
Reference number
ISO 14229-1:2013(E)

© ISO 2013

INTERNATIONAL 
STANDARD

ISO
14229-1

Second edition
2013-03-15

Road vehicles — Unified diagnostic 
services (UDS) — 
Part 1: 
Specification and requirements 

Véhicules routiers — Services de diagnostic unifiés (SDU) — 

Partie 1: Spécification et exigences 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

COPYRIGHT PROTECTED DOCUMENT

©   ISO 2013 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any 
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. 
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester. 

ISO copyright office 
Case postale 56 • CH-1211 Geneva 20 
Tel.  + 41 22 749 01 11 
Fax  + 41 22 749 09 47 
E-mail  copyright@iso.org 
Web  www.iso.org 

Published in Switzerland 

ii © ISO 2013 – All rights reservedCopyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved iii

Contents Page

Foreword ............................................................................................................................................................vi

Introduction.......................................................................................................................................................vii

1 Scope ......................................................................................................................................................1

2 Normative references............................................................................................................................1

3 Terms, definitions, symbols and abbreviated terms .........................................................................1
3.1 Terms and definitions ...........................................................................................................................1
3.2 Abbreviated terms .................................................................................................................................4

4 Conventions...........................................................................................................................................5

5 Document overview...............................................................................................................................6

6 Application layer services ....................................................................................................................7
6.1 General ...................................................................................................................................................7
6.2 Format description of application layer services ..............................................................................9
6.3 Format description of service primitives ............................................................................................9
6.4 Service data unit specification...........................................................................................................12

7 Application layer protocol ..................................................................................................................15
7.1 General definition ................................................................................................................................15
7.2 Protocol data unit specification.........................................................................................................16
7.3 Application protocol control information .........................................................................................16
7.4 Negative response/confirmation service primitive ..........................................................................18
7.5 Server response implementation rules .............................................................................................18

8 Service description conventions .......................................................................................................29
8.1 Service description .............................................................................................................................29
8.2 Request message ................................................................................................................................30
8.3 Positive response message ...............................................................................................................33
8.4 Supported negative response codes (NRC_) ...................................................................................34
8.5 Message flow examples......................................................................................................................34

9 Diagnostic and Communication Management functional unit .......................................................35
9.1 Overview...............................................................................................................................................35
9.2 DiagnosticSessionControl (0x10) service.........................................................................................36
9.3 ECUReset (0x11) service ....................................................................................................................43
9.4 SecurityAccess (0x27) service...........................................................................................................47
9.5 CommunicationControl (0x28) service..............................................................................................53
9.6 TesterPresent (0x3E) service .............................................................................................................58
9.7 AccessTimingParameter (0x83) service............................................................................................61
9.8 SecuredDataTransmission (0x84) service ........................................................................................66
9.9 ControlDTCSetting (0x85) service .....................................................................................................71
9.10 ResponseOnEvent (0x86) service......................................................................................................75
9.11 LinkControl (0x87) service..................................................................................................................99

10 Data Transmission functional unit ..................................................................................................106
10.1 Overview.............................................................................................................................................106
10.2 ReadDataByIdentifier (0x22) service ...............................................................................................106
10.3 ReadMemoryByAddress (0x23) service ..........................................................................................113
10.4 ReadScalingDataByIdentifier (0x24) service ..................................................................................119
10.5 ReadDataByPeriodicIdentifier (0x2A) service ................................................................................126
10.6 DynamicallyDefineDataIdentifier (0x2C) service............................................................................140
10.7 WriteDataByIdentifier (0x2E) service...............................................................................................162
10.8 WriteMemoryByAddress (0x3D) service .........................................................................................167

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

iv © ISO 2013 – All rights reserved

11 Stored Data Transmission functional unit ......................................................................................174
11.1 Overview .............................................................................................................................................174
11.2 ClearDiagnosticInformation (0x14) Service ....................................................................................175
11.3 ReadDTCInformation (0x19) Service................................................................................................178

12 InputOutput Control functional unit.................................................................................................245
12.1 Overview .............................................................................................................................................245
12.2 InputOutputControlByIdentifier (0x2F) service ..............................................................................245

13 Routine functional unit......................................................................................................................259
13.1 Overview .............................................................................................................................................259
13.2 RoutineControl (0x31) service..........................................................................................................260

14 Upload Download functional unit.....................................................................................................270
14.1 Overview .............................................................................................................................................270
14.2 RequestDownload (0x34) service.....................................................................................................270
14.3 RequestUpload (0x35) service..........................................................................................................275
14.4 TransferData (0x36) service..............................................................................................................280
14.5 RequestTransferExit (0x37) service.................................................................................................285
14.6 RequestFileTransfer (0x38) service .................................................................................................295

15 Non-volatile server memory programming process ......................................................................303
15.1 General information...........................................................................................................................303
15.2 Detailed programming sequence .....................................................................................................307
15.3 Server reprogramming requirements ..............................................................................................315
15.4 Non-volatile server memory programming message flow examples...........................................319

Annex A (normative)  Global parameter definitions .....................................................................................325
A.1 Negative response codes .................................................................................................................325

Annex B (normative)  Diagnostic and communication management functional unit data-parameter 
definitions...........................................................................................................................................333

B.1 communicationType parameter definition ......................................................................................333
B.2 eventWindowTime parameter definition .........................................................................................334
B.3 linkControlModeIdentifier parameter definition .............................................................................334
B.4 nodeIdentificationNumber parameter definition ............................................................................335

Annex C (normative)  Data transmission functional unit data-parameter definitions ..............................337
C.1 DID parameter definitions .................................................................................................................337
C.2 scalingByte parameter definitions...................................................................................................343
C.3 scalingByteExtension parameter definitions..................................................................................345
C.4 transmissionMode parameter definitions .......................................................................................351
C.5 Coding of UDS version number .......................................................................................................352

Annex D (normative)  Stored data transmission functional unit data-parameter definitions ..................353
D.1 groupOfDTC parameter definition....................................................................................................353
D.2 DTCStatusMask and statusOfDTC bit definitions ..........................................................................353
D.3 DTC severity and class definition ....................................................................................................366
D.4 DTCFormatIdentifier definition.........................................................................................................369
D.5 FunctionalGroupIdentifier definition ...............................................................................................369
D.6 DTCFaultDetectionCounter operation implementation example..................................................371
D.7 DTCAgingCounter example ..............................................................................................................372

Annex E (normative)  Input output control functional unit data-parameter definitions ...........................374
E.1 InputOutputControlParameter definitions ......................................................................................374

Annex F (normative)  Routine functional unit data-parameter definitions.................................................375
F.1 RoutineIdentifier (RID) definition .....................................................................................................375

Annex G (normative)  Upload and download functional unit data-parameter ...........................................376
G.1 Definition of modeOfOperation values............................................................................................376

Annex H (informative)  Examples for addressAndLengthFormatIdentifier parameter values .................377
H.1 addressAndLengthFormatIdentifier example values.....................................................................377

Annex I (normative)  Security access state chart .........................................................................................379

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved v

I.1 General ...............................................................................................................................................379
I.2 Disjunctive normal form based state transition definitions..........................................................379

Annex J (informative)  Recommended implementation for multiple client environments.......................385
J.1 Introduction........................................................................................................................................385
J.2 Implementation specific limitations ................................................................................................385
J.3 Use cases relevant for system design ............................................................................................386
J.4 Use Case Evaluation: ........................................................................................................................388
J.5 Multiple client server level implementation ....................................................................................389

Bibliography....................................................................................................................................................391

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

vi © ISO 2013 – All rights reserved

Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 14229-1 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3, 
Electrical and electronic equipment.

This second edition cancels and replaces the first edition (ISO 14229-1:2006), which has been technically 
revised. 

ISO 14229 consists of the following parts, under the general title Road vehicles — Unified diagnostic services 
(UDS):

⎯ Part 1: Specification and requirements 

⎯ Part 2: Session layer services 

⎯ Part 3: Unified diagnostic services on CAN implementation (UDSonCAN) 

⎯ Part 4: Unified diagnostic services on FlexRay implementation (UDSonFR) 

⎯ Part 5: Unified diagnostic services on Internet Protocol implementation (UDSonIP) 

⎯ Part 6: Unified diagnostic services on K-Line implementation (UDSonK-Line) 

The following part is under preparation: 

⎯ Part 7: Unified diagnostic services on Local Interconnect Network implementation (UDSonLIN) 

The titles of future parts will be drafted as follows: 

⎯ Part n: Unified diagnostic services on … implementation (UDSon…) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved vii

Introduction 

ISO 14229 has been established in order to define common requirements for diagnostic systems, whatever 
the serial data link is. 

To achieve this, ISO 14229 is based on the Open Systems Interconnection (OSI) Basic Reference Model in 
accordance with ISO 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. 
When mapped on this model, the services used by a diagnostic tester (client) and an Electronic Control Unit 
(ECU, server) are broken into the following layers in accordance with Table 1: 

⎯ Application layer (layer 7), unified diagnostic services specified in ISO 14229-1, ISO 14229-3 
UDSonCAN, ISO 14229-4 UDSonFR, ISO 14229-5 UDSonIP, ISO 14229-6 UDSonK-Line, ISO 14229-7 
UDSonLIN, further standards and ISO 27145-3 WWH-OBD. 

⎯ Presentation layer (layer 6), vehicle manufacturer specific, ISO°27145-2 WWH-OBD. 

⎯ Session layer services (layer 5) specified in ISO 14229-2. 

⎯ Transport layer services (layer 4), specified in ISO 15765-2 DoCAN, ISO 10681-2 Communication on 
FlexRay, ISO 13400-2 DoIP, ISO 17987-2 LIN, ISO 27145-4 WWH-OBD. 

⎯ Network layer services (layer 3), specified in ISO 15765-2 DoCAN, ISO 10681-2 Communication on 
FlexRay, ISO 13400-2 DoIP, ISO 17987-2 LIN, ISO 27145-4 WWH-OBD. 

⎯ Data link layer (layer 2), specified in ISO 11898-1, ISO 11898-2, ISO 17458-2, ISO 13400-3, IEEE 802.3, 
ISO 14230-2, ISO 17987-3 LIN and further standards, ISO 27145-4 WWH-OBD. 

⎯ Physical layer (layer 1), specified in ISO 11898-1, ISO 11898-2, ISO 17458-4, ISO 13400-3, IEEE 802.3, 
ISO 14230-1, ISO 17987-4 LIN and further standards, ISO 27145-4 WWH-OBD. 

NOTE The diagnostic services in this standard are implemented in various applications e.g. Road vehicles – 
Tachograph systems, Road vehicles – Interchange of digital information on electrical connections between towing and 
towed vehicles, Road vehicles – Diagnostic systems, etc. It is required that future modifications to this standard provide 
long-term backward compatibility with the implementation standards as described above. 

Table 1 — Example of diagnostic/programming specifications applicable to the OSI layers 

Applicability OSI seven 
layer Enhanced diagnostics services WWH-

OBD

Application 
(layer 7) 

ISO 14229-1, ISO 14229-3 UDSonCAN, ISO 14229-4 UDSonFR, ISO 14229-5 
UDSonIP, ISO 14229-6 UDSonK-Line, ISO 14229-7 UDSonLIN, further standards 

ISO 
27145-3

Presentation 
(layer 6) vehicle manufacturer specific ISO 

27145-2

Session  
(layer 5) ISO 14229-2 

Transport  
(layer 4) 

further 
standards 

Network  
(layer 3) 

ISO 
15765-2

ISO 
10681-2

ISO 
13400-2

Not 
applicable 

ISO 
17987-2 further 

standards 

Data link  
(layer 2) 

ISO 
17458-2

ISO 
14230-2

ISO 
17987-3

further 
standards 

Seven layer 
according to 
ISO/IEC 7498-1  
and
ISO/IEC 10731 

Physical  
(layer 1) 

ISO 
11898-1, 

ISO 
11898-2 ISO 

17458-4

ISO 
13400-3,

IEEE 
802.3 ISO 

14230-1
ISO 

17987-4
further 

standards 

ISO 
27145-4

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



INTERNATIONAL STANDARD ISO 14229-1:2013(E)

© ISO 2013 – All rights reserved 1

Road vehicles — Unified diagnostic services (UDS) — 

Part 1: 
Specifications and requirements 

1 Scope 

This part of ISO 14229 specifies data link independent requirements of diagnostic services, which allow a 
diagnostic tester (client) to control diagnostic functions in an on-vehicle Electronic Control Unit (ECU, server) 
such as an electronic fuel injection, automatic gear box, anti-lock braking system, etc. connected to a serial 
data link embedded in a road vehicle. 

It specifies generic services, which allow the diagnostic tester (client) to stop or to resume non-diagnostic 
message transmission on the data link. 

This part of ISO 14229 does not apply to non-diagnostic message transmission on the vehicle's 
communication data link between two Electronic Control Units. However, this part of ISO 14229 does not 
restrict an in-vehicle on-board tester (client) implementation in an ECU in order to utilize the diagnostic 
services on the vehicle's communication data link to perform bidirectional diagnostic data exchange. 

This part of ISO 14229 does not specify any implementation requirements. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 14229-2, Road vehicles — Unified diagnostic services (UDS) — Part 2: Session layer services 

3 Terms, definitions, symbols and abbreviated terms 

3.1 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

3.1.1
boot manager 
part of the boot software that executes immediately after an ECU power on or reset whose primary purpose is 
to check whether a valid application is available to execute as compared to transferring control to the 
reprogramming software 

NOTE The boot manager may also take into account other conditions for transitioning control to the reprogramming 
software. 

3.1.2
boot memory partition 
area of the server memory in which the boot software is located 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

2 © ISO 2013 – All rights reserved

3.1.3
boot software 
software which is executed in a special part of server memory which is used primarily to boot the ECU and 
perform server programming 

NOTE 1 This area of memory is not erased during a normal programming sequence and must execute when the server 
application is missing or otherwise deemed invalid to always ensure the capability to reprogram the server. 

NOTE 2 See also 3.1.1 and 3.1.17. 

3.1.4
client
function that is part of the tester and that makes use of the diagnostic services 

NOTE  A tester normally makes use of other functions such as data base management, specific interpretation, 
human-machine interface. 

3.1.5
diagnostic data 
data that is located in the memory of an electronic control unit which may be inspected and/or possibly 
modified by the tester 

NOTE 1 Diagnostic data includes analogue inputs and outputs, digital inputs and outputs, intermediate values and 
various status information. 

NOTE 2 Examples of diagnostic data are vehicle speed, throttle angle, mirror position, system status, etc. Three types 
of values are defined for diagnostic data: 

⎯ the current value: the value currently used by (or resulting from) the normal operation of the electronic control unit; 

⎯ a stored value: an internal copy of the current value made at specific moments (e.g. when a malfunction occurs or 
periodically); this copy is made under the control of the electronic control unit;  

⎯ a static value: e.g. VIN. 

The server is not obliged to keep internal copies of its data for diagnostic purposes, in which case the tester may only 
request the current value. 

NOTE 3 Defining a repair shop or development testing session selects different server functionality (e.g. access to all 
memory locations may only be allowed in the development testing session). 

3.1.6
diagnostic routine 
routine that is embedded in an electronic control unit and that may be started by a server upon a request from 
the client 

NOTE It could either run instead of a normal operating program, or could be enabled in this mode and executed with 
the normal operating program. In the first case, normal operation for the server is not possible. In the second case, 
multiple diagnostic routines may be enabled that run while all other parts of the electronic control unit are functioning 
normally. 

3.1.7
diagnostic service 
information exchange initiated by a client in order to require diagnostic information from a server or/and to 
modify its behaviour for diagnostic purpose 

3.1.8
diagnostic session 
state within the server in which a specific set of diagnostic services and functionality is enabled 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 3

3.1.9
diagnostic trouble code 
DTC 
numerical common identifier for a fault condition identified by the on-board diagnostic system 

3.1.10 
ECU
electronic control unit, containing at least one server 

NOTE Systems considered as Electronic Control Units include Anti-lock Braking System (ABS) and Engine 
Management System. 

3.1.11 
functional unit 
set of functionally close or complementary diagnostic services 

3.1.12 
integer type 
simple type with distinguished values which are the positive and the negative whole numbers, including zero 

NOTE The range of type integer is not specified within this part of ISO 14229. 

3.1.13 
local client 
client that is connected to the same local network as the server and is part of the same address space as the 
server 

3.1.14 
local server 
server that is connected to the same local network as the client and is part of the same address space as the 
client 

3.1.15 
OSI 
open systems interconnection 

3.1.16 
permanent DTC  
diagnostic trouble code (DTC) that remains in non-volatile memory, even after a clear DTC request, until other 
criteria (typically regulatory) are met (e.g. the appropriate monitors for each DTC have successfully passed) 

NOTE Refer to the relevant legislation for all necessary requirements. 

3.1.17 
record 
one or more diagnostic data elements that are referred to together by a single means of identification 

NOTE A snapshot including various input/output data and trouble codes is an example of a record. 

3.1.18 
remote server 
server that is not directly connected to the main diagnostic network 

NOTE 1 A remote server is identified by means of a remote address. Remote addresses represent an own address 
space that is independent from the addresses on the main network. 

NOTE 2 A remote server is reached via a local server on the main network. Each local server on the main network can 
act as a gate to one independent set of remote servers. A pair of addresses must therefore always identify a remote 
server: one local address that identifies the gate to the remote network and one remote address identifying the remote 
server itself. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

4 © ISO 2013 – All rights reserved

3.1.19 
remote client 
client that is not directly connected to the main diagnostic network 

NOTE 1 A remote client is identified by means of a remote address. 

NOTE 2 Remote addresses represent an own address space that is independent from the addresses on the main 
network. 

3.1.20 
reprogramming software 
part of the boot software that allows for reprogramming of the electronic control unit 

3.1.21 
security 
mechanism for protecting vehicle modules from "unauthorized" intrusion through a vehicle diagnostic data link 

3.1.22 
server 
function that is part of an electronic control unit and that provides the diagnostic services 

NOTE This international standard differentiates between the server (i.e. the function) and the electronic control unit 
so that this standard remains independent from the implementation. 

3.1.23 
supported DTC  
diagnostic trouble code which is currently configured/calibrated and enabled to execute under pre-defined 
vehicle conditions 

3.1.24 
tester 
system that controls functions such as test, inspection, monitoring, or diagnosis of an on-vehicle electronic 
control unit and may be dedicated to a specific type of operator (e.g. an off-board scan tool dedicated to 
garage mechanics, an off-board test tool dedicated to assembly plants, or an on-board tester) 

NOTE The tester is also referenced as the client. 

3.2 Abbreviated terms 

.con service primitive .confirmation 

.ind service primitive .indication 

.req service primitive .request 

A_PCI application layer protocol control information 

ECU electronic control unit 

EDR event data recorder 

N/A not applicable 

NR_SI negative response service identifier 

NRC negative response code 

OSI open systems interconnection 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 5

RA remote address 

SA source address 

SI service identifier 

TA target address 

TA_type target address type 

4 Conventions 

This part of ISO 14229 is based on the conventions discussed in the OSI Service Conventions 
(ISO/IEC 10731:1994) as they apply for diagnostic services. 

These conventions specify the interactions between the service user and the service provider. Information is 
passed between the service user and the service provider by service primitives, which may convey 
parameters. 

The distinction between service and protocol is summarised in Figure 1. 

Application of the Sender Application of the Receiver

A_SDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

A_SDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

ServiceNameRequest.req
ServiceNameRequest.con

ServiceNameResponse.ind

A_SDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

A_SDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

ServiceNameResponse.req

ServiceNameResponse.conServiceNameRequest.ind

Application layer of the Sender

A_PDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

A_PDU with SA, TA, 
TAtype, A_PCI 
[parameter#1,

parameter#2, ...]

A
pp

lic
at

io
n 

La
ye

r
Se

rv
ic

es
A

pp
lic

at
io

n 
La

ye
r

Pr
ot

oc
ol

Application layer of the Receiver

A_PDU with SA, TA, 
TAtype, [parameter#1, 

parameter#2, ...]

A_PDU with SA, TA, 
TAtype, A_PCI 
[parameter#1,

parameter#2, ...]

Transmission
to peer entity

Transmission
to peer entity

Figure 1 — The services and the protocol 

This part of ISO 14229 defines both confirmed and unconfirmed services. 

The confirmed services use the six service primitives request, req_confirm, indication, response, rsp_confirm 
and confirmation. 

The unconfirmed services use only the request, req_confirm and indication service primitives. 

For all services defined in this part of ISO 14229 the request and indication service primitives always have the 
same format and parameters. Consequently for all services the response and confirmation service primitives 
(except req_confirm and rsp_confirm) always have the same format and parameters. When the service 
primitives are defined in this International Standard, only the request and response service primitives are 
listed. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

6 © ISO 2013 – All rights reserved

5 Document overview 

Figure 2 depicts the implementation of UDS document reference according to OSI model. 

ISO 14229-1 UDS 
specification and requirements

OSI Layer 7
Application

OSI Layer 6
Presentation

OSI Layer 5
Session

OSI Layer 4
Transport

OSI Layer 3
Network

OSI Layer 1
Physical

OSI Layer 2
Data Link

ISO 14229-2 UDS 
Session layer services

subset

ISO 15765-2 
DoCAN

transport
and

network
layer services

ISO 11898-1 
CAN

ISO 11898-2 
CAN

ISO 11898-3 
CAN

Standardized Service Primitive Interface

Unified Diagnostic Services (UDS)

Diagnostic communication over any protocol

ISO 13400-2 
DoIP

transport
and

network
layer services

ISO 13400-3 
DoIP

IEEE 802.3 
based

wired vehicle 
interface

ISO 14229-3 
UDSonCAN

ISO 14229-4 
UDSonFR

ISO 14229-5 
UDSonIP

ISO 14229-6 
UDSonK-Line

ISO 27145-3 
WWH-OBD

CMD

vehicle manufacturer specific
ISO 27145-2 
WWH-OBD

CDD

ISO 10681-2 
CoFR

transport
and

network
layer services

ISO 17458-2
FlexRay

data link layer

ISO 17458-4
FlexRay
electrical

physical layer

...

...

...

Not
applicable

ISO 14230-1 
DoK-Line

physical layer

DoCAN CoFR DoIP DoK-Line Do...

ISO 14230-2 
DoK-Line

data link layer

ISO 14229-7 
UDSonLIN

ISO 17987-2 
LIN

transport
and

network
layer services

ISO 17987-4
LIN

electrical
physical layer

LIN

ISO 17987-3
LIN

protocol
specification

ISO 14229-3,-4,-5,-6,-7 UDSon... implementation

Figure 2 — Implementation of UDS document reference according to OSI model 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 7

6 Application layer services 

6.1 General 

Application layer services are usually referred to as diagnostic services. The application layer services are 
used in client-server based systems to perform functions such as test, inspection, monitoring or diagnosis of 
on-board vehicle servers. The client, usually referred to as external test equipment, uses the application layer 
services to request diagnostic functions to be performed in one or more servers. The server, usually a function 
that is part of an ECU, uses the application layer services to send response data, provided by the requested 
diagnostic service, back to the client. The client is usually an off-board tester, but can in some systems also 
be an on-board tester. The usage of application layer services is independent from the client being an off-
board or on-board tester. It is possible to have more than one client in the same vehicle system. 

The service access point of the diagnostics application layer provides a number of services that all have the 
same general structure. For each service, six service primitives are specified:a service request primitive,
used by the client function in the diagnostic tester application, to pass data about a requested diagnostic 
service to the diagnostics application layer; 

⎯ a service request primitive, used by the client function in the diagnostic tester application, to pass data 
about a requested diagnostic service to the diagnostics application layer; 

⎯ a service request-confirmation primitive, used by the client function in the diagnostic tester application, 
to indicate that the data passed in the service request primitive is successfully sent on the vehicle 
communication bus the diagnostic tester is connected to 

⎯ a service indication primitive, used by the diagnostics application layer, to pass data to the server 
function of the ECU diagnostic application; 

⎯ a service response primitive, used by the server function in the ECU diagnostic application, to pass 
response data provided by the requested diagnostic service to the diagnostics application layer; 

⎯ a service response-confirmation primitive, used by the server function in the ECU diagnostic 
application, to indicate that the data passed in the service response primitive is successfully sent on the 
vehicle communication bus the ECU received the diagnostic request on; 

⎯ a service confirmation primitive used by the diagnostics application layer to pass data to the client 
function in the diagnostic tester application. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

8 © ISO 2013 – All rights reserved

Figure 3 depicts the Application layer service primitives - confirmed service. 

re
qu

es
t

m
es

sa
ge

timetime

Time
P2_client

Time
P2_server

Server
Application

Layer

Client
Application

Layer

ServiceName.request

ServiceName.confirmation

ServiceName.request-confirm
Start

ServiceName.indication

ServiceName.response

Stop

Start

ServiceName.response-confirm

re
sp

on
se

 m
es

sa
ge

Stop

Figure 3 — Application layer service primitives - confirmed service 

Figure 4 depicts the application layer service primitives - unconfirmed service. 

re
qu

es
t

m
es

sa
ge

timetime

Server
Application

Layer

Client
Application

Layer

ServiceName.request

ServiceName.request-confirm ServiceName.indication

Time
P2_client

Time
P2_server

Figure 4 — Application layer service primitives - unconfirmed service 

For a given service, the request-confirmation primitive and the response-confirmation primitive always have 
the same service data unit. The purpose of these service primitives is to indicate the completion of an earlier 
request or response service primitive invocation. The service descriptions in this International Standard will 
not make use of those service primitives, but the data link specific implementation documents might use those 
to define e.g. service execution reference points (e.g. the ECUReset service would invoke the reset when the 
response is completely transmitted to the client which is indicated in the server via the service response-
confirm primitive). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 9

6.2 Format description of application layer services 

Application layer services can have two different formats depending on how the vehicle diagnostic system is 
configured. The format of the application layer service is controlled by parameter A_Mtype. 

If the vehicle system is configured so that the client can address all servers by using the A_SA and A_TA 
address parameters, the default format of application layer services shall be used. This implies A_Mtype = 
diagnostics. 

If the vehicle system is configured so that the client needs address information in addition to the A_SA and 
A_TA address parameters allowing to address certain servers, the remote format of application layers 
services shall be used. This implies A_Mtype = remote diagnostics. 

The different formats for application layer services are specified in 6.3. 

6.3 Format description of service primitives 

6.3.1 General definition 

All application layer services have the same general format. Service primitives are written in the form: 

service_name.type ( 
parameter A, parameter B, parameter C 
[,parameter 1, ...]
)

Where: 

⎯ "service_name" is the name of the diagnostic service (e.g. DiagnosticSessionControl), 

⎯ "type" indicates the type of the service primitive (e.g. request), 

⎯ "parameter A, ..." is the A_SDU (Application layer Service Data Unit) as a list of values passed by the 
service primitive (addressing information), 

⎯ "parameter A, parameter B, parameter C" are mandatory parameters that shall be included in all service 
calls, 

⎯ "[,parameter 1, ...]" are parameters that depend on the specific service (e.g. parameter 1 can be the 
diagnosticSession for the DiagnosticSessionControl service). The brackets indicate that this part of the 
parameter list may be empty. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

10 © ISO 2013 – All rights reserved

6.3.2 Service request and service indication primitives 

For each application layer service, service request and service indication primitives are specified according to 
the following general format: 

service_name.request ( 
A_MType,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Length,
A_Data[,parameter 1, ...],
)

The request primitive is used by the client function in the diagnostic tester application, to initiate the service 
and pass data about the requested diagnostic service to the application layer. 

service_name.indication ( 
A_MType,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Length
A_Data[,parameter 1, ...],
)

The indication primitive is used by the application layer, to indicate an internal event which is significant to the 
ECU diagnostic application and pass data about the requested diagnostic service to the server function of the 
ECU diagnostic application. 

The request and indication primitive of a specific application layer service always have the same parameters 
and parameter values. This means that the values of individual parameters shall not be changed by the 
communicating peer protocol entities of the application layer when the data is transmitted from the client to the 
server. The same values that are passed by the client function in the client application to the application layer 
in the service request call shall be received by the server function of the diagnostic application from the 
service indication of the peer application layer. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 11

6.3.3 Service response and service confirm primitives 

For each confirmed application layer service, service response and service confirm primitives are specified 
according to the following general format: 

service_name.response ( 
A_Mtype,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Length
A_Data[,parameter 1, ...],
)

The response primitive is used by the server function in the ECU diagnostic application, to initiate the service 
and pass response data provided by the requested diagnostic service to the application layer. 

service_name.confirm ( 
A_Mtype,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Length
A_Data[,parameter 1, ...],
)

The confirm primitive is used by the application layer to indicate an internal event which is significant to the 
client application and pass results of an associated previous service request to the client function in the 
diagnostic tester application. It does not necessarily indicate any activity at the remote peer interface, e.g if the 
requested service is not supported by the server or if the communication is broken. 

The response and confirm primitive of a specific application layer service always have the same parameters 
and parameter values. This means that the values of individual parameters shall not be changed by the 
communicating peer protocol entities of the application layer when the data is transmitted from the server to 
the client. The same values that are passed by the server function of the ECU diagnostic application to the 
application layer in the service response call shall be received by the client function in the diagnostic tester 
application from the service confirmation of the peer application layer. 

For each response and confirm primitive two different service data units (two sets of parameters) will be 
specified. 

⎯ A positive response and positive confirm primitive shall be used with the first service data unit if the 
requested diagnostic service could be successfully performed by the server function in the ECU. 

⎯ A negative response and confirm primitive shall be used with the second service data unit if the requested 
diagnostic service failed or could not be completed in time by the server function in the ECU. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

12 © ISO 2013 – All rights reserved

6.3.4 Service request-confirm and service response-confirm primitives 

For each application layer service, service request-confirm and service response-confirm primitives are 
specified according to the following general format: 

service_name.req_confirm ( 
A_Mtype,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Result
)

The request-confirm primitive is used by the application layer to indicate an internal event, which is significant 
to the client application, and pass communication results of an associated previous service request to the 
client function in the diagnostic tester application. 

service_name.rsp_confirm ( 
A_Mtype,
A_SA,
A_TA,
A_TA_type,
[A_AE],
A_Result
)

The response-confirm primitive is used by the application layer to indicate an internal event, which is 
significant to the server application, and pass communication results of an associated previous service 
response to the server function in the ECU application. 

6.4 Service data unit specification 

6.4.1 Mandatory parameters 

6.4.1.1 General definition 

The application layer services contain three mandatory parameters. The following parameter definitions are 
applicable to all application layer services specified in this International Standard (standard and remote 
format). 

6.4.1.2 A_Mtype, Application layer message type 

Type:  enumeration 

Range: diagnostics, remote diagnostics 

Description: 

The parameter Mtype shall be used to identify the format of the vehicle diagnostic system as specified in 6.2. 
This part of ISO 14229 specifies a range of two values for this parameter: 

If A_Mtype = diagnostics, then the service_name primitive shall consist of the parameters A_SA, A_TA and 
A_TAtype. 

If A_Mtype = remote diagnostics, then the service_name primitive shall consist of the parameters A_SA, A_TA, 
A_TAtype and A_AE. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 13

6.4.1.3 A_SA, Application layer source address 

Type: 2 byte unsigned integer value 

Range: 0x0000 – 0xFFFF 

Description: 

The parameter SA shall be used to encode client and server identifiers. 

For service requests (and service indications), A_SA represents the address of the client function that has 
requested the diagnostic service. Each client function that requests diagnostic services shall be represented 
with one A_SA value. If more than one client function is implemented in the same diagnostic tester, then each 
client function shall have its own client identifier and corresponding A_SA value. 

For service responses (and service confirmations), A_SA represents the address of the server function that 
has performed the requested diagnostic service. A server function may be implemented in one ECU only or be 
distributed and implemented in several ECUs. If a server function is implemented in one ECU only, then it 
shall be encoded with one A_SA value only. If a server function is distributed and implemented in several 
ECUs, then the respective server function addresses shall be encoded with one A_SA value for each 
individual server function. 

If a remote client or server is the original source for a message, then A_SA represents the local server that is 
the gate from the remote network to the main network. 

NOTE The A_SA value in a response message will be the same as the A_TA value in the corresponding request 
message if physical addressing was used for the request message. 

6.4.1.4 A_TA, Application layer target address 

Type: 2 byte unsigned integer value 

Range: 0x0000 – 0xFFFF 

Description: 

The parameter A_TA shall be used to encode client and server identifiers. 

Two different addressing methods, called: 

⎯ physical addressing, and 

⎯ functional addressing 

are specified for diagnostics. Therefore, two independent sets of target addresses can be defined for a vehicle 
system (one for each addressing method). 

Physical addressing shall always be a dedicated message to a server implemented in one ECU. When 
physical addressing is used, the communication is a point-to-point communication between the client and the 
server. 

Functional addressing is used by the client if it does not know the physical address of the server function that 
shall respond to a diagnostic service request or if the server function is implemented as a distributed function 
in several ECUs. When functional addressing is used, the communication is a broadcast communication from 
the client to a server implemented in one or more ECUs. 

For service requests (and service indications), A_TA represents the server identifier for the server that shall 
perform the requested diagnostic service. If a remote server is being addressed, then A_TA represents the 
local server that is the gate from the main network to the remote network. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

14 © ISO 2013 – All rights reserved

For service responses (and service confirmations), A_TA represents the address of the client function that 
originally requested the diagnostic service and shall receive the requested data (i.e. A_SA of the request). 
Service responses (and service confirmations) shall always use physical addressing. If a remote client is 
being addressed, then A_TA represents the local server that is the gate from the main network to the remote 
network. 

NOTE The A_TA value of a response message will always be the same as the A_SA value of the corresponding 
request message. 

6.4.1.5 A_TA_Type, Application layer target address type 

Type: enumeration 

Range: physical, functional 

Description: 

The parameter A_TA_type is an extension to the A_TA parameter. It is used to represent the addressing 
method chosen for a message transmission. 

6.4.1.6 A_Result 

Type: enumeration 

Range: ok, error 

Description: 

The parameter 'A_Result' is used by the req_confirm and rsp_confirm primitives to indicate if a message has 
been transmitted correctly (ok) or whether the message transmission was not successful (error). 

6.4.1.7 A_Length 

Type: 4 byte unsigned integer value 

Range: 0d – (232-1)d

Description: 

This parameter includes the length of data to be transmitted / received. 

6.4.1.8 A_Data 

Type: string of bytes 

Range: not applicable 

Description: 

This parameter includes all data to be exchanged by the higher layer entities. 

6.4.2 Vehicle system requirements 

The vehicle manufacturer shall ensure that each server in the system has a unique server identifier. The 
vehicle manufacturer shall also ensure that each client in the system has a unique client identifier. 

All client and server addresses of the diagnostic network in a vehicle system shall be encoded into the same 
range of source addresses. This means that a client and a server shall not be represented by the same A_SA 
value in a given vehicle system. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 15

The physical target address for a server shall always be the same as the source address for the server. 

Remote server identifiers can be assigned independently from client and server identifiers on the main 
network. 

In general only the server(s) addressed shall respond to the client request message. 

6.4.3 Optional parameters - A_AE, Application layer remote address 

Type: 2 byte unsigned integer value 

Range: 0x0000 – 0xFFFF 

Description: 

A_AE is used to extend the available address range to encode client and server identifiers. A_AE shall only be 
used in vehicles that implement the concept of local servers and remote servers. Remote addresses represent 
its own address range and are independent from the addresses on the main network. 

The parameter A_AE shall be used to encode remote client and server identifiers. A_AE can represent either 
a remote target address or a remote source address depending on the direction of the message carrying the 
A_AE. 

For service requests (and service indications) sent by a client on the main network, A_AE represents the 
remote server identifier (remote target address) for the server that shall perform the requested diagnostic 
service. 

A_AE can be used both as a physical and a functional address. For each value of A_AE, the system builder 
shall specify if that value represents a physical or functional address. 

NOTE There is no special parameter that represents physical or functional remote addresses in the way A_TA_type 
specifies the addressing method for A_TA. Physical and functional remote addresses share the same 1 byte range of 
values and the meaning of each value shall be defined by the system builder. 

For service responses (and service confirmations) sent by a remote server, A_AE represents the physical 
location (remote source address) of the remote server that has performed the requested diagnostic service. 

A remote server may be implemented in one ECU only or be distributed and implemented in several ECUs. If 
a remote server is implemented in one ECU only, then it shall be encoded with one A_AE value only. If a 
remote server is distributed and implemented in several ECUs, then the remote server identifier shall be 
encoded with one A_AE value for each physical location of the remote server. 

7 Application layer protocol 

7.1 General definition 

The application layer protocol shall always be a confirmed message transmission, meaning that for each 
service request sent from the client, there shall be one or more corresponding responses sent from the server. 

The only exception from this rule shall be a few cases when functional addressing is used or the 
request/indication specifies that no response/confirmation shall be generated. In order not to burden the 
system with many unnecessary messages, there are a few cases when a negative response messages shall 
not be sent even if the server failed to complete the requested diagnostic service. These exception cases are 
described at the relevant subclauses within this specification (e.g., see 7.5). 

The application layer protocol shall be handled in parallel with the session layer protocol. This mean that even 
if the client is waiting for a response to a previous request, it shall maintain proper session layer timing (e.g. 
sending a TesterPresent request if that is needed to keep a diagnostic session going in other servers. The 
implementation depends on the data link layer used). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

16 © ISO 2013 – All rights reserved

7.2 Protocol data unit specification 

The A_PDU (Application layer Protocol Data Unit) is directly constructed from the A_SDU (Application layer 
Service Data Unit) and the layer specific control information A_PCI (Application layer Protocol Control 
Information). The A_PDU shall have the following general format: 

A_PDU ( 
Mtype,
SA,
TA,
TA_type,
[RA,]
A_Data = A_PCI + [parameter 1, ...],
Length
)

Where: 

⎯ "Mtype, SA, TA, TA_type, RA, Length " are the same parameters as used in the A_SDU; 

⎯ "A_Data" is a string of byte data defined for each individual application layer service. The A_Data string 
shall start with the A_PCI followed by all service specific parameters from the A_SDU as specified for 
each service. The brackets indicate that this part of the parameter list may be empty; 

⎯ "Length" determines the number of bytes of A_Data; 

7.3 Application protocol control information 

7.3.1 PCI, Protocol Control Information 

The A_PCI consists of two formats. The formats identified by the value of the first byte of the A_PCI 
parameter. For all service requests and for service responses with first byte unequal to 0x7F, the following 
definition shall apply: 

A_PCI ( 
SI
)

Where: 

⎯ "SI" is the parameter Service identifier; 

For service responses with first byte equal to 0x7F, the following definition shall apply: 

A_PCI ( 
NR_SI,
SI
)

Where: 

⎯ "NR_SI" is the special parameter identifying negative service responses/confirmations; 

⎯ "SI" is the parameter Service identifier; 

NOTE For the transmission of periodic data response messages as defined in service ReadDataByPeriodicIdentifier 
(0x2A, see 10.5) no A_PCI is present in the application layer protocol data unit (A_PDU). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 17

7.3.2 SI, Service Identifier 

Type: 1 byte unsigned integer value 

Range: 0x00 – 0xFF according to definitions in Table 2. 

Table 2 — Service identifier values 

Service identifier (SI) Service type (bit 6) Where defined 

0x10 – 0x3E ISO 14229-1 service requests ISO 14229-1 

0x3F Not applicable Reserved by document 

0x50 – 0x7E ISO 14229-1 positive service responses ISO 14229-1 

0x7F Negative response service identifier ISO 14229-1 

0x80 – 0x82 Not applicable Reserved by ISO 14229-1 

0x83 – 0x88 ISO 14229-1 service requests ISO 14229-1 

0x89 – 0xB9 Not applicable Reserved by ISO 14229-1 

0xBA – 0xBE Service requests Defined by system supplier 

0xBF – 0xC2 Not applicable Reserved by ISO 14229-1 

0xC3 – 0xC8 ISO 14229-1 positive service responses ISO 14229-1 

0xC9 – 0xF9 Not applicable Reserved by ISO 14229-1 

0xFA – 0xFE Positive service responses Defined by system supplier 

0xFF Not applicable Reserved by document 

NOTE There is a one-to-one correspondence between service identifiers for request messages and service 
identifiers for positive response messages, with bit 6 of the SI Byte Value indicating the service type. All request messages 
have SI bit 6 = 0. All positive response messages have SI bit 6 = 1, except periodic data response messages of the 
ReadDataByPeriodicIdentifier (0x2A, see 10.5) service. 

Description: 

The SI shall be used to encode the specific service that has been called in the service primitive. Each request 
service shall be assigned a unique SI value. Each positive response service shall be assigned a 
corresponding unique SI value. 

The service identifier is used to represent the service in the A_Data data string that is passed from the 
application layer to lower layers (and returned from lower layers). 

7.3.3 NR_SI, Negative response service identifier 

Type: 1 byte unsigned integer value 

Fixed value: 0x7F 

Description: 

The parameter NR_SI is a special parameter identifying negative service responses / confirmations. It shall be 
part of the A_PCI for negative response/confirm messages. 

NOTE The NR_SI value is co-ordinated with the SI values. The NR_SI value is not used as a SI value in order to 
make A_Data coding and decoding easier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

18 © ISO 2013 – All rights reserved

7.4 Negative response/confirmation service primitive 

Each diagnostic service has a negative response/negative confirmation message specified with message 
A_Data bytes according to Table 3. The first A_Data byte (A_PCI.NR_SI) is always the specific negative 
response service identifier. The second A_Data byte (A_PCI.SI) shall be a copy of the service identifier value 
from the service request/indication message that the negative response message corresponds to. 

Table 3 — Negative response A_PDU 

A_PDU parameter Parameter Name Cvt Byte value Mnemonic 

SA Source Address M 0xXXXX SA 

TA Target Address M 0xXXXX TA 

TAtype Target Address type M 0xXX TAT 

RA Remote Address (optional) C 0xXXXX RA 

A_Data.A_PCI.NR_SI Negative Response SID M 0x7F SIDNR 

A_Data.A_PCI. SI <Service Name> Request SID M 0xXX SIDRQ 

A_Data.Parameter 1 responseCode M 0xXX NRC_ 

M (Mandatory): In case the negative response A_PDU is issued then those A_PDU parameters shall be present. 
C (Conditional): The RA (Remote Address) PDU parameter is only present in case of remote addressing. 

NOTE A_Data represents the message data bytes of the negative response message. 

The parameter responseCode is used in the negative response message to indicate why the diagnostic 
service failed or could not be completed in time. Values are defined in A.1. 

7.5 Server response implementation rules 

7.5.1 General definitions 

The following subclauses specify the behaviour of the server when executing a service. The server and the 
client shall follow these implementation rules. 

Legend 

Abbreviation Description 

suppressPosRspMsgIndicationBit TRUE = server shall NOT send a positive response message (exception see 
Annex A.1 in definition of NRC 0x78) 
FALSE = server shall send a positive or negative response message 

PosRsp Abbreviation for positive response message 

NegRsp Abbreviation for negative response message 

NoRsp Abbreviation for NOT sending a positive or negative response meesage 

NRC Abbreviation for negative response code 

ALL All of the requested data-parameters of the client request message are supported by 
the server 

At least 1 At least 1 data-parameter of the client request message must be supported by the 
server 

None None of the requested data-parameter of the client request message is supported 
by the server 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 19

The server shall support its list of diagnostic services regardless of addressing mode (physical, functional 
addressing type). 

IMPORTANT — As required by the tables in the following subclauses, negative response messages 
with negative response codes of SNS (serviceNotSupported), SNSIAS (serviceNotSupportedIn-
ActiveSession), SFNS (sub-functionNotSupported), SFNSIAS (sub-functionNotSupportedInActive-
Session), and ROOR (requestOutOfRange) shall not be transmitted when functional addressing was 
used for the request message (exception see Annex A.1 in definition of NRC 0x78). 

7.5.2 General server response behaviour 

The general server response behaviour specified in this subclause is mandatory for all request messages. 
The validation steps starts with the reception of the request message. The figure is divided into three 
subclauses 

⎯ mandatory: to be evaluated by every request message, 

⎯ optional: could be optionally evaluated by every request message, 

⎯ manufacturer/supplier specific: the procedure can be extended by additional manufacturer/supplier 
specific checks. 

NOTE Depending on the choices implemented in all figures specifying NRC handling, a specific NRC is not 
guaranteed for all possible test pattern sequences. 

Figure 5 depicts the general server response behaviour. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

20 © ISO 2013 – All rights reserved

NRC 0x11

YES

Service with 
sub-function, but 
not SID 0x31?

SID supported?

YES

NO

NRC 0x7FSID supported in 
active session?

YES

NO

NRC 0x33

SID security 
check o.k.?

NO

YES

NRC 0x21

Server is 
busy?

YES

NO NRC 0xXXYES

manufacturer
specific failure 
detected?

NO

mandatory optional manufacturer/supplier
specific

NRC 0xXX

supplier specific 
failure detected?

YESNO

1

1

NO
2

specific SID 
checks

Key  
1 Diagnostic request can not be accepted because another diagnostic task is already requested and in progress by a 

different client. 
2 refer to the response behaviour (supported negative response codes) of each service 

Figure 5 — General server response behaviour 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 21

7.5.3 Request message with sub-function parameter and server response behaviour 

7.5.3.1 General server response behaviour for request messages with sub-function parameter 

The general server response behaviour specified in this subclause is mandatory for all request messages with 
sub-function parameter. A request message in the context of this section is defined as a service request 
message adhering to the formatting requirements defined in this part of ISO 14229. 

Figure 6 depicts the general server response behaviour for request messages with sub-function parameter. 

1

NRC 0x12

YES

NO

NRC 0x7E
sub-function
supported in 
active session 
for the SID?

NO

NRC 0x33NO

sub-function
security check 
o.k.?

sub-function
supported ever 
for the SID?

minimum
length  check NRC 0x13NO

YES

NRC 0xXX

manufacturer-/
supplier-specific
check

mandatory optional

NO

YES

YES

specific SID 
checks

NRC 0x24NO

request sequence respected 
for the sub-function?

YES 2

1

manufacturer/supplier
specific

3

Key  
1 at least 2 (SID+SubFunction Parameter). 
2 if sub-function is subject to sequence check, e.g. LinkControl or SecurityAccess. 
3 refer to the response behaviour (supported negative response codes) of each service. 

Figure 6 — General server response behaviour for request messages with sub-function parameter 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

22 © ISO 2013 – All rights reserved

7.5.3.2 Physically addressed client request message 

The server response behaviour specified in this subclause is referenced in the service description of each 
service, which supports a sub-function parameter in the physically addressed request message received from 
the client. 

Table 4 shows possible communication schemes with physical addressing. 

Table 4 — Physically addressed request message with sub-function parameter and server response 
behaviour 

Client request message Server capability Server response 

Se
rv

er
 c

as
e 

# 

Address- 
ing
scheme 

sub-function 
(suppress-
PosRspMsg-
Indication-Bit) 

SI
 s

up
po

rt
ed

 

Su
bF

un
ct

io
n 

su
pp

or
te

d Data parameter 
supported
(only if applicable)

Message NRC 
Comments to 
server response 

a) At least 1 PosRsp --- Server sends positive 
response 

b)

At least 1 NRC=
0xXX 

Server sends 
negative response 
because error 
occurred reading the 
data-parameters of 
the request message

c) 

YES YES 

None NRC=
ROOR

Negative response 
with NRC 0x31 

d)
NO -- -- 

NRC=
SNS or 
SNSIAS

Negative response 
with NRC 0x11 or 
NRC 0x7F 

e)

FALSE
(bit = 0) 

YES NO -- 

NegRsp 

NRC=
SFNS or 
SFNSIAS

Negative response 
with NRC 0x12 or 
NRC 0x7E 

f) At least 1 NoRsp --- Server does NOT 
send a response 

g)

At least 1 NRC=
0xXX 

Server sends 
negative response 
because error 
occurred reading the 
data-parameters of 
the request message

h)

YES YES 

None NRC=
ROOR

Negative response 
with NRC 0x31 

i) NO -- -- NRC=
SNS

Negative response 
with NRC 0x11 

j)

physical 

TRUE  
(bit = 1) 

YES NO -- 

NegRsp 

NRC=
SFNS

Negative response 
with NRC 0x12 

Description of server response cases on physically addressed client request messages with sub-function: 

a) Server sends a positive response message because the service identifier and sub-function parameter is 
supported of the client's request with indication for a response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 23

b) Server sends a negative response message (e.g., IMLOIF: incorrectMessageLengthOrIncorrectFormat) 
because the service identifier and sub-function parameter is supported of the client's request, but some 
other error appeared (e.g. wrong PDU length according to service identifier and sub-function parameter in 
the request message) during processing of the sub-function. 

c) Server sends a negative response message with the negative response code ROOR 
(requestOutOfRange) because the service identifier and sub-function parameter are supported but none 
of the requested data-parameters are supported by the client's request message. 

d) Server sends a negative response message with the negative response code SNS (serviceNotSupported) 
or SNSIAS (serviceNotSupportedInActiveSession) because the service identifier is not supported of the 
client's request with indication for a response message. 

e) Server sends a negative response message with the negative response code SFNS (sub-
functionNotSupported) or SFNSIAS (sub-FunctionNotSupportedInActiveSession) because the service 
identifier is supported and the sub-function parameter is not supported for the data-parameters (if 
applicable) of the client's request with indication for a response message. 

f) Server sends no response message because the service identifier and sub-function parameter is 
supported of the client's request with indication for no response message. 

NOTE If a negative response code RCRRP (requestCorrectlyReceivedResponsePending) is used, a final 
response shall be given independent of the suppressPosRspMsgIndicationBit value. 

g) Same effect as in b) (i.e., a negative response message is sent) because the 
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon a 
physically addressed request messages. 

h) Same effect as in c) (i.e., the negative response message is sent) because the 
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon receipt 
of a physically addressed request messages. 

i) Same effect as in d) (i.e., the negative response message is sent) because the 
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon a 
physically addressed request messages. 

j) Same effect as in e) (i.e., the negative response message is sent) because the 
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon a 
physically addressed request messages. 

7.5.3.3 Functionally addressed client request message 

The server response behaviour specified in this subclause is referenced in the service description of each 
service, which supports a sub-function parameter in the functionally addressed request message received 
from the client. 

Table 5 shows possible communication schemes with functional addressing. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

24 © ISO 2013 – All rights reserved

Table 5 — Functionally addressed request message with sub-function parameter and server response 
behaviour 

Client request message Server capability Server response 

Se
rv

er
 c

as
e 

# 

Address- 
ing
scheme 

sub-function 
(suppressPos
RspMsg- 
IndicationBit) 

SI
 s

up
po

rt
ed

 

Su
b-

Fu
nc

tio
n 

su
pp

or
te

d Data parameter 
supported
(only if applicable)

Message NRC 

Comments to 
server response 

a) At least 1 PosRsp --- Server sends positive 
response 

b)

At least 1 NegRsp NRC=
0xXX 

Server sends 
negative response 
because error 
occurred reading the 
data-parameters of 
the request message

c) 

YES YES 

None -- Server does NOT 
send a response 

d) NO -- -- --- Server does NOT 
send a response 

e)

FALSE
(bit = 0) 

YES NO -- 

NoRsp 

--- Server does NOT 
send a response 

f) At least 1 NoRsp --- Server does NOT 
send a response 

g)

At least 1 NegRsp NRC=
0xXX 

Server sends 
negative response 
because error 
occurred reading the 
data-parameters of 
the request message

h)

YES YES 

None -- Server does NOT 
send a response 

i) NO -- -- --- Server does NOT 
send a response 

j)

functional 

TRUE  
(bit = 1) 

YES NO -- 

NoRsp 

--- Server does NOT 
send a response 

Description of server response cases on functionally addressed client request messages with sub-function: 

a) Server sends a positive response message because the service identifier and sub-function parameter is 
supported of the client's request with indication for a response message. 

b) Server sends a negative response message (e.g., IMLOIF: incorrectMessageLengthOrIncorrectFormat) 
because the service identifier and sub-function parameter is supported of the client's request, but some 
other error appeared (e.g. wrong PDU length according to service identifier and sub-function parameter in 
the request message) during processing of the sub-function. 

c) Server sends no response message because the negative response code ROOR (requestOutOfRange, 
which is identified by the server because the service identifier and sub-function parameter are supported 
but a required data-parameter is not supported of the client's request) is always suppressed in case of a 
functionally addressed request message. The suppressPosRspMsgIndicationBit does not matter in such 
case. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 25

d) Server sends no response message because the negative response codes SNS (serviceNotSupported) 
and SNSIAS (serviceNotSupportedInActiveSession), which are identified by the server because the 
service identifier is not supported of the client's request, are always suppressed in case of a functionally 
addressed request message. The suppressPosRspMsgIndicationBit does not matter in such case. 

e) Server sends no response message because the negative response codes SFNS (sub-
functionNotSupported) and SFNSIAS (sub-functionNotSupportedInActiveSession), which are identified by 
the server because the service identifier is supported and the sub-function parameter is not supported for 
the data-parameters (if applicable) of the client's request, are always suppressed in case of a functionally 
addressed request. The suppressPosRspMsgIndicationBit does not matter in such case. 

f) Server sends no response message because the service identifier and sub-function parameter is 
supported of the client's request with indication for no response message. 

NOTE If a negative response code RCRRP (requestCorrectlyReceivedResponsePending) is used, a final 
response shall be given independent of the suppressPosRspMsgIndicationBit value. 

g) Same effect as in b) (i.e., a negative response message is sent) because the 
suppressPosRspMsgIndicationBit is ignored for any negative response. This is also true in case the 
request message is functionally addressed. 

h) Same effect as in c) (i.e., no response message is sent) because the negative response code ROOR 
(requestOutOfRange, which is identified by the server because the service identifier and sub-function 
parameter are supported but a required data-parameter is not supported of the client's request) is always 
suppressed in case of a functionally addressed request message. The suppressPosRspMsgIndicationBit 
does not matter in such case. 

i) Same effect as in d) (i.e., no response message is sent) because the negative response codes SNS 
(serviceNotSupported) and SNSIAS (serviceNotSupportedInActiveSession), which are identified by the 
server because the service identifier is not supported of the client's request, are always suppressed in 
case of a functionally addressed request message. The suppressPosRspMsgIndicationBit does not 
matter in such case. 

j) Same effect as in e) (i.e., no response message is sent) because the negative response codes SFNS 
(sub-functionNotSupported) and SFNSIAS (sub-functionNotSupportedInActiveSession), which are 
identified by the server because the service identifier is supported and the sub-function parameter is not 
supported of the client's request, are always suppressed in case of a functionally addressed request 
message. The suppressPosRspMsgIndicationBit does not matter in such case. 

7.5.4 Request message without sub-function parameter and server response behaviour 

7.5.4.1 General server response behaviour for request messages without sub-function parameter 

There is no general server response behaviour available for request messages without sub-function 
parameter. A request message in the context of this section is defined as a service request message adhering 
to the formatting requirements defined in this part of ISO 14229. 

7.5.4.2 Physically addressed client request message 

The server response behaviour specified in this subclause is referenced in the service description of each 
service, which does not support a sub-function parameter but a data-parameter in the physically addressed 
request message received from the client. 

Table 6 shows possible communication schemes with physical addressing. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

26 © ISO 2013 – All rights reserved

Table 6 — Physically addressed request message without sub-function parameter and server 
response behaviour 

Client request message Server capability Server response 

Se
rv

er
 c

as
e 

# 

Addressing 
scheme 

SI su
pp

or
te

d

Pa
ra

m
et

er
 

su
pp

or
te

d

Message NRC 
Comments to server 
response 

a) ALL --- Server sends positive response 

b) At least 
1

PosRsp 
--- Server sends positive response 

c) 
At least 

1
NRC=0xX

X

Server sends negative 
response because error 
occured reading data-
parameters of request message

d)

YES 

NONE NRC=
ROOR

Negative response with NRC 
0x31 

e)

physical 

NO --- 

NegRsp 

NRC=SNS
or SNSIAS

Negative response with NRC 
0x11 or NRC 0x7F 

Description of server response cases on physically addressed client request messages without sub-function 
(data-parameter follows service identifier): 

a) Server sends a positive response message because the service identifier and all data-parameters are 
supported of the client's request message. 

b) Server sends a positive response message because the service identifier and at least one data-
parameter is supported of the client's request message. 

c) Server sends a negative response message (e.g., IMLOIF: incorrectMessageLengthOrIncorrectFormat) 
because the service identifier is supported and at least one data-parameter is supported of the client's 
request message, but some other error occurred (e.g. wrong length of the request message) during 
processing of the service. 

d) Server sends a negative response message with the negative response code ROOR 
(requestOutOfRange) because the service identifier is supported and none of the requested data-
parameters are supported of the client's request message. 

e) Server sends a negative response message with the negative response code SNS (serviceNotSupported) 
or SNSIAS (serviceNotSupportedInActiveSession) because the service identifier is not supported of the 
client's request message. 

7.5.4.3 Functionally addressed client request message 

The server response behaviour specified in this subclause is referenced in the service description of each 
service, which does not support a sub-function parameter but a data-parameter in the functionally addressed 
request message received from the client. 

Table 7 shows possible communication schemes with functional addressing. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 27

Table 7 — Functionally addressed request message without sub-function parameter and server 
response behaviour 

Client request message Server capability Server response 
Se

rv
er

 c
as

e 
# 

Addressing 
scheme 

SI su
pp

or
te

d

Pa
ra

m
et

er
 

su
pp

or
te

d

Message NRC 
Comments to server 
response 

a) ALL --- Server sends positive response 

b) At least 
1

PosRsp 
--- Server sends positive response 

c) 
At least 

1 NegRsp NRC=
0xXX 

Server sends negative 
response because error 
occured reading data-
parameters of request message

d)

YES 

NONE --- Server does NOT send a 
response 

e)

functional 

NO --- 
NoRsp 

--- Server does NOT send a 
response 

Description of server response cases on functionally addressed client request messages without sub-function 
(data-parameter follows service identifier): 

a) Server sends a positive response message because the service identifier and all data-parameters are 
supported of the client's request message. 

b) Server sends a positive response message because the service identifier and at least one data-
parameter is supported of the client's request message. 

c) Server sends a negative response message (e.g. IMLOIF: incorrectMessageLengthOrIncorrectFormat) 
because the service identifier is supported and at least one, more than one, or all data-parameters are 
supported of the client's request message, but some other error occurred (e.g. wrong length of the 
request message) during processing of the service. 

d) Server sends no response message because the negative response code ROOR (requestOutOfRange; 
which would occur because the service identifier is supported, but none of the requested data-parameters 
is supported of the client's request) is always suppressed in case of a functionally addressed request. 

e) Server sends no response message because the negative response codes SNS (serviceNotSupported) 
and SNSIAS (serviceNotSupportedInActiveSession), which are identified by the server because the 
service identifier is not supported of the client's request, are always suppressed in case of a functionally 
addressed request. 

7.5.5 Pseudo code example of server response behaviour 

The following is a server pseudo code example to describe the logical steps a server shall perform when 
receiving a request from the client. 

SWITCH (A_PDU.A_Data.A_PCI.SI) 
 { 
 CASE Service_with_sub-function: /* test if service with sub-function is supported */ 
  IF (message_length >= 2) THEN /* check minimum length of message with sub-function */ 
   SWITCH (A_PDU.A_Data.A_Data.Parameter1 & 0x7F)  
       /* get sub-function parameter value without bit 7 */ 
    { 
    CASE sub-function_00: /* test if sub-function parameter value is supported */ 
     IF (message_length == expected_sub-function_message_length) THEN 
      : /* prepare response message */ 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

28 © ISO 2013 – All rights reserved

      responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00  
*/
     ELSE 
      responseCode = IMLOIF;  /* NRC 0x13: incorrectMessageLengthOrInvalidFormat */ 
     ENDIF 
     BREAK;  
    CASE sub-function_01:  /* test if sub-function parameter value is supported */ 
     :  /* prepare response message */ 
     responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00  
*/
     : 
    CASE sub-function_127:  /* test if sub-function parameter value is supported */ 
     : /* prepare response message */ 
     responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 
*/
     BREAK;  
    DEFAULT: 
     responseCode = SFNS;  /* NRC 0x12: sub-functionNotSupported */ 
    } 
  ELSE 
   responseCode = IMLOIF;  /* NRC 0x13: incorrectMessageLengthOrInvalidFormat */ 
  ENDIF 
  suppressPosRspMsgIndicationBit = (A_PDU.A_Data.Parameter1 & 0x80); 
       /* results in either 0x00 or 0x80 */ 
  IF ( (suppressPosRspMsgIndicationBit) && (responseCode == positiveResponse) && 
   (“not yet a NRC 0x78 response sent”)) THEN   /* test if positive response is required and if 
responseCode
          is positive 0x00 */ 
   suppressResponse = TRUE; /* flag to NOT send a positive response message */ 
  ELSE 
   suppressResponse = FALSE;  /* flag to send the response message */ 
  ENDIF 
  BREAK; 
 CASE Service_without_sub-function: /* test if service without sub-function is supported */ 
  suppressResponse = FALSE; /* flag to send the response message */ 
  IF (message_length == expected_message_length) THEN 
   IF (A_PDU.A_Data.Parameter1 == supported) THEN 
       /* test if data-parameter following the SID is 
supported*/
    :   /* read data and prepare response message */ 
    responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 
*/
   ELSE 
    responseCode = ROOR; /* NRC 0x31: requestOutOfRange */ 
   ENDIF 
  ELSE 
   responseCode = IMLOIF;  /* NRC 0x13: incorrectMessageLengthOrInvalidFormat */ 
  ENDIF 
  BREAK; 
 DEFAULT: 
  responseCode = SNS;  /* NRC 0x11: serviceNotSupported */ 
 } 
IF (A_PDU.TA_type == functional && ((responseCode == SNS) ¦¦ (responseCode == SFNS) ¦¦ (responseCode == SNSIAS) ¦¦ 
(responseCode == SFNSIAS) ¦¦ (responseCode == ROOR)) &&
(“not yet a NRC 0x78 response sent”)) THEN 
       /* suppress negative response message */ 
ELSE
 IF (suppressResponse == TRUE) THEN /* suppress positive response message */ 
 ELSE     /* send negative or positive response */ 
 ENDIF 
ENDIF

When functional addressing is used for the request message, and the negative response message with 
NRC=RCRRP (requestCorrectlyReceivedResponsePending) needs to be sent, then the final negative 
response message using NRC=SNS (serviceNotSupported), NRC=SNSIAS (serviceNotSupportedIn-
ActiveSession), NRC=SFNS (sub-functionNotSupported), NRC=SFNSIAS (sub-functionNotSupportedIn-
ActiveSession) or NRC=ROOR (requestOutOfRange) shall also be sent if it is the result of the PDU analysis 
of the received request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 29

7.5.6 Multiple concurrent request messages with physical and functional addressing 

A common server implementation has only one diagnostic protocol instance available in the server. One 
diagnostic protocol instance can only handle one request at a time. The rule is that any received message 
(regardless of addressing mode physical or functional) occupies this resource until the request message is 
processed (with final response sent or application call without response). 

There are only two exceptions which have to be treated separately: 

⎯ The keep-alive logic is used by a client to keep a previously enabled session active in one or multiple 
servers. Keep-Alive-Logic is defined as the functionally addressed valid TesterPresent message with 
SPRMIB=true and has to be processed by bypass logic. It is up to the server to make sure that this 
specific message cannot "block" the server’s application layer and that an immediately following 
addressed message can be processed. 

⎯ If a server supports one or more legislated diagnostic requests and one of these requests is received 
while a non-legislated service (e.g., enhanced diagnostics) is active, then the active service shall be 
aborted, the default session shall be started and the legislated diagnostic service shall be processed. This 
requirement does not apply if the programming session is active. 

See Annex J for further information of how multiple clients can be handled. 

8 Service description conventions 

8.1 Service description 

This subclause defines how each diagnostic service is described in this specification. It defines the general 
service description format of each diagnostic service. 

This subclause gives a brief outline of the functionality of the service. Each diagnostic service specification 
starts with a description of the actions performed by the client and the server(s), which are specific to each 
service. The description of each service includes a table, which lists the parameters of its primitives: 
request/indication, response/confirmation for positive or negative result. All have the same structure: 

For a given request/indication and response/confirmation A_PDU definition the presence of each parameter is 
described by one of the following convention (Cvt) values: 

Table 8 defines the A_PDU parameter conventions. 

Table 8 — A_PDU parameter conventions 

Type Name Description 

M Mandatory The parameter has to be present in the A_PDU. 

C Conditional The parameter can be present in the A_PDU, based on certain criteria (e.g. sub-
function/parameters within the A_PDU). 

S Selection Indicates that the parameter is mandatory (unless otherwise specified) and is a selection 
from a parameter list. 

U User option The parameter may or may not be present, depending on dynamic usage by the user. 

NOTE The "<Service Name> Request SID" marked as 'M' (Mandatory), shall not imply that this service has to be 
supported by the server. The 'M' only indicates the mandatory presence of this parameter in the request A_PDU in case 
the server supports the service. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

30 © ISO 2013 – All rights reserved

8.2 Request message 

8.2.1 Request message definition 

This subclause includes one or multiple tables, which define the A_PDU (Application layer protocol data unit, 
see 7) parameters for the service request/indication. There might be a separate table for each sub-function 
parameter ($Level) in case the request messages of the different sub-function parameters ($Level) differ in 
the structure of the A_Data parameters and cannot be specified clearly in single table. 

Table 9 defines the request A_PDU definition with sub-function 

Table 9 — Request A_PDU definition with sub-function 

A_PDU parameter Parameter Name Cvt Byte Value Mnemonic 

MType Message Type M xx MT 

SA Source Address M xxxx SA 

TA Target Address M xxxx TA 

TAtype Target Address type M xx TAT 

RA Remote Address C xxxx RA 

A_Data.A_PCI.SI <Service Name> Request SID M xx SIDRQ 

A_Data.Parameter 1 sub-function = [ parameter ] S xx LEV_PARAM 

A_Data.Parameter 2 data-parameter#1 U xx DP_…#1 

 :  : : :  : 

A_Data.Parameter k data-parameter#k-1 U xx DP_…#k-1 

Length Length of A_Data M xxxxxxxx LGT 

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing. 

Table 10 defines the request A_PDU definition without sub-function. 

Table 10 — Request A_PDU definition without sub-function 

A_PDU parameter Parameter Name Cvt Byte Value Mnemonic 

MType Message Type M xx MT 

SA Source Address M xxxx SA 

TA Target Address M xxxx TA 

TAtype Target Address type M xx TAT 

RA Remote Address C xxxx RA 

A_Data.A_PCI.SI <Service Name> Request SID M xx SIDRQ 

A_Data.Parameter 1 data-parameter#1 U xx DP_…#1 

 :  : : :  : 

A_Data.Parameter k data-parameter#k U xx DP_…#k 

Length Length of A_Data M xxxxxxxx LGT 

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing. 

In all requests/indications the addressing information MType, TA, SA, TAtype and Length is mandatory. The 
addressing information RA is optionally to be present. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 31

NOTE The addressing information is shown in the table above for definition purpose. Further service 
request/indication definitions only specify the A_Data A_PDU parameter, because the A_Data A_PDU parameter 
represents the message data bytes of the service request/indication. 

8.2.2 Request message sub-function parameter $Level (LEV_) definition 

This subclause defines the sub-function $levels (LEV_) parameter(s) defined for the request/indication of the 
service <Service Name>. 

This subclause does not contain any definition in case the described service does not use a sub-function 
parameter value and does not utilize the suppressPosRspMsgIndicationBit (this implicitly indicates that a 
response is required). 

The sub-function parameter byte is divided into two parts (on bit-level) as defined in Table 11. 

Table 11 — SubFunction parameter structure 

Bit position Description 

7 suppressPosRspMsgIndicationBit 

 This bit indicates if a positive response message shall be suppressed by the server. 
'0' = FALSE, do not suppress a positive response message (a positive response message is required). 
'1' = TRUE, suppress response message (a positive response message shall not be sent; the server 
being addressed shall not send a positive response message). 
Independent of the suppressPosRspMsgIndicationBit, negative response messages are sent by the 
server(s) according to the restrictions specified in 7.5. 
Even if a positive response is not required (i.e., SPRMIB = true), the execution of the service must be 
completely passed to keep the implementation consistent regardless of SPRMIB value. 
suppressPosRspMsgIndicationBit values of both '0' and '1' shall be supported for all sub-function
parameter values (i.e., bits 6-0 of the sub-function structure) supported by the server for any given 
service. 

6-0 sub-function parameter value 

 The bits 0-6 of the sub-function parameter contain the sub-function parameter value of the service 
(0x00 – 0x7F). 

The sub-function parameter value is a 7 bit value (bits 6-0 of the sub-function parameter byte) that can have 
multiple values to further specify the service behaviour. 

Services supporting sub-function parameter values in addition to the suppressPosRspMsgIndicationBit shall 
support the sub-function parameter values as defined in the sub-function parameter value table. 

Each service contains a table that defines values for the sub-function parameter values, taking only into 
account the bits 0-6. 

NOTE If SPRMIB is TRUE for responses with a big amount of data, where paged-buffer-handling needs to be used, 
this can result in a situation where the transmission of the first batch of data could be started still within the response 
timing window, but the termination of the service execution is beyond the limits of the response timing window. If the 
response is suppressed in this case, there is no way to inform the client about the delay, but the server is still busy and not
yet ready to receive another request. For the client it is recommended not to ask for a big amount of data and set SPRMIB 
in the same request (e.g., SID 0x19 SF 0x0A), as this would defeat the purpose of SPRMIB. For the server 
implementation it is recommended to send NRC 0x78 (RCRRP) and subsequently also send the positive response, in 
case paged-buffer-handling is used while SPRMIB is TRUE. 

Table 12 defines the request message sub-function parameter definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

32 © ISO 2013 – All rights reserved

Table 12 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

xx sub-function#1 M/U SUBFUNC1 

 description of sub-function parameter#1   

: : : :

xx sub-function#m M/U SUBFUNCm 

 description of sub-function parameter#m   

The convention (Cvt) column in the Table 12 above shall be interpreted as defined in Table 13. 

Table 13 — SubFunction parameter conventions 

Type Name Description 

M Mandatory The sub-function parameter has to be supported by the server in case the service is 
supported. 

U User option The sub-function parameter may or may not be supported by the server, depending on the 
usage of the service. 

The complete sub-function parameter byte value is calculated based on the value of the 
suppressPosRspMsgIndicationBit and the sub-function parameter value chosen. 

Table 14 defines the calculation of the sub-function byte value. 

Table 14 — Calculation of the sub-function byte value 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

SuppressPosRspMsg 
IndicationBit 

SubFunction parameter value as specified in the sub-function parameter value table of the 
service 

resulting sub-function parameter byte value (bit 7 - 0) 

8.2.3 Request message data-parameter definition 

This subclause defines the data-parameter(s) $DataParam (DP_) for the request/indication of the service 
<Service Name>. This subclause does not contain any definition in case the described service does not use 
any data-parameter. The data-parameter portion can contain multiple bytes. This subclause provides a 
generic description of each data-parameter. Detailed definitions can be found in the annexes of this 
document. The specific annex is dependent upon the service. The annexes also specifiy whether a data-
parameter shall be supported or is user optional to be supported in case the server supports the service. 

Table 15 defines the request message data-parameters. 

Table 15 — Request message data-parameter definition 

Definition

data-parameter#1 

description of data-parameter#1 

  : 

data-parameter#n 

description of data-parameter#n 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 33

8.3 Positive response message 

8.3.1 Positive response message definition 

This subclause defines the A_PDU parameters for the service response / confirmation (see 7.2 for a detailed 
description of the application layer protocol data unit A_PDU). There might be a separate table for each sub-
function parameter $Level when the response messages of the different sub-function parameters $Level differ 
in the structure of the A_Data parameters. 

NOTE The positive response message of a diagnostic service (if required) shall be sent after the execution of the 
diagnostic service. In case a diagnostic service requires a different handling (e.g. ECUReset service) then the appropriate 
description of when to send the positive response message can be found in the service description of the diagnostic 
service. 

Table 16 defines the positive response A_PDU. 

Table 16 — Positive response A_PDU 

A_PDU parameter Parameter Name Cvt Byte Value Mnemonic 

SA Source Address M xxxx SA 

TA Target Address M xxxx TA 

TAtype Target Address type M xx TAT 

RA Remote Address C xxxx RA 

A_Data.A_PCI.SI <Service Name> Response SID 
S xx SIDPR 

A_Data.Parameter 1 data-parameter#1 U xx DP_…#1 

 :  : : :  : 

A_Data.Parameter k data-parameter#k U xx DP_…#k 

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing. 

In all responses/confirmations the addressing information TA, SA, and TAtype is mandatory. The addressing 
information RA is optionally to be present. 

NOTE The addressing information is shown in the table above for definition purpose. Further service 
response/confirmation definitions only specify the A_Data A_PDU parameter, because the A_Data A_PDU parameter 
represents the message data bytes of the service response/confirmation. 

8.3.2 Positive response message data-parameter definition 

This subclause defines the data-parameter(s) for the response / confirmation of the service <Service Name>. 
This subclause does not contain any definition in case the described service does not use any data-
parameter. The data-parameter portion can contain multiple bytes. 

This subclause provides a generic description of each data-parameter. Detailed definitions can be found in the 
annexes of this document. The specific annex is dependent upon the service. The annexes also specifiy 
whether a data-parameter shall be supported or is user optional to be supported in case the server supports 
the service. 

Table 17 defines the response data-parameters. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

34 © ISO 2013 – All rights reserved

Table 17 — Response data-parameter definition 

Definition

data-parameter#1 

description of data-parameter#1. In case the request supports a sub-function parameter byte then this parameter is an 
echo of the 7-bit sub-function parameter value contained within the sub-function parameter byte from the request 
message with bit 7 set to zero. The suppressPosRspMsgIndicationBit from the sub-function parameter byte is not 
echoed. 

:

data-parameter#m 

description of data-parameter#m 

8.4 Supported negative response codes (NRC_) 

This subclause defines the negative response codes that shall be implemented for this service. The 
circumstances under which each response code would occur are documented in a table as given below. The 
definition of the negative response message can be found in 7.4. The server shall use the negative response 
A_PDU for the indication of an identified error condition. 

The negative response codes listed in Annex A.1 shall be used in addition to the negative response codes 
specified in each service description if applicable. Details can be found in Annex A.1. 

Table 18 defines the supported negative response codes. 

Table 18 — Supported negative response codes 

NRC Description Mnemonic 

0xXX NegativeResponseCode#1 NRC_

 1. condition#1 
 : 
m. condition#m 

:  : NRC_ 

0xXX NegativeResponseCode#n NRC_

 1. condition#1 
 : 
k. condition#k 

8.5 Message flow examples 

This subclause contains message flow examples for the service <Service Name>. All examples are shown on 
a message level (without addressing information). 

Table 19 defines the request message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 35

Table 19 — Request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 (A_PCI) <Service Name> Request SID 0xXX SIDRQ 

#2 sub-function/data-parameter#1 0xXX LEV_/DP_ 

:  : 0xXX DP_ 

#n data-parameter#m 0xXX DP_ 

Table 20 defines the positive response message flow example. 

Table 20 — Positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 (A_PCI) <Service Name> Response SID 0xXX SIDPR 

#2 data-parameter#1 0xXX DP_ 

:  : : : 

#n data-parameter#n-1 0xXX DP_ 

There might be multiple examples if applicable to the service <Service Name> (e.g. one for each sub-function 
parameter $Level). 

Table 21 shows a message flow example for a negative response message. 

Table 21 — Negative response message flow example 

Message direction server → client 

Message Type Response 

A_Data Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 (A_PCI.NR_SI) Negative Response SID 0x7F SIDRSIDNRQ 

#2 (A_PCI.SI) <Service Name> Request SID 0xXX SIDRQ 

#3 responseCode 0xXX NRC_ 

9 Diagnostic and Communication Management functional unit 

9.1 Overview 

Table 22 defines the Diagnostic and Communication Management functional unit. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

36 © ISO 2013 – All rights reserved

Table 22 — Diagnostic and Communication Management functional unit 

Service Description 

DiagnosticSessionControl The client requests to control a diagnostic session with a server(s). 

ECUReset The client forces the server(s) to perform a reset. 

SecurityAccess The client requests to unlock a secured server(s). 

CommunicationControl The client controls the setting of communication parameters in the server (e.g.,
communication baudrate). 

TesterPresent The client indicates to the server(s) that it is still present. 

AccessTimingParameter The client uses this service to read/modify the timing parameters for an active 
communication. 

SecuredDataTransmission The client uses this service to perform data transmission with an extended data link 
security. 

ControlDTCSetting The client controls the setting of DTCs in the server. 

ResponseOnEvent The client requests to setup and/or control an event mechanism in the server. 

LinkControl The client requests control of the communication baudrate. 

9.2 DiagnosticSessionControl (0x10) service 

9.2.1 Service description 

The DiagnosticSessionControl service is used to enable different diagnostic sessions in the server(s). 

A diagnostic session enables a specific set of diagnostic services and/or functionality in the server(s). This 
service provides the capability that the server(s) can report data link layer specific parameter values valid for 
the enabled diagnostic session (e.g. timing parameter values). The user of this International Standard shall 
define the exact set of services and/or functionality enabled in each diagnostic session. 

There shall always be exactly one diagnostic session active in a server. A server shall always start the default 
diagnostic session when powered up. If no other diagnostic session is started, then the default diagnostic 
session shall be running as long as the server is powered. 

A server shall be capable of providing diagnostic functionality under normal operating conditions and in other 
operation conditions defined by the vehicle manufacturer (e.g., limp home operation condition). 

If the client has requested a diagnostic session, which is already running, then the server shall send a positive 
response message and behave as shown in Figure 7 that describes the server internal behaviour when 
transitioning between sessions. 

Whenever the client requests a new diagnostic session, the server shall send the DiagnosticSessionControl 
positive response message before the timings of the new session become active in the server. Some 
situations may require that the new session must be entered before the positive response is sent while 
maintaining the old protocol timings for sending the response. If the server is not able to start the requested 
new diagnostic session, then it shall respond with a DiagnosticSessionControl negative response message 
and the current session shall continue (see diagnosticSession parameter definitions for further information on 
how the server and client shall behave). The set of diagnostic services and diagnostic functionality in a non-
default diagnostic session (excluding the programmingSession) is a superset of the functionality provided in 
the defaultSession, which means that the diagnostic functionality of the defaultSession is also available when 
switching to any non-default diagnostic session. A session can enable vehicle manufacturer specific services 
and functions, which are not part of this document. 

To start a new diagnostic session a server may request that certain conditions be fulfilled. All such conditions 
are user defined. Examples of such conditions are: 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 37

⎯ The server may only allow a client with a certain client identifier (client diagnostic address) to start a 
specific new diagnostic session (e.g. a server may require that only a client having the client identifier 
0xF4 may start the extendedDiagnosticSession). 

⎯ Certain safety conditions may need to be satisfied (e.g., vehicle shall not be moving or engine shall not be 
running). 

In some systems it is desirable to change communication-timing parameters when a new diagnostic session is 
started. The DiagnosticSessionControl service entity can use the appropriate service primitives to change the 
timing parameters as specified for the underlying layers to change communication timing in the local node and 
potentially in the nodes the client wants to communicate with. 

Figure 7 provides an overview about the diagnostic session transition and what the server shall do when it 
transitions to another session. 

default
session

any
other

session

2

3

4

1

Key  
1 default session: When the server is in the defaultSession and the client requests to start the defaultSession then the 

server shall re-initialize the defaultSession completely. The server shall reset all activated/initiated/changed 
settings/controls during the activated session. This does not include long term changes programmed into non-volatile 
memory. 

2 other session: When the server transitions from the defaultSession to any other session than the defaultSession then 
the server shall only stop the events (similar to stopResponseOnEvent) that have been configured in the server via 
the ResponseOnEvent (0x86) service during the defaultSession. 

3 same or other session: When the server transitions from any diagnostic session other than the defaultSession to 
another session other than the defaultSession (including the currently active diagnostic session) then the server shall 
(re-) initialize the diagnostic session, which means that: 

i) Each event that has been configured in the server via the ResponseOnEvent (0x86) service shall be stopped. 
ii) Security shall be relocked. Note that the locking of security access shall reset any active diagnostic functionality that 

was dependent on security access to be unlocked (e.g., active inputOutputControl of a DID).  
iii) All other active diagnostic functionality that is supported in the new session and is not dependent upon security 

access shall be maintained. For example, any configured periodic scheduler shall remain active when transitioning 
from one non-defaultSession to another or the same non-DefaultSession and the states of the CommunicationControl 
and ControlDTCSetting services shall not be affected, which means that normal communication shall remain disabled 
when it is disabled at the point in time the session is switched. 

4 default session: When the server transitions from any diagnostic session other than the default session to the 
defaultSession then the server shall stop each event that has been configured in the server via the 
ResponseOnEvent (0x86) service and security shall be enabled. Any other active diagnostic functionality that is not 
supported in the defaultSession shall be terminated. For example, any configured periodic scheduler or output control 
shall be disabled and the states of the CommunicationControl and ControlDTCSetting services shall be reset, which 
means that normal communication shall be re-enabled when it was disabled at the point in time the session is 
switched to the defaultSession. The server shall reset all activated/initiated/changed settings/controls during the 
activated session. This does not include long term changes programmed into non-volatile memory. 

Figure 7 — Server diagnostic session state diagram 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

38 © ISO 2013 – All rights reserved

Table 23 defines the services, which are allowed during the defaultSession and the non-defaultSession (timed 
services). Any non-defaultSession is tied to a diagnostic session timer that has to be kept active by the client. 

Table 23 — Services allowed during default and non-default diagnostic session 

Service defaultSession non-defaultSession 

DiagnosticSessionControl – 0x10 x x 

ECUReset – 0x11 x x

SecurityAccess – 0x27 not applicable x 

CommunicationControl – 0x28 not applicable x 

TesterPresent – 0x3E x x 

AccessTimingParameter – 0x83 not applicable x 

SecuredDataTransmission – 0x84 not applicable x 

ControlDTCSetting – 0x85 not applicable x 

ResponseOnEvent – 0x86 xa x

LinkControl – 0x87 not applicable x 

ReadDataByIdentifier – 0x22 xb x

ReadMemoryByAddress – 0x23 xc x

ReadScalingDataByIdentifier – 0x24 xb x

ReadDataByPeriodicIdentifier – 0x2A not applicable x 

DynamicallyDefineDataIdentifier – 0x2C xd x

WriteDataByIdentifier – 0x2E xb x

WriteMemoryByAddress – 0x3D xc x

ClearDiagnosticInformation – 0x14 x x 

ReadDTCInformation – 0x19 x x 

InputOutputControlByIdentifier – 0x2F not applicable x 

RoutineControl – 0x31 xe x

RequestDownload – 0x34 not applicable x 

RequestUpload – 0x35 not applicable x 

TransferData – 0x36 not applicable x 

RequestTransferExit – 0x37 not applicable X 

RequestFileTransfer – 0x38 not applicable X 

a It is implementation specific whether the ResponseOnEvent service is also allowed during the defaultSession.
b Secured dataIdentifiers require a SecurityAccess service and therefore a non-default diagnostic session.
c Secured memory areas require a SecurityAccess service and therefore a non-default diagnostic session.
d A dataIdentifier can be defined dynamically in the default and non-default diagnostic session.
e Secured routines require a SecurityAccess service and therefore a non-default diagnostic session. A routine that requires to be
stopped actively by the client also requires a non-default session.

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 39

9.2.2 Request message 

9.2.2.1 Request message definition 

Table 24 defines the request message. 

Table 24 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 DiagnosticSessionControl Request SID M 0x10 DSC 

#2 sub-function = [ diagnosticSessionType ] M 0x00 – 0xFF LEV_DS_ 

9.2.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter diagnosticSessionType is used by the DiagnosticSessionControl service to select 
the specific behaviour of the server. Explanations and usage of the possible diagnostic sessions are detailed 
in Table 25. 

The following sub-function values are specified (suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 25 — Request message sub-function parameter definition 

Bit 6-0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 defaultSession M DS 

 This diagnostic session enables the default diagnostic session in the server(s) 
and does not support any diagnostic application timeout handling provisions 
(e.g. no TesterPresent service is necessary to keep the session active). 
If any other session than the defaultSession has been active in the server and 
the defaultSession is once again started, then the following implementation 
rules shall be followed (see also the server diagnostic session state diagram 
given above): 
The server shall stop the current diagnostic session when it has sent the 
DiagnosticSessionControl positive response message and shall start the 
newly requested diagnostic session afterwards. 
If the server has sent a DiagnosticSessionControl positive response message 
it shall have re-locked the server if the client unlocked it during the diagnostic 
session. 
If the server sends a negative response message with the 
DiagnosticSessionControl request service identifier the active session shall be 
continued. 
NOTE In case the used data link requires an initialization step then the 
initialized server(s) shall start the default diagnostic session by default. No 
DiagnosticSessionControl with diagnosticSession set to defaultSession shall 
be required after the initialization step.

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

40 © ISO 2013 – All rights reserved

Table 25 — (continued)

Bit 6-0 Description Cvt Mnemonic 

0x02 ProgrammingSession U PRGS 

 This diagnosticSession enables all diagnostic services required to support the 
memory programming of a server. 
In case the server runs the programmingSession in the boot software, the 
programmingSession shall only be left via an ECUReset (0x11) service 
initiated by the client, a DiagnosticSessionControl (0x10) service with 
sessionType equal to defaultSession, or a session layer timeout in the server. 
In case the server runs in the boot software when it receives the 
DiagnosticSessionControl (0x10) service with sessionType equal to 
defaultSession or a session layer timeout occurs and a valid application 
software is present for both cases then the server shall restart the application 
software. This document does not specify the various implementation methods 
of how to achieve the restart of the valid application software (e.g. a valid 
application software can be determined directly in the boot software, during 
the ECU startup phase when performing an ECU reset, etc.). 

0x03 extendedDiagnosticSession U EXTDS 

 This diagnosticSession can be used to enable all diagnostic services required 
to support the adjustment of functions like "Idle Speed, CO Value, etc." in the 
server's memory. It can also be used to enable diagnostic services, which are 
not specifically tied to the adjustment of functions (e.g., refer to timed services 
in Table 23). 

0x04 safetySystemDiagnosticSession U SSDS 

 This diagnosticSession enables all diagnostic services required to support 
safety system related functions (e.g., airbag deployment). 

0x05 – 0x3F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x40 – 0x5F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

0x60 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

9.2.2.3 Request message data-parameter definition 

This service does not support data-parameters in the request message. 

9.2.3 Positive response message 

9.2.3.1 Positive response message definition 

Table 26 defines the positive response message definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 41

Table 26 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 DiagnosticSessionControl Response SID M 0x50 DSCPR 

#2 sub-function = [ diagnosticSessionType ] M 0x00 – 0xFF LEV_DS_ 

#3
:

#6

sessionParameterRecord[]#1 = [  
       data#1 
        : 
       data#4 ] 

M
:
M

0x00 – 0xFF 
:

0x00 – 0xFF 

SPREC_
DATA_1 
:
DATA_m 

9.2.3.2 Positive response message data-parameter definition 

Table 27 defines the response message data-parameter definition. 

Table 27 — Response message data-parameter definition 

Definition

diagnosticSessionType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

sessionParameterRecord 

This parameter record contains session specific parameter values reported by the server. The content of the 
sessionParameterRecord is defined in Table 28 and Table 29. 

Table 28 and Table 29 define the structure of the response message data-parameter 
sessionParameterRecord as applicable for the implementation of this service on supported data links. 

Table 28 — sessionParameterRecord definition 

Byte pos. 
in record Description Cvt Byte Value Mnemonic 

#1
#2
#3
#4

sessionParameterRecord[] = [  
      P2Server_max (high byte) 
      P2Server_max (low byte) 
      P2*Server_max (high byte) 
      P2*Server_max (low byte) ] 

M
M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

SPREC_
P2SMH 
P2SML 
P2ESMH 
P2ESML 

Table 29 — sessionParameterRecord content definition 

Parameter Description # of bytes Resolution minimum 
value 

maximum 
value 

P2Server_max
Default P2Server_max timing supported by the 
server for the activated diagnostic session. 2 1 ms 0 ms 65 535 ms 

P2*Server_max

Enhanced (NRC 0x78) P2Server_max supported 
by the server for the activated diagnostic 
session. 

2 10 ms 0 ms 655 350 ms

Refer to ISO 14229-2 for further details on P2Server and P2*Server.

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

42 © ISO 2013 – All rights reserved

9.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 30. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 30 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported  SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the request DiagnosticSessionControl are not 
met.

9.2.5 Message flow example(s) DiagnosticSessionControl 

9.2.5.1 Example #1 - Start programmingSession 

This message flow shows how to enable the diagnostic session "programmingSession" in a server. The client 
requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to "FALSE" ('0'). For the given example it is assumed that the P2Server_max is equal to 
50 ms and the P2*Server_max is equal to 5 000 ms. 

Table 31 defines the DiagnosticSessionControl request message flow example #1. 

Table 31 — DiagnosticSessionControl request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DiagnosticSessionControl Request SID 0x10 DSC 

#2 diagnosticSessionType = programmingSession, 
    suppressPosRspMsgIndicationBit = FALSE 

0x02 DS_ECUPRGS 

Table 32 defines the DiagnosticSessionControl positive response message flow example #1. 

Table 32 — DiagnosticSessionControl positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DiagnosticSessionControl Response SID 0x50 DSCPR 

#2 diagnosticSessionType = programmingSession 0x02 DS_ECUPRGS 

#3
#4
#5
#6

sessionParameterRecord [ P2Server_max (high byte) ] 
sessionParameterRecord [ P2Server_max (low byte) ] 
sessionParameterRecord [ P2*Server_max (high byte) ] 
sessionParameterRecord [ P2*Server_max (low byte) ] 

0x00 
0x32 
0x01 
0xF4 

SPREC_1
SPREC_2
SPREC_3
SPREC_4

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 43

9.3 ECUReset (0x11) service 

9.3.1 Service description 

The ECUReset service is used by the client to request a server reset. 

