INTERNATIONAL STANDARD ISO 13942 First edition 2000-12-15 # **Bonded abrasive products — Limit deviations and run-out tolerances** Produits abrasifs agglomérés — Écarts limites et tolérances de battement Reference number ISO 13942:2000(E) #### **PDF** disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2000 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland ### **Contents** Page | Forev | word | iv | |------------|---|----| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 2 | | 4 | Symbols and designations | 4 | | 5
5.1 | Straight grinding wheels, recessed, relieved and hubbed wheels | | | 5.2 | Straight grinding wheels for general applications | | | 5.3
5.4 | Straight grinding wheels for special applications | | | 5.4
5.5 | Grinding wheels for high-pressure grinding Straight grinding wheels used in sets | | | 5.6 | Cemented or clamped cylinder wheels and disc wheels | | | 6 | Dish and cup wheels | | | 6.1 | Types involved | | | 6.2 | Dish and cup wheels for general applications | | | 6.3 | Dish and cup wheels for tool grinding | 14 | | 7 | Grinding wheels for cutting-off, deburring and fettling/snagging | 14 | | 7.1
7.2 | ScopeLimit deviations T_D of the outside diameter, axial run-out tolerance, $T_{\rm Pl}$, and the radial run-out | 14 | | 1.2 | tolerance, T_{Pl} tolerance, T_{Pl} and the radial run-out tolerance, T_{Pl} | 15 | | 7.3 | Limit deviations T_H of the hole diameter | | | 7.4 | Limit deviations T_T and T_U of the grinding wheel thickness | | | 8 | Segments | 17 | | 9 | Cones and plugs with threaded insert | 18 | | 10 | Honing stones and superfinishings | 18 | | 11 | Hand finishing sticks | 18 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 13942 was prepared by Technical Committee ISO/TC 29, Small tools, Subcommittee SC 5, Grinding wheels and abrasives. ## Bonded abrasive products — Limit deviations and run-out tolerances #### 1 Scope This International Standard specifies the essential limit deviations and run-out tolerances, in millimeters, for bonded abrasive products as specified in ISO 603-1 to ISO 603-16. #### 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 286-1:1988, ISO system of limits and fits — Part 1: Bases of tolerances, deviations and fits. ISO 286-2:1988, ISO system of limits and fits — Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts. ISO 603-1, Bonded abrasive products — Dimensions — Part 1: Grinding wheels for external cylindrical grinding between centres. ISO 603-2, Bonded abrasive products — Dimensions — Part 2: Grinding wheels for centreless external cylindrical grinding. ISO 603-3, Bonded abrasive products — Dimensions — Part 3: Grinding wheels for internal cylindrical grinding. ISO 603-4, Bonded abrasive products — Dimensions — Part 4: Grinding wheels for surface grinding/peripheral grinding. ISO 603-5, Bonded abrasive products — Dimensions — Part 5: Grinding wheels for surface grinding/face grinding. ISO 603-6, Bonded abrasive products — Dimensions — Part 6: Grinding wheels for tool and tool room grinding. ISO 603-7, Bonded abrasive products — Dimensions — Part 7: Grinding wheels for manually guided grinding. ISO 603-8, Bonded abrasive products — Dimensions — Part 8: Grinding wheels for deburring and fettling/snagging. ISO 603-9, Bonded abrasive products — Dimensions — Part 9: Grinding wheels for high-pressure grinding. ISO 603-10, Bonded abrasive products — Dimensions — Part 10: Stones for honing and superfinishings. ISO 603-11, Bonded abrasive products — Dimensions — Part 11: Hand finishing sticks. ---,,...,,...