

Reference number
ISO 13606-2:2008(E)

© ISO 2008

INTERNATIONAL
STANDARD

ISO
13606-2

First edition
2008-12-01

Health informatics — Electronic health
record communication —
Part 2:
Archetype interchange specification

Informatique de santé — Communication du dossier de santé
informatisé —

Partie 2: Spécification d'échange d'archétype

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2008 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved iii

Contents Page

Foreword.. iv
Introduction .. v
1 Scope ... 1
2 Conformance... 1
3 Normative references ... 1
4 Terms and definitions... 2
5 Symbols and abbreviations ... 3
6 Archetype representation requirements .. 4
6.1 General... 4
6.2 Archetype definition, description and publication information... 4
6.3 Archetype node constraints .. 6
6.4 Data value constraints.. 8
6.5 Profile in relation to EN 13606-1 Reference Model.. 10
7 Archetype model... 11
7.1 Introduction ... 11
7.2 Overview .. 14
7.3 The archetype package .. 18
7.4 The archetype description package.. 20
7.5 The constraint model package .. 24
7.6 The assertion package ... 31
7.7 The primitive package .. 35
7.8 The ontology package.. 42
7.9 The domain extensions package .. 44
7.10 The support package.. 47
7.11 Generic types package... 56
7.12 Domain-specific extensions (informative) ... 57
8 Archetype Definition Language (ADL).. 58
8.1 dADL — Data ADL... 58
8.2 cADL — Constraint ADL... 79
8.3 Assertions ... 106
8.4 ADL paths .. 110
8.5 ADL — Archetype definition language ... 111
Bibliography ... 123

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

iv © ISO 2008 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13606-2 was prepared by Technical Committee ISO/TC 215, Health informatics.

ISO 13606 consists of the following parts, under the general title Health informatics — Electronic health record
communication:

⎯ Part 1: Reference model

⎯ Part 2: Archetype interchange specification

⎯ Part 3: Reference archetypes and term lists

⎯ Part 5: Interface specification

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved v

Introduction

Comprehensive, multi-enterprise and longitudinal electronic health records will often in practice be achieved
through the joining up of multiple clinical applications, databases (and increasingly devices) that are each
tailored to the needs of individual conditions, specialties or enterprises.

This requires that Electronic Health Record (EHR) data from diverse systems be capable of being mapped to
and from a single comprehensive representation, which is used to underpin interfaces and messages within a
distributed network (federation) of EHR systems and services. This common representation has to be
sufficiently generic and rich to represent any conceivable health record data, comprising part or all of an EHR
(or a set of EHRs) being communicated.

The approach adopted in the ISO 13606 series of International Standards, underpinned by international
research on the EHR, has been to define a rigorous and generic Reference Model that is suitable for all kinds
of data and data structures within an EHR, and in which all labelling and context information is an integral part
of each construct. An EHR Extract (as defined in ISO 13606-1) will contain all the names, structure and
context required for it to be interpreted faithfully on receipt, even if its organization and the nature of the
clinical content have not been “agreed” in advance.

However, the wide-scale sharing of health records, and their meaningful analysis across distributed sites, also
requires that a consistent approach be used for the clinical (semantic) data structures that will be
communicated via the Reference Model, so that equivalent clinical information is represented consistently.
This is necessary in order for clinical applications and analysis tools to safely process EHR data that have
come from heterogeneous sources.

Archetypes

The challenge for EHR interoperability is therefore to devise a generalized approach to representing every
conceivable kind of health record data structure in a consistent way. This needs to cater for records arising
from any profession, speciality or service, whilst recognising that the clinical data sets, value sets, templates,
etc., required by different health care domains will be diverse, complex and will change frequently as clinical
practice and medical knowledge advance. This requirement is part of the widely acknowledged health
informatics challenge of semantic interoperability.

The approach adopted by this part of ISO 13606 distinguishes a Reference Model, used to represent the
generic properties of health record information, and Archetypes (conforming to an Archetype Model), which
are metadata used to define patterns for the specific characteristics of the clinical data that represent the
requirements of each particular profession, speciality or service.

The Reference Model is specified as an Open Distributed Processing (ODP) Information Viewpoint Model,
representing the global characteristics of health record components, how they are aggregated, and the
context information required to meet ethical, legal and provenance requirements. In the ISO 13606 series of
International Standards, the Reference Model is defined in ISO 13606-1. This model defines the set of classes
that form the generic building blocks of the EHR. It reflects the stable characteristics of an electronic health
record, and would be embedded in a distributed (federated) EHR environment as specific messages or
interfaces (as specified in ISO 13606-5).

Archetypes are effectively pre-coordinated combinations of named RECORD_COMPONENT hierarchies that
are agreed within a community in order to ensure semantic interoperability, data consistency and data quality.

For an EHR_Extract, as defined in ISO 13606-1, an archetype specifies (and effectively constrains) a
particular hierarchy of RECORD_COMPONENT subclasses, defining or constraining their names and other
relevant attribute values, optionality and multiplicity at any point in the hierarchy, the data types and value
ranges that ELEMENT data values may take, and may include other dependency constraints. Archetype

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

vi © ISO 2008 – All rights reserved

instances themselves conform to a formal model, known as an Archetype Model (which is a constraint model,
also specified as an ODP Information Viewpoint Model). Although the Archetype Model is stable, individual
archetype instances may be revised or succeeded by others as clinical practice evolves. Version control
ensures that new revisions do not invalidate data created with previous revisions.

Archetypes may be used within EHR systems to govern the EHR data committed to a repository. However, for
the purposes of this interoperability standard, no assumption is made about the use of archetypes within the
EHR provider system whenever this standard is used for EHR communication. It is assumed that the original
EHR data, if not already archetyped, may be mapped to a set of archetypes, if desired, when generating the
EHR_EXTRACT.

The Reference Model defined in ISO 13606-1 has attributes that can be used to specify the archetype to
which any RECORD_COMPONENT within an EHR_EXTRACT conforms. The class
RECORD_COMPONENT includes an attribute archetype_id to identify the archetype and node to which that
RECORD_COMPONENT conforms. The meaning attribute, in the case of archetyped data, refers to the
primary concept to which the corresponding archetype node relates. However, it should be noted that
ISO 13606-1 does not require that archetypes be used to govern the hierarchy of RECORD_COMPONENTS
within an EHR_EXTRACT; the archetype-related attributes are optional in that model. It is recognised that the
international adoption of an archetype approach will be gradual, and may take some years.

Archetype repositories

The range of archetypes required within a shared EHR community will depend upon its range of clinical
activities. The total set needed on a national basis is currently unknown, but there might eventually be several
thousand archetypes globally. The ideal sources of knowledge for developing such archetype definitions will
be clinical guidelines, care pathways, scientific publications and other embodiments of best practice. However,
de facto sources of agreed clinical data structures might also include:

⎯ the data schemata (models) of existing clinical systems;

⎯ the lay-out of computer screen forms used by these systems for data entry and for the display of analyses
performed;

⎯ data-entry templates, pop-up lists and look-up tables used by these systems;

⎯ shared-care data sets, messages and reports used locally and nationally;

⎯ the structure of forms used for the documentation of clinical consultations or summaries within paper
records;

⎯ health information used in secondary data collections;

⎯ the pre-coordinated terms in terminology systems.

Despite this list of de facto ways in which clinical data structures are currently represented, these formats are
very rarely interoperable. The use of standardized archetypes provides an interoperable way of representing
and sharing these specifications, in support of consistent (good quality) health care record-keeping and the
semantic interoperability of shared EHRs.

The involvement of national health services, academic organizations and professional bodies in the
development of archetypes will enable this approach to contribute to the pursuit of quality evidence-based
clinical practice. The next key challenge is to foster communities to build up libraries of archetypes. It is
beyond the scope of this part of ISO 13606 to assert how this work should be advanced, but, in several
countries so far it would appear that national health programmes are beginning to organize clinical-
informatics-vendor teams to develop and operationalize sets of archetypes to meet the needs of specific
healthcare domains. In the future, regional or national public domain libraries of archetype definitions might be
accessed via the Internet, and downloaded for local use within EHR systems. Such useage will also require
processes to verify and certify the quality of shared archetypes, which are also beyond the scope of this part

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved vii

of ISO 13606 but are being taken forward by non-profit-making organizaitons such as the openEHR
Foundation and the EuroRec Institute.