This service requests the server to effectively perform a server reset based on the content of the resetType 
parameter value embedded in the ECUReset request message. The ECUReset positive response message (if 
required) shall be sent before the reset is executed in the server(s). After a successful server reset the server 
shall activate the defaultSession. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

This part of ISO 14229 does not define the behaviour of the ECU from the time following the positive response 
message to the ECU reset request until the reset has successfully completed. It is recommended that during 
this time the ECU does not accept any request messages and send any response messages. 

9.3.2 Request message 

9.3.2.1 Request message definition 

Table 33 defines the request message definition. 

Table 33 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ECUReset Request SID M 0x11 ER 

#2 sub-function = [ resetType ] M 0x00 – 0xFF LEV_RT_ 

9.3.2.2 Request message sub-function Parameter $Level (LEV_) definition 

The sub-function parameter resetType is used by the ECUReset request message to describe how the server 
has to perform the reset (suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 34 defines the request message sub-function parameter definition. 

Table 34 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 hardReset U HR 

 This value identifies a "hard reset" condition which simulates the power-on / 
start-up sequence typically performed after a server has been previously 
disconnected from its power supply (i.e. battery). The performed action is 
implementation specific and not defined by the standard. It might result in the 
re-initialization of both volatile memory and non-volatile memory locations to 
predetermined values. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

44 © ISO 2013 – All rights reserved

Table 34 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x02 keyOffOnReset U KOFFONR 

 This value identifies a condition similar to the driver turning the ignition key off 
and back on. This reset condition should simulate a key-off-on sequence (i.e. 
interrupting the switched power supply). The performed action is 
implementation specific and not defined by the standard. Typically the values 
of non-volatile memory locations are preserved; volatile memory will be 
initialized. 

0x03 softReset U SR 

 This value identifies a "soft reset" condition, which causes the server to 
immediately restart the application program if applicable. The performed 
action is implementation specific and not defined by the standard. A typical 
action is to restart the application without reinitializing of previously learned 
configuration data, adaptive factors and other long-term adjustments. 

0x04 enableRapidPowerShutDown U ERPSD 

 This subfunction applies to ECUs which are not ignition powered but battery 
powered only. Therefore a shutdown forces the sleep mode rather than a 
power off. Sleep means power off but still ready for wake-up (battery 
powered). The intention of the subfunction is to reduce the stand-by time of 
an ECU after ignition is turned into the off position. 
This value requests the server to enable and perform a "rapid power shut 
down" function. The server shall execute the function immediately once the 
"key/ignition” is switched off. While the server executes the power down 
function, it shall transition either directly or after a defined stand-by-time to 
sleep mode. If the client requires a response message and the server is 
already prepared to execute the "rapid power shut down" function, the server 
shall send the positive response message prior to the start of the "rapid 
power shut down" function. The next occurrence of a "key on" or "ignition on" 
signal terminates the "rapid power shut down" function. 
NOTE This sub-function is only applicable to a server supporting a 
stand-by-mode! 

0x05 disableRapidPowerShutDown U DRPSD 

 This value requests the server to disable the previously enabled "rapid power 
shut down" function. 

0x06 – 0x3F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x40 – 0x5F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

0x60 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

9.3.2.3 Request message data-parameter definition 

This service does not support data-parameters in the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 45

9.3.3 Positive response message 

9.3.3.1 Positive response message definition 

Table 35 defines the positive response message. 

Table 35 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ECUReset Response SID M 0x51 ERPR 

#2 sub-function = [ resetType ] M 0x00 – 0x7F LEV_RT_ 

#3 powerDownTime C 0x00 – 0xFF PDT 

C: This parameter is present if the sub-function parameter is set to the enableRapidPowerShutDown value (0x04); 

9.3.3.2 Positive response message data-parameter definition 

Table 36 defines the data-parameters of the response message. 

Table 36 — Response message data-parameter definition 

Definition

resetType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

powerDownTime 

This parameter indicates to the client the minimum time of the stand-by-sequence the server will remain in the power 
down sequence. 
The resolution of this parameter is one (1) second per count. 
The follwing values are valid: 
⎯ 0x00 – 0xFE: 0 – 254 seconds powerDownTime, 
⎯ 0xFF: indicates a failure or time not available. 

9.3.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 37. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

46 © ISO 2013 – All rights reserved

Table 37 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the ECUReset request is not met. 

0x33 securityAccessDenied SAD

 This NRC shall be sent if the requested reset is secured and the server is not in an unlocked 
state. 

9.3.5 Message flow example ECUReset 

This subclause specifies the conditions for the example to be fulfilled to successfully perform an ECUReset 
service in the server. 

Condition of server: ignition = on, system shall not be in an operational mode (e.g. if the system is an engine 
management, engine shall be off). 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to 'FALSE'. 

The server shall send an ECUReset positive response message before the server performs the resetType. 

Table 38 defines the ECUReset request message flow example #1. 

Table 38 — ECUReset request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ECUReset Request SID 0x11 ER 

#2 ResetType =  hardReset,  
   suppressPosRspMsgIndicationBit = FALSE 

0x01 RT_HR 

Table 39 defines the ECUReset positive response message flow example #1. 

Table 39 — ECUReset positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ECUReset Response SID 0x51 ERPR 

#2 resetType = hardReset 0x01 RT_HR 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 47

9.4 SecurityAccess (0x27) service 

9.4.1 Service description 

The purpose of this service is to provide a means to access data and/or diagnostic services, which have 
restricted access for security, emissions, or safety reasons. Diagnostic services for downloading/uploading 
routines or data into a server and reading specific memory locations from a server are situations where 
security access may be required. Improper routines or data downloaded into a server could potentially 
damage the electronics or other vehicle components or risk the vehicle’s compliance to emission, safety, or 
security standards. The security concept uses a seed and key relationship. 

A typical example of the use of this service is as follows: 

⎯ client requests the “Seed”, 

⎯ server sends the “Seed”, 

⎯ client sends the “Key” (appropriate for the Seed received), 

⎯ server responds that the “Key” was valid and that it will unlock itself. 

The 'requestSeed' subfunction parameter value shall always be an odd number and the corresponding 
‘sendKey' subfunction parameter value for the same security level shall equal the 'requestSeed' sub-function 
parameter value plus one. 

Only one security level shall be active at any instant of time. For example, if the security level associated with 
requestSeed 0x03 is active and a tester request is successful in unlocking the security level associated with 
requestSeed 0x01, then only the secured functionality supported by the security level associated with 
requestSeed 0x01 shall be unlocked at that time. Any additional secured functionality that was previously 
unlocked by the security level associated with requestSeed 0x03 shall no longer be active. The security levels 
numbering is arbitrary and does not imply any relationship between the levels. 

The client shall request the server to "unlock" by sending the service SecurityAccess ‘requestSeed’ message. 
The server shall respond by sending a "seed" using the service SecurityAccess ‘requestSeed’ positive 
response message. The client shall then respond by returning a "key" number back to the server using the 
appropriate service SecurityAccess ‘sendKey’ request message. The server shall compare this "key" to one 
internally stored/calculated. If the two numbers match, then the server shall enable ("unlock") the client's 
access to specific services/data and indicate that with the service SecurityAccess ‘sendKey’ positive response 
message. If the two numbers do not match, this shall be considered a false access attempt. An invalid key 
requires the client to start over from the beginning with a SecurityAccess 'requestSeed' message (refer to 
Annex I for additional details regarding security access handling details). 

If a server supports security, but the requested security level is already unlocked when a SecurityAccess 
‘requestSeed’ message is received, that server shall respond with a SecurityAccess ‘requestSeed’ positive 
response message service with a seed value equal to zero (0). The server shall never send an all zero seed 
for a given security level that is currently locked. The client shall use this method to determine if a server is 
locked for a particular security level by checking for a non-zero seed. 

A vehicle manufacturer specific time delay may be required before the server can positively respond to a 
service SecurityAccess ‘requestSeed’ message from the client after server power up/reset and after a certain 
number of false access attempts (see further description below). If this delay timer is supported then the delay 
shall be activated after a vehicle manufacturer specified number of false access attempts has been reached or 
when the server is powered up/reset and a previously performed SecurityAccess service has failed due to a 
single false access attempt. In case the server supports this delay timer then after a successful 
SecurityAccess service 'sendKey' execution the server internal indication information for a delay timer 
invocation on a power up/reset shall be cleared by the server. In case the server supports this delay timer and 
cannot determine if a previously performed SecurityAccess service prior to the power up/reset has failed then 
the delay timer shall always be active after power up/reset. The delay is only required if the server is locked 
when powered up/reset. The vehicle manufacturer shall select if the delay timer is supported. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

48 © ISO 2013 – All rights reserved

Attempts to access security shall not prevent normal vehicle communications or other diagnostic 
communication. 

Servers, which provide security shall support reject messages if a secure service is requested while the server 
is locked. 

Some diagnostic functions/services requested during a specific diagnostic session may require a successful 
security access sequence. In such case the following sequence of services shall be required: 

⎯ DiagnosticSessionControl service, 

⎯ SecurityAccess service, 

⎯ Secured diagnostic service. 

There are different accessModes allowed for an enabled diagnosticSession (session started) in the server. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

9.4.2 Request message 

9.4.2.1 Request message definition 

Table 40 defines the request message definition - sub-function = requestSeed. 

Table 40 — Request message definition - sub-function = requestSeed 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 SecurityAcces Request SID M 0x27 SA 

#2 sub-function = [ 
   securityAccessType = requestSeed ] 

M
0x01, 0x03, 

0x05, 
0x07 – 0x7D 

LEV_
SAT_RSD 

#3
:

#n

securityAccessDataRecord[] = [ 
      parameter#1 
       : 
      parameter#m ] 

U
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

SECACCDR_ 
PARA1
:
PARAm 

Table 41 defines the request message definition - sub-function = sendKey. 

Table 41 — Request message definition - sub-function = sendKey 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 SecurityAcces Request SID M 0x27 SA 

#2 sub-function = [ securityAccessType = sendKey ] M 0x02, 0x04, 
0x06, 

0x08 – 0x7E 

LEV_SAT_SK 

#3
:

#n

securityKey[] = [ 
   key#1 (high byte) 
    : 
   key#m (low byte) ] 

M
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

SECKEY_ 
KEY1HB 
:
KEYmLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 49

9.4.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter securityAccessType indicates to the server the step in progress for this service, 
the level of security the client wants to access and the format of seed and key. If a server supports different 
levels of security each level shall be identified by the requestSeed value, which has a fixed relationship to the 
sendKey value: 

⎯ “requestSeed = 0x01” identifies a fixed relationship between “requestSeed = 0x01” and “sendKey = 0x02” 

⎯ “requestSeed = 0x03” identifies a fixed relationship between “requestSeed = 0x03” and “sendKey = 0x04” 

Values are defined in Table 42 for requestSeed and sendKey (suppressPosRspMsgIndicationBit (bit 7) not 
shown). 

Table 42 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 requestSeed U RSD 

 RequestSeed with the level of security defined by the vehicle manufacturer.   

0x02 sendKey U SK 

 SendKey with the level of security defined by the vehicle manufacturer.   

0x03, 0x05, 
0x07 – 0x41 

requestSeed U RSD 

 RequestSeed with different levels of security defined by the vehicle 
manufacturer. 

0x04, 0x06, 
0x08 – 0x42 

sendKey U SK 

 SendKey with different levels of security defined by the vehicle 
manufacturer. 

0x43 – 0x5E ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x5F ISO26021-2 values U RSD 

 RequestSeed with different levels of security defined for end of life activation 
of on-board pyrotechnic devices as defined in ISO 26021-2. 

0x60 ISO26021-2 sendKey values U SK 

 SendKey with different levels of security defined for end of life activation of 
on-board pyrotechnic devices as defined in ISO 26021-2. 

0x61 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

50 © ISO 2013 – All rights reserved

9.4.2.3 Request message data-parameter definition 

Table 43 defines the data-parameters of the request message. 

Table 43 — Request message data-parameter definition 

Definition

securityKey (high and low bytes) 

The “Key” parameter in the request message is the value generated by the security algorithm corresponding to a specific 
“Seed” value. 

securityAccessDataRecord 

This parameter record is user optional to transmit data to a server when requesting the seed information. It can e.g. 
contain an identification of the client that is verified in the server. 

9.4.3 Positive response message 

9.4.3.1 Positive response message definition 

Table 44 defines the positive response message. 

Table 44 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 SecurityAccess Response SID M 67 SAPR 

#2 sub-function = [ securityAccessType ]  M 00-7F LEV_SAT_SK 

#3
:

#n

securitySeed[] = [ 
    seed#1 (high byte) 
     : 
    seed#m (low byte) ] 

C
:
C

0x00 – 0xFF 
:

0x00 – 0xFF 

SECSEED_
SEED1HB
:
SEEDmLB 

C:  The presence of this parameter depends on the securityAccessType parameter. It is mandatory to be present if the 
securityAccessType parameter indicates that the client wants to retrieve the seed from the server. 

9.4.3.2 Positive response message data-parameter definition 

Table 45 defines the data-parameters of the response message. 

Table 45 — Response message data-parameter definition 

Definition

securityAccessType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

securitySeed (high and low bytes) 

The seed parameter is a data value sent by the server and is used by the client when calculating the key needed to 
access security. The securitySeed data bytes are only present in the response message if the request message was 
sent with the sub-function set to a value which requests the seed of the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 51

9.4.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 46. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 46 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the request SecurityAccess are not met.  

0x24 requestSequenceError RSE

 Send if the ‘sendKey’ sub-function is received without first receiving a ‘requestSeed’ request 
message. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if the user optional securityAccessDataRecord contains invalid data.  

0x35 invalidKey IK

 Send if an expected 'sendKey' sub-function value is received and the value of the key does 
not match the server's internally stored/calculated key. 

0x36 exceededNumberOfAttempts ENOA

 Send if the delay timer is active due to exceeding the maximum number of allowed false 
access attempts. 

0x37 requiredTimeDelayNotExpired RTDNE 

 Send if the delay timer is active and a request is transmitted. 

9.4.5 Message flow example(s) SecurityAccess 

9.4.5.1 Assumptions 

For the below given message flow examples the following conditions have to be fulfilled to successfully unlock 
the server if it is in a “locked” state: 

⎯ sub-function to request the seed:  0x01 (requestSeed) 

⎯ sub-function to send the key:  0x02 (sendKey) 

⎯ seed of the server (2 bytes):  0x3657 

⎯ key of the server (2 bytes):  0xC9A9 (e.g. 2’s complement of the seed value) 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

52 © ISO 2013 – All rights reserved

9.4.5.2 Example #1 - server is in a “locked” state 

9.4.5.2.1 Step #1: Request the Seed 

Table 47 defines the SecurityAccess request message flow example #1 – step #1. 

Table 47 — SecurityAccess request message flow example #1 – step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Request SID 0x27 SA 

#2 SecurityAccessType = requestSeed,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 SAT_RSD 

Table 48 defines the SecurityAccess positive response message flow example #1 – step #1. 

Table 48 — SecurityAccess positive response message flow example #1 – step #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Response SID 0x67 SAPR 

#2 securityAccessType = requestSeed 0x01 SAT_RSD 

#3 securitySeed [ byte#1 ] = seed#1 (high byte) 0x36 SECHB 

#4 securitySeed [ byte#2 ] = seed#2 (low byte) 0x57 SECLB 

9.4.5.2.2 Step #2: Send the Key 

Table 49 defines the SecurityAccess request message flow example #1 – step #2. 

Table 49 — SecurityAccess request message flow example #1 – step #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Request SID 0x27 SA 

#2 securityAccessType =  
    sendKey,  
    suppressPosRspMsgIndicationBit = FALSE 

0x02 SAT_SK 

#3 securityKey [ byte#1 ] = key#1 (high byte) 0xC9 SECKEY_HB 

#4 securityKey [ byte#2 ] = key#2 (low byte) 0xA9 SECKEY_LB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 53

Table 50 defines the SecurityAccess positive response message flow example #1 – step #2. 

Table 50 — SecurityAccess positive response message flow example #1 – step #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Response SID 0x67 SAPR 

#2 securityAccessType = sendKey 0x02 SAT_SK 

9.4.5.3 Example #2 - server is in an “unlocked” state 

9.4.5.3.1 Step #1: Request the Seed 

Table 51 defines the SecurityAccess request message flow example #2 – step #1. 

Table 51 — SecurityAccess request message flow example #2 – step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Request SID 0x27 SA 

#2 securityAccessType =  
   requestSeed,  
   suppressPosRspMsgIndicationBit = FALSE 

0x01 SAT_RSD 

Table 52 defines the SecurityAccess positive response message flow example #2 – step #2. 

Table 52 — SecurityAccess positive response message flow example #2 – step #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 SecurityAccess Response SID 0x67 SAPR 

#2 securityAccessType = requestSeed 0x01 SAT_RSD 

#3 securitySeed [ byte#1 ] = seed#1 (high byte) 0x00 SECHB 

#4 securitySeed [ byte#2 ] = seed#2 (low byte) 0x00 SECLB 

9.5 CommunicationControl (0x28) service 

9.5.1 Service description 

The purpose of this service is to switch on/off the transmission and/or the reception of certain messages of (a) 
server(s) (e.g. application communication messages). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

54 © ISO 2013 – All rights reserved

9.5.2 Request message 

9.5.2.1 Request message definition 

Table 53 defines the request message. 

Table 53 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 CommunicationControl Request SID M 0x28 CC 

#2 sub-function = [ controlType ] M 0x00 – 0xFF LEV_CTRLTP 

#3 communicationType M 0x00 – 0xFF CTP 

#4 nodeIdentificationNumber (high byte) Ca 0x00 – 0xFF NIN 

#5 nodeIdentificationNumber (low byte) Ca 0x00 – 0xFF NIN 

a The presence of the C parameter requires the controlType either being 0x04 or 0x05. 

9.5.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter controlType contains information on how the server shall modify the 
communication type referenced in the communicationType parameter (suppressPosRspMsgIndicationBit 
(bit 7) not shown in Table 54). 

Table 54 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 enableRxAndTx U ERXTX 

 This value indicates that the reception and transmission of messages shall be 
enabled for the specified communicationType. 

0x01 enableRxAndDisableTx U ERXDTX 

 This value indicates that the reception of messages shall be enabled and the 
transmission shall be disabled for the specified communicationType. 

0x02 disableRxAndEnableTx U DRXETX 

 This value indicates that the reception of messages shall be disabled and the 
transmission shall be enabled for the specified communicationType. 

0x03 disableRxAndTx U DRXTX 

 This value indicates that the reception and transmission of messages shall be 
disabled for the specified communicationType. 

0x04 enableRxAndDisableTxWithEnhancedAddressInformation U ERXDTXWEAI 

 This value indicates that the addressed bus master shall switch the related 
sub-bus segment to the diagnostic-only scheduling mode. 

0x05 enableRxAndTxWithEnhancedAddressInformation U ERXTXWEAI 

 This value indicates that the addressed bus master shall switch the related 
sub-bus segment to the application scheduling mode. 

0x06 – 0x3F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x40 – 0x5F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 55

Table 54 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x60 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

9.5.2.3 Request message data-parameter definition 

Table 55 defines the data-parameters of the request message. 

Table 55 — Request message data-parameter definition 

Definition

communicationType 

This parameter is used to reference the kind of communication to be controlled. The communicationType parameter is a 
bit-code value, which allows controlling multiple communication types at the same time. (see Annex B.1 for the coding of 
the communicationType data-parameter) 

nodeIdentificationNumber 

This 2 byte parameter is used to identify a node on a sub-network somewhere in the vehicle, which can not be 
addressed using the addressing methods of the lower OSI layers 1 to 6. This parameter is only present, if the sub-
function parameter controlType is set to 0x04 or 0x05 (see Annex B.4 for the coding of the nodeIdentificationNumber 
data-parameter) 

9.5.3 Positive response message 

9.5.3.1 Positive response message definition 

Table 56 defines the positive response message. 

Table 56 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 CommunicationControl Response SID M 0x68 CCPR 

#2 sub-function = [ controlType ] M 0x00 – 0x7F LEV_CTRLTP 

9.5.3.2 Positive response message data-parameter definition 

Table 57 defines the data-parameters of the positive response message. 

Table 57 — Response message data-parameter definition 

Definition

controlType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

56 © ISO 2013 – All rights reserved

9.5.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 58. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 58 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 Used when the server is in a critical normal mode activity and therefore cannot 
disable/enable the requested communication type. 

0x31 requestOutOfRange ROOR

 The server shall use this response code, if it detects an error in the communicationType or 
nodeIdentificationNumber parameter. 

9.5.5 Message flow example CommunicationControl (disable transmission of network 
management messages) 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Table 59 defines the CommunicationControl request message flow example. 

Table 59 — CommunicationControl request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Request SID 0x28 CC 

#2 controlType = enableRxAndDisableTx,  
   suppressPosRspMsgIndicationBit = FALSE 

0x01 ERXTX 

#3 communicationType = network management 0x02 NWMCP 

Table 60 defines the CommunicationControl positive response message flow example. 

Table 60 — CommunicationControl positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Response SID 0x68 CCPR 

#2 ControlType 0x01 CTRLTP 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 57

9.5.6 Message flow example CommunicationControl (switch a remote network into the diagnostic-
only scheduling mode where the node with address 0x000A is connected to) 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Table 61 defines the CommunicationControl request message flow example. 

Table 61 — CommunicationControl request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Request SID 0x28 CC 

#2 controlType = 
 enableRxAndDisableTxWithEnhancedAddressInformation,  
 suppressPosRspMsgIndicationBit = FALSE 

0x04 ERXTX 

#3 communicationType = normal messages 0x01 NMCP 

#4 nodeIdentificationNumber (high byte) 0x00 NIN 

#5 nodeIdentificationNumber (low byte)  0x0A NIN 

Table 62 defines the CommunicationControl positive response message flow example. 

Table 62 — CommunicationControl positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Response SID 0x68 CCPR 

#2 controlType = 
 enableRxAndDisableTxWithEnhancedAddressInformation,  
 suppressPosRspMsgIndicationBit = FALSE 

0x04 ERXTX 

9.5.7 Message flow example CommunicationControl (switch to application scheduling mode with 
enhanced address information, the node 0x000A, which is connected to a sub-network, is 
addressed) 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Table 63 defines the CommunicationControl request message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

58 © ISO 2013 – All rights reserved

Table 63 — CommunicationControl request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Request SID 0x28 CC 

#2 controlType = enableRxAndTxWithEnhancedAddressInformation, 
   suppressPosRspMsgIndicationBit = FALSE 

0x05 ERXTX 

#3 communicationType = normal messages 0x01 NMCP 

#4 nodeIdentificationNumber (high byte) 0x00 NIN 

#5 nodeIdentificationNumber (low byte)  0x0A NIN 

Table 64 defines the CommunicationControl positive response message flow example. 

Table 64 — CommunicationControl positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 CommunicationControl Response SID 0x68 CCPR 

#2 controlType = enableRxAndTxWithEnhancedAddressInformation, 
   suppressPosRspMsgIndicationBit = FALSE  

0x05 ERXTX 

9.6 TesterPresent (0x3E) service 

9.6.1 Service description 

This service is used to indicate to a server (or servers) that a client is still connected to the vehicle and that 
certain diagnostic services and/or communication that have been previously activated are to remain active. 

This service is used to keep one or multiple servers in a diagnostic session other than the defaultSession. 
This can either be done by transmitting the TesterPresent request message periodically or in case of the 
absence of other diagnostic services to prevent the server(s) from automatically returning to the 
defaultSession. The detailed session requirements that apply to the use of this service when keeping a single 
server or multiple servers in a diagnostic session other than the defaultSession can be found in the 
implementation specifications of ISO 14229. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

9.6.2 Request message 

9.6.2.1 Request message definition 

Table 65 defines the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 59

Table 65 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 TesterPresent Request SID M 0x3E TP 

#2 sub-function = [ zeroSubFunction ] M 0x00 / 0x80 LEV_ZSUBF 

9.6.2.2 Request message sub-function parameter $Level (LEV_) definition 

Table 66 specifies the sub-function parameter values defined for this service 
(suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 66 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 zeroSubFunction M ZSUBF 

 This parameter value is used to indicate that no sub-function value beside the 
suppressPosRspMsgIndicationBit is supported by this service. 

0x01 – 0x7F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document.   

9.6.2.3 Request message data-parameter definition 

This service does not support data-parameters in the request message. 

9.6.3 Positive response message 

9.6.3.1 Positive response message definition 

Table 67 defines the positive response message. 

Table 67 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 TesterPresent Response SID M 0x7E TPPR 

#2 sub-function = [ zeroSubFunction ] M 0x00 LEV_ZSUBF 

9.6.3.2 Positive response message data-parameter definition 

Table 68 defines the data-parameter of the positive response message. 

Table 68 — Response message data-parameter definition 

Definition

zeroSubFunction 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

60 © ISO 2013 – All rights reserved

9.6.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 69. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 69 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

9.6.5 Message flow example(s) TesterPresent 

9.6.5.1 Example #1 - TesterPresent (suppressPosRspMsgIndicationBit = FALSE) 

Table 70 defines the TesterPresent request message flow example #1. 

Table 70 — TesterPresent request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TesterPresent Request SID 0x3E TP 

#2 zeroSubFunction, suppressPosRspMsgIndicationBit = FALSE 0x00 ZSUBF 

Table 71 defines the TesterPresent positive response message flow example #1. 

Table 71 — TesterPresent positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TesterPresent Response SID 0x7E TPPR 

#2 zeroSubFunction, suppressPosRspMsgIndicationBit = FALSE 0x00 ZSUBF 

9.6.5.2 Example #2 - TesterPresent (suppressPosRspMsgIndicationBit = TRUE) 

Table 72 defines the TesterPresent request message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 61

Table 72 — TesterPresent request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TesterPresent Request SID 0x3E TP 

#2 zeroSubFunction, suppressPosRspMsgIndicationBit = TRUE 0x80 ZSUBF 

There is no response sent by the server(s). 

9.7 AccessTimingParameter (0x83) service 

9.7.1 Service description 

The AccessTimingParameter service is used to read and change the default timing parameters of a 
communication link for the duration this communication link is active. 

The use of this service is complex and depends on the server’s capability and the data link topology. Only one 
extended timing parameter set will be supported per diagnostic session. It is recommended to use this service 
only with physical addressing, because of the different sets of extended timing parameters supported by the 
servers. 

It is recommended to use the following sequence of services: 

⎯ DiagnosticSessionControl (diagnosticSessionType) service; 

⎯ AccessTimingParameter (readExtendedTimingParameterSet) service; 

⎯ AccessTimingParameter (setTimingParametersToGivenValues) service; 

For the case a response is required to be sent by the server the client and server shall activate the new timing 
parameter settings after the server has sent the AccessTimingParameter positive response message. In case 
no response message is allowed the client and the server shall activate the new timing parameter after the 
transmission/reception of the request message. 

The server and the client shall reset their timing parameters to the default values after a successful switching 
to another or the same diagnostic session (e.g. via DiagnosticSessionControl, ECUReset service, or a session 
timing timeout). 

The AccessTimingParameter service provides four different modes for the access to the server timing 
parameters: 

⎯ readExtendedTimingParameterSet; 

⎯ setTimingParametersToDefaultValues; 

⎯ readCurrentlyActiveTimingParameters; 

⎯ setTimingParametersToGivenValues; 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

62 © ISO 2013 – All rights reserved

9.7.2 Request message 

9.7.2.1 Request message definition 

Table 73 defines the request message. 

Table 73 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 AccessTimingParameter Request SID M 0x83 ATP 

#2 sub-function = [ timingParameterAccessType ] M 0x00 – 0xFF LEV_TPAT_ 

#3
:

#n

TimingParameterRequestRecord [  
       byte#1 
        : 
       byte#m ] 

C
:
C

0x00 – 0xFF 
:

0x00 – 0xFF 

TPREQR_ 
B1
:
Bm 

C: The TimingParameterRequestRecord is only present if timingParameterAccessType =  
setTimingParametersToGivenValues. The structure and content of the TimingParameterRequestRecord is data link layer 
dependend and therefore defined in the implementation specification(s) of ISO 14229. 

9.7.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter timingParameterAccessType is used by the AccessTimingParameter service to 
select the specific behaviour of the server. Explanations and usage of the possible timingParameterIdentifiers 
are detailed in Table 74. The following sub-function values are specified (suppressPosRspMsgIndicationBit 
(bit 7) not shown): 

Table 74 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 readExtendedTimingParameterSet U RETPS 

 Upon receiving an AccessTimingParameter indication primitive with 
timingParameterAccessType = readExtendedTimingParameterSet, the 
server shall read the extended timing parameter set, i.e. the values that the 
server is capable of supporting. 
If the read access to the timing parameter set is successful, the server shall 
send an AccessTimingParameter response primitive with the positive 
response parameters. 
If the read access to the timing parameters set is not successful, the server 
shall send a negative response message with the appropriate negative 
response code. 
This sub-function is used to provide an extra set of timing parameters for the 
currently active diagnostic session. 
With the timingParameterAccessType =  
setTimingParametersToGivenValues only this set (read by 
timingParameterAccessType = readExtendedTimingParameterSet) of timing 
parameters can be set. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 63

Table 74 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x02 setTimingParametersToDefaultValues U STPTDV 

 Upon receiving an AccessTimingParameter indication primitive with 
timingParameterAccessType = setTimingParametersToDefaultValues, the 
server shall change all timing parameters to the default values and send an 
AccessTimingParameter response primitive with the positive response 
parameters before the default timing parameters become active (if 
suppressPosRspMsgIndicationBit is set to 'FALSE', otherwise the timing 
parameters shall become active after the successful evaluation of the 
request message). 
If the timing parameters cannot be changed to default values for any reason, 
the server shall maintain the currently active timing parameters and send a 
negative response message with the appropriate negative response code. 
The definition of the default timing values depends on the used data link and 
is specified in the implementation specification(s) of ISO 14229. 

0x03 readCurrentlyActiveTimingParameters U RCATP 

 Upon receiving an AccessTimingParameter indication primitive with 
timingParameterAccessType = readCurrentlyActiveTimingParameters, the 
server shall read the currently used timing parameters. 
If the read access to the timing parameters is successful, the server shall 
send an AccessTimingParameter response primitive with the positive 
response parameters. 
If the read access to the currently used timing parameters is impossible for 
any reason, the server shall send a negative response message with the 
appropriate negative response code. 

0x04 setTimingParametersToGivenValues U STPTGV 

 Upon receiving an AccessTimingParameter indication primitive with 
timingParameterAccessType = setTimingParametersToGivenValues, the 
server shall check if the timing parameters can be changed under the 
present conditions. 
If the conditions are valid, the server shall perform all actions necessary to 
change the timing parameters and send an AccessTimingParameter 
response primitive with the positive response parameters before the new 
timing parameter values become active (suppressPosRspMsgIndicationBit is 
set to 'FALSE', otherwise the timing parameters shall become active after 
the successful evaluation of the request message). 
If the timing parameters cannot be changed by any reason, the server shall 
maintain the currently active timing parameters and send a negative 
response message with the appropriate negative response code. 
It is not possible to set the timing parameters of the server to any set of 
values between the minimum and maximum values read via 
timingParameterAccessType = readExtendedTimingParameterSet. The 
timing parameters of the server can only be set to exactly the timing 
parameters read via timingParameterAccessType = 
readExtendedTimingParameterSet. A request to do so shall be rejected by 
the server. 

0x05 – 0xFF ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

64 © ISO 2013 – All rights reserved

9.7.2.3 Request message data-parameter definition 

Table 75 defines the data-parameter of the request message. 

Table 75 — Request message data-parameter definition 

Definition

TimingParameterRequestRecord 

This parameter record contains the timing parameter values to be set in the server via timingParameterAccessType = 
setTimingParametersToGivenValues. The content and structure of this parameter record is data link layer specific and 
can be found in the implementation specification(s) of ISO 14229 e.g. ISO 14229-3. 

9.7.3 Positive response message 

9.7.3.1 Positive response message definition 

Table 76 defines the positive response message. 

Table 76 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 AccessTimingParameter Response SID M 0xC3 ATPPR 

#2 timingParameterAccessType M 0x00 – 0x7F TPAT_ 

#3
:

#n

TimingParameterResponseRecord [  
       byte#1 
        : 
       byte#m ] 

C
:
C

0x00 – 0xFF 
:

0x00 – 0xFF 

TPRSPR_ 
B1
:
Bm 

C: The TimingParameterResponseRecord is only present if timingParameterAccessType = 
readExtendedTimingParameterSet or readCurrentlyActiveTimingParameters. The structure and content of the 
TimingParameterResponseRecord is data link layer dependend and therefore defined in the implementation 
specification(s) of ISO 14229. 

9.7.3.2 Positive response message data-parameter definition 

Table 77 defines the data-parameters of the positive response message. 

Table 77 — Response message data-parameter definition 

Definition

timingParameterAccessType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

TimingParameterResponseRecord 

This parameter record contains the timing parameter values read from the server via timingParameterAccessType = 
readExtendedTimingParameterSet or readCurrentlyActiveTimingParameters. The content and structure of this parameter 
record is data link layer specific and can be found in the implementation specification(s) of ISO 14229. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 65

9.7.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 78. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 78 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 The length of the message or the format is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the request AccessTimingParameter are not 
met.

0x31 requestOutOfRange ROOR

 This NRC shall be sent if the TimingParameterRequestRecord contains invalid timing 
parameter values. 

9.7.5 Message flow example(s) AccessTimingParameter 

9.7.5.1 Example #1 – set timing parameters to default values 

This message flow shows how to set the default timing parameters in a server. The client requests to have a 
response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to 
"FALSE" ('0'). 

Table 79 defines the AccessTimingParameter request message flow example #1. 

Table 79 — AccessTimingParameter request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 AccessTimingParameter Request SID 0x83 ATP 

#2 timingParameterAccessType =  
    setTimingParametersToDefaultValues;  
    suppressPosRspMsgIndicationBit = FALSE 

0x02 TPAT_STPTDV 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

66 © ISO 2013 – All rights reserved

Table 80 defines the AccessTimingParameter positive response message flow example #1. 

Table 80 — AccessTimingParameter positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 AccessTimingParameter Response SID 0xC3 ATPPR 

#2 timingParameterAccessType =   
     setTimingParametersToDefaultValues 

0x02 TPAT_STPTDV 

9.8 SecuredDataTransmission (0x84) service 

9.8.1 Service description 

9.8.1.1 Purpose 

The purpose of this service is to transmit data that is protected against attacks from third parties - which could 
endanger data security. 

The SecuredDataTransmission service is applicable if a client intends to use diagnostic services defined in 
this document in a secured mode. It may also be used to transmit external data, which conform to some other 
application protocol, in a secured mode between a client and a server. A secured mode in this context means 
that the data transmitted is protected by cryptographic methods. 

9.8.1.2 Security sub-layer 

Figure 8 illustrates the security sub-layer. The security sub-layer has to be added in the server and client 
application for the purpose of performing diagnostic services in a secured mode. 

Application

Security
sub-layer

Application Layer

Network Layer
Data Link Layer
Physical Layer

A_Req SS_ReqA_Conf SS_Conf

Uses SecuredDataTransmission service

A_Req A_Conf

pass-thru

ISO 14229-1

ISO 14229-1

Application

Security
sub-layer

Application Layer

Network Layer
Data Link Layer
Physical Layer

A_Ind SS_IndA_Resp SS_Resp

Uses SecuredDataTransmission service

A_Ind A_Resp

pass-thru

ISO14229-1

ISO 14229-1

Figure 8 — Security sub-layer implementation 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 67

There are two methods to perform diagnostic service data transfer between the client and server(s): 

⎯ Unsecured data transmission mode 

The application uses the diagnostic Services and Application Layer Service Primitives defined in this 
document to exchange data between a client and a server. The Security Sub-Layer performs a "Pass-Thru" of 
data between "Application" and "Application Layer" in the client and the server. 

⎯ Secured data transmission mode 

The application uses the diagnostic services or external services and the Security sub-layer Service Primitives 
to exchange data between a client and a server. The security sub-layer uses the SecuredDataTransmission 
service for the transmission/reception of the secured data. Secured links must be point-to-point 
communication. Therefore only physical addressing is allowed, which means that only one server is involved. 

The interface of the security sub-layer to the application is according to the ISO/OSI model conventions and 
therefore provides the following four security sub-layer (SS_) service primitives 

⎯ SS_SecuredMode.req:  Security sub-layer Request 

⎯ SS_SecuredMode.ind:  Security sub-layer Indication 

⎯ SS_SecuredMode.resp:  Security sub-layer Response 

⎯ SS_SecuredMode.conf:  Security sub-layer Confirmation 

This part of ISO 14229 defines both, confirmed and unconfirmed services. In a secured mode only confirmed 
services are allowed (suppressPosRspMsgIndicationBit = FALSE). Based on this requirement the following 
services are not allowed to be executed in a secured mode: 

⎯ ResponseOnEvent (0x86); 

⎯ ReadDataByPeriodicIdentifier (0x2A); 

⎯ TesterPresent (0x3E); 

The confirmed services (suppressPosRspMsgIndicationBit = FALSE) use the four application layer service 
primitives request, indication, response and confirmation. Those are mapped onto the four security sub-layer 
service primitives and vice versa when executing a confirmed diagnostic service in a secured mode. 

The task of the Security sub-layer when performing a diagnostic service in a secured mode is to encrypt data 
provided by the "Application", to decrypt data provided by the "Application Layer" and to add, check, and 
remove security specific data elements. The Security sub-layer uses the SecuredDataTransmission (0x84) 
service of the application layer to transmit and receive the entire diagnostic message or message according to 
an external protocol (request and response), which shall be exchanged in a secured mode. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

68 © ISO 2013 – All rights reserved

The security sub-layer provides the service "SecuredServiceExecution" to the application for the purpose of a 
secured execution of diagnostic services. 

The security sub-layer request and indication primitive of the "SecuredServiceExecution" service are specified 
according to the following general format: 

SS_SecuredMode.request ( 
SA,
TA,
TA_type
[,RA]
[,parameter 1, ...]
)

SS_SecuredMode.indication ( 
SA,
TA,
TA_type
[,RA]
[,parameter 1, ...]
)

The security sub-layer layer response and confirm primitive of the SecuredServiceExecution service are 
specified according to the following general format: 

SS_SecuredMode.response ( 
SA,
TA,
TA_type
[,RA,]
Result
[,parameter 1, ...]
)

SS_SecuredMode.confirm ( 
SA,
TA,
TA_type,
[RA,]
Result
[,parameter 1, ...]
)

The addressing information shown in the security sub-layer service primitives is mapped directly onto the 
addressing information of the application layer and vice versa. 

9.8.1.3 Security sub-layer access 

The concept of accessing the security sub-layer for a secured service execution is similar to the application 
layer interface as described in this document. The security sub-layer makes use of the application layer 
service primitives. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 69

The following describes the execution of confirmed diagnostic service in a secured mode: 

⎯ The client application uses the security sub-layer SecuredServiceExecution service request to perform a 
diagnostic service in a secured mode. The security sub-layer performs the required action to establish a 
link with the server(s), adds the specific security related parameters, encrypts the service data of the 
diagnostic service to be executed in a secured mode if needed and uses the application layer 
SecuredDataTransmission service request to transmit the secured data to the server. 

⎯ The server receives an application layer SecuredDataTransmission service indication, which is handled 
by the security sub-layer of the server. The security sub-layer of the server checks the security specific 
parameters decrypts encrypted data and presents the data of the service to be executed in a secured 
mode to the application via the security sub-layer SecuredServiceExecution service indiciation. The 
application executes the service and uses the security sub-layer SecuredServiceExecution service 
response to respond to the service in a secured mode. The security sub-layer of the server adds the 
specific security related parameters, encrypts the response message data if needed and uses the 
application layer SecuredDataTransmission service response to transmit the response data to the client. 

⎯ The client receives an application layer SecuredDataTransmission service confirmation primitive, which is 
handled by the security sub-layer of the client. The security sub-layer of the client checks the security 
specific parameters, decrypts encrypted response data and presents the data via the security sub-layer 
SecuredServiceExecution confirmation to the application. 

Figure 9 graphically shows the interaction of the security sub-layer, the application layer and the application 
when executing a confirmed diagnostic service in a secured mode. 

Application

Security
sub-layer

Application Layer

Network Layer
Data Link Layer
Physical Layer

SS_SecuredMode.req SS_SecuredMode.conf

A_SecuredDataTransmission.req

ISO 14229-1

A_SecuredDataTransmission.conf

Application

Security
sub-layer

Application Layer

Network Layer
Data Link Layer
Physical Layer

SS_SecuredMode.ind SS_SecuredMode.resp

A_SecuredDataTransmission.ind

ISO 14229-1

A_SecuredDataTransmission.resp

Uses SecuredDataTransmission service Uses SecuredDataTransmission service

Figure 9 — Security sub-layer, application layer and application interaction 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

70 © ISO 2013 – All rights reserved

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

9.8.2 Request message 

9.8.2.1 Request message definition 

The security sub-layer generates the application layer SecuredDataTransmission request message 
parameters. 

Table 81 defines the request message. 

Table 81 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 SecuredDataTransmission Request SID M 0x84 SDT 

#2
:

#n

securityDataRequestRecord[] = [ 
      securityDataParameter#1 
        : 
      securityDataParameter#m ] 

M
:
M

0x00 – 0xFF 
:

0x00 – 0xFF 

SECDRQR_ 
SDP_
:
SDP_

9.8.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

9.8.2.3 Request message data-parameter definition 

Table 82 defines the data-parameters of the request message. 

Table 82 — Request message data-parameter definition 

Definition

securityDataRequestRecord 

This parameter contains the data as processed by the Security Sub-Layer. 

9.8.3 Positive response message 

9.8.3.1 Positive response message definition 

Table 83 defines the positive response message. 

Table 83 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

1 SecuredDataTransmission Response SID M 0xC4 SDTPR 

2
:
n

securityDataResponseRecord[] = [ 
      securityDataParameter#1 
       : 
      securityDataParameter#m ] 

M
:
M

0x00 – 0xFF 
:

0x00 – 0xFF 

SECDRQR_ 
SDP_
:
SDP_

9.8.3.2 Positive response message data-parameter definition 

Table 84 defines the data-parameter of the positive response message: 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 71

Table 84 — Response message data-parameter definition 

Definition

securityDataResponseRecord 

This parameter contains the data as processed by the Security Sub-Layer. 

9.8.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 85. The response codes are always sent without 
encryption, even if according to the configurationProfile in the request A_PDU the response A_PDU has to be 
encrypted. The listed negative responses shall be used if the error scenario applies to the server. 

Table 85 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 The server shall use this response code, if the length of the request A_PDU is not 
correct. 

0x38 – 0x4F reservedByExtendedDataLinkSecurityDocument RBEDLSD

 This range of values is reserved by extended data link security. 

NOTE The response codes listed above apply to the SecuredDataTransmission (0x84) service. In case the 
diagnostic service performed in a secured mode requires a negative response then this negative response is send to the 
client in a secured mode via a SecuredDataTransmission positive response message. 

9.9 ControlDTCSetting (0x85) service 

9.9.1 Service description 

The ControlDTCSetting service shall be used by a client to stop or resume the updating of DTC status bits in 
the server(s). DTC status bits are reported in the statusOfDTC parameter of the positive response to certain 
subfunctions of ReadDTCInformation (see D.2 for definition of the bits). 

The ControlDTCSetting request message can be used to stop the updating of DTC status bits in an individual 
server or a group of servers. If the server being addressed is not able to stop the updating of DTC status bits, 
it shall respond with a ControlDTCSetting negative response message indicating the reason for the reject. 

When the server accepts a ControlDTCSetting request with a subfunction value of DTCSettingType = off, the 
server shall suspend any updates to the DTC status bits (i.e., freeze current values) until the functionality is 
enabled again. The update of the DTC status bit information shall continue once a ControlDTCSetting request 
is performed with sub-function set to "on" or a transition to a session where ControlDTCSetting is not 
supported occurs (e.g., session layer timeout to defaultSession, ECU reset, etc.). The server shall still send a 
positive response if the service is supported in the active session with a requested sub-function set to either 
"on" or "off" even if the requested DTC setting state is already active. 

If a ClearDiagnosticInformation (0x14) service is sent by the client the ControlDTCSetting shall not prohibit 
resetting the server's DTC status bits. The behaviour of the individual DTC status bits shall be implemented 
according to the definitions in D.2, Figure D.1 - Figure D.8. 

DTC status bits document certain information relative to a numerical identifier (DTC) that represents a specific 
fault condition(s). ControlDTCSetting only switches on/off the DTC status bit updating. ControlDTCSetting 
service is not intended to cause fault monitoring to be switched off nor is it intended to cause failsoft strategies 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

72 © ISO 2013 – All rights reserved

to be disabled. It is not recommended that failsoft or failsafe strategies be directly linked or coupled with DTC 
status bits (e.g., an accepted ClearDiagnosticInformation request does not directly remove any active failsoft). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

9.9.2 Request message 

9.9.2.1 Request message definition 

Table 86 defines the request message. 

Table 86 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ControlDTCSetting Request SID M 0x85 CDTCS 

#2 sub-function = [ DTCSettingType ] M  
0x00 – 0xFF 

LEV_DTCSTP_ 

#3
:

#n

DTCSettingControlOptionRecord [] = [  
        parameter#1 
         : 
        parameter#m 

U
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCSCOR_ 
PARA1
 : 
PARAm 

9.9.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter DTCSettingType is used by the ControlDTCSetting request message to indicate 
to the server(s) whether diagnostic trouble code status bit updating shall stop or start again 
(suppressPosRspMsgIndicationBit (bit 7) not shown in Table 87). 

Table 87 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 on M ON 

 The server(s) shall resume the updating of diagnostic trouble code status bits 
according to normal operating conditions 

0x02 off M OFF 

 The server(s) shall stop the updating of diagnostic trouble code status bits.   

0x03 – 0x3F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x40 – 0x5F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

0x60 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 73

9.9.2.3 Request message data-parameter definition 

Table 88 defines the data-parameter of the request message. 

Table 88 — Request message data-parameter definition 

Definition

DTCSettingControlOptionRecord 

This parameter record is user optional to transmit data to a server when controlling the updating of DTC status bits (e.g., 
it can contain a list of DTCs to be turned on or off). 

9.9.3 Positive response message 

9.9.3.1 Positive response message definition 

Table 89 defines the positive response message. 

Table 89 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ControlDTCSetting Response SID M 0xC5 CDTCSPR 

#2 DTCSettingType M 00-7F DTCSTP 

9.9.3.2 Positive response message data-parameter definition 

Table 90 defines the data-parameter of the positive response message. 

Table 90 — Response message data-parameter definition 

Definition

DTCSettingType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

9.9.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 91. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 91 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 Used when the server is in a critical normal mode activity and therefore cannot perform the 
requested DTC control functionality. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

74 © ISO 2013 – All rights reserved

Table 91 — (continued)

NRC Description Mnemonic 

0x31 requestOutOfRange ROOR

 The server shall use this response code, if it detects an error in the 
DTCSettingControlOptionRecord. 

9.9.5 Message flow example(s) ControlDTCSetting 

9.9.5.1 Example #1 - ControlDTCSetting (DTCSettingType = off) 

Note that this example does not use the capability of the service to transfer additional data to the server. The 
client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to "FALSE" ('0'). 

Table 92 defines the ControlDTCSetting request message flow example #1. 

Table 92 — ControlDTCSetting request message flow example #1  

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ControlDTCSetting Request SID 0x85 RDTCS 

#2 DTCSettingType = off, suppressPosRspMsgIndicationBit = FALSE 0x02 DTCSTP_OFF 

Table 93 defines the ControlDTCSetting positive response message flow example #1. 

Table 93 — ControlDTCSetting positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ControlDTCSetting Response SID 0xC5 RDTCSPR 

#2 DTCSettingType = off 0x02 DTCSTP_OFF 

9.9.5.2 Example #2 - ControlDTCSetting ( DTCSettingType = on) 

This example does not use the capability of the service to transfer additional data to the server. The client 
requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to "FALSE" ('0'). 

Table 94 defines the ControlDTCSetting request message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 75

Table 94 — ControlDTCSetting request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ControlDTCSetting Request SID 0x85 ENC 

#2 DTCSettingType = on, suppressPosRspMsgIndicationBit = FALSE 0x01 DTCSTP_ON 

Table 95 defines the ControlDTCSetting positive response message flow example #2. 

Table 95 — ControlDTCSetting positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ControlDTCSetting Response SID 0xC5 RDTCSPR 

#2 DTCSettingType = on 0x01 DTCSTP_ON 

9.10 ResponseOnEvent (0x86) service 

9.10.1 Service description 

The ResponseOnEvent service requests a server to start or stop transmission of responses on a specified 
event. 

This service provides the possibility to automatically execute a diagnostic service in case a specified event 
occurs in the server. The client specifies the event (including optional event parameters) and the service 
(including service parameters) to be executed in case the event occurs. See Figure 10 for a brief overview 
about the client and server behaviour.  

responseOnEvent
Request (optional)

responseOnEvent
initial response 

(optional)

Set up
event logic

responseOnEvent
request “start“

activate
event logic

responseOnEvent
positive response

event

Execute service
specified in 

responseOnEvent
request message

response

event

Execute service
specified in 

responseOnEvent
request message

response responseOnEvent
“final“ response

Event Window 
Timer timeout

Start Event
Window Timer

time t

identical format
client (e.g. tester)

server (e.g. ECU)

Figure 10 — ResponseOnEvent service - client and server behaviour 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

76 © ISO 2013 – All rights reserved

NOTE The figure above assumes, that the event window timer is configured to timeout prior to the power down of the 
server, therefore the final ResponseOnEvent positive response message is shown at the end of the event timing window. 

The server shall evaluate the sub-function and data content of the ResponseOnEvent request message at the 
time of the reception. This includes the following sub-function and parameters: 

⎯ eventType, 

⎯ eventWindowTime, 

⎯ eventTypeRecord (eventTypeParameter #1-#m). 

In case of invalid data in the ResponseOnEvent request message a negative response with the negative 
response code 0x31 shall be sent. The serviceToRespondToRecord is not part of this evaluation. The 
serviceToRespondToRecord parameter will be evaluated when the specified event occurs, which triggers the 
execution of the service contained in the serviceToRespondToRecord. At the time the event occurs the 
serviceToRespondToRecord (diagnostic service request message) shall be executed. In case conditions are 
not correct a negative response message with the appropriate negative response code shall be sent. Multiple 
events shall be signalled in the order of their occurrence. 

The following implementation rules shall apply: 

a) The ResponseOnEvent service can be set up and activated in any session, including the defaultSession. 
TesterPresent service is not necessarily required to keep the ResponseOnEvent service active. 

b) If the specified event occurs when a diagnostic service is in progress, which means that either a request 
message is in progress to be received, or a request is executed, or a response message is in progress 
(this includes the negative response message handling with response code 0x78) to be transmitted (if 
suppressPosRspMsgIndicationBit = FALSE) then the execution of the request message contained in the 
serviceToRespondToRecord shall be postponed until the completion of the diagnostic service in 
progress.  

NOTE In some circumstances due to the postponing of the ServiceToRespondTo the data contained in the 
ServiceToRespondTo Records may not correspond with the data values which caused the event. 

c) In case multiple events occur while another event is in progress, the handling of the multiple events (e.g., 
ignoring all but the first/last event or stockpiling of events) shall be vehicleManufacturerSpecific. 

d) The server shall execute the service contained in the serviceToRespondToRecord when the event logic is 
satisfied and the event is generated within the event time window. 

e) Once the ResponseOnEvent service is initiated by the ResponseOnEvent request “start”, the server shall 
respond to the client which has set up the event logic and has started the ROE events till event window 
time expires. 

f) A DiagnosticSessionControl request moving to any non-default-Session shall stop the ResponseOnEvent 
service regardless whether a different non-default session than the current session or the same non-
default session is activated. On returning to DefaultSession all ResponseOnEvent services which had 
previously been active in DefaultSession shall be re-activated. 

g) Multiple ResponseOnEvent services may run concurrently with different requirements (different 
EventTypes, serviceToRespondToRecords, ...) to start and stop diagnostic services. Start and stop 
subfunctions shall always control all initialized ResponseOnEvent services. 

h) If a ResponseOnEvent service has been set up then the following shall apply: 

1) If Bit 6 of the eventType subfunction parameter is set to 0 (do not store event), then the event shall 
terminate when the server powers down The server shall not continue a ResponseOnEvent 
diagnostic service after a reset or power on (i.e. the ResponseOnEvent service is terminated). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 77

2) If Bit 6 of the eventType subfunction parameter is set to 1 (store event), it shall resume sending 
serviceToRespondTo-responses according to the ResponseOnEvent-set up after a power cycle of 
the server. StoreEvent is therefore only allowed in combination with infinite eventWindowTime. 

i) The “suppressPosResponseMessageIndicattionBit” = “yes” should only be used by the client for the 
eventType = stopResponseOnEvent, startResponseOnEvent or clearResponseOnEvent. The server shall 
always return a response to the event-triggered response when the specified event is detected. 

j) The server shall return a ResponseOnEvent ”final” response (see fig. 15) to indicate the 
ResponseOnEvent (0x86) service only if a finite window time was set and the finite window time has 
elapsed. No final response shall be sent if the ROE has been stopped by any means (e.g. 
“stopResponseOnEvent” subfunction or change of session) before the finite window time has elapsed. 

k) In order to avoid interference with normal diagnostic operation, it is recommended to implement 
ResponseOnEvent service only to be applied to transient events and conditions. The server shall return a 
response once per event occurrence. For a condition that is continuously sustained over a period of time, 
the response service shall be executed only one time at the initial occurrence. In case the eventType is 
defined so that serviceToRespondTo-responses could occur at a high frequency, then appropriate 
measures have to be taken in order to prevent back to back serviceToRespondTo-responses. A minimum 
separation time between serviceToRespondTo-responses could be part of the eventTypeRecord (vehicle-
manufacturer-specific). 

It is recommended to use only the services listed in Table 96 for the service to be performed in case the 
specified event occurs. (serviceToRespondToRecord request service identifier). 

Table 96 — Recommended services to be used with the ResponseOnEvent service 

Recommended services (ServiceToRespondTo) Request SID Response SID 

ReadDataByIdentifier 0x22 0x62 

ReadDTCInformation 0x19 0x59 

RoutineControl 0x31 0x71 

InputOutputControlByIdentifier 0x2F 0x6F 

For performance reasons (e.g. avoid missed execution of serviceToRespondToRecord request service 
identifier) it is recommended to respect the following suggestions: 

⎯ DID may contain measurable data (e.g. avoid definition of event logic reading constant “calibration” 
labels) 

⎯ serviceToRespondToRecord positive response may be limited in size up to a vehicle manufacturer 
specific value 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

78 © ISO 2013 – All rights reserved

9.10.2 Request message 

9.10.2.1 Request message definition 

Table 97 defines the request message. 

Table 97 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ResponseOnEvent Request SID M 0x86 ROE 

#2 sub-function = [ eventType ] M 0x00 – 0xFF LEV_ETP 

#3 eventWindowTime M 0x00 – 0xFF EWT 

#4
:

#(m-1)+4 

eventTypeRecord[] = [ 
     eventTypeParameter 1 
      : 
     eventTypeParameter m ] 

C1 
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

ETR_ 
ETP1 
:
ETPm 

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord[] = [ 
       serviceId 
       serviceParameter 1 
        : 
       serviceParameter r ] 

C2 
C3 
:

C3 

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

STRTR_ 
SI
SP1
:
SPr

C1: present if the eventType requires additional parameters to be specified for the event to respond to. 
C2: mandatory to be present if the sub-function parameter is not equal to reportActivatedEvents, 
stopResponseOnEvent, startResponseOnEvent, ClearResponseOnEvent 
C3: present if the service request of the service to respond to requires additional service parameters 

9.10.2.2 Request message sub-function Parameter $Level (LEV_) Definition 

9.10.2.2.1 ResponseOnEvent request message sub-function Parameter definition 

The sub-function parameter eventType is used by the ResponseOnEvent request message to specify the 
event to be configured in the server and to control the ResponseOnEvent set up. Each sub-function parameter 
value given in Table 98 also specifies the length of the applicable eventTypeRecord 
(suppressPosRspMsgIndicationBit (bit 7) not shown in table below). 

Bit 6 of the eventType sub-function parameter is used to indicate whether the event shall be stored in non-
volatile memory in the server and re-activated upon the next power-up of the server or if it shall terminate 
once the server powers down (storageState parameter). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 79

Table 98 — eventType sub-function bit 6 definition - storageState 

Bit 6 value Description Cvt Mnemonic 

0x00 doNotStoreEvent M DNSE 

 This value indicates that the event shall terminate when the server powers down and 
the server shall not continue a ResponseOnEvent diagnostic service after a reset or 
power on (i.e. the ResponseOnEvent service is terminated). 

0x01 storeEvent U SE 

This value indicates  
1) On ROE start or stop request in the default session, that the event shall 

resume or stop sending serviceToRespondTo-responses according to the 
ResponseOnEvent-set up after a reset or power on (i.e. the 
ResponseOnEvent service is resumed). 

2) On any ROE setup event logic request, that requested event logic shall be 
stored persistently till the event logic is explicitly cleared (via 
clearResponseOnEvent) or the event logic is overwritten by a new ROE 
setup event logic request of the same category. 

Table 99 defines the request message sub-function parameter. 

Table 99 — Request message sub-function parameter definition 

Bits 5 - 0 
Value Description Cvt 

Type of 
ROE sub-
function

Mnemonic 

0x00 stopResponseOnEvent U control STPROE 

 This value is used to stop the server sending responses on event. The 
event logic that has been set up is not cleared but can be restarted with 
the startResponseOnEvent sub-function parameter. 
Length of eventTypeRecord: 0 byte 

   

0x01 onDTCStatusChange U setup ONDTCS 

 This value identifies the event as a new DTC detected matching the 
DTCStatusMask specified for this event. 
Length of eventTypeRecord: 1 byte 
UImplementation hint:U A server resident DTC count algorithm shall count 
the number of DTCs satisfying the client defined DTCStatusMask at a 
certain periodic rate (e.g. approximately 1 second). If the count is different 
from that which was calculated on the previous execution, the client shall 
generate the event that causes the execution of the serviceToRespondTo. 
The latest count shall then be stored as a reference for the next 
calculation. 
This eventType requires the specification of the DTCStatusMask in the 
request message (eventTypeParameter#1). 

   

0x02 onTimerInterrupt U setup OTI 

 This value identifies the event as a timer interrupt, but the timer and its 
values are not part of the ResponseOnEvent service.  
This eventType requires the specification of more details in the request 
message (eventTypeRecord). 
Length of eventTypeRecord: 1 byte 

   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

80 © ISO 2013 – All rights reserved

Table 99 — (continued)

Bits 5 - 0 
Value Description Cvt

Type of 
ROE sub-
function

Mnemonic 

0x03 onChangeOfDataIdentifier U setup OCODID 

 This value identifies the event as a new internal data record identified by 
dataIdentifier. The data values are vehicle manufacturer specific. 
This eventType requires the specification of more details in the request 
message (eventTypeRecord). 
Length of eventTypeRecord: 2 bytes 

   

0x04 reportActivatedEvents U control RAE 

 This value is used to indicate that in the positive response all events are 
reported that have been activated in the server with the ResponseOnEvent 
service (and are currently active). 
Length of eventTypeRecord: 0 bytes 

   

0x05 startResponseOnEvent M control STRTROE 

 This value is used to indicate to the server to activate the event logic 
(including event window timer) that has been set up and start sending 
responses on event. 
Length of eventTypeRecord: 0 byte. 

   

0x06 clearResponseOnEvent U control CLRROE 

 This value is used to clear the event logic that has been set up in the 
server (This also stops the server sending responses on event.) 
Length of eventTypeRecord: 0 byte. 

   

0x07 onComparisonOfValues U setup OCOV 

 A defined alteration of a data value out of a specific record identified by a 
dataIdentifier which identifies a data value event. With this sub-function the 
user shall have the possibility to define an event at the occurrence of a 
specific result gathered from a defined measurement value comparison. A 
specific measurement value included in a data record assigned to a 
defined dataIdentifier is compared with a given comparison value. The 
specified operator defines the kind of comparison. The event occurs if the 
comparison result is positive. 
Length of eventTypeRecord: 10 bytes 

   

0x08 – 0x1F ISOSAEReserved M - ISOSAERES
RVD

 This range of values is reserved by this document for future definition.   

0x20 – 0x2F VehicleManufacturerSpecific U setup VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

0x30 – 0x3E SystemSupplierSpecific U setup SSS 

 This range of values is reserved for system supplier specific use.   

0x3F ISOSAEReserved M - ISOSAERES
RVD

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 81

9.10.2.2.2 Detailed request message sub-function onTimerInterrupt parameters specification 

With subfunction onTimerInterrupt the Server is allowed to trigger events in a timer configurable period of 
time. 

The eventTypeRecord defines the timer value with the following timer schedule: 

⎯ Slow rate, 

⎯ Medium rate, 

⎯ Fast rate. 

It is the manufacturer's specific task to define the time rate associated to each timer schedule option. See 
Table 100. 

Table 100 — Comparison logic parameter definition 

eventTypeRecord Event will be generated Timer type 

0x01 Every time the slow rate timer value 
elapses. 

Slow rate timer. E.g. timer elapses after 1 second 

0x02 Every time the medium rate timer 
elapses. 

Medium rate timer. E.g. timer elapses after 300 ms 

0x03 Every time the fast rate timer elapses. Fast rate timer. E.g. timer elapses after 25 ms 

9.10.2.2.3 Detailed request message sub-function onChangeOfDataIdentifier parameters 
specification 

With subfunction onChangeOfDataIdentifier the server is allowed to poll the measurements in a fixed period of 
time and compare the content, therefore it is acceptable that the server might loose some changes and 
triggers less events than expected. 

The eventTypeRecord sets the two byte DID value that have to be monitored for any change. 

9.10.2.2.4 Detailed request message sub-function onComparisonOfValues parameters specification 

Table 101 – Table 103 specify the parameters for the request message with sub-function 
onComparisonOfValues parameters in case of serviceToRespondToRecord specifying a comparison between 
read DIDs. 

Table 101 — sub-function onComparisonOfValues parameters definition 

Data Byte ParameterName Byte Value Comment Detailed requirement 

1 ServiceID 0x86 Request SID --- 

2 eventType 0x07 sub-function 
onComparisonOfValues 

---

3 eventWindowTime 0x02 InfiniteTimeWindow 
specification 

---

4 eventTypeRecord 
byte1 

0x01 DataIdentifier (DID) 
high byte 

Can be a different DID than the one 
used in serviceToRespondToRecord. 
Can be a dynamically defined DID. 

5 eventTypeRecord 
byte 2 

0x04 DataIdentifier (DID) low 
byte 

---

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

82 © ISO 2013 – All rights reserved

Table 101 — (continued)

Data Byte ParameterName Byte Value Comment Detailed requirement 

6 eventTypeRecord 
byte 3 

0x01 Comparison logic, see 
Table 102 

The eventTypeRecord byte 3 sets the 
logics of the comparison method, 

7 eventTypeRecord 
byte 4 

0x00 Raw reference 
comparison value MSB 

The eventTypeRecord byte 4, 5, 6, 7 
sets the reference comparison value. 

8 eventTypeRecord 
byte 5 

0x00 Raw reference 
comparison value 

---

9 eventTypeRecord 
byte 6 

0x01 Raw reference 
comparison value 

---

10 eventTypeRecord 
byte 7 

0x00 Raw reference 
comparison value LSB 

---

11 eventTypeRecord 
byte 8 

0x0A hysteresis value The eventTypeRecord byte 8 defines 
an histeresys value in percentage from 
0% (0x00) to 100% (0x64). 

12 eventTypeRecord 
byte 9 

0xBC Localization byte 1 
MSB, see Table 103 

The eventTypeRecord byte 9, 10 
defines localization of value within the 
data identifier, see Table 103. 

13 eventTypeRecord 
byte 10 

0x58 Localization byte 2 
LSB, see Table 103 

---

14 serviceToRespondTo 
byte 1 

0x22 SID The serviceToRespondToRecord sets 
the service and the DID to be read and 
compared. In the first positive 
response message the 
numberOfIdentifiedEvents field is 
always set to 0x00.  

15 serviceToRespondTo 
byte 2 

0xA1 DID1 --- 

16 serviceToRespondTo 
byte 3 

0x00 DID2 --- 

Table 102 defines the comparison logic parameter definition. 

Table 102 — Comparison logic parameter definition 

Comparison logic ID Event will be generated when 

0x01 Comparison Parameter < Measured Value 

0x02 Comparison Parameter > Measured Value 

0x03 Comparison Parameter = Measured Value 

0x04 Comparison Parameter <> Measured Value 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 83

Table 103 defines the localization of value 16 bit bitfield parameter definition. 

Table 103 — Localization of value 16 bit bitfield parameter definition 

Bitfield bit position Description 

15 (MSB), bit = 0 means comparison without sign, bit = 1 comparison with sign 

14 - 10 Bit#10 (LSB) - Bit#14 (MSB) contain the length of data identifier value to be compared. The 
value 0x00 shall be used to compare all 4 bytes. All other values shall set the size in bits. 
With 5 bits, the maximal size of a length is 31 bits. 

9 - 0 Offset on the positve response message from where to extract the data identifier value. Bit#0 
(LSB) - Bit#9 (MSB) contain the start bit number offset. With 10 bits, the maximal size of an 
offset is 1023 bits. 

9.10.2.3 Request message data-parameter definition 

Table 104 defines the data-parameters of the request message. 

Table 104 — Request message data-parameter definition 

Definition

eventWindowTime 

The parameter eventWindowTime is used to specify a window for the event logic to be active in the server. If the 
parameter value of eventWindowTime is set to 0x02 then the response time is infinite. In case of an infinite event window 
and storageState equal to doNotStoreEvent it is recommended to close the event window by a certain signal (e.g. power 
off). See B.2 for specified eventWindowTimes. 
A combination of finite event window and storageState equal to storeEvent shall not be used. 
NOTE This parameter is not applicable to be evaluated by the server in case the eventType is equal to a ROE 
control sub-function. 

eventTypeRecord 

This parameter record contains additional parameters for the specified eventType. 

serviceToRespondToRecord 

This parameter record contains the service parameters (service Id and service parameters) of the service to be executed 
in the server each time the specified event defined in the eventTypeRecord occurs. 

9.10.3 Positive response message 

9.10.3.1 Positive response message definition 

Table 105 defines the positive response message for all sub-functions but reportActivatedEvents. 

Table 105 — Positive response message definition for all sub-functions but reportActivatedEvents 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ResponseOnEvent Response SID M 0xC6 ROEPR 

#2 eventType M 0x00 – 0x7F ETP 

#3 numberOfIdentifiedEvents M 0x00 – 0xFF NOIE 

#4 eventWindowTime M 0x00 – 0xFF EWT 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

84 © ISO 2013 – All rights reserved

Table 105 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#5
:

#(m-1)+5 

eventTypeRecord[] = [ 
     eventTypeParameter 1 
      : 
     eventTypeParameter m ] 

C1
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

ETR_ 
ETP1 
:
ETPm 

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord[] = [ 
       serviceId 
       serviceParameter 1 
        : 
       serviceParameter r ] 

M
C2
:

C2 

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

STRTR_ 
SI
SP1
:
SPr

C1: present if the eventType required additional parameters to be specified for the event to respond to. 
C2: present if the service request of the service to respond to required additional service parameters 

Table 106 defines the positive response message for sub-function = reportActivatedEvents. 

Table 106 — Positive response message definition for sub-function = reportActivatedEvents 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ResponseOnEvent Response SID M 0xC6 ROEPR 

#2 eventType = reportActivatedEvents M 0x04 ETP_RAE 

#3 numberOfActivatedEvents M 0x00 – 0xFF NOIE 

#4 eventTypeOfActiveEvent#1 C1 0x00 – 0xFF EVOAE 

#5 eventWindowTime#1 C1 0x00 – 0xFF EWT 

#6
:

#(m-1)+6 

eventTypeRecord#1[] = [ 
     eventTypeParameter 1 
       : 
     eventTypeParameter m ] 

C2
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

ETR_ 
ETP1 
:
ETPm 

#p-(o-1)-1 
#p-(o-1)

:
#p

serviceToRespondToRecord#1[] = [ 
       serviceId 
       serviceParameter 1 
        : 
       serviceParameter o ] 

C3
C4
:

C4 

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

STRTR_ 
SI
SP1
:
SPo

: : : : : 

#n-(r-1)-4-(q-1) eventTypeOfActiveEvent#k C1 0x00 – 0xFF EVOAE 

#n-(r-1)-3-(q-1) eventWindowTime#k C1 0x00 – 0xFF EWT 

#n-(r-1)-2-(q-1) 
:

#n-(r-1)-2

eventTypeRecord#k[] = [ 
     eventTypeParameter 1 
       : 
     eventTypeParameter q ] 

C2
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

ETR_ 
ETP1 
:
ETPm 

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord#k[] = [ 
       serviceId 
       serviceParameter 1 
        : 
       serviceParameter r ] 

C3
C4
:

C4 

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

STRTR_ 
SI
SP1
:
SPr

C1: present if an active event is reported. 
C2: present if the reported eventType of the active event (eventTypeOfActiveEvent) requires additional parameters to be 
specified for the event to respond to. 
C3: mandatory to be present when reporting an active event. 
C4: present if the reported service request of the service to respond to requires additional service parameters. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 85

9.10.3.2 Positive response message data-parameter definition 

Table 107 defines the data-parameters of the positive response message. 

Table 107 — Response message data-parameter definition 

Definition

eventType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter of the request message. 

eventTypeOfActiveEvent 

This parameter is an echo of the sub-function parameter of the request message that was issued to set-up the active 
event. The applicable values are the ones specified for the eventType sub-function parameter. 

numberOfActivatedEvents 

This parameter contains the number of active events when the client requests to report the number of active events. This 
number reflects the number of events reported in the response message. 

numberOfIdentifiedEvents 

This parameter contains the number of identified events during an active event window and is only applicable for the 
response message send at the end of the event window (in case of a finite event window). The initial response to the 
request message shall contain a zero (0) in this parameter. 

eventWindowTime 

This parameter is an echo of the eventWindowTime parameter from the request message. When reporting an active 
event then this parameter contains the time remaining for the event to be active. 

eventTypeRecord 

This parameter is an echo of the eventTypeRecord parameter from the request message. When reporting an active event 
then this parameter is an echo of the eventTypeRecord of the request that was issued to set-up the active event. 

serviceToRespondToRecord 

This parameter is an echo of the serviceToRespondToRecord parameter from the request message. When reporting an 
active event then this parameter is an echo of the serviceToRespondToRecord of the request that was issued to set-up 
the active event. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

86 © ISO 2013 – All rights reserved

9.10.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 108. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 108 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the request message is wrong. 

0x22 conditionsNotCorrect CNC

 Used when the server is in a critical normal mode activity and therefore cannot perform the 
requested functionality. 

0x31 requestOutOfRange ROOR

 The server shall use this response code 
if it detects an error in the eventTypeRecord parameter; 
if the specified eventWindowTime is invalid; 
if the requested DID is not supported;  
if a combination of finite event window and storageState equal to storeEvent is requested 

9.10.5 Message flow example(s) ResponseOnEvent 

9.10.5.1 Assumptions 

For the message flow examples it is assumed, that the eventWindowTime equal to 0x08 defines an event 
window of 80 seconds (eventWindowTime * 10 seconds). The client requests to have a response message by 
setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to "FALSE" ('0'). 

NOTE The definition of the eventWindowTime is vehicle manufacturer specific, except for certain values as specified 
in B.2. 

The following conditions apply to the shown message flow examples and flowcharts: 

⎯ Trigger signal: 
It is up to the vehicle manufacturer to define a specific trigger signal, which causes the client (external 
test equipment, OBD-Unit, diagnostic master, etc.) to start the ResponseOnEvent request message. This 
trigger signal could be enabled by an event as well as by a fixed timing schedule like a heartbeat-time 
(which should be greater than the eventWindowTime). Furthermore there could be a synchronous 
message (e.g. SYNCH-signal) on the data link used as trigger signal. 

⎯ Open event window: 
Receiving the ResponseOnEvent request message, the server shall evalaute the request. If the 
evaluation was positive, the server shall set up the event logic and has to send the initial positive 
response message of the ResponseOnEvent service. To activate the event logic the client has to request 
ResponseOnEvent sub-function startResponseOnEvent. After the positive response the event logic is 
activated and the event window timer is running. It is up to the vehicle manufacturer to define the event 
window in detail, using the parameter eventWindowTime (e.g. timing window, ignition on/off window). In 
case of detecting the specified eventType (EART_) the server has to respond immediately with the 
response message corresponding to the serviceToRespondToRecord in the ResponseOnEvent request 
message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 87

⎯ Close event window: 
It is recommended to close the event window of the server according to the parameter 
eventWindowTime. After this action, the server has to stop sending event driven diagnostic response 
messages. The same could either be reached by sending the ResponseOnEvent (ROE_) request 
message including the parameter stopResponseOnEvent or by power off. 

9.10.5.2 Example #1 - ResponseOnEvent (finite event window) 

Table 109 defines the setup of ResponseOnEvent request message flow example #1. 

Table 109 — Setup of ResponseOnEvent request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = onDTCStatusChange, 
    storageState = doNotStoreEvent 
    suppressPosRspMsgIndicationBit = FALSE 

0x01 ET_ODTCSC 

#3 eventWindowTime = 80 seconds 0x08 EWT 

#4 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#5 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#6 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#7 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

Table 110 defines the ResponseOnEvent initial positive response message flow example #1. 

Table 110 — ResponseOnEvent initial positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = onDTCStatusChange 0x01 ET_ODTCSC 

#3 numberOfIdentifiedEvents = 0 0x00 NOIE 

#4 eventWindowTime = 80 seconds 0x08 EWT 

#5 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#6 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#7 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#8 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

The event logic is set up; now it has to be activated. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

88 © ISO 2013 – All rights reserved

Table 111 defines the start of the ResponseOnEvent request message flow example #1. 

Table 111 — Start of ResponseOnEvent request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = startResponseOnEvent, 
    storageState = doNotStoreEvent, 
    suppressPosRspMsgIndicationBit = FALSE 

0x05 ET_STRTROE 

#3 eventWindowTime (will not be evaluated) 0x08 EWT 

Table 112 defines the ResponseOnEvent positive response message flow example #1. 

Table 112 — ResponseOnEvent positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = onDTCStatusChange 0x01 ET_ODTCSC 

#3 numberOfIdentifiedEvents = 0 0x00 NOIE 

#4 eventWindowTime  0x08 EWT 

In case the specified event occurs the server sends the response message according to the specified 
serviceToRespondToRecord. 

Table 113 defines the ReadDTCInformation positive response message flow example #1. 

Table 113 — ReadDTCInformation positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCI 

#2 DTCStatusAvailibilityMask 0xFF DTCSAM 

#3 DTCCount [ DTCCountHighByte ] = 0 0x00 DTCCNT_HB 

#4 DTCCount [ DTCCountLowByte ] = 4 0x04 DTCCNT_LB 

The message flow for the case where the client would request to report the currently active events in the 
server during the active event window will look as follows. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 89

Table 114 defines the ResponseOnEvent request number of active events message flow example #1. 

Table 114 — ResponseOnEvent request number of active events message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = reportActivatedEvents,  
    storageState = doNotStoreEvent, 
    suppressPosRspMsgIndicationBit = FALSE 

0x04 ET_RAE 

#3 eventWindowTime (will not be evaluated) 0x08 EWT 

Table 115 defines the ResponseOnEvent reportActivatedEvents positive response message flow example #1. 

Table 115 — ResponseOnEvent reportActivatedEvents positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = reportActivatedEvents 0x04 ET_RAE 

#3 numberOfActivatedEvents = 1 0x01 NOAE 

#4 eventTypeOfActiveEvent = onDTCStatusChange 0x01 ET_ODTCSC 

#5 eventWindowTime = 80 seconds 0x08 EWT 

#6 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#7 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#8 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#9 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

If the specified event window time has expired the server shall send a final positive response. 

Table 116 defines the ResponseOnEvent final positive response message flow example #1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

90 © ISO 2013 – All rights reserved

Table 116 — ResponseOnEvent final positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = onDTCStatusChange 0x01 ET_ODTCSC 

#3 numberOfIdentifiedEvents = 1 0x01 NOIE 

#4 eventWindowTime = 80 seconds 0x08 EWT 

#5 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#6 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#7 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#8 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

9.10.5.2.1 Example #1 - flowcharts 

The following flowcharts show two different kind of server behaviour: 

⎯ no event occurs within the finite event window. In this case the server has to send the response of the 
ResponseOnEvent at the end of the event window.  

⎯ multiple events (#1 to #n) within a finite event window. Each positive response of the 
serviceToRespondTo is related to an identified event (#1..#n) and shall have the same service identifier 
(SId) but might have different content. At the end of the event_Window the server shall transmit a positive 
response message of the responseOnEvent service, which indicates the numberOfIdentifiedEvents. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 91

Figure 11 depicts the finite event window – no event during active event window.  

R
oE Start 
request

timetime

Time
P2_client

Time
P2_server

Server
T_Data

Client
T_Data

.req

.ind

.con
P2start

.ind

.ind

.req

P2start

.con

responseO
nEvent

response m
essage

.con

.reqresponseO
nEvent

Final
response m

essage

open
event window

close
event window

no
 e

ve
nt

 o
cc

ur
s 

in
 th

e 
se

rv
er

ev
en

t w
in

do
w

stop

start

Stop

Start

Restart

Start

R
oE Setup 

event logic 
request

.req

.con
P2start

.ind

.ind

.req

P2start

responseO
nEvent

Initial response 
m

essage

.con

Optional
Setup event 

logic
request and 

response

Figure 11 — Finite event window - no event during active event window 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

92 © ISO 2013 – All rights reserved

Figure 12 depicts the finite event window – multiple events during active event window.  

R
oE Start 
request

timetime

Server
T_Data

Client
T_Data

.req

.ind

.con

.ind

.ind

.req

.con

responseO
nEvent

response m
essage

.con

.reqresponseO
nEvent

Final
response m

essage
open

event window

close
event window

ev
en

t w
in

do
w

.ind

.req

ServiceTo-
R

espondTo
response m

essage

.con

.ind

.req

ServiceTo-
R

espondTo
response m

essage

.con

stop

start
...

event #1 identified

event #n identified

Time
P2_client

Time
P2_server

Time
S3_server

Time
S3_client

P2start P2start

Stop

Start

Restart

Start

R
oE Setup 

event logic 
request

.req

.con
P2start

.ind

.ind

.req

P2start

responseO
nEvent

Initial response 
m

essage

.con

Optional:
setup event 

logic request 
and response

Figure 12 — Finite event window - multiple events during active event window 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 93

9.10.5.3 Example #2 - ResponseOnEvent (infinite event window) 

Table 117 defines the ResponseOnEvent request message flow example #2. 

Table 117 — ResponseOnEvent request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = onDTCStatusChange, 
    storageState = doNotStoreEvent, 
    suppressPosRspMsgIndicationBit = FALSE 

0x01 ET_ODTCSC 

#3 eventWindowTime = infinite 0x02 EWT 

#4 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#5 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#6 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#7 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

Table 118 defines the ResponseOnEvent initial positive response message flow example #2. 

Table 118 — ResponseOnEvent initial positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = onDTCStatusChange 0x01 ET_ODTCSC 

#3 numberOfIdentifiedEvents = 0 0x00 NOIE 

#4 eventWindowTime = infinite 0x02 EWT 

#5 eventTypeRecord [ eventTypeParameter ] = testFailed status 0x01 ETP1 

#6 serviceToRespondToRecord [ serviceId ] = ReadDTCInformation 0x19 RDTCI 

#7 serviceToRespondToRecord [ sub-function ] =  
    reportNumberOfDTCByStatusMask 

0x01 RNDTC 

#8 serviceToRespondToRecord [ DTCStatusMask ] = testFailed status 0x01 DTCSM 

The event logic is set up; now it has to be activated. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

94 © ISO 2013 – All rights reserved

Table 119 defines the start of ResponseOnEvent request message flow example #2. 

Table 119 — Start of ResponseOnEvent request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = startResponseOnEvent, 
    storageState = doNotStoreEvent, 
    suppressPosRspMsgIndicationBit = FALSE 

0x05 ET_STRTROE 

#3 eventWindowTime (will not be evaluated) 0x02 EWT 

Table 120 defines the ResponseOnEvent positive response message flow example #2. 

Table 120 — ResponseOnEvent positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Response SID 0xC6 ROEPR 

#2 eventType = onDTCStatusChange 0x05 ET_ODTCSC 

#3 numberOfIdentifiedEvents = 0 0x00 NOIE 

#4 eventWindowTime  0x02 EWT 

In case the specified event occurs the server sends the response message according to the specified 
serviceToRespondToRecord. 

Table 121 defines the ReadDTCInformation positive response message flow example #2. 

Table 121 — ReadDTCInformation positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCI 

#2 DTCStatusAvailibilityMask 0xXX DTCSAM 

#3 DTCCount [ DTCCountHighByte ] = 0 0x00 DTCCNT_HB 

#4 DTCCount [ DTCCountLowByte ] = 4 0x04 DTCCNT_LB 

9.10.5.3.1 Example #2 - Flowcharts 

The following flowcharts show two different kind of server behaviour: 

⎯ no event occurs within the infinite event window. 

⎯ multiple events (#1 to #n) within a infinite event window. Each positive response of the 
serviceToRespondTo is related to an identified event (#1..#n) and shall have the same service identifier 
(SI) but might have different content. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 95

Figure 13 depicts the infinite event window – no event during active event window. 

R
oE Start 
request

timetime

Time
P2_client

Time
P2_server

Server
T_Data

Client
T_Data

.req

.con

.ind

.ind

.reqresponseO
nEvent

response m
essage

.con

open
event window

Power off
close event window

no
 e

ve
nt

 o
cc

ur
s 

in
 th

e 
se

rv
er

ev
en

t w
in

do
w

stop

start

Power off

P2start P2start

Stop

Start

Restart

Start

R
oE Setup 

event logic 
request

.req

.con
P2start

.ind

.ind

.req

P2start

responseO
nEvent

Initial response 
m

essage

.con
P2start

Optional:
setup event 

logic request 
and response

Figure 13 — Infinite event window – no event during active event window 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

96 © ISO 2013 – All rights reserved

Figure 14 depicts the infinite event window – multiple events during active event window. 

R
oE Start 
request

timetime

Server
T_Data

Client
T_Data

.req

.con

.ind

.ind

.reqresponseO
nEvent

response m
essage

.con

open
event window

ev
en

t w
in

do
w

.ind

.req

ServiceTo-
R

espondTo
response m

essage

.con

.ind

.req

ServiceTo-
R

espondTo
response m

essage

.con

stop

start

...

event #1 identified

event #n identified

Time
P2_client

Time
P2_server

Time
S3_server

Time
S3_client

Power off
close event windowPower off

P2start P2start

Stop

Start

Restart

Start

R
oE Setup 

event logic 
R

equest

.req

.con
P2start

.ind

.ind

.req

P2start

responseO
nEvent

Initial response 
m

essage
.con

Optional:
setup event 

logic request 
and response

Figure 14 — Infinite event window – multiple events during active event window 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 97

9.10.5.4 Example #3 - ResponseOnEvent (infinite event window) – sub-function parameter 
“onComparisonOfValues” 

This example only explains the utilisation of sub-function parameter “onComparisonOfValues” assuming that 
the communication behaviour of the ROE service described in Example #1 and Example #2 has not changed. 
Therefore this example does not describe the complete message flow. Instead, only the event window set up 
request message and the positive response message to the occurring event is shown and explained. Start 
and Stop request messages as well as the different response messages are already described in the 
examples above. The following conditions apply: 

⎯ service 0x22 – ReadDataByIdentifier is chosen as the serviceToRespondTo, 

⎯ the dataIdentifier 0x0104 includes the measurement value which is to be compared at data byte#11 and 
#12 (this measurement value may also be read by utilising service 0x22), 

⎯ an event occurs if the measurement value (MV) is higher than the so called comparison parameter (CP) 
therefore the operator value (see description below) is chosen as 0x01 – “MV > CP”, 

⎯ as hysteresis value 0x0A – 10 % is chosen, 

⎯ as eventWindowTime the value 0x02 – “infinite” is chosen, 

⎯ as storageState (eventType sub-function bit 6) the value 1 binary – “storeEvent” is chosen, 

⎯ in any case a response is requested. 

Definition for examples: 

⎯ Byte#4&5:  dataIdentifier 0x0104 

⎯ Byte#6&7:  Localisation of reading & definition of reading type. 

EXAMPLE 1 If the reading is in the 11th byte of the data record, the following applies: 

⎯ 11x8 = 88 dec = 000101 1000b Bit#10 - Bit#14: length in bits - 1. 

⎯ With 5 bits, there is a maximum size of 32 bits = "long". 

EXAMPLE 2 For a "word", the length is therefore 15 dec = 0 1111b Bit#15: Sign entry: 1=signed, 0=unsigned 

EXAMPLE 3 Total assignment would be: 

⎯ 1011 1100 0101 1000b= 0xBC58 thus byte#6 contains 0xBC, byte#7 contains 0x58 

⎯ Byte#8: Comparison operation (operator) 

EXAMPLE 4 operator MV > CP = 0x01 

⎯ Byte#9-12: Comparison parameters due to the 4 byte length, all data formats from 'Bit' through 
'Long' type can be transmitted. 

EXAMPLE 5 If comparison value is 5 242 dec = 0x0000 147A, 

⎯ byte#9 = 0x00, byte#10 = 0x00, byte#11 = 0x14 and byte#12 = 0x7A 

⎯ Byte#13: Hysteresis value (specified as percentage of comparison parameter). The value is specified 
directly. It only applies to the operators "<" and ">". In case of zero as comparison value, the 
hysteresis value shall be defined as an absolute value. 

EXAMPLE 6 Hysteresis value 10% = 0x0A 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

98 © ISO 2013 – All rights reserved

Table 122 defines the ResponseOnEvent request message example #3. 

Table 122 — ResponseOnEvent request message example #3 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ResponseOnEvent Request SID 0x86 ROE 

#2 eventTypeRecord [ eventType ] = onComparisonOfValues, 
storageState = storeEvent 
suppressPosRspMsgIndicationBit=FALSE 

0x47 ET_OCOV 

#3 eventWindowTime = infinite 0x02 EWT 

#4 eventTypeRecord [ eventTypeParameter#1 ] = recordDataIdentifier 
(High Byte) 

0x01 ETR_ETP1 

#5 eventTypeRecord [ eventTypeParameter#2 ] = recordDataIdentifier  
(Low Byte) 

0x04 ETR_ETP2 

#6 eventTypeRecord [ eventTypeParameter#3 ] = Valueinfo#1 0xBC ETR_ETP3 

#7 eventTypeRecord [ eventTypeParameter#4 ] = Valueinfo#2 0x58 ETR_ETP4 

#8 eventTypeRecord [ eventTypeParameter#5 ] = Operator 0x01 ETR_ETP5 

#9 eventTypeRecord [ eventTypeParameter#6 ] = Comparison Parameter 
(Byte#4) 

0x00 ETR_ETP6 

#10 eventTypeRecord [ eventTypeParameter#7 ] = Comparison Parameter 
(Byte#3) 

0x00 ETR_ETP7 

#11 eventTypeRecord [ eventTypeParameter#8 ] = Comparison Parameter 
(Byte#2) 

0x14 ETR_ETP8 

#12 eventTypeRecord [ eventTypeParameter#9 ] = Comparison Parameter 
(Byte#1) 

0x7A ETR_ETP9 

#13 eventTypeRecord [ eventTypeParameter#10 ] = Hysteresis [%] 0x0A ETR_ETP10 

#14 serviceToRespondToRecord [ serviceID ] = ReadDataByIdentifier 0x22 RDBI 

#15 serviceToRespondToRecord [ serviceParameter#1 ] = dataIdentifier 
(MSB) 

0x01 DID_B1 

#16 serviceToRespondToRecord [ serviceParameter#2 ] = dataIdentifier 
(LSB)

0x04 DID_B2 

NOTE Response message and subsequent initialisation sequence is not shown. 

The server reacts if the measurement value is higher than 5 242d after a successful event window set up and 
activation of the ROE mechanism. The specified event occurs and the server sends the following message. 

Table 123 defines the ReadDataByIdentifier positive response message example #3. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 99

Table 123 — ReadDataByIdentifier positive response message example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0x01 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x04 DID_B2 

#4 dataRecord [ data#1 ] 0xXX DREC_DATA1 

#5 dataRecord [ data#2 ] 0xXX DREC_DATA2 

#6 dataRecord [ data#3 ] 0xXX DREC_DATA3 

#7 dataRecord [ data#4 ] 0xXX DREC_DATA4 

#8 dataRecord [ data#5 ] 0xXX DREC_DATA5 

#9 dataRecord [ data#6 ] 0xXX DREC_DATA6 

#10 dataRecord [ data#7 ] 0xXX DREC_DATA7 

#11 dataRecord [ data#8 ] 0xXX DREC_DATA8 

#12 dataRecord [ data#9 ] 0xXX DREC_DATA9 

#13 dataRecord [ data#10 ] 0xXX DREC_DATA10 

#14 dataRecord [ data#11 ] data content of byte#11: 0x14 0x14 DREC_DATA11 

#15 dataRecord [ data#12 ] data content of byte#12: 0x7B 0x7B DREC_DATA12 

: : : : 

A further event occurs not before the measurement value is at least once below 90 % of the comparison 
parameter value. This behaviour is specified by the hysteresis value. If this condition was fulfilled and the 
measurement value is again higher than the comparison value a new event occurs and a new 
ReadDataByIdentifier response message is sent by the server. 