----,,,.,,.,. #### ISO 13942:2000(E) ISO 603-12, Bonded abrasive products — Dimensions — Part 12: Grinding wheels for deburring and fettling on a straight grinder. ISO 603-13, Bonded abrasive products — Dimensions — Part 13: Grinding wheels for deburring and fettling on a vertical grinder. ISO 603-14, Bonded abrasive products — Dimensions — Part 14: Grinding wheels for deburring and fettling/snagging on an angle grinder. ISO 603-15, Bonded abrasive products — Dimensions — Part 15: Grinding wheels for cutting-off on stationary or mobile cutting-off machines. ISO 603-16, Bonded abrasive products — Dimensions — Part 16: Grinding wheels for cutting-off on hand held power tools. #### **Terms and definitions** For the purposes of this International Standard, the following terms and definitions apply. For further terms and definitions, see also ISO 286-1. It should be noted that some of the terms are defined in a more restricted sense than in common usage. #### 3.1 #### shaft external feature of a workpiece, including features which are not cylindrical #### 3.2 #### hole internal feature of a workpiece, including features which are not cylindrical #### 3.3 number, expressing in a particular unit, the numerical value of a linear dimension #### 3.3.1 #### basic size #### nominal size size from which the limits of size are derived by the application of the upper and lower deviations NOTE The basic size can be a whole number or a decimal number, e.g. 32; 15; 8,75; 0,5 etc. #### 3.3.2 #### actual size size of a feature, obtained by measurements #### 3.3.3 #### limits of size the two extreme permissible sizes of a feature, between which the actual size should lie, the limits of size being included #### 3.3.3.1 #### maximum limit of size greatest permissible size of a feature #### 3.3.3.2 #### minimum limit of size smallest permissible size of a feature #### 3.4 #### deviation algebraic difference between a size (actual size, limit of size, etc.) and the corresponding basic size NOTE Symbols for shaft deviations are lower case letters (es, ei) and symbols for hole deviations are upper case letters (ES, EI). #### 3.4.1 #### limit deviations upper deviation and lower deviation #### 3.4.1.1 #### upper deviation ES, es algebraic difference between the maximum limit of size and the corresponding basic size #### 3.4.1.2 #### lower deviation EI, ei algebraic difference between the minimum limit of size and the corresponding basic size #### 3.5 #### size tolerance difference between the maximum limit of size and the minimum limit of size, i.e. the difference between the upper deviation and the lower deviation NOTE The tolerance is an absolute value without sign. ### Symbols and designations See Table 1. Table 1 — Symbols and designations | Symbol of dimension Designation | | Symbol of limit deviation | |---------------------------------|--|---------------------------| | A | Smallest width of a trapezoidal segment | T_A | | В | Width of a segment, stick or stone | T_B | | С | Thickness of a segment, stick or stone | T_C | | D | Outside diameter of abrasive products | T_D | | E | Thickness at bore of cup, dish, recessed