Communicating archetypes

This part of ISO 13606 specifies the requirements for a comprehensive and interoperable archetype
representation, and defines the ODP Information Viewpoint representation for the Archetype Model and an
optional archetype interchange format called Archetype Definition Language (ADL).

This part of ISO 13606 does not require that any particular model be adopted as the internal architecture of
archetype repositories, services or components used to author, store or deploy archetypes in collaboration
with EHR services. It does require that these archetypes be capable of being mapped to the Archetype Model
defined in this part of ISO 13606 in order to support EHR communication and interoperability within an
EHR-sharing community.

Overview of the archetype model

This section provides a general informative description of the model that is specified in Clause 7.

The overall archetype model consists of identifying information, a description (its metadata), a definition
(expressed in terms of constraints on instances of an object model), and an ontology. Identifying information
and lifecycle state are part of the ARCHETYPE class. The archetype description is separated into revision
history information and descriptive information about the archetype. Revision history information is concerned
with the committal of the archetype to a repository, and takes the form of a list of audit trail items, while
descriptive information describes the archetype itself (regardless of whether it has been committed to a
repository of any kind).

The archetype definition, the “main” part of the archetype model, is an instance of a C_COMPLEX_OBJECT,
since the root of the constraint structure of an archetype shall always take the form of a constraint on a non-
primitive object type. The fourth main part of the archetype model, the ontology, is represented by its own
class, and is what allows the archetypes to be natural-language- and terminology-neutral.

An enumeration class, VALIDITY_KIND, is also included in the archetype package. This is intended to be
used as the type of any attribute in this constraint model whose value is logically “mandatory”, “optional”, or
“disallowed”. It is used in this model in the classes C_Date, C_Time and C_Date_Time.

Archetypes contain some natural language elements, including the description and ontology definitions. Every
archetype is therefore created in some original language, which is recorded in the original_language attribute
of the ARCHETYPE class. An archetype is translated by doing the following:

⎯ translating every language-dependent element into the new language;

⎯ adding a new TRANSLATION_DETAILS instance to ARCHETYPE.translations, containing details about
the translator, organization, quality assurance and so on.

The languages_available function provides a complete list of languages in the archetype.

The archetype definition

The main definitional part of an archetype consists of alternate layers of object- and attribute-constraining
nodes, each containing the next level of nodes. In this section, the word “attribute” refers to any data property
of a class, regardless of whether it is regarded as a “relationship” (i.e. association, aggregation, or
composition) or a “primitive” (i.e. value) attribute. At the leaves are primitive object constrainer nodes
constraining primitive types such as String, Integer, etc. There are also nodes that represent internal
references to other nodes, constraint reference nodes that refer to a text constraint in the constraint binding
part of the archetype ontology, and archetype constraint nodes, which represent constraints on other
archetypes allowed to appear at a given point.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

viii © ISO 2008 – All rights reserved

The full list of node types is as follows:

⎯ C_complex_object: any interior node representing a constraint on instances of a non-primitive type, e.g.
ENTRY, SECTION;

⎯ C_attribute: a node representing a constraint on an attribute (i.e. UML “relationship” or “primitive
attribute”) in an object type;

⎯ C_primitive_object: a node representing a constraint on a primitive (built-in) object type;

⎯ Archetype_internal_ref: a node that refers to a previously defined object node in the same archetype; the
reference is made using a path;

⎯ Constraint_ref: a node that refers to a constraint on (usually) a text or coded term entity, which appears in
the ontology section of the archetype, and in ADL, and is referred to using an “acNNNN” code; the
constraint is expressed in terms of a query on an external entity, usually a terminology or ontology;

⎯ Archetype_slot: a node whose statements define a constraint that determines which other archetypes
may appear at that point in the current archetype; logically it has the same semantics as a
C_COMPLEX_OBJECT, except that the constraints are expressed in another archetype, not the current
one.

The archetype description

What is normally considered the “metadata” of an archetype, i.e. its author, date of creation, purpose, and
other descriptive items, is described by the ARCHETYPE_DESCRIPTION and
ARCHETYPE_DESCRIPTION_ITEM classes. The parts of this that are in natural language, and therefore
may require translated versions, are represented in instances of the ARCHETYPE_DESCRIPTION_ITEM
class. If an ARCHETYPE_DESCRIPTION has more than one ARCHETYPE_DESCRIPTION_ITEM, each of
these should carry exactly the same information in a different natural language.

When an archetype is translated for use in another language environment, each
ARCHETYPE_DESCRIPTION_ITEM needs to be copied and translated into the new language.

The AUDIT_DETAILS class is concerned with the creation and modification of the archetype in a repository.
Each instance of this class in an actual archetype represents one act of committal to the repository, with the
attributes documenting who, when and why.

NOTE Revision of an archetype should be limited to modifying the descriptive information and adding language
translations and/or term bindings. If the definition part of an archetype is no longer valid it should instead be replaced with
a new archetype to ensure that corresponding EHR data instances each conform to the same archetype specification.

The archetype ontology

All linguistic entities are defined in the ontology part of the archetype. There are four major parts in an
archetype ontology: term definitions, constraint definitions, term bindings and constraint bindings. The former
two define the meanings of various terms and textual constraints which occur in the archetype; they are
indexed with unique identifiers that are used within the archetype definition body. The latter two ontology
sections describe the mappings of terms used internally to external terminologies.

Archetype specialization

Archetypes may be specialized: an archetype is considered a specialization of another archetype if it specifies
that archetype as its parent, and only makes changes to its definition such that its constraints are “narrower”
than those of the parent. Any data created via the use of the specialized archetype shall be conformant both
to it and to its parent.

Every archetype has a “specialization depth”. Archetypes with no specialization parent have depth 0, and
specialized archetypes add one level to their depth for each step down a hierarchy required to reach them.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved ix

Archetype composition

Archetypes may be composed to form larger structures semantically equivalent to a single large archetype.
Archetype slots are the means of composition, and are themselves defined in terms of constraints.

Data types and the support package

The model is dependent on three groups of assumed types, whose names and assumed semantics are
described by ISO/IEC 11404.

The first group comprises the most basic types:

⎯ Any

⎯ Boolean

⎯ Character

⎯ Integer

⎯ Real

⎯ Double

⎯ String

The second comprises the assumed library types:

⎯ date

⎯ time

⎯ date_time

⎯ duration

These types are supported in most implementation technologies, including XML, Java and other programming
languages. They are not defined in this specification, allowing them to be mapped to the most appropriate
concrete types in each implementation technology.

The third group comprises the generic types:

⎯ List<T> (ordered, duplicates allowed)

⎯ Set<T> (unordered, no duplicates)

⎯ Hash <T, K > (keyed list of items of any type)

⎯ Interval <T> (interval of instances of any ordered type)

Although these types are supported in most implementation technologies, they are not yet represented in UML.
The semantics of these types are therefore defined in the Generic_Types package of the UML model.

The remaining necessary types are defined in the Support Package of the Archetype Model.

⎯ ARCHETYPE_ID

⎯ HIER_OBJECT_ID

⎯ TERMINOLOGY_ID

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

x © ISO 2008 – All rights reserved

⎯ CODE_PHRASE

⎯ CODED_TEXT

The support package also includes two enumeration classes to provide controlled data sets needed by this
part of ISO 13606.

The constraint model package

Any archetype definition is an instance of a C_COMPLEX_OBJECT, which expresses constraints on a class
in the underlying Reference Model (see ISO 13606-1), recorded in the attribute rm_type_name. A
C_COMPLEX_OBJECT consists of attributes of the type C_ATTRIBUTE, which are constraints on the
attributes (i.e. any property, including relationships) of that Reference Model class. Accordingly, each
C_ATTRIBUTE records the name of the constrained attribute (in rm_attribute_name), the existence and
cardinality expressed by the constraint (depending on whether the attribute it constrains is a multiple or single
relationship), and the constraint on the object to which this C_ATTRIBUTE refers via its children attribute
(according to its reference model) in the form of further C_OBJECTs.

