INTERNATIONAL STANDARD ISO 14484 First edition 2013-04-01 # Performance guidelines for design of concrete structures using fibrereinforced polymer (FRP) materials Lignes directrices de performance pour la conception des structures en béton utilisant des polymères renforcés de fibres (PRF) Reference number ISO 14484:2013(E) ISO 14484:2013(E) ## COPYRIGHT PROTECTED DOCUMENT All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | |--------------|--|--------| | Fore | reword | iv | | Introduction | | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Design basics 4.1 General 4.2 Design methodology | 2 | | 5 | Properties of materials 5.1 Properties of concrete and steel 5.2 Properties of FRP materials 5.3 Resins | 2 | | 6 | Structural analysis | 3 | | 7 | Serviceability limit states 7.1 General 7.2 Calculation of stress and strain 7.3 Cracking 7.4 Deflections | | | 8 | Ultimate limit states 8.1 General 8.2 Axial and flexural capacity 8.3 Shear capacity | 4 | | 9 | General structural details 9.1 FRP reinforcements/tendons 9.2 Externally bonded FRP sheets/plates 9.3 Near-surface mounted FRP reinforcement | 5
6 | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. The committee responsible for this document is ISO/TC 71, *Concrete, reinforced concrete and pre-stressed concrete*, Subcommittee SC 6, *Non-traditional reinforcing materials for concrete structures*. ## Introduction Continuous fibre-reinforced polymer (FRP) materials are being widely applied to concrete structures. FRP materials have many advantages, such as a high strength/weight ratio and immunity to corrosion. FRP materials are available in a variety of geometries, including rod, grid, plate, sheet, strand, etc. ISO/TC 71/SC 6 was established to develop standards for non-traditional reinforcing materials such as FRP. This International Standard describes the general performance requirements for concrete structures with the use of FRP materials. It is an umbrella-type document with general provisions and guidelines and lists the regional consensus guidelines/standards that are deemed to satisfy this International Standard. The regional guidelines/standards are generally more prescriptive in nature and vary somewhat from region to region. This International Standard should be intended to provide wide latitude in terms of general requirements for performance verification and assessment of concrete structures with the use of FRP materials. It should be used, therefore, in conjunction with sound engineering judgment. # Performance guidelines for design of concrete structures using fibre-reinforced polymer (FRP) materials ## 1 Scope This International Standard provides general principles for the verification and assessment of the performance of concrete structures with the applications of different FRP systems varying from internal FRP reinforcements/tendons, external FRP tendons, externally bonded FRP sheets/plates, to near-surface mounted FRP reinforcement. It can be used for the international harmonization of the design of un-reinforced, conventionally reinforced, and pre-stressed concrete structures with the use of the above-mentioned FRP systems. ## 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 2394, General principles on reliability for structures ISO 10406-1, Fibre-reinforced polymer (FRP) reinforcement of concrete — Test methods — Part 1: FRP bars and grids $ISO\ 10406-2, Fibre-reinforced\ polymer\ (FRP)\ reinforcement\ of\ concrete\ --\ Test\ methods\ --\ Part\ 2:\ FRP\ sheets$ ISO 19338, Performance and assessment requirements for design standards on structural concrete ## 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 19338, ISO 10406-1, ISO 10406-2, and ISO 2394 and the following apply. #### 3.1 ## bonding attachment between FRP and substrates #### 3 2 ## concrete substrate concrete or any cementitious material used to repair or replace the original concrete Note 1 to entry: The substrate can consist entirely of original concrete, entirely of repair materials, or of a combination of original concrete and repair materials. #### 3.3 #### debonding separation at the interface between the substrate and the near-surface mounted or externally bonded FRP materials #### 3.4 ## FRP material assembly of dissimilar materials with a polymeric matrix and continuous fibre reinforcement of aramid, carbon, glass, etc. ## ISO 14484:2013(E) #### 3.5 ## near-surface mounted (NSM) FRP reinforcement FRP bar or strip which is bonded inside a groove near the surface of a structural component #### 3.6 ## FRP plate single or multiple layers of fabric or mat reinforcement bound together in a resin matrix, precured prior to application #### 3.7 #### **FRP** sheet dry, flexible component which consists of continuous fibres aligned in one or more directions and held together in-plane to create a ply of finite width and length, and is used in wet lay-up systems # **Design basics** #### 4.1 General Design of concrete structures with FRP materials should consider safety, serviceability, and restorability during service life. Where applicable, limit states caused by fire, seismic actions, or other extreme loading or actions should be considered. In addition to the above, economy should also be considered. Suitable analysis should be performed to verify that the performance requirements for concrete structures with FRP materials in terms of limit states such as serviceability limit states (SLS) and ultimate limit states (ULS) in accordance