9.11 LinkControl (0x87) service 

9.11.1 Service description 

The LinkControl service is used to control the communication between the client and the server(s) in order to 
gain bus bandwidth for diagnostic purposes (e.g., programming). This service optionally applies to those data 
link layers, which provides the capability to reconfigure its communication parameter (e.g. change the 
baudrate on CAN or reconfigure a FlexRay cycle design) during a non-default diagnostic session. 

NOTE Further details on the application and usage of this service on a certain data link layer can be found in the 
individual data link layer specific diagnostic services implementation UDSonXYZ 'data link' specification. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

100 © ISO 2013 – All rights reserved

This service is used to transition the data link layer into a certain state which allows utilizing higher diagnostic 
bandwidth most likely for programming purposes. To overcome functional communication constraints (e.g., 
the baudrate has to be transitioned in multiple servers at the same time) the transition itself is split into two 
steps: 

⎯ Step #1: The client verifies if the transition can be performed and informs the server(s) about the mode 
transition mechanism to be used. Each server has to respond positively 
(suppressPosRspMsgIndicationBit = FALSE) before the client performs step #2. This step actually does 
not perform the mode transition. 

⎯ Step #2: The client actually requests the mode transition (e.g., higher baudrate). This step shall only be 
requested if step #1 has been performed successfully. In case of functional communication it is 
recommended that there shall not be any response from a server when the mode transition is performed 
(suppressPosRspMsgIndicationBit = TRUE), because one server might already have been transitioned to 
the new mode while others are still in progress. 

The linkControlType parameter in the request message in conjunction with the conditional 
linkControlModeIdentifier/linkRecord parameter provides a mechanism to transition with either a pre-defined 
mode transition parameter or a specifically defined mode transition parameter. 

NOTE This service is tied to a non-defaultSession. A session layer timer timeout will transition the server(s) back to 
its (their) normal mode of operation. The same applies in case an ECUReset service (0x11) is performed. Once a data link 
mode transition has taken place, any additional non-defaultSession request(s) shall not cause a re-transition into the 
default mode of operation (e.g., during a programming session). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

9.11.2 Request message 

9.11.2.1 Request message definition 

Table 124 defines the request message (linkControlType = verifyModeTransitionWithFixedParameter). 

Table 124 — Request message definition (linkControlType = 
verifyModeTransitionWithFixedParameter) 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 LinkControl Request SID M 0x87 LC 

#2 sub-function = [ linkControlType] M 0x01 LEV_LCTP_ 

#3 linkControlModeIdentifier M 0x00 – 0xFF LCMI_ 

Table 125 defines the request message (linkControlType = verifyModeTransitionWithSpecificParameter). 

Table 125 — Request message definition (linkControlType = 
verifyModeTransitionWithSpecificParameter) 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 LinkControl Request SID M 0x87 LC 

#2 sub-function = [ linkControlType] M 0x02 LEV_LCTP_ 

#3
#4
#5

linkRecord[] = [ 
   modeParameterHighByte 
   modeParameterMiddleByte 
   modeParameterLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

LBR_ 
MPHB 
MPMB 
MPLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 101

Table 126 defines the request message (linkControlType = transitionMode). 

Table 126 — Request message definition (linkControlType = transitionMode) 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 LinkControl Request SID M 0x87 LC 

#2 sub-function = [ linkControlType ] M 0x03 LEV_LCTP_ 

9.11.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameter linkControlType is used by the LinkControl request message to describe the 
action to be performed in the server (suppressPosRspMsgIndicationBit (bit 7) not shown in table below). 

Table 127 defines the request message sub-function parameters. 

Table 127 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document.   

0x01 verifyModeTransitionWithFixedParameter U VMTWFP 

 This parameter is used to verify if a transition with a pre-defined parameter, 
which is specified by the linkControlModeIdentifier data-parameter can be 
performed. 

0x02 verifyModeTransitionWithSpecificParameter U VMTWSP 

 This parameter is used to verify if a transition to a specifically defined 
parameter (e.g., specific baudrate), which is specified by the linkRecord 
data-parameter can be performed. 

0x03 transitionMode U TM 

 This sub-function parameter requests the server(s) to transition the data link 
into the mode which was requested in the preceding verification message. 

0x04 – 0x3F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x40 – 0x5F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use.   

0x60 – 0x7E systemSupplierSpecific U SSS 

 This range of values is reserved for system supplier specific use.   

0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

102 © ISO 2013 – All rights reserved

9.11.2.3 Request message data-parameter definition 

Table 128 defines the data-parameters of the request message. 

Table 128 — Request message data-parameter definition 

Definition

linkControlModeIdentifier 

This conditional parameter references a fixed defined mode parameter to transition to (see B.3). 

linkRecord 

This conditional parameter record contains a specific mode parameter in case the sub-function parameter indicates that 
a specific parameter is used. The format of the linkRecord is specified in the individual data links specific diagnostic 
specification (UDSonXYZ). 

9.11.3 Positive response message 

9.11.3.1 Positive response message definition 

Table 129 defines the positive response message. 

Table 129 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 LinkControl Response SID M 0xC7 LCPR 

#2 linkControlType M 00-7F LCTP 

9.11.3.2 Positive response message data-parameter definition 

Table 130 defines the data-parameter of the positive response message. 

Table 130 — Response message data-parameter definition 

Definition

linkControlType 

This parameter is an echo of bits 6 - 0 of the linkControlType sub-function parameter from the request message. 

9.11.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 131. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 103

Table 131 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the requested LinkControl are not met.  

0x24 requestSequenceError RSE

 This NRC shall be returned if the client requests the transition of the mode of operation 
without a preceding verification step, which specifies the mode to transition to. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if  
the requested linkControlModeIdentifier is invalid; 
the specific modeParameter (linkRecord) is invalid; 

9.11.5 Message flow example(s) LinkControl 

9.11.5.1 Example #1 - Transition baudrate to fixed baudrate (PC baudrate 115200 kBit/s) 

9.11.5.1.1 Step#1: Verify if all criteria are met for a baudrate switch 

Table 132 defines the LinkControl request message flow example #1 - step #1. 

Table 132 — LinkControl request message flow example #1 - step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = verifyModeTransitionWithFixedParameter, 
suppressPosRspMsgIndicationBit = FALSE 

0x01 VMTWFP 

#3 linkControlModeIdentifier = PC115200Baud 0x05 BI_PC115200 

Table 133 defines the LinkControl positive response message flow example #1 - step #1. 

Table 133 — LinkControl positive response message flow example #1 - step #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Response SID 0xC7 LCPR 

#2 linkControlType = verifyModeTransitionWithFixedParameter 0x01 VMTWFP 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

104 © ISO 2013 – All rights reserved

9.11.5.1.2 Step#2: Transition the baudrate 

Table 134 defines the LinkControl request message flow example #1 - step #2. 

Table 134 — LinkControl request message flow example #1 - step #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = transitionMode,  
    suppressPosRspMsgIndicationBit = TRUE 

0x83 TM 

There is no response from the server(s). The client and the server(s) have to transition the baudrate of their 
communication link. 

9.11.5.2 Example #2 - Transition baudrate to specific baudrate (150kBit/s) 

9.11.5.2.1 Step#1: Verify if all criteria are met for a baudrate switch 

Table 135 defines the LinkControl request message flow example #2 - step #1. 

Table 135 — LinkControl request message flow example #2 - step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = verifyModeTransitionWithSpecificParameter, 
    suppressPosRspMsgIndicationBit = FALSE 

0x02 VMTWSP 

#3 linkRecord [ modeParameterHighByte ] (150kBit/s) 0x02 MPHB 

#4 linkRecord [modeParameterMiddleByte ] 0x49 MPMB 

#5 linkRecord [modeParameterLowByte ] 0xF0 MPLB 

Table 136 defines the LinkControl positive response message flow example #2 - step #1. 

Table 136 — LinkControl positive response message flow example #2 - step #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Response SID 0xC7 LCPR 

#2 linkControlType = verifyModeTransitionWithSpecificParameter 0x02 VMTWSP 

9.11.5.2.2 Step#2: Transition the baudrate 

Table 137 defines the LinkControl request message flow example #2 - step #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 105

Table 137 — LinkControl request message flow example #2 - step #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = transitionMode,  
    suppressPosRspMsgIndicationBit = TRUE 

0x83 TM 

There is no response from the server(s). The client and the server(s) have to transition the baudrate of their 
communication link. 

9.11.5.3 Example #3 - Transition FlexRay cycle design to 'Programming' 

The following example reflects a scenario, where a FlexRay network cycle design is transitioned into an 
optimized 'programming' mode (e.g., utilizing an enhanced dynamic segment for programming). 

9.11.5.3.1 Step#1: Verify if all criteria are met for a scheduler switch 

Table 138 defines the LinkControl request message flow example #3 - step #1. 

Table 138 — LinkControl request message flow example #3 - step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = verifyModeTransitionWithFixedParameter, 
    suppressPosRspMsgIndicationBit = FALSE 

0x01 VMTWFP 

#3 linkControlModeIdentifier = ProgrammingSetup 0x20 PROGSU 

Table 139 defines the LinkControl positive response message flow example #3 - step #1. 

Table 139 — LinkControl positive response message flow example #3 - step #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Response SID 0xC7 LCPR 

#2 linkControlType = verifyModeTransitionWithFixedParameter 0x01 VMTWFP 

9.11.5.3.2 Step#2: Transition to programming scheduler 

Table 140 defines the LinkControl request message flow example #3 - step #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

106 © ISO 2013 – All rights reserved

Table 140 — LinkControl request message flow example #3 - step #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 LinkControl Request SID 0x87 LC 

#2 linkControlType = transitionMode,  
    suppressPosRspMsgIndicationBit = TRUE 

0x83 TM 

There is no response from the server(s). The client and the server(s) have to transition the cycle design of the 
FlexRay communication link. 

10 Data Transmission functional unit 

10.1 Overview 

Table 141 defines the Data Transmission functional unit. 

Table 141 — Data Transmission functional unit 

Service Description 

ReadDataByIdentifier The client requests to read the current value of a record identified by a provided 
dataIdentifier. 

ReadMemoryByAddress The client requests to read the current value of the provided memory range. 

ReadScalingDataByIdentifier The client requests to read the scaling information of a record identified by a 
provided dataIdentifier. 

ReadDataByPeriodicIdentifier The client requests to schedule data in the server for periodic transmission. 

DynamicallyDefineDataIdentifier The client requests to dynamically define data Identifiers that may subsequently 
be read by the readDataByIdentifier service. 

WriteDataByIdentifier The client requests to write a record specified by a provided dataIdentifier. 

WriteMemoryByAddress The client requests to overwrite a provided memory range. 

10.2 ReadDataByIdentifier (0x22) service 

10.2.1 Service description 

The ReadDataByIdentifier service allows the client to request data record values from the server identified by 
one or more dataIdentifiers. 

The client request message contains one or more two byte dataIdentifier values that identify data record(s) 
maintained by the server (see C.1 for allowed dataIdentifier values). The format and definition of the 
dataRecord shall be vehicle manufacturer or system supplier specific, and may include analog input and 
output signals, digital input and output signals, internal data, and system status information if supported by the 
server. 

The server may limit the number of dataIdentifiers that can be simultaneously requested as agreed upon by 
the vehicle manufacturer and system supplier.  

Upon receiving a ReadDataByIdentifier request, the server shall access the data elements of the records 
specified by the dataIdentifier parameter(s) and transmit their value in one single ReadDataByIdentifier 
positive response containing the associated dataRecord parameter(s). The request message may contain the 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 107

same dataIdentifier multiple times. The server shall treat each dataIdentifier as a separate parameter and 
respond with data for each dataIdentifier as often as requested. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.2.2 Request message 

10.2.2.1 Request message definition 

Table 142 defines the request message. 

Table 142 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID M 0x22 RDBI 

#2
#3

dataIdentifier[]#1 = [ 
    byte#1 (MSB) 
    byte#2 ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

: : : : : 

#n-1
#n

dataIdentifier[]#m = [  
    byte#1 (MSB) 
    byte#2 ] 

U
U

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

10.2.2.2 Request message sub-function parameter $Level (LEV_) Definition 

This service does not use a sub-function parameter. 

10.2.2.3 Request message data-parameter definition 

Table 143 defines the data-parameter for the request message. 

Table 143 — Request message data-parameter definition 

Definition

dataIdentifier (#1 to #m) 

This parameter identifies the server data record(s) that are being requested by the client (see C.1 for detailed parameter 
definition). 

10.2.3 Positive response message 

10.2.3.1 Positive response message definition 

Table 144 defines the positive response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

108 © ISO 2013 – All rights reserved

Table 144 — Positive response message definition 

A_Data 
Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID M 0x62 RDBIPR 

#2
#3

dataIdentifier[]#1 = [ 
    byte#1 (MSB) 
    byte#2 ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

#4
:

#(k-1)+4 

dataRecord[]#1 = [  
    data#1 
    : 
    data#k ] 

M
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DREC_ 
DATA_1 
:
DATA_m 

: : : : : 

#n-(o-1)-2 
#n-(o-1)-1 

dataIdentifier[]#m = [  
    byte#1 (MSB) 
    byte#2 ] 

U
U

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

#n-(o-1)
:

#n

dataRecord[]#m = [  
    data#1 
    : 
    data#o ] 

U
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DREC_ 
DATA_1 
:
DATA_k 

10.2.3.2 Positive response message data-parameter definition 

Table 145 defines the data-parameters of the positive response message. 

Table 145 — Response message data-parameter definition 

Definition

dataIdentifier (#1 to #m) 

This parameter is an echo of the data-parameter dataIdentifier from the request message. 

dataRecord (#1 to #k/o) 

This parameter is used by the ReadDataByIdentifier positive response message to provide the requested data record 
values to the client. The content of the dataRecord is not defined in this document and is vehicle manufacturer specific. 

10.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 146. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 109

Table 146 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the request message is invalid or the client exceeded 
the maximum number of dataIdentifiers allowed to be requested at a time. 

0x14 responseTooLong RTL 

 This NRC shall be sent if the total length of the response message exceeds the limit of the 
underlying transport protocol (e.g., when multiple DIDs are requested in a single request). 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if 
none of the requested dataIdentifier values are supported by the device; 
none of the requested dataIdentifiers are supported in the current session; 
the requested dynamicDefinedDataIdentifier has not been assigned yet; 

0x33 securityAccessDenied SAD

 This NRC shall be sent if at least one of the dataIdentifiers is secured and the server is not in 
an unlocked state. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

110 © ISO 2013 – All rights reserved

The evaluation sequence is documented in Figure 15. 

DID#n
security
check ok ?

DID#n support 
service 0x22 in 
active session?

min. length check
+ modulo 2 
division

NRC 0x13NO

YES

NRC 0x33NO

YES

at least one DID 
is supported in 
the active 
session?

NRC 0x31NO

loop (multiple DIDs)

positive response

YES

with all supported 
DIDs in this active 
session

same check 
for each DID

NRC 0x22NO

DID#n
condition
check ok?

mandatory optional

YES

n=0

NRC 0x13NO

YES

max. length check

NRC 0x14YES

NO

total response 
length exceeded 
(available in the 
server)

Service with SID 
0x22

1

2

manufacturer/supplier
specific

n++

YES

NO

YES
further DID 
available?

NO

Key  
1 minimum length is 3 byte (SI + DID) 
2 maximum length is 1 byte (SI) + 2*n bytes (DID(s)) 

Figure 15 — NRC handling for ReadDataByIdentifier service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 111

10.2.5 Message flow example ReadDataByIdentifier 

10.2.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a ReadDataByIdentifier 
service. The client may request a dataIdentifier data at any time independent of the status of the server. 

The dataIdentifier examples below are specific to a powertrain device (e.g., engine control module). Refer to 
ISO°15031-2 [6] for further details regarding accepted terms/definitions/acronyms for emission related 
systems. 

The first example reads a single 2 byte dataIdentifier containing a single piece of information (where 
dataIdentifier 0xF190 contains the VIN number). 

The second example demonstrates requesting of multiple dataIdentifiers with a single request (where 
dataIdentifier 0x010A contains engine coolant temperature, throttle position, engine speed, manifold absolute 
pressure, mass air flow, vehicle speed sensor, barometric pressure, calculated load value, idle air control, and 
accelerator pedal position, and dataIdentifier 0x0110 contains battery positive voltage). 

10.2.5.2 Example #1: read single dataIdentifier 0xF190 (VIN number) 

Table 147 defines the ReadDataByIdentifier request message flow example #1. 

Table 147 — ReadDataByIdentifier request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] 0x90 DID_B2 

Table 148 defines the ReadDataByIdentifier positive response message flow example #1. 

Table 148 — ReadDataByIdentifier positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] 0x90 DID_B2 

#4 dataRecord [ data#1 ] = VIN Digit 1 = “W” 0x57 DREC_DATA1 

#5 dataRecord [ data#2 ] = VIN Digit 2 = “0” 0x30 DREC_DATA2 

#6 dataRecord [ data#3 ] = VIN Digit 3 = “L” 0x4C DREC_DATA3 

#7 dataRecord [ data#4 ] = VIN Digit 4 = “0” 0x30 DREC_DATA4 

#8 dataRecord [ data#5 ] = VIN Digit 5 = “0” 0x30 DREC_DATA5 

#9 dataRecord [ data#6 ] = VIN Digit 6 = “0” 0x30 DREC_DATA6 

#10 dataRecord [ data#7 ] = VIN Digit 7 = “0” 0x30 DREC_DATA7 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

112 © ISO 2013 – All rights reserved

Table 148 — (continued)

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#11 dataRecord [ data#8 ] = VIN Digit 8 = “4” 0x34 DREC_DATA8 

#12 dataRecord [ data#9 ] = VIN Digit 9 = “3” 0x33 DREC_DATA9 

#13 dataRecord [ data#10 ] = VIN Digit 10 = “M” 0x4D DREC_DATA10 

#14 dataRecord [ data#11 ] = VIN Digit 11 = “B” 0x42 DREC_DATA11 

#15 dataRecord [ data#12 ] = VIN Digit 12 = “5” 0x35 DREC_DATA12 

#16 dataRecord [ data#13 ] = VIN Digit 13 = “4” 0x34 DREC_DATA13 

#17 dataRecord [ data#14 ] = VIN Digit 14 = “1” 0x31 DREC_DATA14 

#18 dataRecord [ data#15 ] = VIN Digit 15 = “3” 0x33 DREC_DATA15 

#19 dataRecord [ data#16 ] = VIN Digit 16 = “2” 0x32 DREC_DATA16 

#20 dataRecord [ data#17 ] = VIN Digit 17 = “6” 0x36 DREC_DATA17 

10.2.5.3 Example #2: Read multiple dataIdentifiers 0x010A and 0x0110 

Table 149 defines the ReadDataByIdentifier request message flow example #2. 

Table 149 — ReadDataByIdentifier request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier#1 [ byte#1 ] (MSB) 0x01 DID_B1 

#3 dataIdentifier#1 [ byte#2 ] 0x0A DID_B2 

#4 dataIdentifier#2 [ byte#1 ] (MSB) 0x01 DID_B1 

#5 dataIdentifier#2 [ byte#2 ] 0x10 DID_B2 

Table 150 defines the ReadDataByIdentifier positive response message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 113

Table 150 — ReadDataByIdentifier positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0x01 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x0A DID_B2 

#4 dataRecord [data#1 ]  = ECT 0xA6 DREC_DATA1 

#5 dataRecord [data#2 ]  = TP 0x66 DREC_DATA2 

#6 dataRecord [data#3 ]  = RPM 0x07 DREC_DATA3 

#7 dataRecord [data#4 ]  = RPM 0x50 DREC_DATA4 

#8 dataRecord [data#5 ]  = MAP 0x20 DREC_DATA5 

#9 dataRecord [data#6 ]  = MAF 0x1A DREC_DATA6 

#10 dataRecord [data#7 ]  = VSS 0x00 DREC_DATA7 

#11 dataRecord [data#8 ]  = BARO 0x63 DREC_DATA8 

#12 dataRecord [data#9 ]  = LOAD 0x4A DREC_DATA9 

#13 dataRecord [data#10 ]  = IAC 0x82 DREC_DATA10 

#14 dataRecord [data#11 ]  = APP 0x7E DREC_DATA11 

#15 dataIdentifier [ byte#1 ] (MSB) 0x01 DID_B1 

#16 dataIdentifier [ byte#2 ] (LSB) 0x10 DID_B2 

#17 dataRecord [ data#1 ] = B+ 0x8C DREC_DATA1 

10.3 ReadMemoryByAddress (0x23) service 

10.3.1 Service description 

The ReadMemoryByAddress service allows the client to request memory data from the server via provided 
starting address and size of memory to be read. 

The ReadMemoryByAddress request message is used to request memory data from the server identified by 
the parameter memoryAddress and memorySize. The number of bytes used for the memoryAddress and 
memorySize parameter is defined by addressAndLengthFormatIdentifier (low and high nibble). 

It is also possible to use a fixed addressAndLengthFormatIdentifier and unused bytes within the 
memoryAddress or memorySize parameter are padded with the value 0x00 in the higher range address 
locations. 

In case of overlapping memory areas it is possible to use an additional memoryAddress byte as a memory 
identifier (e.g., use of internal and external flash). 

The server sends data record values via the ReadMemoryByAddress positive response message. The format 
and definition of the dataRecord parameter shall be vehicle manufacturer specific. The dataRecord parameter 
may include analog input and output signals, digital input and output signals, internal data and system status 
information if supported by the server. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

114 © ISO 2013 – All rights reserved

10.3.2 Request message 

10.3.2.1 Request message definition 

Table 151 defines the request message. 

Table 151 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadMemoryByAddress Request SID M 0x23 RMBA 

#2 addressAndLengthFormatIdentifier M 0x00 – 0xFF ALFID 

#3
:

#(m-1)+3 

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

M
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#n-(k-1) 
:

#n

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

M
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

10.3.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

10.3.2.3 Request message data-parameter definition 

Table 152 defines the data-parameters of the request message. 

Table 152 — Request message data-parameter definition 

Definition

addressAndLengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately (see H.1 for example values): 
bit 7 - 4: Length (number of bytes) of the memorySize parameter 
bit 3 - 0: Length (number of bytes) of the memoryAddress parameter 

memoryAddress 

The parameter memoryAddress is the starting address of server memory from which data is to be retrieved. The number 
of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressAndLengthFormatIdentifier. Byte#m in 
the memoryAddress parameter is always the least significant byte of the address being referenced in the server. The 
most significant byte(s) of the address can be used as a memory identifier. 
An example of the use of a memory identifier would be a dual processor server with 16 bit addressing and memory 
address overlap (when a given address is valid for either processor but yields a different physical memory device or 
internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter can be 
specified as a memory identifier used to select the desired memory device. Usage of this functionality shall be as defined
by vehicle manufacturer / system supplier. 

memorySize 

The parameter memorySize in the ReadMemoryByAddress request message specifies the number of bytes to be read 
starting at the address specified by memoryAddress in the server's memory. The number of bytes used for this size is 
defined by the high nibble (bit 7 - 4) of the addressAndLengthFormatIdentifier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 115

10.3.3 Positive response message 

10.3.3.1 Positive response message definition 

Table 153 defines the positive response message. 

Table 153 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadMemoryByAddress Response SID M 0x63 RMBAPR 

#2
:

#n

dataRecord[] = [  
   data#1 
    : 
   data#m ] 

M
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DREC_ 
DATA_1 
:
DATA_m 

10.3.3.2 Positive response message data-parameter definition 

Table 154 defines the data parameter of the positive response message. 

Table 154 — Response message data-parameter definition 

Definition

dataRecord 

This parameter is used by the ReadMemoryByAddress positive response message to provide the requested data record 
values to the client. The content of the dataRecord is not defined in this document and shall reflect the requested memory 
contents. Data formatting shall be as defined by vehicle manufacturer / system supplier.. 

10.3.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 155. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 155 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ Any memory address within the interval [0xMA, (0xMA + 0xMS -0x1)] is invalid; 
⎯ Any memory address within the interval [0xMA, (0xMA + 0xMS -0x1)] is restricted; 
⎯ The memorySize parameter value in the request message is not supported by the 

server; 
⎯ The specified addressAndLengthFormatIdentifier is not valid; 
⎯ The memorySize parameter value in the request message is zero; 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

116 © ISO 2013 – All rights reserved

Table 155 — (continued)

0x33 SecurityAccessDenied SAD

 This NRC shall be sent if any memory address within the interval [0xMA, (0xMA + 0xMS -
0x1)] is secure and the server is locked. 

The evaluation sequence is documented in Figure 16. 

YES

security check ok for 
requested memory 
interval?

NRC 0x31

YES

NO

memoryAddress and 
memorySize are correct 
AND supported in the 
current session

NO

addressAndLengthFormat-
Identifier is applicable

NRC 0x31

YES

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

min. length  check NRC 0x13NO

NRC 0xXX

Manufacturer/
Supplier
specific check

NO

YES

YES

Service with SID 0x23

positive response

YES

total length check NRC 0x13NO

1

2

manufacturer/supplier
specific

Key  
1 at least 4 (SI + addressAndLengthFormatIdentifier+min memoryAddress+min memorySize) 
2 at 1 byte SI + 1 byte addressAndLengthFormatIdentifier + n byte memoryAddress parameter length + n byte 

memorySize parameter length) 

Figure 16 — NRC handling for ReadMemoryByAddress service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 117

10.3.5 Message flow example ReadMemoryByAddress 

10.3.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a ReadMemoryByAddress 
service. The service in this example is not limited by any restriction of the server.  

10.3.5.2 Example #1: ReadMemoryByAddress - 4-byte (32-bit) addressing 

The client reads 259 data bytes from the server's memory starting at memory address 0x2048 1392. 

Table 156 defines the ReadMemoryByAddress request message flow example #1. 

Table 156 — ReadMemoryByAddress request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Request SID 0x23 RMBA 

#2 addressAndLengthFormatIdentifier 0x24 ALFID 

#3 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 ] 0x13 MA_B3 

#6 memoryAddress [ byte#4 ] 0x92 MA_B4 

#7 memorySize [ byte#1 ] (MSB) 0x01 MS_B1 

#8 memorySize [ byte#2 ] 0x03 MS_B2 

Table 157 defines the ReadMemoryByAddress positive response message flow example #1. 

Table 157 — ReadMemoryByAddress positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Response SID 0x63 RMBAPR 

#2 dataRecord [ data#1 ] (memory cell#1) 0x00 DREC_DATA_1 

:    : : : 

#259+1 dataRecord [ data#259 ] (memory cell#259) 0x8C DREC_DATA_259 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

118 © ISO 2013 – All rights reserved

10.3.5.3 Example #2: ReadMemoryByAddress - 2-byte (16-bit) addressing. 

The client reads five data bytes from the server's memory starting at memory address 0x4813. 

Table 158 defines the ReadMemoryByAddress request message flow example #2. 

Table 158 — ReadMemoryByAddress request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Request SID 0x23 RMBA 

#2 addressAndLengthFormatIdentifier 0x12 ALFID 

#3 memoryAddress [ byte#1 (MSB) ] 0x48 MA_B1 

#4 memoryAddress [ byte#2 (LSB) ] 0x13 MA_B2 

#5 memorySize [ byte#1 ] 0x05 MS_B1 

Table 159 defines the ReadMemoryByAddress positive response message flow example #2. 

Table 159 — ReadMemoryByAddress positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Response SID 0x63 RMBAPR 

#2 dataRecord [ data#1 ] (memory cell#1) 0x43 DREC_DATA_1 

#3 dataRecord [ data#2 ] (memory cell#2) 0x2A DREC_DATA_2 

#4 dataRecord [ data#3 ] (memory cell#3) 0x07 DREC_DATA_3 

#5 dataRecord [ data#4 ] (memory cell#4) 0x2A DREC_DATA_4 

#6 dataRecord [ data#5 ] (memory cell#5) 0x55 DREC_DATA_5 

10.3.5.4 Example #3: ReadMemoryByAddress, 3-byte (24-bit) addressing 

The client reads three data bytes from the server's external RAM cells starting at memory address 0x204813. 

Table 160 defines the ReadMemoryByAddress request message flow example #3. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 119

Table 160 — ReadMemoryByAddress request message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Request SID 0x23 RMBA 

#2 addressAndLengthFormatIdentifier 0x23 ALFID 

#3 memoryAddress [ byte#1 (MSB) ] 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 (LSB) ] 0x13 MA_B3 

#6 memorySize [ byte#1 (MSB) ] 0x00 MS_B1 

#7 memorySize [ byte#2 (LSB) ] 0x03 MS_B2 

Table 161 defines the ReadMemoryByAddress first positive response message, example #3. 

Table 161 — ReadMemoryByAddress first positive response message, example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadMemoryByAddress Response SID 0x63 RMBAPR 

#2 dataRecord [ data#1 ] (memory cell#1) 0x00 DREC_DATA_1 

#3 dataRecord [ data#2 ] (memory cell#2) 0x01 DREC_DATA_2 

#4 dataRecord [ data#3 ] (memory cell#3) 0x8C DREC_DATA_3 

10.4 ReadScalingDataByIdentifier (0x24) service 

10.4.1 Service description 

The ReadScalingDataByIdentifier service allows the client to request scaling data record information from the 
server identified by a dataIdentifier. 

The client request message contains one dataIdentifier value that identifies data record(s) maintained by the 
server (see C.1 for allowed dataIdentifier values). The format and definition of the dataRecord shall be vehicle 
manufacturer specific, and may include analog input and output signals, digital input and output signals, 
internal data, and system status information if supported by the server. 

Upon receiving a ReadScalingDataByIdentifier request, the server shall access the scaling information 
associated with the specified dataIdentifier parameter and transmit the scaling information values in one 
ReadScalingDataByIdentifier positive response. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.4.2 Request message 

10.4.2.1 Request message definition 

Table 162 defines the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

120 © ISO 2013 – All rights reserved

Table 162 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Request SID M 0x24 RSDBI 

#2
#3

dataIdentifier[] = [  
    byte#1 (MSB) 
    byte#2 ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

10.4.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

10.4.2.3 Request message data-parameter definition 

Table 163 defines the data-parameter of the request message. 

Table 163 — Request message data-parameter definition 

Definition

DataIdentifier 

This parameter identifies the server data record that is being requested by the client (see C.1 for detailed parameter 
definition).  

10.4.3 Positive response message 

10.4.3.1 Positive response message definition 

Table 164 defines the positive response message. 

Table 164 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Response SID M 0x64 RSDBIPR 

#2
#3

dataIdentifier[] = [  
    byte#1 (MSB) 
    byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DID_ 
HB
LB

#4 scalingByte#1  M 0x00 – 0xFF SB_1 

#5
:

#(p-1)+5

scalingByteExtension[]#1 = [ 
     scalingByteExtensionParameter#1 
       : 
     scalingByteExtensionParameter#p ] 

C1
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

SBE_
PAR1
:
PARp

:  : : : : 

#n-r scalingByte#k C2 0x00 – 0xFF SB_k 

#n-(r-1)
:

#n

scalingByteExtension[]#k = [ 
     scalingByteExtensionParameter#1 
      : 
     scalingByteExtensionParameter#r ] 

C1
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

SBE_
PAR1
:
PARr

C1:  The presence of this parameter depends on the scalingByte high nibble. It is mandatory to be present if the 
scalingByte high nibble is encoded as formula, unit/format, or bitMappedReportedWithOutMask. 
C2:  The presence of this parameter depends on whether the encoding of the scaling information requires more than one 
byte. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 121

10.4.3.2 Positive response message data-parameter definition 

Table 165 defines the data-parameters of the positive response message. 

Table 165 — Response message data-parameter definition 

Definition

dataIdentifier 

This parameter is an echo of the data-parameter dataIdentifier from the request message. 

scalingByte (#1 to #k) 

This parameter is used by the ReadScalingDataByIdentifier positive response message to provide the requested scaling 
data record values to the client (see C.2 for detailed parameter definition). 

scalingByteExtension (#1 to #p / #1 to #r) 

This parameter is used to provide additional information for scalingBytes with a high nibble encoded as formula, 
unit/format, or bitmappedReportedWithOutMask (see C.3 for detailed parameter definition). 

10.4.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 166. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 166 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the request message is invalid.  

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
the requested dataIdentifier value is not supported by the device, 
the requested dataIdentifier value is supported by the device, but no scaling information is 
available for the specified dataIdentifier. 

0x33 securityAccessDenied SAD

 This NRC shall be sent if the dataIdentifier is secured and the server is not in an unlocked 
state. 

The evaluation sequence is documented in Figure 17. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

122 © ISO 2013 – All rights reserved

YES

security check ok for 
requested dataIdentifier

NRC 0x31NODID supports service 
0x24 in active session

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

length  check = 3 bytes NRC 0x13NO

NRC 0xXX

Manufacturer/
supplier
specific check

NO

YES

YES

Service with SID 0x24

YES

positive response

NRC 0x31
scaling information is 
available for the 
specified dataIdentifier

YES

NO

manufacturer/supplier
specific

Figure 17 — NRC handling for ReadScalingDataByIdentifier service 

10.4.5 Message flow example ReadScalingDataByIdentifier 

10.4.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a 
ReadScalingDataByIdentifier service. The client may request dataIdentifier scaling data at any time 
independent of the status of the server. 

The first example reads the scaling information associated with the two byte dataIdentifier 0xF190, which 
contains a single piece of information (17 character VIN number). 

The second example demonstrates the use of a formula and unit identifier for specifiying a data variable in a 
server. 

The third example illustrates the use of readScalingDataByIdentifier to return the supported bits (validity mask) 
for a bit mapped dataIdentifier that is reported without the mask through the use of readDataByIdenditfier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 123

10.4.5.2 Example #1: readScalingDataByIdentifier wth dataIdentifier 0xF190 (VIN number) 

Table 167 defines the ReadScalingDataByIdentifier request message flow example #1. 

Table 167 — ReadScalingDataByIdentifier request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Request SID 0x24 RSDBI 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x90 DID_B2 

Table 168 defines the ReadScalingDataByIdentifier positive response message flow example #1. 

Table 168 — ReadScalingDataByIdentifier positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Response SID 0x64 RSDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x90 DID_B2 

#4 scalingByte#1 {ASCII, 15 data bytes} 0x6F SB_1 

#5 scalingByte#2 {ASCII, 2 data bytes} 0x62 SB_2 

10.4.5.3 Example #2: readScalingDataByIdentifier wth dataIdentifier 0x0105 (Vehicle Speed) 

Table 169 defines the ReadScalingDataByIdentifier request message flow example #2. 

Table 169 — ReadScalingDataByIdentifier request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Request SID 0x24 RSDBI 

#2 dataIdentifier [ byte#1 ] (MSB) 0x01 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x05 DID_B2 

Table 170 defines the ReadScalingDataByIdentifier positive response message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

124 © ISO 2013 – All rights reserved

Table 170 — ReadScalingDataByIdentifier positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Response SID 0x64 RSDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0x01 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x05 DID_B2 

#4 scalingByte#1 {unsigned numeric, 1 data byte} 0x01 SBYT_1 

#5 scalingByte#2 {formula, 5 data bytes} 0x95 SB_2 

#6 scalingByteExtension#2 [ byte#1 ] {formulaIdentifier = C0 * x + C1} 0x00 SBE_21 

#7 scalingByteExtension#2 [ byte#2 ] {C0 high byte} 0xE0 SBE_22 

#8 scalingByteExtension#2 [ byte#3 ] {C0 low byte} [ C0 = 75 * 10P-2P ] 0x4B SBE_23 

#9 scalingByteExtension#2 [ byte#4 ] {C1 high byte} 0x00 SBE_24 

#10 scalingByteExtension#2 [ byte#5 ] {C1 low byte} [ C1 = 30 * 10P0P ] 0x1E SBE_25 

#11 scalingByte#3 {unit / format, 1 data byte} 0xA1 SB_3 

#12 scalingByteExtension#3 [ byte#1 ] {unit ID, km/h} 0x30 SBE_31 

Using the information contained in C.2 for decoding the scalingBytes, constants (C0, C1) and units, the data 
variable of vehicle speed is calculated using the following formula: 

Vehicle Speed = (0.75 * x + 30) km/h 

where 'x' is the actual data stored in the server and is identified by dataIdentifier 0x0105. 

10.4.5.4 Example #3: readScalingDataByIdentifier wth dataIdentifier 0x0967 

This example shows how a client could determine which bits are supported for a dataIdentifier in a server that 
is formatted as a bit mapped record reported without a validity mask. 

The example dataIdentifier (0x0967) is defined in Table 171. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 125

Table 171 — Example data definition 

Data Byte Bit(s) Description 

7-4 Unusued 

3 Medium speed fan is commanded on 

2 Medium speed fan output fault detected 

1 Purge monitor soak time status flag 

#1

0 Purge monitor idle test is prevented due to refuel event 

7 Check fuel cap light is commanded on 

6 Check fuel cap light output fault detected 

5 Fan control A output fault detected 

4 Fan control B output fault detected 

3 High speed fan output fault detected 

2 High speed fan output is commanded on 

1 Purge monitor idle test (small leak) ready to run 

#2

0 Purge monitor small leak has been monitored 

Table 172 defines the ReadScalingDataByIdentifier request message flow example #3. 

Table 172 — ReadScalingDataByIdentifier request message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Request SID 0x24 RSDBI 

#2 dataIdentifier [ byte#1 ] (MSB) 0x09 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x67 DID_B2 

Table 173 defines the ReadScalingDataByIdentifier positive response message flow example #3. 

Table 173 — ReadScalingDataByIdentifier positive response message flow example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadScalingDataByIdentifier Response SID 0x64 RSDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0x09 DID_HB 

#3 dataIdentifier [ byte#2 ] (LSB) 0x67 DID_LB 

#4 scalingByte#1 {bitMappedReportedWithOutMask, 2 data bytes} 0x22 SBYT_1 

#5 scalingByteExtension#1 [ byte#1 ] {dataRecord#1 Validity Mask} 0x03 SBYE_11 

#6 scalingByteExtension#1 [ byte#2 ] {dataRecord#2 Validity Mask} 0x43 SBYE_12 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

126 © ISO 2013 – All rights reserved

The above example makes the assumption that the only bits supported (i.e., that contain information) for this 
dataIdentifier in the server are byte#1, bits 1 and 0, and byte#2, bits 6, 1, and 0. 

10.5 ReadDataByPeriodicIdentifier (0x2A) service 

10.5.1 Service description 

The ReadDataByPeriodicIdentifier service allows the client to request the periodic transmission of data record 
values from the server identified by one or more periodicDataIdentifiers. 

The client request message contains one or more 1-byte periodicDataIdentifier values that identify data 
record(s) maintained by the server. The periodicDataIdentifier represents the low byte of a dataIdentifier out of 
the dataIdentifier range reserved for this service (0xF2XX, see C.1 for allowed periodicDataIdentifier values), 
e.g. the periodicDataIdentifier 0xE3 used in this service is the dataIdentifier 0xF2E3. 

The format and definition of the dataRecord shall be vehicle manufacturer specific, and may include analog 
input and output signals, digital input and output signals, internal data, and system status information if 
supported by the server. 

Upon receiving a ReadDataByPeriodicIdentifier request other than stopSending the server shall check 
whether the conditions are correct to execute the service.  

A periodicDataIdentifier shall only be supported with a single transmissionMode at a given time. A change to 
the schedule of a periodicDataIdentifier shall be performed on reception of a request message with the 
transmissionMode parameter set to a new schedule for the same periodicDataIdentifier. Multiple schedules for 
different periodicDataIdentifiers shall be supported upon vehicle manufacturer's request. 

IMPORTANT — If the conditions are correct then the server shall transmit a positive response 
message, including only the service identifier. The server shall never transmit a negative response 
message once it has accepted the initial request message by responding positively. 

Following the initial positive response message the server shall access the data elements of the records 
specified by the periodicDataIdentifier parameter(s) and transmit their value in separate periodic data 
response messages for each periodicDataIdentifier containing the associated dataRecord parameters. 

The separate periodic data response messages defined to transmit the periodicDataIdentifier data to the client 
following the initial positive response message shall include the periodicDataIdentifier and the data of the 
periodicDataIdentifier, but not the positive response service identifier. The mapping of the periodic response 
message onto certain data link layers is described in the appropriate implementation specifications of 
ISO 14229. 

The documented periodic rate for a specific transmissionMode is defined as the time between any two 
consecutive response messages with the same periodicDataIdentifier, when only a single 
periodicDataIdentifier is scheduled. If multiple periodicDataIdentifiers are scheduled concurrently, the effective 
period between the same periodicDataIdentifier will vary based upon the following design parameters: 

⎯ the call rate of the periodic scheduler, 

⎯ the number of available protocol specific periodic data response message address information IDs 
allocated per scheduler call (e.g., CAN identifier on CAN) 

⎯ the number of periodicDataIdentifiers that can be defined in parallel to be transmitted concurrently. 

These parameter values will impact the extent of how much the effective period between the same 
periodicDataIdentifier will increase if multiple periodicDataIdentifers are transmitted concurrently. Therefore, 
all of the previously mentioned design parameters shall be specified by the vehicle manufacturer. Each time 
the periodic scheduler is called it shall determine if any periodicDataIdentifiers are ready to transmit. 

NOTE Note the periodic rate is an integer multiple of the periodic scheduler call rate. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 127

Example, two distinct ECU implementations may both support a fast transmissionMode with a periodic rate of 
10 ms and a single unique periodic data response message address information ID. If the first implementation 
calls the periodic scheduler every 10ms, the time between the same periodicDataIdentifier would increase to 
20 ms when two periodicDataIdentifiers are scheduled and would increase to 40 ms when four 
periodicDataIdentifiers are scheduled. If the second implementation calls the periodic scheduler every 5 ms, 
the time between the same periodicDataIdentifier would remain at 10 ms when two periodicDataIdentifiers are 
scheduled and would increase to 20 ms when four periodicDataIdentifiers are scheduled. See more examples 
in 10.6.5. 

Upon receiving a ReadDataByPeriodicIdentifier request including the transmissionMode stopSending the 
server shall either stop the periodic transmission of the periodicDataIdentifier(s) contained in the request 
message or stop the transmission of all periodicDataIdentifier if no specific one is specified in the request 
message. The response message to this transmissionMode only contains the service identifier. 

The server may limit the number of periodicDataIdentifiers that can be simultaneously supported as agreed 
upon by the vehicle manufacturer and system supplier. Exceeding the maximum number of 
periodicDataIdentifier that can be simultaneously supported shall result in a single negative response and 
none of the periodicDataIdentifiers in that request shall be scheduled. Repetition of the same 
periodicDataIdentifier in a single request message is not allowed and the server shall ignore them all except 
one periodicDataIdentifer if the client breaks this rule. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.5.2 Request message 

10.5.2.1 Request message definition 

Table 174 defines the request message. 

Table 174 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Request SID M 0x2A RDBPI 

#2 transmissionMode M 0x00 – 0xFF TM 

#3 periodicDataIdentifier[]#1 C 0x00 – 0xFF PDID1 

: : : : : 

#m+2 periodicDataIdentifier[]#m U 0x00 – 0xFF PDIDm 

C: The first periodicDataIdentifier is mandatory to be present in the request message if the transmissionMode is equal 
to sendAtSlowRate, sendAtMediumRate, or sendAtFastRate. In case the transmissionMode is equal to stopSending 
there can either be no periodicDataIdentifier present in order to stop all scheduled periodicDataIdentifier or the client can 
explicitly specify one or more periodicDataIdentifier(s) to be stopped. 

10.5.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

10.5.2.3 Request message data-parameter definition 

Table 175 defines the data-parameters of the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

128 © ISO 2013 – All rights reserved

Table 175 — Request message data-parameter definition 

Definition

transmissionMode 

This parameter identifies the transmission rate of the requested periodicDataIdentifiers to be used by the server (see 
C.4). 

periodicDataIdentifier (#1 to #m) 

This parameter identifies the server data record(s) that are being requested by the client (see C.1 and service description 
above for detailed parameter definition). It shall be possible to request multiple periodicDataIdentifiers with a single 
request. 

10.5.3 Positive response message 

10.5.3.1 Positive response message definition 

It has to be distinguished between the initial positive response message, which indicates that the server 
accepts the service and subsequent periodic data response messages, which include periodicDataIdentifier 
data.

Table 176 defines the initial positive response message to be transmitted by the server when it accepts the 
request. 

Table 176 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Response SID M 0x6A RDBPIPR 

The data of a periodicDataIdentifier is transmitted periodically (with updated data) at a rate determined by the 
transmissionMode parameter of the request. 

After the initial positive response, for each supported periodicDataIdentifier in the request the server shall start 
sending a single periodic data response message as defined below. 

Table 177 defines the periodic data response message data definition. 

Table 177 — Periodic data response message data definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 periodicDataIdentifier M 0x00 – 0xFF PDID 

#2
:

#k+2

dataRecord[] = [  
   data#1 
    : 
   data#k ] 

M
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DREC_ 
DATA_1 
:
DATA_k 

10.5.3.2 Positive response message data-parameter definition 

This service does not support response message data-parameters in the positive response message. 

Table 178 defines the periodic message data-parameters of the defined periodic data response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 129

Table 178 — Periodic message data-parameter definition 

Definition

periodicDataIdentifier 

This parameter references a periodicDataIdentifier from the request message. 

dataRecord 

This parameter is used by the ReadDataByPeriodicIdentifier positive response message to provide the requested data 
record values to the client. The content of the dataRecord is not defined in this document and is vehicle manufacturer 
specific. 

10.5.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 179. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 179 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the request message is invalid or the client exceeded 
the maximum number of periodicDataIdentifiers allowed to be requested at a time. 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. E.g. this could occur if the client requests periodicDataIdentifiers with 
different transmissionModes and the server does not support multiple transmissionModes 
simultaneously. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if 
none of the requested periodicDataIdentifier values are supported by the device; 
none of the requested periodicDataIdentifiers are supported in the current session; 
The specified transmissionMode is not supported by the device; 
the requested dynamicDefinedDataIdentifier has not been assigned yet; 
the client exceeded the maximum number of periodicDataIdentifiers allowed to be scheduled 
concurrently 

0x33 securityAccessDenied SAD

 This NRC shall be sent if at least one of the periodicDataIdentifier is secured and the server 
is not in an unlocked state. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

130 © ISO 2013 – All rights reserved

The evaluation sequence is documented in Figure 18. 

pDID#n
security
check ok?

NO

pDID#n
supported in 
active session?

YES

NRC 0x33NO

YES

at least one pDID is 
supported in the 
active session?

NRC 0x31NO

Loop (multiple pDIDs)

positive response

YES

same check 
for each pDID

NRC 0x22NO

pDID#n
condition
check ok?

mandatory optional manufacturer/supplier
specific

YES

n=0

NRC 0x31NOtransmissionMode
supported?

NRC 0x13NOmin. & max. length 
check

YES

service with SID 
0x2A

NRC 0x31NOscheduler free
at all?

YES

1

further pDID 
available?

YES

NO

scheduler free
to store all supported 
pDIDs requested?

NRC 0x31NO

YES

YES

n++

Key  
1 minimum length is 2 byte if TM = stopSending (SI + TM), minimum length is 3 bytes (SI + TM + pDID) if TM <> 

stopSending, maximum length is 1 byte (SI) + 1byte (TM) + n bytes (pDID(s))  

Figure 18 — NRC handling for ReadDataByPeriodicIdentifier service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 131

10.5.5 Message flow example ReadDataByPeriodicIdentifier 

10.5.5.1 Assumptions 

The examples below show how the ReadDataByPeriodicIdentifer behaves. The client may request a 
periodicDataIdentifier data at any time independent of the status of the server. 

The periodicDataIdentifier examples below are specific to a powertrain device (e.g., engine control module). 
Refer to ISO°15031-2 [6] for further details regarding accepted terms/definitions/acronyms for emission 
related systems. 

10.5.5.2 Example #1 - Read multiple periodicDataIdentifiers 0xE3 and 0x24 at medium rate 

10.5.5.2.1 Assumptions 

The example demonstrates requesting of multiple dataIdentifiers with a single request (where 
periodicDataIdentifier 0xE3 (= dataIdentifier 0xF2E3) contains engine coolant temperature, throttle position, 
engine speed, vehicle speed sensor, and periodicDataIdentifier 0x24 (= dataIdentifier 0xF224) contains 
battery positive voltage, manifold absolute pressure, mass air flow, vehicle barometric pressure, and 
calculated load value). 

The client requests the transmission at medium rate and after a certain amount of time retrieving the periodic 
data the client stops the transmission of the periodicDataIdentifier 0xE3 only. 

10.5.5.2.2 Step #1: Request periodic transmission of the periodicDataIdentifiers 

Table 180 defines the ReadDataByPeriodicIdentifier request message flow example – step #1. 

Table 180 — ReadDataByPeriodicIdentifier request message flow example – step #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Request SID 0x2A RDBPI 

#2 transmissionMode = sendAtMediumRate 0x02 TM_SAMR 

#3 periodicDataIdentifier#1 0xE3 PDID1 

#4 periodicDataIdentifier#2 0x24 PDID2 

Table 181 defines the ReadDataByPeriodicIdentifier initial positive response message flow example – step #1. 

Table 181 — ReadDataByPeriodicIdentifier initial positive response message flow example – step #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Response SID 0x6A RDBPIPR 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

132 © ISO 2013 – All rights reserved

Table 182 defines the ReadDataByPeriodicIdentifier sub-sequent positive response message #1 flows – 
step #1. 

Table 182 — ReadDataByPeriodicIdentifier sub-sequent positive response message #1 flows – step #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 periodicDataIdentifier#1 0xE3 PDID1 

#2 dataRecord [ data#1 ] = ECT 0xA6 DREC_DATA_1 

#3 dataRecord [ data#2 ] = TP 0x66 DREC_DATA_2 

#4 dataRecord [ data#3 ] = RPM 0x07 DREC_DATA_3 

#5 dataRecord [ data#4 ] = RPM 0x50 DREC_DATA_4 

#6 dataRecord [ data#5 ] = VSS 0x00 DREC_DATA_5 

Table 183 defines the ReadDataByPeriodicIdentifier sub-sequent positive response message #2 flows – 
step #1. 

Table 183 — ReadDataByPeriodicIdentifier sub-sequent positive response message #2 flows – step #1 

Message direction Server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 periodicDataIdentifier#2 0x24 PDID2 

#2 dataRecord [ data#1 ] = B+ 0x8C DREC_DATA_1 

#3 dataRecord [ data#2 ] = MAP 0x20 DREC_DATA_2 

#4 dataRecord [ data#3 ] = MAF 0x1A DREC_DATA_3 

#5 dataRecord [ data#4 ] = BARO 0x63 DREC_DATA_4 

#6 dataRecord [ data#5 ] = LOAD 0x4A DREC_DATA_5 

The server transmits the above shown sub-sequent response messages at the medium rate as applicable to 
the server. 

10.5.5.2.3 Step #2: Stop the transmission of the periodicDataIdentifiers 

Table 184 defines the ReadDataByIdentifier request message flow example – step #2. 

Table 184 — ReadDataByIdentifier request message flow example – step #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Request SID 0x2A RDBPI 

#2 transmissionMode = stopSending 0x04 TM_SS 

#3 periodicDataIdentifier#1 0xE3 PDID 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 133

Table 185 defines the ReadDataByIdentifier positive response message flow example – step #2. 

Table 185 — ReadDataByIdentifier positive response message flow example – step #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Response SID 0x6A RDBPIPR 

The server stops the transmission of the periodicDataIdentifier 0xE3 only. The periodicDataIdentifier 0x24 is 
still transmitted at the server medium rate. 

10.5.5.3 Example #2 - Graphical and tabular example of ReadDataByPeriodicIdentifier service 
periodic schedule rates 

10.5.5.3.1 ReadDataByPeriodicIdentifier example overview 

This subclause contains an example of scheduled periodic data, with both a graphical and tabular example of 
the ReadDataByPeriodicIdentifier (0x2A) service.  

The example contains a graphical depiction of what messages (request / response) are transmitted between 
the client and the server application, followed by a table which shows a possible implementation of a server 
periodic scheduler, its variables and how they change each time the background function that checks the 
periodic scheduler is executed. 

In the examples below, the following implementation is defined: 

⎯ The fast periodic rate is 25 ms and the medium periodic rate is 300 ms. 

⎯ The periodic scheduler is checked every 12,5 ms, which means that the periodic scheduler background 
function is called (polled) with this period. Each time the background periodic scheduler is called it will 
traverse the scheduler entries until a single periodic identifier is sent, or until all identifiers in the scheduler 
have been checked and none are ready to transmit. In the example implementation the “periodic 
scheduler transmit index” variable in the tables is the first index checked when traversing the scheduler to 
see if an identifier is ready for transmit. 

⎯ The maximum number of periodicDataIdentifiers which may be scheduled concurrently is 4. 

⎯ One unique periodic data response message address information ID is allocated. 

Since the periodic scheduler poll-rate is 12,5 ms, the fast rate loop counter would be set to 2 (this value is 
based on the scheduled rate (25 ms) divided by the periodic scheduler poll-rate (12,5 ms) or 25 / 12,5) each 
time a fast rate periodicDataIdentifier is sent and the medium rate loop counter would be reset to 24 
(scheduled rate divided by the periodic scheduler poll-rate or 300 / 12,5) each time a medium rate 
periodicDataIdentifier is sent. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

134 © ISO 2013 – All rights reserved

10.5.5.3.2 Example #2 – Read multiple periodicDataIdentifiers 0xE3 and 0x24 at medium rate 

At t = 0,0 ms, the client begins sending the request to schedule 2 periodicDataIdentifiers (0xF2E3 and 
0xF224) at the medium rate (300 ms). For the purposes of this example, the server receives the request and 
executes the periodic scheduler background function the first time t = 25,0 ms. 

R
D

B
PID

req. m
sg.

timetime

Time
P2_client

Time
P2_server

Server
T_Data

Client
T_Data

.req

.ind

.con

.ind

.ind

.req

.con

R
D

B
PID

resp. m
sg.

.con

.req

R
D

B
PID

resp. m
sg.

.ind .con

.req

R
D

B
PID

resp. m
sg.

0 ms

15 ms

25 ms

37,5 ms

.ind .con

.req

R
D

B
PID

resp. m
sg.

.ind .con

.req

R
D

B
PID

resp. m
sg.

325 ms

337,5 ms

:
:

Time
S3_client

1

2

3

4

3

4

P2start P2start

Stop

Start

Restart

Start

P2start

P2start

P2start

P2start

Key  
1 ReadDataByPeriodicIdentifier (0x2A, 0x02, 0xF2E3, 0xF224) request message (sendAtMediumRate) 
2 ReadDataByPeriodicIdentifier positive response message (0x6A, no data included) 
3 ReadDataByPeriodicIdentifier periodic data response message (0xE3, 0xXX, …, 0xXX) 
4 ReadDataByPeriodicIdentifier periodic data response message (0x24, 0xXX, …, 0xXX) 

Figure 19 — Example #2 – periodicDataIdentifiers scheduled at medium rate 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 135

Table 186 shows a possible implementation of the periodic scheduler in the server. The table contains the 
periodic scheduler variables and how they change each time the background function that checks the periodic 
scheduler is executed. 

Table 186 — Example #2: Periodic scheduler table 

time
t
ms

periodic scheduler 
transmit Index 

periodic
identifier sent 

periodic scheduler
loop # 

scheduler[0] 
transmit count 

scheduler[1] 
transmit count 

25,0 0 0xE3 1 0->24 0 

37,5 1 0x24 2 23 0->24 

50,0 0 None 3 22 23 

62,5 0 None 4 21 22 

75,0 0 None 5 20 21 

87,5 0 None 6 19 20 

100,0 0 None 7 18 19 

112,5 0 None 8 17 18 

125,0 0 None 9 16 17 

137,5 0 None 10 15 16 

150,0 0 None 11 14 15 

162,5 0 None 12 13 14 

175,0 0 None 13 12 13 

187,5 0 None 14 11 12 

200,0 0 None 15 10 11 

212,5 0 None 16 9 10 

225,0 0 None 17 8 9 

237,5 0 None 18 7 8 

250,0 0 None 19 6 7 

262,5 0 None 20 5 6 

275,0 0 None 21 4 5 

287,5 0 None 22 3 4 

300,0 0 None 23 2 3 

312,5 0 None 24 1 2 

325,0 0 0xE3 25 0->24 1 

337,5 1 0x24 26 23 0->24 

350,0 0 None 27 22 23 

362,5 0 None 28 21 22 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

136 © ISO 2013 – All rights reserved

10.5.5.4 Example #3 - Graphical and tabular example of ReadDataByPeriodicIdentifier service 
periodic schedule rates 

10.5.5.4.1 ReadDataByPeriodicIdentifier example overview 

This subclause contains an example of scheduled periodic data with both a graphical and tabular example of 
the ReadDataByPeriodicIdentifier (0x2A) service.  

The example is based on the example given in 10.5.5.3. The example contains a graphical depiction of what 
messages (request / response) are transmitted between the client and the server application, followed by a 
table which shows a possible implementation of a server periodic scheduler, its variables and how they 
change each time the background function that checks the periodic scheduler is executed. 

10.5.5.4.2 Read multiple periodicDataIdentifiers at different periodic rates 

In this example, three periodicDataIdentifiers (for simplicity 0x01, 0x02, 0x03) are scheduled at the fast 
periodic rate (25 ms) and then another request is sent for a single periodicDataIdentifier (0x04) to be 
scheduled at the medium periodic rate (300 ms). For the purposes of this example, the server receives the 
first ReadDataByPeriodicIdentifier request (1), sends a positive response (2) without any periodic data and 
executes the periodic scheduler background function for the first time t = 25,0 ms (3). When the second 
ReadDataByPeriodicIdentifier request (5) is received, the server sends a positive response (7) without any 
periodic data and starts executing the periodic scheduler background function at t = 62,5 ms (8) at a 
scheduled medium rate of 300 ms. 

Figure 20 depicts the example #3 – periodicDataIdentifiers scheduled at fast and medium rate. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 137

Client
Application

Server
Application

Time
[t]

:
:

:
:

0
ms

12,5 ms

25 ms

37,5 ms

50 ms

57 ms
62,5 ms

300 ms

312,5 ms

325 ms

337,5 ms

350 ms

362,5 ms

375 ms

387,5 ms

400 ms

412,5 ms

425 ms

M
ed

iu
m

 R
at

e 
= 

31
2,

5 
m

s

Fa
st

 R
at

e
= 

37
,5

 m
s

Fa
st

 R
at

e
= 

50
 m

s
Fa

st
 R

at
e

= 
37

,5
 m

s

1
2
3

4
5

6
7

8

3

4

6
3

4

6

8

3

4

6

3

Key  
1 ReadDataByPeriodicIdentifier (0x2A, 0x03, 0xF201, 0xF202, 0xF203) request message (sendAtFastRate) 
2 ReadDataByPeriodicIdentifier positive response message (0x6A, no data included) 
3 ReadDataByPeriodicIdentifier periodic data response message (0x01, 0xXX, …, 0xXX) 
4 ReadDataByPeriodicIdentifier periodic data response message (0x02, 0xXX, …, 0xXX) 
5 ReadDataByPeriodicIdentifier (0x2A, 0x02, 0xF204) request message (sendAtMediumRate) 
6 ReadDataByPeriodicIdentifier periodic data response message (0x03, 0xXX, …, 0xXX) 
7 ReadDataByPeriodicIdentifier positive response message (0x6A, no data included) 
8 ReadDataByPeriodicIdentifier periodic data response message (04, 0xXX, …, 0xXX) 

Figure 20 — Example #3 – periodicDataIdentifiers scheduled at fast and medium rate 

Table 187 shows a possible implementation of the periodic scheduler in the server. The table contains the 
periodic scheduler variables and how they change each time the background function that checks the periodic 
scheduler is executed. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

138 © ISO 2013 – All rights reserved

Table 187 — Example #3: Periodic scheduler table 

time
t
ms

periodic
scheduler 
transmit 
index

periodic
identifier
sent

periodic
scheduler 
loop # 

scheduler[0] 
transmit 
count

scheduler[1] 
transmit 
count

scheduler[2] 
transmit 
count

scheduler[3] 
transmit  
count

25,0 0 0x01 1 0->2 0 0 N/A 

37,5 1 0x02 2 1 0->2 0 N/A 

50,0 2 0x03 3 0 1 0->2 0 

62,5 3 0x04 4 0 0 1 0->24 

75,0 0 0x01 5 0->2 0 0 23 

87,5 1 0x02 6 1 0->2 0 22 

100,0 2 0x03 7 0 1 0->2 21 

112,5 3 0x01 8 0->2 0 1 20 

125,0 1 0x02 9 1 0->2 0 19 

137,5 2 0x03 10 0 1 0->2 18 

150,0 3 0x01 11 0->2 0 1 17 

162,5 1 0x02 12 1 0->2 0 16 

175,0 2 0x03 13 0 1 0->2 15 

187,5 3 0x01 14 0->2 0 1 14 

200,0 1 0x02 15 1 0->2 0 13 

212,5 2 0x03 16 0 1 0->2 12 

225,0 3 0x01 17 0->2 0 1 11 

237,5 1 0x02 18 1 0->2 0 10 

250,0 2 0x03 19 0 1 0->2 9 

262,5 3 0x01 20 0->2 0 1 8 

275,0 1 0x02 21 1 0->2 0 7 

287,5 2 0x03 22 0 1 0->2 6 

300,0 3 0x01 23 0->2 0 1 5 

312,5 1 0x02 24 1 0->2 0 4 

325,0 2 0x03 25 0 1 0->2 3 

337,5 3 0x01 26 0->2 0 1 2 

350,0 1 0x02 27 1 0->2 0 1 

362,5 2 0x03 28 0 1 0->2 0 

375,0 3 0x04 29 0 0 1 0->24 

387,5 0 0x01 30 0->2 0 0 23 

10.5.5.5 Example #4 - Tabular example of ReadDataByPeriodicIdentifier service periodic schedule 
rates 

10.5.5.5.1 ReadDataByPeriodicIdentifier example overview 

This subclause contains an example of scheduled periodic data with a tabular example of the 
ReadDataByPeriodicIdentifier (0x2A) service. The example contains a table which shows a possible 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 139

implementation of a server periodic scheduler, its variables and how they change each time the background 
function that checks the periodic scheduler is executed. 

In the examples below, the following information is defined: 

⎯ The fast periodic rate is 10 ms. 

⎯ The periodic scheduler is checked every 10 ms, which means that the periodic scheduler background 
function is called (polled) with this period. 

⎯ The maximum number of periodicDataIdentifiers which may be scheduled concurrently is 16. 

⎯ Two unique periodic data response message address information IDs are allocated. 

Since the periodic scheduler poll-rate is 10 ms, the fast rate loop counter would be set to 1 (this value is based 
on the scheduled rate (10 ms) divided by the periodic scheduler poll-rate (10 ms)) each time a fast rate 
periodicDataIdentifier is sent. 

At t = 0,0 ms, the client begins sending the request to schedule 2 periodicDataIdentifier (for simplicity 0x01, 
0x02) at the fast periodic rate (10 ms). For the purposes of this example, the server receives the request and 
executes the periodic scheduler background function the first time t = 10 ms. 

Table 188 — Example #4: Periodic scheduler table 

Time t 
ms Response message ID# Periodic identifier sent Periodic scheduler loop # 

10 1 0x01 1 

10 2 0x02 1 

20 1 0x01 2 

20 2 0x02 2 

30 1 0x01 3 

30 2 0x02 3 

40 1 0x01 4 

40 2 0x02 4 

50 1 0x01 5 

50 2 0x02 5 

60 1 0x01 6 

60 2 0x02 6 

70 1 0x01 7 

70 2 0x02 7 

80 1 0x01 8 

80 2 0x02 8 

90 1 0x01 9 

90 2 0x02 9 

100 1 0x01 10 

100 2 0x02 10 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

140 © ISO 2013 – All rights reserved

10.5.5.6 Example #5 - Tabular example of ReadDataByPeriodicIdentifier service periodic schedule 
rates 

10.5.5.6.1 ReadDataByPeriodicIdentifier example overview 

This subclause uses the same assumptions as 10.5.5.5.1. In this example, more periodicDataIdentifiers than 
unique periodic data response message address information IDs in the response message set are requested. 

At t = 0,0 ms, the client begins sending the request to schedule 3 periodicDataIdentifier (for simplicity 0x01, 
0x02, 0x03) at the fast periodic rate (10 ms). For the purposes of this example, the server receives the request 
and executes the periodic scheduler background function the first time t = 10 ms. 

Table 189 — Example #5: Periodic scheduler table 

Time t 
ms Response message ID# Periodic identifier sent Periodic scheduler loop # 

10 1 0x01 1 

10 2 0x02 1 

20 1 0x03 2 

20 2 0x01 2 

30 1 0x02 3 

30 2 0x03 3 

40 1 0x01 4 

40 2 0x02 4 

50 1 0x03 5 

50 2 0x01 5 

60 1 0x02 6 

60 2 0x03 6 

70 1 0x01 7 

70 2 0x02 7 

80 1 0x03 8 

80 2 0x01 8 

90 1 0x02 9 

90 2 0x03 9 

100 1 0x01 10 

100 2 0x02 10 

10.6 DynamicallyDefineDataIdentifier (0x2C) service 

10.6.1 Service description 

The DynamicallyDefineDataIdentifier service allows the client to dynamically define in a server a data identifier 
that can be read via the ReadDataByIdentifier service at a later time. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 141

The intention of this service is to provide the client with the ability to group one or more data elements into a 
data superset that can be requested en masse via the ReadDataByIdentifier or ReadDataByPeriodicIdentifier 
service. The data elements to be grouped together can either be referenced by: 

⎯ a source data identifier, a position and size or 

⎯ a memory address and a memory length, or 

⎯ a combination of the two methods listed above using multiple requests to define the single data element. 
The dynamically defined dataIdentifier will then contain a concatenation of the data-parameter definitions. 

This service allows greater flexibility in handling ad hoc data needs of the diagnostic application that extend 
beyond the information that can be read via statically defined data identifiers, and can also be used to reduce 
bandwidth utilization by avoiding overhead penalty associated with frequent request/response transactions. 

The definition of the dynamically defined data identifier can either be done via a single request message or via 
multiple request messages. This allows for the definition of a single data element referencing source 
identifier(s) and memory addresses. The server has to concatenate the definitions for the single data element. 
A redefinition of a dynamically defined data identifier can be achieved by clearing the current definition and 
start over with the new definition. When multiple DynamicallyDefineDataIdentifier request messages are used 
to configure a single DataIdentifier and the server detects the overrun of the maximum number of bytes during 
a subsequent request for this DataIdentifier (e.g. definition of a periodicDataIdentifier), then the server shall 
leave the definition of the DataIdentifier as it was prior to the request that would have led to the overrun. 

Although this service does not prohibit such functionality, it is not recommended for the client to reference one 
dynamically defined data record from another, because deletion of the referenced record could create data 
consistency problems within the referencing record. 

This service also provides the ability to clear an existing dynamically defined data record. Requests to clear a 
data record shall be positively responded to if the specified data record identifier is within the range of valid 
dynamic data identifiers supported by the server (see C.1 for more details). 

The server shall maintain the dynamically defined data record until it is cleared or as specified by the vehicle 
manufacturer (e.g., deletion of dynamically defined data records upon session transition or upon power down 
of the server). 

The server can implement data records in two different ways: 

⎯ Composite data records containing multiple elemental data records which are not individually referenced. 

⎯ Unique 2-byte identification “tag” or dataIdentifier (DID) value for individual, elemental data records 
supported within the server (an example elemental data record, or DID, is engine speed or intake air 
temperature). This implementation of data records is a subset of a composite data record implementation, 
because it only references a single elemental data record instead of a data record including multiple 
elemental data records. 

Both types of implementing data records are supported by the DynamicallyDefineDataIdentifier service to 
define a dynamic data identifier. 

⎯ Composite block of data: The position parameter has to reference the starting point in the composite 
block of data and the size parameter has to reflect the length of data to be placed in the dynamically 
defined data identifier. The tester is responsible to not include only a portion of an elemental data record 
of the composite block of data in the dynamic data record. 

⎯ 2-byte DID: The position parameter has to be set to one and the size parameter has to reflect the length 
of the DID (length of the elemental data record). The tester is responsible to not include only a portion of 
the 2-byte DID value in the dynamic data record. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

142 © ISO 2013 – All rights reserved

The ordering of the data within the dynamically defined data record shall be of the same order as it was 
specified in the client request message(s). Also, first position of the data specified in the client’s request shall 
be oriented such that it occurs closest to the beginning of the dynamic data record, in accordance with the 
ordering requirement mentioned in the preceding sentence. 

In addition to the definition of a dynamic data identifier via a logical reference (a record data identifier) this 
service provides the capability to define a dynamically defined data identifier via an absolute memory address 
and a memory length information. This mechanism of defining a dynamic data identifier is recommended to be 
used only during the development phase of a server. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.6.2 Request message 

10.6.2.1 Request message definition 

Table 190 defines the request message – sub-function = defineByIdentifier. 

Table 190 — Request message definition - sub-function = defineByIdentifier 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID M 0x2C DDDI 

#2
sub-function = [ 
   definitionType  = defineByIdentifier ] M 0x01 

LEV_
DBID

#3
#4

dynamicallyDefinedDataIdentifier[] = [ 
        byte#1 (MSB) 
        byte#2 (LSB) ] 

M
M

0xF2 / 0xF3 
0x00 – 0xFF 

DDDDI_ 
HB
LB

#5
#6

sourceDataIdentifier[]#1 = [ 
      byte#1 (MSB) 
      byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

SDI_
HB
LB

#7 positionInSourceDataRecord#1 M 0x01 – 0xFF PISDR#1 

#8 memorySize#1 M 0x00 – 0xFF MS#1 

: : : : : 

#n-3
#n-2

sourceDataIdentifier[]#m = [ 
      byte#1 (MSB) 
      byte#2 (LSB) ] 

U
U

0x00 – 0xFF 
0x00 – 0xFF 

SDI_
HB
LB

#n-1 positionInSourceDataRecord#m U 0x01 – 0xFF PISDR#m 

#n memorySize#m U 0x00 – 0xFF MS#m 

Table 191 defines the request message – sub-function = defineByMemoryAddress. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 143

Table 191 — Request message definition - sub-function = defineByMemoryAddress 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID M 0x2C DDDI 

#2
sub-function = [ 
   definitionType  = defineByMemoryAddress ] M 0x02 

LEV_
DBMA 

#3
#4

dynamicallyDefinedDataIdentifier[] = [ 
        byte#1 (MSB) 
        byte#2 (LSB) ] 

M
M

0xF2 / 0xF3 
0x00 – 0xFF 

DDDDI_ 
HB
LB

#5 addressAndLengthFormatIdentifier M1 0x00 – 0xFF ALFID 

#6
:

#(m-1)+6 

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

M
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#m+6
:

#m+6+(k-1) 

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

M
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

: : : : : 

#n-k-(m-1) 
:

#n-k

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

U
:

U/C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#n-(k-1) 
:

#n

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

U
:

U/C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

M1: The addressAndLengthFormatIdentifier parameter is only present once at the very beginning of the request 
message and defines the length of the address and length information for each memory location reference throughout the 
whole request message. 
C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier. 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

Table 192 defines the request message – sub-function = clearDynamicallyDefinedDataIdentifier. 

Table 192 — Request message definition - sub-function = clearDynamicallyDefinedDataIdentifier 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID M 0x2C DDDI 

#2
sub-function = [ 

definitionType  = 
clearDynamicallyDefinedDataIdentifier ] 

M 0x03 
LEV_

CDDDID

#3
#4

dynamicallyDefinedDataIdentifier[] = [ 
        byte#1 (MSB) 
        byte#2 (LSB) ] 

C
C

0xF2 / 0xF3 
0x00 – 0xFF 

DDDDI_ 
HB
LB

C: The presence of this parameter requires the server to clear the dynamicallyDefinedDataIdentifier included in byte#1 
and byte#2. If the parameter is not present all dynamicallyDefinedDataIdentifier in the server shall be cleared. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

144 © ISO 2013 – All rights reserved

10.6.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-parameters defined as valid for the request message of this service are indicated in Table 193 
(suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 193 — Request message sub-function parameter definition 

Bits 6 – 0 Description Cvt Mnemonic 

00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

01 defineByIdentifier U DBID 

 This value shall be used to specify to the server that definition of the dynamic 
data identifier shall occur via a data identifier reference. 

02 defineByMemoryAddress U DBMA 

 This value shall be used to specify to the server that definition of the dynamic 
data identifier shall occur via an address reference. 

03 clearDynamicallyDefinedDataIdentifier U CDDDI 

 This value shall be used to clear the specified dynamic data identifier. Note that 
the server shall positively respond to a clear request from the client, even if the 
specified dynamic data identifier doesn’t exist at the time of the request. 
However, the specified dynamic data identifier is required to be within a valid 
range (see C.1 for allowable ranges). If the specified dynamic data identifier is 
being reported periodically at the time of the request, the dynamic identifier shall 
first be stopped and then cleared. 

04-7F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

10.6.2.3 Request message data-parameter definition 

Table 194 defines the data-parameters of the request message. 

Table 194 — Request message data-parameter definition 

Definition

dynamicallyDefinedDataIdentifier 

This parameter specifies how the dynamic data record, which is being defined by the client, will be referenced in future 
calls to the service ReadDataByIdentifier or ReadDataByPeriodicDataIdentifier. The dynamicallyDefinedDataIdentifier 
shall be handled as a dataIdentifier in the ReadDataByIdentifier service (see C.1 for further details). It shall be handled as 
a periodicRecordIdentifier in the ReadDataByPeriodicDataIdentifier service (see the ReadDataByPeriodicDataIdentifier 
service for requirements on the value of this parameter in order to be able to request the dynamically defined data 
identifier periodically). 

sourceDataIdentifier 

This parameter is only present for sub-function = defineByIdentifier. This parameter logically specifies the source of 
information to be included into the dynamic data record. For example, this could be a 2-byte DID used to reference 
engine speed, or a 2-byte DID used to reference a composite block of information containing engine speed, vehicle 
speed, intake air temperature, etc. (see C.1 for further details).  

positionInSourceDataRecord 

This parameter is only present for sub-function = defineByIdentifier. This 1-byte parameter is used to specify the starting 
byte position of the excerpt of the source data record to be included in the dynamic data record. A position of one shall 
reference the first byte of the data record referenced by the sourceDataIdentifier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 145

Table 194 — (continued)

Definition

addressAndLengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately (see H.1 for example values): 
bit 7 - 4: Length (number of bytes) of the memorySize parameter(s); 
bit 3 - 0: Length (number of bytes) of the memoryAddress parameter(s); 

memoryAddress 

This parameter is only present for sub-function = defineByMemoryAddress. This parameter specifies the memory source 
address of information to be included into the dynamic data record. The number of bytes used for this address is defined 
by the low nibble (bit 3 - 0) of the addressAndLengthFormatIdentifier. Byte#m in the memoryAddress parameter is always 
the least significant byte of the address being referenced in the server. The most significant byte(s) of the address can be 
used as a memory identifier. 

memorySize 

This parameter is used to specify the total number of bytes from the source data record/memory address that are to be 
included in the dynamic data record. 
In case of sub-function = defineByIdentifier then the positionInSourceDataRecord parameter is used in addition to specify 
the starting position in the source data identifier from where the memorySize applies. The number of bytes used for this 
size is one byte. 
In case of sub-function = defineByMemoryAddress then this parameter reflects the number of bytes to be included in the 
dynamically defined data identifier starting at the specified memoryAddress. The number of bytes used for this size is 
defined by the high nibble (bit 7 - 4) of the addressAndLengthFormatIdentifier. 

10.6.3 Positive response message 

10.6.3.1 Positive response message definition 

Table 195 defines the positive response message. 

Table 195 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID M 0x6C DDDIPR 

#2 sub-function = [ definitionType ]  M 0x00 – 0x7F DM 

#3
#4

dynamicallyDefinedDataIdentifier [] = [ 
        byte#1 (MSB) 
        byte#2 (LSB) ] 

C
C

0xF2 / 0xF3 
0x00 – 0xFF 

DDDDI_ 
HB
LB

C: The presence of this parameter is required if the dynamicallyDefinedDataIdentifier parameter is present in the 
request message, otherwise the parameter shall not be included. 

10.6.3.2 Positive response message data-parameter definition 

Table 196 defines the data-parameters of the positive response message. 

Table 196 — Response message data-parameter definition 

Definition

definitionType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

dynamicallyDefinedDataIdentifier 

This parameter is an echo of the data-parameter dynamicallyDefinedDataIdentifier from the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

146 © ISO 2013 – All rights reserved

10.6.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 197. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 197 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action.  

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ Any data identifier (dynamicallyDefinedDataIdentifier or any sourceDataIdentifier) in the 

request message is not supported/invalid; 
⎯ The positionInSourceDataRecord was incorrect (less than 1, or greater than maximum 

allowed by server); 
⎯ Any memory address in the request message is not supported in the server. 
⎯ The specified memorySize was invalid; 
⎯ The amount of data to be packed into the dynamic data identifier exceeds the maximum 

allowed by the server; 
⎯ The specified addressAndLengthFormatIdentifier is not valid; 
⎯ The total length of a dynamically defined periodicDataIdentifier exceeds the maximum 

length that fits into a single frame of the data link used for transmission of the periodic 
response message; 

0x33 securityAccessDenied SAD

 This NRC shall be sent if:  
⎯ Any data identifier (dynamicallyDefinedDataIdentifier or any sourceDataIdentifier) in the 

request message is secured and the server is not in an unlocked state; 
⎯ Any memory address in the request message is secured and the server is not in an 

unlocked state; 

10.6.5 Message flow examples DynamicallyDefineDataIdentifier 

10.6.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a 
DynamicallyDefineDataIdentifier service. 

The service in this example is not limited by any restriction of the server. 

In the first example the server supports 2-byte identifiers (DIDs), which reference a single data information. 
The example builds a dynamic data identifier using the defineByIdentifier method and then sends a 
ReadDataByIdentifier request to read the just configured dynamic data identifier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 147

In the second example the server supports data identifiers, which reference a composite block of data 
containing multiple data information. The example builds a dynamic identifier also using the defineByIdentifier 
method, and sends a ReadDataByIdentifier request to read the just defined data identifier. 

The third example builds a dynamic data identifier using the defineByMemoryAddress method, and sends a 
ReadDataByIdentifier request to read the just defined data identifier. 

In the fourth example the server supports data identifiers, which reference a composite block of data 
containing multiple data information. The example builds a dynamic data identifier using the defineByIdentifier 
method and then uses the ReadDataByPeriodicIdentifier service to requests the dynamically defined data 
identifier to be sent periodically by the server. 

The fifth example demonstrates the deletion of a dynamically defined data identifier. 

Table 198 shall be used for the examples below. The values being reported may change over time on a real 
vehicle, but are shown to be constants for the sake of clarity. 

Refer to ISO 15031-2 [6] for further details regarding accepted terms/definitions/acronyms for emissions-
related systems. 

For all examples the client requests to have a response message by setting the 
suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to "FALSE" ('0'). 

Table 198 — Composite data blocks - DataIdentifier definitions 

Data Identifier 
(block) Data Byte Data Record Contents Byte Value 

0x010A #1 dataRecord [ data#1 ]  = B+ 0x8C 

#2 dataRecord [ data#2 ]  = ECT 0xA6 

#3 dataRecord [ data#3 ]  = TP 0x66 

#4 dataRecord [ data#4 ]  = RPM 0x07 

#5 dataRecord [ data#5 ]  = RPM 0x50 

#6 dataRecord [ data#6 ]  = MAP 0x20 

#7 dataRecord [ data#7 ]  = MAF 0x1A 

#8 dataRecord [ data#8 ]  = VSS 0x00 

#9 dataRecord [ data#9 ]  = BARO 0x63 

#10 dataRecord [ data#10 ]  = LOAD 0x4A 

#11 dataRecord [ data#11 ]  = IAC 0x82 

#12 dataRecord [ data#12 ]  = APP 0x7E 

0x050B #1 dataRecord [ data#1 ]  = SPARKADV 0x00 

#2 dataRecord [ data#2 ]  = KS 0x91 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

148 © ISO 2013 – All rights reserved

Table 199 defines the elemental data records – DID definitions. 

Table 199 — Elemental data records - DID definitions 

Data Identifier 
(DID) Data Byte Data Record Contents Byte Value 

0x1234 #1 EOT (MSB) 0x4C 

 #2 EOT (LSB) 0x36 

0x5678 #1 AAT 0x4D 

0x9ABC #1 EOL (MSB) 0x49 

 #2 EOL 0x21 

 #3 EOL 0x00 

 #4 EOL (LSB) 0x17 

Table 200 defines the memory data records – Memory Address definitions. 

Table 200 — Memory data records - Memory Address definitions 

Memory Address Data Byte Data Record Contents Byte Value 

0x21091968 #1 dataRecord [ data#1 ]  = B+ 0x8C 

#2 dataRecord [ data#2 ]  = ECT 0xA6 

#3 dataRecord [ data#3 ]  = TP 0x66 

#4 dataRecord [ data#4 ]  = RPM 0x07 

#5 dataRecord [ data#5 ]  = RPM 0x50 

#6 dataRecord [ data#6 ]  = MAP 0x20 

#7 dataRecord [ data#7 ]  = MAF 0x1A 

#8 dataRecord [ data#8 ]  = VSS 0x00 

#9 dataRecord [ data#9 ]  = BARO 0x63 

#10 dataRecord [ data#10 ]  = LOAD 0x4A 

#11 dataRecord [ data#11 ]  = IAC 0x82 

#12 dataRecord [ data#12 ]  = APP 0x7E 

0x13101994 #1 dataRecord [ data#1 ]  = SPARKADV 0x00 

#2 dataRecord [ data#2 ]  = KS 0x91 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 149

10.6.5.2 Example #1: DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier 

The example in Table 201 will build up a dynamic data identifier (DDDI 0xF301) containing engine oil 
temperature, ambient air temperature, and engine oil level using the 2-byte DIDs as the reference for the 
required data. 

Table 201 — DynamicallyDefineDataIdentifier request DDDDI 0xF301 message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByIdentifier,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

#5 sourceDataIdentifier#1 [ byte#1 ] (MSB) - Engine Oil Temperature 0x12 SDI_B1 

#6 sourceDataIdentifier#1 [ byte#2 ] 0x34 SDI_B2 

#7 positionInSourceDataRecord#1 0x01 PISDR#1 

#8 memorySize#1 0x02 MS#1 

#9 sourceDataIdentifier#2 [ byte#1 ] (MSB) - Ambient Air Temperature 0x56 SDI_B1 

#10 sourceDataIdentifier#2 [ byte#2 ] 0x78 SDI_B2 

#11 positionInSourceDataRecord#2 0x01 PISDR#2 

#12 memorySize#2 0x01 MS#2 

#13 sourceDataIdentifier#3 [ byte#1 ] (MSB) - Engine Oil Level 0x9A SDI_B1 

#14 sourceDataIdentifier#3 [ byte#2 ] 0xBC SDI_B2 

#15 positionInSourceDataRecord#3 0x01 PISDR#3 

#16 memorySize#3 0x04 MS#3 

Table 202 defines the DynamicallyDefineDataIdentifier positive response DDDDI 0xF301 message flow 
example #1. 

Table 202 — DynamicallyDefineDataIdentifier positive response DDDDI 0xF301 message flow example 
#1

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByIdentifier 0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

150 © ISO 2013 – All rights reserved

Table 203 defines the ReadDataByIdentifier request DDDDI 0xF301 message flow example #1. 

Table 203 — ReadDataByIdentifier request DDDDI 0xF301 message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x01 DID_B2 

Table 204 defines the ReadDataByIdentifier positive response DDDDI 0xF301 message flow example #1. 

Table 204 — ReadDataByIdentifier positive response DDDDI 0xF301 message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x01 DID_B2 

#4 dataRecord [ data#1 ] = EOT 0x4C DREC_DATA_1 

#5 dataRecord [ data#2 ] = EOT 0x36 DREC_DATA_2 

#6 dataRecord [ data#3 ] = AAT 0x4D DREC_DATA_3 

#7 dataRecord [ data#4 ] = EOL  0x49 DREC_DATA_4 

#8 dataRecord [ data#5 ] = EOL 0x21 DREC_DATA_5 

#9 dataRecord [ data#6 ] = EOL 0x00 DREC_DATA_6 

#10 dataRecord [ data#7 ] = EOL 0x17 DREC_DATA_7 

10.6.5.3 Example #2: DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier 

The example in Table 205 will build up a dynamic data identifier (DDDDI 0xF302) containing engine coolant 
temperature (from data record 0x010A), engine speed (from data record 0x010A), IAC Pintle Position (from 
data record 0x010A) and knock sensor (from data record 0x050B). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 151

Table 205 — DynamicallyDefineDataIdentifier request DDDDI 0xF302 message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByIdentifier,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x02 DDDDI_B2 

#5 sourceDataIdentifier#1 [ byte#1 ] (MSB) 0x01 SDI_B1 

#6 sourceDataIdentifier#1 [ byte#2 ] (LSB) 0x0A SDI_B2 

#7 positionInSourceDataRecord#1 - Engine Coolant Temperature 0x02 PISDR#1 

#8 memorySize#1 0x01 MS#1 

#9 sourceDataIdentifier#2 [ byte#1 ] (MSB) 0x01 SDI_B1 

#10 sourceDataIdentifier#2 [ byte#2 ] (LSB) 0x0A SDI_B2 

#11 positionInSourceDataRecord#2 - Engine Speed 0x04 PISDR#2 

#12 memorySize#2 0x02 MS#2 

#13 sourceDataIdentifier#3 [ byte#1 ] (MSB) 0x01 SDI_B1 

#14 sourceDataIdentifier#3 [ byte#2 ] (LSB) 0x0A SDI_B2 

#15 positionInSourceDataRecord#3 – Idle Air Control 0x0B PISDR#3 

#16 memorySize#3 0x01 MS#3 

#17 sourceDataIdentifier#4 [ byte#1 ] (MSB) 0x05 SDI_B1 

#18 sourceDataIdentifier#4 [ byte#2 ] (LSB) 0x0B SDI_B2 

#19 positionInSourceDataRecord#4 - Knock Sensor 0x02 PISDR#4 

#20 memorySize#4 0x01 MS#4 

Table 206 defines the DynamicallyDefineDataIdentifier positive response DDDDI 0xF302 message flow 
example #2. 

Table 206 — DynamicallyDefineDataIdentifier positive response DDDDI 0xF302 message flow example 
#2

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByIdentifier 0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x02 DDDDI_B2 

Table 207 defines the ReadDataByIdentifier request DDDDI 0xF302 message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

152 © ISO 2013 – All rights reserved

Table 207 — ReadDataByIdentifier request DDDDI 0xF302 message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x02 DID_B2 

Table 208 defines the ReadDataByIdentifier positive response DDDDI 0xF302 message flow example #2. 

Table 208 — ReadDataByIdentifier positive response DDDDI 0xF302 message flow example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x02 DID_B2 

#4 dataRecord [ data#1 ] = ECT 0xA6 DREC_DATA_1 

#5 dataRecord [ data#2 ] = RPM 0x07 DREC_DATA_2 

#6 dataRecord [ data#3 ] = RPM 0x50 DREC_DATA_3 

#7 dataRecord [ data#4 ] = IAC 0x82 DREC_DATA_4 

#8 dataRecord [ data#5 ] = KS 0x91 DREC_DATA_5 

10.6.5.4 Example #3: DynamicallyDefineDataIdentifier, sub-function = defineByMemoryAddress 

The example in Table 209 will build up a dynamic data identifier (DDDDI 0xF302) containing engine coolant 
temperature (from memory block starting at memory address 0x21091969), engine speed (from memory block 
starting at memory address 0x2109196B), and knock sensor (from memory block starting at memory address 
0x13101995). 

Table 209 — DynamicallyDefineDataIdentifier request DDDDI 0xF302 message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByMemoryAddress,  
suppressPosRspMsgIndicationBit = FALSE 

0x02 DBMA 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x02 DDDDI_B2 

#5 addressAndLengthFormatIdentifier 0x14 ALFID 

#6 memoryAddress#1 [ byte#1 ] (MSB) - Engine Coolant Temperature 0x21 MA_1_B1 

#7 memoryAddress#1 [ byte#2 ] 0x09 MA_1_B2 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 153

Table 209 — (continued)

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#8 memoryAddress#1 [ byte#3 ] 0x19 MA_1_B3 

#9 memoryAddress#1 [ byte#4 ] 0x69 MA_1_B4 

#10 memorySize#1 0x01 MS#1 

#11 memoryAddress#2 [ byte#1 ] (MSB) - Engine Speed 0x21 MA_2_B1 

#12 memoryAddress#2 [ byte#2 ] 0x09 MA_2_B2 

#13 memoryAddress#2 [ byte#3 ] 0x19 MA_2_B3 

#14 memoryAddress#2 [ byte#4 ] 0x6B MA_2_B4 

#15 memorySize#2 0x02 MS#2 

#16 memoryAddress#3 [ byte#1 ] (MSB) - Knock Sensor 0x13 MA_3_B1 

#17 memoryAddress#3 [ byte#2 ] 0x10 MA_3_B2 

#18 memoryAddress#3 [ byte#3 ] 0x19 MA_3_B3 

#19 memoryAddress#3 [ byte#4 ] 0x95 MA_3_B4 

#20 memorySize#3 0x01 MS#3 

Table 210 defines the DynamicallyDefineDataIdentifier positive response DDDDI 0xF302 message flow 
example #3. 

