_transformation Bolean (Required) has_transformation

transformation

Cartesian Transformation

(Optional; if has_transformation is
TRUE) If(has_transformation != 0)

texture_mapping-attributes UnsignedInteger (Required) texture mapping
attributes
number_of_texture_mapping_attr | UnsignedInteger (Required) number of
ibutes_intensities texture_mapping_attributes_inte
nsities (shall be 0 or 1)
texture_mapping_attributes_inte | Array <Double> | (Optional; if

nsities

[number_of_texture_mapping attr
ibuts_intensities]

number_of _texture_mapping attr
ibutes_intensities is not 0)
texture_mapping_attributes_intensit
ies[0] = 1.0

number_of_texture_mapping
attributes_ components

UnsignedInteger

(Required) number of
texture_mapping_attributes_
components (shall be 0 or 1)

texture_mapping _attributes_
components

Array <Character>

[number_of_texture_mapping
attributes components]

(Optional; if
number_of_texture_mapping
attributes components is not 0)
texture_mapping_attributes_compo
nents[0] = 0x000F

texture_function Integer (Required) texture_function
(reserved for future use)
blend_src Array <Double>[4] (Optional; if texture_function is
KEPRCTextureFunctionBlend)
[red, green,blue,alphal]
blend color components In
the range (0.0, 1.0)
blend_src_rgb Integer (Required) blend_src_rgb
(reserved for future use)
blend_src_alpha Integer (Required) blend_src_alpha
(reserved for future use)
texture_application_mode Character (Required)
texture_application_mode
alpha_test Integer (Optional; if
texture_application_mode &

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

']
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

ISO 14739-1:2014

Name

Data Type

Data Description

PRC_TEXTURE_APPLYING_MODE_A
LPHATEST is TRUE) alpha_test

Option:alpha_test_reference Double

(Optional; if
texture_application_mode &
PRC_TEXTURE_APPLYING_MODE_A
LPHATEST is TRUE)
alpha_test_reference

texture_wrapping_mode Character

(Required)
texture_wrapping_mode

texture_wrapping_mode_s integer

(Required)
texture_wrapping_mode_S

texture_wrapping_mode_t integer

(Optional; if texture_dimension > 1)
texture_wrapping_mode_t

texture_wrapping_mode_r Integer

(Optional; if texture_dimension>2)
texture_wrapping mode_r

texture_transformation Boolean

(Required) texture_transfomation

transformation

mation

PRC_TYPE_GRAPH_TextureTransfor

(Optional;
if(texture_transfomation is TRUE)
(see section
PRC_TYPE_GRAPH_TextureTransfor
mation 8.5.8)

Table 97 — Texture mapping type

Texture mapping type

Value

Let the application choose.

Use the mapping coordinates that are stored on a 3D tessellation | 2

object.

Retrieve the UV coordinates on the surface as mapping coordinates | 3

(reserved for future use).

Use the defined Texture mapping operator to calculate mapping | 4

coordinates (reserved for future use)

Table 98 — Texture mapping operator

Texture mapping operator | Integer value
Unknown (default value) 1
Planar 2
Cylindrical 3
Spherical 4
Cubic 5

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

63

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 99 — Texture mapping attributes

Texture mapping attributes | Integer value
Red component 0x0001
Green component 0x0002
Blue component 0x0004
RGB component 0x0007
Alpha component 0x0008
RGBA component 0x000F

Table 100 — Texture function

Texture function Integer value
Unknown - Let the application choose. 1
Modulate - Combine lighting with texturing (default value). | 2
Replace the object color with texture color data. 3
Blend 4
Decal 5

Table 101 — Texture application mode

Texture application mode Character value
Let the application choose. (All states disabled.) 0x0000
Use lighting mode. 0x0001
Use alpha test. 0x0002
Combine a texture with one-color-per-vertex mode. | 0x0004

Table 102 — Texture wrapping mode

Texture wrapping mode Integer value
Unknown - Let the application choose. 1

Repeat - Display the repeated texture on the surface. 2
ClampToBorder - Clamp the texture to the border. Display the surface color along the | 3

texture limits.

Clamp 4

Clamp té edge

Mirrored repeat 6

8.5.8 PRC_TYPE_GRAPH_TextureTransformation

This type contains the transformation data used in a texture definition. In the current release, texture

transformations are limited to two dimensions.

ZA
Copyright International Organization for Standardization

© ISO 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 103 — PRC_TYPE_GRAPH_TextureTransformation

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_GRAPH_TextureTransformation

invert_s Boolean (Required) If(TRUE) the S coordinate
parameter is inverted.

invert_t Boolean (Required) If(TRUE) the T coordinate
parameter is inverted.

transform_2d Boolean (Required) If(TRUE) the matrix
transformation contains only 2-dimensional
terms. (Always TRUE in this version.) ‘

transform Transformation (Required) 2d transformation (see sectionf
8.4.11 Transformations) ;

8.5.9 PRC_TYPE_GRAPH LinePattern

This type contains the information used to display the dashes and gaps that comprise a line pattern.
Table 104 — PRC_TYPE_GRAPH_LinePattern

<Double>[number_of_elements]

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_LinePattern
base ContentPRCRefBase (Required) Base information associated with the
entity
number_of_elements | Unsignedinteger (Required) number of unique dash-array
elements
lengths Array lengths of each type of alternating dashes and

gaps, length

start_offset Double (Required) the offset within the dash pattern at
which to start the dash, phase
scale Boolean (Required) If scale is TRUE the pattern aspect

that scales with the view.

If a pattern scales with the view, the unit of length is the same as the product occurrence it is associated

with: otherwise, lengths are to be interpreted as a ratio.

8.5.10 PRC_TYPE_GRAPH _FillPattern

Abstract class for a two-dimensional display style. This type contains information related to a fill
pattern, which can be one of the following types of patterns:

— Dotting pattern (PRC_TYPE_GRAPH_DottingPattern)

— Hatching pattern (PRC_TYPE_GRAPH_HatchingPattern)

— Solid pattern (PRC_TYPE_GRAPH_SolidPattern)

— Vectorized picture pattern (PRC_TYPE_GRAPH_VPicturePattern)

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

65

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.5.11 PRC_TYPE_GRAPH_DottingPattern

This type describes a two-dimensional filling pattern with points. By default, this pattern describes a
regular grid of points spaced with pitch (zizag==FALSE). If zizag is true, the points are offset in X by

pitch/2.0 for the odd row.

— next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 8.3.5.2).

— color_index represents the index into the color array (see FileStructurelnternalGlobalData Section

8.3.5.2).
Table 105 — PRC_TYPE_GRAPH_DottingPattern
Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_DottingPattern
base ContentPRCRefBase (Required) Base information associated with
the entity
biased_next_pattern_index | Unsignedinteger (Required) next_pattern_index + 1
pitch Double (Required) pitch of point spacing
is_offset Boolean (Required) If is_offset is TRUE, the points
are offset in X by (pitch/2.0) for the odd row.
biased_color_index Integer (Required) color_index + 1

8.5.12 PRC_TYPE_GRAPH_HatchingPattern

This type describes a two-dimensional filling pattern with hatches. This pattern is defined by a group of
infinite lines, each having its own dash pattern and color.

— next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 8.3.5.2).

Table 106 — PRC_TYPE_GRAPH_HatchingPattern

Name Data Type Data Description
Unsignedinteger (Required)
PRC_TYPE_GRAPH_HatchingPattern
base ContentPRCRefBase (Required) Base information associated with

the entity

biased. next_pattern_index

Unsigned integer

(Required) next_pattern_index + 1

number_of hatching_lines

UnsignedInteger

(Required) number of pattern hatching lines

hatch

Array<groups of 5 Doubles and
1 Integer>[number of hatching
lines]

(Required) (2 D vector start point, 2 D
vector end point, Double angle,
Index_of line_style + 1)

8.5.13 PRC_TYPE_GRAPH SolidPattern

This type defines a two-dimensional filling pattern with a particular style (color, material, texture).

— next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 8.3.5.2)

o
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— material_index is the index into the material array. (see FileStructurelnternalGlobalData Section
8.3.5.2)

— color_index is the index into the color array. (see FileStructurelnternalGlobalData Section 8.3.5.2)

Table 107 — PRC_TYPE_GRAPH SolidPattern

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_GRAPH_SolidPattern

base ContentPRCRefBase | (Required) Base information associated with the entity

biased_next_pattern_index | Unsignedinteger (Required) next_pattern_index + 1

is_material Boolean (Required) If is_material is TRUE then the fill is a material
otherwiswise plain color.

biased_material_index UnsignedInteger (Optional; if is_material is TRUE) material_index+1

biased_color_index UnsignedInteger (Optional; if is_material is FALSE) color_index+1

8.5.14 PRC_TYPE_GRAPH VpicturePattern

This type defines a two-dimensional filling pattern consisting of a vectorized picture. In this version a
restricted version of PRC_TYPE_TESS_Markup is used. The allowed types are:

— Polyline

— Triangles
— Color

— Line Stipple
— Points

— Polygon

— Line Width

next_pattern_index represents the index of the next pattern (superimposed) in the pattern array (see
FileStructurelnternalGlobalData Section 8.3.5.2).

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 67
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 108 — PRC_TYPE_GRAPH_VpicturePattern

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_GRAPH_VpicturePattern
base ContentPRCRefBase (Required) Base information associated with
the entitiy
biased_next_pattern_index | UnsignedInteger> (Required) next_pattern_index + 1
patern_dimensions Array <Double>[2] (Required) X and Y dimensions of the pattern

one for x one fory

markup

PRC_TYPE_TESS_Markup

(Required) PRC_TYPE_TESS_Markup object
(See MARKUP Section for types)

8.5.15 PRC_TYPE_GRAPH_AmbientLight

This type defines the ambient illumination of a scene.

Table 109 — PRC_TYPE_GRAPH_AmbientLight

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_AmbientLight
base ContentPRCRefBase (Required) Base information associated with

the entity

biased_ambient_index | UnsignedInteger

(Required) ambient_index + 1

biased_diffuse_index

UnsignedInteger

(Required) diffuse_index+ 1

biased_emissive_index | Unsignedinteger

(Required) emissive_index + 1

biased_specular_index | Unsignedinteger

(Required) specular_index + 1

8.5.16 PRC_TYPE_GRAPH_PointLight

This type defines scene light from a point with attenuation factors.

Table 110 — PRC_TYPE_GRAPH_PointLight

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_PointLight

base ContentPRCRefBase (Required) Base information associated
with the entity

biased_ambient_index UnsignedInteger (Required) ambient_index + 1

biased_diffuse_index UnsignedInteger (Required) diffuse_index + 1

biased_emissive_index UnsignedInteger (Required) emissive_index + 1

biased_specular_index Unsignedinteger (Required) specular_index + 1

location Vector3d (Required) location of light

constant_attenuation_factor | Double (Required) constant light attenuation factor
in the range [0.0,1.0]

£O0
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 110 (continued)

linear_attenuation_factor Double

(Required) linear light attenuation factor in
the range [0.0,1.0]

quadratic_attenuation_factor | Double

(Required) quadratic light attenuation
factor in the range [0.0,1.0]

The attenuation factor is defined (like OpenGL) as:

F « 1/(Cc + CI*d +Cq*d*d)

Where:
d= postive distance between the light's position and the
vertex
Cc= constant light attenuation
Cl= linear light attenuation.
Cqg= quadratic light attenuation

8.5.17 PRC_TYPE_GRAPH DirectionalLight

This type defines scene directional illumination.

Table 111 — PRC_TYPE_GRAPH DirectionalLight

Name Data Type Data Description
Unsignedinteger (Required) PRC_TYPE_GRAPH_DirectionalLight
base ContentPRCRefBase (Required) Base information associated with

the entity

biased_ambient_index | Unsignedinteger

(Required) ambient_index + 1

biased_diffuse_index UnsignedInteger

(Required) diffuse_index + 1

biased_emissive_index | UnsignedInteger

(Required) emissive_index + 1

biased_specular_index | UnsignedInteger

(Required) specular_index + 1

direction Vector3d

(Required) direction of light

intensity Double

(Required) light intensity, a coefficient for the
light in the range [0.0,1.0]

8.5.18 PRC_TYPE_GRAPH_ SpotLight

This type defines scene light from a spot illumination, a point, with angle, intensity and attenuation

parameters.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

69

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 112 — PRC_TYPE_GRAPH_SpotLight

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_SpotLight

base ContentPRCRefBase (Required) Base information associated
with the entity

biased_ambient_index UnsignedInteger (Required) ambient_index + 1

biased_diffuse_index UnsignedInteger (Required) diffuse_index + 1

biased_emissive_index UnsignedInteger (Required) emissive_index + 1

biased_specular_index UnsignedInteger (Required) specular _index+ 1

location Vector3d (Required) location of light

constant_attenuation_factor | Double (Required) constant light attenuation factor
in the range [0.0,1.0]

linear_attenuation_factor Double (Required) linear light attenuation factor in
the range [0.0,1.0]

quadratic_attenuation_factor | Double (Required) quadratic light attenuation
factor in the range [0.0,1.0]

direction Vector3d (Required) direction of light

fall_off_angle Double (Required) fall_off angle: the maximum
spread angle of the light source in degrees
in the range [0.0,90.0] or 180,0 degrees.

fall_off_exponent Double (Required) fall_off exponent: intensity

distribution of the light in the range
[0.0,128.0]

The fall_off_angle is the angle between the axis of the cone and a ray along the edge of the cone. A value
of 180 degrees specifies that the light is emitted in all directions.

8.5.19 PRC_TYPE_GRAPH_SceneDisplayParameters

Type defines parameters used for scene visualization, including ambient light and camera.

— index_of_line_style: index into the line style array stored in the FileStructurelnternalGlobalData
Section 8.3.5.2. This array contains a list of PRC_TYPE_GRAPH_Style objects.

— is_active: since there can be more than one object of this type, this boolen is used to specify if this
object is the currently active scene.

— rotation_center: This defines the center of rotation of the scenegraph. In other words, all objects in
the scenegraph shall turn around this point if this SceneDisplayParameters is activated.

N
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 113 — PRC_TYPE_GRAPH_SceneDisplayParameters

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_GRAPH_SceneDisplayParameters
base ContentPRCRefBase (Required) Base information associated
with the entity
is_active Boolean (Required) is_active
number_of_lights UnsignedInteger (Required) number of lights

lights

Array <PRC_TYPE_GRAPH _light
objects>[number_of_lights]

(Required) (see the sections on the light
objects for details)

camera_defined

Boolean

(Required) camera_defined is TRUE if a
camera is defined.

camera

PRC_TYPE_GRAPH _Camera

(Optional; if camera_defined is TRUE)
(see Section 8.5.20 for details)

<PRC_TYPE_SURF _Plane>
[number_of_clipping_planes]

rotation_center_defined Boolean (Required) rotation_center_defined is
TRUE if a rotation_center is defined

rotation_center Vector3d (Optional; if rotational_center_defined is
TRUE)

number_of_clipping_planes UnsignedInteger (Required) number of clipping planes

clipping_planes Array (Optional; if number_of_clipping_planes >

0) (see Section 7.11.13 for details)

number_default_styles]

index_of_line_style_background | Unsignedinteger (Required) index_of line_style+1
(background)

index_of_line_style_default UnsignedInteger (Required) index_of_line_style+1 (default)

number_default_styles UnsignedInteger (Required) number of default styles per
type

styles Array <Unsignedinteger>[2 | List of (type, line_style_index+1) pairs

(see section 7 for a list of base entities)

is_absolute

Boolean

(Required) If (TRUE), the position of lights,
camera and clipping planes are absolute
even when those parameters belong to a
sub assembly.

8.5.20 PRC_TYPE_GRAPH_Camera

This type defines the camera used in scene visualization. It contains attributes such as its position, view

angle, and zoom.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

71

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 114 — PRC_TYPE_GRAPH_Camera

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_GRAPH_Camera

base ContentPRCRefBase (Required) Base information associated with the
entity

is_orthographic Boolean (Required) If is_orthographic is TRUE then
projection is orthographic, else perspective.

position Vector3D (Required) position of the camera (3D Position)

look Vector3D (Required) "look at" point (3D Position)

up Vector3D (Required) up vector (3D Vector)

X Double (Required) field of view angle in radian (X

direction) if is_orthographic is FALSE, Scale X if
is_orthographic is TRUE

y Double (Required) field of view angle in radian (Y
direction) if is_orthographic is FALSE,, Scale Y if
is_orthographic is TRUE

ratio Double (Required) ratio of X to Y

clip_near Double (Required) near clipping plane distance from the
viewer (positive value)

clip_far Double (Required) far clipping plane distance from the
viewer (positive value)

Zoom Double (Required) zoom factor (default 1.0)

8.6 Representation items
8.6.1 Entity types

Table 115 — Representation items entity types

Type Name Type Value Referenceable
PRC_TYPE_RI PRC_TYPE_ROOT + 230
PRC_TYPE_RI_Representationalltem PRC TYPE RI+1 no
PRC_TYPE_RI BrepModel PRC_TYPE RI + 2 yes
PRC_TYPE_RI Curve PRC _TYPE RI + 3 yes
PRC_TYPE_RI Directioni PRC_TYPE RI + 4 yes
PRC_TYPE_RI_Plane PRC_TYPE_ RI+5 yes
PRC_TYPE_RI_PointSet PRC_TYPE Rl + 6 yes
PRC_TYPE_RI_PolyBrepModel PRC_TYPE RI+7 yes
PRC_TYPE_RI_PolyWire PRC_TYPE_RI + 8 yes
PRC_TYPE_RI Set PRC_TYPE_ RI+9 yes
PRC_ TfPE_ RI_CoordinateSystem PRC_TYPE_RI + 10 yes

Copyright ntermational Organization for Standarcization © 1SO 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.6.2 PRC_TYPE_RI

This is an abstract base class. When PRC_TYPE_RI class is referenced in this documentation of the PRC
File Format Specification, one of its constituent classes will be physically present in the file.

This is an abstract class to group the following classes:
— PRC_TYPE_RI_Representationltem

— PRC_TYPE_RI_BrepModel

— PRC_TYPE_RI Curve

— PRC_TYPE_RI Direction

— PRC_TYPE_RI Plane

— PRC_TYPE_RI_PointSet

— PRC_TYPE_RI_PolyBrepModel
— PRC_TYPE_RI_PolyWire

— PRC_TYPE-RI_Set

— PRC_TYPE_RI CoordinateSystem
8.6.3 PRC_TYPE_RI Representationltem
8.6.3.1 General

This is an abstract class for all representation items. PRC_TYPE_RI Representationltem denotes the
abstract type from which any Rl type derives and gathers all data common to any RI type.

8.6.3.2 RepresentationltemContent

This represents common data for all PRC_TYPE_RI entities.

— index_local_coordinate_system represents, if defined with a value other than -1, the index of
the coordinate system as stored in FileStructurelnternalGlobalData. The transformation is used
to position geometry or tessellation. The general principal is that this transformation
(LocalMatrix) shall be post multiplied by the global matrix to obtain the transformation using:

GlobalMatrix x LocalMatrix

— index_tessellation represents, if defined with a value other that -1, the index in the
FileTessellation section within a FileStructure

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 73
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 116 — RepresentationltemContent

Name Data Type Data Description
base ffC_TYPE_ROOT_PRCBaseWzthGraphz (Required)
. . . (Required)
lr)r:ased_1ndex_local_coordmate_syste UnsignedInteger index_local_coordinate_syste
m+1
biased_index_tessellation UnsignedInteger (Required) index tessellation

+1

8.6.4 PRC_TYPE_RI BrepModel

This type represents a brep model.

If the brep model has a body in the exact geometry section of the FileStructure, the index of the
topological context and the index of the body within the topological context identify the body.

A boolean flag indicates if the body is open or closed. Even if there is no body in the exact geometry
section, tessellation data may represent a closed body.