with ISO 2394:1998 are satisfied. ## 4.2 Design methodology A design methodology for concrete structures with FRP materials should be based on quantitative performance evaluation at the limit states. A rational method should be adopted for analysing each limit state. Design of concrete structures with FRP materials should consider the linear elastic material properties of FRP and the properties of bond, if available, between the FRP and concrete, based on quantitative performance evaluation at the ultimate limit states. # **Properties of materials** ## 5.1 Properties of concrete and steel Properties of concrete and steel should be determined in accordance with those specified for general structural concrete in ISO 19338:2007. In the case of upgrading existing concrete structures with FRP materials, the strengths of concrete and steel should be determined with consideration of the in situ conditions, such as measured material and geometric properties of the existing concrete structures, instead of their material strength values used in the original design. #### 5.2 **Properties of FRP materials** ## 5.2.1 General The FRP materials used for concrete structures should be those whose quality and performance characteristics have been confirmed to be compatible with environmental conditions under which the structure will be exposed. The characteristics of FRP materials should be defined in general conformance with reliability-based design requirements. The compressive strength of FRP materials should not be considered for design. If necessary, the temperature-sensitive characteristics of FRP materials should be appropriately considered in design, with attention to its possible strength and stiffness loss at elevated temperatures. ## 5.2.2 FRP bars, grids, and plates Properties of FRP bars, grids, and plates should be determined in accordance with ISO 10406-1:2008. #### 5.2.3 FRP sheets Properties of FRP sheets should be determined in accordance with ISO 10406-2:2008. ## 5.2.4 Other FRP systems Properties of other types of FRP systems should be determined based on appropriate test methods, with consideration to their intended applications. #### 5.3 Resins Mechanical and physical properties of resins (matrix for fibres and bonding adhesives) should be determined in accordance with appropriate standards, such as corresponding ISO technical standards. ## 6 Structural analysis Structural analysis of concrete structures with FRP materials should consist of the determination of structural response for the examination of limit states such as ultimate limit states and serviceability limit states. In general, structural analysis methodologies specified in ISO 19338 for structural concrete with traditional reinforcing materials may be applied for concrete structures with FRP materials. Structural analysis of concrete structures with FRP materials should take into account the linear elastic material properties of FRP and the possible debonding failure between the FRP and concrete, which limit development of ductility in the structure. In general, no moment redistribution should be considered unless otherwise specified. # 7 Serviceability limit states #### 7.1 General Serviceability limit states should be verified to ensure the intended performance of concrete structures with FRP materials under service conditions during their design life. ### 7.2 Calculation of stress and strain Unless otherwise specified, linear analysis should be used in the computation of stresses and strains in FRP in member sections under service. In the case of upgrading existing concrete structures using FRP materials, the initial stresses in the member sections due to the permanent loads existing before FRP upgrading should be appropriately considered for analysis. ## 7.3 Cracking #### 7.3.1 Allowable crack width The allowable crack width should be determined based on the intended purpose of the structure, environmental conditions, member conditions, etc. When determining the allowable crack width, the non-corrosive property of FRP can be taken into account. #### 7.3.2 Tension and flexural cracks The calculated crack width should be smaller than the allowable crack width. Conventional equations may be used to calculate the tension and flexural crack width, provided that the equation is modified by taking into account the stiffness of the FRP and the bond characteristics between the FRP and concrete. It may not be necessary to consider the limit for tension and flexural crack width from the viewpoint of durability for those concrete structures in which FRP is used as the only reinforcing material. In the case of FRP-upgraded concrete structures, crack widths should be checked to ensure that the internal steel reinforcement is protected against corrosion at service conditions. The upgrading effects of FRP materials should be taken into account in the calculation. #### 7.3.3 Shear and torsion cracks Where necessary, shear and torsion crack widths should be checked with appropriate methods. ## 7.4 Deflections Displacements and deformations exhibited in concrete structures with FRP materials should comply with current design code requirements for structural concrete with the use of traditional reinforcing materials. The adopted analytical model for calculating displacements and deformations should be able to reasonably predict the actual behaviour of the structure, if necessary, due consideration of cracking and the bonding between