Table 210 — DynamicallyDefineDataIdentifier positive response DDDDI 0xF302 message flow example 
#3

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByMemoryAddress 0x02 DBMA 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x02 DDDDI_B2 

Table 211 defines the ReadDataByIdentifier request DDDDI 0xF302 message flow example #3. 

Table 211 — ReadDataByIdentifier request DDDDI 0xF302 message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x02 DID_B2 

Table 212 defines the ReadDataByIdentifier positive response DDDDI 0xF302 message flow example #3. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

154 © ISO 2013 – All rights reserved

Table 212 — ReadDataByIdentifier positive response DDDDI 0xF302 message flow example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x02 DID_B2 

#4 dataRecord [ data#1 ] = ECT 0xA6 DREC_DATA_1 

#5 dataRecord [ data#2 ] = RPM 0x07 DREC_DATA_2 

#6 dataRecord [ data#3 ] = RPM 0x50 DREC_DATA_3 

#7 dataRecord [ data#4 ] = KS 0x91 DREC_DATA_4 

10.6.5.5 Example #4: DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier 

The example in Table 213 will build up a dynamic data identifier (DDDDI 0xF2E7) containing engine coolant 
temperature (from data record 0x010A), engine speed (from data record 0x010A), and knock sensor (from 
data record 0x050B). 

The value for the dynamic data identifier is choosen out of the range that can be used to request data 
periodically. Following the definition of the dynamic data identifier the client requests the data identifier to be 
sent periodically (fast rate). 

Table 213 — DynamicallyDefineDataIdentifier request DDDDI 0xF2E7 message flow example #4 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByIdentifier,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF2 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0xE7 DDDDI_B2 

#5 sourceDataIdentifier#1 [ byte#1 ] (MSB) 0x01 SDI_B1 

#6 sourceDataIdentifier#1 [ byte#2 ] (LSB) 0x0A SDI_B2 

#7 positionInSourceDataRecord#1 - Engine Coolant Temperature 0x02 PISDR 

#8 memorySize#1 0x01 MS 

#9 sourceDataIdentifier#2 [ byte#1 ] (MSB) 0x01 SDI_B1 

#10 sourceDataIdentifier#2 [ byte#2 ] (LSB) 0x0A SDI_B2 

#11 positionInSourceDataRecord#2 - Engine Speed 0x04 PISDR 

#12 memorySize#2 0x02 MS 

#13 sourceDataIdentifier#3 [ byte#1 ] (MSB) 0x05 SDI_B1 

#14 sourceDataIdentifier#3 [ byte#2 ] (LSB) 0x0B SDI_B2 

#15 positionInSourceDataRecord#3 - Knock Sensor 0x02 PISDR 

#16 memorySize#3 0x01 MS 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 155

Table 214 defines the DynamicallyDefineDataIdentifier positive response DDDDI 0xF2E7 message flow 
example #4. 

Table 214 — DynamicallyDefineDataIdentifier positive response DDDDI 0xF2E7 message flow example 
#4

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByIdentifier 0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF2 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0xE7 DDDDI_B2 

Table 215 defines the ReadDataByPeriodicIdentifier request DDDDI 0xF2E7 message flow example #4. 

Table 215 — ReadDataByPeriodicIdentifier request DDDDI 0xF2E7 message flow example #4 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Request SID 0x2A RDBPI 

#2 transmissionMode = sendAtFastRate 0x04 TM 

#3 PeriodicDataIdentifier 0xE7 PDID 

Table 216 defines the ReadDataByPeriodicIdentifier initial positive message flow example #4. 

Table 216 — ReadDataByPeriodicIdentifier initial positive message flow example #4 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByPeriodicIdentifier Response SID 0x6A RDBPIPR 

Table 217 and Table 218 define the ReadDataByPeriodicIdentifier periodic data response #1 DDDDI 0xF2E7 
message flow example #4. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

156 © ISO 2013 – All rights reserved

Table 217 — ReadDataByPeriodicIdentifier periodic data response #1 DDDDI 0xF2E7 message flow 
example #4 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 PeriodicDataIdentifier 0xE7 PDID 

#2 dataRecord [ data#1 ] = ECT 0xA6 DREC_DATA_1 

#3 dataRecord [ data#2 ] = RPM 0x07 DREC_DATA_2 

#4 dataRecord [ data#3 ] = RPM 0x50 DREC_DATA_3 

#5 dataRecord [ data#4 ] = KS 0x91 DREC_DATA_4 

NOTE Multiple response messages with different byte values are not shown in this example. 

Table 218 — ReadDataByPeriodicIdentifier periodic data response #n DDDDI 0xF2E7 message flow 
example #4 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 periodicDataIdentifier 0xE7 PDID 

#2 dataRecord [ data#1 ] = ECT 0xA6 DREC_DATA_1 

#3 dataRecord [ data#2 ] = RPM 0x07 DREC_DATA_2 

#4 dataRecord [ data#3 ] = RPM 0x55 DREC_DATA_3 

#5 dataRecord [ data#4 ] = KS 0x98 DREC_DATA_4 

10.6.5.6 Example #5: DynamicallyDefineDataIdentifier, sub-function = clearDynamicallyDefined-
DataIdentifier 

The example in Table 219 demonstrates the clearing of a dynamicallyDefinedDataIdentifier, and assumes that 
DDDDI 0xF303 exists at the time of the request. 

Table 219 — DynamicallyDefineDataIdentifier request clear DDDDI 0xF303 message flow example #5 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = clearDynamicallyDefinedDataIdentifier, 
suppressPosRspMsgIndicationBit = FALSE 

0x03 CDDDI 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x03 DDDDI_B2 

Table 220 defines the DynamicallyDefineDataIdentifier positive response clear DDDDI 0xF303 message flow 
example #5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 157

Table 220 — DynamicallyDefineDataIdentifier positive response clear DDDDI 0xF303 message flow 
example #5 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = clearDynamicallyDefinedDataIdentifier 0x03 CDDDI 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x03 DDDDI_B2 

10.6.5.7 Example #6: DynamicallyDefineDataIdentifier, concatenation of definitions 
(defineByIdentifier / defineByAddress) 

This example will build up a dynamic data identifier (DDDI 0xF301) using the two definition types. The 
following list shows the order of the data in the dynamically defined data identifier (implicit order of request 
messages to define the dynamic data identifier): 

⎯ 1st portion: engine oil temperature and ambient air temperature referecend by 2-byte DIDs 
(defineByIdentifier), 

⎯ 2nd portion: engine coolant temperature and engine speed referenced by memory addresses, 

⎯ 3rd portion: engine oil level referecend by 2-byte DID. 

10.6.5.7.1 Step #1: DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier (1 st portion) 

Table 221 defines the DynamicallyDefineDataIdentifier request DDDI 0xF301 message flow example #6 
definition of 1st portion (defineByIdentifier). 

Table 221 — DynamicallyDefineDataIdentifier request DDDI 0xF301 message flow example #6 
definition of 1st portion (defineByIdentifier) 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByIdentifier,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

#5 sourceDataIdentifier#1 [ byte#1 ] (MSB) - Engine Oil Temperature 0x12 SDI_B1 

#6 sourceDataIdentifier#1 [ byte#2 ] 0x34 SDI_B2 

#7 positionInSourceDataRecord#1 0x01 PISDR#1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

158 © ISO 2013 – All rights reserved

Table 221 — (continued)

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#8 memorySize#1 0x02 MS#1 

#9 sourceDataIdentifier#2 [ byte#1 ] (MSB) - Ambient Air Temperature 0x56 SDI_B1 

#10 sourceDataIdentifier#2 [ byte#2 ] (LSB) 0x78 SDI_B2 

#11 positionInSourceDataRecord#2 0x01 PISDR#2 

#12 memorySize#2 0x01 MS#2 

Table 222 defines the DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow 
example #6 definition of first portion (defineByIdentifier). 

Table 222 — DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow example 
#6 definition of first portion (defineByIdentifier) 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByIdentifier 0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

10.6.5.7.2 Step #2: DynamicallyDefineDataIdentifier, sub-function = defineByMemoryAddress (2 nd 
portion) 

Table 223 defines the DynamicallyDefineDataIdentifier request DDDDI 0xF301 message flow example #6 
definition of 2nd portion (defineByMemoryAddress). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 159

Table 223 — DynamicallyDefineDataIdentifier request DDDDI 0xF301 message flow example #6 
definition of 2nd portion (defineByMemoryAddress) 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByMemoryAddress,  
suppressPosRspMsgIndicationBit = FALSE 

0x02 DBMA 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

#5 addressAndLengthFormatIdentifier 0x14 ALFID 

#6 memoryAddress#1 [ byte#1 ] (MSB) - Engine Coolant Temperature 0x21 MA_B1#1 

#7 memoryAddress#1 [ byte#2 ] 0x09 MA_B2#1 

#8 memoryAddress#1 [ byte#3 ] 0x19 MA_B3#1 

#9 memoryAddress#1 [ byte#4 ] 0x69 MA_B4#1 

#10 memorySize#1 0x01 MS#1 

#11 memoryAddress#2 [ byte#1 ] (MSB) - Engine Speed 0x21 MA_B1#2 

#12 memoryAddress#2 [ byte#2 ] 0x09 MA_B2#2 

#13 memoryAddress#2 [ byte#3 ] 0x19 MA_B3#2 

#14 memoryAddress#2 [ byte#4 ] 0x6B MA_B4#2 

#15 memorySize#2 0x02 MS#2 

Table 222 defines the DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow 
example #6. 

Table 224 — DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow example 
#6

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByMemoryAddress 0x02 DBMA 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

10.6.5.7.3 Step #3: DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier (3 rd portion) 

Table 225 defines the DynamicallyDefineDataIdentifier request DDDI 0xF301 message flow example #6 
definition of 3rd portion (defineByIdentifier). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

160 © ISO 2013 – All rights reserved

Table 225 — DynamicallyDefineDataIdentifier request DDDI 0xF301 message flow example #6 
definition of 3rd portion (defineByIdentifier) 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = defineByIdentifier,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

#5 sourceDataIdentifier#1 [ byte#1 ] (MSB) - Engine Oil Level 0x9A SDI_B1 

#6 sourceDataIdentifier#1 [ byte#2 ] 0xBC SDI_B2 

#7 positionInSourceDataRecord#1 0x01 PISDR#3 

#8 memorySize#1 0x04 MS#3 

Table 226 defines the DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow 
example #6. 

Table 226 — DynamicallyDefineDataIdentifier positive response DDDI 0xF301 message flow example 
#6

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = defineByIdentifier 0x01 DBID 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

10.6.5.7.4 Step #4: ReadDataByIdentifier - dataIdentifier = DDDDI 0xF301 

Table 227 defines the ReadDataByIdentifier request DDDDI 0xF301 message flow example #6. 

Table 227 — ReadDataByIdentifier request DDDDI 0xF301 message flow example #6 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x01 DID_B2 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 161

Table 228 defines the ReadDataByIdentifier positive response DDDDI 0xF301 message flow example #6. 

Table 228 — ReadDataByIdentifier positive response DDDDI 0xF301 message flow example #6 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB)  0xF3 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x01 DID_B2 

#4 dataRecord [ data#1 ] = EOT (MSB) 0x4C DREC_DATA_1 

#5 dataRecord [ data#2 ] = EOT 0x36 DREC_DATA_2 

#6 dataRecord [ data#3 ] = AAT 0x4D DREC_DATA_3 

#7 dataRecord [ data#4 ] = ECT 0xA6 DREC_DATA_4 

#8 dataRecord [ data#5 ] = RPM 0x07 DREC_DATA_5 

#9 dataRecord [ data#6 ] = RPM 0x50 DREC_DATA_6 

#10 dataRecord [ data#7 ] = EOL (MSB) 0x49 DREC_DATA_7 

#11 dataRecord [ data#8 ] = EOL 0x21 DREC_DATA_8 

#12 dataRecord [ data#9 ] = EOL 0x00 DREC_DATA_9 

#13 dataRecord [ data#10 ] = EOL 0x17 DREC_DATA_10 

10.6.5.7.5 Step #5: DynamicallyDefineDataIdentifier - clear definition of DDDDI 0xF301 

Table 229 defines the DynamicallyDefineDataIdentifier request clear DDDDI 0xF301 message flow example 
#6.

Table 229 — DynamicallyDefineDataIdentifier request clear DDDDI 0xF301 message flow example #6 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Request SID 0x2C DDDI 

#2 sub-function = clearDynamicallyDefinedDataIdentifier, 
suppressPosRspMsgIndicationBit = FALSE 

0x03 CDDDI 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

162 © ISO 2013 – All rights reserved

Table 230 defines the DynamicallyDefineDataIdentifier positive response clear DDDDI 0xF301 message flow 
example #6. 

Table 230 — DynamicallyDefineDataIdentifier positive response clear DDDDI 0xF301 message flow 
example #6 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 DynamicallyDefineDataIdentifier Response SID 0x6C DDDIPR 

#2 definitionMode = clearDynamicallyDefinedDataIdentifier 0x03 CDDDI 

#3 dynamicallyDefinedDataIdentifier [ byte#1 ] (MSB) 0xF3 DDDDI_B1 

#4 dynamicallyDefinedDataIdentifier [ byte#2 ] (LSB) 0x01 DDDDI_B2 

10.7 WriteDataByIdentifier (0x2E) service 

10.7.1 Service description 

The WriteDataByIdentifier service allows the client to write information into the server at an internal location 
specified by the provided data identifier. 

The WriteDataByIdentifier service is used by the client to write a dataRecord to a server. The data is identified 
by a dataIdentifier, and may or may not be secured. 

Dynamically defined dataIdentifer(s) shall not be used with this service. It is the vehicle manufacturer's 
responsibility that the server conditions are met when performing this service. Possible uses for this service 
are: 

⎯ Programming configuration information into server (e.g., VIN number), 

⎯ Clearing non-volatile memory, 

⎯ Resetting learned values, 

⎯ Setting option content. 

NOTE The server may restrict or prohibit write access to certain dataIdentifier values (as defined by the system 
supplier / vehicle manufacturer for read-only identifiers, etc.). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.7.2 Request message 

10.7.2.1 Request message definition 

Table 231 defines the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 163

Table 231 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 WriteDataByIdentifier Request SID M 0x2E WDBI 

#2
#3

dataIdentifier[] = [  
    byte#1 (MSB) 
    byte#2 ] 

M
M

0x00 – 0xFF
0x00 – 0xFF

DID_ 
HB
LB

#4
:

#m+3

dataRecord[] = [  
    data#1 
     : 
    data#m ] 

M
:
U

0x00 – 0xFF
:

0x00 – 0xFF

DREC_ 
DATA_1 
:
DATA_m 

10.7.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

10.7.2.3 Request message data-parameter definition 

Table 232 defines the data-parameters of the request message. 

Table 232 — Request message data-parameter definition 

Definition

dataIdentifier 

This parameter identifies the server data record that the client is requesting to write to (see C.1 for detailed parameter 
definition). 

dataRecord 

This parameter provides the data record associated with the dataIdentifier that the client is requesting to write to. 

10.7.3 Positive response message 

10.7.3.1 Positive response message definition 

Table 233 defines the positive response message. 

Table 233 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 WriteDataByIdentifier Response SID M 0x6E WDBIPR 

#2
#3

dataIdentifier[] = [  
    byte#1 (MSB) 
    byte#2 ] 

M
M

0x00 – 0xFF
0x00 – 0xFF

DID_ 
HB
LB

10.7.3.2 Positive response message data-parameter definition 

Table 234 defines the data-parameters of the positive response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

164 © ISO 2013 – All rights reserved

Table 234 — Response message data-parameter definition 

Definition

dataIdentifier 

This parameter is an echo of the data-parameter dataIdentifier from the request message. 

10.7.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 235. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 235 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ The dataIdentifier in the request message is not supported in the server or the 

dataIdentifier is supported for read only purpose (via ReadDataByIdentifier service); 
⎯ Any data transmitted in the request message after the dataIdentifier is invalid (if 

applicable to the node); 

0x33 securityAccessDenied SAD

 This NRC shall be sent if the dataIdentifier, which reference a specific address, is secured 
and the server is not in an unlocked state. 

0x72 generalProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when writing to a memory location.  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 165

The evaluation sequence is documented in Figure 21. 

Data record is valid?

min. length check NRC 0x13NO

YES

NRC 0x31NODID supports service 
0x2E in active session

NRC 0x31NO

positive response

YES

NRC 0x22NO

DID  condition 
check ok?

mandatory optional

YES

NRC 0x72NO

YES

was correctly altered 
into server’s memory

Service with SID 0x2E

DID security check ok ? NRC 0x33NO

YES

total length check NRC 0x13NO

YES

1

2

manufacturer/supplier
specific

YES

Key  
1 minimum length is 4 byte (SI + DID + DREC) 
2 total length is 1 byte (SI + 2 byte DID + nth byte DREC) 

Figure 21 — NRC handling for WriteDataByIdentifier service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

166 © ISO 2013 – All rights reserved

10.7.5 Message flow example WriteDataByIdentifier 

10.7.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a WriteDataByIdentifier 
service.  

The service in this example is not limited by any restriction of the server. This example demonstrates VIN 
programming via a two byte dataIdentifier 0xF190. 

10.7.5.2 Example #1: write dataIdentifier 0xF190 (VIN) 

Table 236 defines the WriteDataByIdentifier request message flow example #1. 

Table 236 — WriteDataByIdentifier request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteDataByIdentifier Request SID 0x2E WDBI 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] 0x90 DID_B2 

#4 dataRecord [ data#1 ] = VIN Digit 1 = “W” 0x57 DREC_DATA1 

#5 dataRecord [ data#2 ] = VIN Digit 2 = “0” 0x30 DREC_DATA2 

#6 dataRecord [ data#3 ] = VIN Digit 3 = “L” 0x4C DREC_DATA3 

#7 dataRecord [ data#4 ] = VIN Digit 4 = “0” 0x30 DREC_DATA4 

#8 dataRecord [ data#5 ] = VIN Digit 5 = “0” 0x30 DREC_DATA5 

#9 dataRecord [ data#6 ] = VIN Digit 6 = “0” 0x30 DREC_DATA6 

#10 dataRecord [ data#7 ] = VIN Digit 7 = “0” 0x30 DREC_DATA7 

#11 dataRecord [ data#8 ] = VIN Digit 8 = “4” 0x34 DREC_DATA8 

#12 dataRecord [ data#9 ] = VIN Digit 9 = “3” 0x33 DREC_DATA9 

#13 dataRecord [ data#10 ] = VIN Digit 10 = “M” 0x4D DREC_DATA10 

#14 dataRecord [ data#11 ] = VIN Digit 11 = “B” 0x42 DREC_DATA11 

#15 dataRecord [ data#12 ] = VIN Digit 12 = “5” 0x35 DREC_DATA12 

#16 dataRecord [ data#13 ] = VIN Digit 13 = “4” 0x34 DREC_DATA13 

#17 dataRecord [ data#14 ] = VIN Digit 14 = “1” 0x31 DREC_DATA14 

#18 dataRecord [ data#15 ] = VIN Digit 15 = “3” 0x33 DREC_DATA15 

#19 dataRecord [ data#16 ] = VIN Digit 16 = “2” 0x32 DREC_DATA16 

#20 dataRecord [ data#17 ] = VIN Digit 17 = “6” 0x36 DREC_DATA17 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 167

Table 237 defines the WriteDataByIdentifier positive response message flow example #1. 

Table 237 — WriteDataByIdentifier positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteDataByIdentifier Response SID 0x6E WDBIPR 

#2 dataIdentifier [ byte#1 ] (MSB) 0xF1 DID_B1 

#3 dataIdentifier [ byte#2 ] (LSB) 0x90 DID_B2 

10.8 WriteMemoryByAddress (0x3D) service 

10.8.1 Service description 

The WriteMemoryByAddress service allows the client to write information into the server at one or more 
contiguous memory locations. 

The WriteMemoryByAddress request message writes information specified by the parameter dataRecord[] 
into the server at memory locations specified by parameters memoryAddress and memorySize. The number 
of bytes used for the memoryAddress and memorySize parameter is defined by 
addressAndLengthFormatIdentifier (low and high nibble). It is also possible to use a fixed 
addressAndLengthFormatIdentifier and unused bytes within the memoryAddress or memorySize parameter 
are padded with the value 0x00 in the higher range address locations. 

The format and definition of the dataRecord shall be vehicle manufacturer specific, and may or may not be 
secured. It is the vehicle manufacturer's responsibility to assure that the server conditions are met when 
performing this service. Possible uses for this service are: 

⎯ Clear non-volatile memory; 

⎯ Change calibration values; 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

10.8.2 Request message 

10.8.2.1 Request message definition 

Table 238 defines the request message definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

168 © ISO 2013 – All rights reserved

Table 238 — Request message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 WriteMemoryByAddress Request SID M 0x3D WMBA 

#2 addressAndLengthFormatIdentifier M 0x00 – 0xFF ALFID 

#3
:

#m+2

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

M
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#n-r-2-(k-1) 
:

#n-r-2

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

M
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

#n-(r-1)
:

#n

dataRecord[] = [  
    data#1 
     : 
    data#r ] 

M
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

DREC_ 
DATA_1 
:
DATA_r 

C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

10.8.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

10.8.2.3 Request message data-parameter definition 

Table 239 defines the data-parameters of the request message. 

Table 239 — Request message data-parameter definition 

Definition

addressAndLengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately (see H.1 or example values): 
bit 7 - 4: Length (number of bytes) of the memorySize parameter 
bit 3 - 0: Length (number of bytes) of the memoryAddress parameter 

memoryAddress 

The parameter memoryAddress is the starting address of server memory to which data is to be written. The number of
bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressAndLengthFormatIdentifier. Byte#m in the 
memoryAddress parameter is always the least significant byte of the address being referenced in the server. The most 
significant byte(s) of the address can be used as a memory identifier. 
An example of the use of a memory identifier would be a dual processor server with 16 bit addressing and memory 
address overlap (when a given address is valid for either processor but yields a different physical memory device or 
internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter can be 
specified as a memory identifier used to select the desired memory device. Usage of this functionality shall be as defined
by vehicle manufacturer / system supplier. 

memorySize 

The parameter memorySize in the WriteMemoryByAddress request message specifies the number of bytes to be written 
starting at the address specified by memoryAddress in the server's memory. The number of bytes used for this size is 
defined by the high nibble (bit 7 - 4) of the addressAndLengthFormatIdentifier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 169

Table 239 — (continued)

dataRecord 

This parameter provides the data that the client is actually attempting to write into the server memory addresses within 
the interval {0xMA, (0xMA + 0xMS - 0x01)}. 

10.8.3 Positive response message 

10.8.3.1 Positive response message definition 

Table 240 defines the positive response message. 

Table 240 — Positive response message definition 

A_Data Byte Parameter Name Cvt Byte Value Mnemonic 

#1 WriteMemoryByAddress Response SID M 0x7D WMBAPR 

#2 addressAndLengthFormatIdentifier M 0x00 – 0xFF ALFID 

#3
:

#(m-1)+3 

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

M
:

C1 

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#n-(k-1) 
:

#n

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

M
:

C2 

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

10.8.3.2 Positive response message data-parameter definition 

Table 241 defines the data-parameters of the positive response message. 

Table 241 — Response message data-parameter definition 

Definition

addressAndLengthFormatIdentifier 

This parameter is an echo of the addressAndLengthFormatIdentifier from the request message. 

memoryAddress 

This parameter is an echo of the memoryAddress from the request message. 

memorySize 

This parameter is an echo of the memorySize from the request message. 

10.8.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 242. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

170 © ISO 2013 – All rights reserved

Table 242 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be sent if the operating conditions of the server are not met to perform the 
required action. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ Any memory address within the interval [0xMA, (0xMA + 0xMS -0x1)] is invalid; 
⎯ Any memory address within the interval [0xMA, (0xMA + 0xMS -0x1)] is restricted; 
⎯ The memorySize parameter value in the request message is not supported by the server; 
⎯ The specified addressAndLengthFormatIdentifier is not valid; 
⎯ The memorySize parameter value in the request message is zero; 

0x33 securityAccessDenied SAD

 This NRC shall be sent if any memory address within the interval [0xMA, (0xMA + 0xMS -0x1)] 
is secure and the server is locked. 

0x72 generalProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when writing to a memory location.  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 171

The evaluation sequence is documented in Figure 22. 

YES

security check ok for 
requested memory interval?

NRC 0x31

YES

NO

memoryAddress and 
memorySize are correct 
AND
supported in the current 
session

NO

addressAndLengthFormat-
Identifier is applicable

NRC 0x31

YES

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

YES

min. length  check NRC 0x13NO

NRC 0xXXYES

Manufacturer/
supplier
specific check

NO

YES

YES

Service with SID 0x3D

positive response

No error when writing to 
a memory location NRC 0x72NO

YES

YES

total length check NRC 0x13NO

1

2

manufacturer/supplier
specific

Key  
1 at least 5 (SI+addressAndLengthFormatIdentifier + min memoryAddress+min memorySize + min dataRecord) 
2 1 byte SI + 1 byte addressAndLengthFormatIdentifier + n byte memoryAddress parameter length + n byte 

memorySize parameter length + n byte dataRecord length 

Figure 22 — NRC handling for WriteMemoryByAddress service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

172 © ISO 2013 – All rights reserved

10.8.5 Message flow example WriteMemoryByAddress 

10.8.5.1 Assumptions 

This subclause specifies the conditions to be fulfilled for the example to perform a WriteMemoryByAddress 
service. The service in this example is not limited by any restriction of the server.  

The following examples demonstrate writing data bytes into server memory for 2-byte, 3-byte, and 4-byte 
addressing formats, respectively. 

10.8.5.2 Example #1: WriteMemoryByAddress, 2-byte (16-bit) addressing 

Table 243 defines the WriteMemoryByAddress request message flow example #1. 

Table 243 — WriteMemoryByAddress request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Request SID 0x3D WMBA 

#2 addressAndLengthFormatIdentifier 0x12 ALFID 

#3 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] (LSB) 0x48 MA_B2 

#5 memorySize [ byte#1 ] 0x02 MS_B1 

#6 dataRecord [ data#1 ] 0x00 DREC_DATA_1 

#7 dataRecord [ data#2 ] 0x8C DREC_DATA_2 

Table 244 defines the WriteMemoryByAddress positive response message flow example #1. 

Table 244 — WriteMemoryByAddress positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Response SID 0x7D WMBAPR 

#2 addressAndLengthFormatIdentifier 0x12 ALFID 

#3 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] (LSB) 0x48 MA_B2 

#5 memorySize [ byte#1 ] 0x02 MS_B1 

10.8.5.3 Example #2: WriteMemoryByAddress, 3-byte (24-bit) addressing 

Table 245 defines the WriteMemoryByAddress request message flow example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 173

Table 245 — WriteMemoryByAddress request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Request SID 0x3D WMBA 

#2 addressAndLengthFormatIdentifier 0x13 ALFID 

#3 memoryAddress [ byte#1 ] 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 ] 0x13 MA_B3 

#6 memorySize [ byte#1 ] 0x03 MS_B1 

#7 dataRecord [ data#1 ] 0x00 DREC_DATA_1 

#8 dataRecord [ data#2 ] 0x01 DREC_DATA_2 

#9 dataRecord [ data#3 ] 0x8C DREC_DATA_3 

Table 246 defines the WriteMemoryByAddress positive response message flow example #2. 

Table 246 — WriteMemoryByAddress positive response message flow example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Response SID 0x7D WMBAPR 

#2 addressAndLengthFormatIdentifier 0x13 ALFID 

#3 memoryAddress [ byte#1 ] 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 ] 0x13 MA_B3 

#6 memorySize [ byte#1 ] 0x03 MS_B1 

10.8.5.4 Example #3: WriteMemoryByAddress, 4-byte (32-bit) addressing 

Table 247 defines the WriteMemoryByAddress request message flow example #3. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

174 © ISO 2013 – All rights reserved

Table 247 — WriteMemoryByAddress request message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Request SID 0x3D WMBA 

#2 addressAndLengthFormatIdentifier 0x14 ALFID 

#3 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 ] 0x13 MA_B3 

#6 memoryAddress [ byte#4 ] (LSB) 0x09 MA_B4 

#7 memorySize [ byte#1 ] 0x05 MS_B1 

#8 dataRecord [ data#1 ] 0x00 DREC_DATA_1 

#9 dataRecord [ data#2 ] 0x01 DREC_DATA_2 

#10 dataRecord [ data#3 ] 0x8C DREC_DATA_3 

#11 dataRecord [ data#4 ] 0x09 DREC_DATA_4 

#12 dataRecord [ data#5 ] 0xAF DREC_DATA_5 

Table 248 defines the WriteMemoryByAddress positive response message flow example #3. 

Table 248 — WriteMemoryByAddress positive response message flow example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 WriteMemoryByAddress Response SID 0x7D WMBAPR 

#2 addressAndLengthFormatIdentifier 0x14 ALFID 

#3 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#4 memoryAddress [ byte#2 ] 0x48 MA_B2 

#5 memoryAddress [ byte#3 ] 0x13 MA_B3 

#6 memoryAddress [ byte#4 ] (LSB) 0x09 MA_B4 

#7 memorySize [ byte#1 ] 0x05 MS_B1 

11 Stored Data Transmission functional unit 

11.1 Overview 

Table 249 — Stored Data Transmission functional unit 

Service Description 

ClearDiagnosticInformation Allows the client to clear diagnostic information from the server (including DTCs, 
captured data, etc.) 

ReadDTCInformation Allows the client to request diagnostic information from the server (including 
DTCs, captured data, etc.) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 175

11.2 ClearDiagnosticInformation (0x14) Service 

11.2.1 Service description 

The ClearDiagnosticInformation service is used by the client to clear diagnostic information in one or multiple 
servers’ memory.  

The server shall send a positive response when the ClearDiagnosticInformation service is completely 
processed. The server shall send a positive response even if no DTCs are stored. If a server supports multiple 
copies of DTC status information in memory (e.g. one copy in RAM and one copy in EEPROM) the server 
shall clear the copy used by the ReadDTCInformation status reporting service. Additional copies, e.g. backup 
copy in long-term memory, are updated according to the appropriate backup strategy (e.g. in the power-latch 
phase). 

NOTE In case the power-latch phase is disturbed (e.g., a battery disconnect during the power-latch phase) this may 
cause data inconsistency. 

The behaviour of the individual DTC status bits shall be implemented according to the definitions in D.2, 
Figure D.1 - Figure D.8. 

The request message of the client contains one parameter. The parameter groupOfDTC allows the client to 
clear a group of DTCs (e.g., Powertrain, Body, Chassis, etc.), or a specific DTC. Refer to D.1 for further 
details. Unless otherwise stated, the server shall clear both emissions-related and non emissions-related DTC 
information from memory for the requested group. 

DTC information reset / cleared via this service includes but is not limited to the following: 

⎯ DTC status byte (see ReadDTCInformation service in 11.3), 

⎯ captured DTC snapshot data (DTCSnapshotData, see ReadDTCInformation service in 11.3), 

⎯ captured DTC extended data (DTCExtendedData, see ReadDTCInformation service in 11.3), 

⎯ other DTC related data such as first/most recent DTC, flags, counters, timers, etc. specific to DTCs, 

Any DTC information stored in an optionally available DTC mirror memory in the server is not affected by this 
service (see ReadDTCInformation (0x19) service in 11.3 for DTC mirror memory definition). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

11.2.2 Request message 

11.2.2.1 Request message definition 

Table 250 defines the request message. 

Table 250 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ClearDiagnosticInformation Request SID M 0x14 CDTCI 

#2
#3
#4

groupOfDTC[] = [ 
    groupOfDTCHighByte 
    groupOfDTCMiddleByte 
    groupOfDTCLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

GODTC_ 
HB
MB 
LB

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

176 © ISO 2013 – All rights reserved

11.2.2.2 Request message sub-function parameter $Level (LEV_) definition 

There are no sub-function parameters used by this service. 

11.2.2.3 Request message data-parameter definition 

Table 251 defines the data-parameter of the request message. 

Table 251 — Request message data-parameter definition 

Definition

groupOfDTC 

This parameter contains a 3-byte value indicating the group of DTCs (e.g., Powertrain, Body, Chassis) or the particular 
DTC to be cleared. The definition of values for each value/range of values is included in D.1. 

11.2.3 Positive response message 

11.2.3.1 Positive response message definition 

Table 252 defines the positive response message. 

Table 252 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ClearDiagnosticInformation Positive Response SID M 0x54 CDTCIPR 

11.2.3.2 Positive response message data-parameter definition 

There are no data-parameters used by this service in the positive response message. 

11.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 253. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 253 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be used if internal conditions within the server prevent the clearing of DTC 
related information stored in the server. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if the specified groupOfDTC parameter is not supported.  

0x72 generalProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when writing to a memory location.  

The evaluation sequence is documented in Figure 23. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 177

YES

NRC 0x31NO
GODTC_
supported in 
active session

mandatory optional

NRC 0x22NO

Condition
check

YES

Length  check 
= 4 bytes NRC 0x13NO

NRC 0xXX

Manufacturer/
supplier
specific check

NO

YES

Service with SID 
0x14

positive response

1

NRC 0x72NO

Condition
check

YES

manufacturer/supplier
specific

YES

Key  
1 CDTCI + GODTC_ 

Figure 23 — NRC handling for ClearDiagnosticInformation service 

11.2.5 Message flow example ClearDiagnosticInformation 

The client sends a ClearDiagnosticInformation request message to a single server. Table 254 defines the 
ClearDiagnosticInformation request message flow example #1. The client sends a ClearDiagnosticInformation 
request message to a single server. 

Table 254 — ClearDiagnosticInformation request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ClearDiagnosticInformation Request SID 0x14 CDTCI 

#2 groupOfDTC [ DTCHighByte ] (“Emissions-related systems”) 0xFF DTCHB 

#3 groupOfDTC [ DTCMiddleByte ] 0xFF DTCMB 

#4 groupOfDTC [ DTCLowByte ] 0x33 DTCLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

178 © ISO 2013 – All rights reserved

Table 255 defines the ClearDiagnosticInformation positive response message flow example #1. 

Table 255 — ClearDiagnosticInformation positive response message flow example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ClearDiagnosticInformation Response SID 0x54 CDTCIPR 

11.3 ReadDTCInformation (0x19) Service 

11.3.1 Service description 

11.3.1.1 General description 

This service allows a client to read the status of server resident Diagnostic Trouble Code (DTC) information 
from any server, or group of servers within a vehicle. Unless otherwise required by the particular subfunction, 
the server shall return all DTC information (e.g., emissions-related and non emissions-related). This service 
allows the client to do the following: 

⎯ Retrieve the number of DTCs matching a client defined DTC status mask, 

⎯ Retrieve the list of all DTCs matching a client defined DTC status mask, 

⎯ Retrieve the list of DTCs within a particular functional group matching a client defined DTC status mask, 

⎯ Retrieve all DTCs with "permanent DTC" status. 

⎯ Retrieve DTCSnapshot data (sometimes referred to as freeze frames) associated with a client defined 
DTC: DTC Snapshots are specific data records associated with a DTC, that are stored in the server's 
memory. The typical usage of DTC Snapshots is to store data upon detection of a system malfunction. 
The DTC Snapshots will act as a snapshot of data values from the time of the system malfunction 
occurrence. The data-parameters stored in the DTC Snapshot shall be associated to the DTC. The DTC 
specific data-parameters are intended to ease the fault isolation process by the technician. 

⎯ Retrieve DTCExtendedData associated with a client defined DTC and status mask combination out of the 
DTC memory or the DTC mirror memory. DTCExtendedData consists of extended status information 
associated with a DTC. DTCExtendedData contains DTC parameter values, which have been identified at 
the time of the request. A typical use of DTCExtendedData is to store dynamic data associated with the 
DTC, e.g. 

⎯ DTC B1 Malfunction Indicator counter which conveys the amount of time (number of engine 
operating hours) during which the OBD system has operated while a malfunction is active, 

⎯ DTC occurrence counter, counts number of driving cycles in which "testFailed" has been reported, 

⎯ DTC aging counter, counts number of driving cycles since the fault was latest failed excluding the 
driving cycles in which the test has not reported "testPassed" or "testFailed", 

⎯ specific counters for OBD (e.g. number of remaining driving cycles until the "check engine" lamp is 
switched off if driving cycle can be performed in a fault free mode). 

⎯ time of last occurrence (etc.). 

⎯ test failed counter, counts number of reported "testFailed" and possible other counters if the 
validation is performed in several steps, 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 179

⎯ uncompleted test counters, counts numbers of driving cycles since the test was latest completed 
(i.e., since the test reported "testPassed" or "testFailed"), 

⎯ Retrieve the number of DTCs matching a client defined severity mask, 

⎯ Retrieve the list of DTCs matching a client defined severity mask record, 

⎯ Retrieve severity information for a client defined DTC,  

⎯ Retrieve the status of all DTCs supported by the server, 

⎯ Retrieve the first DTC failed by the server, 

⎯ Retrieve the most recently failed DTC within the server, 

⎯ Retrieve the first DTC confirmed by the server, 

⎯ Retrieve the most recently confirmed DTC within the server, 

⎯ Retrieve the list of DTCs out of the DTC mirror memory matching a client defined DTC status mask, 

⎯ Retrieve mirror memory DTCExtendedData record data for a client defined DTC mask and a client 
defined DTCExtendedData record number out of the DTC mirror memory, 

⎯ Retrieve the number of DTCs out of the DTC mirror memory matching a client defined DTC status mask, 

⎯ Retrieve the number of "only" emissions-related OBD DTCs matching a client defined DTC status mask. 
Emissions-related OBD DTCs cause the malfunction indicator to be turned on/display a message in case 
such DTC is detected, 

⎯ Retrieve the status of "only" emissions-related OBD DTCs matching a client defined DTC status mask. 
Emissions-related OBD DTCs cause the malfunction indicator to be turned on/display a message in case 
such DTC is detected, 

⎯ Retrieve all current "prefailed" DTCs which have or have not yet been detected as "pending" or 
"confirmed", 

⎯ Retrieve DTCExtendedData associated with a client defined DTCExtendedData record status out of the 
DTC memory. 

⎯ Retrieve the list of DTCs out of a user defined DTC memory matching a client defined DTC status mask, 

⎯ Retrieve user defined DTC memory DTCExtendedData record data for a client defined DTC mask mask 
and a client defined DTCExtendedData record number out of the user defined DTC mirror memory, 

⎯ Retrieve user defined DTC memory DTCSnapshotRecord data for a client defined DTC mask out of the 
user defined DTC memory, 

This service uses a sub-function to determine which type of diagnostic information the client is requesting. 
Further details regarding each sub-function parameter are provided in the following subclauses. 

This service makes use of the following terms: 

⎯ Enable Criteria: Server/vehicle manufacturer/system supplier specific criteria used to control when the 
server actually performs a particular internal diagnostic. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

180 © ISO 2013 – All rights reserved

⎯ Test Pass Criteria: Server/vehicle manufacturer/system supplier specific conditions, that define, whether 
a system being diagnosed is functioning properly within normal, acceptable operating ranges (e.g. no 
failures exist and the diagnosed system is classified as “OK”). 

⎯ Test Failure Criteria: Server/vehicle manufacturer/system supplier specific failure conditions that define, 
whether a system being diagnosed has failed the test. 

⎯ Confirmed Failure Criteria: Server/vehicle manufacturer/system supplier specific failure conditions that 
define whether the system being diagnosed is definitively problematic (confirmed), warranting storage of 
the DTC record in long term memory. 

⎯ Occurrence Counter: A counter maintained by certain servers that records the number of instances in 
which a given DTC test reported a unique occurrence of a test failure. 

⎯ Aging: A process whereby certain servers evaluate past results of each internal diagnostic to determine if 
a confirmed DTC can be cleared from long-term memory, e.g. in the event of a calibrated number of 
failure free cycles. 

A given DTC value (e.g., 0x080511) shall never be reported more than once in a positive response to 
readDTCInformation with the exception of reading DTCSnapshotRecords, where the response may contain 
multiple DTCSnapshotRecords for the same DTC.  

When using paged-buffer-handling to read DTCs (especially for sub-function = reportDTCByStatusMask), it is 
possible that the number of DTCs can decrease while creating the response. In such a case the response 
shall be filled up with DTC 0x000000 and DTC status 0x00. The client shall treat these DTCs as not present in 
the response message. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

11.3.1.2 Retrieving the number of DTCs that match a client defined status mask (sub-function = 0x01 
reportNumberOfDTCByStatusMask) 

A client can retrieve a count of the number of DTCs matching a client defined status mask by sending a 
request for this service with the sub-function set to reportNumberOfDTCByStatusMask. The response to this 
request contains the DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are 
supported by the server for masking purposes. Following the DTCStatusAvailabilityMask the response 
contains the DTCFormatIdentifier which reports information about the DTC formatting and encoding. The 
DTCFormatIdentifier is followed by the DTCCount parameter which is a 2-byte unsigned numeric number 
containing the number of DTCs available in the server's memory based on the status mask provided by the 
client. 

The sub-function reportNumberOfMirrorMemoryDTCByStatusMask has the same functionality as the sub-
function reportNumberOfDTCByStatusMask with the difference that it returns the number of DTCs out of DTC 
mirror memory. 

11.3.1.3 Retrieving the list of DTCs that match a client defined status mask (sub-function = 0x02 
reportDTCByStatusMask) 

The client can retrieve a list of DTCs, which satisfy a client defined status mask by sending a request with the 
sub-function byte set to reportDTCByStatusMask. This sub-function allows the client to request the server to 
report all DTCs that are “testFailed” OR “confirmed” OR “etc.” 

The evaluation shall be done as follows: The server shall perform a bit-wise logical AND-ing operation 
between the mask specified in the client’s request and the actual status associated with each DTC supported 
by the server. In addition to the DTCStatusAvailabilityMask, the server shall return all DTCs for which the 
result of the AND-ing operation is non-zero (i.e., (statusOfDTC & DTCStatusMask) != 0). If the client specifies 
a status mask that contains bits that the server does not support, then the server shall process the DTC 
information using only the bits that it does support. If no DTCs within the server match the masking criteria 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 181

specified in the client’s request, no DTC or status information shall be provided following the 
DTCStatusAvailabilityMask byte in the positive response message. 

DTC status information shall be cleared upon a successful ClearDiagnosticInformation request from the client 
(see DTC status bit definitions in D.2 for further descriptions on the DTC status bit handling in case of a 
ClearDiagnosticInformation service request reception in the server). 

11.3.1.4 Retrieving DTCSnapshot record identification (sub-function = 0x03 
reportDTCSnapshotIdentification) 

A client can retrieve DTCSnapshot record identification information for all captured DTCSnapshot records by 
sending a request for this service with the sub-function set to reportDTCSnapshotIdentification. The server 
shall return the list of DTCSnapshot record identification information for all stored DTCSnapshot records. Each 
item the server places in the response message for a single DTCSnapshot record shall contain a DTCRecord 
(containing the DTC number (high, middle, and low byte)) and the DTCSnapshot record number. In case 
multiple DTCSnapshot records are stored for a single DTC then the server shall place one item in the 
response for each occurrence, using a different DTCSnapshot record number for each occurrence (used for 
the later retrieval of the record data). 

NOTE A server may support the storage of multiple DTCSnapshot records for a single DTC to track conditions 
present at each occurrence of the DTC. Support of this functionality, definition of “occurrence” criteria, and the number of 
DTCSnapshot records to be supported shall be defined by the system supplier / vehicle manufacturer. 

DTCSnapshot record identification information shall be cleared upon a successful ClearDiagnosticInformation 
request from the client. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion 
of stored DTCs and DTCSnapshot data in case of a memory overflow (memory space for stored DTCs and 
DTCSnapshot data completely occupied in the server). 

11.3.1.5 Retrieving DTCSnapshot record data for a client defined DTC mask (sub-function = 0x04 
reportDTCSnapshotRecordByDTCNumber) 

A client can retrieve captured DTCSnapshot record data for a client defined DTCMaskRecord in conjunction 
with a DTCSnapshot record number by sending a request for this service with the sub-function set to 
reportDTCSnapshotRecordByDTCNumber. The server shall search through its supported DTCs for an exact 
match with the DTCMaskRecord specified by the client (containing the DTC number (high, middle, and low 
byte)). The DTCSnapshotRecordNumber parameter provided in the client’s request shall specify a particular 
occurrence of the specified DTC for which DTCSnapshot record data is being requested.  

NOTE 1 The DTCSnapshotRecordNumber does not share the same address space as the 
DTCStoredDataRecordNumber. 

If the server supports the ability to store multiple DTCSnapshot records for a single DTC (support of this 
functionality to be defined by system supplier / vehicle manufacturer), then it is recommended that the server 
also implements the reportDTCSnapshotIdentification sub-function parameter. It is recommended that the 
client first requests the identification of DTCSnapshot records stored using the sub-function parameter 
reportDTCSnapshotIdentification before requesting a specific DTCSnapshotRecordNumber via the 
reportDTCSnapshotRecordByDTCNumber request.. 

It is also recommended to support the sub-function parameter reportDTCSnapshotRecordIdentification in 
order to give the client the opportunity to identify the stored DTCSnapshot records directly instead of parsing 
through all stored DTCs of the server to determine if a DTCSnapshot record is stored. 

It shall be the responsibility of the system supplier / vehicle manufacturer to define whether DTCSnapshot 
records captured within such servers store data associated with occurrence information of a failure as part of 
the ECU documentation. 

Along with the DTC number and statusOfDTC, the server shall return a single pre-defined 
DTCSnapshotRecord in response to the client’s request, if a failure has been identified for the client defined 
DTCMaskRecord and DTCSnapshotRecordNumber parameters (DTCSnapshotRecordNumber unequal 
0xFF). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

182 © ISO 2013 – All rights reserved

NOTE 2 The exact failure criteria shall be defined by the system supplier / vehicle manufacturer.  

The DTCSnapshot record may contain multiple data-parameters that can be used to reconstruct the vehicle 
conditions (e.g. B+, RPM, time-stamp) at the time of the failure occurrence. 

The vehicle manufacturer shall define format and content of the DTCSnapshotRecord. The data reported in 
the DTCSnapshotRecord first of all contains a dataIdentifier to identify the data that follows. This 
dataIdentifier/data combination can be repeated within the DTCSnapshotRecord.The usage of one or multiple 
dataIdentifiers in the DTCSnapshotRecord allows for the storage of different types of DTCSnapshotRecords 
for a single DTC for different occurrences of the failure. A parameter which indicates the number of record 
DataIdentifiers contained within each DTCSnapshotRecord shall be provided with each DTCSnapshotRecord 
to assist data retrieval. 

The server shall report one DTCSnapshot record in a single response message, except the client has set the 
DTCSnapshotRecordNumber to 0xFF, because this shall cause the server to respond with all DTCSnapshot 
records stored for the client defined DTCMaskRecord in a single response message. The 
DTCAndStatusRecord is only included one time in the response message. If the client has used 0xFF for the 
parameter DTCSnapshotRecordNumber in its request, the server shall report all DTCSnapshot records 
captured for the particular DTC in numeric ascending order. 

The server shall negatively respond if the DTCMaskRecord or DTCSnapshotRecordNumber parameters 
specified by the client are invalid or not supported by the server. This is to be differentiated from the case in 
which the DTCMaskRecord and/or DTCSnapshotRecordNumber parameters specified by the client are 
indeed valid and supported by the server, but have no DTCSnapshot data associated with it (e.g., because a 
failure event never occurred for the specified DTC or record number). The server shall send the positive 
response containing only the DTCAndStatusRecord (echo of the requested DTC number (high, middle, and 
low byte) plus the statusOfDTC).  

DTCSnapshot information shall be cleared upon a successful ClearDiagnosticInformation request from the 
client. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion of stored DTCs 
and DTCSnapshot data in case of a memory overflow (memory space for stored DTCs and DTCsnapshot 
data completely occupied in the server). 

11.3.1.6 Retrieving DTCStoredData record data for a client defined record number (sub-function = 
0x05 reportDTCStoredDataByRecordNumber) 

A client can retrieve captured DTCStoredData record data for a DTCStoredDataRecordNumber by sending a 
request for this service with the sub-function set to reportDTCStoredDataByRecordNumber. The server shall 
search through its stored DTCStoredData records for the match of the client provided record number. 

The DTCStoredDataRecordNumber does not share the same address space as the 
DTCSnapshotRecordNumber. 

It shall be the responsibility of the system supplier / vehicle manufacturer to define whether DTCStoredData 
records captured within such servers store data associated with the first or most recent occurrence of a 
failure. 

NOTE The exact failure criteria shall be defined by the system supplier / vehicle manufacturer. 

The DTCStoredData record may contain multiple data-parameters that can be used to reconstruct the vehicle 
conditions (e.g. B+, RPM, time-stamp) at the time of the failure occurrence. 

The vehicle manufacturer shall define format and content of the DTCStoredDataRecordNumber. The data 
reported in the DTCStoredDataRecord first of all contains a dataIdentifier to identify the data that follows. This 
dataIdentifier/data combination can be repeated within the DTCStoredDataRecord. The usage of one or 
multiple dataIdentifiers in the DTCStoredDataRecord allows for the storage of different types of 
DTCStoredDataRecords for a single DTC for different occurrences of the failure. A parameter which indicates 
the number of record DataIdentifiers contained within each DTCStoredDataRecord shall be provided with 
each DTCStoredDataRecord to assist data retrieval. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 183

The server shall report one DTCStoredDataRecord in a single response message, except the client has set 
the DTCStoredDataRecordNumber to 0xFF, because this shall cause the server to respond with all 
DTCStoredDataRecords stored in a single response message. 

In case the client requested to report all DTCStoredDataRecords by record number then the 
DTCAndStatusRecord has to be repeated in the response message for each stored DTCStoredDataRecord. 

The server shall negatively respond if the DTCStoredDataRecordNumber parameters specified by the client 
are invalid or not supported by the server. This is to be differentiated from the case in which the 
DTCStoredDataRecordNumber parameters specified by the client are indeed valid and supported by the 
server, but have no DTCStoredDataRecord data associated with it (e.g., because a failure event never 
occurred for the specified record number). The server shall send the positive response containing only the 
DTCStoredDataRecordNumber (echo of the requested record number). 

DTCStoredDataRecord information shall be cleared upon a successful ClearDiagnosticInformation request 
from the client. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion of 
stored DTCs and DTCStoredDataRecord data in case of a memory overflow (memory space for stored DTCs 
and DTCStoredDataRecord data completely occupied in the server). 

11.3.1.7 Retrieving DTCExtendedData record data for a client defined DTC mask and a client defined 
DTCExtendedData record number (sub-function = 0x06 
reportDTCExtDataRecordByDTCNumber) 

A client can retrieve DTCExtendedData for a client defined DTCMaskRecord in conjunction with a 
DTCExtendedData record number by sending a request for this service with the sub-function set to 
reportDTCExtDataRecordByDTCNumber. The server shall search through its supported DTCs for an exact 
match with the DTCMaskRecord specified by the client (containing the DTC number (high, middle, and low 
byte)). In this case the DTCExtDataRecordNumber parameter provided in the client’s request shall specify a 
particular DTCExtendedData record of the specified DTC for which DTCExtendedData is being requested. 

Along with the DTC number and statusOfDTC, the server shall return a single pre-defined DTCExtendedData 
record in response to the client’s request (DTCExtDataRecordNumber unequal to 0xFE or 0xFF). 

The vehicle manufacturer shall define format and content of the DTCExtDataRecord. The structure of the data 
reported in the DTCExtDataRecord is defined by the DTCExtDataRecordNumber in a similar way to the 
definition of data within a record DataIdentifier. Multiple DTCExtDataRecordNumbers and associated 
DTCExtDataRecords may be included in the response. The usage of one or multiple 
DTCExtDataRecordNumbers allows for the storage of different types of DTCExtDataRecords for a single 
DTC. 

The server shall report one DTCExtendedData record in a single response message, except the client has set 
the DTCExtDataRecordNumber to 0xFE or 0xFF, because this shall cause the server to response with all 
DTCExtendedData records stored for the client defined DTCMaskRecord in a single response message. 

The server shall negatively respond if the DTCMaskRecord or DTCExtDataRecordNumber parameters 
specified by the client are invalid or not supported by the server. This includes the case where a 
DTCExtDataRecordNumber of 0xFE is sent by the client, but no OBD extended data records (0x90 – 0xEF) 
are supported by the server. This is to be differentiated from the case in which the DTCMaskRecord and/or 
DTCExtDataRecordNumber parameters specified by the client are indeed valid and supported by the server, 
but have no DTC extended data associated with it (e.g., because of memory overflow of the extended data). 
In case of reportDTCExtDataRecordByDTCNumber the server shall send the positive response containing 
only the DTCAndStatusRecord (echo of the requested DTC number (high, middle, and low byte) plus the 
statusOfDTC). 

Clearance of DTCExtendedData information upon the reception of a ClearDiagnosticInformation service is 
specified in 11.2.1. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion of 
stored DTCs and DTC extended data in case of a memory overflow (memory space for stored DTCs and DTC 
extended data completely occupied in the server). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

184 © ISO 2013 – All rights reserved

11.3.1.8 Retrieving the number of DTCs that match a client defined severity mask record (sub-
function = 0x07 reportNumberOfDTCBySeverityMaskRecord) 

A client can retrieve a count of the number of DTCs matching a client defined severity status mask record by 
sending a request for this service with the sub-function set to reportNumberOfDTCBySeverityMaskRecord. 
The server shall scan through all supported DTCs, performing a bit-wise logical AND-ing operation between 
the mask record specified by the client with the actual information of each stored DTC. 

(((statusOfDTC & DTCStatusMask) != 0) && ((severity & DTCSeverityMask) != 0)) == TRUE 

For each AND-ing operation yielding a TRUE result, the server shall increment a counter by 1. If the client 
specifies a status mask within the mask record that contains bits that the server does not support, then the 
server shall process the DTC information using only the bits that it does support. Once all supported DTCs 
have been checked once, the server shall return the DTCStatusAvailabilityMask and resulting 2-byte count to 
the client. 

NOTE If no DTCs within the server match the masking criteria specified in the client's request, the count returned by 
the server to the client shall be 0. The reported number of DTCs matching the DTC status mask is valid for the point in 
time when the request was made. There is no relationship between the reported number of DTCs and the actual list of 
DTCs read via the sub-function reportDTCByStatusMask, because the request to read the DTCs is done at a different 
point in time. 

11.3.1.9 Retrieving severity and functional unit information that match a client defined severity mask 
record (sub-function = 0x08 reportDTCBySeverityMaskRecord) 

The client can retrieve a list of DTC severity and functional unit information, which satisfy a client defined 
severity mask record by sending a request with the sub-function byte set to reportDTCBySeverityMaskRecord. 
This sub-function allows the client to request the server to report all DTCs with a certain severity and status 
that are ”testFailed” OR ”confirmed” OR ”etc.”. The evaluation shall be done as follows: 

The server shall perform a bit-wise logical AND-ing operation between the DTCSeverityMask and the 
DTCStatusMask specified in the client’s request and the actual DTCSeverity and statusOfDTC associated 
with each DTC supported by the server. 

In addition to the DTCStatusAvailabilityMask, server shall return all DTCs for which the result of the AND-ing 
operation is TRUE, 

(((statusOfDTC & DTCStatusMask) !=0) && ((severity & DTCSeverityMask) != 0)) == TRUE 

If the client specifies a status mask within the mask record that contains bits that the server does not support, 
then the server shall process the DTC information using only the bits that it does support. If no DTCs within 
the server match the masking criteria specified in the client’s request, no DTC or status information shall be 
provided following the DTCStatusAvailabilityMask byte in the positive response message. 

11.3.1.10 Retrieving severity and functional unit information for a client defined DTC (sub-function = 
0x09 reportSeverityInformationOfDTC) 

A client can retrieve severity and functional unit information for a client defined DTCMaskRecord by sending a 
request for this service with the sub-function set to reportSeverityInformationOfDTC. The server shall search 
through its supported DTCs for an exact match with the DTCMaskRecord specified by the client (containing 
the DTC number (high, middle, and low byte)). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 185

11.3.1.11 Retrieving the status of all DTCs supported by the server (sub-function = 0x0A 
reportSupportedDTC) 

A client can retrieve the status of all DTCs supported by the server by sending a request for this service with 
the sub-function set to reportSupportedDTCs. The response to this request contains the 
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server 
for masking purposes. Following the DTCStatusAvailabilityMask the response also contains the 
listOfDTCAndStatusRecord, which contains the DTC number and associated status for every diagnostic 
trouble code supported by the server. 

11.3.1.12 Retrieving the first / most recent failed DTC (sub-function = 0x0B reportFirstTestFailedDTC, 
sub-function = 0x0D reportMostRecentTestFailedDTC) 

The client can retrieve the first / most recent failed DTC from the server by sending a request with the sub-
function byte set to “reportFirstTestFailedDTC” or “reportMostRecentTestFailedDTC”, respectively. Along with 
the DTCStatusAvailabilityMask, the server shall return the first or most recent failed DTC number and 
associated status to the client. 

No DTC / status information shall be provided following the DTCStatusAvailabilityMask byte in the positive 
response message if there were no failed DTCs logged since the last time the client requested the server to 
clear diagnostic information. Also, if only one DTC became failed since the last time the client requested the 
server to clear diagnostic information the one failed DTC shall be returned to both reportFirstTestFailedDTC 
and reportMostRecentTestFailedDTC requests from the client. 

Record of the first/most recent failed DTC shall be independent of the aging process of confirmed DTCs. 

As mentioned above, first/most recent failed DTC information shall be cleared upon a successful 
ClearDiagnosticInformation request from the client (see DTC status bit definitions in D.2 for further 
descriptions on the DTC status bit handling in case of a ClearDiagnosticInformation service request reception 
in the server). 

11.3.1.13 Retrieving the first / most recently detected confirmed DTC (sub-function = 0x0C 
reportFirstConfirmedDTC, subfunction = 0x0E reportMostRecentConfirmedDTC) 

The client can retrieve the first / most recent confirmed DTC from the server by sending a request with the 
sub-function byte set to “reportFirstConfirmedDTC” or “reportMostRecentConfirmedDTC”, respectively. Along 
with the DTCStatusAvailabilityMask, the server shall return the first or most recent confirmed DTC number 
and associated status to the client. 

No DTC / status information shall be provided following the DTCStatusAvailabilityMask byte in the positive 
response message if there were no confirmed DTCs logged since the last time the client requested the server 
to clear diagnostic information. Also, if only 1 DTC became confirmed since the last time the client requested 
the server to clear diagnostic information the one confirmed DTC shall be returned to both 
reportFirstConfirmedDTC and reportMostRecentConfirmedDTC requests from the client. 

The record of the first confirmed DTC shall be preserved in the event that the DTC failed at one point in the 
past, but then satisfied aging criteria prior to the time of the request from the client (regardless of any other 
DTCs that become confirmed after the aforementioned DTC became confirmed). Similarly, record of the most 
recently confirmed DTC shall be preserved in the event that the DTC was confirmed at one point in the past, 
but then satisfied aging criteria prior to the time of the request from the client (assuming no other DTCs 
became confirmed after the aforementioned DTC failed). 

As mentioned above, first/most recent confirmed DTC information shall be cleared upon a successful 
ClearDiagnosticInformation request from the client. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

186 © ISO 2013 – All rights reserved

11.3.1.14 Retrieving the list of DTCs out of the server DTC mirror memory that match a client defined 
status mask (sub-function = 0x0F reportMirrorMemoryDTCByStatusMask) 

The handling of the sub-function reportMirrorMemoryDTCByStatusMask is identical to the handling as defined 
for reportDTCByStatusMask, except that all status mask checks are performed with the DTCs stored in the 
DTC mirror memory of the server. The DTC mirror memory is an additional optional error memory in the 
server that cannot be erased by the ClearDiagnosticInformation (0x14) service. The DTC mirror memory 
mirrors the normal DTC memory and can be used for example if the normal error memory is erased. 

11.3.1.15 Retrieving mirror memory DTCExtendedData record data for a client defined DTC mask and 
a client defined DTCExtendedData record number out of the DTC mirror memory (sub-
function = 0x10 reportMirrorMemoryDTCExtDataRecordByDTCNumber) 

The handling of the sub-function reportMirrorMemoryDTCExtDataRecordByDTCNumber is identical to the 
handling as defined for reportDTCExtDataRecordByDTCNumber, except that the data is retrieved out of the 
DTC mirror memory. The DTC mirror memory is an additional optional error memory in the server that cannot 
be erased by the ClearDiagnosticInformation (0x14) service. The DTC mirror memory mirrors the normal DTC 
memory and can be used for example if the normal error memory is erased. 

11.3.1.16 Retrieving the number of mirror memory DTCs that match a client defined status mask (sub-
function = 0x11 reportNumberOfMirrorMemoryDTCByStatusMask) 

A client can retrieve a count of the number of mirror memory DTCs matching a client defined status mask by 
sending a request for this service with the sub-function set to 
reportNumberOfMirrorMemoryDTCByStatusMask. The response to this request contains the 
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server 
for masking purposes. Following the DTCStatusAvailabilityMask the response contains the 
DTCFormatIdentifier which reports information about the DTC formatting and encoding. The 
DTCFormatIdentifier is followed by the DTCCount parameter which is a 2-byte unsigned numeric number, 
containing the number of DTCs available in the server's memory based on the status mask provided by the 
client. 

11.3.1.17 Retrieving the number of "only emissions-related OBD" DTCs that match a client defined 
status mask (sub-function = 0x12 reportNumberOfEmissionsOBDDTCByStatusMask) 

A client can retrieve a count of the number of "only emissions-related OBD" DTCs matching a client defined 
status mask by sending a request for this service with the sub-function set to 
reportNumberOfEmissionsOBDDTCByStatusMask. The response to this request contains the 
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server 
for masking purposes. Following the DTCStatusAvailabilityMask the response contains the 
DTCFormatIdentifier which reports information about the DTC formatting and encoding. The 
DTCFormatIdentifier is followed by the DTCCount parameter which is a 2-byte unsigned numeric number 
containing the number of "only emissions-related OBD" DTCs available in the server's memory based on the 
status mask provided by the client. 

11.3.1.18 Retrieving the list of "only emissions-related OBD" DTCs that match a client defined status 
mask (sub-function = 0x13 reportEmissionsOBDDTCByStatusMask) 

The client can retrieve a list of "only emissions-related OBD" DTCs, which satisfy a client defined status mask 
by sending a request with the sub-function byte set to reportEmissionsOBDDTCByStatusMask. This sub-
function allows the client to request the server to report all "emissions-related OBD" DTCs that are “testFailed” 
OR “confirmed” OR “etc.”. The evaluation shall be done as follows: The server shall perform a bit-wise logical 
AND-ing operation between the mask specified in the client’s request and the actual status associated with 
each "emissions-related OBD" DTC supported by the server. In addition to the DTCStatusAvailabilityMask, the 
server shall return all "emissions-related OBD" DTCs for which the result of the AND-ing operation is non-zero 
(i.e., (statusOfDTC & DTCStatusMask) != 0). If the client specifies a status mask that contains bits that the 
server does not support, then the server shall process the DTC information using only the bits that it does 
support. If no "emissions-related OBD" DTCs within the server match the masking criteria specified in the 
client’s request, no DTC or status information shall be provided following the DTCStatusAvailabilityMask byte 
in the positive response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 187

"Emissions-related OBD" DTC status information shall be cleared upon a successful 
ClearDiagnosticInformation request from the client (see DTC status bit definitions in D.2 for further 
descriptions on the DTC status bit handling in case of a ClearDiagnosticInformation service request reception 
in the server). 

11.3.1.19 Retrieving a list of "prefailed" DTC status (sub-function = 0x14 reportDTCFaultDetection-
Counter) 

The client can retrieve a list of all current "prefailed" DTCs which have or have not yet been detected as 
"pending" or "confirmed" at the time of the client's request. The intention of the DTCFaultDetectionCounter is a 
simple method to identify a growing or intermittent problem which can not be identified / read by the 
statusOfDTC byte of a particular DTC. The internal implementation of the DTCFaultDetectionCounter shall be 
vehicle manufacturer specific. The use case of "prefailed" DTCs is to speed up failure detection during testing 
in the manufacturing plants for DTCs that require a maturation time unacceptable to manufacturing testing. 
Service has a similar use case after repairing or installing new components. 

11.3.1.20 Retrieving a list of DTCs with "permanent DTC" status (sub-function = 0x15 
reportDTCWithPermanentStatus) 

The client can retrieve a list of DTCs with "permanent DTC" status as described in 3.1. 

11.3.1.21 Retrieving DTCExtendedData record data for a client defined DTCExtendedData record 
number (sub-function = 0x16 reportDTCExtDataRecordByRecordNumber) 

A client can retrieve DTCExtendedData for a client defined DTCExtendedData record number by sending a 
request for this service with the sub-function set to reportDTCExtDataRecordByRecordNumber. The server 
shall search through all supported DTCs for exact matches with the DTCExtDataRecordNumber specified by 
the client. In this case the DTCExtDataRecordNumber parameter provided in the client’s request shall specify 
a particular DTCExtendedData record for all supported DTCs for which DTCExtendedData is being requested. 

The server shall return a DTCExtendedData record along with the DTC number and statusOfDTC for each 
supported DTC that contains data for the requested DTCExtDataRecordNumber. 

The vehicle manufacturer shall define format and content of the DTCExtDataRecord. The structure of the data 
reported in the DTCExtDataRecord is defined by the DTCExtDataRecordNumber in a similar way to the 
definition of data within a record DataIdentifier. 

The server shall negatively respond if the DTCExtDataRecordNumber parameter specified by the client is 
invalid or not supported by the server. 

Clearance of DTCExtendedData information upon the reception of a ClearDiagnosticInformation service is 
specified in 11.2.1. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion of 
stored DTCs and DTC extended data in case of a memory overflow (memory space for stored DTCs and DTC 
extended data completely occupied in the server). 

11.3.1.22 Retrieving the list of WWH-OBD DTCs from a functional group that match a client defined 
status mask (sub-function = 0x42 reportWWHOBDDTCByMaskRecord) 

The implementation and usage of DTCSeverityMask (with severity and class) is defined in ISO°27145-3 [17]. 

11.3.1.23 Retrieving a list of WWH-OBD DTCs with "permanent DTC" status (sub-function = 0x55 
reportWWHOBDDTCWithPermanentStatus) 

The client can retrieve a list of WWH-OBD DTCs with the "permanent DTC" status as described in 3.1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

188 © ISO 2013 – All rights reserved

11.3.1.24 Retrieving the list of DTCs out of the server's user defined DTC memory that match a client 
defined DTC status mask (sub-function = 0x17 reportUserDefMemoryDTCByStatusMask) 

The client can retrieve a list of DTCs from a user defined memory, which satisfy a client defined status mask 
by sending a request with the sub-function byte set to reportUserDefMemoryDTCByStatusMask. This sub-
function allows the client to request the server to report all DTCs that are “testFailed” OR “confirmed” OR 
“etc.” from the user defined memory. 

The evaluation shall be done as follows: The server shall perform a bit-wise logical AND-ing operation 
between the mask specified in the client’s request and the actual status associated with each DTC supported 
by the server in that user defined memory. In addition to the DTCStatusAvailabilityMask, the server shall 
return all DTCs for which the result of the AND-ing operation is non-zero (i.e., (statusOfDTC & 
DTCStatusMask) != 0) in that specific memory. If the client specifies a status mask that contains bits that the 
server does not support, then the server shall process the DTC information using only the bits that it does 
support. If no DTCs within the server match the masking criteria specified in the client’s request in that specific 
memory, no DTC or status information shall be provided following the DTCStatusAvailabilityMask byte in the 
positive response message. 

DTC status information shall not be cleared upon a successful ClearDiagnosticInformation request from the 
client, but by a manufacturer specific routine control. 

11.3.1.25 Retrieving user defined memory DTCSnapshot record data for a client defined DTC mask 
and a client defined DTCSnapshotNumber out of the DTC user defined memory (sub-
function = 0x18 reportUserDefMemoryDTCSnapshotRecordByDTCNumber) 

A client can retrieve captured DTCSnapshot record data for a client defined DTCMaskRecord in conjunction 
with a DTCSnapshot record number and an user defined memory identifier by sending a request for this 
service with the sub-function set to reportUserDefMemoryDTCSnapshotRecordByDTCNumber. The server 
shall search through its supported DTCs for an exact match with the DTCMaskRecord specified by the client 
(containing the DTC number (high, middle, and low byte)). The DTCSnapshotRecordNumber parameter 
provided in the client’s request shall specify a particular occurrence of the specified DTC and the defined 
memory for which DTCSnapshot record data is being requested. 

NOTE 1 The DTCSnapshotRecordNumber does not share the same address space as the 
DTCStoredDataRecordNumber. 

It shall be the responsibility of the system supplier / vehicle manufacturer to define whether DTCSnapshot 
records captured within such servers store data associated with the first or most recent occurrence of a 
failure. 

Along with the DTC number and statusOfDTC, the server shall return a single pre-defined 
DTCSnapshotRecord from the specific user memory in response to the client’s request, if a failure has been 
identified for the client defined DTCMaskRecord and DTCSnapshotRecordNumber parameters 
(DTCSnapshotRecordNumber unequal 0xFF) and that specific memory. 

NOTE 2 The exact failure criteria shall be defined by the system supplier / vehicle manufacturer. 

The DTCSnapshot record may contain multiple data-parameters that can be used to reconstruct the vehicle 
conditions (e.g. B+, RPM, time-stamp) at the time of the failure occurrence. 

The vehicle manufacturer shall define format and content of the DTCSnapshotRecord in the user defined 
memory (i.e. the content of the DTCSnapshotRecords can differ between different memories) records. The 
data reported in the DTCSnapshotRecord first of all contains a dataIdentifier to identify the data that follows. 
This dataIdentifier/data combination can be repeated within the DTCSnapshotRecord.The usage of one or 
multiple dataIdentifiers in the DTCSnapshotRecord in the user defined memory allows for the storage of 
different types of DTCSnapshotRecords for a single DTC for different occurrences of the failure. A parameter 
which indicates the number of record DataIdentifiers contained within each DTCSnapshotRecord shall be 
provided with each DTCSnapshotRecord to assist data retrieval. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 189

The server shall report one DTCSnapshot record in a single response message, except the client has set the 
DTCSnapshotRecordNumber to 0xFF, because this shall cause the server to respond with all DTCSnapshot 
records stored for the client defined DTCMaskRecord and the user defined memory in a single response 
message. The DTCAndStatusRecord is only included one time in the response message. 

The server shall negatively respond if the DTCMaskRecord, DTCSnapshotRecordNumber, UserDefMemory 
parameters specified by the client are invalid or not supported by the server. This is to be differentiated from 
the case in which the DTCMaskRecord and/or DTCSnapshotRecordNumber parameters specified by the 
client are indeed valid and supported by the server for that specific memory, but have no DTCSnapshot data 
associated with it (e.g., because a failure event never occurred for the specified DTC or record number). The 
server shall send the positive response containing only the DTCAndStatusRecord (echo of the requested DTC 
number (high, middle, and low byte) plus the statusOfDTC). 

DTCSnapshot information shall be cleared upon a manufacturer specific conditions (e.g a routine control) 
request from the client. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion 
of stored DTCs and DTCSnapshot data in case of a memory overflow (memory space for stored DTCs and 
DTCsnapshot data completely occupied in the server for that specific memory). 

11.3.1.26 Retrieving user defined memory DTCExtendedData record data for a client defined DTC 
mask and a client defined DTCExtendedData record number out of the DTC memory (sub-
function = 0x19 reportUserDefMemoryDTCExtDataRecordByDTCNumber) 

A client can retrieve DTCExtendedData for a client defined DTCMaskRecord in conjunction with a 
DTCExtendedData record number and a UserDefMemoryIdenitfier by sending a request for this service with 
the sub-function set to reportUserDefMemoryDTCExtDataRecordByDTCNumber. The server shall search 
through its supported DTCs for an exact match with the DTCMaskRecord specified by the client (containing 
the DTC number (high, middle, and low byte)) and the UserDefMemoryIdentifier. In this case the 
DTCExtDataRecordNumber parameter provided in the client’s request shall specify a particular 
DTCExtendedData record of the specified DTC for which DTCExtendedData is being requested. 

Along with the DTC number and statusOfDTC, the server shall return a single pre-defined DTCExtendedData 
record in response to the client’s request (DTCExtDataRecordNumber unequal to 0xFE or 0xFF). 

The vehicle manufacturer shall define format and content of the UserDefDTCExtDataRecord. The structure of 
the data reported in the DTCExtDataRecord is defined by the DTCExtDataRecordNumber for that specific 
user defined memory in a similar way to the definition of data within a record DataIdentifier. Multiple 
DTCExtDataRecordNumbers and associated DTCExtDataRecords may be included in the response. The 
usage of one or multiple DTCExtDataRecordNumbers allows for the storage of different types of 
DTCExtDataRecords for a single DTC. 

The server shall report one DTCExtendedData record in a single response message, except the client has set 
the DTCExtDataRecordNumber to 0xFE or 0xFF, because this shall cause the server to response with all 
DTCExtendedData records stored for the client defined DTCMaskRecord out of the user defined memory in a 
single response message. 

The server shall negatively respond if the DTCMaskRecord or DTCExtDataRecordNumber parameters 
specified by the client are invalid or not supported by the server or not in that specific memory. This is to be 
differentiated from the case in which the DTCMaskRecord and/or DTCExtDataRecordNumber parameters 
specified by the client are indeed valid and supported by the server, but have no DTC extended data 
associated with it (e.g., because of memory overflow of the extended data). In case of 
reportDTCExtDataRecordByDTCNumber the server shall send the positive response containing only the 
DTCAndStatusRecord (echo of the requested DTC number (high, middle, and low byte) plus the 
statusOfDTC). 

It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion of stored DTCs and 
DTC extended data in the user defined memory. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

190 © ISO 2013 – All rights reserved

11.3.2 Request message 

11.3.2.1 Request message definition 

Table 256 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 256 — Request message definition - sub-function = reportNumberOfDTCByStatusMask, 
reportDTCByStatusMask, reportMirrorMemoryDTCByStatusMask, 

reportNumberOfMirrorMemoryDTCByStatusMask, reportNumberOfEmissionsOBDDTCByStatusMask, 
reportEmissionsOBDDTCByStatusMask 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType =  
 reportNumberOfDTCByStatusMask 
 reportDTCByStatusMask 
 reportMirrorMemoryDTCByStatusMask  
 reportNumberOfMirrorMemoryDTCByStatusMask  
 reportNumberOfEmissionsOBDDTCByStatusMask 
 reportEmissionsOBDDTCByStatusMask ] 

M
0x01 
0x02 
0x0F 
0x11 
0x12 
0x13 

LEV_
RNODTCBSM 
RDTCBSM 
RMMDTCBSM 
RNOMMDTCBSM 
RNOOEBDDTCBSM
ROBDDTCBSM 

#3 DTCStatusMask M 0x00 – 0xFF DTCSM 

Table 257 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 257 — Request message definition - sub-function = reportDTCSnapshotIdentification, 
reportDTCSnapshotRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportDTCSnapshotIdentification 
   reportDTCSnapshotRecordByDTCNumber ] 

M
0x03 
0x04 

LEV_
RDTCSSI 
RDTCSSBDTC 

#3
#4
#5

DTCMaskRecord[] = [  
     DTCHighByte  
     DTCMiddleByte 
     DTCLowByte ] 

C
C
C

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCMREC_ 
DTCHB 
DTCMB 
DTCLB 

#6 DTCSnapshotRecordNumber C 0x00 – 0xFF DTCSSRN 

C: The DTCMaskRecord record and DTCSnapshotRecordNumber parameters are only present in case the sub-
function parameter is equal to reportDTCSnapshotRecordByDTCNumber. 

Table 258 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 258 — Request message definition - sub-function = reportDTCStoredDataByRecordNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType =  
   reportDTCStoredDataByRecordNumber ] 

M
0x05 

LEV_
RDTCSDBRN 

#3 DTCStoredDataRecordNumber M 0x00 – 0xFF DTCSDRN 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 191

Table 259 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 259 — Request message definition - sub-function = reportDTCExtDataRecordByDTCNumber, 
reportMirrorMemoryDTCExtDataRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
 reportDTCExtDataRecordByDTCNumber 
 reportMirrorMemoryDTCExtDataRecordByDTCNumber ] 

M
0x06 
0x10 

LEV_
RDTCEDRBDN 
RMDEDRBDN 

#3
#4
#5

DTCMaskRecord[] = [  
     DTCHighByte  
     DTCMiddleByte 
     DTCLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCMREC_ 
DTCHB 
DTCMB 
DTCLB 

#6 DTCExtDataRecordNumber M 0x00 – 0xFF DTCEDRN 

Table 260 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 260 — Request message definition - sub-function = reportNumberOfDTCBySeverityMaskRecord, 
reportDTCSeverityInformation 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportNumberOfDTCBySeverityMaskRecord 
   reportDTCBySeverityMaskRecord ] 

M
0x07 
0x08 

LEV_
RNODTCBSMR 
RDTCBSMR 

#3
#4

DTCSeverityMaskRecord[] = [  
      DTCSeverityMask 
      DTCStatusMask ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DTCSVMREC_ 
DTCSVM 
DTCSM 

Table 261 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 261 — Request message definition - sub-function = reportSeverityInformationOfDTC 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportSeverityInformationOfDTC ] 

M
0x09 

LEV_
RSIODTC

#3
#4
#5

DTCMaskRecord[] = [  
     DTCHighByte  
     DTCMiddleByte 
     DTCLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCMREC_ 
DTCHB 
DTCMB 
DTCLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

192 © ISO 2013 – All rights reserved

Table 262 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 262 — Request message definition - sub-function = reportSupportedDTC, 
reportFirstTestFailedDTC, reportFirstConfirmedDTC, reportMostRecentTestFailedDTC, 

reportMostRecentConfirmedDTC, reportDTCFaultDetectionCounter, reportDTCWithPermanentStatus 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportSupportedDTC 
   reportFirstTestFailedDTC 
   reportFirstConfirmedDTC 
   reportMostRecentTestFailedDTC 
   reportMostRecentConfirmedDTC 
   reportDTCFaultDetectionCounter 
   reportDTCWithPermanentStatus ] 

M
0x0A 
0x0B 
0x0C 
0x0D 
0x0E 
0x14 
0x15 

LEV_
RSUPDTC
RFTFDTC 
RFCDTC 
RMRTFDTC 
RMRCDTC 
RDTCFDC 
RDTCWPS 

Table 263 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 263 — Request message definition - sub-function = reportDTCExtDataRecordByRecordNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType =  
   reportDTCExtDataRecordByRecordNumber] 

M
0x16 

LEV_
RDTCEDRBR 

#3 DTCExtDataRecordNumber M 0x00 – 0xEF DTCEDRN 

Table 264 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 264 — Request message definition - sub-function = reportUserDefMemoryDTCByStatusMask 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportUserDefMemoryDTCByStatusMask 

M
0x17 

LEV_
RUDMDTCBSM 

#3 DTCStatusMask M 0x00 –0xFF DTCSM 

#4 MemorySelection M 0x00 – 0xFF MEMYS 

Table 265 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 193

Table 265 — Request message definition - sub-function = 
reportUserDefMemoryDTCSnapshotRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
reportUserDefMemoryDTCSnapshotRecordByDTCNumber]

M
0x18 

LEV_
RUDMDTCSSBDTC 

#3
#4
#5

DTCMaskRecord[] = [  
     DTCHighByte  
     DTCMiddleByte 
     DTCLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCMREC_ 
DTCHB 
DTCMB 
DTCLB 

#6 DTCSnapshotRecordNumber M 0x00 – 0xFF DTCSSRN 

#7 MemorySelection M 0x00 – 0xFF MEMYS 

Table 266 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 266 — Request message definition - sub-function = 
reportUserDefMemoryDTCExtDataRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
reportUserDefMemoryDTCExtDataRecordByDTCNumber] 

M
0x19 

LEV_
RUDMDTCEDRBDN 

#3
#4
#5

DTCMaskRecord[] = [  
     DTCHighByte  
     DTCMiddleByte 
     DTCLowByte ] 

M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCMREC_ 
DTCHB 
DTCMB 
DTCLB 

#6 DTCExtDataRecordNumber M 0x00 – 0xFF DTCEDRN 

#7 MemorySelection M 0x00 – 0xFF MEMYS 

Table 267 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 267 — Request message definition - sub-function = reportWWHOBDDTCByMaskRecord 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
   reportWWHOBDDTCByMaskRecord ] 

M
0x42 

LEV_
ROBDDTCBMR 

#3 FunctionalGroupIdentifier M 0x00 – 0xFF FGID 

#4
#5

DTCSeverityMaskRecord[] = [  
      DTCStatusMask 
      DTCSeverityMask ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DTCSVMREC_ 
DTCSM 
DTCSVM 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

194 © ISO 2013 – All rights reserved

Table 268 defines the structure of the ReadDTCInformation request message based on the used sub-function 
parameter. 

Table 268 — Request message definition - sub-function = reportWWHOBDDTCWithPermanentStatus 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Request SID M 0x19 RDTCI 

#2 sub-function = [ reportType = 
  reportWWHOBDDTCWithPermanentStatus ] 

M
0x55 

LEV_
RWWHOBDDTCWPS 

#3 FunctionalGroupIdentifier M 0x00 – 0xFF FGID 

11.3.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameters are used by this service to select one of the DTC report types specified in 
Table 269. Explanations and usage of the possible levels are detailed below 
(suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 269 — Request message sub-function definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x01 reportNumberOfDTCByStatusMask U RNODTCBSM 

 This parameter specifies that the server shall transmit to the client the 
number of DTCs matching a client defined status mask. 

0x02 reportDTCByStatusMask U RDTCBSM 

 This parameter specifies that the server shall transmit to the client a list of 
DTCs and corresponding statuses matching a client defined status mask. 

0x03 reportDTCSnapshotIdentification U RDTCSSI 

 This parameter specifies that the server shall transmit to the client all 
DTCSnapshot data record identifications (DTC number(s) and 
DTCSnapshot record number(s)). 

0x04 reportDTCSnapshotRecordByDTCNumber U RDTCSSBDTC 

 This parameter specifies that the server shall transmit to the client the 
DTCSnapshot record(s) associated with a client defined DTC number and 
DTCSnapshot record number (0xFF for all records). 

0x05 reportDTCStoredDataByRecordNumber U RDTCSDBRN 

 This parameter specifies that the server shall transmit to the client the 
DTCStoredDatarecord(s) associated with a client defined DTCStoredData 
record number (0xFF for all records). 

0x06 reportDTCExtDataRecordByDTCNumber U RDTCEDRBDN 

 This parameter specifies that the server shall transmit to the client the 
DTCExtendedData record(s) associated with a client defined DTC number 
and DTCExtendedData record number (0xFF for all records, 0xFE for all 
OBD records). 

0x07 reportNumberOfDTCBySeverityMaskRecord U RNODTCBSMR 

 This parameter specifies that the server shall transmit to the client the 
number of DTCs matching a client defined severity mask record. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 195

Table 269 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x08 reportDTCBySeverityMaskRecord U RDTCBSMR 

 This parameter specifies that the server shall transmit to the client a list of 
DTCs and corresponding statuses matching a client defined severity mask 
record. 

0x09 reportSeverityInformationOfDTC U RSIODTC 

 This parameter specifies that the server shall transmit to the client the 
severity information of a specific DTC specified in the client request 
message. 

0x0A reportSupportedDTC U RSUPDTC 

 This parameter specifies that the server shall transmit to the client a list of 
all DTCs and corresponding statuses supported within the server. 

0x0B reportFirstTestFailedDTC U RFTFDTC 

 This parameter specifies that the server shall transmit to the client the first 
failed DTC to be detected by the server since the last clear of diagnostic 
information. Note that the information reported via this sub-function 
parameter shall be independent of whether or not the DTC was confirmed 
or aged. 

0x0C reportFirstConfirmedDTC U RFCDTC 

 This parameter specifies that the server shall transmit to the client the first 
confirmed DTC to be detected by the server since the last clear of 
diagnostic information. 
The information reported via this sub-function parameter shall be 
independent of the aging process of confirmed DTCs (e.g. if a DTC ages 
such that its status is allowed to be reset, the first confirmed DTC record 
shall continue to be preserved by the server, regardless of any other DTCs 
that become confirmed afterwards). 

0x0D reportMostRecentTestFailedDTC U RMRTFDTC 

 This parameter specifies that the server shall transmit to the client the most 
recent failed DTC to be detected by the server since the last clear of 
diagnostic information. Note that the information reported via this sub-
function parameter shall be independent of whether or not the DTC was 
confirmed or aged. 

0x0E reportMostRecentConfirmedDTC U RMRCDTC 

 This parameter specifies that the server shall transmit to the client the most 
recent confirmed DTC to be detected by the server since the last clear of 
diagnostic information. 
Note that the information reported via this sub-function parameter shall be 
independent of the aging process of confirmed DTCs (e.g. if a DTC ages 
such that its status is allowed to be reset, the first confirmed DTC record 
shall continue to be preserved by the server assuming no other DTCs 
become confirmed afterwards). 

0x0F reportMirrorMemoryDTCByStatusMask U RMMDTCBSM 

 This parameter specifies that the server shall transmit to the client a list of 
DTCs out of the DTC mirror memory and corresponding statuses matching 
a client defined status mask. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

196 © ISO 2013 – All rights reserved

Table 269 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x10 reportMirrorMemoryDTCExtDataRecordByDTCNumber U RMMDEDRBDN 

 This parameter specifies that the server shall transmit to the client the 
DTCExtendedData record(s) - out of the DTC mirror memory - associated 
with a client defined DTC number and DTCExtendedData record number 
(0xFF for all records, 0xFE for all OBD records) DTCs. 

0x11 reportNumberOfMirrorMemoryDTCByStatusMask U RNOMMDTCBSM 

 This parameter specifies that the server shall transmit to the client the 
number of DTCs out of mirror memory matching a client defined status 
mask. 

0x12 reportNumberOfEmissionsOBDDTCByStatusMask U RNOOEOBDDTCBSM 

 This parameter specifies that the server shall transmit to the client the 
number of emissions-related OBD DTCs matching a client defined status 
mask. The number of OBD DTCs reported shall only be those which are 
required to be compatible with emissions-related legal requirements. 

0x13 reportEmissionsOBDDTCByStatusMask U ROBDDTCBSM 

 This parameter specifies that the server shall transmit to the client a list of 
emissions-related OBD DTCs and corresponding statuses matching a 
client defined status mask. The list of OBD DTCs reported shall only be 
those which are required to be compatible with emissions-related legal 
requirements. 

0x14 reportDTCFaultDetectionCounter U RDTCFDC 

 This parameter specifies that the server shall transmit to the client a list of 
current "prefailed" DTCs which have or have not yet been detected as 
"pending" or "confirmed". 
The intention of the DTCFaultDetectionCounter is a simple method to 
identify a growing or intermittent problem which can not be identified / read 
by the statusOfDTC byte of a particular DTC. The internal implementation 
of the DTCFaultDetectionCounter shall be vehicle manufacturer specific 
(e.g., number of bytes, signed versus unsigned, etc.) but the reported 
value shall be a scaled 1 byte signed value so that +127 (0x7F) represents 
a test result of "failed" and any other non-zero positive value represents a 
test result of "prefailed". However DTCs with DTCFaultDetectionCounter 
with the value +127 shall not be reported according to below stated rule. 
The DTCFaultDetectionCounter shall be incremented by a vehicle 
manufacturer specific amount each time the test logic runs and indicates a 
fail for that test run. 
A reported DTCFaultDetectionCounter value greater than zero and less 
than +127 (i.e., 0x01 – 0x7E) indicates that the DTC enable criteria was 
met and that a non completed test result prefailed at least in one condition 
or threshold.  
Only DTCs with DTCFaultDetectionCounters with a non-zero positive value 
less than +127 (0x7F) shall be reported. 
The DTCFaultDetectionCounter shall be decremented by a vehicle 
manufacturer specific amount each time the test logic runs and indicates a 
pass for that test run. If the DTCFaultDetectionCounter is decremented to 
zero or below the DTC shall no longer be reported in the positive response 
message. The value of the DTCFaultDetectionCounter shall not be 
maintained between operation cycles. 
If a ClearDiagnosticInformation service request is received the 
DTCFaultDetectionCounter value shall be reset to zero for all DTCs. 
Additional reset conditions shall be defined by the vehicle manufacturer. 
Refer to D.5 for example implementation details. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 197

Table 269 — (continued)

Bits 6 – 0 Description Cvt Mnemonic 

0x15 reportDTCWithPermanentStatus U RDTCWPS 

 This parameter specifies that the server shall transmit to the client a list of 
DTCs with "permanent DTC" status as described in 3.1. 

0x16 reportDTCExtDataRecordByRecordNumber U RDTCEDBR 

 This parameter specifies that the server shall transmit to the client the 
DTCExtendedData records associated with a client defined 
DTCExtendedData record number less than 0xF0. 

0x17 reportUserDefMemoryDTCByStatusMask U RUDMDTCBSM 

 This parameter specifies that the server shall transmit to the client a list of 
DTCs out of the user defined DTC memory and corresponding statuses 
matching a client defined status mask. 

