

INTERNATIONAL STANDARD ISO 14692-2:2002(E) TECHNICAL CORRIGENDUM 1

Published 2005-10-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Petroleum and natural gas industries — Glass-reinforced plastics (GRP) piping —

Part 2:

Qualification and manufacture

TECHNICAL CORRIGENDUM 1

Industries du pétrole et du gaz naturel — Canalisations en plastique renforcé de verre (PRV) —

Partie 2: Conformité aux exigences de performance et fabrication

RECTIFICATIF TECHNIQUE 1

Technical Corrigendum 1 to ISO 14692-2 was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries*, Subcommittee SC 6, *Processing equipment and systems*.

ICS 75.200; 83.140.30

© ISO 2005 - All rights reserved

Ref. No. ISO 14692-2:2002/Cor.1:2005(E)

Page 25, 6.8.2.2:

Include the following note at the end of the subclause:

NOTE An exception to the maximum design temperature is presented in D.2.

Page 49, D.2:

Replace the 3rd paragraph with the following:

If the effects of temperature alone are being considered, it is acceptable to linearly extrapolate a value of A_1 between a value of 1 at the qualification test temperature (minimum test temperature is 65 °C), T_{qual} , and 0 at the T_{q} , i.e.

$$A_1 = \frac{T - T_g}{T_{\text{qual}} - T_g} \tag{D.1}$$

where *T* is the required design temperature.

If A_1 is extrapolated from the qualification test temperature, then the maximum design temperature limitations as defined in 6.8.2.2 shall apply.

As an exception to the maximum design temperature limitations of 6.8.2.2, if A_1 is interpolated between two sets of full regression data in accordance with 6.3.2, then the maximum design temperature shall be within 30° of $T_{\rm g}$; however the maximum design temperature shall not exceed the maximum qualification test temperature.