The key subtypes of C_OBJECT are:

⎯ C_COMPLEX_OBJECT

⎯ C_PRIMITIVE_OBJECT

⎯ ARCHETYPE_SLOT

ARCHETYPE_INTERNAL_REF and CONSTRAINT_REF are used to express, respectively, a “slot” where
further archetypes may be used to continue describing constraints; a reference to a part of the current
archetype that expresses exactly the same constraints needed at another point; a reference to a constraint on
a constraint defined in the archetype ontology, which in turn points to an external knowledge resource, such
as a terminology.

The effect of the model is to create archetype description structures that are a hierarchical alternation of object
and attribute constraints. The repeated object/attribute hierarchical structure of an archetype provides the
basis for using paths to reference any node in an archetype. Archetype paths follow a syntax that is a subset
of the W3C Xpath syntax.

All node types

All nodes in an archetype constraint structure are instances of the supertype ARCHETYPE_CONSTRAINT,
which provides a number of important common features to all nodes.

The any_allowed Boolean, if true, indicates that any value permitted by the reference model for that attribute
is allowed by the archetype; its use permits the logical idea of a completely “open” constraint being simply
expressed, avoiding the need for any further substructure.

Attribute nodes

Constraints on attributes are represented by instances of the two subtypes of C_ATTRIBUTE:
C_SINGLE_ATTRIBUTE and C_MULTIPLE_ATTRIBUTE. For both subtypes, the common constraint is
whether the corresponding instance (defined by the rm_attribute_name attribute) must exist. Both subtypes
have a list of children, representing constraints on the object value(s) of the attribute.

Single-valued attributes are constrained by instances of the type C_SINGLE_ATTRIBUTE, which uses the
children to represent multiple alternative object constraints for the attribute value.

Multiple-valued attributes are constrained by an instance of C_MULTIPLE_ATTRIBUTE, which allows multiple
co-existing member objects of the container value of the attribute to be constrained, along with a cardinality
constraint, describing ordering and uniqueness of the container.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved xi

Cardinality is only required for container objects such as List<T>, Set<T>, Bag<T> and so on, whereas
existence is always required. If both are used, the meaning is as follows: the existence constraint says
whether the container object will be there (at all), while the cardinality constraint says how many items shall be
in the container, and whether it acts logically as a list, set or bag.

Primitive types

Constraints on primitive types are defined by the classes inheriting from C_PRIMITIVE, namely C_STRING,
C_INTEGER and so on.

Constraint references

A CONSTRAINT_REF is a proxy for a set of constraints on an object that would normally occur at a particular
point in the archetype as a C_COMPLEX_OBJECT, but where the actual definition of the constraint is
expressed as the binding to a query or expression into an external service (such as an ontology or
terminology service), e.g.:

⎯ a set of allowed CODED_TERMs, e.g. the types of hepatitis;

⎯ an INTERVAL<QUANTITY> forming a reference range;

⎯ a set of units or properties or other numerical items.

Assertions

The C_ATTRIBUTE and subtypes of C_OBJECT enable constraints to be expressed in a structural fashion. In
addition to this, any instance of a C_COMPLEX_OBJECT may include one or more invariants. Invariants are
statements in a form of predicate logic, which may be used to state constraints on parts of an object. They are
not needed to state constraints on a single attribute (since this can be done with an appropriate
C_ATTRIBUTE), but are necessary to state constraints on more than one attribute, such as a constraint that
“systolic pressure should be W diastolic pressure” in a blood pressure measurement archetype. Such
invariants may be expressed using a syntax derived from the Object Management Group's (OMG) OCL
syntax.

Assertions are also used in ARCHETYPE_SLOTs, in order to express the “included” and “excluded”
archetypes for the slot.

Assertions are modelled as a generic expression tree of unary prefix (e.g. not p) and binary infix (e.g. p and q)
operators.

Node_id and paths

The node_id attribute in the class C_OBJECT and inherited to all subtypes has two functions:

⎯ it allows archetype object constraint nodes to be individually identified and, in particular, guarantees
sibling node unique identification;

⎯ it is the main link between the archetype definition (i.e. the constraints) and the archetype ontology,
because each node_id is a “term code” in the ontology.

The existence of node_ids in an archetype is what allows archetype paths to be created, which refer to each
node.

Domain-specific extensions

The main part of the archetype constraint model allows any type in a reference model to be archetyped — i.e.
constrained — in a standard way by a regular cascade of C_COMPLEX_OBJECT / C_ATTRIBUTE /
C_PRIMITIVE_OBJECT objects. However, lower level logical “leaf” types may need special constraint
semantics that are not conveniently achieved with the standard approach. To enable such classes to be

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

xii © ISO 2008 – All rights reserved

integrated into the generic constraint model, the class C_DOMAIN_TYPE is included. This enables the
creation of specific “C_” classes, inheriting from C_DOMAIN_TYPE, which represent custom semantics for
particular reference model types. For example, a class called C_QUANTITY might be created which has
different constraint semantics from the default effect of a C_COMPLEX_OBJECT / C_ATTRIBUTE cascade
representing such constraints in the generic way (i.e. systematically based on the reference model).

Assumed values

When archetypes are defined to have optional parts, an ability to define “assumed” values is useful. For
example, an archetype for the concept “blood pressure measurement” might contain an optional fragment
describing the patient position, with choices “lying”, “sitting” and “standing”. Since that part of the ENTRY is
optional, data could be created according to the archetype that does not contain this information. However, a
blood pressure cannot be taken without the patient in some position, so it may be clinically valid to define an
implied or “assumed” value. The archetype allows this to be explicitly stated so that all users/systems know
what value to assume when optional items are not included in the data. Assumed values are definable at the
leaf level only and may be specified in the C_PRIMITIVE classes.

The notion of assumed values is distinct from that of “default values”; default values do appear in data, while
assumed values do not.

The assertion package

Assertions are expressed in archetypes in typed first-order predicate logic (FOL). They are used in two places:
to express archetype slot constraints, and to express invariants in complex object constraints. In both of these
places, their role is to constrain something inside the archetype. Constraints on external resources such as
terminologies are expressed in the constraint binding part of the archetype ontology.

The concrete syntax of assertion statements in archetypes is designed to be compatible with the OMG Object
Constraint Language (OCL). Archetype assertions are statements that contain the following elements:

⎯ variables that are attribute names or ADL paths terminating in attribute names (i.e. equivalent of
referencing class feature in a programming language);

⎯ manifest constants of any primitive type, plus date/time types;

⎯ arithmetic operators: +, *, -, /, ^ (exponent);

⎯ relational operators: >, <, >=, <=, =, !=, matches;

⎯ Boolean operators: not, and, or, xor;

⎯ quantifiers applied to container variables: for_all, exists.

The primitives package

Ultimately, any archetype definition will devolve down to leaf node constraints on instances of primitive types.
The primitives package defines the semantics of constraint on such types. Most of the types provide at least
two alternative ways to represent the constraint; for example, the C_DATE type allows the constraint to be
expressed in the form of a pattern or an Interval<Date>.

The ontology package

All linguistic and terminological entities in an archetype are represented in the ontology part of an archetype,
whose semantics are given in the ontology package.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved xiii

An archetype ontology comprises the following things.

⎯ A list of terms defined local to the archetype. These are identified by “atNNNN” codes, and perform the
function of archetype node identifiers from which paths are created. There is one such list for each natural
language in the archetype.

⎯ A list of external constraint definitions, identified by “acNNNN” codes, for constraints defined external to
the archetype, and referenced using an instance of a CONSTRAINT_REF. There is one such list for each
natural language in the archetype.

⎯ Optionally, a set of one or more bindings of term definitions to term codes from external terminologies.

⎯ Optionally, a set of one or more bindings of the external constraint definitions to external resources such
as terminologies.