0x18 reportUserDefMemoryDTCSnapshotRecordByDTCNumber U RUDMDTCSSBDTC 

 This parameter specifies that the server shall transmit to the client the 
DTCSnapshot record(s) – out of the user defined DTC memory - 
associated with a client defined DTC number and DTCSnapshot record 
number (0xFF for all records). 

0x19 reportUserDefMemoryDTCExtDataRecordByDTCNumber U RUDMDTCEDRBDN 

 This parameter specifies that the server shall transmit to the client the 
DTCExtendedData record(s) – out of the user defined DTC memory - 
associated with a client defined DTC number and DTCExtendedData 
record number (0xFF for all records). 

0x1A – 0x41 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x42 reportWWHOBDDTCByMaskRecord U RWWHOBDDTCBMR 

 This parameter specifies that the server shall transmit to the client a list of 
WWH OBD DTCs and corresponding status and severity information 
matching a client defined status mask and severity mask record. 

0x43 – 0x54 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x55 reportWWHOBDDTCWithPermanentStatus U RWWHOBDDTCWPS 

 This parameter specifies that the server shall transmit to the client a list of 
WWH OBD DTCs with "permanent DTC" status as described in 3.1. 

0x56 – 0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

198 © ISO 2013 – All rights reserved

11.3.2.3 Request message data-parameter definition 

Table 270 specifies the data-parameters of the request message. 

Table 270 — Request data-parameter definition 

Definition

DTCStatusMask 

The DTCStatusMask contains eight (8) DTC status bits. The definitions for each of the eight bits can be found in D.2. 
This byte is used in the request message to allow a client to request DTC information for the DTCs whose status 
matches the DTCStatusMask. A DTCs status matches the DTCStatusMask if any one of the DTCs actual status bits is 
set to ‘1’ and the corresponding status bit in the DTCStatusMask is also set to ‘1’ (i.e., if the DTCStatusMask is bit-wise 
logically ANDed with the DTCs actual status and the result is non-zero, then a match has occurred). If the client specifies 
a status mask that contains bits that the server does not support, then the server shall process the DTC information 
using only the bits that it does support. 

DTCMaskRecord [DTCHighByte, DTCMiddleByte, DTCLowByte] 

DTCMaskRecord is a 3-byte value containing DTCHighByte, DTCMiddleByte and DTCLowByte, which together 
represent a unique identification number for a specific diagnostic trouble code supported by a server. 
The definition of the 3-byte DTC number allows for several ways of coding DTC information. It can either be done 
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 15031-6 [12]

specification. This format is identified by the DTCFormatIdentifier = SAE_J2012-DA_DTCFormat_00, or 
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to this part of ISO 14229

which does not specify any decoding method and therefore allows a vehicle manufacturer defined decoding method. 
This format is identified by the DTCFormatIdentifier = ISO_14229-1_DTCFormat, or 

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the SAE J1939-73 [19]
specification. This format is identified by the DTCFormatIdentifier = SAE_J1939-73_DTCFormat, or 

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 11992-4 [5]
specification. This format is identified by the DTCFormatIdentifier = ISO_11992-4_DTCFormat. 

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 27145-2 [16]
specification. This format is identified by the DTCFormatIdentifier = SAE_J2012-DA_WWH-OBD_DTCFormat. 

DTCSnapshotRecordNumber 

DTCSnapshotRecordNumber is a 1-byte value indicating the number of the specific DTCSnapshot data record requested 
for a client defined DTCMaskRecord via the reportDTCSnapshotByDTCNumber sub-function. DTCSnapshot data record 
number 0x00 shall be reserved for legislated purposes (e.g., WWH-OBD). DTCSnapshot records in range of 0x01 
through 0xFE shall be available for vehicle manufacturer specific usage. A value of 0xFF requests the server to report all 
stored DTCSnapshot data records at once.  

DTCStoredDataRecordNumber 

DTCStoredDataRecordNumber is a 1-byte value indicating the number of the specific DTCStoredDataRecord requested 
via the reportDTCStoredDataByRecordNumber sub-function. DTCStoredDataRecordNumber 0x00 shall be reserved for 
legislated purposes. DTCStoredData records in range of 0x01 through 0xFE shall be available for vehicle manufacturer 
specific usage. A value of 0xFF requests the server to report all stored DTCStoredData data records at once. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 199

Table 270 — (continued)

Definition

DTCExtDataRecordNumber 

DTCExtDataRecordNumber is a 1-byte value indicating the number of the specific DTCExtendedData record requested 
for a client defined DTCMaskRecord via the reportDTCExtDataRecordByDTCNumber and
reportDTCExtDataRecordByRecordNumber sub-function. For emissions-related servers (OBD compliant ECUs) the 
DTCExtDataRecordNumber 0x00 shall be reserved for future OBD use. 
The following DTCExtDataRecordNumber ranges are reserved: 
⎯ A value of 0x00 is reserved by ISO/SAE. 
⎯ A value of 0x01 – 0x8F requests the server to report the vehicle manufacturer specific stored DTCExtendedData 

records. 
⎯ A value of 0x90 – 0xEF requests the server to report legislated OBD stored DTCExtendedData records.  
⎯ A value of 0xF0 – 0xFD is reserved by ISO/SAE for future reporting of groups in a single response message. 
⎯ A value of 0xFE requests the server to report all legislated OBD stored DTCExtendedData records in a single 

response message. 
⎯ A value of 0xFF requests the server to report all stored DTCExtendedData records in a single response message. 

DTCSeverityMaskRecord [DTCSeverityMask, DTCStatusMask] 

DTCSeverityMaskRecord is a 2-byte value containing the DTCSeverityMask and the DTCStatusMask (see D.3 and D.2).

DTCSeverityMask 

The DTCSeverityMask contains three DTC severity bits. The definitions for each of the three bits can be found in D.3. 
This byte is used in the request message to allow a client to request DTC information for the DTCs whose severity 
definition matches the DTCSeverityMask. A DTCs severity definition matches the DTCSeverityMask if any one of the 
DTCs actual severity bits is set to ‘1’ and the corresponding severity bit in the DTCSeverityMask is also set to ‘1’ (i.e., if 
the DTCSeverityMask is bit-wise logically ANDed with the DTCs actual severity and the result is non-zero, then a match 
has occurred). 

FunctionalGroupIdentifier 

The FunctionalGroupIdentifier has been introduced to distinguish commands sent by the test equipment between 
different functional system groups within an electrical architecture which consists of many different ECUs. If an ECU has 
implemented software of the emissions system as well as other systems which may be inspected during an I/M test it is 
important that only the DTC information of the requested functional system group is reported. An I/M test should not be 
failed because another functional system group has DTC information stored. 
The FunctionalGroupIdentifiers are specified in D.5. 

MemorySelection 

This parameter shall be used to address the respective user defined DTC memory when retrieving DTCs. 

11.3.3 Positive response message 

11.3.3.1 Positive response message definition 

Positive response(s) to the service ReadDTCInformation requests depend on the sub-function in the service 
request. 

Table 271 defines the positive response message format of the sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

200 © ISO 2013 – All rights reserved

Table 271 — Response message definition - sub-function = reportNumberOfDTCByStatusMask, 
reportNumberOfDTCBySeverityMaskRecord, reportNumberOfMirrorMemoryDTCByStatusMask, 

reportNumberOfEmissionsOBDDTCByStatusMask 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
 reportNumberOfDTCByStatusMask 
 reportNumberOfDTCBySeverityMaskRecord  
 reportNumberOfMirrorMemoryDTCByStatusMask  
 reportNumberOfEmissionsOBDDTCByStatusMask ] 

M
0x01 
0x07 
0x11 
0x12 

LEV_
RNODTCBSM 
RNODTCBSMR 
RNOMMDTCBSM  
RNOOEOBDDTCBSM

#3 DTCStatusAvailabilityMask M 0x00 – 0xFF DTCSAM 

#4 DTCFormatIdentifier = [  
   SAE_J2012-DA_DTCFormat_00 
   ISO_14229-1_DTCFormat 
   SAE_J1939-73_DTCFormat  
   ISO_11992-4_DTCFormat  
   SAE_J2012-DA_DTCFormat_04 ] 

M
0x00 
0x01 
0x02 
0x03 
0x04 

DTCFID_ 
J2012-DADTCF00 
14229-1DTCF 
J1939-73DTCF 
11992-4DTCF 
J2012-DADTCF04 

#5
#6

DTCCount[] = [ 
   DTCCountHighByte 
   DTCCountLowByte ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

DTCC_ 
DTCCHB 
DTCCLB 

Table 272 defines the positive response message format of the sub-function parameter. 

Table 272 — Response message definition - sub-function = reportDTCByStatusMask, 
reportSupportedDTCs, reportFirstTestFailedDTC, reportFirstConfirmedDTC, 

reportMostRecentTestFailedDTC, reportMostRecentConfirmedDTC, 
reportMirrorMemoryDTCByStatusMask, reportEmissionsOBDDTCByStatusMask, 

reportDTCWithPermanentStatus 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCByStatusMask 
   reportSupportedDTCs 
   reportFirstTestFailedDTC 
   reportFirstConfirmedDTC 
   reportMostRecentTestFailedDTC 
   reportMostRecentConfirmedDTC 
   reportMirrorMemoryDTCByStatusMask 
   reportEmissionsOBDDTCByStatusMask 
   reportDTCWithPermanentStatus ] 

M
0x02 
0x0A 
0x0B 
0x0C 
0x0D 
0x0E 
0x0F 
0x13 
0x15 

LEV_
RDTCBSM 
RSUPDTC
RFTFDTC 
RFCDTC 
RMRTFDTC 
RMRCDTC 
RMMDTCBSM 
ROBDDTCBSM 
RDTCWPS 

#3 DTCStatusAvailabilityMask M 0x00 – 0xFF DTCSAM 

#4
#5
#6
#7
#8
#9

#10
#11

:
#n-3
#n-2
#n-1
#n

DTCAndStatusRecord[] = [ 
      DTCHighByte#1 
      DTCMiddleByte#1 
      DTCLowByte#1 
      statusOfDTC#1 
      DTCHighByte#2 
      DTCMiddleByte#2 
      DTCLowByte#2 
      statusOfDTC#2 
       : 
      DTCHighByte#m 
      DTCMiddleByte#m 
      DTCLowByte#m 
      statusOfDTC#m ] 

C1
C1
C1
C1
C2
C2
C2
C2
:

C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC
DTCHB 
DTCMB 
DTCLB 
SODTC
:
DTCHB 
DTCMB 
DTCLB 
SODTC

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 201

Table 272 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

C1: This parameter is only present if DTC information is available to be reported. 
C2: This parameter is only present if reportType = reportSupportedDTCs, reportDTCByStatusMask,  
reportMirrorMemoryDTCByStatusMask, reportEmissionsOBDDTCByStatusMask, reportDTCWithPermanentStatus and 
more than one DTC information is available to be reported. 

Table 273 defines the positive response message format of the sub-function parameter. 

Table 273 — Response message definition - sub-function = reportSnapshotIdentification 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCSnapshotIdentification ] 

M
0x03 

LEV_
RDTCSSI 

#3
#4
#5

DTCRecord[]#1 = [ 
    DTCHighByte#1 
    DTCMiddleByte#1 
    DTCLowByte#1 ] 

C1
C1
C1

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 

#6 DTCSnapshotRecordNumber#1 C1 0x00 – 0xFF DTCSSRN 

: : : : : 

#n-3
#n-2
#n-1

DTCRecord[]#m = [ 
    DTCHighByte#m 
    DTCMiddleByte#m 
    DTCLowByte#m ] 

C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 

#n DTCSnapshotRecordNumber#m C2 0x00 – 0xFF DTCSSRN 

C1: The DTCRecord and DTCSnapshotRecordNumber parameter is only present if at least one DTCSnapshot record is 
available to be reported. 
C2: The DTCRecord and DTCSnapshotRecordNumber parameter is only present if more than one DTCSnapshot record 
is available to be reported. 

Table 274 defines the positive response message format of the sub-function parameter. 

Table 274 — Response message definition - sub-function = reportDTCSnapshotRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCSnapshotRecordByDTCNumber ] 

M
0x04 

LEV_
RDTCSSBDTC 

#3
#4
#5
#6

DTCAndStatusRecord[] = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

M
M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#7 DTCSnapshotRecordNumber#1 C1 0x00 – 0xFF DTCSSRN 

#8 DTCSnapshotRecordNumberOfIdentifiers#1 C1 0x00 – 0xFF DTCSSRNI 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

202 © ISO 2013 – All rights reserved

Table 274 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#9
#10
#11

:
# 11+(p-1) 

:
#r-(m-1)-2 
#r-(m-1)-1 
#r-(m-1) 

:
#r

DTCSnapshotRecord[]#1 = [ 
      dataIdentifier#1 byte#1 (MSB) 
      dataIdentifier#1 byte#2 (LSB) 
      snapshotData#1 byte#1 
       : 
      snapshotData#1 byte#p 
       : 
      dataIdentifier#w byte#1 (MSB) 
      dataIdentifier#w byte#2 (LSB) 
      snapshotData#w byte#1 
       : 
      snapshotData#w byte#m ] 

C1
C1
C1
C1
C1
:

C2
C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSSR_ 
DIDB11 
DIDB12 
SSD11
:
SSD1p
:
DIDB21 
DIDB22 
SSD21
:
SSD2m 

: : : : : 

#t DTCSnapshotRecordNumber#x C3 0x00 – 0xFF DTCSSRN 

#t+1 DTCSnapshotRecordNumberOfIdentifiers#x C3 0x00 – 0xFF DTCSSRNI 

#t+2
#t+3
#t+5

:
#t+5+(p-1) 

:
#n-(u-1)-2 
#n-(u-1)-1 
#n-(u-1)

:
#n

DTCSnapshotRecord[]#x = [ 
      dataIdentifier#1 byte#1 (MSB) 
      dataIdentifier#1 byte#2 (LSB) 
      snapshotData#1 byte#1 
       : 
      snapshotData#1 byte#p 
       : 
      dataIdentifier#w byte#1 (MSB) 
      dataIdentifier#w byte#2 (LSB) 
      snapshotData#w byte#1 
       : 
      snapshotData#w byte#u ] 

C3
C3
C3
C3
C3
:

C4
C4
C4
C4
C4

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSSR_ 
DIDB11 
DIDB12 
SSD11
:
SSD1p
:
DIDB21 
DIDB22 
SSD21
:
SSD2u

C1: The DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the DTCSnapshotRecord 
parameter is only present if at least one DTCSnapshot record is available to be reported. 
C2/C4 There are multiple dataIdentifier/snapshotData combinations allowed to be present in a single 
DTCSnapshotRecord. This can e.g. be the case for the situation where a single dataIdentifier only references an integral 
part of data. When the dataIdentifier references a block of data then a single dataIdentifier/snapshotData combination 
can be used. 
C3: The DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the DTCSnapshotRecord 
parameter is only present if all records are requested to be reported (DTCSnapshotRecordNumber set to 0xFF in the 
request) and more than one record is available to be reported. 

Table 275 defines the positive response message format of the sub-function parameter. 

Table 275 — Response message definition - sub-function = reportDTCStoredDataByRecordNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCStoredDataByRecordNumber ] 

M
0x05 

LEV_
RDTCSDBRN 

#3 DTCStoredDataRecordNumber#1 M 0x00 – 0xFF DTCSDRN 

#4
#5
#6
#7

DTCAndStatusRecord[]#1 = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

C1
C1
C1
C1

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 203

Table 275 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#8 DTCStoredDataRecordNumberOfIdentifiers#1 C1 0x00 – 0xFF DTCSDRNI 

#9
#10
#11

:
#11+(p-1) 

:
#r-(m-1)-2 
#r-(m-1)-1 
#r-(m-1) 

:
#r

DTCStoredDataRecord[]#1 = [ 
      dataIdentifier#1 byte#1 (MSB) 
      dataIdentifier#1 byte#2 (LSB) 
      DTCstoredData#1 byte#1 
       : 
      DTCstoredData#1 byte#p 
       : 
      dataIdentifier#w byte#1 (MSB) 
      dataIdentifier#w byte#2 (LSB) 
      DTCstoredData#w byte#1 
       : 
      DTCstoredData#w byte#m ] 

C1
C1
C1
:

C1
:

C2
C2
C2
:

C2

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSDR_ 
DIDB11 
DIDB12 
DSD11 
:
DSD1p 
:
DIDB21 
DIDB22 
DSD21 
:
DSD2m 

: : : : : 

#t DTCStoredDataRecordNumber#x C3 0x00 – 0xFF DTCSDRN 

#t+1
#t+2
#t+3
#t+4

DTCAndStatusRecord[]#x = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

C3
C3
C3
C3

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#t+5 DTCStoredDataRecordNumberOfIdentifiers#x C3 0x00 – 0xFF DTCSDRNI 

#t+6
#t+7
#t+8

:
#t+8+(p-1) 

:
#n-(u-1)-2 
#n-(u-1)-1 
#n-(u-1)

:
#n

DTCStoredDataRecord[]#x = [ 
      dataIdentifier#1 byte#1 (MSB) 
      dataIdentifier#1 byte#2 (LSB) 
      DTCstoredData#1 byte#1 
       : 
      DTCstoredDataa#1 byte#p 
       : 
      dataIdentifier#w byte#1 (MSB) 
      dataIdentifier#w byte#2 (LSB) 
      DTCstoredData#w byte#1 
       : 
      DTCstoredData#w byte#u ] 

C3
C3
C3
:

C3
:

C4
C4
C4
:

C4

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSDR_ 
DIDB11 
DIDB12 
DSD11 
:
DSD1p 
:
DIDB21 
DIDB22 
DSD21 
:
DSD2u 

C1: The DTCAndStatusRecord and the first dataIdentifier/DTCStoredData combination in the DTCStoredDataRecord 
parameter is only present if at least one DTCStoredData record is available to be reported. 
C2/C4 There are multiple dataIdentifier/DTCStoredData combinations allowed to be present in a single 
DTCStoredDataRecord. This can e.g. be the case for the situation where a single dataIdentifier only references an 
integral part of data. When the dataIdentifier references a block of data then a single dataIdentifier/DTCStoredData 
combination can be used. 
C3: The DTCStoredDataRecordNumber, DTCAndStatusRecord, and the first dataIdentifier/DTCStoredData combination 
in the DTCStoredDataRecord parameter is only present if all records are requested to be reported 
(DTCStoredDataRecordNumber set to 0xFF in the request) and more than one record is available to be reported. 

Table 276 defines the positive response message format of the sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

204 © ISO 2013 – All rights reserved

Table 276 — Response message definition - sub-function = reportDTCExtDataRecordByDTCNumber 
and reportMirrorMemoryDTCExtDataRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
 reportDTCExtDataRecordByDTCNumber 
 reportMirrorMemoryDTCExtDataRecordByDTCNumber ] 

M
0x06 
0x10 

LEV_
RDTCEDRBD 
RMDEDRBDN 

#3
#4
#5
#6

DTCAndStatusRecord[] = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

M
M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#7 DTCExtDataRecordNumber#1 C1 0x00-0xFD DTCEDRN 

#8
:

#8+(p-1)

DTCExtDataRecord[]#1 = [ 
      extendedData#1 byte#1 
       : 
      extendedData#1 byte#p ] 

C1
C1
C1

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCSSR_ 
EDD11 
:
EDD1p 

: : : : : 

#t DTCExtDataRecordNumber#x C2 0x00 – 0xFD DTCEDRN 

#t+1
:

#t+1+(q-1) 

DTCExtDataRecord[]#x = [ 
      extendedData#x byte#1 
       : 
      extendedData#x byte#q ] 

C2
C2
C2

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCSSR_ 
EDDx1 
:
EDDxq 

C1: The DTCExtDataRecordNumber and the extendedData in the DTCExtDataRecord parameter are only present if at 
least one DTCExtDataRecord is available to be reported. 
C2: The DTCExtDataRecordNumber and the extendedData in the DTCExtDataRecord parameter are only present if all 
records are requested to be reported (DTCExtDataRecordNumber set to 0xFE or 0xFF in the request) and more than 
one record is available to be reported. 

Table 277 defines the positive response message format of the sub-function parameter. 

Table 277 — Response message definition - sub-function = reportDTCBySeverityMaskRecord, 
reportSeverityInformationOfDTC 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCBySeverityMaskRecord 
   reportSeverityInformationOfDTC ] 

M
0x08 
0x09 

LEV_
RDTCBSMR 
RSIODTC

#3 DTCStatusAvailabilityMask M 0x00 – 0xFF DTCSAM 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 205

Table 277 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#4
#5
#6
#7
#8
#9
:

#n-5
#n-4
#n-3
#n-2
#n-1
#n

DTCAndSeverityRecord[] = [  
      DTCSeverity#1 
      DTCFunctionalUnit#1 
      DTCHighByte#1 
      DTCMiddleByte#1 
      DTCLowByte#1 
      statusOfDTC#1 
       : 
      DTCSeverity#m 
      DTCFunctionalUnit#m 
      DTCHighByte#m 
      DTCMiddleByte#m 
      DTCLowByte#m 
      statusOfDTC#m ] 

C1
C1
C1
C1
C1
C1
:

C2
C2
C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCS 
DTCFU 
DTCHB 
DTCMB 
DTCLB 
SODTC
:
DTCS 
DTCFU 
DTCHB 
DTCMB 
DTCLB 
SODTC

C1: In case of reportDTCBySeverityMaskRecord this parameter has to be present if at least one DTC matches the client 
defined DTC severity mask. In case of reportSeverityInformationOfDTC this parameter has to be present if the server 
supports the DTC specified in the request message. 
C2: This parameter record is only present if reportType = reportDTCBySeverityMaskRecord. It has to be present if more 
than one DTC matches the client defined DTC severity mask. 

Table 278 defines the positive response message format of the sub-function parameter. 

Table 278 — Response message definition - sub-function = reportDTCFaultDetectionCounter

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCFaultDetectionCounter] 

M
0x14 

LEV_
RDTCFDC 

#3
#4
#5
#6
#7
#8
#9

#10
#n-3
#n-2
#n-1
#n

DTCFaultDetectionCounterRecord[] = [ 
      DTCHighByte#1 
      DTCMiddleByte#1 
      DTCLowByte#1 
      DTCFaultDetectionCounter#1 
      DTCHighByte#2 
      DTCMiddleByte#2 
      DTCLowByte#2 
      DTCFaultDetectionCounter#2 
       : 
      DTCHighByte#m 
      DTCMiddleByte#m 
      DTCLowByte#m 
      DTCFaultDetectionCounter#m ] 

C1
C1
C1
C1
C2
C2
C2
C2
:

C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x01 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x01 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x01 – 0xFF 

DTCFDCR_ 
DTCHB 
DTCMB 
DTCLB 
DTCFDC 
DTCHB 
DTCLB 
DTCFT 
DTCFDC 
:
DTCHB 
DTCMB 
DTCLB 
DTCFDC 

C1: This parameter is only present if at least one DTC has a DTCFaultDetectionCounter with a positive value less than
0x7F.  
C2: This parameter record is only present if more than one DTC has a DTCFaultDetectionCounter with a positive value 
less than 0x7F.  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

206 © ISO 2013 – All rights reserved

Table 279 defines the positive response message format of the sub-function parameter. 

Table 279 — Response message definition - sub-function = 
reportDTCExtDataRecordByRecordNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportDTCExtDataRecordByRecordNumber] 

M
0x16 

LEV_
RDTCEDRBR 

#3 DTCExtDataRecordNumber  M 0x00 – 0xEF DTCEDRN 

#4
#5
#6
#7

DTCAndStatusRecord[]#1 = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

C1
C1
C1
C1

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#8
:

#8+(p-1)

DTCExtDataRecord[]#1= [ 
      extendedData#1 byte#1 
       : 
      extendedData#1 byte#p ] 

C1
:

C1

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCEDR_ 
EDD11 
:
EDD1p 

: : : : : 

#t
#t+1
#t+2
#t+3

DTCAndStatusRecord[]#x = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCSSR 

#t+4
:

#t+4+(p-1) 

DTCExtDataRecord[]#x = [  
      extendedData#x byte#1 
       : 
      extendedData#x byte#p ] 

C2
:

C2

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCEDR_ 
EDDx1 
:
EDDxp 

C1:  The DTCAndStatusRecord and the DTCExtDataRecord parameters are only present if at least one
DTCExtDataRecord is available to be reported. 
C2: The DTCAndStatusRecord and the DTCExtDataRecord parameters are only present if more than one 
DTCExtDataRecord is available to be reported. 
NOTE It is up to the implementer to specify that a response will not exceed a length that it is possible by the used 
diagnostic communication. 

Table 280 defines the positive response message format of the sub-function parameter. 

Table 280 — Response message definition - sub-function = reportUserDefMemoryDTCByStatusMask 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 59 RDTCIPR 

#2 reportType = [  
   reportUserDefMemoryDTCByStatusMask] 

M
17

LEV_
RUDMDTCBSM 

#3 MemorySelection M 00-FF MEMYS 

#4 DTCStatusAvailabilityMask M 00-FF DTCSAM 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 207

Table 280 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#5
#6
#7
#8
#9

#10
#11
#12

:
#n-3
#n-2
#n-1
#n

DTCAndStatusRecord[] = [ 
      DTCHighByte#1 
      DTCMiddleByte#1 
      DTCLowByte#1 
      statusOfDTC#1 
      DTCHighByte#2 
      DTCMiddleByte#2 
      DTCLowByte#2 
      statusOfDTC#2 
       : 
      DTCHighByte#m 
      DTCMiddleByte#m 
      DTCLowByte#m 
      statusOfDTC#m ] 

C1
C1
C1
C1
C2
C2
C2
C2
:

C2
C2
C2
C2

00-FF
00-FF
00-FF
00-FF
00-FF
00-FF
00-FF
00-FF

:
00-FF
00-FF
00-FF
00-FF

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC
DTCHB 
DTCMB 
DTCLB 
SODTC
:
DTCHB 
DTCMB 
DTCLB 
SODTC

C1: This parameter is only present if DTC information is available to be reported. 
C2: This parameter is only present if more than one DTC information is available to be reported. 

Table 281 defines the positive response message format of the sub-function parameter. 

Table 281 — Response message definition - sub-function = 
reportUserDefMemoryDTCSnapshotRecordByDTCNumber 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
reportUserDefMemoryDTCSnapshotRecordByDTCNumber 
]

M
0x18 

LEV_
RUDMDTCSSBDTC 

#3 MemorySelection M 0x00-0xFF MEMYS 

#4
#5
#6
#7

DTCAndStatusRecord[] = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

M
M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#8 DTCSnapshotRecordNumber#1 C1 0x00 – 0xFF DTCSSRN 

#9 DTCSnapshotRecordNumberOfIdentifiers#1 C1 0x00 – 0xFF DTCSSRNI 

#10
#11
#12

:
# 12+(p-1) 

:
#r-(m-1)-2 
#r-(m-1)-1 
#r-(m-1) 

:
#r

DTCSnapshotRecord[]#1 = [ 
     dataIdentifier#1 byte#1 (MSB) 
     dataIdentifier#1 byte#2 (LSB) 
     snapshotData#1 byte#1 
      : 
     snapshotData#1 byte#p 
      : 
     dataIdentifier#w byte#1 (MSB) 
     dataIdentifier#w byte#2 (LSB) 
     snapshotData#w byte#1 
      : 
     snapshotData#w byte#m ] 

C1
C1
C1
C1
C1
:

C2
C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSSR_ 
DIDB11 
DIDB12 
SSD11
:
SSD1p
:
DIDB21 
DIDB22 
SSD21
:
SSD2m 

: : : : : 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

208 © ISO 2013 – All rights reserved

Table 281 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#t DTCSnapshotRecordNumber#x C3 0x00 – 0xFF DTCSSRN 

#t+1 DTCSnapshotRecordNumberOfIdentifiers#x C3 0x00 – 0xFF DTCSSRNI 

#t+2
#t+3
#t+5

:
#t+5+(p-1) 

:
#n-(u-1)-2 
#n-(u-1)-1 
#n-(u-1)

:
#n

DTCSnapshotRecord[]#x = [ 
     dataIdentifier#1 byte#1 (MSB) 
     dataIdentifier#1 byte#2 (LSB) 
     snapshotData#1 byte#1 
      : 
     snapshotData#1 byte#p 
      : 
     dataIdentifier#w byte#1 (MSB) 
     dataIdentifier#w byte#2 (LSB) 
     snapshotData#w byte#1 
      : 
     snapshotData#w byte#u ] 

C3
C3
C3
C3
C3
:

C4
C4
C4
C4
C4

0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF  
0x00 – 0xFF 

:
0x00 – 0xFF 

DTCSSR_ 
DIDB11 
DIDB12 
SSD11
:
SSD1p
:
DIDB21 
DIDB22 
SSD21
:
SSD2u

C1: The DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the 
DTCSnapshotRecord parameter is only present if at least one DTCSnapshot record is available to be reported. 
C2/C4 There are multiple dataIdentifier/snapshotData combinations allowed to be present in a single 
DTCSnapshotRecord. This can e.g. be the case for the situation where a single dataIdentifier only references an integral 
part of data. When the dataIdentifier references a block of data then a single dataIdentifier/snapshotData combination 
can be used. 
C3: The DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the 
DTCSnapshotRecord parameter is only present if all records are requested to be reported (DTCSnapshotRecordNumber 
set to 0xFF in the request) and more than one record is available to be reported. 

Table 282 defines the positive response message format of the sub-function parameter. 

Table 282 — Response message definition - sub-function = 
reportUserDefMemoryDTCExtDataRecordByDTCNumber  

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
reportUserDefMemoryDTCExtDataRecordByDTCNumber] 

M
0x19 

LEV_
RUDMDTCEDRBDN

#3 MemorySelection M 0x00-0xFF MEMYS 

#4
#5
#6
#7

DTCAndStatusRecord[] = [ 
      DTCHighByte 
      DTCMiddleByte 
      DTCLowByte 
      statusOfDTC ] 

M
M
M
M

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC

#8 DTCExtDataRecordNumber#1 C1 0x00-0xFE DTCEDRN 

#9
:

#9+(p-1)

DTCExtDataRecord[]#1 = [ 
      extendedData#1 byte#1 
       : 
      extendedData#1 byte#p ] 

C1
C1
C1

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCSSR_ 
EDD11 
:
EDD1p 

:       : : : : 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 209

Table 282 — (continued)

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#t+1
:

#t+1+(q-1) 

DTCExtDataRecord[]#x = [ 
      extendedData#x byte#1 
       : 
      extendedData#x byte#q ] 

C2
C2
C2

0x00 – 0xFF 
:

0x00 – 0xFF 

DTCSSR_ 
EDDx1 
:
EDDxq 

C1: The DTCExtDataRecordNumber and the extendedData in the DTCExtDataRecord parameter are only present if at 
least one DTCExtDataRecord is available to be reported. 
C2: The DTCExtDataRecordNumber and the extendedData in the DTCExtDataRecord parameter are only present if all 
records are requested to be reported (DTCExtDataRecordNumber set to 0xFE or 0xFF in the request) and more than 
one record is available to be reported. 

Table 283 defines the positive response message format of the sub-function parameter. 

Table 283 — Response message definition - sub-function = reportWWHOBDDTCByMaskRecord 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
   reportWWHOBDDTCByMaskRecord ] 

M
0x42 

LEV_
RWWHOBDDTCBSMR 

#3 FunctionalGroupIdentifier M 0x00 – 0xFF FGID 

#4 DTCStatusAvailabilityMask M 0x00 – 0xFF DTCSAM 

#5 DTCSeverityAvailabilityMask M 0x00 – 0xFF DTCSVAM 

#6 DTCFormatIdentifier = [  
   SAE_J2012-DA_DTCFormat_04 
   SAE_J1939-73_DTCFormat] 

M
0x04 
0x02 

DTCFID_ 
J2012-DADTCF04 
J1939-73DTCF 

#7
#8
#9

#10
#11

:
#n-4
#n-3
#n-2
#n-1
#n

DTCAndSeverityRecord[] = [  
      DTCSeverity#1 
      DTCHighByte#1 (MSB) 
      DTCMiddleByte#1 
      DTCLowByte#1 
      statusOfDTC#1 
       : 
      DTCSeverity#m 
      DTCHighByte#m (MSB) 
      DTCMiddleByte#m 
      DTCLowByte#m 
      statusOfDTC#m ] 

C1
C1
C1
C1
C1
:

C2
C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCS 
DTCHB 
DTCMB 
DTCLB 
SODTC
:
DTCS 
DTCHB 
DTCMB 
DTCLB 
SODTC

C1: This parameter is only present if DTC information is available to be reported. 
C2: This parameter is only present if more than one DTC information is available to be reported. 

Table 284 defines the positive response message format of the sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

210 © ISO 2013 – All rights reserved

Table 284 — Response message definition - sub-function = reportWWHOBDDTCWithPermanentStatus 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 ReadDTCInformation Response SID M 0x59 RDTCIPR 

#2 reportType = [  
  reportWWHOBDDTCWithPermanentStatus ] 

M
0x55 

LEV_
RWWHOBDDTCWPS 

#3 FunctionalGroupIdentifier M 0x00 – 0xFF FGID 

#4 DTCStatusAvailabilityMask M 0x00 – 0xFF DTCSAM 

#5 DTCFormatIdentifier = [  
   SAE_J2012-DA_DTCFormat_04 
   SAE_J1939-73_DTCFormat ] 

M
0x04 
0x02 

DTCFID_ 
J2012-DADTCF04 
J1939-73DTCF 

#6
#7
#8
#9
:

#n-3
#n-2
#n-1
#n

DTCAndStatusRecord[] = [ 
      DTCHighByte#1 (MSB) 
      DTCMiddleByte#1 
      DTCLowByte#1 
      statusOfDTC#1 
       : 
      DTCHighByte#m (MSB) 
      DTCMiddleByte#m 
      DTCLowByte#m 
      statusOfDTC#m ] 

C1
C1
C1
C1
:

C2
C2
C2
C2

0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 
0x00 – 0xFF 

DTCASR_ 
DTCHB 
DTCMB 
DTCLB 
SODTC
:
DTCHB 
DTCMB 
DTCLB 
SODTC

C1: This parameter is only present if DTC information is available to be reported. 
C2: This parameter is only present if more than one DTC information is available to be reported. 

11.3.3.2 Positive response message data-parameter definition 

Table 285 specifies the data-parameters of the positive response message. 

Table 285 — Response data-parameter definition 

Definition

reportType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter provided in the request message from the client. 

DTCAndSeverityRecord 

This parameter record contains one or more groupings of DTCSeverity, DTCFunctionalUnit, DTCHighByte, 
DTCMiddleByte, DTCLowByte, and statusOfDTC if of SAE_J2012-DA_DTCFormat_00, ISO_14229-1_DTCFormat, 
SAE_J1939-73_DTCFormat (see below for further details), ISO11992-4DTCFormat or SAE_J2012-DA_DTCFormat_04. 
The DTCSeverity identifies the importance of the failure for the vehicle operation and/or system function and allows to 
display recommended actions to the driver. The definitions of DTCSeverity can be found in D.3.
The DTCFuncitonalUnit is a 1-byte value which identifies the corresponding basic vehicle / system function which reports 
the DTC. The definitions of DTCFunctionalUnit are implementation specific and shall be specified in the respective 
implementation standard. 
DTCHighByte, DTCMiddleByte and DTCLowByte together represent a unique identification number for a specific 
diagnostic trouble code supported by a server. The DTCHighByte and DTCMiddleByte represent a circuit or system that 
is being diagnosed. The DTCLowByte represents the type of fault in the circuit or system (e.g. sensor open circuit, 
sensor shorted to ground, algorithm based failure, etc). The definition can be found in ISO°15031-6 [12] specification. 
This parameter record contains one or more groupings of DTCSeverity, DTCFunctionalUnit, SPN (Suspect Parameter 
Number), FMI (Failure Mode Identifier), and OC (Occurrence Counter) if of SAE_J1939-73_DTCFormat. The SPN, FMI, 
and OC are defined in SAE J1939 [18]. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 211

Table 285 — (continued)

Definition

DTCAndStatusRecord 

This parameter record contains one or more groupings of DTCHighByte, DTCMiddleByte, DTCLowByte and 
statusOfDTC if of ISO_14229-1_DTCFormat, SAE_J2012-DA_DTCFormat_00, SAE_J1939-73_DTCFormat, 
SAE_J2012-DA_DTCFormat_04 or ISO_11992-4_DTCFormat. The SAE_J1939-73_DTCFormat supports the SPN 
(Suspect Parameter Number), FMI (Failure Mode Identifier), and OC (Occurrence Counter) parameters. The SPN, FMI, 
and OC are defined in SAE J1939. 
DTCHighByte, DTCMiddleByte and DTCLowByte together represent a unique identification number for a specific 
diagnostic trouble code supported by a server. The coding of the 3-byte DTC number can either be done:  
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 15031-6 [12]

specification. This format is identified by the DTCFormatIdentifier = SAE_J2012-DA_DTCFormat_00, or 
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 14229-1

specification which does not specify any decoding method and therefore allows a vehicle manufacturer defined 
decoding method. This format is identified by the DTCFormatIdentifier = ISO_14229-1_DTCFormat, or 

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the SAE J1939-73 [19]
specification. This format is identified by the DTCFormatIdentifier = SAE_J1939-73_DTCFormat, or 

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 11992-4 [5]
specification. This format is identified by the DTCFormatIdentifier = ISO_11992-4_DTCFormat.  

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 27145-2 [16]
specification. This format is identified by the DTCFormatIdentifier = SAE_2012-DA_WWHOBD_DTCFormat. 

DTCRecord 

This parameter record contains one or more groupings of DTCHighByte, DTCMiddleByte, and DTCLowByte. The 
interpretation of the DTCRecord depends on the value included in the DTCFormatIdentifier parameter as defined in this 
table. 

StatusOfDTC 

The status of a particular DTC (e.g., test failed this operation cycle, etc). The definition of the bits contained in the 
statusOfDTC byte can be found in D.2 of this specification. Bits that are not supported by the server shall be reported as 
'0'. 

DTCStatusAvailabilityMask 

A byte whose bits are defined the same as statusOfDTC and represents the status bits that are supported by the server. 
Bits that are not supported by the server shall be set to '0'. Each supported bit (indicated by a value of '1') shall be 
implemented for every DTC supported by the server. 

DTCFormatIdentifier 

This 1-byte parameter value defines the format of a DTC reported by the server.  
⎯ SAE_J2012-DA_DTCFormat_00: This parameter value identifies the DTC format reported by the server as defined 

in ISO 15031-6 [12] specification. 
⎯ ISO_14229-1_DTCFormat: This parameter value identifies the DTC format reported by the server as defined in this 

table by the parameter DTCAndStatusRecord. 
⎯ SAE_J1939-73_DTCFormat: This parameter value identifies the DTC format reported by the server as defined in 

SAE J1939-73 [19]. 
⎯ ISO_11992-4_DTCFormat: This parameter value identifies the DTC format reported by the server as defined in 

ISO 11992-4 [5] specification.  
⎯ SAE_J2012-DA_DTCFormat_04: This parameter value identifies the DTC format reported by the server as defined 

in ISO 27145-2 [16] specification. 
The definition of the byte values contained in the DTCFormatIdentifier byte can be found in D.4 of this specification. A 
given server shall support only one DTCFormatIdentifier. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

212 © ISO 2013 – All rights reserved

Table 285 — (continued)

Definition

DTCCount

This 2-byte parameter refers collectively to the DTCCountHighByte and DTCCountLowByte parameters that are sent in 
response to a reportNumberOfDTCByStatusMask or reportNumberOfMirrorMemoryDTC request. DTCCount provides a 
count of the number of DTCs that match the DTCStatusMask defined in the client’s request. 

DTCSnapshotRecordNumber 

Either the echo of the DTCSnapshotRecordNumber parameter specified by the client in the 
reportDTCSnapshotRecordByDTCNumber request, or the actual DTCSnapshotRecordNumber of a stored DTCSnapshot 
record. 

DTCSnapshotRecordNumberOfIdentifiers 

This single byte parameter shows the number of dataIdentifiers in the immediately following DTCSnapshotRecord. A
value of 0x00 shall be used to indicate that an undefined number of dataIdentifiers are included in the corresponding 
DTCSnapshotRecord (e.g., primary use case is when the DTCSnapshotRecord contains more than 255 dataIdentifiers). 

DTCSnapshotRecord 

The DTCSnapshotRecord contains a snapshot of data values from the time of the system malfunction occurrence. 

DTCStoredDataRecord 

The DTCStoredDataRecord contains a freeze frame of data values from the time of the system malfunction occurrence. 

DTCStoredDataRecordNumber 

Either the echo of the DTCStoredDataRecordNumber parameter specified by the client in the 
reportDTCStoredDataByRecordNumber request, or the actual DTCStoredDataRecordNumber of a stored 
DTCStoredDataRecord. 

DTCStoredDataRecordNumberOfIdentifiers 

This single byte parameter shows the number of dataIdentifiers in the immediately following DTCStoredDataRecord. 

DTCExtDataRecordNumber 

Either the echo of the DTCExtDataRecordNumber parameter specified by the client in the 
reportDTCExtDataRecordByDTCNumber or reportDTCExtDataRecordByRecordNumber request, or the actual 
DTCExtDataRecordNumber of a stored DTCExtendedData record. 

DTCExtDataRecord 

The DTCExtDataRecord is a server specific block of information that may contain extended status information 
associated with a DTC. DTCExtendedData contains DTC parameter values, which have been identified at the time of the 
request. 

DTCFaultDetectionCounterRecord 

The DTCFaultDetectionCounterRecord is a record including one or multiple DTC numbers and the DTC specific 
DTCFaultDetectionCounter parameter value. 

DTCFaultDetectionCounter 

The DTCFaultDetectionCounter reports the number of fault detection counts of a DTC. 

FunctionalGroupIdentifier 

A one byte identifier which contains the functional system group the DTC(s) are related to e.g. Brakes, Emissions, 
Occupant Restraints, Tire Inflation, Forward/External lighting, etc. The values are defined in D.5. 

DTCSeverityAvailabilityMask 

A byte whose bits are defined the same as the DTCSeverity and represents the severity bits that are supported by the 
server. Bits that are not supported by the server shall be set to '0'. 

MemorySelection 

This parameter is an echo of the MemorySelection parameter provided in the request message from the client. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 213

11.3.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 286. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 286 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the sub-function parameter is not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ The client specified a DTCMaskRecord that was not recognized by the server; 
⎯ The client specified an invalid DTCSnapshotRecordNumber / 

DTCExtDataRecordNumber. Note that this is to be differentiated from the case where 
the DTCSnapshotRecordNumber and DTCMaskRecord combination or the 
DTCExtDataRecordNumber and DTCMaskRecord combination is supported by the 
server, but no data is currently associated with it (i.e., positive response required with 
no data); 

⎯ The client specified a FunctionalGroupIdentifier that was not recognized by the server; 
⎯ The MemorySelection identifier was not recognized by the server. 

11.3.5 Message flow examples – ReadDTCInformation 

11.3.5.1 General assumption 

For all examples the client requests to have a response message by setting the 
suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to "FALSE" ('0'). 

11.3.5.2 Example #1 - ReadDTCInformation, sub-function = reportNumberOfDTCByStatusMask 

11.3.5.2.1 Example #1 overview 

This example demonstrates the usage of the reportNumberOfDTCByStatusMask sub-function parameter for 
confirmed DTCs (DTC status mask 0x08), as well as various masking principles. The 
DTCStatusAvailabilityMask for this sever = 0x2F. 

11.3.5.2.2 Example #1 assumptions 

The server supports a total of three DTCs (for the sake of simplicity!), which have the following states at the 
time of the client request: 

The following assumptions apply to DTC P0805-11 Clutch Position Sensor - circuit short to ground 
(0x080511), statusOfDTC 0x24 (0010 0100b).

Table 287 defines the statusOfDTC = 0x24 of DTC P0805-11. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

214 © ISO 2013 – All rights reserved

Table 287 — statusOfDTC = 0x24 of DTC P0805-11 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is no longer failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor - circuit voltage 
above threshold (0x0A9B17), statusOfDTC of 0x26 (0010 0110b).

Table 288 defines the statusOfDTC = 0x26 of DTC P0A9B-17. 

Table 288 — statusOfDTC = 0x26 of DTC P0A9B-17 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is no longer failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P2522-1F A/C Request “B” - circuit intermittent (0x25221F), 
statusOfDTC of 0x2F (0010 1111b).

Table 289 defines the statusOfDTC = 0x2F of DTC P2522-1F. 

Table 289 — statusOfDTC = 0x2F of DTC P2522-1F 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 1 DTC failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 215

11.3.5.2.3 Example #1 message flow 

In the following example, a count of one is returned to the client because only DTC P2522-1F A/C Request “B” 
- circuit intermittent (0x25221F), statusOfDTC of 0x2F (0010 1111b) matches the client defined status mask of 
0x08 (0000 1000b).

Table 290 defines the ReadDTCInformation, sub-function = reportNumberOfDTCByStatusMask, request 
message flow example #1. 

Table 290 — ReadDTCInformation, sub-function = reportNumberOfDTCByStatusMask, 
request message flow example #1 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportNumberOfDTCByStatusMask, 
   suppressPosRspMsgIndicationBit = FALSE 

0x01 RNODTCBSM 

#3 DTCStatusMask 0x08 DTCSM 

Table 291 defines the ReadDTCInformation, sub-function = reportNumberOfDTCByStatusMask, positive 
response, example #1. 

Table 291 — ReadDTCInformation, sub-function = reportNumberOfDTCByStatusMask, positive 
response, example #1 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportNumberOfDTCByStatusMask 0x01 RNODTCBSM 

#3 DTCStatusAvailabilityMask 0x2F DTCSAM 

#4 DTCFormatIdentifier = ISO_14229-1_DTCFormat 0x01 14229-1DTCF 

#5 DTCCount [ DTCCountHighByte ] 0x00 DTCCHB 

#6 DTCCount [ DTCCountLowByte ] 0x01 DTCCLB 

11.3.5.3 Example #2 - ReadDTCInformation, sub-function = reportDTCByStatusMask, matching 
DTCs returned 

11.3.5.3.1 Example #2 overview 

This example demonstrates usage of the reportDTCByStatusMask sub-function parameter, as well as various 
masking principles in conjunction with unsupported masking bits. This example also applies to the sub-
function parameter reportMirrorMemoryDTCByStatusMask and the sub-function parameter 
reportUserDefMemoryDTCByStatusMask, except that the status mask checks are performed with the DTCs 
stored in the DTC mirror memory or in the user defined memory. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

216 © ISO 2013 – All rights reserved

11.3.5.3.2 Example #2 assumptions 

The server supports all status bits for masking purposes, except for bit 7 “warningIndicatorRequested”. 

The server supports a total of three DTCs (for the sake of simplicity!), which have the following states at the 
time of the client request: 

The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor - circuit voltage 
above threshold (0x0A9B17), statusOfDTC 0x24 (0010 0100b).

Table 292 defines the statusOfDTC= 0x24 of DTC P0A9B-17. 

Table 292 — statusOfDTC= 0x24 of DTC P0A9B-17 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is no longer failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P2522-1F A/C Request “B” - circuit intermittent (0x25221F), 
statusOfDTC of 0x00 (0000 0000b).

Table 293 defines the statusOfDTC = 0x00 of DTC P2522-1F. 

Table 293 — statusOfDTC = 0x00 of DTC P2522-1F 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 0 DTC was not failed on the current or previous operation 
cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 0 DTC test never failed since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P0805-11 Clutch Position Sensor - circuit short to ground 
(0x080511), statusOfDTC of 0x2F (0010 1111b).

Table 294 defines the statusOfDTC = 0x2F of DTC P0805-11. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 217

Table 294 — statusOfDTC = 0x2F of DTC P0805-11 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 1 DTC is failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

11.3.5.3.3 Example #2 message flow 

In the following example, DTCs P0A9B-17 (0x0A9B17) and P0805-11 (0x080511) are returned to the client’s 
request. DTC P2522-1F (0x25221F) is not returned because its status of 0x00 does not match the 
DTCStatusMask of 0x84 (as specified in the client request messsage in the following example). The server 
shall bypass masking on those status bits it doesn’t support. 

Table 295 defines the ReadDTCInformation, sub-function = reportDTCByStatusMask, request message flow 
example #2. 

Table 295 — ReadDTCInformation, sub-function = reportDTCByStatusMask, 
request message flow example #2 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCByStatusMask,  
   suppressPosRspMsgIndicationBit = FALSE 

0x02 RDTCBSM 

#3 DTCStatusMask 0x84 DTCSM 

Table 296 defines the ReadDTCInformation, sub-function = reportDTCByStatusMask, positive response, 
example #2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

218 © ISO 2013 – All rights reserved

Table 296 — ReadDTCInformation, sub-function = reportDTCByStatusMask,  
positive response, example #2 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCByStatusMask 0x02 RDTCBSM 

#3 DTCStatusAvailabilityMask 0x7F DTCSAM 

#4 DTCAndStatusRecord#1 [ DTCHighByte ] 0x0A DTCHB 

#5 DTCAndStatusRecord#1 [ DTCMiddleByte ] 0x9B DTCMB 

#6 DTCAndStatusRecord#1 [ DTCLowByte ] 0x17 DTCLB 

#7 DTCAndStatusRecord#1 [ statusOfDTC ] 0x24 SODTC 

#8 DTCAndStatusRecord#2 [ DTCHighByte ] 0x08 DTCHB 

#9 DTCAndStatusRecord#2 [ DTCMiddleByte ] 0x05 DTCMB 

#10 DTCAndStatusRecord#2 [ DTCLowByte ] 0x11 DTCLB 

#11 DTCAndStatusRecord#2 [ statusOfDTC ] 0x2F SODTC 

11.3.5.4 Example #3 - ReadDTCInformation, sub-function = reportDTCByStatusMask, no matching 
DTCs returned 

11.3.5.4.1 Example #3 overview 

This example demonstrates usage of the reportDTCByStatusMask sub-function parameter, in the situation 
where no DTCs match the client defined DTCStatusMask. 

11.3.5.4.2 Example #3 assumptions 

The server supports all status bits for masking purposes, except for bit 7 “warningIndicatorRequested”. The 
server supports a total of two DTCs (for the sake of simplicity!), which have the following states at the time of 
the client request: 

The following assumptions apply to DTC P2522-1F A/C Request “B” - circuit intermittent (0x25221F), 
statusOfDTC 0x24 (0010 0100b).

Table 297 defines the statusOfDTC= 0x24 of DTC P2522-1F. 

Table 297 — statusOfDTC= 0x24 of DTC P2522-1F 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is no longer failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 219

The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor - circuit voltage 
above threshold (0x0A9B17), statusOfDTC of 0x00 (0000 0000b).

Table 298 defines the statusOfDTC = 0x00 of DTC P0A9B-17. 

Table 298 — statusOfDTC = 0x00 of DTC P0A9B-17 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 0 DTC was not failed on the current or previous operation 
cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 0 DTC test never failed since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The client requests the server to reportByStatusMask all DTCs having bit 0 (TestFailed) set to logical ‘1’. 

11.3.5.4.3 Example #3 message flow 

In the following example, none of the above DTCs are returned to the client’s request because none of the 
DTCs has failed the test at the time of the request. 

Table 299 defines the ReadDTCInformation, sub-function = reportDTCByStatusMask, request message flow 
example #3. 

Table 299 — ReadDTCInformation, sub-function = reportDTCByStatusMask, 
request message flow example #3 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCByStatusMask,  
    suppressPosRspMsgIndicationBit = FALSE 

0x02 RDTCBSM 

#3 DTCStatusMask 0x01 DTCSM 

Table 300 defines the ReadDTCInformation, sub-function = reportDTCByStatusMask, positive response, 
example #3. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

220 © ISO 2013 – All rights reserved

Table 300 — ReadDTCInformation, sub-function = reportDTCByStatusMask,  
positive response, example #3 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCByStatusMask 0x02 RDTCBSM 

#3 DTCStatusAvailabilityMask 0x7F DTCSAM 

11.3.5.5 Example #4 - ReadDTCInformation, sub-function = reportDTCSnapshotIdentification 

11.3.5.5.1 Example #4 overview 

This example demonstrates the usage of the reportDTCSnapshotIdentification sub-function parameter. 

11.3.5.5.2 Example #4 assumptions 

The following assumptions apply: 

⎯ The server supports the ability to store two DTCSnapshot records for a given DTC. 

⎯ The server shall indicate that two DTCSnapshot records are currently stored for DTC number 0x123456. 
For the purpose of this example, assume that this DTC had occurred three times (such that only the first 
and most recent DTCSnapshot records are stored because of lack of storage space within the server). 

⎯ The server shall indicate that one DTCSnapshot record is currently stored for DTC number 0x789ABC. 

⎯ All DTCSnapshot records are stored in ascending order. 

11.3.5.5.3 Example #4 message flow 

In the following example, three DTCSnapshot records are returned to the client’s request. 

Table 301 defines the ReadDTCInformation, sub-function = reportDTCSnapshotIdentification, request 
message flow example #4. 

Table 301 — ReadDTCInformation, sub-function = reportDTCSnapshotIdentification, 
request message flow example #4 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCSnapshotIdentification, 
   suppressPosRspMsgIndicationBit = FALSE 

0x03 RDTCSSI 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 221

Table 302 defines the ReadDTCInformation, sub-function = reportDTCSnapshotIdentification, positive 
response, example #4. 

Table 302 — ReadDTCInformation, sub-function = reportDTCSnapshotIdentification, 
positive response, example #4 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCSnapshotIdentification 0x03 RDTCSSI 

#3 DTCAndStatusRecord#1 [ DTCHighByte ] 0x12 DTCHB 

#4 DTCAndStatusRecord#1 [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCAndStatusRecord#1 [ DTCLowByte ] 0x56 DTCLB 

#6 DTCSnapshotRecordNumber#1 0x01 DTCEDRC 

#7 DTCAndStatusRecord#2 [ DTCHighByte ] 0x12 DTCHB 

#8 DTCAndStatusRecord#2 [ DTCMiddleByte ] 0x34 DTCMB 

#9 DTCAndStatusRecord#2 [ DTCLowByte ] 0x56 DTCLB 

#10 DTCSnapshotRecordNumber#2 0x02 DTCEDRC 

#11 DTCAndStatusRecord#3 [ DTCHighByte ] 0x78 DTCHB 

#12 DTCAndStatusRecord#3 [ DTCMiddleByte ] 0x9A DTCMB 

#13 DTCAndStatusRecord#3 [ DTCLowByte ] 0xBC DTCLB 

#14 DTCSnapshotRecordNumber#3 0x01 DTCEDRC 

11.3.5.6 Example #5 - ReadDTCInformation, sub-function = reportDTCSnapshotRecord-
ByDTCNumber 

11.3.5.6.1 Example #5 overview 

This example demonstrates the usage of the reportDTCSnapshotRecordByDTCNumber sub-function 
parameter. This example also applies to the sub-function parameter reportUserDefMemory-
DTCSnapshotRecordByDTCNumber, except that the checks are performed with the DTCs stored in the user 
defined memory. 

11.3.5.6.2 Example #5 assumptions 

The following assumptions apply: 

⎯ The server supports the ability to store two DTCSnapshot records for a given DTC. 

⎯ This example assumes a continuation of the previous example. 

⎯ Assume that the server requests the second of the two DTCSnapshot records stored by the server for 
DTC number 0x123456 (see previous example, where a DTCSnapshotRecordCount of 0x02 is returned 
to the client). 

⎯ Assume that DTC 0x123456 has a statusOfDTC of 0x24, and that the following environment data is 
captured each time a DTC occurs. 

⎯ The DTCSnapshot record data is referenced via the dataIdentifier 0x4711. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

222 © ISO 2013 – All rights reserved

Table 303 defines the DTCSnapshot record content. 

Table 303 — DTCSnapshot record content 

Data Byte DTCSnapshot Record Contents Byte Value 

#1 DTCSnapshotRecord [ data#1 ] = ECT (Engine Coolant Temperature) 0xA6 

#2 DTCSnapshotRecord [ data#2 ] = TP (Throttle Position) 0x66 

#3 DTCSnapshotRecord [ data#3 ] = RPM (Engine Speed) 0x07 

#4 DTCSnapshotRecord [ data#4 ] = RPM (Engine Speed) 0x50 

#5 DTCSnapshotRecord [ data#5 ] = MAP (Manifold Absolute Pressure) 0x20 

11.3.5.6.3 Example #5 message flow 

In the following example, one DTCSnapshot record is returned in accordance to the client’s 
reportDTCSnapshotRecordByDTCNumber request. 

Table 304 defines the ReadDTCInformation, sub-function = reportDTCSnapshotRecordByDTCNumber, 
request message flow example #5. 

Table 304 — ReadDTCInformation, sub-function = reportDTCSnapshotRecordByDTCNumber, 
request message flow example #5 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCSnapshotRecordByDTCNumber, 
   suppressPosRspMsgIndicationBit = FALSE 

0x04 RDTCSSRBDN 

#3 DTCMaskRecord [ DTCHighByte ] 0x12 DTCHB 

#4 DTCMaskRecord [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCMaskRecord [ DTCLowByte ] 0x56 DTCLB 

#6 DTCSnapshotRecordNumber 0x02 DTCSSRN 

Table 305 defines the ReadDTCInformation, sub-function = reportDTCSnapshotRecordByDTCNumber, 
positive response, example #5. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 223

Table 305 — ReadDTCInformation, sub-function = reportDTCSnapshotRecordByDTCNumber, 
positive response, example #5 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCSnapshotRecordByDTCNumber 0x04 RDTCSSRBDN 

#3 DTCAndStatusRecord [ DTCHighByte ] 0x12 DTCHB 

#4 DTCAndStatusRecord [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCAndStatusRecord [ DTCLowByte ] 0x56 DTCLB 

#6 DTCAndStatusRecord [ statusOfDTC ] 0x24 SODTC 

#7 DTCSnapshotRecordNumber 0x02 DTCEDRN 

#8 DTCSnapshotRecordNumberOfIdentifiers 0x01 DTCSSRNI 

#9 dataIdentifier [ byte#1 ] (MSB) 0x47 DIDB1 

#10 dataIdentifier [ byte#2 ] (LSB) 0x11 DIDB2 

#11 DTCSnapshotRecord [ data#1 ] = ECT 0xA6 ED_1 

#12 DTCSnapshotRecord [ data#2 ] = TP 0x66 ED_2 

#13 DTCSnapshotRecord [ data#3 ] = RPM 0x07 ED_3 

#14 DTCSnapshotRecord [ data#4 ] = RPM 0x50 ED_4 

#15 DTCSnapshotRecord [ data#5 ] = MAP 0x20 ED_5 

11.3.5.7 Example #6 - ReadDTCInformation, sub-function = reportDTCStoredDataByRecordNumber 

11.3.5.7.1 Example #6 overview 

This example demonstrates the usage of the reportDTCStoredDataByRecordNumber sub-function parameter. 

11.3.5.7.2 Example #6 assumptions 

The following assumptions apply: 

⎯ The server supports the ability to store two DTCStoredDataRecords for a given DTC. 

⎯ This example assumes a continuation of the previous example. 

⎯ Assume that the server requests the second of the two DTCStoredDataRecords stored by the server for 
DTC number 0x123456 (see previous example, where a DTCStoredDataRecordCount of two is returned 
to the client). 

⎯ Assume that DTC 0x123456 has a statusOfDTC of 0x24, and that the following environment data is 
captured each time a DTC occurs. 

⎯ The DTCStoredData record data is referenced via the dataIdentifier 0x4711. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

224 © ISO 2013 – All rights reserved

Table 306 defines the DTCStoredData record content. 

Table 306 — DTCStoredData record content 

Data Byte DTCSnapshot Record Contents Byte Value 

#1 DTCStoredDatatRecord [ data#1 ] = ECT (Engine Coolant Temp.) 0xA6 

#2 DTCStoredDataRecord [ data#2 ] = TP (Throttle Position) 0x66 

#3 DTCStoredDataRecord [ data#3 ] = RPM (Engine Speed) 0x07 

#4 DTCStoredDataRecord [ data#4 ] = RPM (Engine Speed) 0x50 

#5 DTCStoredDataRecord [ data#5 ] = MAP (Manifold Absolute Pressure) 0x20 

11.3.5.7.3 Example #6 message flow 

In the following example, DTCStoredData record number two is requested and the server returns the DTC and 
DTCStoredData record content. 

Table 307 defines the ReadDTCInformation, sub-function = reportDTCStoredDataByRecordNumber, request 
message flow example #6. 

Table 307 — ReadDTCInformation, sub-function = reportDTCStoredDataByRecordNumber, 
request message flow example #6 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCStoredDataByRecordNumber, 
   suppressPosRspMsgIndicationBit = FALSE 

0x05 RDTCSDRBRN 

#3 DTCStoredDataRecordNumber 0x02 DTCSDRN 

Table 308 defines the ReadDTCInformation, sub-function = reportDTCStoredDataByRecordNumber, positive 
response, example #6. 

Table 308 — ReadDTCInformation, sub-function = reportDTCStoredDataByRecordNumber, 
positive response, example #6 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCStoredDataByRecordNumber 0x05 RDTCSDRBRN 

#3 DTCStoredDataRecordNumber 0x02 DTCSDRN 

#4 DTCAndStatusRecord [ DTCHighByte ] 0x12 DTCHB 

#5 DTCAndStatusRecord [ DTCMiddleByte ] 0x34 DTCMB 

#6 DTCAndStatusRecord [ DTCLowByte ] 0x56 DTCLB 

#7 DTCAndStatusRecord [ statusOfDTC ] 0x24 SODTC 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 225

Table 308 — (continued)

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#8 DTCStoredDataRecordNumberOfIdentifiers 0x01 DTCSDRNI 

#9 dataIdentifier [ byte#1 (MSB) ] 0x47 DIDB1 

#10 dataIdentifier [ byte#2 ] (LSB) 0x11 DIDB2 

#11 DTCStoredDataRecord [ data#1 ] = ECT 0xA6 ED_1 

#12 DTCStoredDataRecord [ data#2 ] = TP 0x66 ED_2 

#13 DTCStoredDataRecord [ data#3 ] = RPM 0x07 ED_3 

#14 DTCStoredDataRecord [ data#4 ] = RPM 0x50 ED_4 

#15 DTCStoredDataRecord [ data#5 ] = MAP 0x20 ED_5 

11.3.5.8 Example #7 - ReadDTCInformation, sub-function = reportDTCExtDataRecordByDTCNumber 

11.3.5.8.1 Example #7 overview 

This example demonstrates the usage of the reportDTCExtDataRecordByDTCNumber sub-function 
parameter. This example also applies to the sub-function parameter reportUserDefMemory-
DTCExtDataRecordByDTCNumber, except that the checks are performed with the DTCs stored in the user 
defined memory. 

11.3.5.8.2 Example #7 assumptions 

The following assumptions apply: 

⎯ The server supports the ability to store two DTCExtendedData records for a given DTC. 

⎯ Assume that the server requests all available DTCExtendedData records stored by the server for DTC 
number 0x123456. 

⎯ Assume that DTC 0x123456 has a statusOfDTC of 0x24, and that the following extended data is available 
for the DTC. 

⎯ The DTCExtendedData is referenced via the DTCExtDataRecordNumbers 0x05 and 0x10 

Table 309 — DTCExtDataRecordNumber 0x05 content 

Data Byte DTCExtDataRecord Contents for DTCExtDataRecordNumber 0x05 Byte Value 

#1 Warm-up Cycle Counter – Number of warm up cycles since the DTC commanded the MIL to 
switch off 

0x17 

Table 310 — DTCExtDataRecordNumber 0x10 content 

Data Byte DTCExtDataRecord Contents for DTCExtDataRecordNumber 0x10 Byte Value 

#1 DTC Fault Detection Counter – Increments each time the DTC test detects a fault, 
Decrements each time the test reports no fault. 

0x79 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

226 © ISO 2013 – All rights reserved

11.3.5.8.3 Example #7 message flow 

In the following example, a DTCMaskRecord including the DTC number and a DTCExtDataRecordNumber 
with the value of 0xFF (report all DTCExtDataRecords) is requested by the client. The server returns two 
DTCExtDataRecords which have been recorded for the DTC number submitted by the client. 

Table 311 defines the ReadDTCInformation, sub-function = reportDTCExtDataRecordByDTCNumber, request 
message flow example #7. 

Table 311 — ReadDTCInformation, sub-function = reportDTCExtDataRecordByDTCNumber, 
request message flow example #7 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCExtDataRecordByDTCNumber, 
   suppressPosRspMsgIndicationBit = FALSE 

0x06 RDTCEDRBDN 

#3 DTCMaskRecord [ DTCHighByte ] 0x12 DTCHB 

#4 DTCMaskRecord [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCMaskRecord [ DTCLowByte ] 0x56 DTCLB 

#6 DTCExtDataRecordNumber 0xFF DTCEDRN 

Table 312 defines the ReadDTCInformation, sub-function = reportDTCExtDataRecordByDTCNumber, positive 
response, example #7. 

Table 312 — ReadDTCInformation, sub-function = reportDTCExtDataRecordByDTCNumber, 
positive response, example #7 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCExtDataRecordByDTCNumber 0x06 RDTCEDRBDN 

#3 DTCAndStatusRecord [ DTCHighByte ] 0x12 DTCHB 

#4 DTCAndStatusRecord [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCAndStatusRecord [ DTCLowByte ] 0x56 DTCLB 

#6 DTCAndStatusRecord [ statusOfDTC ] 0x24 SODTC 

#7 DTCExtDataRecordNumber 0x05 DTCEDRN 

#8 DTCExtDataRecord [ byte#1 ] 0x17 ED_1 

#9 DTCExtDataRecordNumber 0x10 DTCEDRN 

#10 DTCExtDataRecord [ byte#1 ] 0x79 ED_1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 227

11.3.5.9 Example #8 - ReadDTCInformation, sub-function = reportNumberOfDTC-
BySeverityMaskRecord 

11.3.5.9.1 Example #8 overview 

This example demonstrates the usage of the reportNumberOfDTCBySeverityMaskRecord sub-function 
parameter. 

11.3.5.9.2 Example #8 assumptions 

The server supports a total of three DTCs which have the following states at the time of the client request: 

The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor - circuit voltage 
above threshold (0x0A9B17), statusOfDTC 0x24 (0010 0100b), DTCFunctionalUnit = 0x10, DTCSeverity = 
0x20: 

NOTE Only bit 7 to 5 of the severity byte are valid. 

Table 313 defines the statusOfDTC = 0x24 of DTC P0A9B-17. 

Table 313 — statusOfDTC = 0x24 of DTC P0A9B-17 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is no longer failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P2522-1F A/C Request “B” - circuit intermittent (0x25221F), 
statusOfDTC of 0x00 (0000 0000 binary), DTCFunctionalUnit = 0x10, DTCSeverity = 0x20: 

NOTE Only bit 7 to 5 of the severity byte are valid. 

Table 314 defines the statusOfDTC = 0x00 of DTC P2522-1F. 

Table 314 — statusOfDTC = 0x00 of DTC P2522-1F 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 0 DTC was not failed on the current or previous operation 
cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 0 DTC test never failed since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

228 © ISO 2013 – All rights reserved

The following assumptions apply to DTC P0805-11 Clutch Position Sensor - circuit short to ground 
(0x080511), statusOfDTC of 0x2F (0010 1111b), DTCFunctionalUnit = 0x10, DTCSeverity = 0x40: 

NOTE Only bit 7 to 5 of the severity byte are valid. 

Table 315 defines the statusOfDTC = 0x2F of DTC P0805-11. 

Table 315 — statusOfDTC = 0x2F of DTC P0805-11 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 1 DTC is failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The server supports the testFailed and confirmedDTC status bits for masking purposes. 

11.3.5.9.3 Example #8 message flow 

In the following example, a count of one is returned to the client because DTC P0805-11 (0x080511) match 
the client defined severity mask record of 0xC001 (DTCSeverityMask = 110x xxxxb = 0xC0, DTCStatusMask = 
0000 0001b).

Table 316 defines the ReadDTCInformation, sub-function = reportNumberOfDTCBySeverityMaskRecord, 
request message flow example #8. 

Table 316 — ReadDTCInformation, sub-function = reportNumberOfDTCBySeverityMaskRecord, 
request message flow example #8 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportNumberOfDTCBySeverityMaskRecord, 
   suppressPosRspMsgIndicationBit = FALSE 

0x07 RNODTCBSMR 

#3 DTCSeverityMaskRecord(DTCSeverityMask) 0xC0 DTCSVM 

#4 DTCSeverityMaskRecord(DTCStatusMask) 0x01 DTCSM 

Table 317 defines the ReadDTCInformation, sub-function = reportNumberOfDTCBySeverityMaskRecord, 
positive response, positive response, example #8. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 229

Table 317 — ReadDTCInformation, sub-function = reportNumberOfDTCBySeverityMaskRecord, 
positive response, example #8 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportNumberOfDTCBySeverityMaskRecord 0x07 RNODTCBSMR 

#3 DTCStatusAvailabilityMask 0x09 DTCSAM 

#4 DTCFormatIdentifier = ISO_14229-1_DTCFormat 0x01 14229-1DTCF 

#5 DTCCount [ DTCCountHighByte ] 0x00 DTCCHB 

#6 DTCCount [ DTCCountLowByte ] 0x01 DTCCLB 

11.3.5.10 Example #9 - ReadDTCInformation, sub-function = reportDTCBySeverityMaskRecord 

11.3.5.10.1 Example #9 overview 

This example demonstrates the usage of the reportDTCBySeverityMaskRecord sub-function parameter. 

11.3.5.10.2 Example #9 assumptions 

The assumptions defined in 11.3.5.9.2 and those defined in this subclause apply. 

In the following example, the DTC P0805-11 (0x080511) match the client defined severity mask record of 
0xC001 (DTCSeverityMask = 0xC0 = 110x XXXXb, DTCStatusMask = 0x01, 0000 0001b) and is reported to 
the client. The severity of DTC P0805-11 (0x080511) is 0x40 (010x XXXXb). The server supports all status 
bits for masking purposes, except for bit 7 “warningIndicatorRequested”. 

NOTE Only bit 7 to 5 of the severity mask byte are valid. 

11.3.5.10.3 Example #9 message flow 

In the following example, one DTCSeverityRecord is returned to the client’s request. 

Table 318 defines the ReadDTCInformation, sub-function = reportDTCBySeverityMaskRecord, request 
message flow example #9. 

Table 318 — ReadDTCInformation, sub-function = reportDTCBySeverityMaskRecord, 
request message flow example #9 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCBySeverityMaskRecord, 
   suppressPosRspMsgIndicationBit = FALSE 

0x08 RDTCBSMR 

#3 DTCSeverityMaskRecord(DTCSeverityMask) 0xC0 DTCSVM 

#4 DTCSeverityMaskRecord(DTCStatusMask) 0x01 DTCSM 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

230 © ISO 2013 – All rights reserved

Table 319 — ReadDTCInformation, sub-function = reportDTCBySeverityMaskRecord, positive 
response, example #9 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCBySeverityMaskRecord 0x08 RDTCBSMR 

#3 DTCStatusAvailabilityMask 0x7F DTCSAM 

#4 DTCSeverityRecord#1 [ DTCSeverity ] 0x40 DTCS 

#5 DTCSeverityRecord#1 [ DTCFunctionalUnit ] 0x10 DTCFU 

#6 DTCSeverityRecord#1 [ DTCHighByte ] 0x08 DTCHB 

#7 DTCSeverityRecord#1 [ DTCMiddleByte ] 0x05 DTCMB 

#8 DTCSeverityRecord#1 [ DTCLowByte ] 0x11 DTCLB 

#9 DTCSeverityRecord#1 [ statusOfDTC ] 0x2F SODTC 

11.3.5.11 Example #10 - ReadDTCInformation, sub-function = reportSeverityInformationOfDTC 

11.3.5.11.1 Example #10 overview 

This example demonstrates the usage of the reportSeverityInformationOfDTC sub-function parameter. 

11.3.5.11.2 Example #10 assumptions 

The assumptions defined in 11.3.5.10.2 apply. 

11.3.5.11.3 Example #10 message flow 

In the following example, the DTC P0805-11 (0x080511), which matches the client defined DTC mask record, 
is reported to the client. 

Table 320 — ReadDTCInformation, sub-function = reportSeverityInformationOfDTC, 
request message flow example #10 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportSeverityInformationOfDTC, 
   suppressPosRspMsgIndicationBit = FALSE 

0x09 RSIODTC 

#3 DTCMaskRecord [ DTCHighByte ] 0x08 DTCHB 

#4 DTCMaskRecord [ DTCMiddleByte ] 0x05 DTCMB 

#5 DTCMaskRecord [ DTCLowByte ] 0x11 DTCLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 231

Table 321 — ReadDTCInformation, sub-function = reportSeverityInformationOfDTC, positive response, 
example #10 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCBySeverityMaskRecord 0x09 RSIODTC 

#3 DTCStatusAvailabilityMask 0x7F DTCSAM 

#4 DTCSeverityRecord [ DTCSeverity ] 0x40 DTCS 

#5 DTCSeverityRecord [ DTCFunctionalUnit ] 0x10 DTCFU 

#6 DTCSeverityRecord [ DTCHighByte ] 0x08 DTCHB 

#7 DTCSeverityRecord [ DTCMiddleByte ] 0x05 DTCMB 

#8 DTCSeverityRecord [ DTCLowByte ] 0x11 DTCLB 

#9 DTCSeverityRecord [ statusOfDTC ] 0x2F SODTC 

11.3.5.12 Example #11 – ReadDTCInformation - sub-function = reportSupportedDTCs 

11.3.5.12.1 Example #11 overview 

This example demonstrates the usage of the reportSupportedDTCs sub-function parameter. 

11.3.5.12.2 Example #11 assumptions 

The assumptions defined in 11.3.5.10.2 apply. Besides the following assumptions apply: 

⎯ The server supports a total of three DTCs (for the sake of simplicity!), which have the following states at 
the time of the client request. 

⎯ The following assumptions apply to DTC 0x123456, statusOfDTC 0x24 (0010 0100b)

Table 322 — statusOfDTC = 0x24 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC was never confirmed 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC 0x234505, statusOfDTC of 0x00 (0000 0000b)

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

232 © ISO 2013 – All rights reserved

Table 323 — statusOfDTC = 0x00 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 0 DTC was not failed on the current or previous 
operation cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 0 DTC test never failed since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC 0xABCD01, statusOfDTC of 0x2F (0010 1111b)

Table 324 — statusOfDTC = 0x2F 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 1 DTC is failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

11.3.5.12.3 Example #11 message flow 

In the following example, all three of the above DTCs are returned to the client’s request because all are 
supported. 

Table 325 — ReadDTCInformation, sub-function = reportSupportedDTCs, 
request message flow example #11 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportSupportedDTCs,  
   suppressPosRspMsgIndicationBit = FALSE 

0x0A RSUPDTC 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 233

Table 326 — ReadDTCInformation, sub-function = readSupportedDTCs, 
positive response, example #11 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = readSupportedDTCs 0x0A RSUPDTC 

#3 DTCStatusAvailabilityMask 0x7F DTCSAM 

#4 DTCAndStatusRecord#1 [ DTCHighByte ] 0x12 DTCHB 

#5 DTCAndStatusRecord#1 [ DTCMiddleByte ] 0x34 DTCMB 

#6 DTCAndStatusRecord#1 [ DTCLowByte ] 0x56 DTCLB 

#7 DTCAndStatusRecord#1 [ statusOfDTC ] 0x24 SODTC 

#8 DTCAndStatusRecord#2 [ DTCHighByte ] 0x23 DTCHB 

#9 DTCAndStatusRecord#2 [ DTCMiddleByte ] 0x45 DTCMB 

#10 DTCAndStatusRecord#2 [ DTCLowByte ] 0x05 DTCLB 

#11 DTCAndStatusRecord#2 [ statusOfDTC ] 0x00 SODTC 

#12 DTCAndStatusRecord#3 [ DTCHighByte ] 0xAB DTCHB 

#13 DTCAndStatusRecord#3 [ DTCMiddleByte ] 0xCD DTCMB 

#14 DTCAndStatusRecord#3 [ DTCLowByte ] 0x01 DTCLB 

#15 DTCAndStatusRecord#3 [ statusOfDTC ] 0x2F SODTC 

11.3.5.13 Example #12 - ReadDTCInformation, sub-function = reportFirstTestFailedDTC, information 
available 

11.3.5.13.1 Example #12 overview 

This example demonstrates usage of the reportFirstTestFailedDTC sub-function parameter, where it is 
assumed that at least one failed DTC occurred since the last ClearDiagnosticInformation request from the 
server.  

If exactly one DTC failed within the server since the last ClearDiagnosticInformation request from the server, 
then the server would return the same information in response to a reportMostRecentTestFailedDTC request 
from the client. 

In this example, the status of the DTC returned in response to the reportFirstTestFailedDTC is no longer 
current at the time of the request (the same phenomenon is possible when requesting the server to report the 
most recent failed / confirmed DTC). 

The general format of request/response messages in the following example is also applicable to sub-function 
parameters reportFirstConfirmedDTC, reportMostRecentTestFailedDTC, and reportMostRecent-
ConfirmedDTC (for the appropriate DTC status and under similar assumptions). 

11.3.5.13.2 Example #12 assumptions 

The following assumptions apply: 

⎯ At least one DTC failed since the last ClearDiagnosticInformation request from the server. 

⎯ The server supports all status bits for masking purposes. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

234 © ISO 2013 – All rights reserved

⎯ DTC number 0x123456 = first failed DTC to be detected since the last code clear. 

⎯ The following assumptions apply to DTC 0x123456, statusOfDTC 0x26 (0010 0110b):

Table 327 — statusOfDTC = 0x26 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 0 DTC was never confirmed 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

11.3.5.13.3 Example #12 message flow 

In the following example DTC 0x123456 is returned to the client’s request. 

Table 328 — ReadDTCInformation, sub-function = reportFirstTestFailedDTC, 
request message flow example #12 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportFirstTestFailedDTC,  
   suppressPosRspMsgIndicationBit = FALSE 

0x0B RFCDTC 

Table 329 — ReadDTCInformation, sub-function = reportFirstTestFailedDTC,  
positive response, example #12 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportFirstTestFailedDTC 0x0B RFCDTC 

#3 DTCStatusAvailabilityMask 0xFF DTCSAM 

#4 DTCAndStatusRecord [ DTCHighByte ] 0x12 DTCHB 

#5 DTCAndStatusRecord [ DTCMiddleByte ] 0x34 DTCMB 

#6 DTCAndStatusRecord [ DTCLowByte ] 0x56 DTCLB 

#7 DTCAndStatusRecord [ statusOfDTC ] 0x26 SODTC 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 235

11.3.5.14 Example #13 - ReadDTCInformation, sub-function = reportFirstTestFailedDTC, no 
information available 

11.3.5.14.1 Example #13 overview 

This example demonstrates usage of the reportFirstTestFailedDTC sub-function parameter, where it is 
assumed that no failed DTCs have occurred since the last ClearDiagnosticInformation request from the 
server. 

The general format of request/response messages in the following example is also applicable to sub-function 
parameters reportFirstConfirmedDTC, reportMostRecentTestFailedDTC, and  
reportMostRecentConfirmedDTC (for the appropriate DTC status and under similar assumptions). 

11.3.5.14.2 Example #13 assumptions 

The following assumptions apply: 

No failed DTCs have occurred since the last ClearDiagnosticInformation request from the server. 

The server supports all status bits for masking purposes. 

11.3.5.14.3 Example #13 message flow 

In the following example no DTC is returned to the client’s request. 

Table 330 — ReadDTCInformation, sub-function = reportFirstTestFailedDTC, 
request message flow example #13 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportFirstTestFailedDTC,  
   suppressPosRspMsgIndicationBit = FALSE 

0x0B RFCDTC 

Table 331 — ReadDTCInformation, sub-function = reportFirstTestFailedDTC,  
positive response, example #13 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportFirstTestFailedDTC 0x0B RFCDTC 

#3 DTCStatusAvailabilityMask 0xFF DTCSAM 

11.3.5.15 Example #14 - ReadDTCInformation, sub-function = reportNumberOfEmissionsOBD-
DTCByStatusMask 

11.3.5.15.1 Example #14 overview 

This example demonstrates the usage of the reportNumberOfEmissionsOBDDTCByStatusMask sub-function 
parameter, as well as various masking principles. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

236 © ISO 2013 – All rights reserved

11.3.5.15.2 Example #14 assumptions 

The server supports all status bits for masking purposes. Furthermore the server supports a total of three 
emissions-related OBD DTCs (for the sake of simplicity!), which have the following states at the time of the 
client request: 

The following assumptions apply to emissions-related OBD DTC P0005-00 Fuel Shutoff Valve "A" Control 
Circuit/Open (0x000500), statusOfDTC 0xAE (1010 1110b).

Table 332 — statusOfDTC = 0xAE of DTC P0005-00 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active 
(OBD DTC) 

The following assumptions apply to emissions-related OBD DTC P022F-00 Intercooler Bypass Control "B" 
Circuit High (0x022F00), statusOfDTC of 0xAC (1010 1100b).

Table 333 — statusOfDTC = 0xAC of DTC P022F-00 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 DTC is not failed at the time of the request 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle, 

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active 
(OBD DTC) 

The following assumptions apply to emissions-related OBD DTC P0A09-00 DC/DC Converter Status Circuit 
Low Input (0x0A0900), statusOfDTC of 0xAF (1010 1111b).

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 237

Table 334 — statusOfDTC = AF of DTC P0A09-00 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 1 DTC failed at the time of the request 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 DTC test were completed since the last code clear 

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active 
(OBD DTC) 

11.3.5.15.3 Example #14 message flow 

In the following example, a count of three is returned to the client because all DTCs defined in the 
assumptions match the client defined status mask of 0x08 – confirmedDTC (0000 1000b).

Table 335 — ReadDTCInformation, sub-function = reportNumberOfEmissionsOBD-DTCByStatusMask, 
request message flow example #14 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportNumberOfEmissionsOBDDTCByStatusMask,
   suppressPosRspMsgIndicationBit = FALSE 

0x12 RNOOEOBDDTCBS
M

#3 DTCStatusMask 0x08 DTCSM 

Table 336 — ReadDTCInformation, sub-function = reportNumberOfEmissionsOBD-DTCByStatusMask, 
positive response, example #14 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportNumberOfEmissionsOBDDTCByStatusMask 0x12 RNOOEOBDDTCBSM 

#3 DTCStatusAvailabilityMask 0xFF DTCSAM 

#4 DTCFormatIdentifier = SAE_J2012-DA_DTCFormat_00 0x00 J2012-DADTCF00 

#5 DTCCount [ DTCCountHighByte ] 0x00 DTCCHB 

#6 DTCCount [ DTCCountLowByte ] 0x03 DTCCLB 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

238 © ISO 2013 – All rights reserved

11.3.5.16 Example #15 - ReadDTCInformation, sub-function = reportEmissionsOBDDTC-
ByStatusMask, all matching OBD DTCs returned 

11.3.5.16.1 Example #15 overview 

This example demonstrates usage of the reportEmissionsOBDDTCByStatusMask sub-function parameter, as 
well as various masking principles in conjunction with unsupported masking bits. 

11.3.5.16.2 Example #15 assumptions 

The server supports all status bits for masking purposes. The server supports a total of three DTCs (for the 
sake of simplicity!) as defined in 11.3.5.15.2. 

11.3.5.16.3 Example #15 message flow 

In the following example, emissions-related OBD DTC P0005-AE Fuel Shutoff Valve "A" Control Circuit/Open 
(0x000500), P022F-00 Intercooler Bypass Control "B" Circuit High (0x022F00) and P0A09-00 DC/DC 
Converter Status Circuit Low Input (0x0A0900) are returned to the client’s request because all DTCs defined 
in the assumptions match the client defined status mask of 0x80 – warningIndicatorRequested (1000 0000 b). 

NOTE The server shall bypass masking on those status bits it doesn’t support. 

Table 337 — ReadDTCInformation, sub-function = reportEmissionsOBDDTCByStatusMask, 
request message flow example #15 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportEmissionsOBDDTCByStatusMask,  
   suppressPosRspMsgIndicationBit = FALSE 

0x13 ROBDDTCBSM 

#3 DTCStatusMask 0x80 DTCSM 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 239

Table 338 — ReadDTCInformation, sub-function = reportDTCByStatusMask,  
positive response, example #15 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportEmissionsOBDDTCByStatusMask 0x13 ROBDDTCBSM 

#3 DTCStatusAvailabilityMask 0xFF DTCSAM 

#4 DTCAndStatusRecord#1 [ DTCHighByte ] 0x00 DTCHB 

#5 DTCAndStatusRecord#1 [ DTCMiddleByte ] 0x05 DTCMB 

#6 DTCAndStatusRecord#1 [ DTCLowByte ] 0x00 DTCLB 

#7 DTCAndStatusRecord#1 [ statusOfDTC ] 0xAE SODTC 

#8 DTCAndStatusRecord#2 [ DTCHighByte ] 0x02 DTCHB 

#9 DTCAndStatusRecord#2 [ DTCMiddleByte ] 0x2F DTCMB 

#10 DTCAndStatusRecord#2 [ DTCLowByte ] 0x00 DTCLB 

#11 DTCAndStatusRecord#2 [ statusOfDTC ] 0xAC SODTC 

#12 DTCAndStatusRecord#3 [ DTCHighByte ] 0x0A DTCHB 

#13 DTCAndStatusRecord#3 [ DTCMiddleByte ] 0x09 DTCMB 

#14 DTCAndStatusRecord#3 [ DTCLowByte ] 0x00 DTCLB 

#15 DTCAndStatusRecord#3 [ statusOfDTC ] 0xAF SODTC 

11.3.5.17 Example #16 - ReadDTCInformation, sub-function = reportEmissionsOBDDTC-
ByStatusMask (confirmedDTC and warningIndicatorRequested), matching DTCs returned 

11.3.5.17.1 Example #16 overview 

This example demonstrates usage of the reportEmissionsOBDDTCByStatusMask sub-function parameter, as 
well as the masking principle to request the server to report emissions-related OBD DTCs which are of the 
status "confirmedDTC" and "warningIndicatorRequested (MIL = ON)" in conjunction with unsupported masking 
bits. This example shows a typical OBD Scan Tool type request for emissions-related OBD DTCs which cause 
the MIL to be turned ON and therefore do not pass the I/M (Inspection and Maintenance) test. 

11.3.5.17.2 Example #16 assumptions 

The server does not support bit 0 (testFailed), bit 4 (testNotCompletedSinceLastClear) and bit 5 
(testFailedSinceLastClear) for masking purposes. This results in a DTCStatusAvailabilityMask value of 0xCE 
(1100 1110b).

The client uses a DTC status mask with the value of 0x88 (1000 1000b) because only DTCs with the status 
"confirmedDTC = 1" and " warningIndicatorRequested = 1" shall be displayed to the technician. The server 
supports a total of three DTCs (for the sake of simplicity!), which have the following states at the time of the 
client request: 

The following assumptions apply to DTC P010A-14 Mass or Volume Air Flow "A" - circuit short to ground or 
open (0x010A14), statusOfDTC 0x00 (0000 0000b):

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

240 © ISO 2013 – All rights reserved

Table 339 — statusOfDTC = 0x00 of DTC P010A-14 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 Not applicable 

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle 

pendingDTC 2 0 DTC was not failed on the current or previous operation 
cycle 

confirmedDTC 3 0 DTC is not confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 Not applicable 

testFailedSinceLastClear 5 0 Not applicable 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active 

The following assumptions apply to DTC P0180-17 Fuel Temperature Sensor A - circuit voltage above 
threshold (0x018017), statusOfDTC of 0x8E (1000 1110b):

Table 340 — statusOfDTC = 0x8E of DTC P0180-17 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 Not applicable 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 Not applicable 

testFailedSinceLastClear 5 0 Not applicable 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active (OBD 
DTC) 

The following assumptions apply to DTC P0190-1D Fuel Rail Pressure Sensor "A" - circuit current out of 
range (0x01901D), statusOfDTC of 0x8E (1000 1110b): 

Table 341 — statusOfDTC = 0x8E of DTC P0190-1D 

statusOfDTC: bit field name Bit # Bit state Description 

testFailed 0 0 Not applicable 

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle 

pendingDTC 2 1 DTC failed on the current or previous operation cycle 

confirmedDTC 3 1 DTC is confirmed at the time of the request 

testNotCompletedSinceLastClear 4 0 Not applicable 

testFailedSinceLastClear 5 0 Not applicable 

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle 

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active 
(OBD DTC) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 241

11.3.5.17.3 Example #16 message flow 

In the following example, P0180-17 (0x018017) and P0190-1D (0x01901D) are returned to the client’s 
request. 

NOTE The server shall bypass masking on those status bits it doesn’t support. 

Table 342 — ReadDTCInformation, sub-function = reportEmissionsOBDDTCByStatusMask, 
request message flow example #16 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportEmissionsOBDDTCByStatusMask,  
   suppressPosRspMsgIndicationBit = FALSE 

0x13 ROBDDTCBSM 

#3 DTCStatusMask 0x88 DTCSM 

Table 343 — ReadDTCInformation, sub-function = reportDTCByStatusMask,  
positive response, example #16 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportEmissionsOBDDTCByStatusMask 0x13 ROBDDTCBSM 

#3 DTCStatusAvailabilityMask 0xCE DTCSAM 

#8 DTCAndStatusRecord#1 [ DTCHighByte ] 0x01 DTCHB 

#9 DTCAndStatusRecord#1 [ DTCMiddleByte ] 0x80 DTCMB 

#10 DTCAndStatusRecord#1 [ DTCLowByte ] 0x17 DTCLB 

#11 DTCAndStatusRecord#1 [ statusOfDTC ] 0x8E SODTC 

#12 DTCAndStatusRecord#2 [ DTCHighByte ] 0x01 DTCHB 

#13 DTCAndStatusRecord#2 [ DTCMiddleByte ] 0x90 DTCMB 

#14 DTCAndStatusRecord#2 [ DTCLowByte ] 0x1D DTCLB 

#15 DTCAndStatusRecord#2 [ statusOfDTC ] 0x8E SODTC 

11.3.5.18 Example #17 - ReadDTCInformation, sub-function = 
reportDTCExtDataRecordByRecordNumber 

11.3.5.18.1 Example #17 overview 

This example demonstrates the usage of the reportDTCExtDataRecordByRecordNumber sub-function 
parameter. 