Table 117 — PRC_TYPE_RI BrepModel

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_RI_BrepModel
item_content RepresentationltemContent (Required)
exact_geometry Boolean (Required) exact_geometry is TRUE if brep

model has a body in the exact geometry
section of the File Structure ; else FALSE

index_topological_context | Unsignedinteger (Optional; if exact_geometry is TRUE)
Index of the topological context in the exact
geometry section of the File Structure

index_body UnsignedInteger (Optional; if exact_geometry is TRUE)
Index of the body within the topological
context

is_closed Boolean (Required) is_closed is TRUE if the body is

closed; else FALSE

user_data UserData (Required) User defined data

8.6.5 PRC_TYPE_RI Curve

This type represents a curve.

If there is a wire body in the exact geometry section of the FileStructure, the index of the topological
context and the index of the body within the topological context identify the wire body.

L2 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 118 — PRC_TYPE_RI _Curve

Name

Data Type

Data Description

UnsignedInteger

(Required) PRC_TYPE_RI Curve

item_content

RepresentationltemContent

(Required)

exact_geometry

Boolean

(Required) exact_geometry is TRUE if
curve has a wire body in the exact
geometry section of the File Structure ; else
FALSE

index_topological_context | Unsignedinteger

(Optional; if exact_geometry is TRUE)
Index of the topological context in the exact
geometry section of the File Structure

index_body UnsignedInteger (Optional; if exact_geometry is TRUE)
Index of the wire body within the
topological context

user_data UserData (Required) User defined data

8.6.6 PRC_TYPE_RI Direction

This type represents a direction vector with an optional origin. This is used to define an axis.

This entity can be used to define infinite construction lines.

Table 119 — PRC_TYPE_RI Direction

Name

Data Type

Data Description

UnsignedInteger

(Required) PRC_TYPE_RI Direction

item_content

RepresentationltemContent

(Required)

has_orgin Bit (Required) TRUE if the direction has an origin;
else FALSE

orgin Vector3d (Optional; if has_orgin is TRUE) Direction
origin

direction Vector3d (Required) Direction vector

user_data UserData (Required) User defined data

8.6.7 PRC_TYPE_RI Plane

This type represents a construction plane as opposed to a planar surface.

If the plane has an associated body in the exact geometry section of the FileStructure, the index of a
topological context and an index of the body within the topological context identify the body.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

75

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 120 — PRC_TYPE_RI Plane

Name

Data Type

Data Description

UnsignedInteger

(Required) PRC_TYPE_RI_Plane

item_content

RepresentationltemContent

(Required) Common data

exact_geometry

Boolean

(Required) exact_geometry is TRUE if
plane has associated body in the B-rep
model; else FALSE

index_topological_context | UnsignedInteger

(Optional; if exact_geometry is TRUE)
Index of a topological context in the exact
geometry section containing the body

index_body Unsignedinteger (Optional; if exact_geometry is TRUE)
Index of a body within the topological
context

user_data UserData (Required) Users defined data

8.6.8 PRC_TYPE_RI PointSet

This type represents a set of 3D points.
Table 121 — PRC_TYPE_RI_PointSet

Name

Data Type

Data Description

UnsignedInteger

(Required) PRC_TYPE_RI_PointSet

item_content

RepresentationltemContent

(Required)

number_of_points

UnsignedInteger

(Required) Number of points

points

Array <Vector3d>[number_of_points]

(Required) Array of points in the set

user_data

UserData

(Required) User defined data

8.6.9 PRC_TYPE_RI PolyBrepModel

This type represents a PolyBrepModel defined by the tessellation data stored in the
RepresentationltemContent. A boolean flag indicates if the tessellation is closed or open.

Table 122 — PRC_TYPE_RI_PolyBrepModel

Name

Data Type

Data Description

UnsignedInteger

(Required) PRC_TYPE_RI_PolyBrepModel

item_content

RepresentationltemContent

(Required)

is_closed Boolean (Required) is_closed is TRUE if the tessellation
is closed; else FALSE
user_data UserData (Required) User defined data

8.6.10 PRC_TYPE_RI PolyWire

This type represents a PolyWire defined
RepresentationltemContent.

e 'S
Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

by

the

tessellation data stored in the

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 123 — PRC_TYPE_RI_PolyWire

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_RI_PolyWire
item_content RepresentationltemContent (Required)
user_data UserData (Required) User defined data

8.6.11 PRC_TYPE_RI Set

This represents the logical grouping of an arbitrary number of representational items.
Table 124 — PRC_TYPE_RI Set

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_RI_Set

item_content RepresentationltemContent (Required)

number_of_items UnsignedInteger (Required) Number of representation items in

the set

representation_items | Array (Required) An array of any of the
<PRC_TYPE_RI_Representationltem> PRC_TYPE_RI xx items
[number_of_items]

user_data UserData (Required) User defined data

.8.6.12 PRC_TYPE_RI CoordinateSystem

'A coordinate system can have one of two distinct roles

— Asarepresentation item belonging to the tree of a part definition.

— An entity to position other representation items. In this role, the coordinate system exists in the
global section of the FileStructure (see FileStructurelnternalGlobalData and PRC_TYPE_RI

description).
Table 125 — PRC_TYPE_RI_CoordinateSystem
Name Data Type Data Description
Unsignedinteger (Required) PRC_TYPE_RI_CoordinateSystem

item_content RepresentationltemContent (Required)
(Required)

transform Transformation PRC_TYPE_MISC_GeneralTransformation or
PRC_TYPE_MISC_CartesianTransformation

user_data UserData (Required) User defined data

8.7 Markup

8.7.1 Entity types

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 77
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 126 — Markup entity types

Type Name Type Value Referenceable
PRC_TYPE_MKP PRC_TYPE_ROOT + 500

PRC_TYPE_MKP_View PRC_TYPE_MKP + 1 yes
PRC_TYPE_MKP_Markup PRC_TYPE_MKP + 2 yes
PRC_TYPE_MKP._Leader PRC_TYPE_MKP + 3 yes
PRC_TYPE_MKP_Annotationltem PRC_TYPE_MKP + 4 yes

PRC_TYPE _MKP_AnnotationSet PRC_ TYPE_MKP + 5 yes
PRC_TYPE_MKP_AnnotationReference PRC _TYPE MKP + 6 yes

8.7.2 PRC_TYPE_MKP

This is the basic type for all 3D markups (annotations). Markups are non-geometric entities that aid
viewers in understanding PRC model geometry. Markup types and subtypes include notes, dimensional
annotations, geometric tolerance blocks, and weld symbols. Markups are linked to items, such as part
geometry or assemblies. Markups may be attached to linked items by leaders (leader lines) for clarity.

Markups may contain tesselation data as patterns to define a vectorized picture incorporated in the
markup. In this version, only the following entities may incorporate tesselated data: polyline, triangles,
color, line style, points, polygon, line width.

8.7.3 PRC_TYPE_MKP View

3D markups can be grouped into views that are associated with planes in which markup annotations lie.
A view contains an array of annotation entities. A view can also define visibilities and positions of
entities.

Table 127 — PRC_TYPE_MKP_View

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_MKP_View
base PRC_TYPE_ROOT_PRCBaseWithGraphics | (Required) See Section 8.2.4 for details.
number_of annotations UnsignedInteger (Required) Number of annotations
annotations Array <ReferenceUniqueldentifiers> | (Required) Unique identifiers for
[number_of annotations] annotation entities
annotation_plane PRC_TYPE_SURF_Plane (Required) See Section 8.11.13 for data
definition.
has_parameters Boolean (Required)
scene_display_parameters
scene_display_parameters: | SceneDisplayParameters (Optional if has_paramaters is TRUE)
See Section 8.5.19 for data definition
is_annotation_view Boolean (Required) If TRUE then view is an
annotation view
is_default_view Boolean (Required) If TRUE the view is the
default view
Copyright Inlrg:\tional Organization for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

Table 127 (continued)

ISO 14739-1:2014

[number_of linked_items]

is_direction Boolean (Required) If TRUE the plane is only
indicating a direction

number_of linked_items UnsignedInteger (Required) Number of linked items in
markup view

linked_items Array <ReferenceUniqueldentifiers> | (Required) Unique identifiers of linked

items

number_of filters UnsignedInteger (Required) Number of display filters

filters Array <PRC_TYPE_ASM _Filter> | (Required) Display Filters
[number_of filters]

user_data UserData (Required) User defined data

Definition of ReferenceUniqueldentifier: reference_in_same_file_structure indicates whether the object is

in the same file structure.

Table 128 — ReferenceUniqueldentifier

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_MISC_ReferenceOnPRCBase

type UnsignedInteger (Required) Reference type
reference_in_same_file_structure | Boolean (Required) reference_in_same_file_structure
target_file_structure: CompressedUniquelD | (Optional; if reference_in_same_file_structure is

TRUE)

See Section 8.2.2 for details
unique_id UnsignedInteger (Required) Unique_identifier for entity

8.7.4 PRC_TYPE_MKP_Markup

This is the Basic type for simple markups. Each markup is defined by a type and a subtype.

For

instance, a markup may be of the type "dimension" and the subtype "dimension radius edge" indicating
that this annotation points to the radius arc of the edge of an object.

Markup types are as follows:

Table 129 — Markup types

Enum label

Description (value)

KEPRCMarkupType_Unknown

Unknown value (0)

KEPRCMarkupType_Text

Plain text

(1)

KEPRCMarkupType_Dimension

Dimension (2)

KEPRCMarkupType_Arrow

Arrow (3)

KEPRCMarkupType_Balloon

Balloon (4)

KEPRCMarkupType_CircleCenter

Center of Circle (5)

KEPRCMarkupType_Coordinate

Coordinate (6)

KEPRCMarkupType_Datum

Datum (7)

Fastener (8)

{ KEPRCMarkupType_Fastener

LA TeA Ana A ATk
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under !icense with ISO
No reproduction or networking permitted without license from IHS

79

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 129 (continued)
KEPRCMarkupType_Gdt Geometric Dimensioning and Tolerance (GD&T) Block
(9)
KEPRCMarkupType_Locator Locator (10)
KEPRCMarkupType_MeasurementPoint Point (11)
KEPRCMarkupType_Roughness Roughness (12)
KEPRCMarkupType_Welding Welding (13)
KEPRCMarkupType_Table Table (15)
KEPRCMarkupType_Other Other (16)

Markup subtypes are as follows:

Table 130 — Markup subtypes

Enum label Description (value)
KEPRCMarkupSubType_Datum_Ident Datum Identifier subtype (1)
KEPRCMarkupSubType_Datum_Target Datum Target subtype (2)
KEPRCMarkupSubType_Dimension_Distance Distance Dimension (1)
KEPRCMarkupSubType_Dimension_Distance_Offset Dimension offset distance (2)

KEPRCMarkupSubType_Dimension_Distance_Cumulate | Dimension cumulative distance (3)

KEPRCMarkupSubType_Dimension_Chamfer Dimension chamfer callout (4)
KEPRCMarkupSubType_Dimension_Slope Dimension slope (5)
KEPRCMarkupSubType_Dimension_Ordinate Dimension ordinate (6)
KEPRCMarkupSubType_Dimension_Radius Dimension radius (7)
KEPRCMarkupSubType_Dimension_Radius_Tangent Tangent radius dimension (8)

KEPRCMarkupSubType_Dimension_Radius_Cylinder Cylinder radius dimension (9)

KEPRCMarkupSubType_Dimension_Radius_Edge Radius edge dimension (10)

KEPRCMarkupSubType_Dimension_Diameter Diameter dimension (11)

KEPRCMarkupSubType_Dimension_Diameter_Tangent Tangent diameter dimension (12)

KEPRCMarkupSubType_Dimension_Diameter_Cylinder | Cylinder diameter dimension (13)

KEPRCMarkupSubType_Dimension_Diameter_Edge Diameter edge dimension (14)
KEPRCMarkupSubType_Dimension_Diameter_Cone Cone diameter dimension (15)
KEPRCMarkupSubType_Dimension_Length Length dimension (16)

KEPRCMarkupSubType_Dimension_Length_Curvilinear | Curvilinear length dimension (17)

KEPRCMarkupSubType_Dimension_Length_Circular Circular length dimension (18)
KEPRCMarkupSubType_Dimension_Angle Angle Dimension (19)
KEPRCMarkupSubType_Gdt_Fcf Geometric Dimensioning and Tolerancing (1)
KEPRCMarkupSubType_Welding_Line Welding line (1)
KEPRCMarkupSubType_Welding_Spot Welding Spot (2)

Copyright Inetnhtional Organizaton for Standardization © 1SO 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 130 (continued)

KEPRCMarkupSubType_Other_Symbol_User Symbol User (1)
KEPRCMarkupSubType_Other_Symbol_Utility (2)
KEPRCMarkupSubType_Other_Symbol_Custom 3)

KEPRCMarkupSubType_Other_GeometricReference

Geometric Reference (4)

index_tessellation represents, if defined (by specifying a value other than -1), the index of the
tessellation in the tessellation section of the file structure. This index should point to a
PRC_TYPE_TESS_Markup type object associated with this markup.

Table 131 — PRC_TYPE_MKP_Markup

[number_of_linked_items]

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_MKP_Markup
base PRC_TYPE_ROOT_PRCBaseWithGraphics (Required) See Section
8.2.4 for details
maerkup_type UnsignedInteger (Required) type
markup_subtype UnsignedInteger (Required) sub_type
number_of linked_items UnsignedInteger (Required)
number_of_linked_items
linked_items Array <ReferenceUniqueldentifiers> | (Required) Unique

identifiers for each linked
item

[number_of _leaders]

number_of_leaders UnsignedInteger (Required)
number_of leaders
leaders Array <ReferenceUniqueldentifiers> | (Optional; if

number_of _leaders > 0)

Unique identifiers for

each leader
biased_index_tessellation | Unsignedinteger (Required)

index_tessellation + 1
user_data UserData (Required) User defined

data

8.7.5 PRC_TYPE_MKP Leader

This is the basic type for a 3D markups leader. Leaders attach the markup annotation item to the

annotation reference.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

81

ISO 14739-1:2014

Table 132 — PRC_TYPE_MKP_Leader

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_MKP_Leader
base PRC_TYPE_ROOT_PRCBaseWithGraphics | (Required)

first_linked_item

ReferenceUniqueldentifiers

(Required) Unique identifiers for each
linked item

is_second_linked_item

Boolean

(Required) is_second_linked_item is

TRUE if there is a second linked item

second_linked_item

ReferenceUniqueldentifiers

(Optional; if is_second_linked_item is
TRUE) Unique identifiers for second
linked item

biased_index_tessellation

UnsignedInteger

(Required) index_tessellation + 1

UserData

(Required) User defined data

user_data

8.7.6 PRC_TYPE_MKP_Annotationltem

Thisfsection contains the

data for a single annotation item.

Table 133 — PRC_TYPE_MKP_Annotationltem

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_MKP_Annotationltem
base PRC_TYPE_ROOT_PRCBaseWithGraphics (Required)
unique_id ReferenceUniqueldentifier (Required) Unique identifier for the annotation
item
user_data UserData (Required) User defined data

8.7.7 PRC_TYPE_MKP_AnnotationSet

An annotation set is a group of annotation items or subsets. For example, a tolerance defined by a
datum and a feature control frame are described by an annotation set with two annotation items, where
the items point respectively to a markup of type "datum" and a markup of type "feature control frame."

Table 134 — PRC_TYPE_MKP_AnnotationSet

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_MKP_AnnotationSet
base PRC_TYPE_ROOT_PRCBaseWithGraphics | (Required)

number_of annotations

UnsignedInteger

(Required) Number of entities in the
annotation set

annotations Array <AnnotationEntity> (Optional; if number_of annotations > 0)
[number_of annotations] For each entity in the annotation set.
user_data UserData (Required) User defined data

The AnnotationEntity entry above will be one of the type:

PRC _TYPE_MKP Annotationltem or

PRC_TYPE_MKP_AnnotationSet or PRC_TYPE_MKP_AnnotationReference.

o
Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

8.7.8 PRC_TYPE_MKP_AnnotationReference

ISO 14739-1:2014

An annotation reference stores explicit combinations of markup data with modifiers that can then be
used to define other annotations. An example would be a feature control frame.

Table 135 — PRC_TYPE_MKP_AnnotationReference

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_MKP_AnnotationReference
base PRC_TYPE_ROOT_PRCBaseWithGraphics (Required)

number_of linked_items

UnsignedInteger

(Required) Number of linked items
in the annotation reference

linked_items

Array <ReferenceUniqueldentifiers>
[number_of linked_items]

(Optional; if
number_of linked_items > 0) List
of the identifiers of the linked items
in the reference

8.8 Tessellation

8.8.1 Entity Types

Table 136 — Tessellation entity types

Type Name Type Value Referenceable
PRC_TYPE_TESS PRC_TYPE_ROOT + 170 no
PRC_TYPE_TESS_Base PRC TYPE_TESS + 1 no
PRC _TYPE_TESS_3D PRC TYPE_TESS + 2 no
PRC_TYPE_TESS_3D_Compressed PRC_TYPE_TESS + 3 no
PRC _TYPE_TESS_Face PRC TYPE_TESS + 4 no
PRC_TYPE_TESS_3D_Wire PRC_TYPE_TESS + 5 no
PRC_TYPE_TESS_Markup PRC_TYPE_TESS + 6 no

8.8.2 PRC_TYPE_TESS

8.8.3 PRC_TYPE_TESS Base

Abstract root type for any tessellated entity.

8.8.4 ContentBaseTessData

This base class stores the coordinates of the tessellated data.

The interpretation of the coordinates data depends upon the entity type containing this array. See

PRC_TYPE_TESS_3D,

PRC_TYPE_TESS_3D_Compressed,

PRC_TYPE_TESS 3D _Wire, or

PRC_TYPE_TESS_Markup for a description of the interpretation of the coordinates array within these

contexts.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

83

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 137 — ContentBaseTessData

Name Data Type Data Description

is_calculated Boolean (Required) is_calculated is a flag denoting

whether the tessellation was calculated
during import or read directly from the
native CAD file.

number_of_coordinates | UnsignedInteger (Required) number_of_coordinates

represents the number of doubles in the
coordinate array.

coordinates Array <Double> | (Required) coordinates is an array of

[number_of _coordinates] doubles.

8.8.5 PRC_TYPE_TESS_3D

8.8.5.1 General

A PRC_TYPE TESS 3D entity contains tessellation data for an ordered collection of faces
(PRC_TYPE_TESS_Face) as well as tessellation data for the wire boundaries of the faces. The notion of
face does not necessarily reflect that the data comes from geometrical faces; it is also possible to store
tessellation data within this entity which are an unordered set of triangles.

The following is a description of the data in the file:

The ContentBaseTessData class defines the number_of coordinates and coordinates of the
tessellation data. It also defines a flag, is_calculated, indicating whether the data was calculated
during import or comes directly from a CAD system. Data in the coordinates array are interpreted
as the x, y, and z coordinates of the 3D points for the entire tessellation.

number_of_normal_coordinates is size of the normal_coordinates array

normal_coordinates is an array of doubles. Data in the normal_coordinates array are interpreted
as the (nx, ny, nz) values of a normal vector at a 3D point. A 3D point may have multiple normal
values each associated with a different triangle within the tessellated data. The nomal vector is not
required to be a unit normal and may be of arbitrary length.

number_of_triangulated_indices is the size of the triangulated_index_array.
triangulated_index_array is an array of integers which are an index into the coordinates or
normal_coordinates arrays. Because these arrays represents triples of numbers of the (x,y, z) of a
point or the (nx, ny, nz) values of a normal vector, the index is always a multiple of 3. The
interpretation of the data in this array is described below.

number_of_wire_indices is the size of the wire index array

wire_indices are indices into the coordinates array. The indicies in this array are grouped into the
indices for a wire contour of the face. The array wire_index within the PRC_TYPE_TESS_Face
indicates the start of the wire for each of the wire contours within a specific face.

has_faces is TRUE if this entity is built using geometrical faces.

has_loops is TRUE if this entity is built using geometrical faces and loops (wires of faces denote the
loops).

o7 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— number_of_face_tessellation_data is the faces in the array of face_tessellation_data
— face_tessellation_data an array of PRC_TYPE_TESS_Face objects

— Number_of_texture_coordinates is the size of the texture coordinate array

— Texture_coordinates texture coordinate (see PRC_TYPE_GRAPH_TextureApplication)
— crease_angle is the threshold angle between two faces.