and relieved wheels | T_E | | F | Depth of the 1st recess | _ | | G | Depth of the 2nd recess | | | Н | Abrasive product bore diameter, thread diameter of wheels with threaded insert | T_H | | H_1 | Diameter of counterbore | T_{H1} | | J | Smallest diameter of taper cup wheel, dish wheels, tapered and hubbed wheels | _ | | K | Internal diameter of recess of taper cup wheel and dish wheels | T_K | | L | Length of segments, length of thread bore of wheels with threaded insert, sticks and stones | T_L | | N | Depth of the relief | _ | | P | Recessed diameter | _ | | R | Radius of recessed grinding wheels, segments, cones and plugs | T_R | | T | Overall thickness | T_T | | U | Smallest thickness of tapered, hubbed and depressed centre wheels, e.g. in Type 4 or Type 38 | T_U | | W | Rim width of cups, cylinders and dishes | T_W | | _ | Axial run-out tolerance | T_{PL} | | _ | Radial run-out tolerance | T_{RL} | #### 5 Straight grinding wheels, recessed, relieved and hubbed wheels #### 5.1 Types involved Types 1, 3, 4, 5, 7, 20 to 26, 38 and 39. See Figures 1 to 5. #### Type 1 Figure 1 — Straight grinding wheel, e.g. as specified in ISO 603-1 #### Type 5 Figure 2 — Grinding wheel recessed on one side, e.g. as specified in ISO 603-1 Type 7 Figure 3 — Grinding wheel recessed on both sides, e.g. as specified in ISO 603-1 #### Type 38 Figure 4 — Hubbed wheel, e.g. as specified in ISO 603-1 #### **Type 39** Figure 5 — Double hubbed wheel, e.g. as specified in ISO 603-1 #### Straight grinding wheels for general applications 5.2 #### Limit deviations T_D of the outside diameter, axial run-out tolerance T_{PL} and radial run-out tolerances, T_{RL} The limit deviations of the outside diameter, the axial run-out tolerances, $T_{\rm PL}$ and the radial run-out tolerances, $T_{\rm RL}$ as specified in Table 2 apply to the respective range of diameters *D*. Table 2 — Limit deviations for outside diameters and run-out tolerances | D | T_D | $T_{\sf PL}$ | T_{RL} | |------------------------|-------|--------------|----------| | 3 ≤ D ≤ 8 | ± 0,5 | | 0,3 | | 8 < <i>D</i> ≤ 20 | ± 0,8 | 0,2 | 0,3 | | 20 < <i>D</i> ≤ 50 | ± 1,2 | 0,2 | 0,3 | | 50 < <i>D</i> ≤ 125 | ± 2 | 0,2 | 0,4 | | 125 < <i>D</i> ≤ 300 | ± 3,2 | 0,3 | 0,5 | | 300 < <i>D</i> ≤ 762 | ± 5 | 0,3 | 0,6 | | 762 < <i>D</i> ≤ 2 000 | ± 8 | 0,4 | 0,8 | #### 5.2.2 Limit deviations T_H of the hole diameter The limit deviations of the hole diameters H > 30 mm correspond to the tolerance class H11 as specified in ISO 286-2:1988, Table 6. For hole diameters H < 30 mm, the limit deviations are larger than H11 for technical reasons of manufacture. The limit deviations of hole diameters are given in Table 3. Table 3 — Limit deviations for hole diameters | Н | T_H | |----------------------|------------| | 1,6 ≤ <i>H</i> ≤ 50 | +0,16
0 | | 50 < <i>H</i> ≤ 80 | +0,19
0 | | 80 < <i>H</i> ≤ 180 | +0,25
0 | | 180 < <i>H</i> ≤ 250 | +0,29
0 | | 250 < <i>H</i> ≤ 315 | +0,32
0 | | 315 < <i>H</i> ≤ 400 | +0,36
0 | | 400 < <i>H</i> ≤ 500 | +0,4
0 | | 500 < H | +0,44
0 | #### 5.2.3 Limit deviations T_P of the recess diameter and assignment of radii R The limit deviations T_P of the recess diameter as specified in Table 4 apply to the respective range of diameters P. The values for the radii *R* in the recess are a function of the recess diameter *P* and are maximum dimensions. Table 4 — Limit deviations for recess diameters and recess radii | P | T_{P} | R