Specialization depth

Any given archetype occurs at some point in a hierarchy of archetypes related by specialization, where the
depth is indicated by the specialisation_depth attribute. An archetype which is not a specialization of another
has a specialization depth of 0. Term and constraint codes introduced in the ontology of specialized
archetypes (i.e. which did not exist in the ontology of the parent archetype) are defined in a strict way using “.”
(period) markers. For example, an archetype of specialization depth 2 will use term definition codes like the
following:

⎯ “at0.0.1” — a new term introduced in this archetype, which is not a specialization of any previous term in
any of the parent archetypes;

⎯ “at0001.0.1” — a term which specializes the “at0001” term from the top parent. An intervening “.0” is
required to show that the new term is at depth 2, not depth 1;

⎯ “at0001.1.1” — a term which specializes the term “at0001.1” from the immediate parent, which itself
specializes the term “at0001” from the top parent.

This systematic definition of codes enables software to use the structure of the codes to make inferences
more quickly and accurately about term definitions up and down specialization hierarchies. Constraint codes
on the other hand do not follow these rules, and exist in a flat code space instead.

Term and constraint definitions

Local term and constraint definitions are modelled as instances of the class ARCHETYPE_TERM, which is a
code associated with a list of name-value pairs. For any term or constraint definition, this list shall at least
include the name-value pairs for the names “text” and “description”. It might also include such things as
“provenance”, which would be used to indicate that a term was sourced from an external terminology. The
attribute term_attribute_names in ARCHETYPE_ONTOLOGY provides a list of attribute names used in term
and constraint definitions in the archetype, including “text” and “description”, as well as any others that are
used in various places.

Generic types package

This package is included to confirm the semantics of the generic types used in this part of ISO 13606.
Although List<T>, Set<T>, Hash<T,K>, and Interval<T> are generic types supported by many programming
environments, they are not directly supported in UML. In this package, new types such as List<String> are
defined using Binding Dependencies between a new Basic Type such as List<String> and a Class (LIST in
this example) that defines the minimum required semantics for all Lists.

Domain-specific extension (informative)

Domain-specific classes can be added to the archetype constraint model by inheriting from the class
C_DOMAIN_TYPE. Subclause 7.12.1 (scientific/clinical computing types) shows the general approach used to

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

xiv © ISO 2008 – All rights reserved

add constraint classes for commonly used concepts in scientific and clinical computing, such as “ordinal”,
“coded term” and “quantity”. The constraint types shown are C_ORDINAL, C_CODED_TEXT and
C_QUANTITY which can optionally be used in archetypes to replace the default constraint semantics
represented by the use of instances of C_OBJECT / C_ATTRIBUTE.

Overview of ADL

Archetype Definition Language (ADL) is a formal language for expressing archetypes. ADL uses two other
syntaxes, cADL (constraint form of ADL) and dADL (data definition form of ADL) to describe constraints on
data that are instances of the information model specified in Clause 7 of this part of ISO 13606.

Archetypes expressed in ADL resemble programming language files, and have a defined syntax. ADL itself is
a very simple glue syntax, which uses two other syntaxes for expressing structured constraints and data,
respectively. The cADL syntax is used to express the archetype definition, while the dADL syntax is used to
express data, which appears in the language, description, ontology, and revision_history sections of an ADL
archetype. The top-level structure of an ADL archetype is shown in Figure 1. The abbreviation FOPL stands
for First-Order Predicate Logic.)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved xv

Figure 1 — ADL archetype structure

Clause 8 of this partof ISO 13606 specifies dADL, cADL, ADL path syntax, and the combined ADL syntax,
archetypes and domain-specific type libraries.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

xvi © ISO 2008 – All rights reserved

EXAMPLE

The following is an example of a simple archetype. The notion of guitar is defined in terms of constraints on a
generic model of the concept INSTRUMENT. The names mentioned down the left-hand side of the definition
section (INSTRUMENT, size, etc.) are alternately class and attribute names from an object model. Each block
of braces encloses a specification for some particular set of instances that conform to a specific concept, such
as guitar or neck, defined in terms of constraints on types from a generic class model. The leaf pairs of braces
enclose constraints on primitive types such as Integer, String and Boolean.

archetype (adl_version=1.4)

 adl-test-instrument.guitar.draft

concept

 [at0000] -- guitar

language

 original_language = <"en">

 translations = <"de", ...>

definition

 INSTRUMENT[at0000] matches {

 size matches {|60..120| } -- size in cm

 date_of_manufacture matches {yyyy-mm-??}
 -- year & month ok

 parts cardinality matches {0..*} matches {

 PART[at0001] matches { -- neck

 material matches {[local::at0003]} -- timber

 }

 PART[at0002] matches { -- body

 material matches {[local::at0003]} -- timber

 }

 }

 }

ontology

 term_definitions = <

 [en] = <

 items = <

 ["at0000"] = <

 text = <"guitar">;

 description = <"stringed instrument">

 >

 ["at0001"] = <

 text = <"neck">;

 description = <"neck of guitar">

 >

 ["at0002"] = <

 text = <"timber">;

 description = <"straight, seasoned timber">

 >

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved xvii

 ["at0003"] = <

 text = <"nickel alloy">;

 description = <"frets">

 >

 >

 >

 >

Clinical examples of archetypes

NOTE 1 Clause 8 of this part of ISO 13606 contains many example code fragments of ADL, which are used to illustrate
specific features of the formalism. These are not to be considered normative clinical data specifications and are treated
only for illustrative purposes.

It is not feasible to include full clinical examples of archetypes within this part of ISO 13606 since they are
quite voluminous in document form, but the reader is encouraged to review a selection of archetypes that are
available on-line from:

http://svn.openehr.org/knowledge/archetypes/dev/index.html

This site offers both an ADL representation and an html view of a wide range of archetypes. These examples
include language translations and terminology bindings.

NOTE 2 The internal links given in this part of ISO 13606 will only function if http-prefixed.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://svn.openehr.org/knowledge/archetypes/dev/index.html

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 1

Health informatics — Electronic health record
communication —

Part 2:
Archetype interchange specification

1 Scope

This part of ISO 13606 specifies the information architecture required for interoperable communications
between systems and services that need or provide EHR data. This part of ISO 13606 is not intended to
specify the internal architecture or database design of such systems.

The subject of the record or record extract to be communicated is an individual person, and the scope of the
communication is predominantly with respect to that person's care.

Uses of healthcare records for other purposes such as administration, management, research and
epidemiology, which require aggregations of individual people's records, are not the focus of this part of
ISO 13606 but such secondary uses could also find this document useful.

This part of ISO 13606 defines an archetype model to be used to represent archetypes when communicated
between repositories, and between archetype services. It defines an optional serialized representation, which
may be used as an exchange format for communicating individual archetypes. Such communication might, for
example, be between archetype libraries or between an archetype service and an EHR persistence or
validation service.

2 Conformance

The communication of an archetype that is used to constrain part of an EHR_EXTRACT shall conform to the
information model defined in Clause 7, and may optionally conform to the specification of Archetype Definition
Language defined in Clause 8.

This part of ISO 13606 does not prescribe any particular representation of archetypes to be used internally
within an archetype repository, server or EHR system. However, it is recommended that any representation
used meet the requirements listed in Clause 6.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 639 (all parts), Codes for the representation of names of languages

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times

ISO/IEC 10646, Information technology — Universal Multiple-Octet Coded Character Set (UCS)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

2 © ISO 2008 – All rights reserved

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
abstract class
〈in Unified Modelling Language〉 a “virtual” common parent to two or more classes

NOTE The abstract class will never be instantiated. Its value in modelling terms is to provide a container for attributes
and associations that might apply to several other classes (its subclasses).

4.2
archetype instance
individual metadata class instance of an archetype model, specifying the clinical concept and the value
constraints that apply to one class of record component instances in an electronic health record extract

4.3
archetype model
information model of the metadata to represent the domain-specific characteristics of electronic health record
entries by specifying values or value constraints for classes and attributes in the electronic health record
reference model

4.4
archetype repository
persistent repository of archetype definitions, accessed by a client-authoring tool or by a run-time component
within an electronic health record service

4.5
audit trail
chronological record of activities of information system users which enables prior states of the information to
be faithfully reconstructed

4.6
concept
unit of knowledge created by a unique combination of characteristics

[ISO 1087-1:2000, definition 3.2.1]

NOTE Concepts are not necessarily bound to particular languages. They are, however, influenced by the social or
cultural background, often leading to different categorizations.