When recalculating the normals at points, the angle between two adjacent triangles is calculated and
compared to the crease_angle. If it is below crease_angle, the normal would be shared at this point for
the two triangles; otherwise, two distinct normals will exist.

— If must_recalculate_normals is set to TRUE, the normals shall be recalculated at loading according
to the crease_angle. In this case, no normal indices are stored in the triangulated_index_array and
the normal_coordinate array size is set to 0.

However, all the indices stored in PRC_TYPE_TESS Face are not affected by the value of
must_recalculate_normals. Specifically, used_entities_flag and start_triangulated are set as if
normal indices were stored.

NOTE When storing a tessellation data with two faces, with one triangle each that have a common edge, both

with a flag used_entities_flag = PRC_FACETESSDATA_Triangle, and with must_recalculate_normals = TRUE, this is
what will be stored :

— number_normal_coordinates = 0; (It Would be 12 with must_recalculate_normals = FALSE)
— number_of coordinates = 12;
— number_of_triangulated_indicies = 6. (It Would be 12 with must_recalculate_normals = FALSE)

— all of the data for PRC_TYPE_TESS_Face is identical regardless of the must_recalculate_normals
flag setting.

The basic tessellation data consists of

— an array coordinates representing the (x, y, z) coordinates of the 3D points ot the tessellation;

— an array normal_coordinates representing the (nx, ny, nz) components of normal vectors at the
points; a given point may have multiple normal vectors, one for each vertex of the point in the
triangularization data of the tessellation;

an array triangulated_index_array of indicies into either the coordinates or normal_coordinates
array. The entries in this array are grouped into one of the types of triangularization data (PRC
Tessellation Type).

— The type of triangularization defines the sequence and type of data (point or normal) of the
triangularization data. For instance, a PRC_FACETESSDATA_Triangle is described with 6 indices
(normal, point, normal, point, normal, point). Note that it is mandatory to specify at least one
normal per triangularization data.

— The order of tessellated faces in face_tessellation_data defines the order of PRC TYPE_TESS_3D
triangularization data in the triangulated_index_array. The triangularization data for the first face
is first in the triangulated_index_array, followed by the data for the second face, etc.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 8 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— The triangularization data within a face consists of multiple triangulations. Each triangulation is of
one of the types described in PRC Tessellation Types and identical types are grouped together.
The bit fields of the used_entities_flag indicates if that type of triangularization data is present in
the triangularization data for the face and the order of the bit fields from low to high (0 to 31)
indicate the order of data in the TriangulatedData array. See PRC_TYPE_TESS_Face for a description
of the face data.

A face tessellation corresponds to a geometrical face if faces are used (as denoted by has_faces).
Otherwise, it is a large container that can be used for any tessellated data.

Wire_indices are the indicies describing the face’s wire contours. See PRC_TYPE_TESS_3D_Wire and
PRC_TYPE_TESS_Face for respective descriptions of how to interpret the data in the wire_indices array.

Texture coordinates are also to be interpreted according to the final graphics of each face_tessellation.
Those graphics are specified either in face_tessellation or by the representation item owning the
PRC_TYPE_TESS_3D. Then, the graphics will correspond to a texture with an appropriate number of
coordinates as explained in PRC_TYPE_GRAPH_TextureApplication type description.

Table 138 — PRC_TYPE_TESS_3D

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_TESS_3D
tessellation_coordinates ContentBaseTessData (Required) tessellation coordinates
has_faces Boolean (Required) has_faces
has_loops Boolean (Required) has_loops
must_calculate_normals Boolean (Required) must_calculate_cormals
normal_recalculation_flags Character normal_recalculation_flags
crease_angle Double (Optional; if

must_calculate_normals is TRUE)
crease_angle

number_of_normal_coordinates | Unsignedinteger (Required)
number_of_normal_coordinates
normal_coordinates Array<Double> (Required) normal_coordinates
[number_of normal_coordinates]
number_of wire_indices UnsignedInteger (Required) number_of_wire_indices
wire_indices Array <Unsigninteger> | (Required) wire_indices

[number_of wire_indices]

number_of_triangulated_indicies |Unsignedinteger (Required)
number_of_triangulated_indicies

triangulated_index_array Array<UnsignedInteger> (Required)
[number_of _triangulated_indicies] |triangulated_index_array

number_of face_tessellation UnsignedInteger (Required)
number_of face_tessellation

face _tessellation_data Array <PRC_TYPE_TESS_Face> | (Required) face_tessellation_data
[number_of _face_tessellation]

number_of _texture_coordinates | Unsignedinteger (Required)
number_of_texture_coordinates

texture coordinates Array <Double> | (Required) texture coordinates
[number_of_texture_coordinates]

oc :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.8.5.2 PRC Tessellation Types

Table 139 — PRC tessellation types

Value Enum Description
0x4000 | PRC_FACETESSDATA_NORMAL_Single If this flag is set, the corresponding OneNormal
0000 entity (see PRC Tessellation Types) is planar and

only one normal is defined for the entity.
Otherwise, one normal per point is defined. This

flag is only used for
PRC_FACETESSDATA_*OneNormal entities

0x0001 | PRC_FACETESSDATA_Polyface Not used

0x0002 | PRC_FACETESSDATA Triangle described with 6 indices
(normal,point,normal,point,normal,point).

0x0004 | PRC_FACETESSDATA TriangleFan described with 2*n indices (normalpoint,.
,normal,point).

0x0008 | PRC_FACETESSDATA TriangleStripe described with 2*n indices (normalpoint,..
,normal,point).

0x0010 | PRC_FACETESSDATA_PolyfaceOneNormal Not used

0x0020 | PRC_FACETESSDATA TriangleOneNormal described with 4 indices

(normal,point,point,point).

0x0040 | PRC_FACETESSDATA TriangleFanOneNormal described with n+1 indices (normal,point,point,...,
point) if PRC_FACETESSDATA_NORMAL_Single is
set

described with 2*n indices (normalpoint,..
,normal,point) if
PRC_FACETESSDATA_NORMAL Single is not set, in
which case normal is to be interpreted as triangle
normal (last normal is repeated)

0x0080 | PRC_FACETESSDATA TriangleStripeOneNorma | Described with n+1 indices
1 (normal,point,point,..., point) if
PRC_FACETESSDATA_NORMAL_Single is set

Described with 2*n indices (normal,point,..
,normal,point)if

PRC_FACETESSDATA_NORMAL_ Single is not set, in
which case normal is to be interpreted as triangle
normal (last normal is repeated)

0x0100 | PRC_FACETESSDATA_PolyfaceTextured Not used

0x0200 | PRC_FACETESSDATA_TriangleTextured This is the same as
PRC_FACETESSDATA _Triangle except that there
are texture coordinate indices between normal
and point indices.

The variable
number_of texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a simple triangle with one texture
coordinate index is described by
(normal,texture,point,normal,texture,point,norm
al,texture,point).

B ATeA AN A AT
Copyright In[ernati&;nal Organization for Standardization ‘,htS reserved 87
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 139 (continued)

0x0400 | PRC_FACETESSDATA TriangleFanTextured This is the same as
PRC_FACETESSDATA TriangleFan except that
there are texture coordinate indices between
normal and point indices.

The variable
number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a triangle fan with one texture
coordinate index is described by
(normal,texture,point,normal,texture,point,norm
al,texture,point).

0x0800 | PRC_FACETESSDATA TriangleStripeTextured This is the same as
PRC_FACETESSDATA _TriangleStripe except that
there are texture coordinate indices between
normal and point indices.

The variable
number_of_texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a triangle stripe with one texture
coordinate index is described by
(normal,texture,point,normal,texture,point,...nor
mal,texture,point).

0x1000 | PRC_FACETESSDATA_PolyfaceOneNormalTextu | Not used
red

0x2000 | PRC_FACETESSDATA TriangleOneNormalTextu | This is the same as
red PRC_FACETESSDATA _TriangleOneNormal except
that there are texture coordinate indices between
normal and point indexes.

The variable
number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a simple triangle with one texture
coordinate index is described by
(normal,texture,point,texture,point,texture,point)

oo :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 139 (continued)

0x4000 | PRC_FACETESSDATA TriangleFanOneNormalT | This is the same as
extured PRC_FACETESSDATA _TriangleFanOneNormal
except that there are texture coordinate indices
between normal and point indexes.

The variable
number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a triangle fan with one texture
coordinate index is described as follows:

(normal,texture,point,... ,normal,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is not set.

(normal,texture,point,... ,<texture,point) if
PRC_FACETESSDATA_NORMAL_Single is set.

0x8000 | PRC_FACETESSDATA TriangleStripeOneNorma | This is the same as
ITextured PRC_FACETESSDATA_TriangleStripeOneNormal
except that there are texture coordinate indices
between normal and point indexes.

The variable
number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of
indices.

For example, a triangle stripe with one texture
coordinate index is described as follows:

(normal,texture,point,... ,normal,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is not set.

(normal,texture,point,... ,<texture,point) if
PRC_FACETESSDATA_NORMAL_Single is set

8.8.6 PRC_TYPE_TESS_Face

8.8.6.1 General

This represents tessellation data for a face. An entity of this type only exists in a PRC File because it is
referenced by a PRC_TYPE_TESS_3D. The coordinates, normals, and indices of the triangulated data are
found in the PRC_TYPE_TESS_3D which references this entity.

The following is a description of the variables in the file:

— size_of_line_attributes is the number of entries in line_attributes

— line_attributes is an array of line styles

— start_of wire_data represents the starting index for the wire data in the array of wire_indices of
the PRC_TYPE_TESS_3D entity. Using sizes_wire, and start_of wire_data determines where to
retrieve wire point coordinates.

— size_of_sizes_wire is the number of entries in sizes_wire

— sizes_wire is an integer array of the number of indices for each wire edge of this face. The indicies
are stored in the array wire_indicies within the PRC_TYPE_TESS_3D entity containing this face.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 89
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— used_entities_flag is a flag that indicates the types of triangulated entities in the array
triangulateddata; the various bits of this flag are defined in PRC Tessellation Types; the order is the
same as the order defined in the table of PRC_TessellationTypes.

— start_triangulated represents the starting index for the triangulated data of this face within the
array triangulated_index_array of the PRC_TYPE_TESS_3D entity containing this face.

— size_of_triangulateddata is the number of entries in the array triangulateddata.

— triangulateddata is an integer array describing the tessellation data for a face. See below for a
description of the data within this array.

— number_of_texture_coordinate_indexes represents the number of texture coordinate indices
(see PRC Tessellation Types).

— has_vertex_colors is a flag indicating if colors are stored directly in the vertices. Either there is no
color for the vertices, or every vertex shall have a color.

— behavior denotes the graphics behaviour, such as inheritance, for the entity in the tree owning the
face tessellation, as described in behavior_bit_field of GraphicsContent section. Note that this is
not relevant if size_of_line_attributes is 0 (meaning that there are no graphic attributes for the
face).

The tessellation data for a face consists of a number of triangulations. Each triangulation is of one of the
types described in PRC Tessellation Types. The bit fields of the used_entities_flag indicate if that type of
triangularization data is present and the order is the same as the oder defined in the table of
PRC_TessellationTypesif such data is present.

The first entry of the triangulateddata array indicates the number of triangles
(PRC_FACETESSDATA _Triangle); other entries will indicate the number of the entities of that type
followed by number of points used by that entity type.

For example, consider a face whose tessellation data contains 5 triangles, two fans of 5 and 7 indices,
and 1 stripe of 11 indices. In this case,

— used_entities_flag = PRC FACETESSDATA_Triangle & PRC_FACETESSDATA_TriangleFan &
PRC_FACETESSDATA_TriangleStripe

— start_triangulated = index into triangulated_index_array of the start of data for this face; this
would be 0 for a single face in a PRC_TYPE_TESS_3D entity.

— triangulateddata = (5,2,5,7,1,11)

size_of line_attributes can have one of following values.

— 0 if there are no graphics. In this case, all graphics are inherited from the owner of the
PRC_TYPE_TESS_3D data.

— 1lifthere is one graphic associated with the whole face tessellation data.

— 2 or higher : in this case, the number of graphics entities must be equal to the number of entities
stored in the current face. For instance, if the face contains 3 triangles, 2 fans and 7 stripes, this
number shall be set to 12.

The size of a wire edge of a FaceTessData is limited to 16383 (0x3FFF) points. For wire edges, two flags
denote the drawing behaviour (see Special flags for 3DwireTessData wire tessellation.).

an :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

For example, if there are two loops having 2 and 1 wire edges, respectively: For the first loop, the first
edge would have 10 points and the second edge would have 20 points. For the second loop there would

be 12 points.

The array would be

[10, 20 |

PRC_FACETESSDATA_WIRE_IsClosing, 12 |

PRC_FACETESSDATA_WIRE_IsClosing] Note that the indices for the edge extremes are always stored.
Therefore, the 10th point of the first edge should be at the same location as the first point of the second

edge.

In the cases where the tessellation type contains one normal, the number of points is combined with the
flag PRC_FACETESSDATA_NORMAL_Single. Hence the number of points is always limited to 0x3FFFFFFF
whatever the PRC tessellation type for FaceTessData.

Table 140 — PRC_TYPE_TESS_Face

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TESS_Face
size_of line_attributes UnsignedInteger (Required) size_of_line_attributes

line_attributes

Array <UnsignedInteger>
[size_of_line_attributes]

(Required) array of line_attributes
where each entry is
(index_of line_style+1) into the array
of line styles (see GraphicsContent).

start_of_wire_data

UnsignedInteger

(Required) start_of_wire_data

size_of _sizes_wire

UnsignedInteger

(Required) size_of_sizes_wire

sizes_wire

ArrayOf[Unsignedinteger>
[size_of_sizes_wire]

(Required) sizes_wire

used_entities_flag UnsignedInteger (Required) used_entities_flag
start_triangulated UnsignedInteger (Required) start_triangulated
size_of_triangulateddata UnsignedInteger (Required) size_of_TriangulatedData

triangulateddata

ArrayOffUnsignedinteger>
[size_of_triangulateddat
a]

(Required) triangulatedData

number_of_textured_coordinate_index | UnsignedInteger (Required)

es number_of _textured_coordinate_index
es

has_vertex_colors Boolean (Required) has_vertex_colors

vertex color data VertexColors (Required) vertex color data

behavior UnsignedInteger (Optional; if size_of_line_attributes > 0)
behavior

8.8.6.2 Face Wire Tessellation Flags

Table 141 — Face Wire Tessellation Flags

Value Enum Description
0x4000 | PRC_FACETESSDATA_WIRE_IsNotDrawn Indicates that the edge should not be drawn
0x8000 | PRC_FACETESSDATA_WIRE_IsClosing Indicates that this is the last edge of a loop.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

91

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.8.7 PRC_TYPE_TESS_3D_Wire

8.8.7.1 General

Tessellation for a 3D wire edge
The following is a description of the variables in the file:

— The ContentBaseTessData class defines the number_of coordinates and coordinates of the
tessellation data. It also defines a flag, is_calculated, indicating whether the data was calculated
during import or comes directly from a CAD system. Data in the coordinates array is interpreted as
the X, y, and z coordinates of the 3D points in the tessellation.

— number_of wire_indexes is the number of integers in the wire_indexes array.
— wire_indexes is an array of integers which is defined below.

— has_vertex_colors is a flag indicating if colors are stored directly in the vertices. Either there is no
color for the vertices, or every vertex shall have a color.

If number_of_wire_indexes is zero, the tessellation coordinates represents a single wire edge. If
number_of_wire_indexes is not zero, the array wire_indexes defines a sequence of wire edges by
specifying the number_of_indices_per_wire_edge followed by the indicies for that wire edge. The
indicies define the index into the coordinates array for the (x, y, z) of a point along the wire edge. The
indices shall be a multiple of 3.

The number_of_indices_per_wire_edge is an encoded 32 bit integer containing the following:

Flag | Number_of indicies_per_wire_edge

The flag is the leftmost 4 bits and is interpreted using 3D Wire Tess Flags to indicate

— if the first point of this wire should be linked to the last point of the preceeding wire
(PRC_3DWIRETESSDATA_IsContinuous)

— if the last point of this wire should be linked to the first point of this wire
(PRC_3DWIRETESSDATA _IsClosing)

Table 142 — PRC_TYPE_TESS_3D_Wire

Name Data Type Data Description

UnsignedInteger (Required) PRC_type_tess_3D_wire
tessellation_coordinates | ContentBaseTessData (Required) tessellation_coordinates
number_of _wire_indexes | UnsignedInteger (Required) number_of_wire_indexes
wire_indexes Array <Integer> | (Required) wire_indexes

[number_of wire_indexes]

has_vertex_colors Boolean (Required) has_vertex_colors

vertex color data VertexColors (Optional; if has_vertex_colors is TRUE)
vertex color data

oD :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

8.8.7.2 VertexColors

ISO 14739-1:2014

— color_data is a sequence of characters indicating the RGB or RGBA values for each of the vertexes
or segments in the tessellation.

The number_of_colors stored in the color_data must be calculated from the number of point indices

— found in the wire_indexes array in the case of a PRC_TYPE_TESS_3D_Wire

— found in the sizes_triangulated in the case of a PRC_TYPE_TESS_Face

Table 143 — VertexColors

Name

Data Type

Data Description

is_rgba

Boolean

(Required) is_rgba isTRUE implies the color is
4 characters (RGBA); FALSE implies the color is
3 characters (RGB).

is_segment_color

Boolean

(Required) is_segment_color: . If
is_segment_color is FALSE, there is a color for
every point in the appropriate array; otherwise,
there is a color for every segment in the array.
It is important to remember that implicit points
shall also have a color. An implicit point is a
point that is implied in the sequence of wire
points but is not stored in the file, such as when
a wire is of type
PRC_3DWIRETESSDATA_IsClosing (i.e. last point
connects to first point, but the first point is not
repeated in the file)

b_optimized

Boolean

(Required) b_optimised: reserved for future
use; it should always be FALSE.

color_data

ColorData

(Optional; if b_optimized is FALSE)

8.8.7.3 ColorData

Table 144 — ColorData

Name

Data Type

Data Description

first_vertex

Color

(Required) Color of first vertex; is_rgba
indicates either 3 characters (FALSE) or 4
characters (TRUE)

remaining_vertices

Array<ColorDataRemainder>
[number_of_colors - 1]

(Required) Color of remaining vertexes

8.8.7.4 ColorDataRemainder

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

93

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 145 — ColorDataRemainder

Name Data Type Data Description

is_same Boolean TRUE implies this entry has the same color as
the previous one

color Color (Optional; if is_same is FALSE) Color of vertex;
is_rgba indicates either 3 characters (FALSE)
or 4 characters (TRUE)

8.8.7.5 3D Wire Tess Flags

Table 146 — 3D Wire Tess Flags

Vallie Enum Description
OxldOOOOOO PRC_3DWIRETESSDATA_IsClosing Indicates that the first point is implicitly
Qf repeated after the last one to close the wire edge.
OXZQOOOOOO PRC_3DWIRETESSDATA_IsContinuous Indicates that the last point of the preceding
wire should be linked with the first point of the

current one.

8.8.8 PRC_TYPE_TESS_Markup

8.8.8.1 General

Contains information describing the graphical behavior for the tessellation associated to a markup
(PRC_TYPE_MKP_Markup).

The tessellation of a markup uses two arrays containing the codes and the coordinates.

The codes array contains a description of the entities used in the tessellation.

The coordinates array (ContentBaseTessData) contains point coordinates as well as other floating point
values used by entities.

Each entity has at least two codes. The first code contains the entity type and the number of specific
inner codes. The second code is the number of doubles (coordinates) for this entity. These doubles are
located in the coordinates array.

— The ContentBaseTessData class defines the number_of coordinates and coordinates of the
tessellation data. In the case of markup, the flag is_calculated, is meaningless. Data in the
coordinates array is normally interpreted as x,y,z data, but can also contain data such as the 16
elements of a matrix.