max. | |-----------------------------|-----------|-----------| | $3,2\leqslant P\leqslant 8$ | +0,8
0 | 0,8 | | 8 < <i>P</i> ≤ 20 | +1,2
0 | 1,2 | | 20 < <i>P</i> ≤ 50 | +2
0 | 2 | | 50 < <i>P</i> ≤ 125 | +3,2
0 | 3,2 | | 125 < <i>P</i> ≤ 315 | +5
0 | 5 | | 315 < <i>P</i> ≤ 900 | +8
0 | 8 | #### Limit deviations of T_T and of the grinding wheel thickness T_U The limit deviations T_T of the overall grinding wheel thicknesses and of the smallest thicknesses T_U as specified in Table 5 apply to the respective range of thickness *T*. Table 5 — Limit deviations of overall thicknesses T_T and of the smallest thickness $T_{\cal U}$ | T | T_T | T_U | | |----------------------|-----------|-------|--| | 0,4 ≤ <i>T</i> ≤ 1,6 | +0,2
0 | | | | 1,6 < <i>T</i> ≤ 5 | ± 0,4 | | | | 5 < <i>T</i> ≤ 16 | ± 0,8 | | | | 16 < <i>T</i> ≤ 50 | ± 1,5 | | | | 50 < <i>T</i> ≤ 160 | ± 2 | | | | 160 < <i>T</i> ≤ 500 | ± 3,5 | | | #### 5.2.5 Limit deviations T_E of thickness at bore For grinding wheels with one recess (see type 5), or grinding wheels with two recesses (see type 7), the limit deviations of thickness at bore as specified in Table 6. Table 6 — Limit deviations for bore thicknesses | E | T_E | |---------------------|-----------| | 1,6 <i>≤ E ≤</i> 5 | +0,8
0 | | 5 < <i>E</i> ≤ 16 | +1,6
0 | | 16 < <i>E</i> ≤ 50 | +2,4
0 | | 50 < <i>E</i> ≤ 160 | +3,2
0 | #### Straight grinding wheels for special applications 5.3 #### 5.3.1 Scope The limit deviations and tolerances as specified in 5.3.2 to 5.3.6 apply to the following fields of application: - centreless grinding; - thread grinding; - generative grinding of gear teeth; - profile grinding; - slot grinding; - crankshaft grinding; - plunge grinding; - grinding of balls for rolling bearings. ## 5.3.2 Limit deviations T_D of the outside diameter, axial run-out tolerance, $T_{\rm PL}$ and radial run-out tolerance, $T_{\rm RL}$ The limit deviations T_D of the outside diameter, the axial run-out tolerances, T_{PL} and the radial run-out tolerances, T_{RL} as specified in Table 7 apply to the respective range of diameters D. Table 7 — Limit deviations for outside diameters and run-out tolerances | D | T_D | T_{PL} | T_{RL} | |------------------------|-------|----------|----------| | 3 ≤ D ≤ 8 | ± 0,3 | _ | 0,3 | | 8 < <i>D</i> ≤ 20 | ± 0,5 | 0,2 | 0,3 | | 20 < <i>D</i> ≤ 50 | ± 0,8 | 0,2 | 0,3 | | 50 < <i>D</i> ≤ 125 | ± 1,2 | 0,2 | 0,4 | | 125 < <i>D</i> ≤ 300 | ± 2 | 0,2 | 0,4 | | 300 < <i>D</i> ≤ 762 | ± 3,2 | 0,2 | 0,5 | | 762 < <i>D</i> ≤ 2 000 | ± 5 | 0,3 | 0,6 | #### 5.3.3 Limit deviations T_H of the hole diameter The specifications in 5.2.2 as well as the values in Table 3 apply to the limit deviations of the holes *H*. #### 5.3.4 Limit deviations T_p of the recess diameters and assignment of radii R The specifications in 5.2.3 as well as the values in Table 4 apply to the limit deviations T_P of the recess diameters and the assignment of radii R. #### 5.3.5 Limit deviations T_T of the grinding wheel thickness The specifications in 5.2.4 as well as the values in Table 5 apply to the limit deviations T_T of the grinding wheel thickness for the fields of application: - thread grinding; - generative grinding of gear teeth; - profile grinding; - slot grinding; - saw sharpening; - plunge grinding; #### ISO 13942:2000(E) |