4.7
electronic health record
repository of information regarding the health of a subject of care, in computer processable form

NOTE Adapted from ISO/TR 20514:2005, definition 2.11.

4.8
electronic health record entry
health record data in general

EXAMPLE Clinical observations, statements, reasoning, intentions, plans or actions, without particular specification
of their formal representation, hierarchical organization or particular record component class(es) that might be used to
represent them.

4.9
electronic health record extract
part or all of the electronic health record of a subject of care, communicated in compliance with EN 13606

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 3

4.10
electronic health record system
system for recording, retrieving and manipulating information in electronic health records

4.11
generic
applicable to requirements or information models across health care professions, domains and countries

4.12
metadata
data that define and describes other data

[ISO/IEC 11179-3:2003, definition 3.2.18]

4.13
patient
subject of care

4.14
semantic
relating to meaning in language

4.15
semantic interoperability
ability for data shared by systems to be understood at the level of fully defined domain concepts

[ISO/TS 18308:2004, definition 3.38]

4.16
shareable electronic health record
electronic health record with a standardized information model which is independent of electronic health
record systems and accessible by multiple authorized users

4.17
subject of care
person scheduled to receive, receiving or having received health care

NOTE Adapted from EN 14822-2:2005.

5 Symbols and abbreviations

ADL Archetype Definition Language

EHR Electronic Health Record

ODP Open Distributed Processing

OWL Ontology Web Language

UML Unified Modelling Language

XML Extended Markup Language

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

4 © ISO 2008 – All rights reserved

6 Archetype representation requirements

6.1 General

This clause lists a set of formal requirements for an archetype representation. This provides the basis on
which the archetype model specified in Clause 7 has been designed. It has been necessary to define these
requirements within this part of ISO 13606 as there is little published work on requirements for such a model,
unlike the EHR itself for which ISO/TS 18308 has been adopted.

6.2 Archetype definition, description and publication information

6.2.1 The definition of an archetype shall include the following information.

6.2.1.1 The globally unique identifier of this archetype definition.

6.2.1.2 The identifier of the repository in which this archetype originated or is now primarily held, or of the
authority responsible for maintaining it. This repository will be the one in which the definitive publication status
of this archetype will be managed.

6.2.1.3 The concept that best defines the overall clinical scope of instances conforming to this archetype
as a whole, expressed as a coded term or as free text in a given natural language.

6.2.1.4 The health informatics domain to which this archetype applies (e.g. EHR). This will map to a set
of Reference Models with which this archetype may be used.

6.2.1.5 The underlying Reference Model for which this archetype was ideally fashioned.

NOTE An archetype might be suitable for use with more than one relevant Reference Model within a given health
informatics domain, but it is expected that the archetype will be optimized for one Reference Model only.

6.2.1.6 The natural language in which this archetype was originally defined, represented by its
ISO 639 code. In the event of imprecise translations, this is the definitive language for interpretation of the
archetype.

6.2.2 The definition of an archetype may include the following information, if applicable.

6.2.2.1 The globally unique identifier for the archetype of which this archetype is a specialization and to
which it shall also conform.

6.2.2.2 The globally unique identifier of the former archetype that this definition replaces, if it not the first
version of an archetype.

6.2.2.3 The reason for defining this new version of a pre-existing archetype.

6.2.2.4 The identifier of the replacement for this archetype, if it has been superseded.

NOTE It might only be possible to add this information by reference within a version-controlled repository; how this is
effected is not within the scope of this part of ISO13606.

6.2.2.5 An archetype shall have one or more description sets, defining its usage and purpose. Multiple
versions of this information may be included, represented in different natural languages or to inform different
kinds of potential user.

6.2.3 An archetype description set shall include the following information.

6.2.3.1 The uniquely identified party responsible for providing this description set. This identification might
optionally include the organization which that party represents or the authority on which he or she is acting.
This may include contact information for that party.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 5

6.2.3.2 The natural language in which this description set is provided, represented by its ISO 639 code.

6.2.3.3 A formal statement defining the scope and clinical purpose of this archetype, expressed as a
coded term or as free text in a given natural language.

It is recommended that these criteria be expressed as coded terms to improve queries for relevant archetypes
from the repository.

EXAMPLE The clinical scope and purpose might specify:

1) the principal clinical specialty for which it is intended;

2) a list of clinical, medical or procedural terms (keywords): diagnoses, acts, drugs, findings, etc.;

3) the kind of patient in whom it is intended to be used (age, gender, etc.).

6.2.4 An archetype description set may include the following information, if applicable.

6.2.4.1 A formal statement of the intended use of this archetype.

NOTE Ideally, this would be a coded expression, although a suitable terminology for this is not yet available.

6.2.4.2 A formal statement of situations in which users might erroneously believe this archetype should
be used. This may also stipulate any kinds of Reference Model for which it is unsuitable.

6.2.4.3 A detailed explanation of the purpose of this archetype, including any features of particular
interest or note. This may include an indication of the persons for which this definition is intended, e.g. for
students. This information might be included explicitly and/or by reference (e.g. via a URL).

6.2.4.4 A description, reference or link to the published medical knowledge that has underpinned the
definition of this archetype.

6.2.5 An archetype definition shall include a statement of its publication status.

An archetype definition may evolve through a series of publication states, for example an approval process,
without otherwise being changed. These successive states shall be retained as part of the archetype, for audit
purposes. However, the modification of the publication status of an archetype shall not itself constitute a
formal revision of the identifier by which the archetype is referenced within an EHR_EXTRACT, since the
constraint specification will not have been changed.

6.2.6 The publication status of an archetype shall specify the following information.

6.2.6.1 The publication status of this archetype, taken from the following list:

⎯ test/demo;

⎯ tentative;

⎯ draft;

⎯ private;

⎯ public;

⎯ preferred;

⎯ deprecated.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

6 © ISO 2008 – All rights reserved

6.2.6.2 The date when this particular publication status applied.

NOTE The first instance of a publication status for this archetype will also be the date when it was first composed.

6.2.6.3 The unique identifier of the party committing this archetype to the repository and thereby
asserting this publication status. This identification might optionally include the organization which that party
represents.

6.2.6.4 The unique identifier of the body authorizing this change in publication status.

6.2.6.5 The date when it is anticipated that the present publication status, and the archetype content itself,
ought to be reviewed to confirm that it remains clinically valid.

6.3 Archetype node constraints

6.3.1 General

An archetype definition will include a specification of the hierarchical schema to which instances of data
(e.g. EHR data) shall conform. This schema defines the hierarchical organization of a set of nodes, the
relationships between them, and constraints on the permitted values of attributes and data values. These will
also conform to the underlying Reference Model(s) for which this definition is applicable.

6.3.2 Archetype node references

6.3.2.1 Any node in the archetype hierarchy might be defined explicitly or by reference, or be specified to
be part or whole of a pre-existing archetype.

6.3.2.2 A reference to a pre-existing archetype or archetype fragment may be explicit, by specifying the
archetype identifier, and optionally the archetype node of the archetype fragment insertion point.

6.3.2.3 A reference to an archetype fragment may be internal to (i.e. part of) the current archetype.

6.3.2.4 An archetype node may be specified to be one of a set of possible archetypes, by defining an
explicit list of candidates and/or by specifying a set of constraints on any of the attributes of an archetype
definition.

6.3.2.5 In addition to specifying one or more archetype fragments by reference or constraint, it shall be
possible to include an explanation of the rationale for incorporating that specification at the given point in the
current archetype hierarchy.

6.3.3 Specification of an archetype node

6.3.3.1 The specification of an archetype node (if not by reference) shall include the following information.

6.3.3.2 An internally unique identifier of this archetype node. When combined with the globally unique
identifier of this archetype definition, it shall be a globally unique reference to the node itself.

6.3.3.3 The class in the instance hierarchy, mapping to the underlying Reference Model for which this
archetype was ideally fashioned, that shall be instantiated in order to conform to this archetype node. For an
EHR hierarchy conforming to this part of ISO 13606, this class shall be specified using one of the following
values:

⎯ FOLDER

⎯ COMPOSITION

⎯ SECTION

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 7

⎯ ENTRY

⎯ CLUSTER

⎯ ELEMENT

The number of occurrences, expressed as a range, that may be instantiated corresponding to this archetype
node within an instance hierarchy.