— number _of codes specifies the size of the code array

— code_numbers is an integer array of code numbers for the markup entity

— number_of_text_strings specfies the size of the string array

— text_strings is an array that contains the text strings for any text entities contained current markup
object.

— tessellation label is the name of the corresponding PRC_TYPE_MKP_Markup.

— behavior is the bit field describes the graphical behavior of the tessellation.

(e Y} :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 147 — PRC_TYPE_TESS_Markup

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_TESS_Markup
tessellation_coordinates | ContentBaseTessData (Required) tessellation_coordinates
number_of_codes UnsignedInteger (Required) number_of_codes
code_numbers Array <Unsignedinteger> | (Required) code_numbers associated with

[number_of_codes]

the current markup object

number_of_text_strings

UnsignedInteger

(Required) number_of_text_strings

text_strings

Array
[number_of_text_strings]

<String>

(Required) text_strings

tessellation_label String (Required) tessellation_label
behavior Character (Required) behavior
8.8.8.2 Markup Flags

Special flags for various markup conditions. These flags are used to extract the corresponding
information from the integer code array as explained in Markup tessellation codes.

Table 148 — PRC_TYPE_TESS_Markup flags

Value Enum Description

0x08000000 | PRC_MARKUP_IsMatrix Bit to denote that the current markup entity is a
matrix

0x04000000 | PRC_MARKUP_IsExtraData Bit to denote that the current markup entity is
extra data (it is neither a matrix nor a polyline).

0x000FFFFF | PRC_MARKUP_IntegerMask Integer mask to retrieve the number of inner
codes for a given entity

0x03E00000 | PRC_MARKUP_ExtraDataType Mask to retrieve the integer type of the markup
entity

8.8.8.3 Markup Tessellation Behavior

Special flags for handling the graphical behavior of the tessellation associated with the markup object.
these flags are represented by bits in the variable Behavior.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

95

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 149 — Markup Tessellation Behavior

Value Enum Description

0x01 PRC_MARKUP._IsHidden The tessellation is hidden

0x02 PRC_MARKUP_HasFrame The tessellation has a frame

0x04 PRC_MARKUP_IsNotModifiable tessellation is given and should not be modified

0x08 PRC_MARKUP._IsZoomable tessellation has zoom capability

0x10 PRC_MARKUP_IsOnTop The tessellation is on top of the geometry

0x20 PRC_MARKUP _IsFlipable The text tessellation can be flipped to always be
readable on screen.

8.8.8.4 Description of the first Markup code.

There are three masks needed to identify the entity type.
— PRC_MARKUP_IsMatrix

— PRC_MARKUP_IsExtraData
— PRC_MARKUP_ExtraDataType
If none of these masks is set, the entity is a polyline then PRC_MARKUP_IsMatrix should not be set if

PRC_MARKUP_IsExtraData.

If PRC_MARKUP_IsExtraData is set then PRC_MARKUP_ExtraDataType mask should be used to retrieve
the type of markup entity.

8.8.8.5 Description of the Second Markup Code.

The second code is the number of doubles needed by the entity.

The following table shows, for each defined entity, the extra data type, the number of inner codes, and
the number doubles in the coordinate array.

The extra data type is set using the PRC_MARKUP_ExtraDataType mask.

8.8.8.6 Table of Entities

In the table below, [1] indicates entity types which are used to define blocks. The notion of block is
discussed in next section. [2] indicates entity modes as discussed in further section as well.

Table 150 — Table of Entities

Entity Extra Data Type Number of inner codes Number of Doubles
Polyline None 0 Points*3
Matrix mode [1] None 0 or number of entities in the | 0 or number of doubles
block used in the block (at least
16)
Pattern 0 3+number of loops Points in loop*3
Picture 1 1 0
Triangles 2 0 Number triangle*9
Copyright Intnational Organizaton for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 150 (continued)

Quads 3 0 Number of quads*12

Face view model[1] 6 0 or number of entities in the | 0 or number of doubles
block used in the block

Frame draw model[1] 7 0 or number of entities in the | 0 or number of doubles
block used in the block

Fixed Size Model[1] 8 0 or number of entities in the | 0 or number of doubles
block used in the block

Symbol 9 1 3

Cylinder 10 0 3

Color 11 1 0

Line stipple[2] 12 0 10

Font 13 1 0

Text 14 1 2

Points 15 0 Number Points*3

Polygon 16 0 Number points*3

Linewidth[2] 17 0 Oor1l

8.8.8.7 Block and Entity Modes

8.8.8.7.1 Description of a Block

Blocks are defined by face view, frame draw, fixed size and matrix modes (described below).

Each block is surrounded by the corresponding entity. At the start of a block, the entity modifies the
state, which may include the line style, or current transformation matrix. The state is restored at the
end of the block.

For example, a matrix mode starts by defining a matrix that will multiply the current transformation
matrix, draws some entities, and ends with another matrix mode entity indicating the end of the mode.

8.8.8.7.2 Description of Modes Used in Block Definitions

Because the face view, frame draw, fixed size, and matrix modes start with the corresponding entity and
end when the same entity is encountered, they define blocks.

The starting entity has a non-zero number of inner codes. It represents the number of codes until the
end of the block, not counting the two mandatory codes for each entity. The same rule applies to the
doubles. The ending entity has no inner codes and no doubles.

The number of inner codes makes it possible to skip a block when reading a tessellation. To treat the
content of a block, use the numbers as shown in the following table.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 97
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 151 — Description of Modes Used in Block Definitions

Mode Number of inner codes Number of doubles

Face view (starting) number of entities in the block | number of doubles in the block (at least 3)

Face view (ending) 0 0

Frame draw(starting) | number of entities in the block | number of doubles in the block (at least 3)

Frame draw(ending) | O 0

Fixed size(starting) number of entities in the block | number of doubles in the block (at least 3)
Fixed size(ending) 0 0

Matrix(starting) number of entities in the block | number of doubles in the block (at least 16)
Matrix(ending) 0 0

The following example shows the codes for defining a matrix mode and then 3 points in the block.

(0x08000000 + 3) (begin matrix block; 3 entities to follow), 16 + 3*3 (number of doubles in block)
(0x04000000 + (15 << 21) & 0x03E00000) (first point), 3 (it uses 3 doubles)
(0x04000000 + (15 << 21) & 0x03E00000) (second point), 3 (it uses 3 doubles)
(0x04000000 + (15 << 21) & 0x03E00000) (third point), 3 (it uses 3 doubles)
(0x08000000) (end matrix block), 0 (matrix ending; no double)
8.8.8.7.3 Description of Entity Modes

The line stipple and line width modes operate identically to the modes used in block definitions, but the
numbers correspond only to the entity and not to the block.
For the line stipple mode, the number of inner codes denotes the start (1) or the end (0) of the block.

For the line width mode, the number of doubles denotes the start (1) or the end (0) of the block.
8.8.8.8 Entity description

8.8.8.8.1 General

For each entity, the following tables show the mandatory codes and the inner codes, as well as the
doubles needed by the entity.

8.8.8.8.2 Polyline

There is an (x,y,z) triplet for each point of the polyline.
Table 152 — Polyline

Extra data Type | Number of inner Codes | Number of Doubles

0x00000000 0 Number of points*3

8.8.8.8.3 Triangles

Alist of triangles. There is an (x,y,z) triplet for each point of the triangle list.

0o :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 153 — Triangles

Extra data Type | Number of inner Codes | Number of Doubles

0x04400000 0 Number of triangles*9

8.8.8.8.4 Quads

A list of quads. There is an (x,y,z) triplet for each point of the quad list.
Table 154 — Quads

Extra data Type | Number of inner Codes | Number of Doubles

0x04600000 0 Number of quads*12

8.8.8.8.5Polygon

There is an (x,y,z) triplet for each point of the polygon.
Table 155 — Polygon

Extra data Type | Number of inner Codes | Number of Doubles

0x06000000 0 Number of points*3

8.8.8.8.6 Points

Alist of points. There is a (x,y,z) triplet for each point.
Table 156 — Points

Extra data Type | Number of inner Codes | Number of Doubles

0x05e00000 0 Number of points*3

8.8.8.8.7 Face View Mode

In this mode, all the drawing entities are parallel to the screen (billboard). The point given in the
doubles corresponds to the origin of the new coordinate system in which entries are drawn parallel to

the screen.
Table 157 — Face View Mode
Extra data Type | Number of inner Codes Number of Doubles
0x04c00000 0 or number of entities in block | 0 or number of doubles in block
8.8.8.8.8 Frame Draw Mode

In this mode, all the drawing entities are given in 2-dimensional space. The point given in the doubles
corresponds to a 3D point projected onto the screen, providing the origin of the 2-dimensional
coordinate system in which to draw (viewport).

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 99
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 158 — Frame Draw Mode

Extra data Type | Number of inner Codes Number of Doubles
0x04e00000 0 or number of entities in block | 0 or number of doubles in block
8.8.8.8.9 Fixed Size Mode

In this mode, all the drawing entities are drawn at a fixed size, independent of zoom. The point given in
the doubles corresponds to the origin of the new coordinate system in which to draw at fixed size.

Table 159 — Fixed Size Mode

Extra data Type | Number of inner Codes Number of Doubles

0x05000000 0 or number of entities in block | 0 or number of doubles in block

8.8.8.8.10 Matrix Mode

In this mode, all the drawing entities are transformed by the matrix given in the doubles post multiplied
by the current transformation matrix. At the end of the mode, the transformation matrix that was
previously active is restored.

Table 160 — Matrix Mode

Extra data Type | Number of inner Codes Number of Doubles

0x08000000 0 or number of entities in block | 0 or number of doubles in block:
A(1,1), A(2,1),A(3,1),A(4,1),..A(4,4)

8.8.8.8.11 Symbol

The point given in the doubles corresponds to the position of the symbol in 3D. The pattern identifier is
an index into the picture array stored in FileStructurelnternalGlobalData. The symbol is a
VPicturePattern type.

Table 161 — Symbol

Extra data Type | Number of inner Codes | Number of Doubles

0x05200001 1 3

8.8.8.8.12 Color

This entity defines a color that will be effective until a new one is defined. The color identifier is an
index into the color array stored in FileStructurelnternalGlobalData.

Table 162 — Color

Extra data Type | Number of inner Codes | Number of Doubles

0x05600001 1 0

8.8.8.8.13 Line Style Mode

This entity defines the line style that will be effective inside the block.
The first code is 1 for beginning the block and 0 for ending.

The line style identifier is an index into the line stype array store in FileStructurelnternalGlobalData.

14NN :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 163 — Line Style Mode

Extra data Type | Number of inner Codes | Number of Doubles

0x05800000 Oor1 0

8.8.8.8.14 Font

This entity defines the font used for the next Text entity.
The font identifier is an index into the font array stored in FileStructurelnternalGlobalData.

Table 164 — Font

Extra data Type | Number of inner Codes | Number of Doubles

0x05a00001 1 0

8.8.8.8.15 Text

This entity defines text to be rendered using the current font (defined by the Font entity).
The text index refers to the text number in the string array.
W and H correspond to the width and height, respectively, of the text.

Table 165 — Text

Extra data Type | Number of inner Codes | Number of Doubles

0x05c00001 1 2

8.8.8.8.16 Line Width Mode

This entity defines the line width that will be effective inside the block.
The number of doubles is 1 for the beginning of the block and 0 for the ending of the block.
W is the line width to use in the block. It is not used when ending the block.

Table 166 — Line Width Mode

Extra data Type | Number of inner Codes | Number of Doubles

0x06200000 1 2

8.8.8.8.17 Cylinder

The cylinder is positioned by a matrix mode, oriented with the z-axis, with the base at Z = 0 and the top
at Z = Height.

Table 167 — Cylinder

Extra data Type | Number of inner Codes | Number of Doubles

0x05400000 0 3

8.8.8.8.18 Image
This entity defines an image.
Copyright International Org:;iz‘:;ign %F‘&aﬁdard‘iz‘;&i’o’;‘;hts reserved 1 0 1

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

The picture identifier is an index into the picture array stored in the FileStructurelnternalGlobalData
section of the file.

Table 168 — Image

Extra data Type | Number of inner Codes | Number of Doubles

0x04020000 1 0

8.8.8.8.19 Pattern

The pattern identifier is an index into the fill pattern array stored in the FileStructurelnternalGlobalData
section of the file.

The filled mode is one of the following values: 0 = OR, 1 = AND, 2 = XOR.

The behavior is a bit field, with the 0x1 bit indicating whether to ignore the view transformation. If it is
true, the pattern is not transformed by the current view transformation. The other bits should be set to
zero.There is an (x,y,z) triplet for each point in the loops, and they are listed in sequential order.

Table 169 — Pattern

Extra data Type | Number of inner Codes | Number of Doubles

0x04000000 3 + Number of loops Points in loops * 3

8.8.9 PRC_TYPE TESS_3D_COMPRESSED

A highly compressed tessellation which is a compact approximation of a PRC_TYPE_TESS_3D object.The
starting point is a mesh described with points, normals and triangles, with implicit topology. Each
triangle has 3 normals (one for each point). The triangle normal is determined by cross-product on its
vertices, oriented in conjunction with one of its 3 normals (it is assumed that the calculation gives the
same sign whatever the normal). As vertex ordering may be modified during encoding, additional data
structures are used to determine the sign of the encoded normals. A tolerance for approximation is also
given as input. All triangles are supposed to be not-degenerated relative to this tolerance: they shall
have edge length and height greater than the tolerance. IEEE 754 compliant double precision
computations must be used for mesh compression calculations.

The input non-compressed mesh is duplicated into a working structure which will be traversed by a
compliant writer as described below. At each step, approximation on points, normals and textures occur
and the results of these approximations are reinjected into this working structure and used in further
calculations until traversal is completed, producing an output compressed mesh. The approximation
algorithms on points and normals are described in the following sections. The code corresponding to
the basic functions used in those algorithms is given as pseudo code in the Section 10.

8.8.9.1 Mesh Traversal

The input mesh is traversed as follows (see Figure 2):

14N :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

V7

w

VO

V4

Vv

Figure 2 — Mesh Traversal

Let TO [VO V1 V2] be the first triangle and [VO V1] be the first edge of TO (this edge is arbitrarily
chosen). Then, T1 is the left neighbor of TO and the edge between V1 and V2 is the first edge of T1. T3 is
the left neighbor of T1 and the edge between V1 and V3 is the first edge of T3. T2 is the right neighbor
of T1 and the edge between V2 and V3 is the first edge of T2, and so on... Left / right characteristic for
the neighbor is determined using the triangle normal.

To traverse the mesh structure.

— Ifthe current triangle has only one neighbor, this neighbor is pushed on the stack.

— If the current triangle has both a left and a right neighbor which are not treated, the left triangle is *
first pushed on the stack. Then the right triangle is pushed on the stack. ;

Once done with the current triangle the stack is popped and it becomes the current triangle.
8.8.9.2 Mesh Points and Triangles:

The following table contains a description of the variables used while computing the compressed point

mesh.
Table 170 — Mesh Points and Triangles
Name Type Description
tolerance Double (Required) 3D point tolerance
point_array CompressedintegerArray (Required) Array of points
edge_status_array CharacterArray (Required) Flags to describe a Triangle
neighbor
point_reference_array | CompressedindiceArray (Required) index of the point in the
point_array
reference_array_size | Unsignedinteger (Required) Size of point_is_a_reference
point_is_a_reference Array <Boolean> [reference_array_size] | (Required) Indicates whether a point is a
reference
Copyright International Organizaton o Sandardzaion NS Teserved 103

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

point_array describes the vertex coordinates of each point. Coordinates are stored only if necessary, if
the point has not been encountered before. As denoted in previous section, the first triangle [V, V1 V2] of
a mesh, its first edge [Vo V1] and first point Vo, are chosen arbitrarily. This first triangle is stored in the
following way : For Vy, its coordinates X,Y,Z are divided by the tolerance and rounded to the nearest
integer. The result is stored as Voapp and Vy is updated in the working structure to be Voapp. This assumes
that those coordinates divided by tolerance do not overflow a 32 bit integer. This is a condition at every
step of the compression process. For Vi, DV; « Vi-Vj is computed and the result is compressed and
stored like the first point as DV1app; then V1 is updated in the working structure. For V, : DV, « V; -
(Vo+V1) / 2 is computed, compressed and stored the same way as DVaapp; then V is updated in the
working structure. For subsequent triangles, they are always entered through an edge as explained in
previous section. Let [Vo V1 V2] be the current triangle to treat, [Vo V1] be the entering edge and Tn [V,
V1 V3] the already-treated triangle which is the neighbor of the current towards [V, V1]. If V; is not a
reference as denoted in point_is_a_reference array, V; is stored following way: A coordinate system is
defined using Tn. Origin O « (V1 + Vo) * 0.5. Others axis are defined below.

X Vo (1)
N: Vi

Ztemp «~V,-0 and 7« Ztemp A X @)

Y ZnX)

In the equation (1), Vo and V; are taken so that Vj has a treatement index less than Vi (which means that
Vo has been treated before Vi). A particular case occurs if the Z axis or Y are null (length less than
FLT_EPSILON). FLT_EPSILON is the minimum positive floating point number of type float in accordance
with the IEEE single-precision standard. In these cases, they are computed by the function
MakeOrthoRep() described in annex, using the unit axis X as input. Then V; is expressed in this
coordinate system, compressed the same way as before and updated in the working structure. Then the
next triangle is traversed as explained above.

edge_status_array describes triangles’ neighbors. Each triangle has a flag which is initialized to 0 and
then set to:

|= 0x1 if Triangle has a Right Neighbor
|= 0x2 if Triangle has a Left Neighbor

point_reference_array is used to store treatment indexes of points which have been stored by
processing a previous triangle.

point_is_a_reference indicates if a point has been already treated.
8.8.9.3 Mesh Normal Description

The following table contains a description of the variables used while computing the compressed
normal mesh.

1NA :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 171 — Mesh Normal Description

Name Type Description

normal_binary_data_size | UnsignedInteger (Required) Size of normal_binary_data

normal_binary_data Array <Boolean> (Required) Information used to compute
normal

normal_angle_array ShortArray (Required) Spherical coordinates of the
normal

is_face_planar Array <Boolean> (Required) Is associated face planar The
size of this array correspond to number of
face stored in the mesh.

normal_binary_data is a bit field used to store information types on normals.

— Bit has_multiple_normal is TRUE if the current vertex has many normals. This bit is added only
if the current vertex is encountered for the first time.

— Bit triangle_normal_reversed is TRUE if the computed triangle normal used to define a local
coordinate system shall be reversed. See next paragraph for determination of the local
coordinate system.

— Bit is_a_reference is TRUE if the current normal is stored as a reference on another normal of
the current vertex. In this case, reference_index denotes the value of the reference. It is stored in
normal_binary_data on a variable number of bit : number_of bits. Number_of_bits is
computed using number_of stored_normals: number of already actually stored normals
(without references) on the current vertex.

— Bit x_is_reversed is TRUE if the x-coordinate of the normal in the local coordinate system is
reversed. (TRUE if x is reversed). Same for y_is_reversed.

Normal_angle_array describe spherical coordinates of normals (normals are unit vectors). Values
stored are comprised between 0 and m / 2. For each triangle, a local coordinate system is computed and
used to calculate these two angles. Finally, these two angles are compressed and temporarily stored in a
short. The compressed value is computed using normal_angle_number_of_bits. This number shall be
less than 16, (default value is 10) to be stored in an array of shorts.

Is_face_planar is TRUE if corresponding face is planar. A face is a group of triangles. In this case, only
one normal is stored for all triangles of this face. It is stored when treating the first vertex of the first
triangle of this face.