tool | arin | ding. | |----------|--------|--------| | LOO! | MI III | an ig. | The values as specified in Table 8 apply to the limit deviations T_T of the grinding wheel thickness for the field of applications: - centreless grinding; - crankshaft grinding; - grinding of balls; - thread grinding; - race grinding. Table 8 — Limit deviations for selected fields of application | Field of application | T_{T} | |-----------------------------------|-----------| | Centreless grinding | ± 1,6 | | Crankshaft grinding | +0,4
0 | | Grinding of balls | ± 4 | | Thread grinding and race grinding | +0,2
0 | #### 5.3.6 Limit deviations T_E of thickness at bore The specifications in 5.2.5 as well as the values in Table 6 apply to the limit deviations T_E of thickness at bore. #### 5.4 Grinding wheels for high-pressure grinding The limit deviations and tolerances for grinding wheels used for high-pressure grinding are specified in Table 9. Run-out tolerances for T_{PL} and T_{RL} are as in Table 2. Table 9 — Limit deviations and tolerances for high-pressure grinding | D | T_D | T | T_T | Н | T_H | | |-----|-------|---------------------|-------|-------------------------------------|--------------------------|-------| | 406 | ± 5 | 40 ≤ <i>T</i> ≤ 80 | ± 1,5 | $152,4 \leqslant H \leqslant 203,2$ | +0,46
+0,21 | | | 508 | ± 5,5 | | 155 | , | 203,2 < <i>H</i> ≤ 304,8 | +0,55 | | 610 | | | | 200,2 < 11 < 504,0 | +0,26 | | | 914 | ± 7 | 80 < <i>T</i> ≤ 125 | ± 2 | 304,8 < H | +0,65
+0,33 | | #### 5.5 Straight grinding wheels used in sets #### 5.5.1 General In principle, the limit deviations as specified in 5.2 and 5.3 apply respectively to straight grinding wheels which are used in sets. However, additional restrictions as specified in 5.5.2 and 5.5.3 are to be observed. #### 5.5.2 Limit deviations T_D of the outside diameter The actual size of the outside diameters D of the separate grinding wheels shall not deviate by more than 1 mm within a grinding wheel set. #### 5.5.3 Limit deviations T_T of the grinding wheel thickness For grinding wheel sets with distance rings the limit deviations T_T of each separate grinding wheel are \pm 0,2 mm. For grinding wheel sets without distance rings, neither the limit deviations T_T of the total thickness nor the limit deviations T_T of any partial width of several separate grinding wheels shall exceed the values as specified in Table 5. #### 5.6 Cemented or clamped cylinder wheels and disc wheels #### 5.6.1 Types involved Types 2, 35, 36 and 37. The limit deviations and tolerances as specified in 5.6.2 and 5.6.3 apply for surface grinding/side grinding. ## 5.6.2 Limit deviations $T_{\rm D}$ of the outside diameter, axial run-out tolerance, $T_{\rm PL}$ and radial run-out tolerance, $T_{\rm RL}$ The limit deviations T_D for the outside diameter, the axial run-out tolerances, T_{PL} and the radial run-out tolerances, T_{RL} as specified in Table 10 apply to the standardized nominal outside diameters D. Table 10 — Limit deviations for nominal outside diameters and run-out tolerances | D | T_D a | $T_D^{}$ b | T_{PL} | T_{RL} | |------------------------|---------|------------|----------|----------| | <i>D</i> ≤ 406 | 0
-1 | +1
-2 | 0,0 | 6 | | 406 < <i>D</i> ≤ 610 | 0
-2 | +2
-4 | 0,8 | | | 610 < <i>D</i> ≤ 1 067 | 0
-3 | +3