11.3.5.18.2 Example #17 assumptions 

The following assumptions apply: 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

242 © ISO 2013 – All rights reserved

a) The server supports the ability to store two DTCExtendedData records for all DTCs. 

b) Assume that the server requests all available DTCExtendedData records stored by the server for Record 
number 0x05. 

c) Assume that DTC 0x123456 has a statusOfDTC of 0x24, and that the following extended data is available 
for the DTC. 

d) The DTCExtendedData is referenced via the DTCExtDataRecordNumber 0x05  

e) Assume that DTC 0x234561 has a statusOfDTC of 0x24, and that the following extended data is available 
for the DTC. 

f) The DTCExtendedData is referenced via the DTCExtDataRecordNumber 0x05. 

Table 344 — DTCExtDataRecordNumber 0x05 content for DTC 0x123456 

Data Byte DTCExtDataRecord Contents for DTCExtDataRecordNumber 0x05 Byte Value 

#1 Warm-up Cycle Counter – Number of warm up cycles since the DTC commanded the MIL 
to switch off 

0x17 

Table 345 — DTCExtDataRecordNumber 0x05 content for DTC 0x234561 

Data Byte DTCExtDataRecord Contents for DTCExtDataRecordNumber 0x05 Byte Value 

#1 Warm-up Cycle Counter – Number of warm up cycles since the DTC commanded the MIL 
to switch off 

0x79 

11.3.5.18.3 Example #17 message flow 

In the following example, a DTCMaskRecord including the DTC number and a DTCExtDataRecordNumber 
with the value of 0x05 (report all DTCExtDataRecords) is requested by the client. The server returns two 
DTCs which have recorded the DTCExtDataRecordNumber submitted by the client. 

Table 346 — ReadDTCInformation, sub-function = reportDTCExtDataRecordByRecordNumber, 
request message flow example #7 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportDTCExtDataRecordByRecordNumber, 
   suppressPosRspMsgIndicationBit = FALSE 

0x16 RDTCEDRBDN 

#3 DTCExtDataRecordNumber 0x05 DTCEDRN 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 243

Table 347 — ReadDTCInformation, sub-function = reportDTCExtDataRecordByRecordNumber, 
positive response, example #7 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportDTCExtDataRecordByRecordNumber 0x16 RDTCEDRBDN

#3 DTCAndStatusRecord [ DTCHighByte ] 0x12 DTCHB 

#4 DTCAndStatusRecord [ DTCMiddleByte ] 0x34 DTCMB 

#5 DTCAndStatusRecord [ DTCLowByte ] 0x56 DTCLB 

#6 DTCAndStatusRecord [ statusOfDTC ] 0x24 SODTC 

#7 DTCExtDataRecordNumber 0x05 DTCEDRN 

#8 DTCExtDataRecord [ byte#1 ] 0x17 ED_1 

#9 DTCAndStatusRecord [ DTCHighByte ] 0x23 DTCHB 

#10 DTCAndStatusRecord [ DTCMiddleByte ] 0x45 DTCMB 

#11 DTCAndStatusRecord [ DTCLowByte ] 0x61 DTCLB 

#12 DTCAndStatusRecord [ statusOfDTC ] 0x24 SODTC 

#13 DTCExtDataRecordNumber 0x05 DTCEDRN 

#14 DTCExtDataRecord [ byte#1 ] 0x79 ED_1 

11.3.5.19 Example #18 - ReadDTCInformation, sub-function = reportWWHOBDDTCByMaskRecord 

11.3.5.19.1 Example #18 overview 

This example demonstrates the usage of the reportWWHOBDDTCByMaskRecord sub-function parameter for 
confirmed DTCs (DTC status mask 0x08). The vehicle uses a CAN bus which connects two emissions-related 
servers. 

The client uses the following request parameter settings: 

⎯ FunctionalGroupIdentifier = 0x33 (emissions system group), 

⎯ DTCSeverityMaskRecord.DTCSeverityMask = 0xFF (report DTCs with any severity and Class status), 

⎯ DTCSeverityMaskRecord.DTCStatusMask = 0x08 (report DTCs with confirmedDTC status = '1'). 

The servers support the following settings: 

⎯ FunctionalGroupIdentifier = 0x33 (emissions system group), 

⎯ DTCStatusAvailabilityMask = 0xFF, 

⎯ DTCSeverityAvailabilityMask = 0xFF, 

⎯ DTCFormatIdentifier = SAE_J2012-DA_DTCFormat_04 = 0x04. 

11.3.5.19.2 Example #18 assumptions 

All assumptions of example #1 apply. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

244 © ISO 2013 – All rights reserved

11.3.5.19.3 Example #18 message flow 

In the following example server #1 only reports DTC P2522-1F A/C Request “B” - circuit intermittent 
(0x25221F) because the statusOfDTC of 0x2F (0010 1111 binary) matches the client defined status mask of 
0x08 (0000 1000 b). Server #2 reports DTC P0235-12 Turbocharger/Supercharger Boost Sensor "A" – circuit 
short to battery because the statusOfDTC of 0x2E (0010 1110 b) matches the client defined status mask of 
0x08 (0000 1000 b).

Table 348 — ReadDTCInformation request, sub-function = reportNumberOfDTCByStatusMask 

Message direction client → server 

Message Type Request 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Request SID 0x19 RDTCI 

#2 sub-function = reportWWHOBDDTCByMaskRecord, 
suppressPosRspMsgIndicationBit = FALSE 

0x42 RWWHOBDDTCBM
R

#3 FunctionalGroupIdentifier 
(FunctionalGroupIdentifier=emissions=0x33) 

0x33 FGID 

#4 DTCSeverityMaskRecord[] = [ DTCStatusMask ]  0x08 DTCSM 

#5 DTCSeverityMaskRecord[] = [ DTCSeverityMask ]  0xFF DTCSVM 

Table 349 — ReadDTCInformation response, sub-function = reportWWHOBDDTCByStatusMask 

Message direction server #1 → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportWWHOBDDTCByMaskRecord  0x42 RWWHOBDDTCBM
R

#3 FunctionalGroupIdentifier 
(FunctionalGroupIdentifier=emissions=0x33) 

0x33 FGID 

#4 DTCStatusAvailabilityMask 0xFF DTCSAM 

#5 DTCSeverityAvailabilityMask 0xFF DTCSVAM 

#6 DTCFormatIdentifier = [SAE_J2012-DA_DTCFormat_04] 0x04 J2012-DADTCF04 

#7 DTCAndSeverityRecord[ DTCSeverity#1 ] 0x20 DTCASR_DTCS 

#8 DTCAndSeverityRecord[ DTCHighByte#1 ] 0x25 DTCASR_DTCHB 

#9 DTCAndSeverityRecord[ DTCMiddleByte#1 ] 0x22 DTCASR_DTCMB 

#10 DTCAndSeverityRecord[ DTCLowByte#1 ] 0x1F DTCASR_DTCLB 

#11 DTCAndSeverityRecord[ statusOfDTC#1 ] 0x2F DTCASR_SODTC 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 245

Table 350 — ReadDTCInformation response, sub-function = reportOBDDTCByStatusMask 

Message direction server #2 → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDTCInformation Response SID 0x59 RDTCIPR 

#2 reportType = reportWWHOBDDTCByMaskRecord  0x42 RWWHOBDDTCBMR 

#3 FunctionalGroupIdentifier 
(FunctionalGroupIdentifier=emissions=0x33) 

0x33 FGID 

#4 DTCStatusAvailabilityMask 0xFF DTCSAM 

#5 DTCSeverityAvailabilityMask 0xFF DTCSVAM 

#6 DTCFormatIdentifier = [SAE_J2012-DA_DTCFormat_04] 0x04 J2012-DADTCF04 

#7 DTCAndSeverityRecord[ DTCSeverity#1 ] 0x20 DTCASR_DTCS 

#8 DTCAndSeverityRecord[ DTCHighByte#1 ] 0x02 DTCASR_DTCHB 

#9 DTCAndSeverityRecord[ DTCMiddleByte#1 ] 0x35 DTCASR_DTCMB 

#10 DTCAndSeverityRecord[ DTCLowByte#1 ] 0x12 DTCASR_DTCLB 

#11 DTCAndSeverityRecord[ statusOfDTC#1 ] 0x2E DTCASR_SODTC 

12 InputOutput Control functional unit 

12.1 Overview 

Table 351 defines the InputOutput Control functional unit. 

Table 351 — InputOutput Control functional unit 

Service Description 

InputOutputControlByIdentifier The client requests the control of an input/output specific to the server. 

12.2 InputOutputControlByIdentifier (0x2F) service 

12.2.1 Service description 

The InputOutputControlByIdentifier service is used by the client to substitute a value for an input signal, 
internal server function and/or force control to a value for an output (actuator) of an electronic system. In 
general, this service is used for relatively simple (e.g., static) input substitution / output control whereas 
routineControl is used if more complex input substitution / output control is necessary. 

The client request message contains a dataIdentifier to reference the input signal, internal server function, 
and/or output signal(s) (actuator(s)) (in case of a device control access it might reference a group of signals) 
of the server. The controlOptionRecord parameter shall include all information required by the server's input 
signal(s), internal function(s) and/or output signal(s). The vehicle manufacturer may require that the request 
message contain a controlEnableMask if the dataIdentifier to be controlled references more than one 
parameter (i.e., the dataIdentifier is packeted or bitmapped). If the vehicle manafuacturer chooses to support 
the EnableMask concept, the controlEnableMask parameter is mandatory on all types of 
InputOutputControlByIdentifier requests for this service. If inputOutputControlByIdentifier is requested on a 
dataIdentifier that references a measured output value or feedback value, the server shall be responsible for 
substituting the correct target value within the server control strategy so that the normal server control strategy 
will attempt to reach the desired state from the client request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

246 © ISO 2013 – All rights reserved

The server shall send a positive response message if the request control was successfully started or has 
reached its desired state. The server shall send a positive response message to a request message with an 
inputOutputControlParameter of returnControlToECU even if the dataIdentifier is currently not under tester 
control. In addition, when receiving a returnControlToECU request, a server shall always provide the client the 
capability of setting the controlMask (if supported) bits all to '1' in order to return control of a packeted or bit-
mapped dataIdentifier completely back to the ECU. The format and length of the controlState bytes following 
the inputOutputControlParameter within the controlOptionRecord parameter of the request message shall 
exactly match the length and format of the dataRecord of the dataIdentifier being requested. This way it shall 
be ensured that the actual output or input state can be retrieved by using the service ReadDatabyIdentifier 
with the same DID. 

When utilizing the inputOutputControlByIdentifier service to perform input substitution or output control, there 
are two fundamental requirements placed on the ECU accepting the request. The first is to disconnect the 
appropriate data object(s) referenced by the parameter(s) within the dataIdentifier from all upstream control 
strategies that would otherwise update the data object value. The second is to substitute a value into the 
appropriate data object(s) that will be used for all downstream activities of the control strategy. For example, a 
tester request to directly force the headlamps on would need to prevent the headlamp switch position from 
affecting the headlamp output and substitute the desired state of "On" into the data object(s) used by the 
functions which ultimately decide the headlamp state desired output. 

The service allows the control of a single dataIdentifier and its corresponding parameter(s) in a single request 
message. Doing so, the server will respond with a single response message including the dataIdentifier of the 
request message plus controlStatus information. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

12.2.2 Request message 

12.2.2.1 Request message definition 

Table 352 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID M 0x2F IOCBI 

#2
#3

dataIdentifier [] = [ 
    byte#1 (MSB) 
    byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

IOI_ 
B1
B2

#4
:

#4+(m-1) 

controlOptionRecord [] = [  
     inputOutputControlParameter 
     controlState#1 
      : 
     controlState#m ] 

M1
C1
:

C1

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

CSR_ 
IOCP_ 
CS_ 
:
CS_ 

#4+m
:

#4+m+(r-1) 

controlEnableMaskRecord#1[] = [  
       controlMask#1 
        : 
       controlMask#r ] 

C2
:

C2

0x00 – 0xFF 
:

0x00 – 0xFF 

CEM_ 
CM_ 
:
CM_ 

M1 InputOutputControlParameter shall be implemented as defined in E.1. 
C1: The presence of this parameter depends on the dataIdentifier and the inputOutputControlParameter (see E.1). 
C2: If the controlEnableMask concept is supported by the vehicle manufacturer, this parameter shall be included if the 
dataIdentifier consists of more than one parameter (see controlEnableMaskRecord definition) 

12.2.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 247

12.2.2.3 Request message data-parameter definition 

The following data-parameters are defined for this service: 

Table 353 — Request message data-parameter definition 

Definition

dataIdentifier 

This parameter identifies an server local input signal(s), internal parameter(s) and/or output signal(s). The applicable 
range of values for this parameter can be found in the table of dataIdentifiers defined in C.1. 

controlOptionRecord 

The controlOptionRecord consists of one or multiple bytes (inputOutputControlParameter and controlState#1 to 
controlState#m). The controlOptionRecord parameter details shall be implemented as defined in E.1. 

controlEnableMaskRecord 

The controlEnableMaskRecord consists of one or multiple bytes (controlMask#1 to controlMask#r). The 
controlEnableMaskRecord shall only be supported when the dataIdentifier to be controlled consists of more than one 
parameter (i.e., the dataIdentifier is bit-mapped or packeted by definition). There shall be one bit in the 
controlEnableMaskRecord corresponding to each individual parameter defined within the dataIdentifier. The 
controlEnableMaskRecord shall not be supported when the dataIdentifier to be controlled consists of only a single 
parameter. 
NOTE Each parameter in the dataIdentifier can be any number of bits.  

The value of each bit within the controlEnableMaskRecord shall determine whether the corresponding parameter in the 
dataIdentifier will be affected by the request. A bit value of '0' in the controlEnableMaskRecord shall represent that the 
corresponding parameter is not affected by this request and a bit value of '1' shall represent that the corresponding 
parameter is affected by this request. The most significant bit of ControlMask#1 shall correspond to the first parameter 
in the ControlState starting at the most significant bit of ControlState#1, the second most significant bit of 
ControlMask#1 shall correspond to the second parameter in the ControlState, and continuing on in this fashion utilising 
as many ControlMask bytes as necessary to mask all parameters. For example, the least significant bit of 
ControlMask#2 would correspond to the 16th parameter in the controlState. For bitmapped dataIdentifiers, unsupported 
bits shall also have a corresponding bit in the controlEnableMaskRecord so that the position of the mask bit of every 
parameter in the controlEnableMaskRecord shall exactly match the position of the corresponding parameter in the 
controlState. 

12.2.3 Positive response message 

12.2.3.1 Positive response message definition 

Table 354 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID M 0x6F IOCBIPR 

#2
#3

dataIdentifier [] = [ 
    byte#1 (MSB) 
    byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

IOI_ 
B1
B2

#4
#5
:

#5+(m-1) 

controlStatusRecord [] = [  
     inputOutputControlParameter 
     controlState#1 
      : 
     controlState#m ] 

M
C1
:

C1

0x00 – 0xFF 
0x00 – 0xFF 

:
0x00 – 0xFF 

CSR_ 
IOCP_ 
CS_ 
:
CS_ 

C1: The presence of this parameter depends on the dataIdentifier and the inputOutputControlParameter (see E.1). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

248 © ISO 2013 – All rights reserved

12.2.3.2 Positive response message data-parameter definition 

Table 355 — Response message data-parameter definition 

Definition

dataIdentifier 

This parameter is an echo of the dataIdentifier(s) from the request message. 

controlStatusRecord 

The controlState parameter consists of multiple bytes (InputOutputControlParameter and controlState#1 to 
controlState#m) which include e.g. feedback data. The controlStatusRecord parameter details shall be implemented as 
defined in E.1 

12.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 356. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 356 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the request InputOutputControl are not met.  

0x31 requestOutOfRange ROOR

 This NRC shall be sent if: 
⎯ the requested dataIdentifier value is not supported by the device; 

⎯ the value contained in the inputOuptputControlParameter is invalid (see definition 
of inputOutputControlParameter); 

⎯ one or multiple of the applicable controlState values of the controlOptionRecord 
record are invalid; 

⎯ the combination of bits enabling control in the ControlEnableMaskRecord is not 
supported by the device; 

0x33 securityAccessDenied SAD

 This NRC shall be returned if a client sends a request with a valid secure dataIdentifier and the 
server’s security feature is currently active. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 249

The evaluation sequence is documented in Figure 24. 

YES

Security check ok for 
requested DID?

NRC 0x31NO

DID supports service 0x2F in 
active session
AND
inputOutputControlParameter
is supported

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

min. length  check NRC 0x13NO

NRC 0xXX

Manufacturer/
supplier specific 
check

NO

YES

Service with SID 0x2F

YES

positive response

YES

total length  check NRC 0x13NO

1

2

manufacturer/supplier
specific

YES

controlState is 
supported (if applicable)
AND
controlMask is 
supported (if applicable)

NRC 0x31NO

YES

Key  
1 at least 4 (SI+DID+IOCP) 
2 If IOCP = shortTermAdjustment, 1 byte SI + 2 byte DID + 1 byte IOCP + nth byte controlState + nth byte 

controlMask (if applicable),   
if IOCP <> shortTermAdjustment, 1 byte SI + 2 byte DID + 1 byte IOCP + nth byte controlMask (if applicable) 

Figure 24 — NRC handling for InputOutputControlByIdentifier service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

250 © ISO 2013 – All rights reserved

12.2.5 Message flow example(s) InputOutputControlByIdentifier 

12.2.5.1 Assumptions 

The example below shows how the InputOutputControlByIdentifier is used with an HVAC Control Module and 
assumes that physical communication is performed with a single server. 

12.2.5.2 Example #1 - ”Air Inlet Door Position” shortTermAdjustment 

The parameter being controlled is the "Air Inlet Door Position" associated with dataIdentifier (0x9B00). 

Conversion: Air Inlet Door Position [%] = decimal(Hex) * 1 [%] 

12.2.5.2.1 Step #1: ReadDataByIdentifier 

This example uses the ReadDataByIdentifier service to read the current state of the Air Inlet Door Position. 

Table 357 — ReadDataByIdentifier request message flow example #1 - step #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B DID_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 DID_B2 

Table 358 — ReadDataByIdentifier positive response message flow example #1 - step #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B DID_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 DID_B2 

#4 dataRecord [ data#1 ] = 10% 0x0A DREC_DATA1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 251

12.2.5.2.2 Step #2: shortTermAdjustment 

Table 359 — InputOutputControlByIdentifier request message flow example #1 - step #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlOptionRecord [ controlState#1 ] = 60% 0x3C CS_1 

Table 360 — InputOutputControlByIdentifier positive response message flow example #1 - step #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBLIPR 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlStatusRecord [ controlState#1 ] = 12% 0x0C CS_1 

NOTE The client has sent an inputOutputControlByIdentifier request message as specified above. The server has 
sent an immediate positive response message, which includes the controlState parameter "Air Inlet Door Position" with the 
value of 12%. The air inlet door requires a certain amount of time to move to the requested value of 60%. 

12.2.5.2.3 Step #3: ReadDataByIdentifier 

This example uses the readDataByIdentifier service to read the current state of the Air Inlet Door Position. 

Table 361 — ReadDataByIdentifier request message flow example #1 - step #3 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Request SID 0x22 RDBI 

#2 dataIdentifier [ byte#1 ] = 0xB9 0x9B DID_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 DID_B2 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

252 © ISO 2013 – All rights reserved

Table 362 — ReadDataByIdentifier positive response message flow example #1 - step #3 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 ReadDataByIdentifier Response SID 0x62 RDBIPR 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B DID_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 DID_B2 

#4 dataRecord [ data#1 ] = 60% 0x3C DREC_DATA1 

NOTE The client has sent a readDataByIdentifier request message as specified above while 
inputOutputControlByIdentifier is active. It will take a finite amount of time for the server control strategy to ultimately reach 
the desired value. The example above reflects when the server has finally reached the desired target value. 

12.2.5.2.4 Step #4: returnControlToECU 

Table 363 — InputOutputControlByIdentifier request message flow example #1 - step #4 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
returnControlToECU 

0x00 RCTECU 

Table 364 — InputOutputControlByIdentifier positive response message flow example #1 - step #4 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBIPR 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
returnControlToECU 

0x00 RCTECU 

#5 controlStatusRecord [ controlState#1 ] = 58% 0x3A CS_1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 253

12.2.5.2.5 Step #5: freezeCurrentState 

Table 365 — InputOutputControlByIdentifier request message flow example #1 - step #5 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
freezeCurrentState 

0x02 IOCP_FCS 

Table 366 — InputOutputControlByIdentifier positive response message flow example #1 - step #5 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBIPR 

#2 dataIdentifier [ byte#1 ] = 0x9B 0x9B IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x00 (“Air Inlet Door Position”) 0x00 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
freezeCurrentState 

0x02 IOCP_FCS 

#5 controlStatusRecord [ controlState#1 ] = 50% 0x32 CS_1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

254 © ISO 2013 – All rights reserved

12.2.5.3 Example #2 – EGR and IAC shortTermAdjustment 

12.2.5.3.1 Assumptions 

This example uses a packeted dataIdentifier 0x0155 to demonstrate control of individual parameters or 
multiple parameters within a single request. 

This subclause specifies the test conditions for a shortTermAdjustment function and the associated message 
flow of the example dataIdentifier 0x0155. The dataIdentifier supports five individual parameters as described 
in Table 367 below. 

Table 367 — Composite data blocks – DataIdentifier definitions – Example #2 

Parameter 
DID Data Byte 

Number Size 
Data Record Contents 

0x0155 #1 (all bits) #1 8 bits dataRecord [ data#1 ] = IAC Pintle Position (n = counts) 

 #2 - #3 
(all bits) 

#2 16 bits dataRecord [ data#2-#3 ] = RPM (0 = 0 U/min, 65 535 = 65 535 U/min) 

 #4 (bits 7-4) #3 4 bits dataRecord [ data#4 (bits 7-4) ] = Pedal Position A: Linear Scaling, 0 = 
0%, 15 = 120 % 

 #4 (bits 3-0) #4 4 bits dataRecord [ data#4 (bits 3-0) ] = Pedal Position B: Linear Scaling, 0 = 
0%, 15 = 120 % 

 #5 (all bits) #5 8 bits dataRecord [ data#5 ] = EGR Duty Cycle: Linear Scaling, 0 counts = 0%, 
255 counts = 100 % 

DataIdentifier 0x0155 is packeted by definition and is comprised of five elemental parameters. For individual 
control purposes, each of these elemental parameters is selectable via a single bit within the 
ControlEnableMaskRecord. If a given dataIdentifier has a definition other than packeted or bitmapped, the 
ControlEnableMaskRecord is not present in the request message. The most significant bit of ControlMask#1 
is always required to correspond to the first parameter in the dataIdentifier starting at the most significant bit of 
ControlState#1. This is demonstrated in Table 368. 

Table 368 — ControlEnableMaskRecord– Example #2 

ControlEnableMaskRecord for dataIdenitifier 0x0155.   
Total size = 1 byte (i.e., consists only of ControlEnableMask#1) 

Bit Position ControlEnableMask#1 – Bit Meaning (1 = affected, 0 = not affected) 

7  (Most Significant Bit) Determines whether or not Parameter#1 (IAC Pintle Position) will be affected by the 
request 

6 Determines whether Parameter#2 (RPM) will be affected by the request  

5 Determines whether Parameter#3 (Pedal Position A) will be affected by the request  

4 Determines whether Parameter#4 (Pedal Position B) will be affected by the request  

3 Determines whether Parameter#5 (EGR Duty Cycle) will be affected by the request  

2 No affect due to no corresponding parameter  

1 No affect due to no corresponding parameter  

0 (Least Significant Bit) No affect due to no corresponding parameter  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 255

12.2.5.3.2 Case #1: Control IAC Pintle Position only 

Table 369 defines the InputOutputControlByIdentifier request message flow example #2 – Case #1. 

Table 369 — InputOutputControlByIdentifier request message flow example #2 – Case #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR)  0x55 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlOptionRecord [ controlState#1 ] = IAC Pintle Position  
(7 counts) 

0x07 CS_1 

#6 controlOptionRecord [ controlState#2 ] = RPM (XX) 0xXX CS_2 

#7 controlOptionRecord [ controlState#3 ] = RPM (XX) 0xXX CS_3 

#8 controlOptionRecord [ controlState#4 ] = Pedal Position A (Y) and  
B (Z) 

0xYZ CS_4 

#9 controlOptionRecord [ controlState#5 ] = EGR Duty Cycle (XX) 0xXX CS_5 

#10 controlEnableMask [ controlMask#1 ] = Control IAC Pintle Position 
ONLY 

80 CM_1 

NOTE The values transmitted for RPM, Pedal Position A, Pedal Position B, and EGR Duty Cycle in  
controlState#2 - #5 are irrelevant because the controlMask#1 parameter specifies that only the first parameter in the 
dataIdentifier will be affected by the request. 

Table 370 defines the InputOutputControlByIdentifier positive response message flow example #2 – Case #1. 

Table 370 — InputOutputControlByIdentifier positive response message flow example #2 – Case #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBLIPR 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlStatusRecord [ controlState#1 ] = IAC Pintle Position  
(7 counts) 

0x07 CS_1 

#6 controlStatusRecord [ controlState#2 ] = RPM (750 U/min) 0x02 CS_2 

#7 controlStatusRecord [ controlState#3 ] = RPM 0xEE CS_3 

#8 controlStatusRecord [ controlState#4 ] = Pedal Position A (8%), 
Pedal Position B (16%) 

0x12 CS_4 

#9 controlStatusRecord [ controlState#5 ] = EGR Duty Cycle (35%) 0x59 CS_5 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

256 © ISO 2013 – All rights reserved

NOTE The value transmitted for all parameters in controlState#1 – controlState#5 shall reflect the current state of the 
system. 

12.2.5.3.3 Case #2: Control RPM Only 

Table 371 defines the InputOutputControlByIdentifier request message flow example #2 – Case #2. 

Table 371 — InputOutputControlByIdentifier request message flow example #2 – Case #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / EGR) 0x55 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlOptionRecord [ controlState#1 ] = IAC Pintle Position  
(XX counts) 

0xXX CS_1 

#6 controlOptionRecord [ controlState#2 ] = RPM  
(0x03E8 = 1000 U/min) 

0x03 CS_2 

#7 controlOptionRecord [ controlState#3 ] = RPM  0xE8 CS_3 

#8 controlOptionRecord [ controlState#4 ] = Pedal Position A (Y) and  
B (Z) 

0xYZ CS_4 

#9 controlOptionRecord [ controlState#5 ] = EGR Duty Cycle (XX) 0xXX CS_5 

#10 controlEnableMask [ controlMask#1 ] = Control RPM ONLY 0x40 CM_1 

NOTE The values transmitted for IAC Pintle Position, Pedal Position A, Pedal Position B, and EGR Duty Cycle in 
controlState#1 and controlState#4 - #5 are irrelevant because the controlMask#1 parameter specifies that only the second 
parameter in the dataIdentifier will be affected by the request. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 257

Table 372 defines the InputOutputControlByIdentifier positive response message flow example #2 – Case #2. 

Table 372 — InputOutputControlByIdentifier positive response message flow example #2 – Case #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBLIPR 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlStatusRecord [ controlState#1 ] = IAC Pintle Position 
(9 counts) 

0x09 CS_1 

#6 controlStatusRecord [ controlState#2 ] = RPM (950 U/min) 0x03 CS_2 

#7 controlStatusRecord [ controlState#3 ] = RPM  0xB6 CS_3 

#8 controlStatusRecord [ controlState#4 ] = Pedal Position A (8 %),  
Pedal Position B (16 %) 

0x12 CS_4 

#9 controlStatusRecord [ controlState#5 ] = EGR Duty Cycle (35 %) 0x59 CS_5 

NOTE The value transmitted for all parameters in controlState#1 – controlState#5 shall reflect the current state of the 
system. 

12.2.5.3.4 Case #3: Control both Pedal Position A and EGR Duty Cycle 

Table 373 defines the InputOutputControlByIdentifier request message flow example #2 – Case #3. 

Table 373 — InputOutputControlByIdentifier request message flow example #2 – Case #3 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlOptionRecord [ controlState#1 ] = IAC Pintle Position (XX) 0xXX CS_1 

#6 controlOptionRecord [ controlState#2 ] = RPM (XX) 0xXX CS_2 

#7 controlOptionRecord [ controlState#3 ] = RPM (XX) 0xXX CS_3 

#8 controlOptionRecord [ controlState#4 ] = Pedal Position A  
(0x3 = 24 %), Pedal Position B (Z) 

0x3Z CS_4 

#9 controlOptionRecord [ controlState#5 ] = EGR Duty Cycle (45 %) 0x72 CS_5 

#10 controlEnableMask [ controlMask#1 ] = Control Pedal Position A and 
EGR

28 CM_1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

258 © ISO 2013 – All rights reserved

NOTE The values transmitted for IAC Pintle Position, RPM and Pedal Position B in controlState#1 - #3 and 
controlState#4 (bits 3-0) are irrelevant because the controlMask#1 parameter specifies that only the third and fifth 
parameter in the dataIdentifier will be affected by the request. 

Table 374 defines the InputOutputControlByIdentifier positive response message flow example #2 – Case #3. 

Table 374 — InputOutputControlByIdentifier positive response message flow example #2 – Case #3 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBLIPR 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
shortTermAdjustment 

0x03 IOCP_STA 

#5 controlStatusRecord [ controlState#1 ] = IAC Pintle Position  
(7 counts) 

0x07 CS_1 

#6 controlStatusRecord [ controlState#2 ] = RPM (850 U/min) 0x03 CS_2 

#7 controlStatusRecord [ controlState#3 ] = RPM 0x52 CS_3 

#8 controlStatusRecord [ controlState#4 ] = Pedal Position A (24%)  
Pedal Position B (16%) 

0x32 CS_4 

#9 controlStatusRecord [ controlState#4 ] = EGR Duty Cycle (41%) 0x69 CS_5 

NOTE The value transmitted for all parameters in controlState#1 – controlState#5 shall reflect the current state of the 
system. 

12.2.5.3.5 Case #4: Return control of all parameters to the ECU 

Table 375 defines the InputOutputControlByIdentifier request message flow example #2 – Case #4. 

Table 375 — InputOutputControlByIdentifier request message flow example #2 – Case #4 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Request SID 0x2F IOCBI 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlOptionRecord [ inputOutputControlParameter ] = 
returnControlToECU 

0x00 RCTECU 

#5 controlEnableMask [ controlMask#1 ] = All elemental parameters 0xFF CM_1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 259

Table 376 defines the InputOutputControlByIdentifier positive response message flow example #2 – Case #4. 

Table 376 — InputOutputControlByIdentifier positive response message flow example #2 – Case #4 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 InputOutputControlByIdentifier Response SID 0x6F IOCBLIPR 

#2 dataIdentifier [ byte#1 ] = 0x01 0x01 IOI_B1 

#3 dataIdentifier [ byte#2 ] = 0x55 (IAC / RPM / PPA / PPB / EGR) 0x55 IOI_B2 

#4 controlStatusRecord [ inputOutputControlParameter ] = 
returnControlToECU 

0x00 RCTECU 

#5 controlStatusRecord [ controlState#1 ] = IAC Pintle Position  
(9 counts) 

0x09 CS_1 

#6 controlStatusRecord [ controlState#2 ] = RPM (850 U/min) 0x03 CS_2 

#7 controlStatusRecord [ controlState#3 ] = RPM 0x52 CS_3 

#8 controlStatusRecord [ controlState#4 ] = Pedal Position A (8%)  
Pedal Position B (16%) 

0x12 CS_4 

#9 controlStatusRecord [ controlState#4 ] = EGR Duty Cycle (35%) 0x59 CS_5 

NOTE The value transmitted for all parameters in controlState#1 – controlState#5 shall reflect the current state of the 
system. 

13 Routine functional unit 

13.1 Overview 

Table 377 defines the Routine functional unit. 

Table 377 — Routine functional unit 

Service Description 

RoutineControl The client requests to start, stop a routine in the server(s) or requests the 
routine results. 

This functional unit specifies the services of remote activation of routines, as they shall be implemented in 
servers and client. The following subclause describes two different methods of implementation (Methods "A" 
and "B"). There may be other methods of implementation possible. Methods "A" and "B" shall be used as a 
guideline for implementation of routine services. 

NOTE Each method may feature the functionality to request routine results service after the routine has been 
stopped. The selection of method and the implementation is the responsibility of the vehicle manufacturer and system 
supplier. 

The following is a brief description of method "A" and "B": 

⎯ Method "A": 

⎯ This method is based on the assumption that after a routine has been started by the client in the 
server's memory the client shall be responsible to stop the routine. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

260 © ISO 2013 – All rights reserved

⎯ The server routine shall be started in the server's memory some time between the completion of the 
RoutineControl request message that starts the routine and the completion of the first response 
message (if "positive" based on the server's conditions). 

⎯ The server routine shall be stopped in the server's memory some time after the completion of the 
StopRoutine request message and the completion of the first response message (if "positive" based 
on the server's conditions). 

⎯ The client may request routine results after the routine has been stopped. 

⎯ Method "B": 

⎯ This method is based on the assumption that after a routine has been started by the client in the 
server's memory that the server shall be responsible to stop the routine. 

⎯ The server routine shall be started in the server's memory some time between the completion of the 
RoutineControl request message that starts the routine and the completion of the first response 
message (if "positive" based on the server's conditions). 

⎯ The server routine shall be stopped any time as programmed or previously initialized in the server's 
memory. 

13.2 RoutineControl (0x31) service 

13.2.1 Service description 

The RoutineControl service is used by the client to execute a defined sequence of steps and obtain any 
relevant results. There is a lot of flexibility with this service, but typical usage may include functionality such as 
erasing memory, resetting or learning adaptive data, running a self-test, overriding the normal server control 
strategy, and controlling a server value to change over time including predefined sequences (e.g., close 
convertible roof) to name a few. In general, when used to control outputs this service is used for more 
complex type control whereas inputOutputControlByIdentifier is used for relatively simple (e.g., static) output 
control. 

13.2.1.1 Overview 

The RoutineControl service is used by the client to: 

⎯ start a routine, 

⎯ stop a routine, and 

⎯ request routine results 

A routine is referenced by a 2-byte routineIdentifier. 

The following subclauses specify start routine, stop routine, and request routine results referenced by a 
routineIdentifier. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

13.2.1.2 Start a routine referenced by a routineIdentifier 

The routine shall be started in the server's memory some time between the completion of the StartRoutine 
request message and the completion of the first response message if the response message is positive or 
negative, indicating that the request is already performed or in progress to be performed. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 261

The routines could either be tests that run instead of normal operating code or could be routines that are 
enabled and executed with the normal operating code running. In particular in the first case, it might be 
necessary to switch the server in a specific diagnostic session using the DiagnosticSessionControl service or 
to unlock the server using the SecurityAccess service prior to using the StartRoutine service. 

13.2.1.3 Stop a routine referenced by a routineIdentifier 

The server routine shall be stopped in the server's memory some time after the completion of the StopRoutine 
request message and the completion of the first response message if the response message is positive or 
negative, indicating that the request to stop the routine is already performed or in progress to be performed. 

NOTE The server routine shall be stopped any time as programmed or previously initialized in the server's memory. 

13.2.1.4 Request routine results referenced by a routineIdentifier 

This sub-function is used by the client to request results (e.g. exit status information) referenced by a 
routineIdentifier and generated by the routine which was executed in the server's memory. 

Based on the routine results, which may have been received in the positive response message of the 
stopRoutine sub-function parameter (e.g. normal / abnormal Exit With Results) the requestRoutineResults 
sub-function shall be used. 

An example of routineResults could be data collected by the server, which could not be transmitted during 
routine execution because of server performance limitations. 

13.2.2 Request message 

13.2.2.1 Request message definition 

Table 378 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RoutineControl Request SID M 0x31 RC 

#2 sub-function = [   
    routineControlType ] 

M
0x00 – 0xFF 

LEV_
RCTP_ 

#3
#4

routineIdentifier [] = [ 
    byte#1 (MSB) 
    byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

RI_ 
B1
B2

#5
:

#n

routineControlOptionRecord[] = [  
       routineControlOption#1 
        : 
       routineControlOption#m ] 

C/U
:

C/U

0x00 – 0xFF 
:

0x00 – 0xFF 

RCEOR_ 
RCO_ 
:
RCO _ 

C: This parameter is user optional to be present for sub-function parameter startRoutine and stopRoutine. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

262 © ISO 2013 – All rights reserved

13.2.2.2 Request message sub-function parameter $Level (LEV_) definition 

The sub-function parameters are used by this service to select the control of the routine. Explanations and 
usage of the possible levels are detailed in Table 379 (suppressPosRspMsgIndicationBit (bit 7) not shown). 

Table 379 — Request message sub-function definition 

Bits 6 – 0 Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x01 startRoutine M STR 

 This parameter specifies that the server shall start the routine specified by the 
routineIdentifier. 

0x02 stopRoutine U STPR 

 This parameter specifies that the server shall stop the routine specified by the 
routineIdentifier. 

0x03 requestRoutineResults U RRR 

 This parameter specifies that the server shall return result values of the 
routine specified by the routineIdentifier. 

0x04 – 0x7F ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

13.2.2.3 Request message data-parameter definition 

Table 380 defines the data-parameters of the request message. 

Table 380 — Request message data-parameter definition 

Definition

routineIdentifier 

This parameter identifies a server local routine and is out of the range of defined dataIdentifiers (see F.1). 

routineControlOptionRecord 

This parameter record contains either 
⎯ Routine entry option parameters, which optionally specify start conditions of the routine (e.g. timeToRun, 

startUpVariables, etc.), or 
⎯ Routine exit option parameters which optionally specify stop conditions of the routine.(e.g. 

timeToExpireBeforeRoutineStops, variables, etc.). 

13.2.3 Positive response message 

13.2.3.1 Positive response message definition 

Table 381 defines the positive response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 263

Table 381 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RoutineControl Response SID M 0x71 RCPR 

#2 routineControlType M 00-7F RCTP_ 

#3
#4

routineIdentifier [] = [ 
    byte#1 (MSB) 
    byte#2 (LSB) ] 

M
M

0x00 – 0xFF 
0x00 – 0xFF 

RI_ 
B1
B2

#5 routineInfo C1 0x00 – 0xFF RINF_ 

#6
:

#n

routineStatusRecord[] = [ 
     routineStatus#1 
      : 
     routineStatus#m ] 

U
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

RSR_ 
RS_ 
:
RS _ 

C1 The RoutineInfo byte specifies a scheme (e.g., StartRoutine, StopRoutine, RequestRoutineResults), to allow for 
generic external test equipment handling of any routine. This parameter is mandatory for any routine where the 
routineStatusRecord is defined by the ISO/SAE specifications (e.g. ISO 27145-3, SAE J1979-DA, ISO 26021) even if 
the ISO/SAE defined size of the routineStatusRecord equals "0" data bytes. For routines where the routineStatusRecord 
is completely defined by the vehicle manufacturer, the support of this parameter is optional. The definition of this byte 
shall be left to the vehicle manufacturer. 
U The RoutineStatusByte #m is only to be included in the routineStatusRecord[] if specified for the routineIdentifier 
(RID) by the vehicle manufacturer. 

13.2.3.2 Positive response message data-parameter definition 

Table 382 defines the data-parameters of the positive response message. 

Table 382 — Response message data-parameter definition 

Definition

routineControlType 

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message. 

routineIdentifier 

This parameter is an echo of the routineIdentifier from the request message. 

routineInfo

The RoutineInfo byte encoding is vehicle manufacuter specific and provides a mechanism for the vehicle manufacturer 
to support generic external test equipment handling of all implemented routines (e.g., if stopRoutine or 
requestRoutineResults are required) based upon this returned value.  

routineStatusRecord 

This parameter record is used to give to the client either: 
⎯ additional information about the status of the server following the start of the routine or 
⎯ additional information about the status of the server after the routine has been stopped (e.g., total run time, results 

generated by the routine before stopped, etc.) or 
⎯ results (exit status information) of the routine, which has been stopped previously in the server. 

13.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 383. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

264 © ISO 2013 – All rights reserved

Table 383 — Supported negative response codes 

NRC Description Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC shall be sent if the requested sub-function is either generally not supported or is 
not supported for the requested RoutineIdentifier. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the request RoutineControl are not met.  

0x24 requestSequenceError RSE

 This NRC shall be returned if 

• the routine is currently active and can not be restarted when the 
'startRoutine' sub-function is received (it is up to the vehicle 
manufacturer whether a given routine can be restarted while active), 

• the routine is not currently active when the 'stopRoutine' sub-function 
is received, 

• routine results are not available when the 'requestRoutineResults' 
sub-function is received (e.g., the requested routineIdentifier has 
never been started). 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
⎯ The server does not support the requested routineIdentifier, 

⎯ The user optional routineControlOptionRecord contains invalid data for the 
requested routineIdentifier. 

0x33 securityAccessDenied SAD

 This NRC shall be sent if a client sends a request with a valid secure routineIdentifier and 
the server’s security feature is currently active. 

0x72 GeneralProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when performing a routine, which 
accesses server internal memory. An example is when the routine erases or programs a 
certain memory location in the permanent memory device (e.g. Flash Memory) and the 
access to that memory location fails. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 265

The evaluation sequence is documented in Figure 25. 

RID  security 
check ok ?

YESRID supported in 
active session?

NO NRC 0x31

YES

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

min. length  check NRC 0x13NO

NRC 0x12NO
SubFunction
supported  for 
routineIdentifier?

NRC 0xXX

Manufacturer/
supplier
specific check

NO

YES

Further
parameter

checks

Service with SID 
0x31

NRC 0x24NO

Request sequence 
respected for the RID?

YES

total length check NRC 0x13NO

YES

routineControl-
OptionRecord
contains valid data 
for the requested 
RID

NRC 0x31NO

YES

YES

1

2

manufacturer/supplier
specific

YES

Key  
1 at least 4 (SI+SubFunction+RID Parameter) 
2 1 byte SI + 1 byte SF + 2 byte RID + nth byte routineControlOptionRecord required for the specific RID 

Figure 25 — NRC handling for RoutineControl service 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

266 © ISO 2013 – All rights reserved

13.2.5 Message flow example(s) RoutineControl 

13.2.5.1 Example #1: sub-function = startRoutine 

This subclause specifies the test conditions to start a routine in the server to continuously test (as fast as 
possible) all input and output signals on intermittent while a technician would "wiggle" all wiring harness 
connectors of the system under test. The routineIdentifier references this routine by the routineIdentifier 
0x0201. 

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph] 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Table 384 defines the RoutineControl request message flow - example #1. 

Table 384 — RoutineControl request message flow - example #1 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Request SID 0x31 RC 

#2 sub-function = startRoutine,  
   suppressPosRspMsgIndicationBit = FALSE 

0x01 LEV_STR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

Table 385 defines the positive response message flow - example #1. 

Table 385 — positive response message flow - example #1 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Response SID 0x71 RCPR 

#2 routineControlType = startRoutine 0x01 STR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

#5 routineStatusRecord [ routineStatus#1 ] = vehicle manufactuer 
specific 

0x32 RRS_ 

13.2.5.2 Example #2: sub-function = stopRoutine 

This subclause specifies the test conditions to stop a routine in the server which has continuously tested (as 
fast as possible) all input and output signals on intermittence while a technician would have been "wiggled" all 
wiring harness connectors of the system under test. The routineIdentifier references this routine by the 
routineIdentifier 0x0201. 

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph] 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 267

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Table 386 defines the RoutineControl request message flow - example #2. 

Table 386 — RoutineControl request message flow - example #2 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Request SID 0x31 RC 

#2 sub-function = stopRoutine,  
suppressPosRspMsgIndicationBit = FALSE 

0x02 SPR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

Table 387 defines the RoutineControl positive response message flow - example #2. 

Table 387 — RoutineControl positive response message flow - example #2 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 StopRoutine Response SID 0x71 RCPR 

#2 routineControlType = stopRoutine 0x02 SPR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

#5 routineStatusRecord [ routineStatus#1 ] = vehicle manufactuer 
specific 

0x30 RRS_ 

13.2.5.3 Example #3: sub-function = requestRoutineResults 

This example shows how to retrieve result values after a routine has been finished. The routine has 
continuously tested (as fast as possible) all input and output singals on intermittence while a technician would 
have been "wiggled" at all wiring harness connectors of the system under test. The routineIdentifier to 
reference this routine is 0x0201. Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph]. 

The client requests to have a response message bysetting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

268 © ISO 2013 – All rights reserved

Table 388 defines the RequestRoutineResults request message flow – example #3. 

Table 388 — RequestRoutineResults request message flow – example #3 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Request SID 0x31 RC 

#2 sub-function = requestRoutineResults,  
suppressPosRspMsgIndicationBit = FALSE 

0x03 RRR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

Table 389 defines the RequestRoutineResults positive response message flow – example #3. 

Table 389 — RequestRoutineResults positive response message flow - example #3 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Response SID 0x71 RCPR 

#2 routineControlType = requestRoutineResults 0x03 RRR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x01 RI_B2 

#5 routineStatusRecord [ routineStatus#1 ] = Vehicle Manufactuer 
Specific 

0x30 RRS_ 

#6 routineStatusRecord [ routineStatus#2 ] = inputSignal#1 0x33 RRS_ 

:  : : : 

#n routineStatusRecord [ routineStatus#m ] = inputSignal#m 0x8F RRS_ 

13.2.5.4 Example #4: sub-function = startRoutine with routineControlOption 

This subclause specifies the test conditions to start a routine in a transmission control unit to calibrate the gear 
shift for a certain gear in a special mode. The gear could be any from #1 to #20 and the mode can be bench, 
stand alone and in-vehicle. The routineIdentifier references this routine by the routineIdentifier 0x0202. 

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph]. 

The client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the 
sub-function parameter) to "FALSE" ('0'). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 269

Table 390 defines the RoutineControl request message flow - example #4. 

Table 390 — RoutineControl request message flow - example #4 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Request SID 0x31 RC 

#2 sub-function = startRoutine,  
suppressPosRspMsgIndicationBit = FALSE 

0x01 STR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x02 RI_B2 

#5 routineControlOption#1 [ selected gear ] = vehicle manufacturer 
specific 

0x06 RCO_ 

#6 routineControlOption#2 [ test condition ] 0x01 RCO_ 

Table 391 defines the RoutineControl positive response message flow - example #4. 

Table 391 — RoutineControl positive response message flow - example #4 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RoutineControl Response SID 0x71 RCPR 

#2 routineControlType = startRoutine 0x01 STR 

#3 routineIdentifier [ byte#1 ] (MSB) 0x02 RI_B1 

#4 routineIdentifier [ byte#2 ] (LSB) 0x02 RI_B2 

#5 routineStatusRecord [ routineStatus#1 ] = vehicle manufacturer 
specific 

0x32 RRS_ 

#6 routineStatusRecord [ routineStatus#2 ]= response time 0x33 RRS_ 

.  : : : 

#n routineStatusRecord [ routineStatus#m ]= inputSignal#m 0x8F RRS_ 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

270 © ISO 2013 – All rights reserved

14 Upload Download functional unit 

14.1 Overview 

Table 392 defines the Upload Download functional unit. 

Table 392 — Upload Download functional unit 

Service Description 

RequestDownload The client requests the negotiation of a data transfer from the client to the server. 

RequestUpload The client requests the negotiation of a data transfer from the server to the client. 

TransferData The client transmits data to the server (download) or requests data from the server 
(upload). 

RequestTransferExit The client requests the termination of a data transfer. 

RequestFileTransfer  The client requests the negotiation of a file transfer between server and client. 

14.2 RequestDownload (0x34) service 

14.2.1 Service description 

The requestDownload service is used by the client to initiate a data transfer from the client to the server 
(download). 

After the server has received the requestDownload request message the server shall take all necessary 
actions to receive data before it sends a positive response message. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

14.2.2 Request message 

14.2.2.1 Request message definition 

Table 393 defines the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 271

Table 393 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestDownload Request SID M 0x34 RD 

#2 dataFormatIdentifier M 0x00 – 0xFF DFI_ 

#3 addressAndLengthFormatIdentifier M 0x00 – 0xFF ALFID 

#4
:

#(m-1)+4 

memoryAddress[] = [  
     byte#1 (MSB) 
      : 
     byte#m ] 

M
:

C1

0x00 – 0xFF 
:

0x00 – 0xFF 

MA_ 
B1
:
Bm 

#n-(k-1) 
:

#n

memorySize[] = [ 
     byte#1 (MSB) 
      : 
     byte#k ] 

M
:

C2

0x00 – 0xFF 
:

0x00 – 0xFF 

MS_ 
B1
:
Bk 

C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

14.2.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

14.2.2.3 Request message data-parameter definition 

Table 394 defines the data-parameters of the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

272 © ISO 2013 – All rights reserved

Table 394 — Request message data-parameter definition 

Definition

dataFormatIdentifier 

This data-parameter is a one byte value with each nibble encoded separately. The high nibble specifies the 
"compressionMethod", and the low nibble specifies the "encryptingMethod". The value 0x00 specifies that neither 
compressionMethod nor encryptingMethod is used. Values other than 0x00 are vehicle manufacturer specific. 

addressAndLengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately (see H.1 for example values): 
⎯ bit 7 - 4: Length (number of bytes) of the memorySize parameter 
⎯ bit 3 - 0: Length (number of bytes) of the memoryAddress parameter 

memoryAddress 

The parameter memoryAddress is the starting address of the server memory where the data is to be written to. The 
number of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressAndLengthFormatIdentifier. 
Byte#m in the memoryAddress parameter is always the least significant byte of the address being referenced in the 
server. The most significant byte(s) of the address can be used as a memory identifier. 
An example of the use of a memory identifier would be a dual processor server with 16 bit addressing and memory 
address overlap (when a given address is valid for either processor but yields a different physical memory device or 
internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter can be 
specified as a memory identifier used to select the desired memory device. Usage of this functionality shall be as 
defined by vehicle manufacturer / system supplier. 

memorySize  

This parameter shall be used by the server to compare the memory size with the total amount of data transferred during 
the TransferData service. This increases the programming security. The number of bytes used for this size is defined by 
the high nibble (bit 7 - 4) of the addressAndLengthFormatIdentifier. If data compression is used, it is vehicle 
manufacturer specific whether or not the memory size represents the compressed or uncompressed size. 

14.2.3 Positive response message 

14.2.3.1 Positive response message definition 

Table 395 defines the positive response message. 

Table 395 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestDownload Response SID M 0x74 RDPR 

#2 lengthFormatIdentifier M 0x00 – 0xF0 LFID 

#3
:

#n

maxNumberOfBlockLength = [ 
      byte#1 (MSB) 
       : 
      byte#m ] 

M
:
M

0x00 – 0xFF 
:

0x00 – 0xFF 

MNROB_ 
B1
:
Bm 

14.2.3.2 Positive response message data-parameter definition 

Table 396 defines the data-parameters of the positive response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 273

Table 396 — Response message data-parameter definition 

Definition

lengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately: 
⎯ bit 7 - 4: Length (number of bytes) of the maxNumberOfBlockLength parameter. 
⎯ bit 3 - 0: reserved by document, to be set to '0'. 
The format of this parameter is compatible to the format of the addressAndLengthFormatIdentifier parameter contained 
in the request message, except that the lower nibble has to be set to '0'. 

maxNumberOfBlockLength 

This parameter is used by the requestDownload positive response message to inform the client how many data bytes 
(maxNumberOfBlockLength) to include in each TransferData request message from the client. This length reflects the 
complete message length, including the service identifier and the data-parameters present in the TransferData request 
message. This parameter allows the client to adapt to the receive buffer size of the server before it starts transferring 
data to the server. A server is required to accept transferData requests that are equal in length to its reported 
maxNumberOfBlockLength. It is server specific what transferData request lengths less than maxNumberOfBlockLength 
are accepted (if any). Note that the last transferData request within a given block may be required to be less than 
maxNumberOfBlockLength. It is not allowed for a server to write additional data bytes (i.e,. pad bytes) not contained 
within the transferData message (either in a compressed or uncompressed format), as this would affect the memory 
address of where the subsequent transferData request data would be written. 

14.2.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 397. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 397 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if a server receives a request for this service while in the process 
of receiving a download of a software or calibration module. This could occur if there is a data 
size mismatch between the server and the client during the download of a module. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
⎯ the specified dataFormatIdentifier is not valid. 
⎯ the specified addressAndLengthFormatIdentifier is not valid. 
⎯ the specified memoryAddress/memorySize is not valid. 

0x33 securityAccessDenied SAD

 This NRC shall be returned if the server is secure (for server’s that support the 
SecurityAccess service) when a request for this service has been received. 

0x70 uploadDownloadNotAccepted UDNA

 This NRC indicates that an attempt to download to a server's memory cannot be 
accomplished due to some fault conditions. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

274 © ISO 2013 – All rights reserved

The evaluation sequence is documented in Figure 26. 

YES

security check ok for 
requested memory interval?

NRC 0x31

dataFormatIdentifier is valid.
AND
addressAndLengthFormatIde
ntifier is valid

NRC 0x33NO

mandatory optional

NRC 0x22NO

Condition
check

YES

minimum length  check NRC 0x13NO

NRC 0xXX

Manufacturer/
supplier
specific check

NO

YES

Service with SID 0x34

YES

positive response

NRC 0x70NO

Download fault 
Condition check

YES

NRC 0x31

YES

NRC 0x13

YES

memoryAddress/memorySize
is valid

Full length  check

1

2

manufacturer/supplier
specific

NO

NO

NO

YES

Key  
1 at least 5 (SI + DFI_ + ALFID + minimum MA_ + minimum MS_) 
2 length can be computed from addressAndLengthFormatIdentifier 

Figure 26 — NRC handling for RequestDownload service 

14.2.5 Message flow example(s) RequestDownload 

See 14.5.5 for a complete message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 275

14.3 RequestUpload (0x35) service 

14.3.1 Service description 

The RequestUpload service is used by the client to initiate a data transfer from the server to the client 
(upload). 

After the server has received the requestUpload request message the server shall take all necessary actions 
to send data before it sends a positive response message. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

14.3.2 Request message 

14.3.2.1 Request message definition 

Table 398 defines the request message. 

Table 398 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestUpload Request SID M 0x35 RU 

#2 dataFormatIdentifier M 0x00 – 0xFF DFI_ 

#3 addressAndLengthFormatIdentifier M 0x00 – 0xFF ALFID 

#4
:

#(m-1)+4 

memoryAddress[] = [  
    byte#1 (MSB) 
     : 
    byte#m ] 

M
:

C1

0x00 – 0xFF
:

0x00 – 0xFF

MA_ 
B1
:
Bm 

#n-(k-1) 
:

#n

memorySize[] = [ 
    byte#1 (MSB) 
     : 
    byte#k ] 

M
:

C2

0x00 – 0xFF
:

0x00 – 0xFF

MS_ 
B1
:
Bk 

C1: The presence of this parameter depends on address length information parameter of the 
addressAndLengthFormatIdentifier 
C2: The presence of this parameter depends on the memory size length information of the 
addressAndLengthFormatIdentifier. 

14.3.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

276 © ISO 2013 – All rights reserved

14.3.2.3 Request message data-parameter definition 

Table 399 defines the data-parameters of the request message. 

Table 399 — Request message data-parameter definition 

Definition

dataFormatIdentifier 

This data-parameter is a one byte value with each nibble encoded separately. The high nibble specifies the 
"compressionMethod", and the low nibble specifies the "encryptingMethod". The value 0x00 specifies that neither 
compressionMethod nor encryptingMethod is used. Values other than 0x00 are vehicle manufacturer specific. 

addressAndLengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately (see H.1 for example values): 
⎯ bit 7 - 4: Length (number of bytes) of the memorySize parameter 
⎯ bit 3 - 0: Length (number of bytes) of the memoryAddress parameter 

memoryAddress 

The parameter memoryAddress is the starting address of server memory from which data is to be retrieved. The number 
of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressAndLengthFormatIdentifier. Byte#m in 
the memoryAddress parameter is always the least significant byte of the address being referenced in the server. The 
most significant byte(s) of the address can be used as a memory identifier. 
An example of the use of a memory identifier would be a dual processor server with 16 bit addressing and memory 
address overlap (when a given address is valid for either processor but yields a different physical memory device or 
internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter can be 
specified as a memory identifier used to select the desired memory device. Usage of this functionality shall be as 
defined by vehicle manufacturer / system supplier. 

memorySize  

This parameter shall be used by the server to compare the memory size with the total amount of data transferred during 
the TransferData service. This increases the programming security. The number of bytes used for this size is defined by 
the high nibble (bit 4) of the addressAndLengthFormatIdentifier. If data compression is used, it is vehicle manufacturer 
specific whether or not the memory size represents the compressed or uncompressed size. 

14.3.3 Positive response message 

14.3.3.1 Positive response message definition 

Table 400 defines the positive response message. 

Table 400 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestUpload Response SID M 0x75 RUPR 

#2 lengthFormatIdentifier M 0x00 – 0xF0 LFID 

#3
:

#n

maxNumberOfBlockLength = [ 
      byte#1 (MSB) 
       : 
      byte#m ] 

M
:
M

0x00 – 0xFF 
:

0x00 – 0xFF 

MNROB_ 
B1
:
Bm 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 277

14.3.3.2 Positive response message data-parameter definition 

Table 401 defines the data-parameters of the positive response message. 

Table 401 — Response message data-parameter definition 

Definition

lengthFormatIdentifier 

This parameter is a one byte value with each nibble encoded separately: 
⎯ bit 7 - 4: Length (number of bytes) of the maxNumberOfBlockLength parameter; 
⎯ bit 3 - 0: reserved by document, to be set to 0x0; 
The format of this parameter is compatible to the format of the addressAndLengthFormatIdentifier parameter contained
in the request message, except that the lower nibble has to be set to 0x0. 

maxNumberOfBlockLength 

This parameter is used by the requestUpload positive response message to inform the client how many data bytes shall 
be included in each TransferData positive response message from the server. This length reflects the complete 
message length, including the service identifier and the data-parameters present in the TransferData positve response 
message. This parameter allows the client to adapt to the send buffer size of the server before the server starts 
transferring data to the client. A client is required to accept transferData responses that are equal in length to the 
reported maxNumberOfBlockLength. It is server-specific what transferData response lengths less than 
maxNumberOfBlockLength are sent (if any). 
NOTE The last transferData response within a given block may be required to be less than 
maxNumberOfBlockLength. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

278 © ISO 2013 – All rights reserved

14.3.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 402. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 402 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if the criteria for the requestUpload are not met. This could occur if 
a server receives a request for this service while a requestUpload is already active, but not yet 
completed. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
⎯ The specified dataFormatIdentifier is not valid; 
⎯ The specified addressAndLengthFormatIdentifier is not valid; 
⎯ The specified memoryAddress/memorySize is not valid; 

0x33 securityAccessDenied SAD

 This NRC shall be returned if the server is secure (for server’s that support the SecurityAccess 
service) when a request for this service has been received. 

0x70 uploadDownloadNotAccepted UDNA

 This NRC indicates that an attempt to upload to a server's memory cannot be accomplished 
due to some fault conditions. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 279

The evaluation sequence is documented in Figure 27. 

YES

security check ok for 
requested memory interval?

NRC 0x31

dataFormatIdentifier is valid.
AND
addressAndLengthFormatIde
ntifier is valid

NRC 0x33

mandatory optional

NRC 0x22

condition
check

YES

minimum length  check NRC 0x13NO

NRC 0xXX

manufacturer/
supplier
specific check

YES

Service with SID 0x35

YES

positive response

NRC 0x70

upload fault 
condition check

YES

NRC 0x31

YES

NRC 0x13

YES

memoryAddress/memorySize
is valid

Full length  check

1

2

manufacturer/supplier
specific

NO

NO

NO

NO

NO

NO

NO

YES

Key  
1 at least 5 (SI + DFI_ + ALFID + minimum MA_ + minimum MS_) 
2 length can be computed from addressAndLengthFormatIdentifier 

Figure 27 — NRC handling for RequestUpload service 

14.3.5 Message flow example(s) RequestUpload 

See 14.5.5 for a complete message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

280 © ISO 2013 – All rights reserved

14.4 TransferData (0x36) service 

14.4.1 Service description 

The TransferData service is used by the client to transfer data either from the client to the server (download) 
or from the server to the client (upload). 

The data transfer direction is defined by the preceding RequestDownload or RequestUpload service. If the 
client initiated a RequestDownload the data to be downloaded is included in the parameter(s) 
transferRequestParameter in the TransferData request message(s). If the client initiated a RequestUpload the 
data to be uploaded is included in the parameter(s) transferResponseParameter in the TransferData response 
message(s). 

The TransferData service request includes a blockSequenceCounter to allow for an improved error handling in 
case a TransferData service fails during a sequence of multiple TransferData requests. The 
blockSequenceCounter of the server shall be initialized to one when receiving a RequestDownload (0x34) or 
RequestUpload (0x35) request message. This means that the first TransferData (0x36) request message 
following the RequestDownload (0x34) or RequestUpload (0x35) request message starts with a 
blockSequenceCounter of one. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

14.4.2 Request message 

14.4.2.1 Request message definition 

Table 403 defines the request message. 

Table 403 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 TransferData Request SID M 0x36 TD 

#2 blockSequenceCounter M 0x00 – 0xFF BSC 

#3
:

#n

transferRequestParameterRecord[] = [  
       transferRequestParameter#1 
         : 
       transferRequestParameter#m ] 

C
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

TRPR_ 
TRTP_ 
:
TRTP_ 

C = Conditional: this parameter is mandatory if a download is in progress. 

14.4.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 281

14.4.2.3 Request message data-parameter definition 

Table 404 defines the data-parameters of the request message. 

Table 404 — Request message data-parameter definition 

Definition

blockSequenceCounter 

The blockSequenceCounter parameter value starts at 0x01 with the first TransferData request that follows the 
RequestDownload (0x34) or RequestUpload (0x35) service. Its value is incremented by 1 for each subsequent 
TransferData request. At the value of 0xFF the blockSequenceCounter rolls over and starts at 0x00 with the next 
TransferData request message. 
Example use cases: 
⎯ If a TransferData request to download data is correctly received and processed in the server but the positive 

response message does not reach the client then the client would determine an application layer timeout and would 
repeat the same request (including the same blockSequenceCounter). The server would receive the repeated 
TransferData request and could determine based on the included blockSequenceCounter that this TransferData 
request is repeated. The server would send the positive response message immediately without writing the data 
once again into its memory. 

⎯ If the TransferData request to download data is not received correctly in the server then the server would not send a 
positive response message. The client would determine an application layer timeout and would repeat the same 
request (including the same blockSequenceCounter). The server would receive the repeated TransferData request 
and could determine based on the included blockSequenceCounter that this is a new TransferData. The server 
would process the service and would send the positive response message. 

⎯ If a TransferData request to upload data is correctly received and processed in the server but the positive response 
message does not reach the client then the client would determine an application layer timeout and would repeat the 
same request (including the same blockSequenceCounter). The server would receive the repeated TransferData 
request and could determine based on the included blockSequenceCounter that this TransferData request is 
repeated. The server would send the positive response message immediately accessing the previously provided 
data once again in its memory. 

⎯ If the TransferData request to upload data is not received correctly in the server then the server would not send a 
positive response message. The client would determine an application layer timeout and would repeat the same 
request (including the same blockSequenceCounter). The server would receive the repeated TransferData request 
and could determine based on the included blockSequenceCounter that this is a new TransferData. The server 
would process the service and would send the positive response message. 

transferRequestParameterRecord 

This parameter record contains parameter(s) which are required by the server to support the transfer of data. Format 
and length of this parameter(s) are vehicle manufacturer specific. 
EXAMPLE For a download, the transferRequestParameterRecord include the data to be transferred. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

282 © ISO 2013 – All rights reserved

14.4.3 Positive response message 

14.4.3.1 Positive response message definition 

Table 405 defines the positive response message. 

Table 405 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 TransferData Response SID M 0x76 TDPR 

#2 blockSequenceCounter M 0x00 – 0xFF BSC 

#3
:

#n

transferResponseParameterRecord[] = [ 
      transferResponseParameter#1 
        : 
      transferResponseParameter#m ] 

C
:
U

0x00 – 0xFF 
:

0x00 – 0xFF 

TREPR_ 
TREP_ 
:
TREP 

C = Conditional: this parameter is mandatory if an upload is in progress. 

14.4.3.2 Positive response message data-parameter definition 

Table 406 defines the data-parameters of the positive reponse message. 

Table 406 — Response message data-parameter definition 

Definition

blockSequenceCounter 

This parameter is an echo of the blockSequenceCounter parameter from the request message. 

transferResponseParameterRecord 

This parameter shall contain parameter(s), which are required by the client to support the transfer of data. Format and 
length of this parameter(s) are vehicle manufacturer specific. 
Examples: For a download, the parameter transferResponseParameterRecord could include a checksum computed by 
the server. For an upload, the parameter transferResponseParameterRecord include the uploaded data. For a 
download, the parameter transferResponseParameterRecord should not repeat the transferRequestParameterRecord. 

14.4.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 407. The listed negative responses shall be used if 
the error scenario applies to the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 283

Table 407 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong.(e.g., message length does 
not meet requirements of maxNumberOfBlockLength parameter returned in the positive 
response to the requestDownload service). 

0x24 requestSequenceError RSE

 The server shall use this response code: 
⎯ If the RequestDownload or RequestUpload service is not active when a request for 

this service is received; 
⎯ If the RequestDownload or RequestUpload service is active, but the server has 

already received all data as determined by the memorySize parameter in the active 
RequestDownlod or RequestUpload service; 

NOTE The repetition of a TransferData request message with a 
blockSequenceCounter equal to the one included in the previous TransferData request 
message shall be accepted by the server. 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
⎯ The transferRequestParameterRecord contains additional control parameters (e.g. 

additional address information) and this control information is invalid. 
⎯ The transferRequestParameterRecord is not consistent with the requestDownload or 

requestUpload service parameter maxNumberOfBlockLength. 
⎯ The transferRequestParameterRecord is not consistent with the server’s memory 

alignment constraints. 

0x71 transferDataSuspended TDS 

 This NRC shall be returned if the download module length does not meet the 
requirements of the memorySize parameter sent in the request message of the 
requestDownload service. 

0x72 generalProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when erasing or programming a 
memory location in the permanent memory device (e.g. Flash Memory) during the 
download of data. 

0x73 wrongBlockSequenceCounter WBSC 

 This NRC shall be returned if the server detects an error in the sequence of the 
blockSequenceCounter. 
NOTE The repetition of a TransferData request message with a 
blockSequenceCounter equal to the one included in the previous TransferData request 
message shall be accepted by the server. 

0x92 / 0x93 voltageTooHigh / voltageTooLow VTH / VTL 

 This return code shall be sent as applicable if the voltage measured at the primary power 
pin of the server is out of the acceptable range for downloading data into the server’s 
permanent memory (e.g. Flash Memory). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

284 © ISO 2013 – All rights reserved

The evaluation sequence is documented in Figure 28. 

Data transfer can continue
AND
memorySize is respected

NRC 0x71

mandatory optional

minimum length  check1) NRC 0x13NO

NRC 0xXX

manufacturer/
supplier
specific check

YES

Service with SID 0x36

positive response

NRC 0x24sequence is respected for SID

Block sequence counter is ok NRC 0x73

data is 
correctly
altered

NRC 0x72

YES

Voltage condition 
are ok

NRC 0x92
or
NRC 0x93

YES

transferRequestParameterRecord
is valid
AND
expected number of 
transferRequestParameters are 
included (if applicable)

NRC 0x31

1

manufacturer/supplier
specific

NO

NO

NO

NO

NO

NO

NO

YES

Key  
1 must be 2 if a RequestUpload is in progress (SI + BSC),  

at least 3 if a RequestDownload is in progress (SI + BSC + minimum TRPR_) 

Figure 28 — NRC handling for TransferData service 

14.4.5 Message flow example(s) TransferData 

See 14.5.5 for a complete message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 285

14.5 RequestTransferExit (0x37) service 

14.5.1 Service description 

This service is used by the client to terminate a data transfer between client and server (upload or download). 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

14.5.2 Request message 

14.5.2.1 Request message definition 

Table 408 defines the request message. 

Table 408 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestTransferExit Request SID M 0x37 RTE 

#2
:

#n

transferRequestParameterRecord[] = [  
       transferRequestParameter#1 
         : 
       transferRequestParameter#m ] 

U
:
U

0x00 – 0xFF
:

0x00 – 0xFF

TRPR_ 
TRTP_ 
:
TRTP_ 

14.5.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

14.5.2.3 Request message data-parameter definition 

Table 409 defines the data-parameters of the request message. 

Table 409 — Request message data-parameter definition 

Definition

transferRequestParameterRecord 

This parameter record contains parameter(s), which are required by the server to support the transfer of data. Format 
and length of this parameter(s) are vehicle manufacturer specific. 

14.5.3 Positive response message 

14.5.3.1 Positive response message definition 

Table 410 defines the positive response message. 

Table 410 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestTransferExit Response SID M 0x77 RTEPR 

#2
:

#n

transferResponseParameterRecord[] = [ 
      transferResponseParameter#1 
        : 
      transferResponseParameter#m ] 

U
:
U

0x00 – 0xFF
:

0x00 – 0xFF

TREPR_ 
TREP_ 
:
TREP 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

286 © ISO 2013 – All rights reserved

14.5.3.2 Positive response message data-parameter definition 

Table 411 defines the data-parameters of the positive response message. 

Table 411 — Response message data-parameter definition 

Definition

transferResponseParameterRecord 

This parameter shall contain parameter(s) which are required by the client to support the transfer of data. Format and
length of this parameter(s) are vehicle manufacturer specific. 

14.5.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each negative response code would occur are documented in Table 412. The listed negative responses shall 
be used if the error scenario applies to the server. 

Table 412 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be returned if the length of the message is wrong.  

0x24 requestSequenceError RSE

 This NRC shall be returned if: 
⎯ The programming process is not completed when a request for this service is received; 
⎯ The RequestDownload or RequestUpload service is not active; 

0x31 requestOutOfRange ROOR

 This NRC shall be returned if the transferRequestParameterRecord contains invalid data.  

0x72 generalProgrammingFailure GPF 

 This NRC shall be returned if the server detects an error when finalizing the data transfer 
between the client and server (e.g., via an integrity check). 

The evaluation sequence is documented in Figure 29. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 287

YES

NRC 0x24

YES

NO transferRequest-
ParameterRecord is valid

NRC 0x13NO

mandatory optional

NRC 0xXX

Manufacturer/
supplier specific 
check

NO

YES

Service with SID 0x37

NRC 0x31NO

Total length check

positive response

Sequence is 
respected for SID

manufacturer/supplier
specific

YES

YES

Figure 29 — NRC handling for RequestTransferExit service 

14.5.5 Message flow example(s) for downloading/uploading data 

14.5.5.1 Download data to a server 

14.5.5.1.1 Assumptions 

This subclause specifies the conditions to transfer data (download) from the client to the server. 

The example consists of three steps. 

In the 1st step the client and the server execute a RequestDownload service. With this service the following 
information is exchanged as parameters in the request and positive response message between client and the 
server. 

Table 413 defines the transferRequestParameter values. 

Table 413 — Definition of transferRequestParameter values 

Data Parameter Name Data Parameter
Value(s) Data Parameter Description 

memoryAddress (3 bytes) 0x602000 memoryAddress (start) to download data to 

dataFormatIdentifier 0x11 dataFormatIdentifier: 
⎯ compressionMethod = 0x1X 
⎯ encryptingMethod = 0xX1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

288 © ISO 2013 – All rights reserved

Table 413 — (continued)

Data Parameter Name Data Parameter
Value(s) Data Parameter Description 

MemorySize (3 bytes) 0x00FFFF MemorySize = (65 535 bytes) 
This parameter value shall be used by the server to compare 
to the actual number of bytes transferred during the execution 
of the requestTransferExit service. 

Table 414 defines the transferResponseParameter value. 

Table 414 — Definition of transferResponseParameter value 

Data Parameter Name Data Parameter
Value(s) Data Parameter Description 

maximumNumberOfBlockLength 0x0081 maximumNumberOfBlockLength: 
(serviceId + BlockSequenceCounter (1 byte) + 127 server data 
bytes = 129 data bytes) 

In the 2nd step the client transfers 65 535 Bytes of data to the flash memory starting at memoryaddress 
0x602000 to the server. 

In the 3rd step the client terminates the data transfer to the server with a requestTransferExit service. 

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph] 

It is assumed, that for this example the server supports a three byte memoryAddress and a three byte 
MemorySize. If the MemorySize contains the uncompressed size, the number of TransferData services with 
127 data bytes can not be calculated because the compression method and its compression ratio is not 
standardized. If the MemorySize contains the compressed size, the total number of TransferData services 
with 127 data bytes would be 516, followed by a single TransferData request with three bytes. Therefore, it is 
assumed that the last TransferData request message contains a blockSequenceCounter equal to 0x05. 

14.5.5.1.2 Step #1: Request for download 

Table 415 defines the RequestDownload request message flow example. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 289

Table 415 — RequestDownload request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestDownload Request SID 0x34 RD 

#2 dataFormatIdentifier 0x11 DFI 

#3 addressAndLengthFormatIdentifier 0x33 ALFID 

#4 memoryAddress [ byte#1 ] (MSB) 0x60 MA_B1 

#5 memoryAddress [ byte#2 ] 0x20 MA_B2 

#6 memoryAddress [ byte#3 ] (LSB) 0x00 MA_B3 

#7 MemorySize [ byte#1 ] (MSB) 0x00 UCMS_B1 

#8 MemorySize [ byte#2 ] 0xFF UCMS_B2 

#9 MemorySize [ byte#3 ] (LSB) 0xFF UCMS_B3 

Table 416 — RequestDownload positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestDownload Response SID 0x74 RDPR 

#2 LengthFormatIdentifier 0x20 LFID 

#3 maxNumberOfBlockLength [ byte#1 ] (MSB) 0x00 MNROB_B1 

#4 maxNumberOfBlockLength [ byte#2 ] (LSB) 0x81 MNROB_B1 

14.5.5.1.3 Step #2: Transfer data 

Table 417 — TransferData request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Request SID 0x36 TD 

#2 blockSequenceCounter 0x01 BSC 

#3
transferRequestParameterRecord [ transferRequestParameter#1 ] = 
dataByte#3 0xXX TRTP_1 

:  : : : 

#129 transferRequestParameterRecord [ transferRequestParameter#127 ] =
dataByte#129 

0xXX TRTP_127 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

290 © ISO 2013 – All rights reserved

Table 418 — TransferData positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Response SID 0x76 TDPR 

#2 blockSequenceCounter 0x01 BSC 

:
Table 419 — TransferData request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Request SID 0x36 TD 

#2 blockSequenceCounter 0x05 BSC 

#3
transferRequestParameterRecord [ transferRequestParameter#1 ] =  
dataByte#3 0xXX TRTP_1 

:  : : : 

#n+2 transferRequestParameterRecord [ transferRequestParameter#n-2 ] =
dataByte#n 

0xXX TRTP_n-2 

Table 420 — TransferData positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Response SID 0x76 TDPR 

#2 blockSequenceCounter 0x05 BSC 

14.5.5.1.4 Step #3: Request Transfer exit 

Table 421 — RequestTransferExit request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestTransferExit Request SID 0x37 RTE 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 291

Table 422 — RequestTransferExit positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestTransferExit Response SID 0x77 RTEPR 

14.5.5.2 Upload data from a server 

This subclause specifies the conditions to transfer data (upload) from a server to the client. 

The example consists of three steps. 

In the 1st step the client and the server execute a requestUpload service. With this service the following 
information is exchanged as parameters in the request and positive response message between client and the 
server: 

Table 423 — Definition of transferRequestParameter values 

Data parameter name Data value(s) Data parameter description 

memoryAddress (3 bytes) 0x201000 memoryAddress (start) to upload data from 

dataFormatIdentifier 0x11 dataFormatIdentifier 
⎯ compressionMethod = 0x1X 
⎯ encryptingMethod = 0xX1 

MemorySize (3 bytes) 0x0001FF MemorySize = (511 bytes) 
This parameter value shall indicate how many data bytes shall be 
transferred and shall be used by the server to compare to the actual 
number of bytes transferred during execution of the 
requestTransferExit service. 

Table 424 — Definition of transferResponseParameter value 

Data parameter name Data value(s) Data parameter description 

maximumNumberOfBlockLength 0x0081 maximumNumberOfBlockLength: 
(serviceId + BlockSequenceCounter (1 byte) + 127 server data bytes 
= 129 data bytes) 

In the 2nd step the server transfers 511 data bytes (4 transferData services with 129 (127 server data 
bytes + 1 ServiceId data byte + 1 blockSequenceCounter byte) data bytes and 1 transferData service with 5 (3 
server data bytes + 1 serviceId data byte + 1 blockSequenceCounter byte) data bytes from the external RAM 
starting at memoryaddress 0x201000 in the server. 

In the 3rd step the client terminates the data transfer to the server with a requestTransferExit service. 

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph] 

It is assumed, that for this example the server supports a three byte memoryAddress and a three byte 
MemorySize. Furthermore it is assumed that the server supports a blockSequenceCounter in the 
TransferData (0x36) service. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

292 © ISO 2013 – All rights reserved

14.5.5.2.1 Step #1: Request for upload 

Table 425 — RequestUpload request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestUpload Request SID 0x35 RU 

#2 dataFormatIdentifier 0x11 DFI 

#3 addressAndLengthFormatIdentifier 0x33 ALFID 

#4 memoryAddress [ byte#1 ] (MSB) 0x20 MA_B1 

#5 memoryAddress [ byte#2 ] 0x10 MA_B2 

#6 memoryAddress [ byte#3 ] (LSB) 0x00 MA_B3 

#7 MemorySize [ byte#1 ] (MSB) 0x00 UCMS_B1 

#8 MemorySize [ byte#2 ] 0x01 UCMS_B2 

#9 MemorySize [ byte#3 ] (LSB) 0xFF UCMS_B3 

Table 426 — RequestUpload positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestUpload Response SID 0x75 RUPR 

#2 lengthFormatIdentifier 0x20 LFID 

#3 maxNumberOfBlockLength [ byte#1 ] (MSB) 0x00 MNROB_B1 

#4 maxNumberOfBlockLength [ byte#2 ] (LSB) 0x81 MNROB_B1 

14.5.5.2.2 Step #2: Transfer data 

Table 427 — TransferData request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Request SID 0x36 TD 

#2 blockSequenceCounter 0x01 BSC 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 293

Table 428 — TransferData positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Response SID 0x76 TDPR 

#2 blockSequenceCounter 0x01 BSC 

#3
transferResponseParameterRecord [ transferResponseParameter#1 ] 
= dataByte3 

xx TREP_1 

:  : : : 

#129 transferResponseParameterRecord [ transferResponseParameter#127 
] = dataByte129 

xx TREP_127 

:
Table 429 — TransferData request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Request SID 0x36 TD 

#2 blockSequenceCounter 0x05 BSC 

Table 430 — TransferData positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 TransferData Response SID 0x76 TDPR 

#2 blockSequenceCounter 0x05 BSC 

#3
transferResponseParameterRecord [ transferResponseParameter#1 ] = 
dataByte3 0xXX TREP_1 

:  : : : 

#5 transferResponseParameterRecord [ transferResponseParameter#3 ] = 
dataByte5 

0xXX TREP_3 

14.5.5.2.3 Step #3: Request Transfer exit 

Table 431 — RequestTransferExit request message flow example 

Message direction client → server 

Message Type Request 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestTransferExit Request SID 0x37 RTE 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

294 © ISO 2013 – All rights reserved

Table 432 — RequestTransferExit positive response message flow example 

Message direction server → client 

Message Type Response 

A_Data byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestTransferExit Response SID 0x77 RTEPR 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 295

14.6 RequestFileTransfer (0x38) service 

14.6.1 Service description 

The requestFileTransfer service is used by the client to initiate a file data transfer from either the client to the 
server or from the server to the client (download or upload). Additionally, this service has capabilities to 
retrieve information about the file system. 

This service is intended as an alternative solution to the RequestDownload and RequestUpload service 
supporting data upload and download functionality if a server implements a file system for data storage. When 
configuring a download or upload process to or from a file system, the RequestFileTransfer service shall be 
used replacing the RequestDownload or RequestUpload. The actual data transfer and termination of the data 
transfer are implemented by using the TransferData and RequestTransferExit as used with the 
RequestDownload or RequestUpload service. This service also includes functionality for deleting files or 
directories on the server's file system. For this use case the TransferData and RequestTransferExit service 
are not applicable. 

After the server has received the RequestFileTransfer request message the server shall take all necessary 
actions to receive or transmit data before it sends a positive response message. 

IMPORTANT — The server and the client shall meet the request and response message behaviour as 
specified in 7.5. 

14.6.2 Request message 

14.6.2.1 Request message definition 

Table 433 defines the request message. 

Table 433 — Request message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestFileTransfer Request SID M 0x38 RFT 

#2 modeOfOperation M 0x01 – 0x05 MOOP 

#3
#4

filePathAndNameLength [ 
     byte#1 (MSB) 
     byte#2] (LSB) 

M
M

0x00 – 0xFF
0x00 – 0xFF

FPL_B1
FPL_B2

#5
:

#5+n-1

filePathAndName = [ 
     byte#1 (MSB) 
     : 
     byte#n ] 

M
:

C1

0x00 – 0xFF
:

0x00 – 0xFF

FP_B1
:
FP_Bn

#5+n dataFormatIdentifier C2 0x00 – 0xFF DFI_ 

#5+n+1 fileSizeParameterLength C2 0x00 – 0xFF FSL 

#5+n+2 
:

#5+n+2+k-1 

fileSizeUnCompressed= [ 
     byte#1 (MSB) 
     : 
     byte#k ] 

C2
:

C2,3

0x00 – 0xFF
:

0x00 – 0xFF

FSUC_B1 
:
FSUC_Bk 

#5+n+2+k 
:

#5+n+1+2k 

fileSizeCompressed= [ 
     byte#1 (MSB) 
     : 
     byte#k ] 

C2
:

C2,3

0x00 – 0xFF
:

0x00 – 0xFF

FSC_B1
:
FSC_Bk

C1: The length (number of bytes) of this message parameter is defined by the filePathAndNameLength parameter. 
C2: The presence of these parameters depends on the modeOfOperation parameter. 
C3:  The length (number of bytes) of this message parameter is defined by the fileSizeParameterLength. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

296 © ISO 2013 – All rights reserved

14.6.2.2 Request message sub-function parameter $Level (LEV_) definition 

This service does not use a sub-function parameter. 

14.6.2.3 Request message data-parameter definition 

Table 434 defines the data-parameters of the request message.  

Table 434 — Request message data-parameter definition 

Definition

modeOfOperation 

This data-parameter defines the type of operation to be applied to the file or directory indicated in the filePathAndName 
parameter. 
The values of the data-parameter are defined in Annex G. 

filePathAndNameLength 

Defines the length in byte for the parameter filePath. 

filePathAndName 

Defines the file system location of the server where the file which shall be added, deleted, replaced or read from 
depending on the parameter modeOfOperation parameter. 
In addition this parameter includes the file name of the file which shall be added, deleted, replaced or read as part of the 
file path. 
If the modeOfOperation parameter equals 0x05 (ReadDir), this parameter indicates the directory to be read. 
Each byte of this parameter shall be encoded in ASCII format. 

dataFormatIdentifier 

This data-parameter is a one byte value with each nibble encoded separately. The high nibble specifies the 
"compressionMethod, and the low nibble specifies the "encryptingMethod". The value 0x00 specifies that neither 
compressionMethod nor encryptingMethod is used. Values other than 0x00 are vehicle manufacturer specific. 
If the modeOfOperation parameter equals to 0x02 (DeleteFile) and 0x05 (ReadDir) this parameter shall not be included 
in the request message. 

fileSizeParameterLength 

Defines the length in bytes for both parameters fileSizeUncompressed and fileSizeCompressed. 
If the modeOfOperation parameter equals to 0x02 (DeleteFile), 0x04 (ReadFile) or 0x05 (ReadDir) this parameter shall 
not be included in the request message. 

fileSizeUncompressed 

Defines the size of the uncompressed file in bytes. 
If the modeOfOperation parameter equals 0x02 (DeleteFile), 0x04 (ReadFile) or 0x05 (ReadDir) this parameter shall not 
be included in the request message. 

fileSizeCompressed 

Defines the size of the compressed file in bytes. 
If an uncompressed file is transferred all bytes of this parameter shall be set to the size information used in the parameter 
fileSizeUncompressed. 
If the modeOfOperation parameter equals to 0x02 (DeleteFile), 0x04 (ReadFile) or 0x05 (ReadDir) this parameter shall 
not be included in the request message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 297

14.6.3 Positive response message 

14.6.3.1 Positive response message definition 

Table 435 defines the positive response message. 

Table 435 — Positive response message definition 

A_Data byte Parameter Name Cvt Byte Value Mnemonic 

#1 RequestFileTransfer Response SID S 0x78 RRFT 

#2 modeOfOperation M 0x01 – 0x05 MOOP 

#3 lengthFormatIdentifier C1 0x00 – 0xFF LFID 

#4
:

#4+(m-1) 

maxNumberOfBlockLength = [ 
     byte#1 (MSB) 
     : 
     byte#m ] 

C1,2
:

C1,2

0x00 – 0xFF 
:

0x00 – 0xFF 

MNROB_ 
B1
:
Bm 

#4+m dataFormatIdentifier C1 0x00 – 0xFF DFI_ 

#4+m+1 
#4+m+2 

fileSizeOrDirInfoParameterLength [ 
     byte#1 (MSB) 
     byte#2 (LSB)] 

C1
C1

0x00 – 0xFF 
0x00 – 0xFF 

FSDIL_B1
FSDIL_B2

#4+m+3 
:

#4+m+3+k-1 

fileSizeUncompressedOrDirInfoLength= [ 
     byte#1 (MSB) 
     : 
     byte#k ] 

C1,3
:

C1,3

0x00 – 0xFF 
:

0x00 – 0xFF 

FSUDIL_B1 
:
FSUDIL_Bk 

#4+m+3+k 
:

#4+m+3+2k-1 

fileSizeCompressed= [ 
     byte#1 (MSB) 
     : 
     byte#k ] 

C1,3
:

C1,3

0x00 – 0xFF 
:

0x00 – 0xFF 

FSC_B1
:
FSC_Bk

C1: The presence of these parameters depends on the modeOfOperation parameter. 
C2: The length (number of bytes) of this message parameter is defined by the fileSizeOrDirInfoParameterLength 
 parameter 
C3: The length (number of bytes) of this message parameter is defined by the lengthFormatIdentifier parameter 

14.6.3.2 Positive response message data-parameter definition 

Table 436 defines the data-parameters of the positive response message. 

Table 436 — Response message data-parameter definition 

Definition

modeOfOperation 

This is parameter echoes the value of the request. 

lengthFormatIdentifier 

Defines the length (number of bytes) of the maxNumberOfBlockLength parameter. 
If the modeOfOperation parameter equals to 0x02 (DeleteFile) this parameter shall be not be included in the response 
message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

298 © ISO 2013 – All rights reserved

Table 436 — (continued)

Definition

maxNumberOfBlockLength 

This parameter is used by the requestFileTransfer positive response message to inform the client how many data bytes 
(maxNumberOfBlockLength) to include in each TransferData request message from the client or how many data bytes 
the server will include in a TransferData positive response when uploading data. This length reflects the complete 
message length, including the service identifier and the data parameters present in the TransferData request message 
or positive response message. This parameter allows either the client to adapt to the receive buffer size of the server 
before it starts transferring data to the server or to indicate how many data bytes will be included in each TransferData 
positive response in the event that data is uploaded. A server is required to accept transferData requests that are equal 
in length to its reported maxNumberOfBlockLength. It is server specific what transferData request lengths less than 
maxNumberOfBlockLength are accepted (if any). 
NOTE The last transferData request within a given block may be required to be less than 
maxNumberOfBlockLength. It is not allowed for a server to write additional data bytes (i.e,. pad bytes) not contained 
within the transferData message (either in a compressed or uncompressed format), as this would affect the memory 
address of where the subsequent transferData request data would be written. 

If the modeOfOperation parameter equals to 0x02 (DeleteFile) this parameter shall be not be included in the response 
message. 

dataFormatIdentifier 

This is parameter echoes the value of the request. 
If the modeOfOperation parameter equals to 0x02 (DeleteFile) this parameter shall not be included in the response 
message.) 
If the modeOfOperation parameter equals to 0x05 (ReadDir) the value of this parameter shall be equal to 0x00. 

fileSizeOrDirInfoParameterLength 

Defines the length in bytes for both parameters fileSizeUncompressedOrDirInfoLength and fileSizeCompressed. 
If the modeOfOperation parameter equals to 0x01 (AddFile), 0x02 (DeleteFile) or 0x03 (ReplaceFile) this parameter 
shall not be included in the response message. 

fileSizeUncompressedOrDirInfoLength 

Defines the size of the uncompressed file to be uploaded or the length of the directory information to be read in bytes. 
If the modeOfOperation parameter equals to 0x01 (AddFile), 0x02 (DeleteFile) or 0x03 (ReplaceFile) this parameter 
shall not be included in the response message. 

fileSizeCompressed 

Defines the size of the compressed file in bytes. 
If the modeOfOperation parameter equals to 0x01 (AddFile), 0x02 (DeleteFile, 0x03 (ReplaceFile) ) or 0x05 (ReadDir)
this parameter shall not be included in the response message. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 299

14.6.4 Supported negative response codes (NRC_) 

The following negative response codes shall be implemented for this service. The circumstances under which 
each response code would occur are documented in Table 437. The listed negative responses shall be used if 
the error scenario applies to the server. 