8.8.9.4 Mesh Normal Construction

For each triangle, 3 normals are computed and stored. The first one corresponds to the vertex that has
the min treatment index in the first edge. The second one corresponds to the max treatment index in the
first edge. Then, a local coordinate system X,Yand Z is defined from the triangles vertices in the working
structure.

thirdVertex — firstVertex
thirdVertex — fi rstVertexH

N secondVertex — firstVertex
1

- _ V, -
Hsec ondVertex — firstVertexH H

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 0 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

V thirdVertex —secondVertex
chirdVertex —sec ondVertexH

6, « h(v;v;) -z 6, < ‘\(\73,—\71]—% 0, “(—\72,—v3]—%
Z WV, AV,

If (6, < 6,) and (6, <6,) = X <V,
Else if (6, < 6,) = X <V,

Else = XV, z <—(\72 /\\73)

Z is reversed to have a scalar product positive or null with the current vertex normal. Note that this
coordinate system is the same for the 3 vertices of the triangle as a consequence of the primary
condition on triangle normal. The result is stored in triangle_normal_reversed.

Y« = AX
2

A particular case occurs if the Z axis or Y are null (length less than FLT_EPSILON). In these cases, they

are computed by the function MakeOrthoRep() described in annex, using the unit axis X as input. For
each vertex normal, the angles in normal_angle_array are computed as described below (n denotes the

triangle normal) :

p«asin@i-Z) .. f-Zelod] ¢e{0,1}
2

X X
N[Ny
=<

| —
| 3
| |
~—~~ |
3l | 3l
N[Ny
N | N
X X
N[Ny

0 < asin Y e[01] 96[0 Z}
and 2

with

Spherical angles 8 and ¢ are then compressed and stored the same way as follows (same formula for ¢

):

|0| (2 normalAngleNumberOfBits 1)

Hshort A T
2

These values are then written in unsigned short integers on 16 bits with a cast. Then, the nearest

unsigned short values to these angles are stored in normal_angle_array.

T
short '~
2

- |0| > % = gshort <~ eshon +1

(2 normalAngleNumberOfBits 1)

ordizaton I © ISO 2014 - All rights reserved

1Nnc -
Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

For each vertex in each triangle, Theta and then Phi are added in normal_angle_array if the normal is
not a reference. The pseudo code below describes how normal_binary_data and normal_angle_array
are filled.

If (number_of_stored_normal == 0 || lhas_multiple_normal) {
Add has_multiple_normal in normal_binary_data
Add triangle_normal_reversed in normal_binary_data
Add x_is_reversed in normal_binary_data
Add y_is_reversed in normal_binary_data
Add Angles in normal_angle_array
}else {
Add is_a_reference in normal_binary_data
if (is_a_reference) {
for(i=0;i<number_of stored_normal; i++)
Add reference_index&(1<<i) in normal_binary_data
}else{
Add triangle_normal_reversed in normal_binary_data
Add x_is_reversed in normal_binary_data
Add y_is_reversed in normal_binary_data

Add Angles in normal_angle_array

}
}

After the compressed normal calculation, a compressed normal is computed and re-injected in the
working structure as follow.

T
eshort (2)
o

comp <« 2normaIAngIeNumbeOfBits -1

T
¢short (2]

¢comp < 2normaIAngIeNumbeOfBits -1

Moo < cos(@comp)cos(comp)i + sin(@comp)cos(gzﬁcomp)? +sin(¢comp)2

The cos and sinus functions are computed using a taylor expansion with 4 terms and the following:
expression. :

ifl a>m/4) =>sin(a) = cos(m/2 - a) cos(a) =sin(m/2 - a)

8.8.9.5 Mesh Texture Structure

The following table contains a description of the variables used for textures storage. This structure is
used to describe the textures’ UV parameters.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 07
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 172 — Mesh Texture Structure

Name Type Description

all_face_has_texture | Boolean (Required) False if there is at least one face
without texture

face_has_texture Array <Boolean> (Required) Does corresponding face have

texture The size of this array correspond to
number of face stored in the mesh

texture_data CompressedTextureParameter (Required) Information to retrieve UV
texture parameters.

The combination of all_face_has_texture and face_has_texture determines whether a face has
textures. texture_data contains information to retrieve UV textures’ parameters. See
CompressedTextureParameter for more details.

8.8.9.6 Mesh Attribute Structure

The following table contains a description of the variables used to contain mesh attribute data.

Table 173 — Mesh Attribute Structure

Name Type Description

is_point_color Boolean TRUE if there is at least one face with
point color

is_point_color_on_face Array <Boolean> TRUE if corresponding face has point
color The size of this array
correspond to number of face stored

in the mesh.
point_color_array CharacterArray RGB or RGBA
is_multiple_attribute Boolean TRUE if there is at least one face with

multiple attributes

is_multiple_line_attribute_on_face | Array <Boolean> True if the face has multiple line
attributes. If there is one line
attribute on the face, one graphic
referenced in line_attributes_array is
associated with the face. Otherwise,
the number of graphics referenced in
line_attributes_array is equal to the
number of triangles in the face .

The size of this array correspond to
number of face stored in the mesh

line_attribute_array ShortArray Indexes in the graphics array

point_color_array describes colors on vertices for each triangle. For each triangle vertex with point
color, 5 characters are stored. The first character describe if the vertex has got RGB or RGBA
components. Then 4 components are used to stored R, G, B, and alpha.

line_attribute_array describe indexes in a graphic array. If a face contains multiple at-tributes, one
index per triangle is added in line_attribute_array. Otherwise, one index per face is added, when
encountering the first triangle of this face.

1Nn0 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.8.9.6.1 Description of the Data Written to the File

The following is a description of the data in the file:

is_calculated indicates whether the tessellation has been calculated during the import or has been
read directly from a native file.

has_faces is TRUE if the entity is built using geometrical faces.
tolerance represents the tolerance of the approximation of the original tessellation.

origin_array contains three floating point coordinates that describe the bounding boxcenter of the
compressed 3D tessellation data.

points_array contains the array of vertex points.

edge_status_array for each triangle, used to describe the triangles neighbors.

point_is_referenced_array_size size of the reference array.

point_is_referenced_array indicates whether a point is a reference.
number_of_referenced_points size of the point reference array.

point_reference_array relative point references.

triangle_face_array represents, for each triangle, the index of the face to which it belongs.
character_array is calculated as shown below.

character_array_compressed is an integer array obtained by the Huffman algorithm, with 6
bits in character_array.

must_recalculate_normals and crease_angle are described in 3D_TESS_FACE.
number_implicit_normal is reserved for future use.

normal_is_reversed is reserved for future use.

normal_binary_data information used to compute normal.
normal_angle_array spherical coordinates.

normal_angle_number_of_bits is the number of bits used to approximate the triangles normals. It
shall be lower than 16 and should be set to 10 bits to ensure good performance.

normal_angle_array is an unsigned short array containing values less than (1 <<
normal_angle_number_of bit) - 1). This array is optionally compressed with a Huffman algorithm
using normal_angle_number_of bit bits.

is_normal_angle_array_compressed indicates whether normal_angle_array is compressed.

normal_angle_array_compressed is integer array obtained by the Huffman algorithm
on normal_angle_array.

face_number is derived from the maximum value in triangle_face_array.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 09
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

is_face_planar is TRUE if the face is planar. In this case, only one normal per face is stored.
is_point_color is TRUE if at least one face has vertices with colors (RGB or RGBA).
is_point_color_on_face is TRUE if the corresponding face has vertices with colors (RGB or RGBA).

point_color_array contains an RGB or RGBA component compressed using a Huffman algorithm
with 8 bits.

is_multiple_line_attribute indicates if there is at least one face with multiple line attributes.
is_multiple_line_attribute_on_face is TRUE if the face has multiple line attributes. If there is one

line attribute on the face, one graphic referenced in line_attributes_array is associated with the face.
Otherwise, the number of graphics referenced in line_attributes_array is equal to the number of

triangles in the face..

— no_texture is TRUE if there is no texture.

— texture_data. See corresponding chapter.

— all_faces_have_texture is TRUE if all faces have a texture.

— face_has_texture is a boolean array. It indicates which faces have texure when no_texture is TRUE
and all_faces_have_texture is FALSE.

— has_behaviours is TRUE if special graphics behaviors or inheritances exist on faces or triangles.
See 3D_TESS_FACE for more information.

— behaviours_array represents the behavior for each face.

Table 174 — Description of the Data Written to the File

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_TESS_3D_COMPRESSED
is_calculated Boolean (Required) is_calculated
has_faces Boolean (Required) has_faces
tolerance Double (Required) tolerance

origin_array

Array <FloatAsBytes>[3]

(Required) origin_array
The data is compressed as follows:

FloatAsBytes(origin_array|[i]) for i
=0,1,2

(See FloatAsBytes)

point_array

CompressedintegerArray

(Required) point_array (See 10.8)

edge_status_array

CharacterArray

(Required) edge_status_array (2
bits per character only) (See 10.6)

triangle_face_array

CompressedIndiceArray

(Required) triangle_face_array
(See 10.9)

reference_array_size

UnsignedInteger

(Required) reference array size

141N
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

Table 174 (continued)

ISO 14739-1:2014

points_is_reference_array Array <Boolean> | (Required)
[reference_array_size points_is_reference_array
point_reference_array CompressedIndiceArray (Required) point_reference_array
CompressedindiceArray (see 10.9)
invokes WriteCharacterArray :
(see10.6); in this case, the boolean -
value which indicates whether the :
character array is compressed is not
stored. Its value is implicit and set to
number_of_reference_points=>3 ;f
must_recalculate_normals Boolean (Required)
must_recalculate_normals
normal_is_reversed Array <Boolean> [] (Optional; if
must_recalculate_normals is
TRUE) normal_is_reversed
The number of normals is implicit,
depending of the number of
triangles and faces. Vertices have
always as many normals as number
of faces to which they belong.
crease_angle Double (Optional; if
must_recalculate_normals is
TRUE) crease_angle
normal_recalculation_flags Character (Optional; if
must_recalculate_normals is
TRUE) Normal recalculation flags
(not used; should be zero)
normal_angle_number_of_bits Character (Optional; if
must_recalculate_normals is
FALSE)
normal_angle_number_of_bits
normal_binary_data_size Unsignedinteger (Optional; if
must_recalculate_normals is
FALSE) normal_binary_data_size
normal_binary_data Array <Boolean>[| (Optional; if
normal_binary_data_size] must_recalculate_normals is

FALSE) normal_binary_data

normal_angle_array

ShortArray

(Optional; if
must_recalculate_normals is
FALSE) normal_angle_array (size
16 bits)

is_face_planar

Array <Boolean>

(Optional; if
must_recalculate_normals is
FALSE) is_face_planar

is_point_color

Boolean

(Required) is_point_color

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

111

Licensee=University of Alberta/5966844001, User=ahmadi, rozita

Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 174 (continued)
is_point_color_on_face Array <Boolean> (Optional; if is_point_color is TRUE)
is_point_color_on_face
point_color_array CharacterArray (Optional; if is_point_color is TRUE)
point_color_array (size 8 bits)
is_multiple_line_attribute Boolean (Required)
is_multiple_line_attribute
is_multiple_line_attribute_on_face | Array <Boolean> (Optional; if
is_multiple_line_attribute is TRUE)
is_multiple_line_attribute_on_face
line_attribute_array ShortArray (Required) line_attribute_array
(size 16 bits)
no_texture Boolean (Required) no_texture
texture_data CompressedTextureParameter (Optional; if no_texture is FALSE)
texture_data
all_faces_have_texture Boolean (Optional; if no_texture is FALSE)
all_faces_have_texture
face_has_texture Array <Boolean> (Optional; if no_texture is FALSE
and all_faces_have_texture is
FALSE) face_has_texture
has_behaviors Boolean (Required) has_behaviors
behaviors_array CharacterArray (Optional; if has_behaviors is
TRUE) behaviours_array (size 8
bits)

8.8.9.7 CompressedTextureParameter

The following table contains a description of the variables used to store UV textures’ parameters.

binary_texture_data represents a bit field. During mesh traversal, if the current vertex has a texture, a
bit texture_is_reference is set in this array.This bit is true if the same UV parameter has already been
stored during mesh traversal for the same vertex. In this case, the reference index is stored in
reference_array. Otherwise, this bit is set to FALSE and UV parameters are stored in
Texture_parameters.

reference_array is used to reference UV parameters. The references on UV parameters are done per
vertex. A UV parameter for the current vertex is referenced only if the same UV parameter has already
been stored for the same vertex during the treatment of another triangle. This treatment is performed
during mesh traversal, the same way as normals’ treatment.

texture_parameters_tolerance is reserved for future use and should be set to zero.

texture_parameters is an array of float which contains UV textures‘ coordinates.This array is filled
during mesh traversal as well.

1419 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 175 — CompressedTextureParameter

Name Data Type Data Description
binary_texture_data BinaryTextureData (Required)
binary_texture_data
reference_array_size UnsignedInteger (Required)
reference_array_size
reference_array Array (Required) reference_array

[reference_array_size]

<UnsignedIntegerWithVariableBitNumber>

texture_parameters_tolerance

Double

(Required)

be setto 0.

texture_parameters_tolerance
reserved for future use. Should

texture_parameters_size

UnsignedInteger

(Required)
texture_parameters_size

texture_parameters

Array
[texture_parameters_size]

<FloatAsBytes>

(Required)
texture_parameters

8.8.9.8 BinaryTextureData

BinaryTextureData represents a bit field. It indicates during mesh traversal whether UV coordinates are
referenced. (See previous chapter for more details). Then last_integer_used_bit_number bits are
added to this array so that Texture_binary_data_size becomes a multiple of 32. Consequently, 0 <=
last_integer_used_bit_number < 32. Then the unsigned integer array is written byte by byte : each
unsigned integer leads to 4 bytes obtained from MakePortable32BitsUnsigned. (see 10.2);

Table 176 — BinaryTextureData

Name Data Type Data Description
texture_binary_data_size Unsignedinteger texture_binary_data_size / 32
texture_binary_data Array <bits(8)> texture_binary_data.
texture_binary_data_size / 8] This size array is equal to
texture_binary_data_size / 8.
last_integer_used_bit_number | UnsignedInteger last_integer_used_bit_number
113

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9 Topology

8.9.1 Entity Types

Table 177 — Topology entity types

Type Name Type Value Referenceable
PRC_TYPE_TOPO PRC_TYPE_ROOT + 140
PRC_TYPE_TOPO_Context PRC_TYPE_TOPO + 1 no
PRC_TYPE_TOPO_Item PRC_TYPE_TOPO + 2 no
PRC_TYPE_TOPO_MultipleVertex PRC_TYPE_TOPO + 3 yes
PRC_TYPE_TOPO_UniqueVertex PRC_TYPE_TOPO + 4 yes
PRC_TYPE_TOPO_WireEdge PRC_TYPE_TOPO + 5 yes
PRC_TYPE_TOPO_Edge PRC_TYPE_TOPO + 6 yes
PRC_TYPE_TOPO_CoEdge PRC_TYPE_TOPO + 7 no
PRC_TYPE_TOPO_Loop PRC_TYPE_TOPO + 8 yes
PRC_TYPE_TOPO_Face PRC_TYPE_TOPO + 9 yes
PRC_TYPE_TOPO_Shell PRC_TYPE_TOPO + 10 yes
PRC_TYPE_TOPO_Connex PRC_TYPE_TOPO + 11 yes
PRC_TYPE_TOPO_Body PRC_TYPE_TOPO + 12 no
PRC_TYPE_TOPO_SingelWireBody PRC_TYPE_TOPO +1 3 no
PRC_TYPE_TOPO_BrepData PRC_TYPE_TOPO + 14 no
PRC_TYPE_TOPO_SingleWireBodyCompress PRC_TYPE_TOPO + 15 no
PRC_TYPE_TOPO_BrepDataCompress PRC_TYPE_TOPO + 16 no
PRC_TYPE_TOPO_WIreBody PRC_TYPE_TOPO + 17 no

8.9.2 Basetopology

Base topology represents optional information for a topological entity. Such optional information is
comprised of a name, attributes, and an identifier within the originating CAD system. The identifier is
not used as an identifier within the PRC File, but is simply carried as information about the origin of this

entity within the originating CAD system.

Table 178 — Basetopology

Name Data Type Data Description

has_base Boolean (Required) TRUE if base information is
present; else FALSE

attribute_data AttributeData (Optional; if has_base is TRUE) Attributes
attached to the topological entity

name Name (Optional; if has_base is TRUE) Name
attached to the topological entity

id UnsignedInteger (Optional; if has_base is TRUE) Identifier in
originating CAD system; this may not be
used to reference entity within PRC File;

11A
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.3 PRC_.TYPE_TOPO

Abstract base class for topology.
8.9.4 PRC_TYPE_TOPO_Context

A topological context is a self-contained set of geometry and topology. Every geometrical and
topological entity belongs to a single topological context. A topological context contains topological
bodies represented as entry elements that point to topological items and geometry.

granularity represents the minimal size of an edge. This is a non-dimensional value.

tolerance represents the global base tolerance used in the context for topological elements. This is a
non-dimensional value and can be superseded by looser local tolerances for particular topological
elements. See Section 5.7.

smallest_thickness represents the smallest face thickness. It is used for loop algorithms, and its default
value is 100 * granularity.

scale represents an optional scale that can be used to interpret the context data. This scale
accommodates the different ranges of values of various CAD systems. The preceding values * scale yield
dimensional values to be interpreted with the unit. For example, granularity * scale is dimensional
granularity in part units. If scale is not specified no scaling is done.

The behavior field defines the behavior of PRC_TYPE_TOPO_BrepData bodies. It is a character of bits
which define

— The order of outer loops within the list of loops on a face.

— Whether UV curves are clamped to the parameter domain boundaries for periodic surfaces or can
extend past the boundary.

— Whether 3D edge curves (and faces) on closed or periodic surfaces are split along the seam or not.

The following table defines the bit values and behavior for this field:

Table 179 — PRC_TYPE_TOPO_Context behavior bit values

Value | Type Name Type Description

0x0001 | PRC_CONTEXT OuterLoops | Outer loops are first in the list of loops on a face.
First

0x0002 | PRC_CONTEXT NoClamp UV curves can go beyond the domain of the bearing surface; this is used for
interpreting UV curves on periodic-surfaces.

0x0004 | PRC_CONTEXT_NoSplit 3d edge curves on closed or periodic surfaces are allowed to cross the
seam of the surface.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 1 5
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 180 — PRC_TYPE_TOPO_Context

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TYPO_Context
base ContentPRCBase (Reqmred) 'Base information associated
with the entity
behavior Character (Required) behavior
grandularity Double (Required) grandularity
tolerance Double (Required) tolerance
(Required) has_face_thickness is TRUE
has_face_thickness | Boolean if smallest face thickness is present else
FALSE
. (Optional; if has_face_thickness is
Option: TRUE Double TRUE) Smallest face thickness
(Required) TRUE if the scale factor is
has scale Boolean present; else FALSE
Option: TRUE Double (Optional; if has_scale is TRUE) scale
number_of _bodies | Unsignedinteger (Required) Number of bodies
. Array . .
bodies <PRC_TYPE_TOPO_Body>[number_of bodies] | (xeauired) Array of bodies

8.9.5ji PRC_TYPE_TOPO_Item

Abstract root type for any topological entity (body or single item)

8.9.6 PRC_TYPE_TOPO_MultipleVertex

This represents a vertex whose position is the average of all edges’ extremity positions which end at
that vertex, that is,

Vertex_position = (points_for_vertex[0] + ... + point_for_vertex[number_of_points - 1]) / number_of_points;

Table 181 — PRC_TYPE_TOPO_MultipleVertex

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_MultipleVertex
base BaseTopology (Required) Common topology data (name, attributes, CAD
identifier)
number_of_points Unsignedinteger (Required) Number of points
points Array <Vector3d> | (Required) Array of points for vertex
[number_of points]

8.9.7 PRC_TYPE_TOPO_UniqueVertex

This represents a vertex whose position is specified by a 3D absolute postion and a tolerance. By
default, the tolerance is the same as the tolerance of the topological context, but it can be over-ridden by
a local one. The optional tolerance shall be either 0.0 or greater than the tolerance of the topological
context of the vertex.