-6 | 1 | | a Centering via the outside diameter. b Other types of centering. #### 5.6.3 Limit deviations T_H of the hole diameter The limit deviations T_H as specified in Table 11 apply only to the hole diameters H. Table 11 — Limit deviations for hole diameters | Н | T _H a | T _H b | |----------------------|------------------|------------------| | 10 ≤ <i>H</i> ≤ 200 | +1
0 | ± 1 | | 200 < <i>H</i> ≤ 500 | +2 | ± 2 | | 500 < <i>H</i> ≤ 800 | +3 | ± 3 | a Centering via the hole. #### 5.6.4 Limit deviations T_W of the wall thickness The limit deviations T_W specified in Table 12 apply to the wall thickness W, types 2 and 37. T_W only applies to cylinder wheels which are centered via the outside diameter. Table 12 — Limit deviations for wall thicknesses | W | T_W | |--------------------|--------------| | <i>W</i> ≤ 25 | ± 1,5 | | 25 < <i>W</i> ≤ 50 | +2,0
-1,5 | | 50 < W | +3,0
-1,5 | #### 5.6.5 Limit deviations T_D of the outside diameter of grinding wheel sets For grinding wheel sets of the same outside diameter, the actual size may deviate from the nominal size of the grinding wheels by 1 mm. #### 5.6.6 Limit deviations T_T of the grinding wheel thickness The limit deviations T_T as specified in Table 13 apply to the grinding wheel types 2, 35, 36 and 37 for surface grinding/side grinding. Table 13 — Limit deviations for grinding wheel thicknesses | T | T_T | |---------------------|-------| | 16 ≤ <i>T</i> ≤ 50 | ± 1,5 | | 50 < <i>T</i> ≤ 160 | ± 2,5 | b Other types of centering. ## 6 Dish and cup wheels #### 6.1 Types involved Types 6, 11 and 12. See Figures 6, 7 and 8. #### Type 6 Figure 6 — Straight cup wheel, e.g. as specified in ISO 603-5 #### Type 11 Figure 7 —Taper cup wheel, e.g. as specified in ISO 603-6 #### Type 12 Figure 8 — Dish wheel, e.g. as specified in ISO 603-6 #### 6.2 Dish and cup wheels for general applications Limit deviations T_D , T_H , T_T and tolerances $T_{\rm PL}$, $T_{\rm RL}$ as specified in 5.2 Limit deviations T_E , T_U and T_W as specified in Table 14. Table 14 — Limit deviations and run-out tolerances for dish and cup wheels for general applications | E, U, W | T_E | T_U | T_W | |--|-----------|-------|-------| | <i>E</i> , <i>U</i> , <i>W</i> ≤ 6 | +0,8 | ± 0,5 | | | 6 < <i>E</i> , <i>U</i> , <i>W</i> ≤ 20 | +1,2
0 | ± 0,8 | | | 20 < <i>E</i> , <i>U</i> , <i>W</i> ≤ 32 | +1,8
0 | ± 1,2 | | | 32 < E, U, W | +2,4 | ± 1,6 | | #### 6.3 Dish and cup wheels for tool grinding T_D , T_H and T_T as specified in 5.2. Run-out tolerances T_{PL} , T_{RL} and limit deviations T_W , T_E and T_K as specified in Table 15. Table 15 — Limit deviations and run-out tolerances for dish and cup wheels for tool grinding | T_{PL} | T_{RL} | T_{W} | T_{E} | T_{K} | |----------|----------|---------|---------|---------| | 0,2 | 0,3 | ± 0,4 | ± 0,4 | ± 0,4 | #### 7 Grinding wheels for cutting-off, deburring and fettling/snagging #### 7.1 Scope 7.2 to 7.4 apply to flat wheels for cutting-off and depressed centre wheels for deburring, fettling and snagging with resinoid bond or other thermosetting organic bonds, resinoid bond fiber-reinforced. See Figures 9 and 10. Types 41, 42 Figure 9 — Type 41 flat cutting-off wheel, e.g. as specified in ISO 603-16 Types 27, 28 Figure 10 — Type 27 depressed centre wheel, e.g. as specified in ISO 603-14 ## 7.2 Limit deviations T_D of the outside diameter, axial run-out tolerance, $T_{\rm PL}$, and the radial run-out tolerance, $T_{\rm RL}$ Limit deviations and tolerances as specified in Table 16. Table 16 — Limit deviations for outside diameters and run-out tolerances | D | T_D | T_{PL} | T_{RL} | |--------------------------|----------|----------|----------| | 30 ≤ <i>D</i> ≤ 100 | ± 2 | 0, | 5 | | 100 < <i>D</i> ≤ 150 | ± 2,5 | 0,6 | | | 150 < <i>D</i> ≤ 200 | ± 3 | 0,8 | | | 200 < <i>D</i> ≤ 300 | +5