the FRP and concrete should be given. #### 8 Ultimate limit states ## 8.1 General Ultimate limit states should be verified to ensure the intended performance of concrete structures with FRP materials under ultimate conditions during their design life. ## 8.2 Axial and flexural capacity ## 8.2.1 Axial strength and deformation capacity FRP materials arranged in the direction of compressive forces should not be considered for strength computations. In cases where lateral FRP confinement is available, the axial strength and deformation capacity of structural members should be determined through appropriate modelling of the lateral pressure provided by FRP. ## 8.2.2 Flexural strength and deformation capacity The flexural strength and deformation capacity of structural members with FRP materials should be determined using appropriate methods, giving consideration to the failure mechanisms corresponding to concrete crushing and to rupture of the FRP at the ultimate state. In cases of FRP sheets/plates and NSM FRP reinforcements, the possible debonding of FRP from concrete substrates should also be taken into account. Analysis of the flexural strength of concrete members with FRP materials should account for - a) nonlinear stress-strain behaviour of concrete, - b) stress-strain relationship of the steel reinforcement, - c) linear stress-strain relationship and rupture of the FRP, and - d) strain compatibility. ## 8.3 Shear capacity ## 8.3.1 Shear strength The shear strength of structural members with the use of FRP materials should be determined considering the contributions of FRP, concrete, and steel transverse reinforcing bars when available. The contribution of the FRP should be determined using appropriate methods, giving consideration to the linear material property and rupture of FRP materials. In cases of FRP sheets, plates, or NSM FRP reinforcements, the possible debonding of FRP from concrete substrates should also be taken into account. ## 8.3.2 Punching shear strength When the loaded area is positioned far from free edges or openings, and the eccentricity of the load is small, the design punching shear capacity should be determined considering the contributions of the FRP, concrete, and steel transverse reinforcing bars when available. The contribution of the FRP should be determined using appropriate methods, giving consideration to the linear material property and rupture of FRP materials. In cases of FRP sheets, plates, or NSM FRP reinforcements, the possible debonding of FRP from concrete substrates should also be taken into account. #### 8.3.3 Torsion The torsion capacity of structural members should be calculated using appropriate methods to account for the contributions of the FRP, concrete, and steel reinforcing bars when available. ## 9 General structural details ## 9.1 FRP reinforcements/tendons ## 9.1.1 Bent configurations When FRP reinforcements/tendons are arranged in a curve, the radius of the curve should be large enough to allow the FRP reinforcements/tendons to be bent within their elastic limits. The strength of the bent portion should be determined in accordance with ISO 10406-1:2008. The stresses induced by the curvature in the FRP should be taken into account in the design. ## 9.1.2 Anchorages The ends of FRP reinforcements should be sufficiently embedded in the concrete. The anchoring should be achieved either by the bonding force between the FRP and concrete or by mechanical anchoring including FRP hooks. #### 9.1.3 **Splices** The FRP reinforcements should be sufficiently spliced by the bonding force between the FRP and concrete or by mechanical splicing. #### 9.2 Externally bonded FRP sheets/plates #### 9.2.1 Anchorage of FRP sheets/plates The end anchorage of FRP sheets/plates should be verified by confirming that the bonded length between the FRP sheets/plates and the concrete substrate is sufficient. Mechanical anchorage accomplished with any system should be verified by confirming that the anchorage has sufficient strength to prevent anchorage failure. ## 9.2.2 Splice of FRP sheets/plates The overlap splice sections of FRP sheets/plates should be verified by assuring that the overlap length is enough to secure the required overlap splice strength. The necessary overlap splice length should be determined through tests in accordance with ISO 10406-2. ISO 10406-2 does not include a test standard for the overlap splice strength of FRP plates at the moment. The test standard for the overlap splice strength of FRP sheets should be consulted to evaluate the overlap splice strength of FRP plates. #### 9.2.3 FRP sheets at rounded corners In the case of FRP jacketing or wrapping, the corners of the members should be well-rounded, with a sufficient radius of curvature to avoid brittle breakage of the FRP sheets due to stress concentrations at the corners. #### Near-surface mounted FRP reinforcement 9.3 ## 9.3.1 Dimension of grooves The grooves should have cross sections with dimensions to allow for the proper placement and embedment of the reinforcement. The optimum dimensions of the grooves should be determined based on appropriate bond tests and analysis. ## 9.3.2 Anchorage of near-surface mounted FRP reinforcement The end anchorage of near-surface mounted FRP reinforcement should be verified by confirming that the bonded length between the FRP reinforcement and the surrounding concrete substrate is sufficient. ICS 83.120;91.080.40;91.100.30 Price based on 6 pages