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

11c
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

ISO 14739-1:2014

The tolerance is used to define a sphere around the vertex within which the vertex may lie. It is used to
determine if a position is the same (within tolerance) as this vertex. See 5.7.

Table 182 — PRC_TYPE_TOPO_UniqueVertex

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_UniqueVetex

base BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)

vertex Vector3d (Required) Position of vertex

has_tolerance Boolean (Required) TRUE if there is an associated
tolerance; else FALSE

tolerance Double (Optoinal; if has_tolerance is TRUE)
tolerance

8.9.8 PRC_TYPE_TOPO_WireEdge

A WireEdge may belong to either a wire body or single wire body.

The geometry of a wire edge is a 3D curve which has an optional trim interval to limit the geometric
definition of the curve. It is not bound by vertices. The sense of the WireEdge is the same as the
underlying curve.

Table 183 — PRC_TYPE_TOPO_WireEdge

Name Data Type Data Description

UnsignedInteger (Required) PRC_TYPE_TOPO_WireEdge

(Required) 3D curve defining the wire edge
curve ContentWireEdge and an optional interval to restrict the wire
edge to a subset of the curve.

8.9.9 PRC_TYPE_TOPO_Edge

This class represents an edge which is a bounded segment of a curve where the segment is not
coincident or self-intersecting except possibly at the end points of the edge. The geometry of an edge is
provided by a wire edge which has an optional trim interval to limit the geometric definition of the
curve. The sense of the edge is the same as the sense of the wire edge which is the same as the sense of
the underlying curve.

An optional tolerance may be provided which is either zero or greater than the tolerance of the
topological context the edge lies in. The tolerance is used to define a pipe centered on the edge within
which the edge may lie. It is used to determine if a position lies on (within tolerance of) the edge. See
Section 5.7.

A start and end vertex, of type PTR_TYPE_TOPO_UniqueVertex or PTR_TYPE_TOP_MultipleVertex,
represent the start and end positions on the edge. The vertices and curve trim interval are related by
the tolerances associated with the vertex and edge

Distance(Vertex, Edge_end)<= Vertex.Tolerance() + Edge.Tolerance()

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 1 7
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 184 — PRC_TYPE_TOPO_Edge

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_Edge

wire_edge ContentWireEdge (Required) Curve providing the geometric
definition of the edge along with trimming
information

start_vertex PtrTopology (Required) Start vertex

end_vertex PtrTopology (Required) End vertex

has_tolerance Boolean (Required) Has tolerance

tolerance Double (Optional; if has_tolerance is TRUE)
Tolerance

8.9.10 PRC_TYPE_TOPO_CoEdge

A coedge represents the usage of an edge within a loop. The usage specifies the orientation of the
coedge with respect to the edge:

— 0 Opposite direction
— 1 Same direction
— 2 Unknown

Normally, the orientation will be in the opposite or same direction. If the orientation is set to unknown,
then PRC_CONTEXT OuterLoopsFirst shall be set to TRUE to assist in the computation of the proper
orientation.

A coedge may have a UV curve which may be NULL or of type PRC_TYPE_CRV_NURBS. The UV curve
maps R! (the interval of the UV curve) to R? (the domain space of the surface defining the face the loop
of coedges lie in). As with an edge, the UV curve has an orientation (opposite, same, unknown) with
respect to the orientation of the coedge within the loop.

If orientation_with_loop is equal to orientation_uv_with_loop, the 3D curve orientation is the same as 2D
uv curve, that is, the start point of coedge (base_surface.evaluate(
curve_uv.evaluate(curve_uv.param.min)) is the same as the start point of edge (within the tolerance of
edge).

Table 185 — PRC_TYPE_TOPO_CoEdge

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_CoEdge

base_tolopogy BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)

ptr_topology PtrTopology (Required) This shall be an edge
(PRC_TYPE_TOPO_Edge) and shall not be
NULL

ptr_curves PtrCurve (Required) UV Curve in the domain of the

face this coedge lies in; may be NULL

coedge_orientation Character (Required) Orientation of coedge with
respect to the loop

uv_orientation Character (Required) Orientation of the UV curve with
respect to the loop

110 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.11 PRC_TYPE_TOPO_Loop

8.9.11.1 General

A loop is a list of coedges bounding a portion of a face in a B-rep entity. The loop may define an outer
boundary of a face or it may define a hole within the face.

Aloop has the following properties:

— Aloop is an ordered array of references to coedges which define the boundary of the loop.

— The list of coedges form a closed boundary for the portion of the face delimited by the loop. None of
the references may be null and all references shall be to PTR_TYPE_TOPO_CoEdge. The start vertex
of one coedge shall be the end vertex of the next coedge in the list.

— The loop of coedges is oriented with respect to the surface normal using the rule of material to the
left. That is, the cross-product of the tangent to the coedge at any position on the coedge with the
face normal at that same position will point towards or opposite the material of the surface within
the loop. The orientation of the loop might be

— 0 Opposite direction
— 1 Same direction
— 2 Unknown

with respect to the normal of the face. If it is set to unknown, geometric tests shall be performed to
determine the correct orientation of the loop (same or opposite).

Table 186 — PRC_TYPE_TOPO_Loop

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_Loop

base_topology BaseTopology (Required) Common topology data (namé,
attributes, CAD identifier) g

loop_orientation Character (Required) Orientation of loop with respect
to surface normal

number_of_coedges UnsignedInteger (Required) Number of coedges in the loop

coedge Array <CoedgelnLoop> | (Required) Coedges in loop

[number_of _coedges]

8.9.11.2 CoedgelnLoop

This represents a coedge around a loop. The PtrTopology shall not be NULL and shall point to a
PTR_TYPE_TOPO_CoEdge.

Each coedge in the loop may index a neighboring coedge which shares the same edge but represents
another usage of the edge in a boundary of a face, usually another face on another surface.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 19
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 187 — CoedgelnLoop

Name Data Type Data Description
next_coedge PtrTopology (Required) Next coedge in loop
neighbor_index UnsignedInteger (Requred) Index of neighboring coedge (i.e.

coedge which points to the same edge as
this coedge) or 0 if there is no neighboring
coedge

8.9.12 PRC_TYPE_TOPO_Face

A face is a bounded portion of a surface where the surface is not coincident or self intersecting except
possibly at the boundary of the face

It is defined by

A surface providing the geometric definition of the face. The face always has the same orientation
as the underlying surface.

An optional Domain may restrict the definition of the face to a portion of the surface. Otherwise the
parameter domain of the face is the domain of the surface.

Like a vertex and an edge, a face has an associated tolerance which is the topological context
tolerance unless an optional tolerance is specified. If the optional tolerance is specified, it shall be
either 0.0 or greater than the topologial context tolerance. If the tolerance is 0.0 the topological

- context tolerance is used. See 5.7.
An unordered list of loops delimiting the bounded portion (interior) of the face.
" One of the loops represents the exterior boundary of the face and the other loops (if any) represent

~interior loops (holes) within the face. If PRC_CONTEXT OuterLoopsFirst is set to TRUE in the
" topological context the face is contained in, the index of the outer loop shall be defined.

Table 188 — PRC_TYPE_TOPO_Face

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_Face

base BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)

surface_geometry PtrSurface (Required) Surface geometry

is_trimmed Boolean (Required) TRUE if the suface definition is
to be trimmed to a specific domain; else
FALSE

trimmed_surface Domain (Optional; if is_trimmed is TRUE) UV
domain of trimmed surface

has_tolerance Boolean (Required) TRUE if there is a tolerance
associated with this face; else FALSE

tolerance Double (Optional; if has_tolerance is TRUE)
Tolerance

17N

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

© ISO 2014 - All rights reserved

Table 188 (continued)

ISO 14739-1:2014

number_of loops UnsignedInteger (Required) Number of loops in this face;
shall be 1 or more
index_of_outer_loop Integer (Required) Index of outer loop; it shall be
set to -1 if it is not defined
loops Array <PtrTopology> | (Required) Array of loops within this face;
[number_of_loops] each pointer shall be of type
PRC_TYPE_TOPO_Loop

8.9.13 PRC_TYPE_TOPO_Shell

8.9.13.1 General

A shell is a collection of faces which form either a closed or open boundary.

Table 189 — PRC_TYPE_TOPO_Shell

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_Shell
base BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)
is_closed Boolean (Required) is_closed is TRUE if the shell is
closed; else FALSE
number_of_faces UnsignedInteger (Required) Number of faces in shell
faces Array <FacesInShell> | (Required) Faces within shell
[number_of_faces]

8.9.13.2 FacesInShell

This represents a face within a shell. Each face is oriented with respect to the underlying surface so that
the shell normal points outside the material of the shell if the shell is closed and is arbitrary otherwise.

The orientation of the surface with respect to the shell may be

— 0 Opposite direction
— 1 Same direction
— 2 Unknown

If the orientation is unknown, geometric tests shall be performed to determine the correct orientation
(within the shell) of the face (same or opposite) with respect to the surface.

Table 190 — FacesInShell

Name Data Type Data Description

face PtrTopology (Required) Face within this shell; this shall
be non-NULL and of type
PRC_TYPE_TOPO_Face

orientation Character (Required) Orientation of face with respect
to the underlying surface

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

121

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.14 PRC_TYPE_TOPO_Connex

This represents a region of space delimited by one or more shells. The shells may be open or closed,
may touch at a vertex, an edge, or a face, or may be contained within another shell if the interior shell
represents a void within the exterior shell.

The region

— may represent a skin if the shells are open
— may represent a manifold solid if all of the shells are closed but not touching

— may represent a non-manifold solid where all of the shells are closed but some touch at a vertex,
edge, or face

If the connex is delimiting material, it is mandatory that it be bounded by one or more closed shells.

Table 191 — PRC_TYPE_TOPO_Connex

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_Connex
base BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)
number_of _shells UnsignedInteger (Required) Number of shells in connex
shells Array <PtrTopology> | (Required) Shells within this connex; each
[number_of _shells] entry shall be a shell, be non-NULL, and be

of type PRC_TYPE_TOPO_Shell

8.9.15 PRC_TYPE_TOPO_Body

This represents an abstract type for any topological body
— PRC_TYPE_TOPO_SingleWireBody

—PRC_TYPE_TOPO_BrepData

— PRC_TYPE_TOPO_SingleWireBodyCompress

— PRC_TYPE_TOPO_BrepDataCompress
8.9.16 ContentBody

ContentBody provides additional infromation about base topological entities
(PRC_TYPE_TOPO_SingleWireBody and PRC_TYPE_TOPO_BrepData) such as its name, attributes, and CAD
identifier and how the bounding box for a PRC_TYPE_TOPO_BrepData has been calculated.

The following table shows the possible values for bounding box behavior:

Table 192 — ContentBody bounding box behavior

Value Type Name Type Description
0x001 PRC_BODY _BBOX_Evaluation Bounding box based on tessellation
0x002 PRC_BODY_BBOX_Precise Bounding box based on geometry
0x004 PRC_BODY_BBOX_CADData Bounding box given by a CAD data file
Copyright In?er?at’iznal Organization for Standardization © IS0 2014 - All rights reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 193 — ContentBody

Name Data Type Data Description
(Required) Optional topology information
base BaseTopology (name, attributes, CAD identifier)
(Required) Bounding box behavior;
bounding_box_behavior Character relevent only for

PRC_TYPE_TOPO_BrepData; otherwise shall
be setto 0

8.9.17 ContentWireEdge

This represents the data defining a wire edge. It points to a 3D curve defining the geometrical shape of
the edge. Any curve, including curves on a surface may be used. An optional interval may be used to
limit the portion of the curve used to define the geometry of the edge. This interval shall lie within the
interval of the underlying curve. If no triming interval is specified, the edge is defined by the interval

defining the curve.

Table 194 — ContentWireEdge

Name Data Type Data Description

base BaseTopology (Required) Common topology data (name,
attributes, CAD identifier)

ptr_curve PtrCurve (Required) 3D curve defining the geometry
of the wire edge

is_trimmed Boolean (Required) TRUE if the wire edge restricts
the 3D curve to a subset

trim_interval Interval (Optional; if is_trimmed is TRUE) Interval

defining the subset of the 3D curve
represented by the wire edge

8.9.18 PRC_TYPE_TOPO_SingleWireBody

PRC_TYPE_TOPO_SingleWireBody is the topological equivalent of a single curve.
Table 195 — PRC_TYPE_TOPO_SingleWireBody

Name Data Type Data Description
. (Required)
Unsignedinteger PRC_TYPE_TOPO_SingleWireBody

base ContentBody [Reg}llred) Common data for PRC base
entities
(Required) wire edge shall be of type

wire_body PtrTopology PRC_TYPE_TOPO_WireEdge or
PRC_TYPE_TOPO_Edge

8.9.19 PRC_TYPE_TOPO_BrepData

This is the main representation of solid and surface topology (which is not highly compressed).

. A TOoNA AN AN s
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

123

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 196 — PRC_TYPE_TOPO_BrepData

Name Data Type Data Description
UnsignedInteger (Required) PRC_TYPE_TOPO_BrepData
base ContentBody (Required) Common data for PRC base
entities
number_of_connex UnsignedInteger (Required) Number of connex entities in
this B-rep
connex Array <PtrTopology> | (Required) Array of connex entities in this
[number_of_connex] B-rep; each entry shall be non-NULLL and
reference a PRC_TYPE_TOPO_Connex
entity
bounding_box BoundingBox (Optional; if ContentBody:
bounding_box_behavior is
PRC_BODY_BBOX_CADData) Optional
bounding box; the required field

ContentBody defines the Boolean flag
indicating the presence of this bounding
box

8.9.20 PRC_TYPE_TOPO_SingleWireBodyCompress

This represents a single wire body stored in compressed format.

Curve_tolerance is the tolerance used to approximate the curve of a single wire body. See 5.7.

Table 197 — PRC_TYPE_TOPO_SingleWireBodyCompress

Name Data Type Data Description
UnsignedInteger (Required)

PRC_TYPE_TOPO_SingleWireBodyCompress

base ContentBody (Required) Common data for PRC base
entities

curve_tolerance Double (Required) curve_tolerance is the
tolerance that has been used to
approximate the curve of a single wire
body.

compressed_curve CompressedCurve (Required)

8.9.21 PRC_TYPE_TOPO_BrepDataCompress

8.9.21.1 General

This ‘represents manifold brep data stored in compressed format. In contrast to
PRC_TYPE_TOPO_BrepData, geometrical and topological entities are not shared with other bodies even
if they belong to the same topological context.

— brep_data_compressed_tolerance represents the tolerance used for the brep data approximation.

— number_of bits_to_store_reference represents the number of bits written in the file for the

following integers

121

Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— number_vertex_references represents the number of referenced verticies in the brep; see

CompressedVertex

— number_edge_references represents the number of referenced edges in

CompressedCurve

the brep; see

The number of faces in the compressed brep is calculated as the number of faces in all of the shells in all

of the connex entities.

Table 198 — PRC_TYPE_TOPO_BrepDataCompress

Name Data Type Data Description
UnsignedInteger (Required)
PRC_TYPE_TOPO_BrepDataCompre
Ss
base ContentBody (Required) Common data for PRC
base entities
brep_data_compressed_toleranc | Double (Required)

e

brep_data_compressed_toleranc
e

number_of bits_to_store_referen
ce

NumberOfBitsThenUnsignedInteger

(Required)
number_of bits_to_store_referen
ce

number_vertex_references UnsignedintegerWithVariableBitNumb | (Required)
er number_vertex_references
number_edge_references UnsignedintegerWithVariableBitNumb | (Required)

er

number_edge_references

single_connex Boolean (Required) TRUE if this brep
consists of one connex entity with
one shell

single_connex CompressedShell (Optional; if single_connex is

TRUE) Single compressed shell

multi_connex

MultipleCompressedConnex

(Optional; if single_connex is
FALSE) Multiple compressed
connex stored in file

base_topology_data

Array <BaseTopology>|

(Required) Base topology data for
each of the faces in the compressed
brep data; the order of elements in
this array corresponds to the order
the faces are encountered in the
scanning of connex/shell data
within the compressed brep

8.9.21.2 MultipleCompressedConnex

This represents the data stored when the compressed brep data contains multiple connex entities or
multiple shells within a single connex entity.

125

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 199 — MultipleCompressedConnex

[number_of_connex]

Name Data Type Data Description
number_of_connex UnsignedInteger (Required) Number of connex entities
connex Array <CompressedConnex> | (Required) Array of compressed connex

entities

8.9.21.3 CompressedConnex

This represents all of the shells within a compressed connex entity.

Table 200 —CompressedConnex

[number_of_shells]

Name Data Type Data Description
number_of _shells UnsignedInteger (Required) Number of shell entities
shells Array <CompressedShell> | (Required) Array of compressed shells

within a connex entity

8.9.21.4 CompressedShell

This represents the compressed data for a single shell.
Table 201 — CompressedShell

Name

Data Type

Data Description

single_face

Boolean

(Required) True if there is only a single face
in the shell

number_of _faces

NumberOfBitsThenUnsignedInteger

(Optional); if single_face is TRUE) Number
of faces in the shell if there is more than a
single face

faces Array <CompressedFace> | (Required) Array of faces within the shell..
[number_of faces]
Required Array <Boolean> [number_of_faces] | (Required) Array of Boolean values

indicating if the face is an iso face (TRUE) or
not (FALSE). This is in the same order as
the previous array of compressed faces.

8.9.21.5 Compressed Face

8.9.21.5.1 General

This represents the data for a single compressed face. There are two types of compressed faces: iso-
faces and ana-face. An iso-face is a surface trimmed by four iso-parametric curves. If a face is not an iso-

face, it is an ana-face.

The types of iso-faces include ISO_PLANE, ISO_CYLINDER, ISO_CONE, ISO_SPHERE, ISO_TORUS, and
ISO_NURBS. Except for an ISO_NURBS, an iso-face is described using two curves. For example, an
ISO_CYLINDER is described with 4 trimming curve, 2 lines and 2 circle. Using the first line and the first
circular arc of the trimming loops enable to deduce the cylindrical surface and the two other trimming

edge curves.

For both types of faces, all curves used to define or trim them are 3D. Therefore, surface
parameterizations are not described and are set arbitrarily.

127c

Copyright International Organization for Standardization

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

A curve is implicit if it is computed using iso-face properties. For example, the third and fourth curves in
an ISO_CYLINDER are implicit curves. Other curves are explicit. Explicit curves are stored with the same
orientation as the loop that references them first in the compressed B-rep data.

If the face belongs to a shell and the curve was already serialized by a neighbor's face, it is referenced

with an index.

8.9.21.5.2 Enumeration of Compressed Entity Types

The following lists the types for compressed entities.

Table 202 — Enumeration of Compressed Entity Types

Value Type Name Type Description

0 PRC_HCG_NewLoop Intermediate trimming loop on an AnaFace

1 PRC_HCG_EndLoop Last trimming loop on an AnaFace

2 PRC_HCG_IsoPlane Plane trimmed by iso parametric curves

3 PRC_HCG_IsoCylinder Cylinder trimmed by iso parametric curves

4 PRC_HCG_IsoTorus Torus trimmed by iso parametric curves

5 PRC_HCG_IsoSphere Sphere trimmed by iso parametric curves

6 PRC_HCG_IsoCone Cone trimmed by iso parametric curves

7 PRC_HCG_IsoNurbs Nurbs trimmed by iso parametric curves

8 PRC_HCG_AnaPlane Plane trimmed with non-iso parametric curves

9 PRC_HCG_AnaCylinder Cylinder trimmed with non-iso parametric curves

10 PRC HCG_AnaTorus Torus trimmed with non-iso parametric curves

11 PRC_HCG_AnaSphere Sphere trimmed with non-iso parametric curves

12 PRC _HCG_AnaCone Cone trimmed with non-iso parametric curves

13 PRC_HCG_AnaNurbs Cone trimmed with non-iso parametric curves

14 PRC_HCG_AnaGenericFace ana face lying on an uncompressed surface which can
be of any type under PRC_TYPE_SURF

0 PRC_HCG_Line Compressed line

1 PRC_HCG_Circle Compressed circle

2 PRC_HCG_BsplineHermiteCurve Compressed hermite bspline

12 PRC_HCG_Ellipse Compressed ellipse; reserved for future use

13 PRC_HCG_CompositeCurve Compressed composite

8.9.21.5.3 PRC_HCG_IsoPlane

The origin of the plane is the first vertex of the loop.