Table 437 — Supported negative response codes 

NRC Description Mnemonic 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC shall be sent if the length of the message is wrong. 

0x22 conditionsNotCorrect CNC

 This NRC shall be returned if a server receives a request for this service while in the process 
of downloading or uploading data or other conditions to be able to execute this service are not 
met.

0x31 requestOutOfRange ROOR

 This NRC shall be returned if: 
⎯ The specified dataFormatIdentifier is not valid 
⎯ The specified modeOfOperation is not valid 
⎯ The specified fileSizeParameterLength is not valid 
⎯ The specified filePathAndNameLength is not valid 
⎯ The specified fileSizeUncompressed is not valid 
⎯ The specified fileSizeCompressed is not valid 
⎯ The specified filePathAndName is not valid 

0x33 securityAccessDenied SAD

 This NRC shall be returned if the server is secure (for server’s that support the 
SecurityAccess service) when a request for this service has been received. 

0x70 uploadDownloadNotAccepted UDNA

 This NRC indicates that an attempt to download to a server's memory cannot be 
accomplished due to some fault conditions. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

300 © ISO 2013 – All rights reserved

The evaluation sequence is documented in Figure 30. 

YES

security check ok for requested 
filePathAndfileName? NRC 0x33NO

mandatory optional manufacturer/supplier
specific

NRC 0x22NO

Condition
check

YES

minimum length check NRC 0x13NO

NRC 0xXX

Manufacturer/
supplier
specific check

YES

Service with SID 0x38

YES

positive response

NRC 0x70NO

Download fault 
Condition check

YES

NRC 0x31

YES

YES
fileSizeUncompressed is valid
AND
fileSizeCompressed is valid
AND
filePathAndName is valid

Full length  check

1

3

YES

NO

NRC 0x13NO

NRC 0x31NO

NO

2

Key  
1 minimum length: 5 byte (SI + MOOP + FPL_B1 + FPL_B2 + FP_B1) 
2 the validity check of the message parameters depends on the modeOfOperation parameter 
3 maximum length can be computed using fileSizeParamterLength and filePathAndNameLength  

Figure 30 — Response evaluation sequence requestFileTransfer 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 301

14.6.5 Message flow example(s) RequestFileTransfer 

14.6.5.1 Assumptions 

This sub-clause specifies the conditions applicable for this message flow example. 

NOTE This example is limited to the description of the requestFileTransfer request and the requestFileTransfer 
positive response. The usage of transferData and requestTransferExit in this context is identical with the usage of these 
services with requestDownload or requestUpload, thus the examples describing the download/upload sequence apply as 
well. 

Table 438 defines the message parameter values. 

Table 438 — Definition RequestFileTransfer message parameter values 

Data Parameter Name Data Parameter Value(s) Data Parameter Description 

modeOfOperation 0x01 AddFile 

filePathAndNameLength 0x001E The length of parameter filePathAndName is 30. 

filePathAndName "D:\mapdata\europe\germany1.yxz" Path including the file name. 

dataFormatIdentifier 0x11 compressionMethod = 0x1X; encryptingMethod = 0xX1

fileSizeParameterLength 0x02 The length of both file size parameters is 2 bytes. 

fileSizeUncompressed 0xC350 50 KByte 

fileSizeCompressed 0x7530 30 KByte 

14.6.5.2 Request file transfer 

Table 439 and Table 440 show an example of the RequestFileTransfer request and response message flow. 

Table 439 — RequestFileTransfer request message example 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestFileTransfer Request SID 0x38 RFT 

#2 modeOfOperation 0x01 MOOP 

#3
#4

filePathAndNameLength [ 
     byte#1 (MSB) 
     byte#2] (LSB) 

0x00 
0x1E 

FPL_B1
FPL_B2

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

302 © ISO 2013 – All rights reserved

Table 439 — (continued)

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34

filePathAndName = [ 
     byte#1 (MSB) 
     byte#2 
     byte#3 
     byte#4 
     byte#5 
     byte#6 
     byte#7 
     byte#8 
     byte#9 
     byte#10 
     byte#11 
     byte#12 
     byte#13 
     byte#14 
     byte#15 
     byte#16 
     byte#17 
     byte#18 
     byte#19 
     byte#20 
     byte#21 
     byte#22 
     byte#23 
     byte#24 
     byte#25 
     byte#26 
     byte#27 
     byte#28 
     byte#29 
     byte#30] 

0x44 
0x3A 
0x5C 
0x6D 
0x61 
0x70 
0x64 
0x61 
0x74 
0x61 
0x5C 
0x65 
0x75 
0x72 
0x6F 
0x70 
0x65 
0x5C 
0x67 
0x65 
0x72 
0x6D 
0x61 
0x6E 
0x79 
0x31 
0x2E 
0x79 
0x78 
0x7A 

FP_B1
FP_B2
FP_B3
FP_B4
FP_B5
FP_B6
FP_B7
FP_B8
FP_B9
FP_B10
FP_B11
FP_B12
FP_B13
FP_B14
FP_B15
FP_B16
FP_B17
FP_B18
FP_B19
FP_B20
FP_B21
FP_B22
FP_B23
FP_B24
FP_B25
FP_B26
FP_B27
FP_B28
FP_B29
FP_B30

#35 dataFormatIdentifier 0x11 DFI_ 

#36 fileSizeParameterLength 0x02 FSL 

#37
#38

fileSizeUnCompressed= [ 
   byte#1 (MSB) 
   byte#2 ] 

0xC3 
0x50 

FSUC_B1 
FSUC_Bk 

#39
#40

fileSizeCompressed= [ 
   byte#1 (MSB) 
   byte#2 ] 

0x75 
0x30 

FSC_B1
FSC_Bk

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 303

Table 440 — RequestFileTransfer positive response request message example 

Message direction server → client 

Message Type Response 

A_Data Byte Description (all values are in hexadecimal) Byte Value Mnemonic 

#1 RequestFileTransfer Response SID 0x78 RRFT 

#2 modeOfOperation 0x01 MOOP 

#3 lengthFormatIdentifier 0x02 LFID 

#4
#5

maxNumberOfBlockLength = [ 
   byte#1 (MSB) 
   byte#m ] 

0xC3 
0x50 

MNROB_ 
B1
B2

#6 dataFormatIdentifier 0x11 DFI_ 

15 Non-volatile server memory programming process 

15.1 General information 

This clause defines a framework for the physically oriented download of one or multiple application 
software/data modules into non-volatile server memory. The defined non-volatile server memory programming 
sequence addresses: 

a) vehicle manufacturer specific needs in performing certain steps during the programming process, while 
being compliant with the general service execution requirements as specified in this part of ISO 14229 
and Part 2 (such as the sequential order of services and the session management), 

b) to support networks with multiple nodes connected, which interact with each other, using normal 
communication messages, 

c) use of either a physically oriented vehicle approach (point-to-point communication — servers do not 
support functional diagnostic communication) or a functionally oriented vehicle approach (point-to-point 
and point-to-multiple communication — servers support functional diagnostic communication). A single 
vehicle shall only support one of the above mentioned vehicle approaches. 

The programming sequence is divided into two programming phases. All steps are categorized based on the 
following types: 

⎯ Standardized steps: this type of step is mandatory. The client and the server shall behave as specified. 

⎯ Optional/recommended steps: this type of step is optional. These optional steps require the usage of a 
specific diagnostic service identifier (as described in the step) and contain recommendations on how an 
operation shall be performed. Where the specified functionality is used, then the client and the server 
shall behave as specified. 

⎯ Vehicle manufacturer specific steps: this type of step is optional. The usage and content (e.g., diagnostic 
service identifiers used) of these optional steps is left to the discretion of the vehicle manufacturer and 
shall be in accordance with ISO 14229-1 and ISO 14229-2. 

The defined steps can either be: 

⎯ functionally addressed to all nodes on the network (functionally oriented vehicle approach, servers 
support functional diagnostic communication), or 

⎯ physically addressed to each node on the network (physically oriented vehicle approach). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

304 © ISO 2013 – All rights reserved

Each step of the two programming phases of the programming procedure will specify the allowed addressing 
method for that step. The vehicle manufacturer specific steps can either by functionally or physically 
addressed (depends on the OEM requirements). 

Figure 31 depicts the non-volatile server memory programming process overview. 

Pre-Programming step

Programming
step

Programming
step...

Post-Programming step
Synchronized between all programming steps

Pre-Programming step

Optional
programming

step

Optional
programming

step
...

Post-Programming step
Synchronized between all programming steps

Master
Execute

Programming
Execute
(up to n programming
steps in parallel)

Programming
Execute
(up to n programming
steps in parallel)

Master
Execute

Setup of
network for
programming

Download of
software and
data

Re-Synch
of network

Setup of
network for
programming

Final server
configuration

Re-Synch
of network

Programming
Phase #1

Programming
Phase #2

ISO 14229-1 programming environment

Figure 31 — Non-volatile server memory programming process overview 

The programming process the client is required to follow consists of two distinct types of diagnostic service 
executions: 

⎯ Master execute:
All steps that are required to be synchronized between multiple programming steps which run in parallel 
have to be coordinated as they are intended for vehicle wide functions (e.g., typically using functional 
addressing). This is achieved via the "master execute" of the client. The steps defined for the “Pre-
Programming Step” and the "Post-programming Step" of the individual programming phases are 
executed by the "master execute" of the client. The programming process requires synchronization 
between the individual "Programming steps" (e.g., the transition of the vehicle network into a mode of 
operation that allows for programming of individual ECUs, or at the point in time when the individual 
parallel "Programming steps" reach the point where a conclusion of a programming phase is required). 
The master execute has to maintain the vehicle in the mode of operation it has transitioned to. 

⎯ Programming execute:
All steps that are not required to be synchronized between multiple "Programming steps" don’t need to be 
coordinated by the client and can run in parallel, therefore no “master execute” is required in the client 
during the execution of these steps. The "Programming steps" of the individual ECUs can be executed 
individually in parallel by the client until they are concluded and require the execution of the "Post-
programming phase". All steps controlled by the "programming execute" are ECU oriented steps (e.g., 
physically addressed to the ECU to be programmed). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 305

a) Programming phase #1 — download of application software and/or application data 

1) Within programming phase #1, the application software/data is transferred to the server. 

i) Optional Pre-Programming step — Setup of vehicle network for programming 

The pre-programming step of phase #1 is optional and used to prepare the vehicle network for 
a programming event of one or multiple servers. This step provides certain hooks where a 
vehicle manufacturer can insert specific operations that are required for the OEM vehicle’s 
network (perform wake-up, determine communication parameters, read server identification 
data, etc.). 

This step also contains provisions to increase the baud rate to improve download performance. 
The usage of this functionality is optional and can only be performed in case of a functionally 
oriented vehicle approach (functional diagnostic communication supported by the servers). 

The request messages of this step can either be physically or functionally addressed. 

2) Server Programming step — Download of application software and application data 

The server programming step of phase #1 is used to program one or multiple servers (download of 
application software and/or application data and/or boot software). 

Within this step, only physical addressing is used by the client, which allows for parallel or sequential 
programming of multiple nodes. In the case where the pre-programming step is not used, then the 
DiagnosticSessionControl (0x10) with subfunction programmingSession can also be performed using 
functional addressing. 

At the end of this step, a physical reset of the re-programmed server(s) is optional. The use of the 
reset leads to the requirement to implement programming phase #2 in order to finally conclude the 
programming event by physically clearing DTCs in the re-programmed server(s), because after the 
physical reset during this step the re-programmed server(s) enable(s) the default session and 
perform(s) their normal mode of operation while the remaining server(s) have still disabled normal 
communication. The re-programmed server(s) will potentially set DTCs. 

Furthermore, it shall be considered that the re-programmed server could activate a new set of 
diagnostic address, which differs from the ones used when performing a programming event (see 
15.3). 

If either the server that was re-programmed does not change its communication parameters or the 
client knows the changed communication parameters, then following the reset certain configuration 
data can be written to the re-programmed server. 

3) Post-Programming step — Re-synchronization of vehicle network after programming 

The post-programming step of phase #1 concludes the programming phase #1. This step is 
performed when the programming step of each reprogrammed server is finished. 

The request messages of this step can either be physically or functionally addressed. 

The vehicle network is transitioned to its normal mode of operation. This can either be done via a 
reset using the ECUReset (0x11) service or an explicit transition to the default session via the 
DiagnosticSessionControl (0x10) service. 

b) Programming phase #2 — Server configuration (optional) 

1) Programming phase #2 is an optional phase in which the client can perform further actions that are 
needed to finally conclude a programming event (write the VIN, trigger Immobilizer learn-routine, 
etc.). For example, if the server(s) that has (have) been re-programmed is (are) physically reset 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

306 © ISO 2013 – All rights reserved

during the server programming step of programming phase #1, then DTCs shall be cleared in this 
server(s). 

2) When executing this phase, the downloaded application software/application data is running / 
activated in the server and the server provides its full diagnostic functionality. 

⎯ Pre-Programming step — Setup of vehicle network for server configuration 

The pre-programming step of phase #2 is used to prepare the vehicle network for the 
programming step of phase #2. This step is an optional step and provides certain hooks where 
a vehicle manufacturer can insert specific operations that are required for OEM vehicle’s 
network (e.g. wake-up, determine communication parameters). 

The request messages of these steps can either be physically or functionally addressed. 

⎯ Programming step — Final server configuration 

The programming step is used to, for example, write data (e.g. VIN), after the server reset. 

The content of this step is vehicle manufacturer specific. 

If the server(s) that has (have) been re-programmed are physically reset at the end of the 
server programming step of programming phase #1, then DTCs shall be cleared in this 
server(s) during the programming step of phase #2. 

The request messages of these steps are physically addressed. 

⎯ Post-Programming step — Re-synchronization of vehicle network after final server configuration 

The post-programming step concludes programming phase #2. This step is performed when 
the programming step of each reprogrammed server is finished. The vehicle network is 
transitioned to its normal mode of operation. 

This step can either be functionally oriented (servers support functional diagnostic 
communication) or physically oriented. 

The request messages of these steps can either be physically or functionally addressed. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 307

15.2 Detailed programming sequence 

15.2.1 Programming phase #1 — Download of application software and/or application data 

15.2.1.1 Pre-Programming step of phase #1 — Setup of vehicle network for programming 

Figure 32 graphically depicts the functionality embedded in the pre-programming step. 

Pre-Initialization
of the data link

STP1

Diagnostic Session Control 
(extended Diagnostic Session)

Standardized
steps

Optional/Recommended steps Vehicle Manufacturer steps

1

2

Post-Initialization
of the data link

Control DTC Setting
(DTC setting type = off)

3

5

Communication Control (disable 
non-diagnostic communication)7

Read server identification, 
assign dynamic address 
Ids, prepare server(s) for 

programming
8

Link Control
(verify Baudrate)

9Link Control
(switch Baudrate)

STP2

Routine Control 
(check programming 

pre-conditions)
4

Routine Control 
(disable failsafe reaction) 6

Key  
1 Prior to any communication on the data link the network shall be initialized (e.g. perform an initial wake-up on the 

network). The wake-up method and strategy is vehicle manufacturer specific and optional to be used. 
Furthermore, this step allows for a determination of the server communication parameters such as the network 
configuration parameter and server diagnostic address used by the server(s). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

308 © ISO 2013 – All rights reserved

2 In order to be able to disable the normal communication between the servers and the setting of DTCs, it is 
required to start a non-defaultSession in each server where normal communication and DTCs shall be disabled. 
This is achieved via a DiagnosticSessionControl (0x10) service with sessionType equal to 
extendedDiagnosticSession. The request is either transmitted functionally addressed to all servers with a single 
request message, or physically addressed to each server in a separate request message (requires a physically 
addressed TesterPresent (0x3E) request message to be transmitted to each server that is transitioned into a non-
defaultSession). It is vehicle manufacturer specific whether response messages are required or not. 

3 Following the transition into the extendedDiagnosticSession, further vehicle manufacturer specific data link 
initialization steps can optionally be performed. 
EXAMPLE A vehicle manufacturer specific additional initialization step can be to issue a request that causes 
gateway devices to perform a wake-up on all data links which are not accessible by the client directly through the 
diagnostic connector. The gateway will keep the data link(s) awake as long as the non-defaultSession is kept 
active in the gateway. 

4 This optional routineIdentifier (number chosen by the vehicle manufacturer) allows a client to check whether all 
pre-conditions to transition to the programmingSession are fulfilled prior to attempting the transition. 

5 The client disables the setting of DTCs in each server using the ControlDTCSetting (0x85) service with 
DTCSettingType equal to “off”. The request is either transmitted functionally addressed to all servers with a single 
request message, or transmitted physically addressed to each server in a separate request message. It is vehicle 
manufacturer specific whether response messages are required or not. 

6 This optional routineIdentifier (number chosen by the vehicle manufacturer) allows a client to enable or disable the 
failsafe reaction of an ECU if needed for safety reasons. 

7 The client disables the transmission and reception of non-diagnostic messages using the CommunicationControl 
(0x28) service. The controlType parameter and communicationType parameter values are vehicle manufacturer 
specific (one OEM might disable the transmission only while another OEM might disable the transmission and the 
reception based on vehicle manufacturer specific needs). The request is either transmitted functionally addressed 
to all servers with a single request message, or transmitted physically addressed to each server in a separate 
request message. It is vehicle manufacturer specific whether response messages are required or not. 

8 After disabling normal communication an optional vehicle manufacturer specific step follows, which allows the 
following. 
⎯ Reading the status of the server(s) to be programmed (e.g. application software/data programmed). 
⎯ Reading server identification data from the server(s) to be programmed: 

⎯ identification (see dataIdentifier definitions): applicationSoftwareIdentification, 
applicationDataIdentification, 

⎯ fingerprint (see dataIdentifier definitions): applicationSoftwareFingerprint, applicationDataFingerprint, 
⎯ Communication configuration such as dynamic assignment of address identifiers for a “Service ECU”. 
⎯ Preparation of non-programmable servers for the upcoming programming event in order to allow them to 

optimize their data link hardware acceptance filtering in a way that they can handle a 100 % bus utilization 
without dropping data link frames (only accept the function request address identifier and its own physical 
request address identifier). 

9 It is optional to increase the bandwidth for the programming event in order to decrease the overall programming 
time and to gain additional bandwidth to be able to program multiple servers in parallel. A LinkControl (0x87) 
service with linkControl equal to either verifyBaudrateTransitionWithFixedMode or 
verifyBaudrateTransitionWithSpecificMode is transmitted functionally or physically addressed to all servers with a 
single request message with responseRequired equal to “yes”. This service is used to verify if a mode transition at 
the associated data link can be performed. At this point the transition is not performed. A second LinkControl 
(0x87) service with subfunction transitionMode is transmitted functionally addressed to all servers with a single 
request message with responseRequired equal to “no”.  
Once the request message is successfully transmitted, the client and all servers transition to the previously verified 
mode for the programming event. The servers have to transition the individual data link specific mode within a 
vehicle manufacturer specific timing window. For this duration plus a safety margin, the client is not allowed to 
transmit any request message onto the vehicle network (including the TesterPresent request message). When the 
transition is successfully performed, then the requested mode shall stay active for the duration the server switches 
between non-defaultSessions. Once the server transitions to the defaultSession, it shall re-enable the normal 
mode of the vehicle link it is connected to. 
The usage of mode switches requires the support of functional diagnostic communication in each server on a 
single data link that shall be transitioned to the associated data link dependent mode. 

Figure 32 — Pre-programming step of phase 1 (STP1) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 309

15.2.1.2 Programming step of phase #1 — Download of application software and data 

Following the pre-programming step, the programming of one or multiple servers is performed. The 
programming sequence applies for a programming event of a single server and is therefore physically 
oriented. When multiple servers are programmed, then multiple programming events either run in parallel or 
will be performed sequentially. 

Figure 33 graphically depicts the functionality embedded in the programming step of phase #1. 

Security Access
(read Seed/send Key)

STP2

Diagnostic Session Control 
(programming Session)

Standardized steps Optional/Recommended steps Vehicle Manufacturer steps

1

2

Write Data By Identifier 
(write fingerprint)

Request Download

3

Request Transfer Exit

5

STP3

Transfer Data

Routine Control
(check routine)

6Routine Control
(erase Memory)

Request Download

Request Transfer Exit

Transfer Data

9

Write configuration data,
etc. 12

11Routine Control
(validate application)

download erase-routine

download
programming-routine

download
software/data

8Routine Control
(check Memory)

10Routine Control
(check Memory)

Request Download

Request Transfer Exit

Transfer Data

4

7

If more than one cycle of 
erasing, downloading and
checksum calculation during 
the same programming step 

Key  
1 The programming event is started in the server(s) via a physically/functionally addressed request of the 

DiagnosticSessionControl (0x10) service with sessionType equal to programmingSession. When the server(s) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

310 © ISO 2013 – All rights reserved

receive(s) the request, it/they shall allocate all necessary resources required for programming. It is implementation 
specific whether the server(s) start(s) executing out of boot software. 

2 A programming event should be secured. The SecurityAccess (0x27) service shall be mandatory for emissions-
related and safety systems. Other systems are not required to implement this service. The method on how a 
security access is performed is specified in this part of ISO 14229. 

3 It is vehicle manufacturer specific to write a "fingerprint" into the server memory prior to the download of any data 
(e.g., application software) into the ECU. The "fingerprint" identifies the one who modifies the server memory. 
When using this option then the dataIdentifiers bootSoftwareFingerprint, applicationSoftwareFingerprint and 
applicationDataFingerprint shall be used to write the fingerprint information (see dataIdentifier definitions). 

4 Where the server does not have the memory erase routine stored in permanent memory, then a download of the 
memory erase routine shall be performed. The download shall follow the specified sequence with 
RequestDownload (…), TransferData, and RequestTransferExit. 

5 It is vehicle manufacturer specific if a RoutineControl (0x31) is used to check whether the download of the 
memory erase routine was successful. Alternative methods are to provide the result in the RequestTransferExit 
positive response message or via a negative response message including the appropriate negative response 
code to the RequestTransferExit request message. 

6 The memory of the server shall be erased when required by the memory technology (e.g., flash memory) in order 
to allow an application software/data download. This is achieved via a routineIdentifier, using the RoutineControl 
(0x31) service to execute the erase routine. 

7 Where the server does not have the memory programming routine stored in permanent memory, then a download 
of the memory programming routine shall be performed. The download shall follow the specified sequence with 
RequestDownload (0x34), TransferData (0x36), and RequestTransferExit (0x37). Note that the memory 
programming algorithm may be downloaded along with the memory erase algorithm (see footnote d). 

8 It is vehicle manufacturer specific if a RoutineControl (0x31) is used to check whether the download of the 
memory program routine was successful. Alternative methods are to provide the result in the RequestTransferExit 
positive response message or via a negative response message including the appropriate negative response 
code to the RequestTransferExit request message. 

9 Each download of a contiguous block of application software/data to a non-volatile server memory location (either 
a complete application software/data module or part of a software/data module) shall always follow the general 
data transfer method using the following service sequence: 

⎯ RequestDownload (0x34); 

⎯ TransferData (0x36); 

⎯ RequestTransferExit (0x37). 
A single application software/data block might require multiple TransferData (0x36) request messages to be 
completely transmitted (this is the case if the length of the block exceeds the maximum network layer buffer size). 

10 It is vehicle manufacturer specific if a RoutineControl (0x31) is used to check whether the download of the 
memory was successful. Alternative methods are to provide the result in the RequestTransferExit positive 
response message or via a negative response message including the appropriate negative response code to the 
RequestTransferExit request message. 

11 This optional routineIdentifier (number chosen by the vehicle manufacturer) allows a client to verify if the 
download has been performed successfully once all application software/data blocks/modules are completely 
downloaded. This routine typically triggers the server to check any and all reprogramming dependencies and to 
perform all necessary action to prove that the download and programming into non-volatile memory was 
successful and valid (e.g., checksum, signature, DTCs, hardware/software compatibility, etc.). The details are left 
to the discretion of the vehicle manufacturer. 
Following the download of the application software/data, it is optional to reset the re-programmed server in order 
to enable the downloaded application software/data. It shall be considered that the re-programmed server could 
activate a new set of diagnostic identifiers, which differs to the ones used when performing the programming 
event. If either the server that was re-programmed does not change its communication parameters or the 
programming environment know the changed communication parameters, then following the reset certain 
configuration data can be written to the re- programmed server. 

12 Following the download of the application software/data, it is vehicle manufacturer specific to perform further 
operations such as writing configuration data (e.g. VIN, etc.) back to the server. This also depends on the 
functionally that is supported by the re-programmed server when running out of boot software. 

Figure 33 — Programming step of phase 1 (STP2) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 311

15.2.1.3 Post-Programming step of phase #1 — Re-synchronization of vehicle network 

Figure 34 graphically depicts the functionality embedded in the post-programming step of phase #1. 

STP3

Standardized steps

ECU Reset
(hard reset) 1 Diagnostic Session 

Control (default Session)

STP4

Key  
1 The client transmits either an ECUReset (0x11) service request message onto the vehicle network with resetType 

equal to hardReset or DiagnosticSessionControl (0x10) with sessionType equal to defaultSession. This can either 
be done functionally addressed or physically addressed (depends on the supported vehicle approach). Further it is 
vehicle manufacturer specific whether a response message is required or not. 
When a baud rate switch has been performed, then this step shall be performed functionally, not requiring a 
response message, because the servers perform a baud rate transition to their normal speed of operation. 
The reception of the ECUReset (0x11) request message causes the server(s) to perform a reset and to start the 
defaultSession. 

Figure 34 — Post-programming step of phase 1 (STP3) 

15.2.1.4 Pre-programming step of phase #2 — Server configuration 

The pre-programming step of phase #2 is optional and should be used when there is the need to perform 
certain action after the software reset of the reprogrammed server. This will be the case when the server does 
not provide the required functionality to finally conclude the programming event when running out of boot 
software during the programming step of phase #1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

312 © ISO 2013 – All rights reserved

Figure 35 graphically depicts the functionality embedded in the pre-programming step of phase #2. 

STP4

Standardized
steps

Vehicle manufacturer 
steps

Diagnostic Session 
(extended Diagnostic 

Session)

1Pre-initialization of the 
data link

STP5

2

3Post-initialization of the 
data link

Key  
1 Prior to any communication on the data link the network shall be initialized, which means that an initial wake-up of 

the vehicle network shall be performed. The wake-up method and strategy is vehicle manufacturer specific and 
optional to be used. 
Furthermore, this step allows for a determination of the server communication parameters such as the network 
configuration parameter server diagnostic address and the data link identifiers used by the server(s). 

2 In order to be able to perform certain services in the programming step of phase #2, a non-defaultSession shall be 
started in each server on the data link that is involved in the conclusion of the programming event. This is 
performed via a DiagnosticSessionControl (0x10) service with sessionType equal to extendedDiagnosticSession. 

3 Following the transition into the extendedDiagnosticSession, further vehicle manufacturer specific data link 
initialization steps can optionally be performed. 

EXAMPLE A vehicle manufacturer-specific additional initialization step can be to issue a request that causes 
gateway devices to perform a wake-up on all data links which are not accessible by the client directly through the 
diagnostic connector. The gateway will keep the data link(s) awake as long as the non-defaultSession is kept active in the 
gateway. 

Figure 35 — Pre-programming step of phase 2 (STP4) 

15.2.1.5 Programming step of phase #2 — Final server configuration 

The programming step of phase #2 is optional and contains any action that needs to take place with the 
reprogrammed server after the reset (when the application software is running) such as writing specific 
identification information. This step might be required in case the server does not provide the required 
functionality to perform an action when running out of boot software during the programming step of phase #1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 313

When multiple servers require performing additional functions, then multiple programming steps can run in 
parallel or will be performed sequentially. 

Figure 36 depicts the programming step of phase 2 (STP5). 

STP5

Standardized/
optional steps

Vehicle manufacturer 
steps

Clear Diagnostic
Information

2Further action with ECU

STP6

1

Key  
1 In case the re-programmed server(s) has (have) been reset during the programming step of programming phase 

#1, then any diagnostic information that might have been stored in the re-programmed server(s) may be cleared via 
a physically addressed ClearDiagnosticInformation (0x14) service. 

2 The client performs any operation that is required in order to conclude the programming event with the server, such 
as writing configuration data (e.g. VIN). 

Figure 36 — Programming step of phase 2 (STP5) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

314 © ISO 2013 – All rights reserved

15.2.1.6 Post-programming step of phase #2 — Re-synchronization of vehicle network 

Figure 37 depicts the Post-programming step of phase 2 (STP6). 

STP6

Standardized steps

ECU Reset
(hard reset) 1 Diagnostic Session 

Control (default Session)

END

Key
1 The client transmits either an ECUReset (0x11) service request message onto the vehicle network with resetType 

equal to hardReset or DiagnosticSessionControl (0x10) with sessionType equal to defaultSession. This can either 
be done functionally addressed or physically addressed (depends on the supported vehicle approach). Further it is 
vehicle manufacturer-specific whether a response message is required or not. 
When a baud rate switch has been performed, then this step shall be performed functionally, not requiring a 
response message, because the servers perform a baud rate transition to their normal speed of operation. 
The reception of the ECUReset (0x11) request message causes the server(s) to perform a reset and to start the 
defaultSession. 

Figure 37 — Post-programming step of phase 2 (STP6) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 315

15.3 Server reprogramming requirements 

15.3.1 Requirements for servers to support programming 

During a programming session, servers shall default their physical I/O pins (wherever possible and without 
risk of damage to the server/vehicle and without risk of safety hazards) to a predefined state which minimizes 
current draw. 

15.3.1.1 Boot software description and requirements 

15.3.1.1.1 Boot software general requirements 

All programmable servers that support programming of the application software shall contain boot software in 
a boot memory partition. Servers that support boot software typically continue to execute out of the boot 
software until a complete set of application software and application data is programmed (e.g., it is possible 
for some servers to begin executing application software despite not having 100% of application data 
programmed). 

The boot memory partition shall be protected against inadvertent erasure such that a failed attempt to modify 
application data or application software does not prohibit the server's ability to recover and be programmed 
after the failed attempt. The server shall be able to recover and be reprogrammed if any of the following error 
conditions occur during the programming process: 

a) loss of supplied power connection. 

b) loss of the ground connection. 

c) disruption of data link communication. 

d) over- or under-voltage conditions. 

The boot software can be protected via hardware (e.g., via settings in a control register which prevents certain 
sectors of the memory from being erased or written to) or software (e.g., address range restrictions in the 
programming routines). It is recommended that the boot software not be capable of being modified by the 
same programming erase/write routines that are used to modify the application software and application data. 
Programming the boot software as part of the programming process may be allowed, provided that a 
mechanism is in place to ensure that there is no possibility that the server could fail at a point of the 
programming process where it cannot recover and be programmed with a subsequent programming event. 

Boot software resides in the boot memory partition and is the software that a server begins executing upon 
power-up. Transfer of program control to the boot software also occurs once the server is informed that it is 
about to be programmed (e.g., reference the DiagnosticSessionControl service and the programming process 
defined in 15.2.1.2). A typical implementation showing the interactions and transitions between the boot 
software and the application software is shown in Figure 38. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

316 © ISO 2013 – All rights reserved

a) SessionControl: ProgrammingSession
b) SessionControl: ExtendedDiagSession
(optional per vehicle manufacturer)

a) SessionControl:
 Non-default Session

Application
Default Session

Application
Non-Default Session

a) SessionControl:
    non-default Session

a)
SessionControl:
DefaultSession

b) Session 
Timeout (S3)

Reprogramming Software
Default Session

Reprogramming Software
Non-Default Session

Programming
Request?

Application
Valid?

NoYes

No

Power On

a) SessionControl: Prog.Session
(optional per vehicle manufacturer)
b) ECUReset: HardReset

Yes

a) SessionControl:
    DefaultSession

Boot Manager

Reprogramming SoftwareApplication Software

a) ECUReset: 
HardReset

b) SessionControl: 
DefaultSession

Boot Software

a) SessionControl: Prog.Session
(optional per vehicle manufacturer)
b) ECUReset: HardReset

a) SessionControl: DefaultSession
b) ECUReset: HardReset
c) Session Timeout (S3)

a) SessionControl: 
ProgrammingSession

b) SessionControl: 
 ExtendedDiagSession
(optional per vehicle 
manufacturer)

1

1

2

Key  
1 Some implementations may have the capability to transition to the Reprogramming Software programmingSession 

without going through a full power on reset. 
2 This check can serve two purposes. One is to check whether the application requested a transition into the 

reprogramming software's programmingSession. The other is an alternative entry into the reprogramming software 
by other conditions (e.g., by scanning for a SessionControl programmingSession request over a small time 
window). 

Figure 38 — Example of typical interaction and transitions between application and boot software 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 317

15.3.1.1.2 Boot software diagnostic service requirements 

Table 441 to Table 443 define the minimum diagnostic service requirements for the boot software of a 
programmable server. The listed services have to be supported in order to fulfil the requirements for 
performing non-volatile server memory programming during programming phase #1. The tables make use of 
the steps defined for programming phase #1 (see 15.2.1). The service(s) to be supported for steps (1), (3) and 
(8) shall be defined by the vehicle manufacturer. 

Table 441 — Boot software diagnostic service support during pre-programming step of phase #1 

Service Subfunction/Data 
parameter 

Sequence 
step No. Remark 

DiagnosticSessionControl
(0x10) 

sessionType = 
extendedDiagnosticSession 
(0x03) 

(2) Mandatory: 
Required for session management (S3Server
timeout, especially when performing a 
baudrate transition and SecurityAccess 
service). 

CommunicationControl 
(0x28) 

controlType =  
vehicle manufacturer specific
(disable non-diagnostic 
communication messages) 

(7) Mandatory: 
The server does not need to perform any 
special action (non-diagnostic messages 
are disabled when running out of boot), 
except the transmission of a positive 
response message. 

RoutineControl 
(0x31) 

routineIdentifier = vehicle 
manufacturer specific 

(4), (6) Optional: 
Required if check programming pre-
conditions or disable failsafe reaction are 
supported. 

ControlDTCSetting 
(0x85) 

DTCSettingType = 
off (0x02) 

(5) Mandatory: 
The server does not need to perform any 
special action (DTCs are disabled when 
running out of boot), except the 
transmission of a positive response 
message. 

ReadDataByIdentifier 
(0x22) 

dataIdentifier = 
vehicle manufacturer specific 

(8) Optional: 
Required to be supported when reading 
software/data identification data. 

LinkControl 
(0x87) 

linkControlType = 
verifyWithFixedBaudrate 
(0x01), 
verifyWithSpecifcBaudrate 
(0x02), 
transitionBaudrate 
(0x03) 

(9) Optional: 
Required to be supported when performing 
a baudrate switch. 

NOTE Table 441 only applies if the vehicle manufacturer supports the pre-programming step of phase #1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

318 © ISO 2013 – All rights reserved

Table 442 — Boot software diagnostic service support during programming step of phase #1 

Service Subfunction/Data 
parameter 

Sequence 
step No.  Remark 

DiagnosticSessionControl 
(0x10) 

sessionType = 
programmingSession 
(0x02) 

(1) Mandatory: 
Required for compatibility with application 
software in order to allow for the identical 
handling in the programming application of 
the client. 

SecurityAccess 
(0x27) 

securityAccessType = 
requestSeed (0x01), 
sendKey (0x02) 

(2) Optional: 
Required to be supported by theft-, emission- 
and safety-related systems. 

WriteDataByIdentifier 
(0x2E) 

bootSoftwareFingerprint, 
appSoftwareFingerprint, 
appDataFingerprint, 
vehicle manufacturer 
specific 

(3) Optional: 
Required for writing the fingerprint and other 
identification data. 

RequestDownload 
(0x34) 

vehicle manufacturer 
specific 

(4), (7), (9) 

TransferData 
(0x36) 

routine data, application 
software, or application data 

RequestTransferExit 
(0x37) 

vehicle manufacturer 
specific 

Mandatory: 
In general required for the transfer of data 
from the client to the server when running out 
of boot. 

RoutineControl 
(0x31) 

routineControlType = 
startRoutine (0x01) 
routineIdentifier = 
refer to sequence step 
details for required numbers 

(5), (6), (8),
(10), (11) 

Optional: 
Required if any of the sequence steps are 
supported by the vehicle manufacturer.  

ECUReset 
(0x11) 

resetType = 
hardReset (0x01) 

(12) Mandatory: 
Required for a reset of the re-programmed 
server at the end of the programming step. 
The server(s) that have been reprogrammed 
are forced to perform a reset in order to start 
the application software. 

The service(s) to be supported for step (m) shall be defined by the vehicle manufacturer. 

Table 443 — Boot software diagnostic service support during post-programming step of phase #1 

Service Subfunction /  
Data parameter 

Sequence
step Remark 

ECUReset 
(0x11) 

resetType = 
hardReset (0x01) 

(1) Mandatory: 
The server(s) that have been reprogrammed 
are forced to perform a reset in order to start 
the application software. 

15.3.1.2 Security requirements 

All programmable servers that have emission, safety or theft related features shall employ a seed and key 
security feature, accessible via the SecurityAccess (0x27) service, to protect the programmed server from 
inadvertent erasure and unauthorized programming. All such field service replacement servers shall be 
shipped to the field with the security feature activated (i.e., a programming tool cannot gain access to the 
server without first gaining access through the SecurityAccess service). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 319

15.3.2 Software, data identification and fingerprints 

15.3.2.1 Software and data identification 

The boot software, application software and application data may be identified via the dataIdentifiers 
according to C.1. The structure of the dataRecord for bootSoftwareIdentification, 
applicationSoftwareIdentification and applicationDataIdentification is vehicle manufacturer specific. 

The bootSoftwareIdentification, applicationSoftwareIdentification and applicationDataIdentification shall be 
part of each module that is downloaded into the server; therefore any write operation to the defined 
dataIdentifiers shall be rejected by the server. 

15.3.2.2 Software and data fingerprints 

A fingerprint uniquely identifies the programming tool that erased and/or reprogrammed the server 
software/data. If the server software/data is separated in several modules, the fingerprint could also identify 
which software/data module is manipulated (e.g., boot software, application software, and application data). If 
supported a fingerprint shall be written into non-volatile memory of the server before any software/data 
manipulation occurs (e.g. before erasing the flash memory). 

The boot software, application software and application data fingerprints may be identified via the 
dataIdentifiers according to C.1. 

The structure of the dataRecord for bootSoftwareFingerprint, applicationSoftwareFingerprint, and 
applicationDataFingerprint is vehicle manufacturer specific. 

15.3.3 Server routine access 

Routines are used to perform non-volatile memory access such as erasing non-volatile memory and checking 
the successful download of a module. 

Table 444 defines the standardized routineIdentifiers for non-volatile memory access. Other routineIdentifier 
numbers used in the programming sequence are specified by the vehicle manufacturer. 

Table 444 — routineIdentifiers for non-volatile memory access 

Byte Value Description Mnemonic 

0xFF00 eraseMemory EM 

This value shall be used to start the servers memory erase routine. The Control option 
and status record format shall be ECU-specific and defined by the vehicle manufacturer. 

15.4 Non-volatile server memory programming message flow examples 

15.4.1 General information 

The following example presents CAN message traffic for a non-volatile server memory-programming event of 
a single server. The given message flows are based on a single server and the transfer of two modules, 
where each module has a length of 511 bytes. The network layer buffer size of the server that is re-
programmed is 255 bytes (reported in the RequestDownload positive response message). The programming 
example uses the 11 bit OBD CAN Identifiers as specified in ISO 15765-4. Therefore, all frames must be 
padded with filler bytes (DLC = 8). All CAN frames of a request message are padded with a filler byte of 0x55. 
All CAN frames of a response message are padded with a filler byte of 0xAA. 

NOTE Filler bytes can have any value. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

320 © ISO 2013 – All rights reserved

15.4.2 Programming phase #1 — Pre-Programming step 

See Table 445 through Table 447. 

Table 445 — StartDiagnosticSessionControl(extendedSession) 

Relative 
Time Ch.# CAN

ID
Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

27.2174 1 7DF Func. Request 8 02 10 03 55 55 55 55 55 DSC message-SF 

0,0001 1 7E8 Response 8 06 50 03 00 96 17 70 AA DSC message-SF 

0,0002 1 7E9 Response 8 06 50 03 00 96 17 70 AA DSC message-SF 

Table 446 — ControlDTCSetting(off) 

Relative 
Time Ch. # CAN

ID
Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,0505 1 7DF Func. Request 8 02 85 02 55 55 55 55 55 CDTCS message-
SF

0,0001 1 7E8 Response 8 02 C5 02 AA AA AA AA AA CDTCS message-
SF

0,0001 1 7E9 Response 8 02 C5 02 AA AA AA AA AA CDTCS message-
SF

Table 447 — CommunicationControl(disableRxAndTx in the application) 

Relative 
Time Ch. # CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,0007 1 7DF Func. Request 8 03 28 03 01 55 55 55 55 CC message-SF 

0,0001 1 7E8 Response 8 02 68 03 AA AA AA AA AA CC message-SF 

0,0001 1 7E9 Response 8 02 68 03 AA AA AA AA AA CC message-SF 

NOTE After the successful execution of the CommunicationControl with the subfunction disableRxAndTx in the 
application, a functional addressed TesterPresent message with suppressPosRspMsgIndicationBit (bit 7 of subfunction) 
= TRUE (1) (no response) is sent approx. every 2 s to keep all servers in this state in order to not send normal 
communication messages. 

15.4.3 Programming phase #1 — Programming step 

See Table 448 through Table 463 

Table 448 — DiagnosticSessionControl(programmingSession) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1.6964 1 7E0 Phys. Request 8 02 10 02 55 55 55 55 55 DSC message-SF 

0,0012 1 7E8 Response 8 06 50 02 00 FA 0B B8 AA DSC message-SF 

1,9987 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 321

Table 449 — SecurityAccess(requestSeed) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,0000 1 7E0 Phys. Request 8 02 27 01 55 55 55 55 55 SA message-SF 

0,0008 1 7E8 Response 8 04 67 01 21 74 AA AA AA SA message-SF 

0,9989 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 450 — SecurityAccess(sendKey) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9998 1 7E0 Phys. Request 8 04 27 02 47 11 55 55 55 SA message-SF 

0,0002 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

0,0008 1 7E8 Response 8 02 67 02 AA AA AA AA AA SA message-SF 

1,9992 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 451 — RoutineControl(eraseMemory) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0.9995 1 7E0 Phys. Request 8 04 31 01 FF 00 55 55 55 RC message-SF 

0,0001 1 7E8 Response 8 03 7F 31 78 AA AA AA AA NR w/ NRC78-SF 

1,0004 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

1,9995 1 7E8 Response 8 03 7F 31 78 AA AA AA AA NR w/ NRC78-SF 

0,0005 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

1,0002 1 7E8 Response 8 04 71 01 FF 00 AA AA AA RC message-SF 

0,9998 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 452 — RequestDownload — Module #1 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9989 1 7E0 Phys. Request 8 10 09 34 00 33 00 19 68 RD message-FF 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0010 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

0,0001 1 7E0 Phys. Request 8 21 00 01 FF 55 55 55 55 RD message-CF 

0,0012 1 7E8 Response 8 04 74 20 00 FF AA AA AA RD message-SF 

1,9987 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

322 © ISO 2013 – All rights reserved

Table 453 — TransferData — Module #1 (block #1) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0.9996 1 7E0 Phys. Request 8 10 FF 36 01 02 03 04 05 TD message-FF) 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0012 1 7E0 Phys. Request 8 21 06 07 08 09 0A 0B 0C TD message-CF 

0,0010 1 7E0 Phys. Request 8 22 0D 0E 0F 10 11 12 13 TD message-CF 

0,0010 1 7E0 Phys. Request 8 23 14 15 16 17 18 19 1A TD message-CF 

: : : : : : :

0,0010 1 7E0 Phys. Request 8 23 F4 F5 F6 F7 F8 F9 FA TD message-CF 

0,0009 1 7E0 Phys. Request 8 24 FB FC FD FE 55 55 55 TD message-CF 

0,0011 1 7E8 Response 8 02 76 01 AA AA AA AA AA TD message-SF 

0,9630 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 454 — TransferData — Module #1 (block #2) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9994 1 7E0 Phys. Request 8 10 FF 36 02 02 03 04 05 TD message (FF) 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0012 1 7E0 Phys. Request 8 21 06 07 08 09 0A 0B 0C TD message (CF) 

0,0010 1 7E0 Phys. Request 8 22 0D 0E 0F 10 11 12 13 TD message (CF) 

0,0010 1 7E0 Phys. Request 8 23 14 15 16 17 18 19 1A TD message (CF) 

: : : : : : :

0,0010 1 7E0 Phys. Request 8 23 F4 F5 F6 F7 F8 F9 FA TD message (CF) 

0,0009 1 7E0 Phys. Request 8 24 FB FC FD FE 55 55 55 TD message (CF) 

0,0011 1 7E8 Response 8 02 76 02 AA AA AA AA AA TD message 

1,9633 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message 

Table 455 — TransferData — Module #1 (block #3) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,9991 1 7E0 Phys. Request 8 07 36 03 02 03 04 05 06 TD message-SF 

0,0011 1 7E8 Response 8 02 76 03 AA AA AA AA AA TD message-SF 

0,9998 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 456 — RequestTransferExit — Module #1 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9999 1 7E0 Phys. Request 8 01 37 55 55 55 55 55 55 RTE message-SF 

0,0002 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

0,0009 1 7E8 Response 8 01 77 AA AA AA AA AA AA RTE message-SF 

1,9992 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 323

Table 457 — RequestDownload — Module #2 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9995 1 7E0 Phys. Request 8 10 09 34 00 33 00 1B 67 RD message-FF 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0004 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

0,0007 1 7E0 Phys. Request 8 21 00 01 FF 55 55 55 55 RD message-CF 

0,0012 1 7E8 Response 8 04 74 20 00 FF AA AA AA RD message-SF 

1,9982 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 458 — TransferData — Module #2 (block #1) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,0002 1 7E0 Phys. Request 8 10 FF 36 01 02 03 04 05 TD message-FF 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0012 1 7E0 Phys. Request 8 21 06 07 08 09 0A 0B 0C TD message-CF 

0,0010 1 7E0 Phys. Request 8 22 0D 0E 0F 10 11 12 13 TD message-CF 

0,0010 1 7E0 Phys. Request 8 23 14 15 16 17 18 19 1A TD message-CF 

: : : : : : :

0,0010 1 7E0 Phys. Request 8 23 F4 F5 F6 F7 F8 F9 FA TD message-CF 

0,0009 1 7E0 Phys. Request 8 24 FB FC FD FE 55 55 55 TD message-CF 

0,0011 1 7E8 Response 8 02 76 01 AA AA AA AA AA TD message-SF 

1,9626 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 459 — TransferData — Module #2 (block #2) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,9994 1 7E0 Phys. Request 8 10 FF 36 02 02 03 04 05 TD message-FF 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0012 1 7E0 Phys. Request 8 21 06 07 08 09 0A 0B 0C TD message-CF 

0,0010 1 7E0 Phys. Request 8 22 0D 0E 0F 10 11 12 13 TD message-CF 

0,0010 1 7E0 Phys. Request 8 23 14 15 16 17 18 19 1A TD message-CF 

: : : : : : :

0,0010 1 7E0 Phys. Request 8 23 F4 F5 F6 F7 F8 F9 FA TD message-CF 

0,0009 1 7E0 Phys. Request 8 24 FB FC FD FE 55 55 55 TD message-CF 

0,0011 1 7E8 Response 8 02 76 02 AA AA AA AA AA TD message-SF 

1,9633 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 460 — TransferData — Module #2 (block #3) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,9996 1 7E0 Phys. Request 8 07 36 03 02 03 04 05 06 TD message-FF 

0,0011 1 7E8 Response 8 02 76 03 AA AA AA AA AA TD message-SF 

0,9993 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

324 © ISO 2013 – All rights reserved

Table 461 — RequestTransferExit — Module #2 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,0002 1 7E0 Phys. Request 8 01 37 55 55 55 55 55 55 RTE message-SF 

0,0011 1 7E8 Response 8 01 77 AA AA AA AA AA AA RTE message-SF 

1,9987 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 462 — RoutineControl(validate application) 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

1,0012 1 7E0 Phys. Request 8 04 31 01 FF 01 55 55 55 RC message-SF 

0,0001 1 7E8 Response 8 03 7F 31 78 AA AA AA AA NR w/ NRC78-SF 

0,9987 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

0,0011 1 7E8 Response 8 03 7F 31 78 AA AA AA AA NR w/ NRC78-SF 

1,9990 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

1,0019 1 7E8 Response 8 04 71 01 FF 01 AA AA AA RC message-SF 

0,9982 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

Table 463 — WriteDataByIdentifier — dataIdentifier = VIN 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,0004 1 7E0 Phys. Request 8 10 14 2E F1 90 57 41 4C WDBI message-FF 

0,0001 1 7E8 Response 8 30 00 00 AA AA AA AA AA FlowControl 

0,0012 1 7E0 Phys. Request 8 21 54 4F 4E 53 2D 57 45 WDBI message-CF 

0,0010 1 7E0 Phys. Request 8 22 42 2E 43 4F 4D 20 20 WDBI message-CF 

0,0011 1 7E8 Response 8 03 6E F1 90 AA AA AA AA WDBI message-SF 

1,9961 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

2,0001 1 7DF Func. Request 8 02 3E 80 55 55 55 55 55 TP message-SF 

15.4.4 Programming phase #1 — Post-Programming step 

See Table 464. 

Table 464 — ECUReset — hardReset 

Relative 
Time

Ch.
# CAN ID 

Client
Request/Server 
Response 

DLC PCI and frame data bytes Comments 

0,3946 1 7DF Func. Request 8 02 11 01 55 55 55 55 55 ER message-SF 

0,0011 1 7E8 Response 8 02 51 01 AA AA AA AA AA ER message-SF 

0,0001 1 7E9 Response 8 02 51 01 AA AA AA AA AA ER message-SF 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 325

Annex A
(normative)

Global parameter definitions 

A.1 Negative response codes 

Table A.1 defines all negative response codes used within this standard. Each diagnostic service specifies 
applicable negative response codes. The diagnostic service implementation in the server may also utilise 
additional and applicable negative response codes specified in this as defined by the vehicle manufacturer. 

The negative response code range 0x00 – 0xFF is divided into three ranges: 

⎯ 0x00: positiveResponse parameter value for server internal implementation, 

⎯ 0x01 – 0x7F: communication related negative response codes, 

⎯ 0x80 – 0xFF: negative response codes for specific conditions that are not correct at the point in time the 
request is received by the server. These response codes may be utilised whenever response code 0x22 
(conditionsNotCorrect) is listed as valid in order to report more specifically why the requested action can 
not be taken. 

Table A.1 — Negative Response Code (NRC) definition and values 

Byte value Negative Response Code (NRC) definition Mnemonic 

0x00 positiveResponse PR

 This NRC shall not be used in a negative response message. This 
positiveResponse parameter value is reserved for server internal implementation. 
Refer to 7.5.5. 

0x01 – 0x0F ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x10 generalReject GR

 This NRC indicates that the requested action has been rejected by the server. 
The generalReject response code shall only be implemented in the server if none 
of the negative response codes defined in this document meet the needs of the 
implementation. At no means shall this NRC be a general replacement for the 
response codes defined in this document. 

0x11 serviceNotSupported SNS

 This NRC indicates that the requested action will not be taken because the server 
does not support the requested service. 
The server shall send this NRC in case the client has sent a request message with 
a service identifier which is unknown, not supported by the server, or is specified as 
a response service identifier. Therefore this negative response code is not shown in 
the list of negative response codes to be supported for a diagnostic service, 
because this negative response code is not applicable for supported services. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

326 © ISO 2013 – All rights reserved

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x12 sub-functionNotSupported SFNS

 This NRC indicates that the requested action will not be taken because the server 
does not support the service specific parameters of the request message. 
The server shall send this NRC in case the client has sent a request message with 
a known and supported service identifier but with "sub-function“ which is either 
unknown or not supported. 

0x13 incorrectMessageLengthOrInvalidFormat IMLOIF 

 This NRC indicates that the requested action will not be taken because the length 
of the received request message does not match the prescribed length for the 
specified service or the format of the paramters do not match the prescribed format 
for the specified service. 

0x14 responseTooLong RTL 

 This NRC shall be reported by the server if the response to be generated exceeds 
the maximum number of bytes available by the underlying network layer.  This 
could occur if the response message exceeds the maximum size allowed by the 
underlying transport protocol or if the response message exceeds the server buffer 
size allocated for that purpose. 
EXAMPLE This problem may occur when several DIDs at a time are requested 
and the combination of all DIDs in the response exceeds the limit of the underlying 
transport protocol. 

0x15 – 0x20 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x21 busyRepeatRequest BRR

 This NRC indicates that the server is temporarily too busy to perform the requested 
operation. In this circumstance the client shall perform repetition of the "identical 
request message" or "another request message". The repetition of the request shall 
be delayed by a time specified in the respective implementation documents. 
EXAMPLE In a multi-client environment the diagnostic request of one client 
might be blocked temporarily by a NRC 0x21 while a different client finishes a 
diagnostic task. 

If the server is able to perform the diagnostic task but needs additional time to finish 
the task and prepare the response, the NRC 0x78 shall be used instead of NRC 
0x21. 
This NRC is in general supported by each diagnostic service, as not otherwise 
stated in the data link specific implementation document, therefore it is not listed in 
the list of applicable response codes of the diagnostic services. 

0x22 conditionsNotCorrect CNC

 This NRC indicates that the requested action will not be taken because the server 
prerequisite conditions are not met. 

0x23 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 327

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x24 requestSequenceError RSE

 This NRC indicates that the requested action will not be taken because the server 
expects a different sequence of request messages or message as sent by the 
client. This may occur when sequence sensitive requests are issued in the wrong 
order.
EXAMPLE A successful SecurityAccess service specifies a sequence of 
requestSeed and sendKey as sub-fuctions in the request messages. If the 
sequence is sent different by the client the server shall send a negative response 
message with the negative response code 0x24 requestSequenceError. 

0x25 noResponseFromSubnetComponent NRFSC

 This NRC indicates that the server has received the request but the requested 
action could not be performed by the server as a subnet component which is 
necessary to supply the requested information did not respond within the specified 
time.
The noResponseFromSubnetComponent negative response shall be implemented 
by gateways in electronic systems which contain electronic subnet components 
and which do not directly respond to the client's request. The gateway may receive 
the request for the subnet component and then request the necessary information 
from the subnet component. If the subnet component fails to respond, the server 
shall use this negative response to inform the client about the failure of the subnet 
component. 
This NRC is in general supported by each diagnostic service, as not otherwise 
stated in the data link specific implementation document, therefore it is not listed in 
the list of applicable response codes of the diagnostic services. 

0x26 FailurePreventsExecutionOfRequestedAction FPEORA

 This NRC indicates that the requested action will not be taken because a failure 
condition, identified by a DTC (with at least one DTC status bit for TestFailed, 
Pending, Confirmed or TestFailedSinceLastClear set to 1), has occurred and that 
this failure condition prevents the server from performing the requested action. 
This NRC can, for example, direct the technician to read DTCs in order to identify 
and fix the problem. 
NOTE This implies that diagnostic services used to access DTCs shall not 
implement this NRC as an external test tool may check for the above NRC and 
automatically request DTCs whenever the above NRC has been received. 

This NRC is in general supported by each diagnostic service (except the services 
mentioned above), as not otherwise stated in the data link specific implementation 
document, therefore it is not listed in the list of applicable response codes of the 
diagnostic services. 

0x27 – 0x30 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x31 requestOutOfRange ROOR

 This NRC indicates that the requested action will not be taken because the server 
has detected that the request message contains a parameter which attempts to 
substitute a value beyond its range of authority (e.g. attempting to substitute a data 
byte of 111 when the data is only defined to 100), or which attempts to access a 
dataIdentifier/routineIdentifer that is not supported or not supported in active 
session. 
This NRC shall be implemented for all services, which allow the client to read data, 
write data or adjust functions by data in the server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

328 © ISO 2013 – All rights reserved

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x32 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x33 securityAccessDenied SAD

 This NRC indicates that the requested action will not be taken because the 
server's security strategy has not been satisfied by the client. 
The server shall send this NRC if one of the following cases occur: 
⎯ the test conditions of the server are not met, 
⎯ the required message sequence e.g. DiagnosticSessionControl, 

securityAccess is not met, 
⎯ the client has sent a request message which requires an unlocked server. 

Beside the mandatory use of this negative response code as specified in the 
applicable services within this standard, this negative response code can also be 
used for any case where security is required and is not yet granted to perform the 
required service. 

0x34 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x35 invalidKey IK

 This NRC indicates that the server has not given security access because the key 
sent by the client did not match with the key in the server's memory. This counts 
as an attempt to gain security. The server shall remain locked and increment ist 
internal securityAccessFailed counter. 

0x36 exceedNumberOfAttempts ENOA

 This NRC indicates that the requested action will not be taken because the client 
has unsuccessfully attempted to gain security access more times than the server's 
security strategy will allow. 

0x37 requiredTimeDelayNotExpired RTDNE 

 This NRC indicates that the requested action will not be taken because the client's 
latest attempt to gain security access was initiated before the server's required 
timeout period had elapsed. 

0x38 – 0x4F reservedByExtendedDataLinkSecurityDocument RBEDLSD

 This range of values is reserved by extended data link security. 

0x50 – 0x6F ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x70 uploadDownloadNotAccepted UDNA

 This NRC indicates that an attempt to upload/download to a server's memory 
cannot be accomplished due to some fault conditions. 

0x71 transferDataSuspended TDS 

 This NRC indicates that a data transfer operation was halted due to some fault. 
The active transferData sequence shall be aborted.  

0x72 generalProgrammingFailure GPF 

 This NRC indicates that the server detected an error when erasing or programming 
a memory location in the permanent memory device (e.g. Flash Memory). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 329

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x73 wrongBlockSequenceCounter WBSC 

 This NRC indicates that the server detected an error in the sequence of 
blockSequenceCounter values. Note that the repetition of a TransferData request 
message with a blockSequenceCounter equal to the one included in the previous 
TransferData request message shall be accepted by the server. 

0x74 – 0x77 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x78 requestCorrectlyReceived-ResponsePending RCRRP

 This NRC indicates that the request message was received correctly, and that all 
parameters in the request message were valid, but the action to be performed is 
not yet completed and the server is not yet ready to receive another request. As 
soon as the requested service has been completed, the server shall send a 
positive response message or negative response message with a response code 
different from this. 
The negative response message with this NRC may be repeated by the server 
until the requested service is completed and the final response message is sent. 
This NRC might impact the application layer timing parameter values. The detailed 
specification shall be included in the data link specific implementation document. 
This NRC shall only be used in a negative response message if the server will not 
be able to receive further request messages from the client while completing the 
requested diagnostic service. 
When this NRC is used, the server shall always send a final response (positive or 
negative) independent of the suppressPosRspMsgIndicationBit value or the 
suppress requirement for responses with NRCs SNS, SFNS, SNSIAS, SFNSIAS 
and ROOR on functionally addressed requests. 
A typical example where this NRC may be used is when the client has sent a 
request message, which includes data to be programmed or erased in flash 
memory of the server. If the programming/erasing routine (usually executed out of 
RAM) is not able to support serial communication while writing to the flash memory 
the server shall send a negative response message with this response code. 
This NRC is in general supported by each diagnostic service, as not otherwise 
stated in the data link specific implementation document, therefore it is not listed in 
the list of applicable response codes of the diagnostic services. 

0x79 – 0x7D ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x7E sub-functionNotSupportedInActiveSession SFNSIAS
This NRC indicates that the requested action will not be taken because the server 
does not support the requested sub-function in the session currently active. This 
NRC shall only be used when the requested sub-function is known to be supported 
in another session, otherwise response code SFNS (sub-functionNotSupported) 
shall be used (e.g., servers executing the boot software generally do not know 
which subfunctions are supported in the application (and vice versa) and therefore 
may need to respond with NRC 0x12 instead). 
This NRC shall be supported by each diagnostic service with a sub-function 
parameter, if not otherwise stated in the data link specific implementation 
document, therefore it is not listed in the list of applicable response codes of the 
diagnostic services. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

330 © ISO 2013 – All rights reserved

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x7F serviceNotSupportedInActiveSession SNSIAS
This NRC indicates that the requested action will not be taken because the server 
does not support the requested service in the session currently active. This NRC 
shall only be used when the requested service is known to be supported in another 
session, otherwise response code SNS (serviceNotSupported) shall be used (e.g., 
servers executing the boot software generally do not know which services are 
supported in the application (and vice versa) and therefore may need to respond 
with NRC 0x11 instead). 
This NRC is in general supported by each diagnostic service, as not otherwise 
stated in the data link specific implementation document, therefore it is not listed in 
the list of applicable response codes of the diagnostic services. 

0x80 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x81 rpmTooHigh RPMTH 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for RPM is not met (current RPM is above a pre-
programmed maximum threshold). 

0x82 rpmTooLow RPMTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for RPM is not met (current RPM is below a pre-
programmed minimum threshold). 

0x83 engineIsRunning EIR

 This NRC is required for those actuator tests which cannot be actuated while the 
Engine is running. This is different from RPM too high negative response, and 
needs to be allowed. 

0x84 engineIsNotRunning EINR

 This NRC is required for those actuator tests which cannot be actuated unless the 
Engine is running. This is different from RPM too low negative response, and 
needs to be allowed.

0x85 engineRunTimeTooLow ERTTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for engine run time is not met (current engine run time is 
below a pre-programmed limit).

0x86 temperatureTooHigh TEMPTH 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for temperature is not met (current temperature is above a 
pre-programmed maximum threshold). 

0x87 temperatureTooLow TEMPTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for temperature is not met (current temperature is below a 
pre-programmed minimum threshold). 

0x88 vehicleSpeedTooHigh VSTH 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for vehicle speed is not met (current VS is above a pre-
programmed maximum threshold).

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 331

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0x89 vehicleSpeedTooLow VSTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for vehicle speed is not met (current VS is below a pre-
programmed minimum threshold).

0x8A throttle/PedalTooHigh TPTH 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for throttle/pedal position is not met (current TP/APP is 
above a pre-programmed maximum threshold).

0x8B throttle/PedalTooLow TPTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for throttle/pedal position is not met (current TP/APP is 
below a pre-programmed minimum threshold).

0x8C transmissionRangeNotInNeutral TRNIN 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for being in neutral is not met (current transmission range is 
not in neutral).

0x8D transmissionRangeNotInGear TRNIG 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for being in gear is not met (current transmission range is 
not in gear).

0x8E ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

0x8F brakeSwitch(es)NotClosed (Brake Pedal not pressed or not applied) BSNC

 This NRC indicates that for safety reasons, this is required for certain tests before 
it begins, and must be maintained for the entire duration of the test.

0x90 shifterLeverNotInPark  SLNIP

 This NRC indicates that for safety reasons, this is required for certain tests before 
it begins, and must be maintained for the entire duration of the test. 

0x91 torqueConverterClutchLocked TCCL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for torque converter clutch is not met (current TCC status 
above a pre-programmed limit or locked).

0x92 voltageTooHigh VTH 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for voltage at the primary pin of the server (ECU) is not met 
(current voltage is above a pre-programmed maximum threshold).

0x93 voltageTooLow VTL 

 This NRC indicates that the requested action will not be taken because the server 
prerequisite condition for voltage at the primary pin of the server (ECU) is not met 
(current voltage is below a pre-programmed maximum threshold). 

0x94 – 0xEF reservedForSpecificConditionsNotCorrect RFSCNC

 This range of values is reserved by this document for future definition. 

0xF0 – 0xFE vehicleManufacturerSpecificConditionsNotCorrect VMSCNC 

 This range of values is reserved for vehicle manufacturer specific condition not 
correct scenarios. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

332 © ISO 2013 – All rights reserved

Table A.1 — (continued)

Byte value Negative Response Code (NRC) definition Mnemonic 

0xFF ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 333

Annex B
(normative)

Diagnostic and communication management functional unit data-
parameter definitions 

B.1 communicationType parameter definition 

The communicationType is a 1-byte value. The bit-encoded low nibble of this byte represents the 
communicationTypes, which can be controlled via the CommunicationControl (0x28) service. For example, a 
communicationType with a bit combination (Bits 1-0) of "11b" is valid and disables both 
"normalCommunicationMessages" and "networkManagementCommunicationMessages" messages.   
The high nibble of the communicationType 1-byte value defines which of the subnets connected to the 
receiving node shall be disabled / enabled when an appropriate CommunicationControl service is received. 

Table B.1 defines the communicationType and subnetNumber byte. 

Table B.1 — Definition of communicationType and subnetNumber byte 

Encoding
of bit Value Description Cvt Mnemonic 

0x0 ISOSAEReserved M

normalCommunicationMessages U NCM 0x1 

This value references all application-related communication (inter-
application signal exchange between multiple in-vehicle servers). 

networkManagementCommunicationMessages U NWMCM 0x2 

This value references all network management related communication.   

networkManagementCommunicationMessages and  
normalCommunicationMessages 

U NWMCM-NCM 

0 – 1 

0x3 

This value references all network management and application-related 
communication. 

2 – 3 0x0 – 0x3 ISOSAEReserved M ISOSAERESRVD 

0x0 Disable / Enable specified communicationType U DISENSCT 

 See encoding of bit 0-1. In the receiving node including communication 
to all connected networks. This only disables the node's communication 
into the connected networks but not the communication of other nodes 
on the networks (i.e., receiving node is not responsible to disable 
communication in each node of the network). 

0x1 – 0xE Disable / Enable specific subnet identified by subnet number U DISENSSIVSN 

4 – 7 

0xF Disable/Enable network which request is received on (Receiving 
node (server)) 

U DENWRIRO 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

334 © ISO 2013 – All rights reserved

B.2 eventWindowTime parameter definition 

Table B.2 defines the eventWindowTime parameter values. 

Table B.2 — Definition of eventWindowTime parameter values 

Byte Value Description Cvt Mnemonic 

0x00 – 0x01 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by the document   

0x02 infiniteTimeToResponse U ITTR 

 This value specifies that the event window shall stay active for an infinite 
amount of time (e.g. open window until power off). 

0x03 – 0x7F vehicleManufacturerSpecific U VMS 

 This range of values is reserved for vehicle manufacturer specific use. 
The resolution of the eventWindowTime parameter is left vehicle 
manufacturer discretionary. 

0x80 – 0xFF ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

B.3 linkControlModeIdentifier parameter definition 

Table B.3 defines the linkControlModeIdentifier values. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 335

Table B.3 — Definition of linkControlModeIdentifier values 

Byte Value Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x01 PC9600Baud U PC9600 

 This value specifies the standard PC baudrate of 9.6 KBaud.   

0x02 PC19200Baud U PC19200 

 This value specifies the standard PC baudrate of 19.2 KBaud.   

0x03 PC38400Baud U PC38400 

 This value specifies the standard PC baudrate of 38.4 KBaud.   

0x04 PC57600Baud U PC57600 

 This value specifies the standard PC baudrate of 57.6 KBaud.   

0x05 PC115200Baud U PC115200 

 This value specifies the standard PC baudrate of 115.2 KBaud.   

0x06 – 0x0F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x10 CAN125000Baud U CAN125000 

 This value specifies the standard CAN baudrate of 125 KBaud.   

0x11 CAN250000Baud U CAN250000 

 This value specifies the standard CAN baudrate of 250 KBaud.   

0x12 CAN500000Baud U CAN500000 

 This value specifies the standard CAN baudrate of 500 KBaud.   

0x13 CAN1000000Baud U CAN1000000 

 This value specifies the standard CAN baudrate of 1 MBaud.   

0x14 – 0x1F ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x20 ProgrammingSetup U PROGSU 

 This value specifies the programming setup of a network, which can be 
parameterized depend on the vehicle network requirements. 

0x21- 0xFF ISOSAEReserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

B.4 nodeIdentificationNumber parameter definition 

The nodeIdentificationNumber is a 2-byte value which represents a unique identification number of a node 
somewhere connected to a network in the vehicle where the same node can be connected to different 
networks in different car lines (e.g a LIN node with an unique node address is connected to network A in one 
model while the same node is connected to network B in a different model). Therefore the 
nodeIdentificationNumber provides a mechanism where the associated master node, which the remote node 
is connected to, transitions the relevant network into a certain diagnostic mode (e.g. disables normal 
communication on a LIN network). Only the associated master node, which has detected the connection of the 
related node, identified by the nodeIdentificationNumber, shall perform the requested communicationControl 
service. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

336 © ISO 2013 – All rights reserved

NOTE This parameter is only available if the controlType value is set to 0x04 or 0x05. Individual parameters will be 
defined by the vehicle manufacturer. 

Table B.4 defines the nodeIdentificationNumber values. 

Table B.4 — Definition of nodeIdentificationNumber values 

Byte Value Description Cvt Mnemonic 

0x0000 ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x0001 – 0xFFFF nodeIdentificationNumber U NIN 

 These values identify a node connected on a bus system somewhere 
in the vehicle. Only in case of a valid number the receiving ECU shall 
carry out the request CommunicationControl function. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 337

Annex C
(normative)

Data transmission functional unit data-parameter definitions 

C.1 DID parameter definitions 

The parameter dataIdentifier (DID) logically represents an object (e.g., Air Inlet Door Position) or collection of 
objects. This parameter shall be available in the server's memory. The dataIdentifier value shall either exist in 
fixed memory or temporarily stored in RAM if defined dynamically by the service 
dynamicallyDefineDataIdentifier. In general, a dataIdentifier is capable of being utilized in many diagnostic 
service requests including 0x22 (readDataByIdentifier), 0x2E (writeDataByIdentifier), and 0x2F 
(inputOutputControlByIdentifier). A dataIdentifier is also used in various diagnostic service responses (e.g., 
positive response to service 0x19 subfunction readDTCSnapshotRecordByDTCNumber). 

IMPORTANT — Regardless of which service a dataIdentifier is used with, it shall consistently 
represent the same thing (i.e., a given object with a given size / meaning / etc.) on a given ECU. 

The only case this does not apply to is the dynamically defined dataIdentifiers, as they are not predefined in 
the ECU, but are defined by the client using service 0x2C (dynamicallyDefineDataIdentifier). DataIdentifier 
values are defined in Table C.1. 

Table C.1 — DID data-parameter definitions 

Byte Value Description Cvt Mnemonic 

0x0000 – 0x00FF ISOSAEReserved M ISOSAERESRVD

 This range of values shall be reserved by this document for future 
definition. 

0x0100 – 0xA5FF VehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xA600 – 0xA7FF ReservedForLegislativeUse M RFLU 

 This range of values is reserved for future legislative requirements.   

0xA800 – 0xACFF VehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xAD00 – 0xAFFF ReservedForLegislativeUse M RFLU 

 This range of values is reserved for future legislative requirements.   

0xB000 – 0xB1FF VehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xB200 – 0xBFFF ReservedForLegislativeUse M RFLU 

 This range of values is reserved for future legislative requirements.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

338 © ISO 2013 – All rights reserved

Table C.1 — (continued)

Byte Value Description Cvt Mnemonic 

0xC000 – 0xC2FF VehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xC300 – 0xCEFF ReservedForLegislativeUse M RFLU 

 This range of values is reserved for future legislative requirements.   

0xCF00 – 0xEFFF VehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xF000 – 0xF00F networkConfigurationDataForTractorTrailerApplicationData- 
Identifier

U NCDFTTADID 

 This value shall be used to request the remote addresses of all trailer 
systems independent of their functionality. 

0xF010 – 0xF0FF vehicleManufacturerSpecific U VMS 

 This range of values shall be used to reference vehicle manufacturer 
specific record data identifiers and input/output identifiers within the 
server. 

0xF100 – 0xF17F identificationOptionVehicleManufacturerSpecificDataIdentifier U IDOPTVMSDID 

 This range of values shall be used for vehicle manufacturer specific 
server/vehicle identification options. 

0xF180 BootSoftwareIdentificationDataIdentifier U BSIDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU boot software identification record. The first data byte of the record 
data shall be the numberOfModules that are reported. Following the 
numberOfModules the boot software identification(s) are reported. The 
format of the boot software identification structure shall be ECU specific 
and defined by the vehicle manufacturer. 

0xF181 applicationSoftwareIdentificationDataIdentifier U ASIDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU application software number(s). The first data byte of the record data 
shall be the numberOfModules that are reported. Following the 
numberOfModules the application software identification(s) are reported. 
The format of the application software identification structure shall be ECU 
specific and defined by the vehicle manufacturer. 

0xF182 applicationDataIdentificationDataIdentifier U ADIDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU application data identification record. The first data byte of the record 
data shall be the numberOfModules that are reported. Following the 
numberOfModules the application data identification(s) are reported. The 
format of the application data identification structure shall be ECU specific 
and defined by the vehicle manufacturer. 

0xF183 bootSoftwareFingerprintDataIdentifier U BSFPDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU boot software fingerprint identification record. Record data content 
and format shall be ECU specific and defined by the vehicle manufacturer. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 339

Table C.1 — (continued)

Byte Value Description Cvt Mnemonic 

0xF184 applicationSoftwareFingerprintDataIdentifier U ASFPDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU application software fingerprint identification record. Record data 
content and format shall be ECU specific and defined by the vehicle 
manufacturer. 

0xF185 applicationDataFingerprintDataIdentifier U ADFPDID 

 This value shall be used to reference the vehicle manufacturer specific 
ECU application data fingerprint identification record. Record data content 
and format shall be ECU specific and defined by the vehicle manufacturer. 

0xF186 ActiveDiagnosticSessionDataIdentifier U ADSDID 

 This value shall be used to report the active diagnostic session in the 
server. The values are defined by the diagnosticSessionType subfunction 
parameter in the DiagnosticSessionControl service. 

0xF187 vehicleManufacturerSparePartNumberDataIdentifier U VMSPNDID 

 This value shall be used to reference the vehicle manufacturer spare part 
number. Record data content and format shall be server specific and 
defined by the vehicle manufacturer. 

0xF188 vehicleManufacturerECUSoftwareNumberDataIdentifier U VMECUSNDID 

 This value shall be used to reference the vehicle manufacturer ECU 
(server) software number. Record data content and format shall be server 
specific and defined by the vehicle manufacturer. 

0xF189 vehicleManufacturerECUSoftwareVersionNumberDataIdentifier U VMECUSVNDID 

 This value shall be used to reference the vehicle manufacturer ECU 
(server) software version number. Record data content and format shall 
be server specific and defined by the vehicle manufacturer. 

0xF18A systemSupplierIdentifierDataIdentifier U SSIDDID 

 This value shall be used to reference the system supplier name and 
address information. Record data content and format shall be server 
specific and defined by the system supplier. 

0xF18B ECUManufacturingDateDataIdentifier U ECUMDDID 

 This value shall be used to reference the ECU (server) manufacturing 
date. Record data content and format shall be unsigned numeric, ASCII or 
BCD, and shall be ordered as Year, Month, Day. 

0xF18C ECUSerialNumberDataIdentifier U ECUSNDID 

 This value shall be used to reference the ECU (server) serial number. 
Record data content and format shall be server specific.  

0xF18D supportedFunctionalUnitsDataIdentifier U SFUDID 

 This value shall be used to request the functional units implemented in a 
server. 

0xF18E VehicleManufacturerKitAssemblyPartNumberDataIdentifier U VMKAPNDID 

 This value shall be used to reference the vehicle manufacturer order 
number for a kit (assembled parts bought as a whole for production e.g. 
cockpit), when the spare part number designates only the server (e.g. for 
aftersales). The record data content and format shall be server specific 
and defined by the vehicle manufacturer. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

340 © ISO 2013 – All rights reserved

Table C.1 — (continued)

Byte Value Description Cvt Mnemonic 

0xF18F ISOSAEReservedStandardized M ISOSAERESRVD 

 This range of values shall be reserved by this document for future 
definition of standardized server/vehicleIdentification options. 

0xF190 VINDataIdentifier U VINDID 

 This value shall be used to reference the VIN number. Record data 
content and format shall be specified by the vehicle manufacturer. 

0xF191 vehicleManufacturerECUHardwareNumberDataIdentifier U VMECUHNDID 

 This value shall be used by reading services to reference the vehicle 
manufacturer specific ECU (server) hardware number. Record data 
content and format shall be server specific and defined by vehicle 
manufacturer. 

0xF192 systemSupplierECUHardwareNumberDataIdentifier U SSECUHWNDID 

 This value shall be used to reference the system supplier specific ECU 
(server) hardware number. Record data content and format shall be 
server specific and defined by the system supplier. 

0xF193 systemSupplierECUHardwareVersionNumberDataIdentifier U SSECUHWVNDID 

 This value shall be used to reference the system supplier specific ECU 
(server) hardware version number. Record data content and format shall 
be server specific and defined by the system supplier. 

0xF194 systemSupplierECUSoftwareNumberDataIdentifier U SSECUSWNDID 

 This value shall be used to reference the system supplier specific ECU 
(server) software number. Record data content and format shall be server 
specific and defined by the system supplier. 

0xF195 systemSupplierECUSoftwareVersionNumberDataIdentifier U SSECUSWVNDID 

 This value shall be used to reference the system supplier specific ECU 
(server) software version number. Record data content and format shall 
be server specific and defined by the system supplier. 

0xF196 exhaustRegulationOrTypeApprovalNumberDataIdentifier U EROTANDID 

 This value shall be used to reference the exhaust regulation or type 
approval number (valid for those systems which require type approval). 
Record data content and format shall be server specific and defined by 
the vehicle manufacturer. Refer to the relevant legislation for any 
applicable requirements. 

0xF197 systemNameOrEngineTypeDataIdentifier U SNOETDID 

 This value shall be used to reference the system name or engine type. 
Record data content and format shall be server specific and defined by 
the vehicle manufacturer. 

0xF198 repairShopCodeOrTesterSerialNumberDataIdentifier U RSCOTSNDID 

 This value shall be used to reference the repair shop code or tester 
(client) serial number (e.g., to indicate the most recent service client used 
re-program server memory). Record data content and format shall be 
server specific and defined by the vehicle manufacturer. 

0xF199 programmingDateDataIdentifier U PDDID 

 This value shall be used to reference the date when the server was last 
programmed. Record data content and format shall be unsigned numeric, 
ASCII or BCD, and shall be ordered as Year, Month, Day. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 341

Table C.1 — (continued)

Byte Value Description Cvt Mnemonic 

0xF19A calibrationRepairShopCodeOrCalibrationEquipmentSerialNumber 
DataIdentifier 

U CRSCOCESNDID 

 This value shall be used to reference the repair shop code or client serial 
number (e.g., to indicate the most recent service used by the client to re-
calibrate the server). Record data content and format shall be server 
specific and defined by the vehicle manufacturer. 

0xF19B calibrationDateDataIdentifier U CDDID 

 This value shall be used to reference the date when the server was last 
calibrated. Record data content and format shall be unsigned numeric, 
ASCII or BCD, and shall be ordered as Year, Month, Day. 

0xF19C calibrationEquipmentSoftwareNumberDataIdentifier U CESWNDID 

 This value shall be used to reference software version within the client 
used to calibrate the server. Record data content and format shall be 
server specific and defined by the vehicle manufacturer. 

0xF19D ECUInstallationDateDataIdentifier U EIDDID 

 This value shall be used to reference the date when the ECU (server) was 
installed in the vehicle. Record data content and format shall be either 
unsigned numeric, ASCII or BCD, and shall be ordered as Year, Month, 
Day. 

0xF19E ODXFileDataIdentifier U ODXFDID 

 This value shall be used to reference the ODX (Open Diagnostic Data 
Exchange) file of the server to be used to interprete and scale the server 
data.

0xF19F EntityDataIdentifier U EDID 

 This value shall be used to reference the entity data identifier for a 
secured data transmission. 

0xF1A0 – 
0xF1EF 

identificationOptionVehicleManufacturerSpecific U IDOPTVMS 

 This range of values shall be used for vehicle manufacturer specific 
server/vehicle identification options. 

0xF1F0 – 0xF1FF identificationOptionSystemSupplierSpecific U IDOPTSSS 

 This range of values shall be used for system supplier specific 
server/vehicle system identification options. 

0xF200 – 0xF2FF periodicDataIdentifier U PDID 

 This range of values shall be used to reference periodic record data 
identifiers. Those can either be statically or dynamically defined. 

0xF300 – 0xF3FF DynamicallyDefinedDataIdentifier U DDDDI 

 This range of values shall be used for dynamicallyDefinedDataIdentifiers.   

0xF400 – 0xF4FF OBDDataIdentifier M OBDDID 

 This range of values is reserved for OBD/EOBD PIDs as defined in 
ISO 15031-5. 

0xF500 – 0xF5FF OBDDataIdentifier M OBDDID 

 This range of values is reserved to represent future defined OBD/EOBD 
PIDs. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

342 © ISO 2013 – All rights reserved

Table C.1 — (continued)

Byte Value Description Cvt Mnemonic 

0xF600 – 0xF6FF OBDMonitorDataIdentifier M OBDMDID 

 This range of values is reserved for OBD/EOBD on-board monitoring 
result values as defined in ISO 15031-5. 

0xF700 – 0xF7FF OBDMonitorDataIdentifier M OBDMDID 

 This range of values is reserved to represent future defined OBD/EOBD 
on-board monitoring result values. 

0xF800 – 0xF8FF OBDInfoTypeDataIdentifier M OBDINFTYPDID 

 This range of values is reserved for OBD/EOBD info type values as 
defined in ISO 15031-5. 

0xF900 – 0xF9FF TachographDataIdentifier M TACHODID 

 This range of values is reserved for Tachograph DIDs as defined in 
ISO 16844-7. 

0xFA00 – 0xFA0F AirbagDeploymentDataIdentifier M ADDID 

 This range of values is reserved for end of life activation of on-board 
pyrotechnic devices as defined in ISO 26021-2. 

0xFA10 NumberOfEDRDevices U NOEDRD 

 This value shall be used to report the number of EDR devices capable of 
reporting EDR data. 

0xFA11 EDRIdentification U EDRI 

 This value shall be used to report EDR identification data.   

0xFA12 EDRDeviceAddressInformation U EDRDAI 

 This value shall be used to report EDR device address information 
according to the format defined in ISO 26021-2 for dataIdentifier 0xFA02. 

0xFA13 – 0xFA18 EDREntries U EDRES 

 This range shall be be used to report individual EDR entries. Each DID 
shall represent a single EDR entry with 0xFA13 representing the latest 
EDR entry. 

0xFA19 – 0xFAFF SafetySystemDataIdentifier M SSDID 

 This range of values is reserved to represent safety system related DIDs.   

0xFB00 – 0xFCFF ReservedForLegislativeUse M RFLU 

 This range of values is reserved for future legislative requirements.   

0xFD00 – 0xFEFF SystemSupplierSpecific U SSS 

 This range of values shall be used to reference system supplier specific 
record data identifiers and input/output identifiers within the server. 

0xFF00 UDSVersionDataIdentifier U UDSVDID 

 This value shall be used to reference the UDS version implemented in the 
server. See Table C.11 for the scaling of this DID. 

0xFF01 – 0xFFFF ISOSAEReserved M ISOSAERESRVD

 This range of values shall be reserved by this document for future 
definition. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 343

C.2 scalingByte parameter definitions 

The parameter scalingByte (SBYT) consists of one byte (high and low nibble). The scalingByte high nibble 
defines the data type, which is used to represent the dataIdentifier (DID). The scalingByte low nibble defines 
the number of bytes used to represent the parameter in a datastream. 

Table C.2 defines the scalingByte (High Nibble) parameter. 

Table C.2 — scalingByte (High Nibble) parameter definitions 

Encoding of 
High Nibble Description of Data Type Cvt Mnemonic 

0x0 unSignedNumeric (1 to 4 bytes) U USN 

 This encoding uses a common binary weighting scheme to represent a value 
by mean of discrete incremental steps. One byte affords 256 steps; two bytes 
yields 65 536 steps, etc. 

0x1 signedNumeric (1 to 4 bytes) U SN 

 This encoding uses a two's complement binary weighting scheme to represent 
a value by mean of discrete incremental steps. One byte affords 256 steps; two 
bytes yields 65 536 steps, etc. 

0x2 bitMappedReportedWithOutMask U BMRWOM 

 Bit mapped encoding uses individual bits or small groups of bits to represent 
status. A validity mask is used to indicate the validity of each bit for particular 
applications. BitMappedReportedWithOutMask encoding signifies that a validity 
mask is not part of the parameter definition itself. A separate 
scalingByteExtension (see C.3.1) is required to report the validity mask. 

0x3 bitMappedReportedWithMask  U BMRWM 

 Bit mapped encoding uses individual bits or small groups of bits to represent 
status. BitMappedReportedWithMask encoding signifies that a validity mask in 
included as part of the parameter definition itself. For every bit which represents 
status, a corresponding mask bit is required as part of the parameter definition. 
The mask indicates the validity of each bit for particular applications. This type 
of bit mapped parameter contains one validity mask byte for each status byte 
representing data. Since the validity mask is part of the parameter definition, a 
separate scalingByteExtension is not required. 

0x4 BinaryCodedDecimal U BCD 

 Conventional Binary Coded Decimal encoding is used to represent two numeric 
digits per byte. The upper nibble is used to represent the most significant digit 
(0 - 9), and the lower nibble the least significant digit (0 -9). 

0x5 stateEncodedVariable (1 byte) U SEV 

 This encoding uses a binary weighting scheme to represent up to 256 distinct 
states. An example is a parameter, which represents the status of the Ignition 
Switch. Codes "00", "01", "02" and "03" may indicate ignition off, locked, run, 
and start, respectively. The representation is always limited to one byte. 

0x6 ASCII (1 to 15 bytes for each scalingByte) U ASCII 

 Conventional ASCII encoding is used to represent up to 128 standard 
characters with the MSB = logic '0'. An additional 128 custom characters may 
be represented with the MSB = logic '1'. 

0x7 signedFloatingPoint U SFP 

 Floating point encoding is used for data that needs to be represented in floating 
point or scientific notation. Standard IEEE formats shall be used according to 
ANSI/IEEE Std 754-1985. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

344 © ISO 2013 – All rights reserved

Table C.2 — (continued)

Encoding of 
High Nibble Description of Data Type Cvt Mnemonic 

0x8 packet U P 

 Packets contain multiple data values, usually related, each with unique scaling. 
Scaling information is not included for the individual values. See C.3.1. 

0x9 formula U F 

 A formula is used to calculate a value from the raw data. Formula Identifiers are 
specified in the table defining the formulaIdentifier encoding. See C.3.2. 

0xA unit/format U U 

 The units and formats are used to present the data in a more user-friendly 
format. Unit and Format Identifiers are specified in the table defining the 
formulaIdentifier encoding. 
NOTE If combined units and/or formats are used, e.g. mV, then one 
scalingByte (and scalingData) for each unit/format shall be included in the 
readScalingDataByIdentifier postive response. See C.3.3.

0xB stateAndConnectionType (1 byte) U SACT 

 This encoding is used especially for input and output signals. The information 
encoded in the data byte specifies the high level physical layout, electrical 
levels and functional state. It is recommended to use this option for digital input 
and output parameters. See C.3.4. 

0xC – 0xF ISOSAEReserved M ISOSAERESRVD

 Reserved by this document for future definition.   

Table C.3 defines the scalingByte (Low Nibble) parameter. 

Table C.3 — scalingByte (Low Nibble) parameter definition 

Encoding of 
Low Nibble Description of Data Type Cvt Mnemonic 

0x0 – 0xF numberOfBytesOfParameter U NROBOP 

 This range of values specifies the number of data bytes in a data stream 
referenced by a parameter identifier. The length of a parameter is defined by 
the scaling byte(s), which is always preceded by a parameter identifier (one or 
multiple bytes). If multiple scaling bytes follow a parameter identifier the length 
of the data referenced by the parameter identifier is the summation of the 
content of the low nibbles in the scaling bytes. 
e.g. VIN is identified by a single byte parameter identifier and followed by two 
scaling bytes. The length is calculated up to 17 data bytes. The content of the 
two low nibbles may have any combination of values that add up to 17 data 
bytes. 
NOTE For the scalingByte with high nibble encoded as formula or 
unit/format this value is 0x0. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 345

C.3 scalingByteExtension parameter definitions 

C.3.1 scalingByteExtension for scalingByte high nibble of bitMappedReportedWithOutMask 

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high 
nibble encoded as formula, unit/format, or bitMappedReportedWithOutMask.  

A scalingByte with high nibble encoded as bitMappedReportedWithOutMask shall be followed by 
scalingByteExtension bytes representing the validity mask for the bit mapped dataIdentifier. Each byte shall 
indicate which bits of the corresponding dataIdentifier byte are supported for the current a pplication. 

Table C.4 defines the scalingByteExtension for bitMappedReportedWithOutMask. 

Table C.4 — scalingByteExtension for bitMappedReportedWithOutMask 

Byte Value Description Cvt 

#1 dataIdentifier dataRecord#1 validity mask M 

:  : C1

#p dataIdentifier dataRecord#p validity mask C1

C1:  The presence of this parameter depends on the size of the dataIdentifier the information is being requested for.  
The validity mask shall have as many bytes as the dataIdentifier has dataRecords.  