6.3.3.4 Other constraints and rules may optionally be specified to govern the creation of instances
corresponding to this archetype node.

6.3.3.5 Constraint rules may be expressed as logical conditions, and may include reference to
environment parameters such as the current time or location or participants, or be related to the (pre-existing)
values of other nodes in the instance hierarchy. Constraint rules might be used to represent the relationship
between EHR data and workflow or care pathway processes.

6.3.3.6 Constraint rules may be expressed as inclusion or exclusion criteria.

6.3.3.7 Any constraint rule specification shall identify the formalism (including version) in which it is
expressed (e.g. ADL, OWL).

6.3.4 Binding archetype nodes to terms

6.3.4.1 Every node of an archetype schema hierarchy shall be associated with at least one clinical term,
which most accurately expresses the intended concept to be represented by that node on instantiation in the
corresponding instance hierarchy. This term will usually be included or referenced within the instance.

6.3.4.2 Any node of an archetype may be mapped to any number of additional concepts, terms and
synonyms from terminology systems, to support either the interrogation of the archetype repository or that of
the corresponding instances.

6.3.4.3 Any concept mapping term or text shall specify the purpose that this mapping serves from the
following list of values:

⎯ principal concept;

⎯ term binding;

⎯ synonym;

⎯ language translation.

6.3.4.4 Any reference to a coded term shall include the code, the rubric and the coding system (including
version) from which the code and rubric have been taken. In addition, it shall be possible to specify the natural
language in which this term was mapped, or in which a translation is expressed.

6.3.5 Attribute and association constraints

An archetype node may specify constraints on any attributes or associations that correspond to the attributes
and associations of that node in the underlying Reference Model.

These constraints may pre-determine or restrict some or all of the contextual information that is included
within the corresponding instance, as represented within the Reference Model. Context information, such as
the person to whom a particular observation or inference relates, is formally represented in most generic EHR-
like models to facilitate safe querying and retrieval, even if that information might be inferred from the
archetype name or an axis within a terminology system used for the data value. Some archetypes or
fragments will pre-determine the values of some of these, which shall be capable of specification within the

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

8 © ISO 2008 – All rights reserved

archetype definition (for example, to constrain the subject of information to be a relative of the patient, and not
the patient, in an archetype for family history). The applicability of any aspect of context to a given archetype
node will be determined by the context attributes in the corresponding node of the target EHR Reference
Models. For example, in the EN 13606 Reference Model, the subject of information is represented at the Entry
level. There is significant commonality within the set of context information between reference models (for
example between EN 13606 and HL7 CDA Release 2), and, ideally, a common set of labels for these should
be adopted to permit relevant context constraints to be applied to more than one Reference Model.

6.3.6 Further information

6.3.6.1 For any given Reference Model attribute or association, it shall be possible to specify the
following information.

6.3.6.2 The name of the attribute or association, mapping to the underlying Reference Model for which
this archetype was ideally fashioned, to which this constraint applies.

6.3.6.3 A common label for this aspect of context. For EHR archetypes, this value is to be taken from a
(provisional) list of values as specified in Table 1.

6.3.6.4 For a given Reference Model, whether the inclusion within a valid EHR instance of an attribute or
association corresponding to this aspect of context is mandatory.

6.3.6.5 The number of instances (expressed as a range) corresponding to this aspect of context that may
be instantiated.

6.3.6.6 If multiple instances are permitted, it shall be possible to specify if these are to be represented as
an ordered or unordered list.

6.3.6.7 If multiple instances are permitted, it shall be possible to specify if the corresponding data values
(of leaf nodes or attributes) shall be unique.

6.3.6.8 Constraints may be specified for the data values of leaf nodes or leaf attributes.

6.3.6.9 Other constraints and rules may optionally be specified to govern the creation of instances
corresponding to a Reference Model attribute or association.

6.4 Data value constraints

6.4.1 It shall be possible to specify constraints and rules for the data values of leaf nodes in the Reference
Model hierarchy, or for any other attributes of any archetype node.

6.4.2 It shall be possible to specify the following data value constraint information.

6.4.2.1 If the data value is permitted to have a null value, and optionally to specify a reason (e.g. to
specify a null flavour value).

6.4.2.2 If the constraint or rule is an inclusion or exclusion criterion.

6.4.2.3 The formalism (including version) in which this constraint specification is represented.

6.4.2.4 The intended fixed (prescribed) value for conforming instances.

6.4.2.5 The intended default value for conforming instances.

6.4.2.6 A list of permitted candidate values for conforming instances (i.e. to be a subset of those values
legally permissible in the underlying Reference Model).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 9

6.4.3 For quantity data types, it shall be possible to specify:

⎯ a range within which values for conforming instances shall lie;

⎯ a range within which values are considered clinically exceptional or critical;

⎯ the intended measurement units for conforming instances.

6.4.4 For date and time data types, it shall be possible to specify:

⎯ a range within which values for conforming instances shall lie;

⎯ the intended measurement units for conforming instances.

6.4.5 For textual data types, it shall be possible to specify:

⎯ a string pattern defining a range of possible values;

⎯ the intended coding scheme to be used for conforming instances.

6.4.6 Constraint rules may be expressed as logical conditions, and may include reference to environment
parameters such as the current time or location or participants, or be related to the (pre-existing) values of
other nodes in the instance hierarchy.

6.4.7 The reference to a pre-existing value shall specify that instance precisely and unambiguously. For
example, it may be necessary to include a reference to:

⎯ the archetype identifier;

⎯ the archetype node identifier;

⎯ the attribute or association name;

⎯ the occurrence in the instance hierarchy, for example:

⎯ first;

⎯ most-recent;

⎯ any;

⎯ n ordered by y (the nth element of a set of instances ordered on y);

⎯ highest value;

⎯ lowest value;

⎯ one or more instances within a (definable) recent time interval;

⎯ the intended relationship between this specified instance value and the data value being constrained, for
example:

⎯ the same value as;

⎯ a subset or substring of;

⎯ greater than, greater than or equal to, less than, less than or equal to;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

10 © ISO 2008 – All rights reserved

⎯ earlier than, later than, etc.;

⎯ if ... then...;

⎯ shall not be the same as.

6.4.8 These relative constraints may be nested, and include logical or set operators in order to represent
compound rules.

6.5 Profile in relation to EN 13606-1 Reference Model

This set of tables defines a generic set of contexts that are used within the EN 13606-1 EHR Reference Model
to specify how observed values, intentions and inferences relate to the subject of care or to other parts of that
subject's EHR. Table 1 summarises these areas of context, and Table 2 maps these to the EN 13606
Reference Model.

Table 1 — List of context areas and elements

Context area Context element Description

Meaning Meaning Formal concept defining the EHR object to be instantiated at a
given node in the EHR.

Subject of information Subject of information Rules for the permitted values of the subject of information, for
example to specify that the subject of information may not be the
patient or shall be a genetic relative.

Act status Act status Rules for the permitted values of the act status, for example to
specify that the act status shall be a planned/ordered activity.

Temporal relationship Temporal relationship Specification of the temporal relationship of the information to the
time of its recording, e.g. former, ongoing, future.

Structure Structure The spatial structure to be used to represent (render) a data
structure, e.g. list, table, tree.

Observation time Observation time Rules for the permitted values of the observed/intended time (or
time interval) for this observation set.

Link Most links (13606 LINK, HL7 Act Relationship) are defined on an
ad hoc basis within individual instances of EHR data. However,
there may be times when particular kinds of clinical data shall
always have certain links defined. For example, certain care acts
might always need to reference a pre-existing consent document in
the EHR, or a pre-existing clinical finding that justifies the activity.

 Nature The kind of link (CEN nature, HL7 ActRelationship class code) that
shall or may be composed.

 Role The role that the target plays in this link.

 Follow_link Rules for when the link is required to be followed when the source
or target component is retrieved from an EHR system
(CEN follow_link, HL7 separatableInd).

Participation If certain participants may or shall be defined in the EHR node
instance.

 Function The functional role that shall be held by the participant.