127

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 203 — PRC_HCG_IsoPlane

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_IsoPlane

X Double (Required) X coordinate of unit plane
normal

y Double (Required) Y coordinate of unit plane
normal

positive_z Boolean (Required) TRUE if Z coordinate of unit
plane normal is greater than 0.0; else FALSE

face ContentCompressedFace (Required) Boundary of compressed face

8.9.21.5.4 PRC_HCG_IsoCylinder

A conforming PRC Reader should recognize accordingly lines and circles from ContentCompressedFace
to reconstruct a cylinder surface.

Table 204 — PRC_HCG_IsoCylinder

Name Data Type Data Description
Required CompressedEntity Type (Required) PRC_HCG_IsoCylinder
face ContentCompressedFace (Required) Boundary of compressed face

8.9.21.5.5 PRC HCG IsoTorus

is_major_radius is TRUE if the first serialized circle corresponds to the major radius.

A conforming PRC Reader should recognize and classify circles from ContentCompressedFace to
reconstruct a torus surface.

Table 205 — PRC_HCG _IsoTorus

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_IsoTorus
is_major_radius Boolean (Required) is_major_radius

face

ContentCompressedFace

(Required) Boundary of compressed face

8.9.21.5.6 PRC_HCG_IsoSphere

A conforming PRC Reader should recognize and classify two first circles of the loop from
ContentCompressedFace to reconstruct radius and center of a sphere surface. The sphere is computed
from two circles made by two iso parametric curves in two different directions. The curves are on the

surface of the sphere.

Table 206 — PRC_HCG_IsoSphere

Name Data Type Data Description

CompressedEntityType (Required) PRC_HCG_IsoSphere
face ContentCompressedFace (Required) Boundary of compressed face
1 O

Copyright In[ernat]onal Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.21.5.7 PRC_HCG_IsoCone

A conforming PRC Reader should recognize accordingly lines and circles from ContentCompressedFace
to reconstruct a cone surface.

Table 207 — PRC_HCG_IsoCone

Name Data Type Data Description
CompressedEntity Type (Required) PRC_HCG_IsoCone
face ContentCompressedFace (Required) Boundary of compressed face

8.9.21.5.8 PRC_HCG_AnaPlane

The origin of the plane is the first vertex of the loop.

Table 208 — PRC_HCG _AnaPlane

Name Data Type Data Description
CompressedEntity Type (Required) PRC_HCG_AnaPlane

X Double (Required) X coordinate of unit plane
normal

y Double (Required) Y coordinate of unit plane
normal

positive_z Boolean (Required) TRUE if Z coordinate of unit
plane normal is greater than 0.0; else FALSE

face ContentCompressedFace (Required) Boundary of compressed face

8.9.21.5.9 PRC_HCG_AnaCylinder

The analytic cylinder axis is defined from point_on_axis and cylinder_axis_direction. The cylinder radius
is computed using loop vertices to obtain an average radius when projected onto the axis.

Table 209 — PRC_HCG_AnaCylinder

Name Data Type Data Description

CompressedEntity Type (Required) PRC_HCG_AnaCylinder
face ContentCompressedFace (Required) Boundary of compressed face
point CompressedPoint (Required) Point on cylinder axis
direction CompressedPoint (Required) Direction of cylinder axis

8.9.21.5.10 PRC_ HCG AnaTorus

x_axis and y_axis define the torus placement.

x_axis length is equal to the major torus radius.

y_axis length is equal to the minor torus radius.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved

Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

129

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 210 — PRC_HCG_AnaTorus

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_AnaTorus
face ContentCompressedFace (Required) Boundary of compressed face
center CompressedPoint (Required) Torus center
x_axis CompressedPoint (Required) Torus x_axis
y_axis Vector3D (Required) Torus y_axis

8.9.21.5.11 PRC_HCG_AnaSphere

The radius of the sphere is computed using the first vertex of the loop and sphere_center.

Table 211 — PRC HCG_AnaSphere

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_AnaSphere
face ContentCompressedFace (Required) Boundary of compressed face

sphere_center

CompressedPoint (Required) Sphere center

8.9.21.5.12 PRC_HCG_AnaCone

axis_point and apex_point are used to compute the z-axis. The cone origin and the semi-angle
correspond to the loop vertex that is furthest from the z-axis.

Table 212 — PRC_HCG_AnaCone

Name Data Type Data Description
CompressedEntity Type (Required) PRC_HCG_AnaCone
face ContentCompressedFace (Required) Boundary of compressed face
axis_point CompressedPoint (Required) Axis point
apex_point CompressedPoint (Required) Apex point

8.9.21.5.13 PRC_HCG AnaGenericFace

This represents the data stored for any analytic face where the surface data of the face are not
compressed. In this case, the trimming data for the face is saved and a regular surface description is

saved, if there is one.

In cases where no surface data has been saved, the entity type PRC_TYPE_ROOT is used instead

of PRC_TYPE_SUREF.

42N
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 213 — PRC_HCG_AnaGenericFace

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_AnaGenericFace

Face ContentCompressedFace (Required) Boundary of compressed face

surface_definition PRC_TYPE_SURF or PRC_TYPE_ROOT (Required) Surface definition

8.9.21.5.14 PRC_HCG_IsoNurbs

8.9.21.5.14.1 General

An iso-NURBS surface is a face trimmed by four iso-parametric curves. This type of iso-face is special
because it is not stored using the first two curves (see 8.9.21.5).

In this case, the surface is stored using the following information:

— orientation_surface_with_shell is defined in FacesInShell.
— orientation_loop_with_surface is defined in PRC_TYPE_TOPO_Loop.

— sense_array is the correspondence between the surface natural boundaries, as described in
CompressedNurbs, and the trim curves.
The two first boolean values describe where the first curve is. Their possible values are:

— FALSE FALSE : the first curve is on Umin.
— FALSE TRUE : the first curve is on Vmin.
— TRUE FALSE : the first curve is on Umax.
— TRUE TRUE : the first curve is on Vmax.

If the last boolean value is FALSE, the sense is the same as if the first curve is on Umin, the second curve
is on Vmin, and the third curve is on Umax. If the last boolean value is TRUE, the reverse sense is
applied.

The four curve types are stored as reference (identifier), line, circle, or other (iso boundary of surface). .
number_of_bits_to_store_reference is described in PRC_TYPE_TOPO_BrepDataCompress. :
reference_indice is described in RefOrCompressedCurve.

Table 214 — PRC_HCG_IsoNurbs

Name Data Type Data Description
CompressedEntity Type (Required) PRC_HCG_IsoNurbs

orientation_surface_with_shell | Boolean (Required) Orientation of surface with
shell

orientation_loop_with_surface | Boolean (Required) Orientation of loop with
surface

sense_array Array <Boolean>[3] (Required) Three values of sense array

Surface CompressedNurbs (Required) Compressed Nurbs surface

Copyright International Organizaton o Sandardzaion NS Teserved 131

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 214 (continued)

Curves Array<IsoNurbsTrimCurve>[4] (Required) Trimming information for
four boundary curves

LoopVertex0 CompressedVertex (Optional if Curves[0] is_referenced
AND Curves[1] is_referenced) The
shared vertex of the first and second
boundry curves

LoopVertex1 CompressedVertex (Optional if Curves[1] is_referenced
AND Curves[2] is_referenced) The
shared vertex of the second and third
boundry curves

LoopVertex2 CompressedVertex (Optional if Curves[2] is_referenced
AND Curves[3] is_referenced) The
shared vertex of the third and fourth
boundry curves

LoopVertex3 CompressedVertex (Optional if Curves[3] is_referenced
AND Curves[0] is_referenced) The
shared vertex of the fourth and first
boundry curves

8.9.21.5.14.2 IsoNurbsTrimCurve

Table 215 — IsoNurbsTrimCurve

Name

Data Type

Data Description

is_referenced

Boolean

(Required) Is referenced

trim_curve_index

UnsignedintegerWithVariableBitNumber

(Optional if is_referenced is TRUE) Index
of trim curve

trim_curve

IsoNurbsTrimCrv

(Optional if is_referenced is FALSE) trim
curve

8.9.21.5.14.3 IsoNurbsTrimCrv

8.9.21.5.14.4 General

Save the actual trim curve data on an iso NURBS surface.

Table 216 — IsoNurbsTrimCrv

Name Data Type Data Description

iso_boundary Boolean (Required) boolean with value is set to
TRUE when the trimming curve is not a
circle or a line.

is_a_circle Boolean (Optional; if iso_boundary is FALSE)
boolean value is set to TRUE if the trimming
curve is a circle. Else the trimming curve is
aline

compressed_circle CompressedCircle (Optional; if is_a_circle is FALSE)
compressed circle

1429 -
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or neMorking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.21.5.15 PRC_HCG_AnaNurbs

Table 217 — PRC_HCG_AnaNurbs

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_AnaNurbs

compressed_face ContentCompressedFace (Required) Boundary of compressed face

compressed_surface CompressedNurbs (Required) Compressed nurbs surface

8.9.21.6 CompressedNurbs
8.9.21.6.1 General

This defines the storage of a compressed NURBS surface.
A compressed NURBS surface is defined by the following data.

See CompressedControlPoints, CompressedKnotVector, and CompressedMultiplicities for a description of
converting from a NURBS surface to a compressed NURBS surface.

Table 218 — Input data in Nurbs

Name Description

Number_ccpt_in_u Number of control points in u

Number_ccpt_in_v Number of control points in v

Number_knots_in_u Number of knots in U

Number_knots_in_v Number of knots in V

Is_closed_in_u Boolean flag indicating a surface closed in u

Is_closed_in_v Boolean flag indicating a surface closed in v

Ccpt Two dimensional array of control points

Ccpt_type Two dimensional array of integers defining the type of
control point; see type_param for legal values

Cknot_u Array of knots in U

Cknot_v Array of knots in V

Mult_u Array of multiplicities at the knots in U

Mult_v Array of multiplicities at the knots in V

Is_rational Boolean flag indicating if the surface is a rational

surface (TRUE) and thus has an optional array of
weights at the control points

Weight Array of weights if the surface is rational

brep_data_compressed_tolerance is the tolerance for approximation as described in
PRC_TYPE_TOPO_BrepDataCompress.

The following are used for stored compressed control points:

— number_of_bits_for_isomin is the number of bits used to store first row and column of control
points

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 1 3 3
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— number_of_bits_for_rest is the number of bits to store the remainder of the control points

The following are used for stored compressed knot values in U or V:

— number_bit_parameter is the number of bits used to store knots

— tolerance_parameter is the tolerance used to store knots

The following are used for stored weights of rational NURBS surfaces:

— number_bit_weight is the number of bits to store weights

— weight_tolerance is the tolerance used to store weights

A conforming PRC Writer shall ensure that all these numbers and tolerances used to store control
points, knots and weights are appropriately chosen so that the overall brep_data_compressed_tolerance
is respected. The algorithms to ensure this are not part of this specification.

type_param can have one of the following values:

— 0 for uniform parameterization.

— 1 for non-uniform parameterization.

— 2 for pseudo-uniform parameterization, meaning that the parameterization is uniform except for
extremities, mostly coming from a trim applied uniformly.

The following are used in the definition of a compressed nurbs surface:

Nurbs_tolerance = brep_data_compressed_tolerance / 5.0

Number_stored_knots_in_u = number_of knots_in_u - 2

Number_stored_knots_in_v = number_of knots_in_v - 2

Number_bits_u = (degree_in_u ? ceil[log(degree_in_u+ 2) /log(2)]: 2)

Number_bits_v = (degree_in_v ? ceil[log(degree_in_v + 2) /log(2)] : 2)

tolerance_parameter =1./2”(number_bit_parameter -1)

Table 219 — CompressedNurbs

Name

Data Type

Data Description

degree_in_u stored

UnsignedintegerWithVariableBitNumber

(Required) degree_in_u stored with 5
bits

degree_in_v

UnsignedintegerWithVariableBitNumber

(Required) degree_in_v stored with 5
bits

number_stored_knots_in_u

UnsignedintegerWithVariableBitNumber

(Required)
number_stored_knots_in_u stored
using 16 bits; the integer represents
the number of Kknots in u that are
stored in the knot_u array

mult_u Array <CompressedMultiplicities> | (Required) Array mult.u of data
[number_stored_knots_in_u] describing the knot multiplicities in U
for number_stored_knots_in_u knots
1421

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

Table 219 (continued)

ISO 14739-1:2014

number_stored_knots_in_u

UnsignedintegerWithVariableBitNumber

(Required)
number_stored_knots_in_v stored
using 16 bits; the integer represents
the number of knots in u that are
stored in the knot_u array

mult_v

ArrayOf[CompressedMultiplicities>
[number_stored_knots_in_u]

(Required) Array multv of data
describing the knot multiplicities in V
for number_stored_knots_in_v knots

is_closed_in_u Boolean (Required) is_closed_in_u
is_closed_in_v Boolean (Required) is_closed_in_v
number_of bits_for_isomin | UnsignedIntegerWithVariableBitNumber | (Required)
number_of bits_for_isomin stored
using 20 bits
number_of _bits_for_rest UnsignedintegerWithVariableBitNumber | (Required) number_of_bits_for_rest

stored using 20 bits

compressed_control_points

CompressedControlPoints

(Required) Compressed control points
for the surface

knot_vector_u CompressedKnotVector (Required) Save type_param_u,
number_knots_u, and knots_u

knot_vector_v CompressedKnotVector (Required) Save type_param_v,
number_knots_v, and knots_v

is_rational Boolean (Required) is_rational

weights CompressedWeights (Optional; if is_rational is TRUE) Save

weights

8.9.21.6.2 CompressedMultiplicities

This defines an array of data stored to define the multiplicity of knots at each knot in the knot array for

either U or V parameter.

number_stored_knots is either Number_stored_knots_in_u or Number_stored_knots_in_v

number_bits is either number_bits_u or number_bits_v.

Multiplicity is either mult_u or mult_v.

For each of the knots (0 <= i < number_stored_knots), the following data is stored

— A Boolean flag indicating if additional data is stored

— Ifi> 0 multiplicity_is_stored = (multiplicity[i] == multiplicity[i-1]);

— ifiis O multiplicity_is_stored = (multiplicity[i] == 1)

— Optionally store the multiplicity at this knot using number_bit bits

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

135

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 220 — CompressedMultiplicities

Name Data Type Data Description
multiplicity_is_stored Boolean (Required) multiplicity_is_stored
multiplicity UnsignedintegerWithVariableBitNumber | (Optional; if multiplicity_is_stored is

TRUE) multiplicity[i] stored using
number_bits

8.9.21.6.3 CompressedControlPoints

8.9.21.6.3.1 General

nurbs_tolerance describes the tolerance used to approximate the original nurbs surface. It ensures
that each point on the compressed nurbs surface is at a distance of the original surface less than
nurbs_tolerance.

P33

P30

P10

Figure 3 — CompressedControlPoints

compressed_control_point P is a two dimension array containing double values that allow to
recompute X, y, z values of consecutive points. At start, the surface is copied into a working structure
which is updated step by step. Poo coordinates are pushed in compressed_control_point and into the
working structure, thus Poo(compressed) = Po,0(working structure) = Po,o. Then P19 - Poo is computed and each
vector component is approximated to the nearest multiple of the nurbs_tolerance. This truncated vector
(P1,0 - Poo(working structure))_truncated is pushed into compressed_control_point. Then P1oworking structure) S
ComDUted as fOHOWS H Pl,O(working_structure) = (Pl,O - PO,O(working_structure))_truncated + PO,O(working_structure)- ThlS
point is re-injected into the working structure to avoid error propagation. In the same way, (P20 -
P1,0(working structure))_truncated is pushed into compressed_control_point. P2 oworking structure) i computed and
re-injected in the working structure. The same formula applies for each Pio and then Py control points.

Internal compressed control points are also computed with previously stored points. for each i and for
each j, Pijcompressed) i computed

\7(_Pi—1,j - P
U<—Pi,j—1 - Piia
N«UAnAV

12 .
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

p P - (P, +V+U)

i, j (compressed i

Four cases are considered:

— If Pij(compresseq) length is less than nurbs_tolerance, control_point_type is set to zero and no value is
pushed into compressed_control_point.

(P i1 +V +U) is reinjected in the working structure to replace P;;.

Otherwise, P;j(compressed) is evaluated in the following local coordinate system :

N R u
ij(R ETIRTEEAETE
i, j(compresse HN” HU ”

‘ Cu
2

P, «|P P P

i, j(compressed) *

c
=

— if x2 + y2Zvalue is less than nurbs_tolerance?, control_point_type is set to 1 and z is added in
compressed_control_point.

i, j(compressed) * H

— else if the z component length is less than nurbs_tolerance, control_point_type is set to 2 and the
coordinates x and y are added in compressed_control_point.

— else x, y and z are stored in compressed_control_point. control_point_type is set to 3. If one of the
vectors V, U, or N has a length less that 1e-12, this case is systematically used.

P is a two dimensional array of the 3D control points for a compressed Nurbs surface.
When linearized, the data is stored in the following order

— The corner point P[0][0] is stored as a Vector_3d (i.e. three doubles);
— The remainder of the first row of control points is stored as Point3DWithVarBitNumber
— The remainder of the first column of control points is stored as Point3DwithVarBitNumber

—The remainder of the matrix is stored by row (i.e. for a given i from 1 to number_ccpts_in_u, save the
row of control points from j=1 to number_ccpts_in_v. For each point

— Save the type of control point

— Ifthe type is 1, save the z coordinate of the control point

— Ifthe type is 2 save the x and y coordinates of the control point
— Ifthe type is 3 save the X, y, and z coordinates of the contol point

All Point3DWithVariableBitNumber data is written using Nurbs_tolerance and
(number_of_bits_for_isomin + 1).

A TON ANA A L) oy T
Copyright International Organization for Standardization ‘,htS reserved 1 3 7
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Table 221 — CompressedControlPoints

<Point3DwithVariableBitNumber>
[number_ccpt_in_u]

Name Data Type Data Description

p00 Vector3d (Required) P[0][0]

ccpt_in_v Array (Required) P[O][j] 1 <= j <
<Point3DwithVariableBitNumber> number_ccpt_in_v
[number_ccpt_in_v]

ccpt_in_u Array (Required) PJi][0] 1 <= i <

number_ccpt_in_u

ccpt_interior

Array
<InteriorCompressedControlPoints> []

(Required) Array of data describing interior
compressed control points. The points are
saved using the order in the previous
pseudo code

8.9.21.6.3.2 InteriorCo

mpressedControlPoints

This represents the data stored for each interior compressed control point.

All DoubleWithVariableBitNumber data is written using Nurbs_tolerance and (number_of_bits_for_rest

+1).

The array of interior compressed control points is a two dimensional array written as

for (i=1;i<number

_cept_in_u; i++) {

for (j =1;j <number_ccpt_in_v; j++) {

write P[i][j]
}
}
Table 222 — InteriorCompressedControlPoints
Name Data Type Data Description
type UnsignedintegerWithVariableBitNumber | (Required) Ccpt_Type[i][j] Is written with
2 bits

P[i][j]-z DoubleWithVariableBitNumber (Optional; if type is 1) P[i][j].z
P[i][j]-x DoubleWithVariableBitNumber (Optional; if type is 2) P[i][j].x
Pli][jl-y DoubleWithVariableBitNumber (Optional; if type is 2) P[i][j].y
P[i][j]-x DoubleWithVariableBitNumber (Optional; if type is 3) P[i][j]-x
Pli][jl-y DoubleWithVariableBitNumber (Optional; if type is 3) P[i][j].y
P[i][j].z DoubleWithVariableBitNumber (Optional; if type is 3) P[i][j].z

8.9.21.6.4 CompressedKnotVector

8.9.21.6.4.1 General

The knot vectors are always between 0 and 1. The multiplicities are stored as described in the PRC File
Format Specification. See 8.9.21.6.2. U knots are treated first, then V. Three types of knot
parameterization are considered.