C.3.2 scalingByteExtension for scalingByte high nibble of formula 

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high 
nibble encoded as formula, unit/format, or bitMappedReportedWithOutMask. 

A scalingByte with high nibble encoded as formula shall be followed by scalingByteExtension bytes defining 
the formula. The scalingByteExtension consists a of one byte formulaIdentifier and constants as described in 
the table below. 

Table C.5 defines the scalingByteExtension Bytes for formula. 

Table C.5 — scalingByteExtension Bytes for formula 

Byte Value Description Cvt 

#1 formulaIdentifier (refer to table defining the formulaIdentifier encoding for details) M 

#2 C0 high byte M

#3 C0 low byte M

#4 C1 high byte U

#5 C1 low byte U

: : U

#2n+2 Cn high byte U

#2n+3 Cn low byte U

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

346 © ISO 2013 – All rights reserved

Table C.6 defines the formulaIdentifier encoding. 

Table C.6 — formulaIdentifier encoding 

Byte Value Description Cvt 

0x00 y = C0 * x + C1 U

0x01 y = C0 * (x + C1) U

0x02 y = C0 / (x + C1) + C2 U

0x03 y = x / C0 + C1 U

0x04 y = (x + C0) / C1 U

0x05 y = (x + C0) / C1 + C2 U

0x06 y = C0 * x U

0x07 y = x / C0 U

0x08 y = x + C0 U

0x09 y = x * C0 / C1 U

0x0A – 0x7F ISO/SAE reserved M

0x80 – 0xFF Vehicle manufacturer specific U 

Formulas are defined using variables (y, x, etc.) and constants (C0, C1, C2, etc.). The variable y is the 
calculated value. The other variables, in consecutive order, are part of the data stream referenced by a 
dataIdentifier. Each constant is expressed as a two byte real number defined in Table C.7. The two byte real 
numbers (C = M * 10E) contain a 12 bit signed (2's complement) mantissa (M) and a 4 bit signed (2's 
complement) exponent (E). The mantissa can hold values within the range –2 048 to +2 047, and the 
exponent can scale the number by 10-8 to 107. The exponent is encoded in the high nibble of the high byte of 
the two byte real number. The mantissa is encoded in the low nibble of the high byte and the complete low 
byte of the two byte real number. 

Table C.7 — Two byte real number format 

High Byte Low Byte 

High Nibble Low Nibble High Nibble Low Nibble 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Exponent Mantissa 

C.3.3 scalingByteExtension for scalingByte high nibble of unit / format 

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high 
nibble encoded as formula, unit/format, or bitMappedReportedWithOutMask.  

A scalingByte with high nibble encoded as unit / format shall be followed by a single scalingByteExtension 
byte defining the unit / format. The one byte scalingByteExtension is defined in Table C.8. If combined units 
and/or formats are used, e.g. mV, then one scalingByte (and scalingByteExtension) shall be included for each 
unit / format. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 347

Table C.8 — Unit / format scalingByteExtension encoding 

ScalingByteExtension 
Byte#1 Name Symbol Description Cvt

0x00 No unit, no prefix --- --- U

0x01 Meter m Length U 

0x02 Foot ft Length U 

0x03 Inch in Length U 

0x04 Yard yd Length U 

0x05 mile (English) mi length U 

0x06 Gram g mass U 

0x07 ton (metric) t mass U 

0x08 Second s time U 

0x09 Minute min time U 

0x0A Hour h time U 

0x0B Day d time U 

0x0C year y time U 

0x0D ampere A current U 

0x0E volt V voltage U 

0x0F coulomb C electric charge U 

0x10 ohm W resistance U 

0x11 farad F capacitance U 

0x12 henry H inductance U 

0x13 siemens S electric conductance U 

0x14 weber Wb magnetic flux U 

0x15 tesla T magnetic flux density U 

0x16 kelvin K thermodynamic temperature U 

0x17 Celsius °C thermodynamic temperature U 

0x18 Fahrenheit °F thermodynamic temperature U 

0x19 candela cd luminous intensity U 

0x1A radian rad plane angle U 

0x1B degree ° plane angle U 

0x1C hertz Hz frequency U 

0x1D joule J energy U 

0x1E Newton N force U 

0x1F kilopond kp force U 

0x20 pound force lbf force U 

0x21 watt W power U 

0x22 horse power (metric) hk power U 

0x23 horse power (UK and US) hp power U 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

348 © ISO 2013 – All rights reserved

Table C.8 — (continued)

ScalingByteExtension 
Byte#1 Name Symbol Description Cvt

0x24 Pascal Pa pressure U 

0x25 bar bar pressure U 

0x26 atmosphere atm pressure U 

0x27 pound force per square inch psi pressure U 

0x28 becqerel Bq radioactivity U 

0x29 lumen lm light flux U 

0x2A lux lx illuminance U 

0x2B liter l volume U 

0x2C gallon (British) --- volume U

0x2D gallon (US liq) --- volume U

0x2E cubic inch cu in volume U 

0x2F meter per second m/s speed U 

0x30 kilometer per hour km/h speed U 

0x31 mile per hour mph speed U 

0x32 revolutions per second rps angular velocity U 

0x33 revolutions per minute rpm angular velocity U 

0x34 counts --- --- U

0x35 percent % --- U

0x36 milligram per stroke mg/stroke mass per engine stroke U 

0x37 meter per square second m/sP2P acceleration U 

0x38 Newton meter Nm moment (e.g. torsion moment) U 

0x39 liter per minute l/min flow U 

0x3A Watt per square meter 
W/m2 Intensity 

W/mP2 Intensity U 

0x3B Bar per second bar/s Pressure change U 

0x3C Radians per second rad/s Angular velocity U 

0x3D Radians per square second rad/sP2P Angular acceleration U 

0x3E Kilogram per square meter kg/mP2P --- U 

0x3F --- --- Reserved by document M 

0x40 exa (prefix) E 1018 U 

0x41 peta (prefix) P 1015 U 

0x42 tera (prefix) T 1012 U 

0x43 giga (prefix) G 109 U 

0x44 mega (prefix) M 106 U 

0x45 kilo (prefix) k 103 U 

0x46 hecto (prefix) h 102 U 

0x47 deca (prefix) da 10 U 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 349

Table C.8 — (continued)

ScalingByteExtension 
Byte#1 Name Symbol Description Cvt

0x48 deci (prefix) d 10-1 U 

0x49 centi (prefix) c 10-2 U 

0x4A milli (prefix) m 10-3 U 

0x4B micro (prefix) m 10-6 U 

0x4C nano (prefix) n 10-9 U 

0x4D pico (prefix) p 10-12 U 

0x4E femto (prefix) f 10-15 U 

0x4F atto (prefix) a 10-18 U 

0x50 Date1 - Year-Month-Day U 

0x51 Date2 - Day/Month/Year U 

0x52 Date3 - Month/Day/Year U 

0x53 week W calendar week U 

0x54 Time1 --- UTC Hour/Minute/Second U 

0x55 Time2 --- Hour/Minute/Second U

0x56 DateAndTime1 --- Second/Minute/Hour/Day/Month/Year U 

0x57 DateAndTime2 --- Second/Minute/Hour/Day/Month/Year/Local 
minute offset/Local hour offset 

U

0x58 DateAndTime3 --- Second/Minute/Hour/Month/Day/Year U 

0x59 DateAndTime4 --- Second/Minute/Hour/Month/Day/Year/Local 
minute offset/Local hour offset 

U

0x5A – 0xFF --- --- ISO/SAE reserved M 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

350 © ISO 2013 – All rights reserved

C.3.4 scalingByteExtension for scalingByte high nibble of stateAndConnectionType 

A scalingByte with high nibble encoded as stateAndConnectionType shall be followed by a single 
scalingByteExtension byte defining the stateAndConnectionType. The one byte scalingByteExtension is 
defined in Table C.9. The stateAndConnectionType encoding is used specially for input and output signals. 
Encoded in the scalingByteExtension data byte is information about the physical layout, electrical levels and 
functional state. 

Table C.9 — Encoding of scalingByte High Nibble of stateAndConnectionType 

Encoding 
of bits Value Used with input signals Used with output signals 

0x0 – 0x2 0 State: Not Active State: Not Activated 

 1 State: Active, function 1 State: Active, function 1 

 2 State: Error detected State: Plausibility error detected 

 3 State: Not available State: Not available 

 4 State: Active, function 2 (only in combination with 
3 states) 

State: Active, function 2 (only in combination 
with 3 states) 

 5 – 7 Reserved Reserved 

0x3 – 0x4 0 Signal at low level (ground) Signal at low level (ground) 

 1 Signal at middle level (between ground and +) Signal at middle level (between ground and 
+)

 2 Signal at high level (+) Signal at high level (+) 

 3 Reserved by document Reserved by document 

0x5 0 Input signal  Not defined  

 1 Not defined Output signal 

0x6 – 0x7 0 Internal signal or via CAN not exclusively 
available in ECU connector 

Internal signal or via CAN no exclusively 
available in ECU connector 

 1 Pull-down resistor input type (2 states) Low side switch (2 states) 

 2 Pull-up resistor input type (2 states) High side switch (2 states) 

 3 Pull-up and pull-down resistor input type (3 
states) 

Low side and high side switch (3 states)  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 351

C.4 transmissionMode parameter definitions 

Table C.10 defines the transmissionMode parameter. 

Table C.10 — transmissionMode parameter definitions 

Byte Value Description Cvt Mnemonic 

0x00 ISOSAEReserved M ISOSAERESRVD 

 This value shall be reserved by this document for future definition.   

0x01 sendAtSlowRate U SASR 

 This parameter specifies that the server shall transmit the requested 
dataRecord information at a slow rate in response to the request message
(where the # of responses to be sent = 
maximumNumberOfResponsesToSend). The repetition rate specified by the 
transmissionMode parameter slow is vehicle manufacturer specific, and pre-
defined in the server. 

0x02 sendAtMediumRate U SAMR 

 This parameter specifies that the server shall transmit the requested 
dataRecord information at a medium rate in response to the request 
message (where the # of responses to be sent = 
maximumNumberOfResponsesToSend). The repetition rate specified by the 
transmissionMode parameter medium is vehicle manufacturer specific, and
pre-defined in the server. 

0x03 sendAtFastRate U SAFR 

 This parameter specifies that the server shall transmit the requested 
dataRecord information at a fast rate in response to the request message 
(where the # of responses to be sent = 
maximumNumberOfResponsesToSend). The repetition rate specified by the 
transmissionMode parameter fast is vehicle manufacturer specific, and pre-
defined in the server. 

0x04 stopSending M SS 

 The server stops transmitting positive response messages send 
periodically/repeatedly. Note that maximumNumberOfResponsesToSend 
parameter should be set to 0x01 if transmissionMode = stopSending 
(otherwise, server operation could be undefined). 

0x05 – 0xFF ISOSAEReserved M ISOSAERESRVD 

 This value shall be reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

352 © ISO 2013 – All rights reserved

C.5 Coding of UDS version number 

Table C.11 defines the coding of UDS version number DID 0xFF00 – 4 bytes unsigned value. The 
specification release version of this document is: 2.0.0.0. 

Table C.11 — Coding of UDS version number DID 0xFF00 – 4 bytes unsigned value 

Byte 1 (MSB) Byte 2 Byte 3 Byte 4 (LSB) 

Major (0..255) Minor (0..255) Revision (0..255) 0

Table C.12 defines two examples for V1.0.0.0 and V2.0.0.0. 

Table C.12 — DID 0xFF00 values for 1st and 2nd edition of ISO 14229-1 

Byte 1 (MSB) Byte 2 Byte 3 Byte 4 (LSB) 

Version 1.0.0.0 

1 0 0 0 

Version 2.0.0.0 

2 0 0 0 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 353

Annex D
(normative)

Stored data transmission functional unit data-parameter definitions 

D.1 groupOfDTC parameter definition 

Table D.1 provides group of DTC definitions. 

Table D.1 — Definition of groupOfDTC and range of DTC numbers 

Byte Value Description Cvt Mnemonic 

0x000000  
–

0x0000FF 

This range of values is reserved for future legislative requirements. M RFLU 

 Powertrain Group: engine and transmission U PG 

to Powertrain DTCs U PDTC_ 

be Chassis Group U CG 

determined Chassis DTCs U CDTC_ 

by Body Group U BG 

vehicle Body DTCs U BDTC_ 

manufacturer Network Communication Group U NCG 

 Network Communication DTCs U NCDTC_ 

0xFFFF00  
–

0xFFFFFE 

The lower byte shall always be the FunctionalGroupIdentifier as defined in 
Table D.15. For example, a value of 0xFFFF33 shall equal the Emissions 
Group and a value of 0xFFFFD0 shall equal the Safety Group. 

M ISOSAERESRVD 

0xFFFFFF All Groups (all DTCs) M AG 

D.2 DTCStatusMask and statusOfDTC bit definitions 

D.2.1 Convention and definition 

This subclause defines the mapping of the DTCStatusMask / statusOfDTC parameters used with the 
ReadDTCInformation service. Every server shall adhere to the convention for storing bit-packed DTC status 
information as defined in the table below. Actual usage of the bit-fields shall be defined in the implementation 
standards. 

The status of the TestFailed bit shall not directly be linked to the failsafe behaviour associated with the monitor 
status. That means for triggering of the failsafe behaviour which is associated with the status of a certain 
monitor a separate set of status bits needs to be maintained. The vehicle manufacturer shall define if and how 
any synchronization mechanism between DTC status and failsafe relevant monitor status is applied and 
implemented. 

The following is a list of definitions used for the description of the DTC status bit definitions. 

⎯ Test: A test is an on-board diagnostic software algorithm that determines the malfunction status of a 
component or system typically within a single operation cycle. Some tests run only once during an 
operation cycle. Other tests can run every program loop, sampling as often as every few milliseconds. 
The end result of a test represents a completely matured / qualified condition (i.e., passed or failed). That 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

354 © ISO 2013 – All rights reserved

means a test which needs a failing condition over a specific time or evaluation of additional plausibility 
checks before a component is considered to be failing will return a “Failed” condition only after all 
maturation criteria have been fulfilled. Each DTC is associated with a test representing a detectable fault 
symptom. 

⎯ Test Sample: A test sample represents the 'pass' or 'fail' result from a single instance of a DTC test 
execution when the test run criteria are met. This represents a single sample and therefore not generally 
a fully matured / qualified condition. For an ECU supporting the DTC Fault Detection Counter a test 
sample representing a fail will increase the DTC Fault Detection Counter by a specific amount and a test 
sample representing a pass will decrease the DTC Fault Detection Counter by a specific amount. 

⎯ Complete: Complete is an indication that a test was able to determine whether a malfunction exists or 
does not exist for the current operation cycle (complete does not imply failed). 

⎯ Test results: While a test runs or after it has completed it may indicate one the following results to the 
internal failure handler:

⎯ PreFailed: This status may be used by tests in ECUs to indicate that the test is currently maturing a 
failure condition. One use case for this information is in manufacturing to speed up failure detection 
for optimised workflow while maintaining fault tolerance in the field. 

⎯ Failed: This status is available after a test has run to its completion and indicates a completely 
matured failing condition. 

⎯ Passed: This status is available after a test has run to its completion and indicates that the system or 
component is not failing. 

⎯ Failure: A failure is the inability of a component or system to meet its intended function. A failure has 
occurred when fault conditions have been detected for a sufficient period of time, implying that a test 
returned a “Failed” result. The terms "failure" and "malfunction" are interchangeable. 

⎯ Monitor: A monitor consists of one or more tests used to determine the proper functioning of a 
component or system. 

⎯ Monitoring cycle: A monitoring cycle is the time in which a monitor runs to its completeness. This is a 
manufacturer defined set of conditions during which the tests of a monitor can run. A monitoring cycle 
may be executed several times during an operation cycle or once over several operation cycles. 

⎯ Operation Cycle: An operation cycle defines the start and end conditions for monitors to run. During an 
operation cycle several monitoring cycles may have completed (regardless of their test results). An ECU 
may support several operation cycles. For body and chassis ECUs it is up to the manufacturer to define 
an operation cycle (e.g. time between powering up and powering down the ECU or between ignition on 
and ignition off). For powertrain ECUs, there are additional criteria defining an operation cycle. Emissions-
related powertrain ECUs use an engine-running or engine-off time period to define an operation cycle 
which is referred to as driving cycle. If a reset condition for a DTC status bit is associated with the 
beginning of the operation cycle, it might also be considered the end of the previous cycle (i.e., it is not 
always possible to distinguish the beginning versus the end of each operation cycle). 

NOTE For emissions-related monitors the criteria for the beginning and the end of an operation cycle are defined 
by legislation. 

⎯ Pending: The pending status of a failure is defined as a test having reported a “Failed” result for this test 
during the current operation cycle or during the last completed operation cycle. Once the test has 
reported a “Passed” condition for a complete operation cycle of this failure the pending status is reset. 

⎯ Confirmation Threshold: The confirmed status of a failure is defined as a test having reported 'Failed' 
for this test for a given number of operation cycles where the test has run to completion. Typically for non-
OBD use cases the threshold for operation cycles is defined as one. For OBD use cases this threshold is 
typically greater than one. Implementations may use a Trip Counter (see Figure D.9) as a trigger for 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 355

changing the confirmed status from 0 to 1. The Trip Counter counts the number of operation cycles 
(driving cycles) where a malfunction occurred. If the counter reaches the threshold (e.g., 2 driving cycles) 
the confirmed bit changes from 0 to 1. 

⎯ Aging Threshold: The aging of a DTC is defined as a test having reported no 'Failed' result for a given 
number of vehicle manufacturer or regulation defined operation cylces and it is vehicle manufacturer 
specific if the respective cycle triggers incrementing the aging counter depending on whether the test has 
run to completion or not during the cycle. Implementations may use an aging counter see Figure D.11) as 
a trigger for changing the confirmed status from 1 to 0 and erasing the DTC information from non-volatile 
memory. The aging counter counts the number of cycles (e.g., warm-up cycles) meeting the previously 
mentioned criteria. If this counter reaches the threshold (e.g., 40 warm-up cycles) the confirmed bit 
changes from 1 to 0. 

⎯ Driving cycle: A specific type of operation cycle used for emissions-related ECUs. Refer to 
“OperationCycle” for further details. In emissions-related ECUs only one operation cycle shall be 
supported, which is identical to the driving cycle as defined by legislation. 

⎯ Monitor Level Enable Conditions: The criteria / conditions for when a monitor is allowed to run and 
report a test result.

⎯ DTC Status Update Condition: A condition where all DTC status bits are allowed to be updated by the 
monitor (e.g., controlDTCSetting DTCSettingType does not equal 'off"). This generic condition applies to 
all DTC status bit transitions (i.e., if this condition is false none of the transitions depicted in Figure D.1 – 
Figure D.8 shall be allowed except reset of the status bits triggered by the reception of a 
clearDiagnosticInformation command (see 9.9.1 and 11.2.1)).

⎯ DTC Storage Condition: A condition defined by the vehicle manufacturer indicating whether the relevant 
DTC status bits and the related DTC data (e.g., DTC Extended or Snapshot data) that is capable of being 
updated is updated and stored in non-volatile memory.

D.2.2 Pseudocode data dictionary 

The pseudocode data dictionary defines variables used in the pseudocode definition for each statusOfDTC bit. 

Table D.2 defines the Pseudocode data dictionary. 

Table D.2 — Pseudocode data dictionary 

Variable Description 

initializationFlag_TF 
initializationFlag_TFTOC 
initializationFlag_PDTC 
initializationFlag_CDTC 
initializationFlag_TNCSLC
initializationFlag_TFSLC 
initializationFlag_TNCTOC
initializationFlag_WIR 

Flags used within the following pseudocode to ensure that the DTC status bit 
initialization operations are only performed once. At a minimum, it is expected that the 
flags are defaulted to a value of FALSE prior to the first power-up of the ECU. The 
variables shall remain latched at TRUE until ECU software is reset or any other such 
vehicle manufacturer specific reset is performed. 
FALSE = initialization not performed 
TRUE = initialization performed 

lastOperationCycle Storage variable used to record the most recently completed operation cycle. A value 
shall be assigned to the variable during the respective initialization phase of operation 
given in the following pseudocode. 

currentOperationCycle Storage variable used to record the current operation cycle. Updated continuously 
outside the scope of the DTC status bit logic. 

failedOperationCycle Storage variable used to record the most recently failed operation cycle. A value shall be 
assigned to the variable during the respective initialization phase of operation given in 
the following pseudocode. 

confirmStage Storage variable used to record the stage of operation of the confirmedDTC status bit 
pseudocode.  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

356 © ISO 2013 – All rights reserved

D.2.3 DTC status bit definitions 

Table D.3 defines the DTC status bit '0' testFailed. 

Table D.3 — DTC status bit 0 testFailed definitions 

Bit Description Cvt Mnemonic 

0 testFailed U TF 

 This bit shall indicate the result of the most recently performed test. A logical ‘1’ shall indicate that the last test 
failed meaning that the failure is completely matured. Reset to logical '0' if the result of the most recently 
performed test returns a “pass” result meaning that all de-mature criteria have been fulfilled. Additional reset 
conditions may be defined by the vehicle manufacturer / implementation 

Bit state after a successfull ClearDiagnosticInformation service logical ‘0’ 

Reset to logical '0' if a call has been made to ClearDiagnosticInformation. 

Bit state definition: 

'0' = most recent result from DTC test indicated no failure detected. 

'1' = most recent result from DTC test indicated a matured failing result. 
# Pseudocode Operation 

1 IF (initializationFlag_TF == FALSE) 

2    Set initializationFlag_TF = TRUE 

3    Set testFailed = 0 

4 IF ((most recent test result == PASSED) OR  
    (ClearDiagnosticInformation requested == TRUE) OR 
    (vehicle manufacturer/implementation reset conditions satisfied)) 

5    Set testFailed = 0  

6 ELSE IF (most recent test result == FAILED) 

7    Set testFailed = 1 

Figure D.1 defines the DTC status bit '0' testFailed logic. 

/testFailed = 0 /testFailed = 1

TestResult [Failed] 

[Vehicle manufactuer specific reset condition] 
OR

TestResult [Passed] 
OR

ClearDiagnosticInformation

Bit 0

Init

Figure D.1 — DTC status bit 0 testFailed logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 357

Table D.4 defines the DTC status bit '1' testFailedThisOperationCycle. 

Table D.4 — DTC status bit 1 testFailedThisOperationCycle definitions 

Bit Description Cvt Mnemonic 

1 testFailedThisOperationCycle U TFTOC 

 This bit shall indicate whether or not a diagnostic test has reported a testFailed result at any time during the 
current operation cycle (or that a testFailed result has been reported during the current operation cycle and after 
the last time a call was made to ClearDiagnosticInformation). Reset to logical '0' when a new operation cycle is 
initiated or after a call to ClearDiagnosticInformation. 
If this bit is set to logical '1', it shall remain a '1' until a new operation cycle is started. 

Bit state after a successful ClearDiagnosticInformation service logical ‘0’ 

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. 

Bit state definition: 

'0' = testFailed: result has not been reported during the current operation cycle or after a call was made to 
ClearDiagnosticInformation during the current operation cycle. 

'1' = testFailed: result was reported at least once during the current operation cycle. 
# Pseudocode Operation 

1 IF (initializationFlag_TFTOC == FALSE) 

2    Set initializationFlag_TFTOC = TRUE 

3    Set testFailedThisOperationCycle = 0 

4    Set lastOperationCycle = currentOperationCycle 

5 IF ((currentOperationCycle != lastOperationCycle) OR 
       (ClearDiagnosticInformation requested == TRUE)) 

6    Set lastOperationCycle = currentOperationCycle 

7    Set testFailedThisOperationCycle = 0 

8 ELSE IF (most recent test result == FAILED) 

9    Set testFailedThisOperationCycle = 1 

Figure D.2 defines the DTC status bit '1' testFailedThisOperationCycle logic. 

Bit 1

/testFailedThisOperationCycle = 0 /testFailedThisOperationCycle = 1
Init

TestResult [Failed] 

OperationCycleChange
OR

ClearDiagnosticInformation

Figure D.2 — DTC status bit 1 testFailedThisOperationCycle logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

358 © ISO 2013 – All rights reserved

Table D.5 defines the DTC status bit '2' pendingDTC. 

Table D.5 — DTC status bit 2 pendingDTC definitions 

Bit Description Cvt Mnemonic 

2 pendingDTC U PDTC 

 This bit shall indicate whether or not a diagnostic test has reported a testFailed result at any time during the 
current or last completed operation cycle. The status shall only be updated if the test runs and completes. The 
criteria to set the pendingDTC bit and the TestFailedThisOperationCycle bit are the same. The difference is that 
the testFailedThisOperationCycle is cleared at the beginning of each operation cycle and the pendingDTC bit is 
not cleared until an operation cycle has completed where the test has passed at least once and never failed. 
If the test did not complete during the current operation cycle, the status bit shall not be changed. For example, if 
a monitor stops running after a confirmed DTC is set, the pendingDTC must remain set = '1'. For an OBD DTC, a 
pending DTC is required to be stored after a malfunction is detected during the first driving cycle. 

Bit state after a successful ClearDiagnosticInformation service logical ‘0’ 

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. 

Bit state definition: 

'0' = This bit shall be set to 0 after completing an operation cycle during which the test completed and a 
malfunction was not detected or upon a call to the ClearDiagnosticInformation service. 

'1' = This bit shall be set to 1 and latched if a malfunction is detected during the current operation cycle. 
# Pseudocode Operation 

1 IF (initializationFlag_PDTC == FALSE) 

2    Set initializationFlag_PDTC = TRUE 

3    Set pendingDTC = 0 

4 IF (ClearDiagnosticInformation requested == TRUE) 

5    Set pendingDTC = 0 

6 ELSE IF (most recent test result == FAILED)  

7    Set pendingDTC = 1 

8 ELSE IF ((currentOperationCycle == stop) AND 
        (testNotCompletedThisOperationCycle == 0) AND 
        (testFailedThisOperationCycle == 0)) 

9    Set pendingDTC = 0 

Figure D.3 defines the DTC status bit '2' pendingDTC logic. 

Bit 2
/pendingDTC = 0

Init
/pendingDTC = 1

TestResult [Failed] 

OperationCycleChange [testFailedThisOperationCycle==0
&& testNotCompletedThisOperationCycle==0] 

OR
ClearDiagnosticInformation

Figure D.3 — DTC status bit 2 pendingDTC logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 359

Table D.6 defines the DTC status bit '3' confirmedDTC. 

Table D.6 — DTC status bit 3 confirmedDTC definitions 

Bit Description Cvt Mnemonic 

3 confirmedDTC M CDTC 

 This bit shall indicate whether a malfunction was detected enough times to warrant that the DTC is desired to be 
stored in long-term memory.  
A confirmedDTC does not always indicate that the malfunction is present at the time of the request. (testFailed 
can be used to determine if a malfunction is present at the time of the request). 
Reset to logical '0' after a call to ClearDiagnosticInformation or after aging threshold has been satisfied (e.g., 40 
engine warm-ups without another detected malfunction). Furthermore this bit is reset when the fault record 
associated with this DTC is overwritten by a newer DTC based upon vehicle manufacturer specific fault memory 
overflow requirements. 
DTC confirmation threshold and aging threshold are defined by the vehicle manufacturer or mandated by On 
Board Diagnostic regulations. 

Bit state after a successfull ClearDiagnosticInformation service logical ‘0’ 

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. 

Bit state definition 

'0' = DTC has never been confirmed since the last call to ClearDiagnosticInformation or after the aging criteria 
have been satisfied for the DTC (or DTC has been erased due to fault memory overflow). 

'1' = DTC confirmed at least once since the last call to ClearDiagnosticInformation and aging criteria have not yet 
been satisfied. 
# Pseudocode Operation 

1 IF (initializationFlag_CDTC == FALSE) 

2    Set initializationFlag_CDTC = TRUE 

3    Set confirmedDTC = 0 

4    Set confirmStage = INITIAL_MONITOR 

5 IF (confirmStage == INITIAL_MONITOR) 

6    IF (confirmation threshold == TRUE) 

7       Set confirmedDTC = 1  

8       Reset aging status 

9       Set confirmStage = AGING_MONITOR 

10    ELSE 

11       Set confirmedDTC = 0 

12 IF (confirmStage == AGING_MONITOR) 

13    IF ((ClearDiagnosticInformation requested == TRUE) OR 
       (aging threshold satisfied == TRUE)) 

14       Set confirmedDTC = 0 

15       Set confirmStage = INITIAL_MONITOR 

16    ELSE IF (most recent test result == FAILED) 

17       Reset aging status 

18    ELSE 

19       Update aging status as appropriate 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

360 © ISO 2013 – All rights reserved

Figure D.4 defines the DTC status bit '3' confirmedDTC logic. 

Bit 3

/confirmedDTC = 0
Init

/confirmedDTC = 1
TestResult [Failed && TripCounter

==
ConfirmationThreshold] / TripCounter = 0

FaultMemoryOverflow [vehicle manufacturer specific] 
OR

OperationCycleChange [aging threshold satisfied] 
OR

ClearDiagnosticInformation

OperationCycleChange
[testFailedThisOperationCycle==1] / TripCounter++

OperationCycleChange [testFailedThisOperationCycle==0
&&

testNotCompletedThisOperationCycle==0] / TripCounter = 0

Figure D.4 — DTC status bit 3 confirmedDTC logic 

Table D.7 defines the DTC status bit '4' testNotCompletedSinceLastClear. 

Table D.7 — DTC status bit 4 testNotCompletedSinceLastClear definitions 

Bit Description Cvt Mnemonic 

4 testNotCompletedSinceLastClear U TNCSLC 

 This bit shall indicate whether a DTC test has ever run and completed since the last time a call was made to 
ClearDiagnosticInformation. One ('1') shall indicate that the DTC test has not run to completion. If the test runs 
and passes or if the test runs and fails (e.g. testFailedThisOperationCycle = '1') then the bit shall be set to a '0' 
(and latched).  

Bit state after a successfull ClearDiagnosticInformation service logical ‘1’ 

Reset to a logical ‘1’ after a call to ClearDiagnosticInformation. 

Bit state definition 

'0' = DTC test has returned either a passed or failed test result at least one time since the last time diagnostic 
information was cleared. 

'1' = DTC test has not run to completion since the last time diagnostic information was cleared. 
# Pseudocode Operation 

1 IF (initializationFlag_TNCSLC == FALSE) 

2    Set initializationFlag_TNCSLC = TRUE 

3    Set testNotCompletedSinceLastClear = 1 

4 IF (ClearDiagnosticInformation requested = TRUE) 

5    Set testNotCompletedSinceLastClear = 1 

6 ELSE IF ((most recent test result = PASSED) OR (most recent test result = 
   FAILED)) 

7    Set testNotCompletedSinceLastClear = 0 

Figure D.5 defines the DTC status bit '4' testNotCompletedSinceLastClear logic. 

Bit 4
/testNotCompletedSinceLastClear = 1 /testNotCompletedSinceLastClear = 0

Init

TestResult

ClearDiagnosticInformation

Figure D.5 — DTC status bit 4 testNotCompletedSinceLastClear logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 361

Table D.8 defines the DTC status bit '5' testFailedSinceLastClear. 

Table D.8 — DTC status bit 5 testFailedSinceLastClear definitions 

Bit Description Cvt Mnemonic 

5 testFailedSinceLastClear U TFSLC 

 This bit shall indicate whether a DTC test has completed with a failed result since the last time a call was made to 
ClearDiagnosticInformation (i.e., this is a latched testFailedThisOperationCycle = '1'). 
Zero ('0') shall indicate that the test has not run or that the DTC test ran and passed (but never failed). If the test 
runs and fails then the bit shall remain latched at a '1'. It is the responsibility of the vehicle manufacturer to specify 
whether or not this bit is reset by aging-criteria or reset due to an overflow of the fault memory. 

Bit state after a successfull ClearDiagnosticInformation service logical ‘0’ 

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. 

Bit state definition 

'0' = DTC test has not indicated a failed result since the last time diagnostic information was cleared.  It is the 
responsibility of the vehicle manufacturer if this bit shall also be reset to zero ('0') in case aging threshold is 
fulfilled or an overflow of the fault memory occurs. 

'1' = DTC test returned a failed result at least once since the last time diagnostic information was cleared. 
# Pseudocode Operation 

1 IF (initializationFlag_TFSLC == FALSE) 

2    Set initializationFlag_TFSLC = TRUE 

3    Set testFailedSinceLastClear = 0 

4 IF (ClearDiagnosticInformation requested == TRUE) 

    /* optional:  OR (aging threshold satisfied == TRUE) 

    /* optional:  OR (overflow criteria satisfied == TRUE) 

5    Set testFailedSinceLastClear = 0 

6 ELSE IF (most recent test result == FAILED) 

7    Set testFailedSinceLastClear = 1 

Figure D.6 defines the DTC status bit '5' testFailedSinceLastClear logic. 

Bit 5
/testFailedSinceLastClear = 0 /testFailedSinceLastClear = 1

Init

TestResult [Failed] 

OperationCycleChange [vehicle manufacturer specific aging threshold satisfied] 
OR

FaultMemoryOverflow [vehicle manufacturer specific] 
OR

ClearDiagnosticInformation

Figure D.6 — DTC status bit 5 testFailedSinceLastClear logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

362 © ISO 2013 – All rights reserved

Table D.9 defines the DTC status bit '6' testNotCompletedThisOperationCycle. 

Table D.9 — DTC status bit 6 testNotCompletedThisOperationCycle definitions 

Bit Description Cvt Mnemonic 

6 testNotCompletedThisOperationCycle U TNCTOC 

 This bit shall indicate whether a DTC test has ever run and completed during the current operation cycle (or 
completed during the current operation cycle after the last time a call was made to ClearDiagnosticInformation). 
A logical '1' shall indicate that the DTC test has not run to completion during the current operation cycle. If the test 
runs and passes or fails then the bit shall be set (and latched) to '0' until a new operation cycle is started.  

Bit state after a successfull ClearDiagnosticInformation service logical ‘1’ 

Reset to a logical ‘1’ after a call to ClearDiagnosticInformation. 

Bit state definition 

'0' = DTC test has returned either a passed or testFailedThisOperationCycle = '1' result during the current drive 
cycle (or since the last time diagnostic information was cleared during the current operation cycle). 

'1' = DTC test has not run to completion this operation cycle (or since the last time diagnostic information was 
cleared this operation cycle). 
# Pseudocode Operation 

1 IF (initializationFlag_TNCTOC == FALSE) 

2    Set initializationFlag_TNCTOC = TRUE 

3    Set testNotCompletedThisOperationCycle = 1 

4    Set lastOperationCycle = currentOperationCycle 

5 IF (ClearDiagnosticInformation requested == TRUE) 

6    Set testNotCompletedThisOperationCycle = 1 

7 ELSE IF (currentOperationCycle != lastOperationCycle) 

8    Set lastOperationCycle = currentOperationCycle 

9    Set testNotCompletedThisOperationCycle = 1 

10 ELSE IF ((most recent test result == PASSED) OR 
   (most recent test result == FAILED)) 

11    Set testNotCompletedThisOperationCycle = 0 

Figure D.7 defines the DTC status bit '6' testNotCompletedThisOperationCycle logic. 

Bit 6
/testNotCompletedThisOperationCycle  = 1 /testNotCompletedThisOperationCycle  = 0

Init

TestResult

OperationCycleChange
OR

ClearDiagnosticInformation

Figure D.7 — DTC status bit 6 testNotCompletedThisOperationCycle logic 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 363

Table D.10 defines the DTC status bit '7' WarningIndicator requested. 

Table D.10 — DTC status bit 7 WarningIndicator requested definitions 

Bit Description Cvt Mnemonic 

7 warningIndicatorRequested U WIR 

This bit shall report the status of any warning indicators associated with a particular DTC. Warning outputs may 
consist of indicator lamp(s), displayed text information, etc. If no warning indicators exist for a particular DTC, this 
status shall default to a logic '0' state. 
Conditions for activating the warning indicator shall be defined by the vehicle manufacturer / implementation, but if 
the warning indicator is on for a given DTC, then confirmedDTC shall also be set to '1' (with the exception 
described below). 

Bit state after a successfull ClearDiagnosticInformation service logical ‘0’ 

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. Some ECUs may latch the failsafe strategy 
associated with a particular confirmed fault for the current operation cycle. If the warning indicator is still requested 
due to this latched failsafe following a call to ClearDiagnosticInformation, this bit shall not be cleared to a logical '0'. 
Rather, this bit shall remain set to logical '1' until the failsafe strategy is no longer active (e.g., test completes and
passes). Additional reset conditions shall be defined by the vehicle manufacturer / implementation.

Bit state definition 

'0' = Server is not requesting warningIndicator to be active 

'1' = Server is requesting warningIndicator to be active 
# Pseudocode Operation 

1 IF (initializationFlag_WIR == FALSE) 

2    Set initializationFlag_WIR = TRUE 

3    Set warningIndicatorRequested = 0 

4 IF (((ClearDiagnosticInformation requested == TRUE) OR (TestResult == Passed) 
   OR (vehicle manufacturer or implementation-specific warning indicator 
       disable criteria are satisfied)) 
   AND ((warning indicator not requested on due to latched failsafe for 
       particular DTC) OR (warning indicator not requested on by legislation))) 

5    Set warningIndicatorRequested = 0 

6 ELSE IF (((TestResult == Failed) AND (warning indicator exists for the 
          particular DTC) 
   AND ((confirmedDTC == 1) 
   OR  (vehicle manufacturer or implementation-specific warning indicator 
   enable criteria are satisfied))) 

7    Set warningIndicatorRequested = 1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

364 © ISO 2013 – All rights reserved

Figure D.8 defines the DTC status bit '7' WarningIndicator requested logic. 

Bit 7
/warningIndicatorRequested = 0 /warningIndicatorRequested = 1

Init

TestResult [Failed && WarningIndicatorOnCriteriaFulfilled ] 

1

OperationCycleChange [LegislativeRequirementsFullfilled] 
OR

TestResult [Passed && (latchedFailsafeNotActive OR notOnForLegislation)]
OR

ManufacturerSpecific [vehicle manufacturer specific] 
OR

 ClearDiagnosticInformation [latchedFailsafeNotActive OR notOnForLegislation] 

Key  
1 WarningIndicatorOnCriteriaFulfilled = warning indicator exists for particular DTC AND (confirmedDTC = 1 OR

vehicle manufacturer or implementation-specific warning indicator enable criteria are satisfied) 

Figure D.8 — DTC status bit 7 WarningIndicator requested logic 

D.2.4 Example for operation of DTC Status Bits 

This example provides an overview on the operation of the DTC status bits in a two operation cycle 
emissions-related OBD DTC. The figure shows the handling for a two operation cycle emissions-related OBD 
DTC. The handling can also be applied to non-emissions-related OBD DTCs and is shown here for general 
informational purpose. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 365

Figure D.9 defines an example of a two operation cycle emissions-related OBD DTC. 

passed
no result
failed

1
0

1
0

1
0

1
0

1
0

1
0

TripCounter
2
1
0

start

testResult:

Operation Cycle

stop start
Operation Cycle 1 Operation Cycle 2 

time

testNotCompleted-
ThisOperationCycle
(Bit 6)

confirmedDTC (Bit 3)

pendingDTC (Bit 2)

testFailed (Bit 0)

testFailedThis-
OperationCycle (Bit 1)

testNotCompleted-
SinceLastClear (Bit 4)

1
0

1
0

testFailedSince-
LastClear (Bit 5)

0

9

10

15

5

3

1

4

2

6

12

13

14

7 8 11

16

Key  

Undefined bit state 
Manufacturer specific bit state 

0 ClearDiagnosticInformation received  initialization of DTC status byte 
1, 2 the related diagnostic monitor reported a sufficient number of passed test samples fulfilling the DTC pass 

criteria  testNotCompleted bits (4 and 6) change from 1 to 0, indicating the monitor has run to completion and 
the DTC readiness has been reached since last clear and for operation cycle 1 

3,4,5,6 the related diagnostic monitor reported a sufficient number of failed test samples fulfilling DTC failed criteria 
testFailed, testFailedThisMonitoringCycle, pendingDTC and testFailedSinceLastClear bits change from 0 to 1 
indicating a malfunction has been detected but the malfunction has not been confirmed over 2 operation cycles  

7 the related diagnostic monitor reported a sufficient number of passed test samples fulfilling DTC passed criteria 
 testFailed bit changes from 1 to 0 indicating the malfunction is currently not active 

8 the related diagnostic monitor reported a sufficient number of failed test samples fulfilling DTC failed criteria 
testFailed bit changes from 0 to 1 indicating a malfunction has been detected repeatedly in operation cycle 1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

366 © ISO 2013 – All rights reserved

9, 10 operation cycle 1 ends and operation cycle 2 starts, testFailedthisOperationCycle changes from 1 to 0 and 
testNotCompleteThisOperationCycle change from 0 to 1; it is manufacturer specific if this reset is executed at 
the very end of the operation cycle or at the immediately after starting the new cycle 

11 After a new operation cycle has started (it is manufacturer specific whether the testFailed status is retained 
through the transition from operation cycle 1 to operation cycle 2) the related diagnostic monitor reported a 
sufficient number of passed results fulfilling DTC passed criteria  testFailed bit transistions to 0 

12 after a new operation cycle has started the related diagnostic monitor reported a sufficient number of passed 
test samples fulfilling DTC passed criteria  testNotCompleteThisOperationCycle bit changes from 1 to 0, 
indicating the monitor has run to completion at least once during the new operation cycle 

13, 14 the related diagnostic monitor reported a sufficient number of failed test samples fulfilling DTC failed criteria 
testFailed, testFailedThisMonitoringCycle bits change from 0 to 1 indicating a malfunction has been detected 
during the new operation cycle 

15 the confirmedDTC bit changes from 0 to 1 indicating that the related malfunction detected during the last 
operation cycle is still present 

16 TripCounter spikes to '2' at the time DTC status changes to confirmedDTC and then immediately resets to '0' 
according to Figure D.4. 

Figure D.9 — Example of a two operation cycle emissions-related OBD DTC 

D.3 DTC severity and class definition 

D.3.1 DTC severity and class byte definition 

This subclause defines the mapping of the DTCSeverityMask / DTCSeverity parameters used with the 
ReadDTCInformation service. Every server shall adhere to the convention for storing bit-packed DTC severity 
information as defined in Table D.11. 

The DTCSeverityMask / DTCSeverity byte contains DTC severity and DTC class information. The 
DTCSeverityMask / DTCSeverity byte is reported in a 1-byte value as defined in Table D.11. The optional 
upper 3 bits (bit 7-5) of the 1-byte value are used to represent the DTC severity information. If not supported 
by the server those bits shall be set to "0". The mandatory lower 5 bits (bit 4-0) of the 1-byte value are used to 
represent the DTC class information.  

Table D.11 — DTCSeverityMask / DTCSeverity byte definition 

DTCSeverity byte 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DTC severity information (optional) DTC class information 

D.3.2 DTC severity bit definition 

The DTC severity bit definition defines bit states to report the recommended action to be taken by the system 
(e.g. vehicle) operator. Table D.12 defines DTC severity status bits. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 367

Table D.12 — DTC severity bit definitions (bit 7-5) 

Bit Description Cvt Mnemonic 

5 maintenanceOnly M MO 

 0 = no maintenanceOnly severity 
1 = maintenanceOnly severity 
This value indicates that the failure requests maintenance only. 

6 checkAtNextHalt M CHKANH 

 0 = do not checkAtNextHalt 
1 = checkAtNextHalt 
This value indicates to the failure that a check of the vehicle is required at next 
halt.

7 checkImmediately M CHKI 

 0 = do not checkImmediately 
1 = checkImmediately 
This value indicates to the failure that an immediate check of the vehicle is 
required. 

D.3.3 DTC class definition 

The DTC class definitions apply to OBD systems which comply with the WWH-OBD GTR. Class A, B1, B2 or 
C are attributes of an emissions-related DTC. These attributes characterise the impact of a malfunction on 
emissions or on the OBD system's monitoring capability according to the requirements of the WWH-OBD 
GTR. 

NOTE The DTC class information contained within a diagnostic request is allowed to have more than one 
bit set to 1 in order to request information for multiple DTC classes. The DTC class information contained 
within a diagnostic response shall only ever have a single bit set to 1. Table D.13 defines the GTR DTC Class 
definition (bit 4-0). 

Table D.13 — GTR DTC Class definition (bit 4-0) 

Bit Value Description Cvt Mnemonic 

0 DTCClass_0 M DTCCLASS_0 

 DTCClass 0 is unclassified. This class shall be used if DTCSeverity is included in 
the response message but no DTC class information is reported e.g. legacy 
DTCs as defined in SAE J2012-DA and ISO°14229-1. 
Bit = 0: DTCClass_0 is disabled for the reported DTC. 
Bit = 1: DTCClass_0 is enabled for the reported DTC. 

1 DTCClass_1 M DTCCLASS_1 

 DTCClass_1 matches the GTR module B Class A definition.  
A malfunction shall be identified as Class A when the relevant OBD threshold 
limits (OTLs) are assumed to be exceeded. It is accepted that the emissions may 
not be above the OTLs when this class of malfunction occurs. 
Bit = 0: DTCClass_1 is disabled for the reported DTC. 
Bit = 1: DTCClass_1 is enabled for the reported DTC. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

368 © ISO 2013 – All rights reserved

Table D.13 — (continued)

Bit Value Description Cvt Mnemonic 

2 DTCClass_2 M DTCCLASS_2 

 DTCClass_2 matches the GTR module B Class B1 definition. 
A malfunction shall be identified as Class B1 where circumstances exist that have 
the potential to lead to emissions being above the OTLs but for which the exact 
influence on emission cannot be estimated and thus the actual emissions 
according to circumstances may be above or below the OTLs. Class B1 
malfunctions shall include malfunctions that restrict the ability of the OBD system 
to carry out monitoring of Class A or B1 malfunctions. 
Bit = 0: DTCClass_2 is disabled for the reported DTC. 
Bit = 1: DTCClass_2 is enabled for the reported DTC. 

3 DTCClass_3 M DTCCLASS_3 

 DTCClass_3 matches the GTR module B Class B2 definition. 
A malfunction shall be identified as Class B2 when circumstances exist that are 
assumed to influence emissions but not to a level that exceeds the OTL. 
Malfunctions that restrict the ability of the OBD system to carry out monitoring of 
Class B2 malfunctions of shall be classified into Class B1 or B2. 
Bit = 0: DTCClass_3 is disabled for the reported DTC. 
Bit = 1: DTCClass_3 is enabled for the reported DTC. 

4 DTCClass_4 M DTCCLASS_4 

 DTCClass_4 matches the GTR module B Class C definition. 
A malfunction shall be identified as Class C when circumstances exist that, if 
monitored, are assumed to influence emissions but to a level that would not 
exceed the regulated emission limits. Malfunctions that restrict the ability of the 
OBD system to carry out monitoring of Class C malfunctions shall be classified 
into Class B1 or B2. 
Bit = 0: DTCClass_4 is disabled for the reported DTC. 
Bit = 1: DTCClass_4 is enabled for the reported DTC. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 369

D.4 DTCFormatIdentifier definition 

This parameter value defines the format of a DTC reported by the server. A given server shall support only 
one DTCFormatIdentifier. 

Table D.14 — Definition of DTCFormatIdentifier (DTCFID_) 

Byte Value Description Cvt Mnemonic 

0x00 SAE_J2012-DA_DTCFormat_00 M J2012-DADTCF00 

 This parameter value identifies the DTC format reported by the server as 
defined in ISO 15031-6 specification. 

0x01 ISO_14229-1_DTCFormat M 14229-1DTCF 

 This parameter value identifies the DTC format reported by the server as 
defined in this table by the parameter DTCAndStatusRecord. 

0x02 SAE_J1939-73_DTCFormat M J1939-73DTCF 

 This parameter value identifies the DTC format reported by the server as 
defined in SAE J1939-73. 

0x03 ISO_11992-4_DTCFormat M 11992-4DTCF 

 This parameter value identifies the DTC format reported by the server as 
defined in ISO 11992-4 specification. 

0x04 SAE_J2012-DA_DTCFormat_04 M J2012-DADTCF04 

 This parameter value identifies the DTC format reported by the server as 
defined in ISO 27145-2 specification. 

0x05 - 0xFF ISO/SAE reserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

D.5 FunctionalGroupIdentifier definition 

The FunctionalGroupIdentifier specifies different functional system groups. The identifier is used to distinguish 
commands sent by the test equipment between different functional system groups within an electrical 
architecture which consists of many different servers. If a server has implemented software of the emissions 
system as well as other systems which may be inspected during an I/M test it is important that only the DTC 
information of the requested functional system group is reported. An emissions I/M test should not be failed 
because another functional system group (e.g., safety system group) has DTC information stored. 

The FunctionalGroupIdentifier specifies a functional system group for the purpose of: 

⎯ Requesting the Unified Diagnostic Services version number to identify the protocol, 

⎯ Requesting DTC status information from a vehicle, and 

⎯ Clearing DTC information in the vehicle. 

The main purpose is to be able to report/clear DTC information specific to a functional system group. An ECU 
may be part of several functional system groups e.g. emissions system, brake system, etc. In case DTCs are 
reported for the brake system during an emissions inspection & maintenance (I/M) test the vehicle shall not 
fail the emissions I/M test because the ECU, which is part of the emissions functional system, also reports 
brake functional system DTCs. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

370 © ISO 2013 – All rights reserved

Table D.15 defines the FunctionalGroupIdentifiers. 

Table D.15 — Definition of FunctionalGroupIdentifiers (FGID_) 

Byte Value Description Cvt Mnemonic 

0x00 - 0x32 ISO/SAE reserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0x33 Emissions-system group M EMSYSGRP 

 This value identifies the Emissions system in a server.   

0x34 - 0xCF ISO/SAE reserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0xD0 Safety-system group M SAFESYSGRP 

 This value identifies the Safety system in a server.   

0xD1 - 0xDF Legislative system group M LEGSYSGRP 

 This range of values is reserved for legislative required group identifiers by 
this document for future definition. 

0xE0 - 0xFD ISO/SAE reserved M ISOSAERESRVD 

 This range of values is reserved by this document for future definition.   

0xFE VOBD system M VOBDSYSGRP 

 This value identifies the VOBD system device. Depending on the VOBD 
strategy which is implemented, only a gateway, a dedicated VOBD ECU or 
any other ECU which has the VOBD function implemented (e.g. engine 
controller) may respond. 

0xFF All functional system groups M ALLFCTSYSGRP 

This value identifies all functional system groups as listed in this table in a 
server. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 371

D.6 DTCFaultDetectionCounter operation implementation example 

The DTC fault detection counter operation for non-emissions related servers is shown in Figure D.10. 

127

1
0

testNotComplete
ThisOperationCycle (Bit 6)

1
0

confirmedDTC (Bit 
3)

1
0

pendingDTC (Bit 2)
1
0

1
0

testFailed (Bit 0)
1
0

Test Sample
(e.g. 50ms if conditions are 

met)
1
0

0

-128

start

Operation Cycle

testFailed
ThisOperationCycle (Bit 1)

Fault
Detection
Counter

time

Operation Cycle 1 Operation Cycle 2
stop
start

Fault detected at 
moment of test run

1
0

Fault not detected at 
moment of test run 1

0

testNotComplete
SincLastClear (Bit 

4)

1
0

1
0

testFailed
SinceLastClear (Bit 5)

1

2

3

4

0 < PreFailed < 127

Test = 
Failed

Test = Passed

OK

6

0 > PrePassed > -128

8

97

5

Key  

1 Test completes when fault detection counter reaches minimum (-128) or maximum (127) and consequently the 
testNotCompleteSinceLastClear and testNotCompleteThisOperationCycle bits change from 1 to 0. 

2 If one test sample of a test returns a failed result it always causes the fault detection counter to increment above 0 
(ensures that the the fail detection time following a test complete with pass is not doubled) 

3 The fault detection counter reaches its maximum (127) indicating a fault condition has fully matured; the test has 
reported a failed result consequently the testFailed, testFailedThisOperationCycle and testFailedSinceLastClear 
bits change from 0 to 1. 

4 The ConfirmedDTC bit is set (change from 0 to 1) at the same time as the pendingDTC bit because this example is 
for a non emissions-related server/ECU with a confirmation threshold of 1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

372 © ISO 2013 – All rights reserved

5 It is manufacturer specific if one test sample of a test returns a passed result it always causes the fault detection 
counter to decrement starting at 0 (ensures that the the passed detection time following a test complete with failed 
is not doubled). 

6 The monitor(s) related to the test are not run because the monitor level enable condtions are not fulfilled, and 
therefore test sample results are generated. It is manufacturer specific whether or not the fault detection counter is 
reset to 0 when the monitor enable condition is again satisfied. 

7 The counter reaches again its minimum (-128) in the current operation cycle and consequently the testFailed bit 
changes from 1 to 0. 

8 After a new operation cycle has started the monitor(s) related to the test are not enabled yet; therefore the DTC 
status bits do not change except the bits which are linked to the start of the operation cycle. These bit are reset at 
the latest when the new operation cycle has started. 

9 The counter reaches its minimum (-128) after a new operation cycle has started and consequently the 
testNotCompleteThisOperationCycle bit changes from 1 to 0. 

Figure D.10 — Example of DTCFaultDetectionCounter operation for non-emissions related server 

D.7 DTCAgingCounter example 

This example provides an overview on the operation of a DTCAgingCounter which counts number of driving 
cycles since the fault was latest failed. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 373

Figure D.11 defines the DTCAgingCounter example. 

passed
no result
failed

1
0

1
0

1
0

1
0

1
0

1
0

Test 1
0

start

testResult:

Operation Cycle

Operation
Cycle 1 

time

testNotCompleted-
ThisOperationCycle
(Bit 6)

confirmedDTC (Bit 3)

pendingDTC (Bit 2)

testFailed (Bit 0)

testFailedThis-
OperationCycle
(Bit 1)

testNotCompleted-
SinceLastClear (Bit 4)

1
0

1
0

testFailedSince-
LastClear (Bit 5)

stop
start

Operation
Cycle 2 

Operation
Cycle 3 

Operation
Cycle 4 

Operation
Cycle 5 

Operation
Cycle 44

DTCAgingCounter

O
pe

ra
tio

n 
C

yc
le

s 
7 

- 4
3 

2
0

40
:

2

31 4 6

5

7

stop
start

stop
start

stop
start

stop
start

Operation
Cycle 6 

stop
start

stop
start

Key  

1 DTCAgingCounter is incremented after completing an operation cycle in which test did not fail 

2 pendingDTC is set to zero after an operation cycle in which the test completed and did not fail. In case an ECU 
does not support a power down sequence (i.e. is immediately shut off when the ignition is turned off) it will be 
unable to detect the end of the operation cycle. Therefore it is also valid to set the pendingDTC bit to zero at the 
beginning of the next operation cycle 

3 DTCAgingCounter is incremented after completing an operation cycle in which test did not fail 

4 DTCAgingCounter continues to increment because test is not failing during these operation cycles 

5 confirmedDTC is set to zero when aging criteria is fully satisfied (e.g., DTCAgingCounter reaches a specific value) 

6 DTCAgingCounter reaches a maximum value (e.g., 40) at which time the confirmedDTC bit is cleared 

7 It is the responsibility of the vehicle manufacturer to specify whether or not testFailedSinceLastClear bit is reset by 
aging-criteria or due to an overflow of the fault memory  

Figure D.11 — DTCAgingCounter example 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

374 © ISO 2013 – All rights reserved

Annex E
(normative)

Input output control functional unit data-parameter definitions 

E.1 InputOutputControlParameter definitions 

Table E.1 defines the inputOutputControlParameter. 

Table E.1 — inputOutputControlParameter definitions 

Byte Value Description Cvt Mnemonic 

0x00 returnControlToECU U RCTECU 

 This value shall indicate to the server that the client does no longer 
have control about the input signal(s), internal parameter(s) and/or 
output signal(s) referenced by the dataIdentifier. 
Details of controlState bytes in request: 0 bytes 
Details of controlState bytes in positive response: Equal to the size 
and format of the dataIdentifier's dataRecord 

0x01 resetToDefault U RTD 

 This value shall indicate to the server that it is requested to reset the 
input signal(s), internal parameter(s) and/or output signal(s) 
referenced by the dataIdentifier to its default state. 
Details of controlState bytes in request: 0 bytes 
Details of controlState bytes in positive. response: Equal to the size 
and format of the dataIdentifier's dataRecord 

0x02 freezeCurrentState U FCS 

 This value shall indicate to the server that it is requested to freeze the 
current state of the input signal(s), internal parameter(s) and/or output 
signal referenced by the dataIdentifier. 
Details of controlState bytes in request: 0 bytes 
Details of controlState bytes in positive. response: Equal to the size 
and format of the dataIdentifier's dataRecord 

0x03 shortTermAdjustment U STA 

 This value shall indicate to the server that it is requested to adjust the 
input signal(s), internal parameter(s) and/or controlled output signal(s) 
referenced by the dataIdentifier in RAM to the value(s) included in the 
controlOption parameter(s) (e.g., set Idle Air Control Valve to a 
specific step number, set pulse width of valve to a specific value/duty 
cycle). 
Details of controlState bytes in request: Equal to the size and format 
of the dataIdentifier's dataRecord 
Details of controlState bytes in pos. response: Equal to the size and 
format of the dataIdentifier's dataRecord 

0x04 – 0xFF ISOSAEReserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 375

Annex F
(normative)

Routine functional unit data-parameter definitions 

F.1 RoutineIdentifier (RID) definition 

Table F.1 defines the routineIdentifier. 

Table F.1 — routineIdentifier definition 

Byte Value Description Cvt Mnemonic 

0x0000 – 0x00FF ISOSAEReserved M ISOSAERESRVD 

 This value shall be reserved by this document for future definition.   

0x0100 - 0x01FF TachographTestIds U TACHORI_ 

 This range of values is reserved to represent Tachograph test result 
values. 

0x0200 - 0xDFFF vehicleManufacturerSpecific U VMS_ 

 This range of values is reserved for vehicle manufacturer specific use.   

0xE000  0xE1FF OBDTestIds U OBDRI_ 

 This range of values is reserved to represent OBD/EOBD test result 
values. 

0xE200 DeployLoopRoutineID U DLRI_ 

 This value shall be used to initiate the deployment of the previously 
selected ignition loop. 

0xE201 – 0xE2FF SafetySystemRoutineIDs M SASRI_ 

 This range of values shall be reserved by this document for future 
definition of routines implemented by safety related systems. 

0xE300 - 0xEFFF ISOSAEReserved M ISOSAERESRVD 

 This value shall be reserved by this document for future definition.   

0xF000 - 0xFEFF systemSupplierSpecific U SSS_ 

 This range of values is reserved for system supplier specific use.   

0xFF00 eraseMemory U EM_ 

 This value shall be used to start the server's memory erase routine. 
The Control option and status record format shall be ECU specific and 
defined by the vehicle manufacturer. 

0xFF01 checkProgrammingDependencies U CPD_ 

 This value shall be used to check the server's memory programming 
dependencies. The Control option and status record format shall be 
ECU specific and defined by the vehicle manufacturer. 

0xFF02 eraseMirrorMemoryDTCs U EMMDTC_ 

 This value shall be used to erase the server's mirror memory DTCs.   

0xFF03 - 0xFFFF ISOSAEReserved M ISOSAERESRVD 

 This value shall be reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

376 © ISO 2013 – All rights reserved

Annex G
(normative)

Upload and download functional unit data-parameter 

G.1 Definition of modeOfOperation values 

The RequestFileTransfer request message contains the modeOfOperation parameter. The values are defined 
in Table G.1. 

Table G.1 — Definition of modeOfOperation values 

Byte Value Description Cvt Mnemonic 

0x00 ISO/SAE reserved M ISOSAERESRVD 

 This value is reserved by this document for future definition.   

0x01 AddFile U ADDFILE 

 This value shall be used to add the file (download) defined in the 
filePathAndName parameter. 

0x02 DeleteFile U DELFILE 

 This value shall be used to delete the file defined in the filePathAndName 
parameter. 

0x03 ReplaceFile U REPLFILE 

 This value shall be used to replace the file (download) defined in the 
filePathAndName parameter. If the file is not stored at the location the file 
shall be added. 

0x04 ReadFile U RDFILE 

This value shall be used to read the file (upload) at the location defined by 
the filePathAndName parameter. 

0x05 ReadDir U RDDIR 

This value shall be used to read the directory defined in the 
filePathAndName parameter. This value implies that the request does not 
include a fileName. 

0x06 - 0xFF ISO/SAE reserved M ISOSAERESRVD 

This value is reserved by this document for future definition.   

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 377

Annex H
(informative) 

Examples for addressAndLengthFormatIdentifier parameter values

H.1 addressAndLengthFormatIdentifier example values 

Table H.1 contains examples of combinations of values for the high and low nibble of the 
addressAndLengthFormatIdentifier. The following needs to be considered: 

⎯ Values, which are either marked as "not applicable" for the "manageable memorySize" or the 
"memoryAddress range", are not allowed to be used and have to be rejected by the server via a negative 
response message. 

⎯ Values with an applicable "manageable memorySize" and "memoryAddress range" are allowed for this 
parameter. 

Table H.1 — addressAndLengthFormatIdentifier example 

Byte Value Description 

bit 7-4 (high nibble) 
number of memorySize bytes 

bit 3-0 (low nibble) 
number of memoryAddress bytes 

bytes used for 
memorySize parameter manageable size bytes used for 

memoryAddress parameter 
addressable 

memory 

0x00 not applicable not applicable not applicable not applicable 

0x01 not applicable not applicable 1 256 Byte - 1 

0x02 not applicable not applicable 2 64 KB - 1 

0x03 not applicable not applicable 3 16 MB - 1 

0x04 not applicable not applicable 4 4 GB - 1 

0x05 not applicable not applicable 5 1,024 GB - 1 

0x06 – 0x0F : : : :

0x10 1 256 Byte not applicable not applicable 

0x11 1 256 Byte 1 256 Byte – 1 

0x12 1 256 Byte 2 64 KB – 1 

0x13 1 256 Byte 3 16 MB – 1 

0x14 1 256 Byte 4 4 GB – 1 

0x15 1 256 Byte 5 1,024 GB – 1 

0x16 – 0x1F : : : :

0x20 2 64 KB not applicable not applicable 

0x21 2 64 KB 1 256 Byte – 1 

0x22 2 64 KB 2 64 KB – 1 

0x23 2 64 KB 3 16 MB – 1 

0x24 2 64 KB 4 4 GB – 1 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

378 © ISO 2013 – All rights reserved

Table H.1 — (continued)

Byte Value Description 

bit 7-4 (high nibble) 
number of memorySize bytes 

bit 3-0 (low nibble) 
number of memoryAddress bytes 

bytes used for 
memorySize parameter manageable size bytes used for 

memoryAddress parameter 
addressable 

memory 

0x25 2 64 KB 5 1,024 GB – 1 

0x26 – 0x2F : : : :

0x30 3 16 MB not applicable not applicable 

0x31 3 16 MB 1 256 Byte – 1 

0x32 3 16 MB 2 64 KB – 1 

0x33 3 16 MB 3 16 MB – 1 

0x34 3 16 MB 4 4 GB – 1 

0x35 3 16 MB 5 1,024 GB – 1 

0x36 – 0x3F : : : :

0x40 4 4 GB not applicable not applicable 

0x41 4 4 GB 1 256 Byte – 1 

0x42 4 4 GB 2 64 KB – 1 

0x43 4 4 GB 3 16 MB – 1 

0x44 4 4 GB 4 4 GB – 1 

0x45 4 4 GB 5 1,024 GB - 1 

0x46 -0xFF : : : :

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 379

Annex I
(normative) 

Security access state chart

I.1 General 

The purpose of this annex is to describe the SecurityAccess service handling in an ECU, based on a state 
chart with state transition conditions and action definitions. The following is the base for the definition: 

⎯ Usage of the disjunctive normal form in order to have single transitions defined between and within the 
states. 

⎯ Definition of “disjunctive normal form”: “A statement is in disjunctive normal form if it is a disjunction 
(sequence of ORs) consisting of one or more disjuncts, each of which is a conjunction (AND) of one or 
more literals” 

I.2 Disjunctive normal form based state transition definitions 

Figure I.1 graphically depicts the state chart for the SecurityAccess handling. The given numbers reference 
state transition conditions and actions to be performed on the transition. 

All security
levels locked. 
No active seed

All Security 
Levels Locked. 

Seed sent. 
Waiting for key.

2

3

14

 5

6

 7

8
One security

level unlocked.
Seed sent.

Waiting for key.

One security level 
unlocked.

No active seed.

9

5

6

10

(A) (B)

(C)(D)

Key  
(A) All security levels locked. No active seed. 
(B) All Security Levels Locked. Seed sent. Waiting for key. 
(C) One security level unlocked. No active seed. 
(D) One security level unlocked. Seed sent. Waiting for key. 
1 .. 10 see Table I.2 

Figure I.1 — SecurityAccess state chart 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

380 © ISO 2013 – All rights reserved

The state chart takes into account that the general session handling is done at the proper place within the 
session management layer (see ISO 14229-2) and therefore does not need to be considered in the state-
chart. 

The state transition definitions make use of some parameters that can be set according to vehicle 
manufacturer specific requirements. The support of Delay_Timer and Att_Cnt parameters is optional and 
decided by the vehicle manufacturer. In general, for longer seed/key lengths (e.g., 16 bytes and beyond) the 
support of these parameters is no longer as important. 

Table I.1 defines the state transitions – parameters. 

Table I.1 — State transitions – parameters 

Name Description 

Delay_Timer If supported, this value represents the required minimum time between security access attempts.  In 
addition, it is vehicle manufacturer specific whether this delay timer will be invoked upon every power 
on / start up. 
The standard use case will have a fixed value for the delay time, but it is also possible for a 
customer-specific use case to have a variable value (e.g., the value depends on the number of false 
access attempts in case they are stored in non-volatile memory). 
NOTE A server may choose to implement a separate timer for each security level or utilize a 
single timer for all levels. 

Att_Cnt If supported, this value represents the number of false security access attempts before a delay time 
(Start_Delay) is inserted. When implemented, the counter is required for each individual security 
level. 

Static_Seed This represents a boolean value where true indicates that a seed  is stored and re-used in a positive 
response to a seed request under certain conditions according to Table I.2. A value of false indicates 
that a random seed is used every time a new seed request is received. If Delay_Timer and Att_Cnt 
are not supported, a random seed shall always be used. 

xx This represents the last requestSeed securityAccessType received by the server. 

yy This represents the current sendKey securityAccessType received by the server. 

Legend: 
AND, OR logical operation 
Italic optional, customer specific 
“==” equal (comparison operator) 
"="  assignment operator 
“<>” un-equal 
“<”  less than 
“>”  greater than 
“+”  mathematical addition 
“-”  mathematical subtraction 
"++" increment operator (variable++ is the same as variable = variable + 1) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 381

Table I.2 includes the complete set of state transition definitions. 

Table I.2 — State transitions – disjunctive normal form representation 

No. Operation Condition Action 

1   
Start / restart of ECU Application (e.g., 
ECU reset, power cycle, key cycle, 
sleep  wake transition, etc.). 

Initialize Att_Cnt (if applicable). 
Start Delay_Timera  (if required on start up). 

SecurityAccess requestSeed received. 

Message length OKb.
Optional pre-conditions fulfilled.

2  AND Delay expired (if applicable). 

If Static_Seed == True then generate and store Seed 
for the requested securityAccessType (if not 
previously generated and stored during the current 
ECU operating cycle).  If Static_Seed = False, then
generate new Seed. 
Save sub-function: xx = securityAccess Type 
Transmit SecurityAccess positive response on 
requestSeed request with Seed as active for the 
requested securityAccessType.  

SecurityAccess sendKey received 

sub-function: yy == xx+1c.

Message length OK. 3  AND 
Key OK. 

Att_Cnt = 0 for subfunction xx (if applicable). 
Store Att_Cnt in non-volatile memory (if applicable). 
Unlock security level for subfunction xx. 
If Static_Seed = True then clear generated seed for 
subfunction xx. 
Transmit SecurityAccess positive response on 
sendKey request. 

SecurityAccess requestSeed received. 
AND

Message Length NOK. 
Transmit negative response NRC 0x13. 

SecurityAccess sendKey received. Transmit negative response NRC 0x24. 

SecurityAccess requestSeed received.

Message length OK.AND

Optional pre-conditions NOT fulfilledd.

Transmit negative response NRC 0x22. 

SecurityAccess requestSeed received. 

Message length OK. 

Delay NOT expired (if applicable). 
AND

Optional pre-conditions fulfilled.

Transmit negative response NRC 0x37. 
4 OR 

SecurityAccess request results in a 
general negative response code (e.g., 
minimum length, sub-function 
supported) according to the general 
negative response handling (see 
section 7.5). 

Transmit negative response code as defined in section  
7.5.

SecurityAccess requestSeed received. 

AND Static_Seed == False. 
Generate new seed and transmit SecurityAccess 
positive response with the new seed for the requested 
securityAccessType. 
Save sub-function: xx = securityAccess Type 

SecurityAccess requestSeed received. 

Static_Seed == True. AND
requested securityAccessType has an 
active stored seed. 

Transmit SecurityAccess positive response with the 
active stored seed for the requested 
securityAccessType. 
Save sub-function: xx = securityAccess Type 

SecurityAccess requestSeed received. 

Static_Seed == True. 

5 OR 

AND requested securityAccessType has no 
active seed stored (different 
securityAccessType than before). 

Generate and store Seed for the requested 
securityAccessType (if not previously generated and 
stored during the current ECU operating cycle). 
Save sub-function: xx = securityAccess Type  
Transmit SecurityAccess positive response on 
requestSeed request with Seed as active for the 
requested securityAccessType.  

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

382 © ISO 2013 – All rights reserved

Table I.2 — (continued)

No. Operation Condition Action 

6   
DiagnosticSessionControl accepted or 
session timeout occurs. 

Start appropriate diagnostic session. 
Lock ECU. 

 SecurityAccess sendKey received. Transmit negative response NRC 0x24. 

SecurityAccess requestSeed received. 
AND

Requested level is unlocked. 
Transmit SecurityAccess positive response with zero 
seede.

7 OR SecurityAccess request results in a 
general negative response code (e.g., 
minimum length, sub-function 
supported) according to the general 
negative response handling (see 
section 7.5). 

Transmit negative response code as defined in section  
7.5.

SecurityAccess requestSeed received. 

Requested level is NOT unlocked. 

Message length OK. 

Optional pre-conditions fulfilled.

8  AND 

Delay expired (if applicable). 

Generate and store Seed for the requested 
securityAccessType (if not previously generated and 
stored during the current ECU operating cycle).  
Save sub-function: xx = securityAccess Type  
Transmit SecurityAccess positive response on 
requestSeed request with Seed as active for the 
requested securityAccessType.  

SecurityAccess sendKey received. 

sub-function: yy == xx+1. 

Message length OK. 

Key NOK. 
AND

(Att_Cnt+1) < Att_Cnt_Limit (if 
applicable). 

Att_Cnt++ for sub-function xx (if applicable)f.
Store Att_Cnt in non-volatile memory (if applicable). 
Transmit negative response NRC 0x35. 

SecurityAccess sendKey received. 

sub-function: yy == xx+1. 

Message length OK. 

Key NOK. 

AND

(Att_Cnt+1) >= Att_Cnt_Limit. 

Att_Cnt++ for sub-function xx (if applicable). 
Start Delay_Timer for sub-function xx (if applicable). 
Store Att_Cnt in non-volatile memory (if applicable). 
Transmit negative response NRC 0x36. 

SecurityAccess sendKey received. 
AND

sub-function: yy <> xx+1. 

Transmit negative response NRC 0x24.   
Att_Cnt++ for sub-function xx (if applicable).   
Store Att_Cnt in non-volatile memory.

SecurityAccess sendKey received. 

sub-function: yy == xx+1. AND

Message length NOK. 

Transmit negative response NRC 0x13. 
Att_Cnt++ for sub-function xx (if applicable). 
Store Att_Cnt in non-volatile memory.

AND DiagnosticSessionControl accepted or  
session timeout occurs. Start appropriate diagnostic session. 

9 OR 

SecurityAccess request results in a 
general negative response code (e.g., 
minimum length, sub-function 
supported) according to the general 
negative response handling (see 
section 7.5).   

Transmit negative response code as defined in section  
7.5.

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 383

Table I.2 — (continued)

No. Operation Condition Action 

SecurityAccess requestSeed received. 
AND

Requested level is unlocked. 

Transmit SecurityAccess positive response with zero 
seedg.

SecurityAccess sendKey received. 

sub-function: yy == xx+1h.

Message length OK. AND
Key OK. 

Att_Cnt = 0 for subfunction xx (if applicable). 
Store Att_Cnt in non-volatile memory (if applicable). 
Lock currently unlocked security level. 
Unlock security level for subfunction xx. 
If Static_Seed = True then clear generated seed for 
subfunction xx.Transmit SecurityAccess positive 
response on sendKey request. 

SecurityAccess sendKey received. 

sub-function: yy == xx+1. 

Message length OK. 

Key NOK. 
AND

(Att_Cnt+1) < Att_Cnt_Limit (if 
applicable). 

Att_Cnt++ for sub-function xx (if applicable)i.
Store Att_Cnt in non-volatile memory (if applicable). 
Transmit negative response NRC 0x35. 

SecurityAccess sendKey received. 

sub-function: yy == xx+1. 

Message length OK. 

Key NOK. 

AND

(Att_Cnt+1) >= Att_Cnt_Limit. 

Att_Cnt++ for sub-function xx (if applicable). 
Start Delay_Timer for sub-function xx (if applicable). 
Store Att_Cnt in non-volatile memory (if applicable). 
Transmit negative response NRC 0x36. 

SecurityAccess sendKey received. 
AND

sub-function: yy <> xx+1. 

Transmit negative response NRC 0x24. 
Att_Cnt++ for sub-function xx (if applicable)j.

SecurityAccess sendKey received. 

sub-function: yy == xx+1. AND

Message length NOK. 

Transmit negative response NRC 0x13. 
Att_Cnt++ for sub-function xx (if applicable). 

10 OR 

SecurityAccess request results in a 
general negative response code (e.g., 
minimum length, sub-function 
supported) according to the general 
negative response handling (see 
section 7.5). 

Transmit negative response code as defined in section  
7.5.

a The default use case will have a fixed value for the delay time, but it is also possible for a customer-specific use case that the value 
depends on the number of false access attempts in case they are stored in non-volatile memory. 
b The exact length check can only be done after the evaluation of the sub-function, because the length depends on the sub-function 
(i.e., length of requestSeed is different from length of sendKey message). The check for the minimum length is done during the general 
service evaluation process. 
c The sendKey sub-function (yy) must be of the expected securityAccessType (the active stored seed is for the corresponding 
requestSeed securityAccessType, i.e. sendKey securityAccessType – 1). 
d Customer specific precondition can be checked (e.g. fingerprint written in this driving cycle, engine not running, and vehicle not 
moving). 
e Once a given security level is unlocked, it shall remain unlocked even after a seed request is received for a different security level 
until either a new security level is completely unlocked or the security access is exited for other reasons (e.g., DiagnosticSessionControl 
accepted or  session timeout occurs). 
f The counter for false access attempts will be increased with every valid formatted, but invalid key value and will be set to zero in 
case a valid key is received. It may be a customer-specific use case to store this counter in non-volatile memory to be able to decide 
after reset if a delay has to be started or not (and possibly the delay time even depends on the value of this counter). In case a valid 
formatted key was received the stored seed shall be discarded. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

384 © ISO 2013 – All rights reserved

g Once a given security level is unlocked, it shall remain unlocked even after a seed request is received for a different security level 
until either a new security is completely unlocked or the security access is exited for other reasons (e.g., diagnosticSessionControl 
received). 
h The sendKey sub-function must be of the expected access type (active stored seed is for sendKey accessType – 1). 
i The counter for false access attempts will be increased with every valid formatted, but invalid key value and will be set to zero in 
case a valid key is received. It may be a customer-specific use case to store this counter in non-volatile memory to be able to decide 
after reset if a delay has to be started or not (and possibly the delay time even depends on the value of this counter). In case a valid 
formatted key was received the stored seed shall be discarded. 
j The counter for false access attempts will be increased with every valid formatted, but invalid key value and will be set to zero in 
case a valid key is received. It may be a customer-specific use case to store this counter in non-volatile memory to be able to decide 
after reset if a delay has to be started or not (and possibly the delay time even depends on the value of this counter). In case a valid 
formatted key was received the stored seed shall be discarded. 

NOTE It has to be considered that when defining the state transitions via multiple conjunctions which are OR-ed 
together and each conjunction has an action applied that only one of the conjunctions of a disjunction becomes true at a 
time and forces a state transition in order to only execute one of the actions for a certain state transition defined (e.g. only
single negative response to be transmitted). 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 385

Annex J
(informative) 

Recommended implementation for multiple client environments

J.1 Introduction 

This annex is intended to address the increasing number of use cases where the diagnostic vehicle topology 
is extended by adding one or more onboard diagnostic clients to the basic diagnostic topology with a single 
diagnostic client (external test equipment) and multiple servers (ECUs in vehicle). 

This document and the normative references herein do not limit the number of diagnostic communication 
channels that a server can support. The design of such a server-implementation for multi-client handling, 
needs to take into account that there are specifications and restrictions which force certain diagnostic clients 
to be served with a higher priority than others, e.g. to fulfil existing legislative OBD requirements. In this case 
the vehicle system design needs to ensure that parallel client requests can be handled by the respective 
server(s). 

An example for such a scenario would be an internal data logger which is connected to a server in parallel to a 
OBD scan tool externally connected to the diagnostic connector. 

Either the overall vehicle design accounts for this parallel handling of client requests (e.g. gateway arbiter 
mechanism) or the individual servers have to implement new strategies to assign the available resources to 
different clients. In the server either the protocol implementation or the available resources are unique and can 
only be accessed by one client at a time. 

This annex describes the implementation on server level only. It is the vehicle manufacturer's responsibility to 
select a mechanism which fits its individual needs best. 

J.2 Implementation specific limitations 

A unique Address Information must be assigned to each communication participant to allow the detection of 
different clients, which then can be used to limit the functionality or to assign priorities. 

If the vehicle manufacturer's design does not use unique address information for certain peer protocol entities, 
the implementation described in this annex does not apply. In this case the vehicle design needs to ensure 
that the chosen approach for handling of multiple clients fulfils the legislative requirements. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

386 © ISO 2013 – All rights reserved

J.3 Use cases relevant for system design 

Figure J.1 shows an example of a vehicle topology where multiple clients exist. 

Sub-networks

DoCAN or DoIP

Offboard
client

Central
Gateway

Server

Auxiliary
Gateway 2

Auxiliary
Gateway 3

Server

Server

Server

Server

Auxiliary
Gateway 1

Server

Server

Server

Server

Server

Server

Server

Server

Server

Onboard
Client

Onboard
Client

Onboard
Client

9 1
6

81

Figure J.1 — Example vehicle topology with onboard clients 

The implementation described in this document is intended to fulfil the use cases summarized in Figure J.1. 
All use case scenarios marked with an 'N/A' in the table below are not described as part of this standard. It is 
highly recommended to avoid such scenarios. The implementation and design rules specified in this Annex 
are not intended to support OBD communication requirements beyond the scenarios defined in Table J.1. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 387

Table J.1 — Use case (UC) matrix of multiple client scenarios to be addressed 

Off-board clients   
(vehicle external test equipment) 

On-board clients   
(vehicle internal test equipment) 

OBD scan (tool) test 
equipment 

OEM service test 
equipment 

On-board  
client 1 

On-board  
client 2 

On-board  
client n 

OBD scan (tool) test 
equipment Not existent N/A A (UC 1) A (UC 1) A (UC 1) 

OEM service test equipment N/A Not existent X (UC 2) X (UC 2) X (UC 2) 

On-board client 1 T (UC 3) X (UC 4) Not existent X (UC 5) X (UC 5) 

On-board client 2 T (UC 3) X (UC 4) X (UC5) Not existent X (UC 5) 

… … … … … … 

On-board client n T (UC3) X  (UC 4) X (UC5) X (UC5) Not existent 

T: Test equipment in use has higher pirority than additional test tool 
A: Additional test equipment has higher priority than test tool in use 
X: vehicle manufacturer specific (equal or different priority) 

When referring to the term 'test equipment in use' it needs to be differentiated between the server perspective 
and the client perspective as follows: 

⎯ from a server perspective a test tool is considered in use if a request is currently processed or a non-
default session is active 

⎯ from a client perspective a test tool is considered in use if an expected response has not yet been 
received, P3 client is not expired yet or a non-default session is active 

When referring to the term 'additional test equipment' the following definition applies: 

⎯ a test equipment in this context is considered 'additional' if another tool is in use (refer to definition of test 
tool in use) 

When referring to the term 'OBD scan (tool) test equipment' the following definition applies:  

⎯ On-Board Diagnostic (OBD) regulations require passenger cars and light, medium and heavy duty trucks 
to support communication of a minimum set of diagnostic information with off-board test equipment 
according to SAE J1978 / ISO 15031-4. A vehicle is considered non-compliant if the communication with 
the test equipment (e.g., handheld scan tools, PC based diagnostic computers, etc.) cannot be conducted 
as defined by the appropriate standards. 

When referring to the term 'OEM service test equipment' the following definition applies: 

⎯ An OEM specified test equipment which fulfils the OEM requirements and utilizes proprietary address 
information. 
The OEM Service test equipment may utilize standardized parts, i.e. SAE J2534 to communicate 
between the application and the Service tool hardware, but the communication to the vehicle utilizes OEM 
proprietary information. 

When referring to the term 'on-board client' the following definition applies: 

⎯ An ECU which may include at least a diagnostic client part but also may include a diagnostic server part. 
The client part has functionality to sent diagnostic service requests to other servers in the vehicle. An 
example may be a telematics gateway which can be integrated into an ECU which also includes other 
functionality. The telematics gateway will act as a server if an OEM Service tool is connected to the 

Test equipment 
 in use 

Additional 
test equipment 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

388 © ISO 2013 – All rights reserved

diagnostic connector and requests data from the telematic gateway, but the telematic gateway itself also 
acts as a client requesting data from the other servers in the vehicle. 

J.4 Use Case Evaluation: 

Table J.2 is intended to guide the decision what kind of concept the system designer should select. 

Table J.2 — Evaluation of multiple client use cases 

Use Case # Pseudo parallel concept Priority concept 

Pro: 
⎯ both type of test equipment can be 

handled without stopping a protocol 
⎯ all clients will be informed by the server 

(worst case NRC 0x21, usually positive 
response)  

⎯ if OBD scan (tool) test equipment client is 
permanently connected (3rd party tools), 
OBD and non-OBD requests can be 
handled in parallel  

Pro: 
⎯ processing based on dedicated priority 

assumption: OBD has higher prio than onboard 
client 

⎯ no resource management needed 
⎯ dedicated timing behaviour for OBD responses, 

due to the fact the ongoing non-OBD response 
will be stopped 

⎯ just one single buffer required 

UC 1, UC3 

Con: 
⎯ resource management needed 
⎯ non-OBD request might be rejected or not 

even responded to 
⎯ OBD II: if the physical OBD CAN IDs are 

used for UDS concept is not working 

Con: 
⎯ client (on-board test equipment) request can 

only processed when OBD request is not 
currently processed 

⎯ enable application to 'kill' ongoing requests 
from other clients 

⎯ If permanently connected it depends on the 
request frequency whether the onboard client is 
still able to collect data on-board or not. 

Pro: 
⎯ client requests are handled based on 

arrival time without stopping a protocol if 
default session is active and protocol 
parameters are identical 

⎯ client is informed by NRC 0x21 when 
server is busy processing a different 
request or being in non-default session 
requested by a different client 

Pro: 
⎯ processing based on dedicated priority  
⎯ allows to prioritize between different clients 

UC2, UC4, 
UC5 

Con: 
⎯ parallel handling just possible if clients do 

not request a non-default session 
⎯ client shall always request default session 

when done with data retrieval 

Con: 
⎯ low prio client not informed about the fact that it 

won't be served 
⎯ detection just via timeout (P2max timeout) 
⎯ enable application to 'kill' ongoing requests 

from other clients 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 389

J.5 Multiple client server level implementation 

J.5.1 Definition of diagnostic protocol 

In this context a diagnostic communication protocol is a compilation of specific parameter values depending 
on the Address Information (e.g. protocol buffer size, session timings, supported services, security levels). 

A protocol is identified by a communication path established between peer protocol entities. Each peer 
protocol entity has exactly one unique physical address, and 0..n functional addresses (for the server(s)) 
identified by the respective N_AI. 

NOTE 1 That means one single address cannot be used for different protocols. 

NOTE 2: As defined in this part of ISO 14229 there is only one diagnostic session state and one security level state 
active at a time in one specific ECU and shared over all active protocols. 

J.5.2 Assumptions 

A protocol can either have exclusive protocol resources or multiple protocols can share one protocol resource. 

The OBD scan (tool) test equipment client address has either the highest priority or an exclusive protocol 
resource is assigned to this address ensuring that the legislative requirements can be fulfilled. 

J.5.3 Multiple client handling flow 

If a server implements multiple client handling on server level the implementation shall adhere to the flow 
chart depicted in Figure J.2. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

390 © ISO 2013 – All rights reserved

Is a 
diagnostic request

in progress?

Send NRC 0x21 
negative response

Is an additional 
protocol resource 

available for parallel 
service execution?

New
request

Is another diagnostic 
protocol requested than 
currently in progress?

Is server in non-
default session?

YES

Stop active non-default 
diagnostic session, 

switch to default session

Is NRC 0x21
handling supported?

NO

Has the 
received request a 

higher priority?

Stop active service 
execution

(CancelReceive / 
CancelTransmit)

Has the 
received request a 

higher priority?

Process high-prio request, 
send response (if required)

Does parallel 
service access the 

same resource?

Resource management: 
Allow access to resource only for 

high-prio request, cancel access of 
low-prio request and stop low-prio 

service execution / cancel 
transmission

Assign additional 
protocol resource to 

new protocol

NO

YES

NO

YES

NO

NO

NO

YES

NO

Wait for next request

Ignore new 
request

YES

YES

YES

YES

NO

T_Data.ind: Request message received completely

Key  
1 Reason for overflow: The temporary receive-buffer for the 2nd request is limited to one frame. 

Figure J.2 — Multiple client handling flow 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

© ISO 2013 – All rights reserved 391

Bibliography 

[1] ISO 4092:1988/Cor.1:1991, Road vehicles — Diagnostic systems for motor vehicles — Vocabulary — 
Technical Corrigendum 1

[2] ISO/IEC 7498-1, Information technology — Open Systems Interconnection — Basic Reference Model: 
The Basic Model

[3] ISO/TR 8509:1987, Information processing systems — Open Systems Interconnection — Service 
conventions

[4] ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference Model — 
Conventions for the definition of OSI services

[5] ISO 11992-4, Road vehicles — Interchange of digital information on electrical connections between 
towing and towed vehicles — Part 4: Diagnostics

[6] ISO 14229-3, Road vehicles — Unified diagnostic services (UDS) — Part 3: Unified diagnostic services 
on CAN implementation (UDSonCAN)

[7] ISO 14229-4, Road vehicles — Unified diagnostic services (UDS) — Part 4: Unified diagnostic services 
on FlexRay implementation (UDSonFR)

[8] ISO 14229-5, Road vehicles — Unified diagnostic services (UDS) — Part 5: Unified diagnostic services 
on Internet Protocol implementation (UDSonIP)1)

[9] ISO 14229-6, Road vehicles — Unified diagnostic services (UDS) — Part 6: Unified diagnostic services 
on K-Line implementation (UDSonK-Line)

[10] ISO 14229-7, Road vehicles — Unified diagnostic services (UDS) — Part 7: Unified diagnostic services 
on Local Interconnect Network implementation (UDSonLIN)2)

[11] ISO 15031-2, Road vehicles — Communication between vehicle and external equipment for emissions-
related diagnostics — Part 2: Guidance on terms, definitions, abbreviations and acronyms

[12] ISO 15031-6, Road vehicles — Communication between vehicle and external equipment for emissions-
related diagnostics — Part 6: Diagnostic trouble code definitions

[13] ISO 15765-4, Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) — 
Part 4: Requirements for emissions-related systems

[14] ISO 22901-1, Road vehicles — Open diagnostic data exchange (ODX) — Part 1: Data model 
specification

[15] ISO 26021-2, Road vehicles — End-of-life activation of on-board pyrotechnic devices — Part 2: 
Communication requirements

[16] ISO 27145-2, Road vehicles — Implementation of World-Wide Harmonized On-Board Diagnostics 
(WWH-OBD) communication requirements — Part 2: Common data dictionary

                                                     

1) To be published. 

2) Under preparation. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---



ISO 14229-1:2013(E) 

392 © ISO 2013 – All rights reserved

[17] ISO 27145-3, Road vehicles — Implementation of World-Wide Harmonized On-Board Diagnostics 
(WWH-OBD) communication requirements — Part 3: Common message dictionary

[18] SAE J1939:2011, Serial Control and Communications Heavy Duty Vehicle Network — Top Level 
Document

[19] SAE J1939-73:2010, Application Layer — Diagnostics

[20] ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating Point Arithmetic

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
,
,
,
,
,
`
,
,
,
`
,
`
`
,
,
`
,
,
`
`
`
,
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO 14229-1:2013(E) 

ICS  43.180 
Price based on 39  pages 

© ISO 2013 – All rights reserved Copyright International Organization for Standardization 
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:26:47 MSTNo reproduction or networking permitted without license from IHS

--``,`,,,,,,`,,,`,``,,`,,```,`,`-`-`,,`,,`,`,,`---