 Mandatory attestation If this participant is required to attest the instance; this requirement
does not specify if this node shall be individually attested or if it
may be attested as part of a larger collection of EHR nodes, for
example at the document level.

 Attestation reason Specifies a fixed reason for the attestation, e.g. if the attestation is
performing a particular legal function.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 11

Table 2 — EN 13606 Reference Model — Context profile

13606 RM class Context area Corresponding 13606 RM attribute

FOLDER Meaning Meaning

 Link LINK

COMPOSITION Meaning Meaning

 Link LINK

 Participation composer
other_participations

SECTION Meaning Meaning

 Link LINK

ENTRY Meaning Meaning

 Link LINK

 Participation other_participations

 Subject of information subject_of_information

 Act status act_status

CLUSTER Meaning Meaning

 Link LINK

 Structure structure_type

 Observation time obs-time

ELEMENT Meaning Meaning

 Link LINK

 Observation time obs-time

7 Archetype model

7.1 Introduction

7.1.1 General

The model is presented using a constrained form of UML diagrams, described below in a UML profile.

7.1.2 UML profile

The classes of the model together with their associations and inheritances are grouped into packages, and
these are shown in a number of separate diagrams hereafter. Package boundaries are shown as blue lines,
with the name of the package, also shown in blue, in the top left box of the package outline.

Class boxes usually have three compartments.

The top compartment contains the name of the class in upper case, and may also show the owning class in
parentheses when the class belongs to a package other than the package that is the subject of the diagram.
Some diagrams also show class constraints in the top compartment.

The second compartment, if present, contains attributes, showing attribute name, attribute type and multiplicity.
Multiplicity may also be further qualified by the “ordered” marker. Attribute names are shown in lower case.
Attribute types are shown in title case if the type is one of the basic types, and in upper case if the type is of
another class.

The third compartment, if present, contains operations, showing operation name, return type and parameters
passed. Operation names and types follow the same casing rules as attributes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

12 © ISO 2008 – All rights reserved

A class box with only two compartments has a class name and attributes; a class box with only one
compartment just has a name.

Colour itself has no significance, but is used to enhance readability. Inheritance lines are shown in black, and
association lines in maroon. Colour fills of class boxes are sometimes used to highlight particular groupings of
classes. Grey class boxes are used to indicate that the class details are shown on another diagram.

Associations between classes are always “single ended” with the association name and multiplicity placed at
the far end of the line. If a double-ended association is required, it is shown as two single-ended associations,
one in each direction, between the two classes. This restriction has been applied to make it possible to
document each association automatically, as though it were an attribute of the near-end class. Navigation
arrows are not used.

7.1.3 Detailed documentation of the model

The order of documentation is by package and, within package, by class.

Each class has a starting section showing the owning package, any inheritance, inner elements, and any
internal model documentation, and is followed by up to four tabular sections for:

a) attributes;

b) attributes derived from associations;

c) operations;

d) constraints.

The associations themselves are shown in the diagrams using UML notation, but are documented as derived
associations using the following transformations:

Association far-end name becomes Attribute name

Association far-end class becomes Attribute type

Association
multiplicity

Generates Container type and Attribute
optionality

Original
multiplicity

0..* Set<far end CLASS> 0..1 0..*

0..* {ordered} List<far end CLASS> 0..1 0..* {ordered}

1..* Set<far end CLASS> 1 1..*

1..* {ordered} List<far end CLASS> 1 1..* {ordered}

* Set<far end CLASS> 0..1 *

0..1 Not a container 0..1 N/A

1 Not a container 1 N/A

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 13

7.1.4 Package structure

Figure 2 — Package structure

The overall Archetype Model shown in Figure 3 and Figure 4 defines the generic representation of archetypes
for interoperability and communication purposes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

14 © ISO 2008 – All rights reserved

7.2 Overview

7.2.1 General

Figure 3 — Overview of the main part of the Archetype Model — Part 1

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 15

Figure 4 — Overview of the Archetype Model — Part 2

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

16 © ISO 2008 – All rights reserved

Documentation derived from the UML model

NOTE The following list of package and class names is included to provide a high-level overview of the model as
organized within this subclause.

am
 archetype
 ARCHETYPE

 archetype_description
 ARCHETYPE_DESCRIPTION
 ARCHETYPE_DESCRIPTION_ITEM
 AUDIT_DETAILS
 TRANSLATION_DETAILS

 constraint_model
 ARCHETYPE_CONSTRAINT
 ARCHETYPE_INTERNAL_REF
 ARCHETYPE_SLOT
 C_ATTRIBUTE
 C_COMPLEX_OBJECT
 C_DOMAIN_TYPE
 C_MULTIPLE_ATTRIBUTE
 C_OBJECT
 C_PRIMITIVE_OBJECT
 C_SINGLE_ATTRIBUTE
 CARDINALITY
 CONSTRAINT_REF

 assertion
 ASSERTION
 ASSERTION_VARIABLE
 EXPR_BINARY_OPERATOR
 EXPR_ITEM
 EXPR_LEAF
 EXPR_OPERATOR
 EXPR_UNARY_OPERATOR

 primitive
 C_BOOLEAN
 C_DATE
 C_DATE_TIME
 C_DURATION
 C_INTEGER

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 17

 C_PRIMITIVE
 C_REAL
 C_STRING
 C_TIME

 ontology
 ARCHETYPE_ONTOLOGY
 ARCHETYPE_TERM

 domain_extensions
 C_CODED_TEXT
 C_ORDINAL
 C_QUANTITY
 C_QUANTITY_ITEM
 ORDINAL

 support
 OPERATOR_KIND
 VALIDITY_KIND

 Identification
 ARCHETYPE_ID
 HIER_OBJECT_ID
 OBJECT_ID
 TERMINOLOGY_ID

 text
 CODE_PHRASE
 CODED_TEXT
 TERM_MAPPING
 TEXT

7.2.2 Package :: am

Inner elements
Name Type
archetype Package
domain_extensions Package
support Package

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

18 © ISO 2008 – All rights reserved

7.3 The archetype package

7.3.1 General

Figure 5 — Archetype package

7.3.2 Package :: archetype

Inner elements
Name Type
ARCHETYPE Class
archetype_description Package
constraint_model Package
ontology Package

Package: archetype
Class archetype

The main class of the archetype package.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 19

Attributes

Signature Optionality Multiplicity Documentation

archetype_id : ARCHETYPE_ID 1 -- Multi-axial identifier of this archetype in
archetype space.

concept_code : String 1 -- Normative meaning of the archetype as a
whole.

is_controlled : Boolean 1 --
True if this archetype is under change
control in which case revision history is
created.

original_language : CODE_PHRASE 1 -- Language in which this archetype was
initially authored.

parent_archetype_id : ARCHETYPE_ID 0..1 -- Identifier of the specialization parent of this
archetype.

uid : HIER_OBJECT_ID 0..1 -- OID identifier of this archetype.

Attributes from associations

Signature Optionality Multiplicity Documentation

revision_history : List<AUDIT_DETAILS> 0..1 0..* ordered Revision history of the archetype; only
required if is_controlled = True

description : ARCHETYPE_DESCRIPTION 1 -- Description and lifecycle information
of the archetype.

ontology : ARCHETYPE_ONTOLOGY 1 -- Ontology of the archetype.

definition : C_COMPLEX_OBJECT 1 -- Root node of this archetype.

translations : Set<TRANSLATION_DETAILS> 1 1..* List of details for each natural
translation included in this archetype.

Constraints

Name Expression

revision_history_validity inv: is_controlled implies (revision_history <> Void and revision_history.is_empty)

archetype_id_validity inv: archetype_id <> Void

description_exists inv: description <> Void

ontology_exists inv: ontology <> Void

definition_exists inv: definition <> Void

uid_validity inv: uid <> Void implies not uid.is_empty

original_language_valid inv: original_language <> Void and translations. language <> Void and
terminology_service.code_set('languages').has(original_language)

has_parent post: is_specialised implies parent_archetype_id <>Void

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

20 © ISO 2008 – All rights reserved

7.4 The archetype description package

7.4.1 General

Figure 6 — Archetype description package

7.4.2 Package :: archetype_description

The “metadata” of an archetype.