-1 | 1 | | | 300 < <i>D</i> ≤ 400 | +6
0 | 1,2 | | | 400 < <i>D</i> ≤ 600 | +10
0 | 1,2 | | | 600 < <i>D</i> ≤ 1 000 | +15
0 | 1,6 | | | 1 000 < <i>D</i> ≤ 1 800 | +20
0 | 2 | | ### 7.3 Limit deviations T_H of the hole diameter The limit deviations T_H as specified in Table 17 apply to the standardized hole diameters H. Table 17 — Limit deviations for standardized hole diameters | Н | T_H | | |--|------------|--| | 6 ≤ <i>H</i> ≤ 30 | +0,16
0 | | | 30 < <i>H</i> ≤ 50 | +0,25
0 | | | 50 < <i>H</i> ≤ 80 | +0,3
0 | | | 80 < <i>H</i> ≤ 120 | +0,35
0 | | | 120 < <i>H</i> ≤ 180 | +0,4
0 | | | 180 < <i>H</i> ≤ 250 | +0,46
0 | | | NOTE The limit deviations for holes $H > 30$ mm correspond to H12. | | | ### 7.4 Limit deviations T_T and T_U of the grinding wheel thickness The limit deviations T_T and T_U as specified in Table 18 apply to standardized grinding wheels in accordance with ISO 603-8, ISO 603-12 and ISO 603-14 to ISO 603-16. Table 18 — Limit deviations for grinding wheel thicknesses | T, U | T_T | T_U | |---------------------------------|-------|-------| | <i>T</i> , <i>U</i> ≤ 1,6 | ± 0,2 | | | 1,6 < <i>T</i> , <i>U</i> ≤ 3,2 | ± 0,3 | | | 3,2 < <i>T</i> , <i>U</i> ≤ 4 | ± 0,4 | | | 4 < T, U ≤ 5 | ± 0,6 | | | 5 < <i>T</i> , <i>U</i> ≤ 6 | ± 0,8 | | | 6 < <i>T</i> , <i>U</i> ≤ 10 | ± 1 | | | 10 < T, U ≤ 16 | ± 1,2 | | #### 8 Segments See Figures 11 to 13. #### **Type 3101** Figure 11 — Segment, rectangular section #### **Type 3104** Figure 12 — Segment, with outside radius #### **Type 3109** Figure 13 — Segment, tapezoidal section The limit deviations as specified in Table 19 apply to the thickness C, width B (or B and A), and length L of the segments. For dimensions see ISO 603-5. Table 19 — Limit deviations for thickness, width and length | T_A | T_B | T_C | T_L | |-------|--------|-------|-------| | _ | 0
1 | ± 1 | ± 3 | #### Cones and plugs with threaded insert The limit deviations as specified in Table 20 are for cones and plugs with threaded inserts for types 16, 18, 18R and 19. For dimensions see ISO 603-12. Table 20 — Limit deviations for cones and plugs | D, T | T_D, T_T | _{Т_{Н1}} а | |------------------|--------------|-----------------------------| | 32 and 40 | +1,5
-0,5 | | | 50 | +2,0
-0,5 | | | 63 | +3,0
-0,5 | H11 | | 80 | +3,5
-0,5 | | | 100 ^b | +4,0
-0,5 | | Limit deviation of the counterbore. #### 10 Honing stones and superfinishings For type 54, the tolerance zone h13 applies to the dimensions B and C and \pm 2 mm for the lengths. For dimensions see ISO 603-10. #### 11 Hand finishing sticks The limit deviations as specified are \pm 2 mm for $L \le 100$ mm, \pm 3 mm for $L \le 150$ mm and \pm 5 mm for $L \le 250$ mm. The limit deviations as specified \pm 0,5 mm for 6 mm \leq $B \leq$ 16 mm and \pm 1 mm for B > 16 mm. For dimensions see ISO 603-11. b Only for thickness T. ISO 13942:2000(E) ICS 25.100.70 Price based on 17 pages