1420 -
Copyright International Organization for Standardization
Provided by IHS under:license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2

014

If it is uniform, no parameter is stored in compressed_knot. This corresponds to type_param = 0.

If it is pseudo uniform, the interval length between the two first parameters is computed and

truncated using tolerance_parameter, and then stored into compressed_knot. Same for the two last
parameters. This corresponds to type_param = 2.

Otherwise, internal parameters are stored. For each internal parameter, a difference between the

precedent compressed parameter is computed, truncated using tolerance_parameter and stored

into compressed_knot. This corresponds to type_param = 1.

This represents the data stored for the knot vector of a compressed NURBS surface. The type_param

and knot vector is saved for either the U or V parameter values.

Table 223 — CompressedKnotVector

Name Data Type Data Description

number_bit_parameter | UnsignedintegerWithVariableBitNumber | (Required) number_bit_parameter is
saved using 6 bits

is_uniform Boolean (Required) is_uniform is TRUE if
type_param == 0

knots CompressedKnots (Optional; if is_uniform is FALSE)

8.9.21.6.4.2 CompressedKnots

This represents saving the knots (either knots_u or knots_v) for a compressed NURBS.

Table 224 — CompressedKnots

Name Data Type Data Description
m Boolean (Required) Type_param ==
m Boolean (Optional; ??? is FALSE) Type_param ==

compressed_knots

Array <CompressedKnot>[]

(Required) Save the array of compre
knots

ssed

8.9.21.6.4.3

This represents a single entry in an array of compressed knots.

The

DoubleWithVariableBitNumber

CompressedKnot

is written

number_bit_parameter + 1

upon the Boolean test (number_bit_parameter > 30).

The number of elements in the array is given by number_knots

using tolerance_parameter

The array may be either an array of knot_u or knot_v defining the compressed NURBS surface.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

and‘

The format of the data is either Double or DoubleWithVariableBitNumber in the file depending

139

ISO 14739-1:2014

Table 225 — CompressedKnot

Name Data Type Data Description

knot Double (Optional; if number_bit_parameter > 30)
knot[i]

knot DoubleWithVariableBitNumber (Optional; if number_bit_parameter <=
30) knot][i]

8.9.21.6.5 CompressedWeights
This represents the data stored for the weights of a compressed NURBS surface.

— The number of entries to store is (number_ccpt_in_u * number_ccpt_in_v)
— The DoubleWithVariableBitNumber is written using weight_tolerance and number_bit_weight + 1

— The format of the data is either Double or DoubleWithVariableBitNumber in the file depending
upon the Boolean test (number_bit_weight > 30)

Table 226 — CompressedWeights

Name Data Type Data Description

number_bit_weight UnsignedIntegerWithVariableBitNumber | number_bit_weight save with 6 bits

weights Array <Double>[number_ccpt_in_u * | (Optional; if number_bit_weight > 30) Save
number_ccpt_in_v] weight array (without compression)

tolerance Double (Optional; if number_bit weight <= 30)

Weight tolerance

compressed_weights Array <DoubleWithVariableBitNumber> | (Optional; if number_bit_ weight <= 30)

[number_ccpt_in_u * number_ccpt_in_v] | Save weight array using compression

8.9.21.7 ContentCompressedFace
8.9.21.7.1 General

This represents the data for a compressed face. A compressed face is further classified by its trimming
curves. An IsoFace is trimmed by four iso-parametric trimming curves. An AnaFace is trimmed by any
other combination of trimming curves.

Vertex loops are used to represent a loop consisting of a single vertex, such as might exist on the apex of
a cone, or a sphere touching a plane. They are represented by a degenerate line which has identical start
and end vertices.

orientation_surface_with_shell describes the orientation of the surface normal with respect to the
shell. See PRC_TYPE_TOPO_Shell.

orientation_loop_with_surface describes the orientation of a loop with respect to a surface normal.
See PRC_TYPE_TOPO_Loop.

1AN :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

Table 227 — ContentCompressedFace

ISO 14739-1:2

014

Name Data Type

Data Description

orientation_surface_with_shell | Boolean

(Required)

Orientation_surface_with_shell

iso_face ContentCompressedisoFace (Optional; if is_an_iso_face is TRUE)
Save data for a compressed iso face
ana_face ContentCompressedAnaFace (Optional; if is_an_iso_face is FALSE)

Save data for a face trimmed by analytic
curves

8.9.21.7.2 ContentCompressedlsoFace

In the case of an IsoFace, the first and second trim curves are stored explicitly, either by reference or
actual data. Reference to the third or fourth trim curve is stored in case the actual data has been stored
by an adjacent face. Otherwise, the third or fourth trim curve will have to be deduced from the first and
second trim curves and a vertex representing the join between the third and fourth trim curves. The
loop of an IsoFace can not be degenerate.

Table 228 — ContentCompressedlsoFace

Name Data Type Data Description
orientation_loop_with_surface Boolean (Required)
orientation_loop_with_surface
first_trim_curve RefOrCompressedCurve (Required) first trim curve on face
second_trim_curve RefOrCompressedCurve (Required) second trim curve on |
face i
third_trim_curve_is_not_yet_save | Boolean (Required) TRUE if

d

third_trim_curve_is_not_yet_sav
ed

third_trim_curve

UnsignedIntegerWithVariableBitNumb
er

(Optional; if
third_trim_curve_is_not_yet_sav
ed if FALSE) Index of the third
trim curve

fourth_trim_curve_is_not_yet_sav
ed

Boolean

(Required) TRUE if
fourth_trim_curve_is_not_yet_save
d

fourth_trim_curve

UnsignedIntegerWithVariableBitNumb
er

(Optional; if
fourth_trim_curve_is_not_yet_save
d is FALSE) Index of the fourth
trim curve

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

common_third_fourth_vertex CompressedVertex (Optional; if
third_trim_curve_is_not_yet_saved
is TRUE and
fourth_trim_curve_is_not_yet_save
d is TRUE) Save the
common_third_fourth_vertex

8.9.21.7.3 ContentCompressedAnaFace

8.9.21.7.3.1 General

141

ISO 14739-1:2014

If the AnaFace has trimming boundaries, all of the trimming loops are stored as an array of loops with
the last loop in the array having type PRC_HCG_EndLoop and all other loops having type
PRC_HCG_NewLoop.

If the AnaFace is defined by a torus and all of the trimming loop are vertex trimming loops (e.g. the loop
consists of a single degenerate line), a point on the torus far from degeneracy is stored to indicate the
interior of the face (this corresponds to the interior part of the spindle” side versus the exterior part of
the spindle).

Table 229 — ContentCompressedAnaFace

Name Data Type Data Description

is_trimmed Boolean (Required) TRUE if surface is trimmed; else
FALSE

trim_loop Array <AnaFaceTrimLoop>[] (Optional; if is_trimed is TRUE) Array of
trimming loops on the face. The last loop in
the array is of type PRC_HCG_EndLoop; all
others are of type
HPC_HCG_TOPO_NewLoop

point_on_torus CompressedPoint (Optional; if all_loops_are_vertex_loops is
TRUE AND surface_type is
PRC HCG AnaTorus AND is_trimmed is
TRUE) Point_on_torus

8.9.21.7.3.2 AnaFaceTrimLoop
This represents the trimming curves for a loop on a compressed AnaFace.

The last loop on the face is of type of PRC_HCG_EndLoop. Other loops on the face are of type
PRC_HCG_NewLoop.

Table 230 — AnaFaceTrimLoop

Name Data Type Data Description

loop_surface_orientation Boolean (Required) Orientation of loop with
surface

curves ArrayOf[RefOrCompressedCurve] (Required) Array of curves in the

trimming loop

curve_is_not_already_stored | Boolean (Required) Boolean value is always TRUE;
this represents a boolean flag that means
curve_is_NOT _already_stored is TRUE; it is
used when reading a PRC File to signal the
end of the curves in a loop and the end of
all loops.

type CompressedEntityType (Required) Will be PRC_HCG_EndLoop for
last loop and PRC_HCG_NewLoop for all
other loops

149D :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networki‘ng permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.21.8 RefOrCompressedCurve

The flag curve_is_not_already_stored indicates if the trim curve has already been stored in the
compressed brep data. If the curve has already been stored, the index of the curve is stored in the file;
otherwise, a compressed version of the trim curve is stored.

The index is stored with a variable number of bits indicated by number_of_bits_to_store_reference.
See 8.9.20 for a definition of this number.

Table 231 — RefOrCompressedCurve

Name Data Type Data Description

curve_is_not_already_stored | Boolean (Required)
curve_is_not_already_stored

index_compressed_curve UnsignedintegerWithVariableBitNumber | (Optional; if
curve_is_not_already_stored is

FALSE) Index to the already stored
compressed curve data

compressed_curve CompressedCurve (Optional; if
curve_is_not_already_stored is
TRUE) Store the compressed curve
data.

8.9.21.9 CompressedCurve
8.9.21.9.1 General

A compressed curve is one of PRC_HCG_Line, PRC_HCG_Circle, PRC_HCG_BsplineHermiteCurve or
PRC_HCG_CompositeCurve.

The curve type PRC_HCG_Ellipse is reserved for future use.
8.9.21.9.2 PRC_HCG_Line
The representation of a compressed line (PRC_HCG_Line) is context dependent.

If a compressed line is part of a compressed face, the compressed line is represented by a pair of
start/end vertices; otherwise it is represented by a pair of start/end points.

curve_trimming_face is TRUE if this compressed line is part of a PRC_TYPE_TOPO_BrepDataCompress; it
is FALSE if this compressed line is a part of a PRC_TYPE_TOPO_SingleWireBodyCompress.

Table 232 — PRC_HCG_Line

Name Data Type Data Description
CompressedEntityType (Required) PRC_HCG_Line
start_end_data StartEndData (Required) Save the start/end trim data

8.9.21.9.3 PRC _HCG Circle

8.9.21.9.3.1 General

The representation of a compressed circle (PRC_HCG_Circle) is context dependent.
The data stored for a compressed circle depends upon the context it is used in:

— curve_trimming_face is TRUE to indicate that the circle is used as part of the trimming data for a
face (i.e as part of a PRC_TYPE_TOPO_BrepDataCompress) or is FALSE to indicate that the circle is
not part of a face (i.e. it is used as part of PRC_TYPE_TOPO_SingleWireBodyCompress)

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 143
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

— compressed_iso_spline is TRUE if the circle is being used as the trim boundary of an
PRC_HCG_IsoNurbs; otherwise it is FALSE

In addition, the data stored for a compressed circle depends on the geometry of the circle. A circular arc
with angle 0.0, 7w, or 2 will have different data. The particular_circle Boolean flag indicates this.

Table 233 — PRC_HCG_Circle

Name Data Type Data Description

type CompressedEntityType (Optional; if compressed_iso_spline is
FALSE) PRC_HCG_Circle

is_particular_circle Boolean (Required) is_particular_circle

particular_circle ParticularCircle (Optional; if is_particular_circle is TRUE)
Circular arc with angle 0, 7, or 2

general_circle GeneralCircle (Optional; if is_particular_circle is FALSE)

Not a special circle

8.9.21.9.3.2 ParticularCircle

This is the data that is stored if the compressed circle is a special case (circular arc with angle 0, 7, or 2

).

Full_circle is TRUE if the start point and end point of the trim curve are identical (to within tolerance).

Table 234 — ParticularCircle

Name Data Type Data Description

full_circle Boolean (Required) full_circle

start_end_data StartEndData (Optional; if compressed_iso_spline is
FALSE) Save the start/end trim data

center CompressedPoint (Optional; if full_circle is TRUE) Center of
circle

normal_plane CompressedPoint (Optional; if full_circle is TRUE) Normal to
plane of circle

middle_of_arc CompressedPoint (Optional; if full_circle is FALSE) Middle

point on circular arc

1A4A i
Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.21.9.3.3 GeneralCircle
This is the data that is stored for a general circle or circular arc.

Table 235 — GeneralCircle

Name Data Type Data Description

start_end_data StartEndData (Required) Save the start/end trim data
center CompressedPoint (Required) Center of circle
circle_angle Boolean (Required) circle_angle > 7

8.9.21.9.4 PRC_HCG_BsplineHermiteCurve

A compressed Hermite curve structure contains information to store a compact representation of a
Bspline curve with degree 3.

— A Hermite curve is defined by the following data:

— Compression_tolerance is the tolerance that was used to approximate the original nurbs curve; see
8.9.21 or 8.9.20.

— compressed_points are the control points representing the Hermite curve
— compressed_tangents describe how internal points computed from tangents are compressed

— point_number_bits is the number of bits used to store each compressed control point coordinate if
control points are stored using a variable number of bits; a conforming PRC Writer will obtain this
number through the routine GetNumberOfBitUsedToStoreUnsignedInteger (See 10.1)

— tangent_number_bits is the number of bits used to store each compressed tangent coordinate if
the tangents are stored using a variable number of bits

Start and end curve points are explicitly stored in the PRC File. Compressed_points (Ptc) and
compressed_tangents (Tgtc) allow computation of the control polygon. compressed_points contains
points on the curve stored with difference :

P, < StartPt Py < Pyiy + (Pt [3i] Pt [3i +1] Pt [3i + 2]) P« EndPt

compressed_tangent contains curves’ tangents at each Ptc. It is used to determine two controls points
between each point on curve (P;)

(Tgt [0],Tgt [1],Tgt [2])

P, P, +

1<_ 0 ||P3_P0||

pp _ (TgtBLTgt 14174t [5)
||P3_P0|

pp, 4 9L BTt 41Tyt [5)
||P6_P3||

The Bspline knot values are implicit and computed using control points.

U,<0 U—U,_, +“ﬁ3i_ﬁ3(i*1]“

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved 145
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=ahmadi, rozita
No reproduction or networking permitted without license from IHS Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

Multiplicities are implicitly 4 for start and end knot and 3 for internal knots.

Table 236 — PRC_HCG_BsplineHermiteCurve

Name Data Type Data Description

type CompressedEntityType (Required)
PRC_HCG_BsplineHermiteCurve

start_end_data StartEndData (Required) Save the start and end

trimming data as either vertices or points

number_bits

UnsignedIntegerWithVariableBitNumber

(Required) Number_bits is the number of
bits used to store number_points; this
number is stored with 4 bits

number_points

UnsignedintegerWithVariableBitNumber

(Required) Number_points is the number
of compressed control points

point_number_bits

UnsignedIntegerWithVariableBitNumber

(Required) Point_number_bits is the
number of bits used to store compressed
points; this number is stored with 6 bits

points

Array <Vector3d> [number_points - 2]

(Optional; if point_number_bits>30)
Array of (number_points -2) compressed
points

compressed-points

Array
<Point3DWithVariableBitNumber>
[number_points - 2]

(Optional; if point_number_bits<=30)
Array of (number_points - 2)
compressed points with variable number
of bits

tangent_number_bits

UnsignedIntegerWithVariableBitNumber

(Required) tangent_number_bits is the
number of bits used to store compressed
tangents; this number is stored with 6 bits

tangents

Array <Vector3d>[number_points]

(Optional; if tangent_number_bits > 30)
Save number_points compressed tangents

compressed_tangents

Array
<Point3DWithVariableBitNumber>
[number_points]

(Optional; if tangent_number_bits <= 30)
Save number_points compressed tangents
with variable number of bits

8.9.21.9.5 PRC_HCG_CompositeCurve

This entity define a compressed composite curve. [t must not be used on edges or coedges.

Table 237 — PRC_HCG_CompositeCurve

Name Data Type Data Description

type CompressedEntityType (Optional; if is_compressed_iso_spline is
FALSE) PRC_HCG_CompositeCurve

start_end_data StartEndData (Required) Save the start and end trimming
data as either vertices or points

dimension UnsignedInteger (Required) Dimension of the compressed
composite curve (either 2 or 3)

is_closed Boolean (Required) TRUE if the curve is closed; else

FALSE

1A
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

© ISO 2014 - All rights reserved

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

Table 237 (continued)

ISO 14739-1:2014

number_of_curves

UnsignedInteger

(Required) Number of curves in the

composite

curves

Array <CompressedCurve>
[mumber_of _curves]

(Required) Array of compressed curves

8.9.21.9.6 StartEndData

This data defines the start and end verticies/positions of a trim curve. It is context dependent (see

8.9.21.9.2 or 8.9.21.9.3).

Table 238 — StartEndData

Name Data Type Data Description

start_vertex CompressedVertex (Optional; if curve_trimming face is
TRUE) Start vertex

end_vertex CompressedVertex (Optional; if curve_trimming face is
TRUE) End vertex

start_point CompressedPoint (Optional; if curve_trimming_face is
FALSE) Start point

end_point CompressedPoint (Optional; if curve_trimming face is
FALSE) End point

8.9.21.10 CompressedVertex

This represents a compressed vertex either as a compressed point or a reference to an already
compressed point. Each compressed brep data serialization maintains an array of previously written
vertices, starting at index 0.

number_of_bits_to_store_reference is the number of bits used to define a reference to compressed data
and is described in PRC_TYPE_TOPO_BrepDataCompress.

Table 239 — CompressedVertex

Name

Data Type

Data Description

already_stored

Boolean

(Required) TRUE if vertex is NOT already
stored

point_index

UnsignedintegerWithVariableBitNumber

(Optional; if already_stored is FALSE)
Index to the already stored compressed
point data

point_data

CompressedPoint

(Optional; if already_stored is TRUE)
Compressed point data.

ATeA AN A AT
Copyright International Organization for Standardization ‘,htS reserved
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

147

Licensee=University of Alberta/5966844001, User=ahmadi, rozita
Not for Resale, 01/23/2015 11:21:58 MST

ISO 14739-1:2014

8.9.21.11 CompressedPoint

This represents a compressed point. The representation of the compressed point in the PRC File may be
either as a Point3DwithVariableBitNumber or as a PRC_TYPE_TOPO_UniqueVertex depending upon how
many bits are necessary to represent the data.

When a PRC File Writer writes a compressed point, the number of bits necessary to store the point is
calculated using the formula

Double dTol = brep_data_compressed_tolerance / 100.0;
Unsigned int uMaxCoordinate = MAX(fabs(x), fabs(y), fabs(z)) / dTol + 1;
Unsigned int uNbBits = GetNumberOfBitUsedToStoreUnsignedInteger(uMaxCoordinate);

If uNbBits is greater than 30, the compressed point is stored as a PRC_TYPE_UniqueVertex; otherwise it
is stored as a Point3DwithVariableBitNumber.

Table 240 — CompressedPoint

Name Data Type Data Description
uNbBits UnsignedintegerWithVariableBitNumber | (Required) uNbBits is stored using 6 bits
point Point3DWithVariableBitNumber (Optional; if uNbBits <= 30) Compressed

point data is stored as a 3D point with
uNbBits bits and dTol tolerance

point Vector3d (Optional; if uNbBits > 30) Compressed
point data is stored as a unique vertex

8.9.22 PRC_TYPE_TOPO_WireBody
8.9.23 References

8.9.23.1 General

Each curve, surface, or topological entity within an individual topological context is assigned an
identifier which can be used to refer to it from other entities within the same topological context.

The first reference to an entity stores the actual data and generates an identifier for that entity.
Subsequent references to that entity store only the identifier.

Note that when the actual data is stored, the first entry is an UnsignedInteger which indicates the type
of data stored. PRC_TYPE_ROOT (0) is used to indicate that the entity corresponds to a NULL pointer and
no additional data is saved. Otherwise, the integer will be one of the subtypes of curve, surface, or
topology.

8.9.23.2 PtrCurve

If the Boolean flag is TRUE, the actual curve data is stored. Otherwise, the identifier of the curve is
stored. The only legal curves are those represented by the base class PRC_TYPE_CRV.

140 :
Copyright International Organization for Standardization © IS0 2014 - All rlghts reserved
Provided by IHS under license with ISO