Inner elements
Name Type
ARCHETYPE_DESCRIPTION Class
ARCHETYPE_DESCRIPTION_ITEM Class
AUDIT_DETAILS Class
TRANSLATION_DETAILS Class

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 21

Package: archetype_description
Class AUDIT_DETAILS

Attributes

Signature Optionality Multiplicity Documentation

change_type : CODED_TEXT 1 -- Type of change.

committer : Hash<String,String> 1 --
Identification details of the author of the main
content of this archetype, expressed as a list of
name-value pairs.

reason : String 0..1 -- Natural language reason for change.

revision : String 1 -- Revision corresponding to this change.

time_committed : Date_Time 1 -- Date/time of this change.

Constraints
Name Expression
committer_validity inv: committer <> Void and not committer.is_empty
committer_organisation_
validity

inv: committer_organisation <> Void implies not
committer_organisation.is_empty

time_committed_exists inv: time_committed <> Void
reason_valid inv: reason <> Void implies not reason.is_empty
revision_valid inv: revision <> Void and not revision.is_empty
change_type_exists inv: change_type <> Void and

terminology_service.terminology('openehr').codes_for_group_name('audit_chan
ge_type', 'en').has(change_type.defining_code)

Package: archetype_description
Class ARCHETYPE_DESCRIPTION

Defines the descriptive metadata of an archetype.

Attributes

Signature Optionality Multiplicity Documentation

archetype_package_uri : String 0..1 -- URI of package to which this archetype
belongs.

lifecycle_state : String 1 --
Lifecycle state of the archetype: initial,
submitted, experimental, awaiting_approval,
approved, superseded, obsolete.

original_author : Hash<String,String> 1 -- Original author of this archetype, expressed as
a list of name-value pairs.

other_contributors : List<String> 0..1 -- Names of other contributors to the archetype.

other_details : Hash<String,String> 0..1 -- Additional non-language-sensitive archetype
metadata, as a list of name-value pairs.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

22 © ISO 2008 – All rights reserved

Attributes from associations

Signature Optionality Multiplicity Documentation

details : Set<ARCHETYPE_DESCRIPTION_ITEM> 1 1..* The descriptive metadata of an
archetype.

Constraints

Name Expression

original_author_validity inv: original_author <> Void and not original_author.is_empty

details_exists inv: details <> Void and not details.is_empty

original_author_organisation_validity inv: original_author_organisation <> Void implies not
original_author_organisation.is_empty

language_validity inv: details->for_all(d|
parent_archetype.languages_available.has(d.language))

parent_archetype_valid inv: parent_archetype <> Void and parent_archetype.description =
Current

Package: archetype_description
Class ARCHETYPE_DESCRIPTION_ITEM

Language-specific detail of archetype description. When an archetype is translated for use in another
language environment, each ARCHETYPE_DESCRIPTION_ITEM needs to be copied and translated into the
new language.

Attributes

Signature Optionality Multiplicity Documentation

copyright : String 0..1 -- Optional copyright statement for the archetype
as a knowledge resource.

keywords : List<String> 0..1 -- Keywords by which this Archetype may be
referenced.

language : CODE_PHRASE 1 -- The localized language in which the items in this
description item are written.

misuse : String 0..1 -- Description of any contexts in which it should not
be used.

original_resource_uri : Set<String> 0..1 --
URI of original clinical document(s) or
description of which archetype is a formalization,
in the language of this description item.

other_details : Hash<String,String> 0..1 -- Additional language-sensitive archetype
metadata, as a list of name-value pairs.

purpose : String 1 -- Purpose of the archetype.

use : String 0..1 -- Description of the uses of the archetype, i.e.
contexts in which it could be used.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 23

Constraints

Name Expression

use_valid inv: use <> Void implies not use.is_empty

language_valid inv: language <> Void and code_set('languages').has(language)

misuse_valid inv: misuse <> Void implies not misuse.is_empty

copyright_valid inv: copyright <> Void implies not copyright.is_empty

purpose_exists inv: purpose <> Void and not purpose.is_empty

Package: archetype_description
Class TRANSLATION_DETAILS

Class providing details of a natural language translation.

Attributes

Signature Optionality Multiplicity Documentation

accreditation : String 0..1 -- Accreditation of translator, e.g a national
translator's association id.

author : Hash<String,String> 1 -- Translator name and other demographic details,
expressed as a list of name-value pairs.

language : CODE_PHRASE 1 -- Language of translation.

other_details : Hash<String,String> 0..1 -- Any other metadata.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

24 © ISO 2008 – All rights reserved

7.5 The constraint model package

7.5.1 General

Figure 7 — Constraint model package

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 25

7.5.2 Package :: constraint_model

Inner elements
Name Type
ARCHETYPE_CONSTRAINT Class
ARCHETYPE_INTERNAL_REF Class
ARCHETYPE_SLOT Class
C_ATTRIBUTE Class
C_COMPLEX_OBJECT Class
C_DOMAIN_TYPE Class
C_MULTIPLE_ATTRIBUTE Class
C_OBJECT Class
C_PRIMITIVE_OBJECT Class
C_SINGLE_ATTRIBUTE Class
CARDINALITY Class
CONSTRAINT_REF Class
assertion Package
primitive Package

Package: constraint_model
Class ARCHETYPE_CONSTRAINT{Abstract}

Direct subclassifiers:
 C_OBJECT, C_ATTRIBUTE

Defines common constraints for any archetypeable class in any reference model.

Attributes

Signature Optionality Multiplicity Documentation

any_allowed : Boolean 1 -- True if no additional constraints are defined in the archetype,
beyond those defined in the underlying Reference Model

Package: constraint_model
Class C_ATTRIBUTE{Abstract}

ARCHETYPE_CONSTRAINT
 |
 +--C_ATTRIBUTE

Direct subclassifiers:
 C_MULTIPLE_ATTRIBUTE, C_SINGLE_ATTRIBUTE

Abstract model of constraint on any kind of attribute node.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

26 © ISO 2008 – All rights reserved

Attributes

Signature Optionality Multiplicity Documentation

existence : Interval<Integer> 1 --
Constraint on every attribute, regardless of whether it is
singular or of a container type, which indicates whether
its target object exists or not (i.e. is mandatory or not).

rm_attribute_name : String 1 -- Reference model attribute within the enclosing type
represented by a C_OBJECT.

Attributes from associations

Signature Optionality Multiplicity Documentation

children : List<C_OBJECT> 0..1 0..* ordered
Child C_OBJECT nodes. Each such node represents a
constraint on the type of this attribute in its reference
model.

Constraints

Name Expression

existence_set inv: existence <> Void and (existence.lower >= 0 and existence.upper <= 1)

rm_attribute_name_valid inv: rm_attribute_name <> Void and not rm_attribute_name.is_empty

Children_validity inv: any_allowed xor children <> Void

Package: constraint_model
Class C_OBJECT{Abstract}

ARCHETYPE_CONSTRAINT
 |
 +--C_OBJECT

Direct subclassifiers:
 ARCHETYPE_INTERNAL_REF, C_PRIMITIVE_OBJECT, C_COMPLEX_OBJECT, ARCHETYPE_SLOT,
CONSTRAINT_REF, C_DOMAIN_TYPE

Abstract model of constraint on any kind of object node.

Attributes

Signature Optionality Multiplicity Documentation

node_id : String 1 --

Semantic id of this node, used to differentiate sibling
nodes of the same type. (Previously called
“meaning”). Each node_id shall be defined in the
archetype ontology as a term code.

occurrences : Interval<Integer> 1 --

Occurrences of this object node in the data, under
the owning attribute. Upper limit may only be greater
than 1 if owning attribute has a cardinality of more
than 1.

rm_type_name : String 1 -- Reference model type to which this node
corresponds.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 27

Attributes from associations

Signature Optionality Multiplicity Documentation

Parent : C_ATTRIBUTE 1 -- C_ATTRIBUTE that owns this C_OBJECT.

Constraints

Name Expression

rm_type_name_valid inv: rm_type_name <> Void and not rm_type_name.is_empty

node_id_valid inv: node_id <> Void and not node_id.is_empty

Package: constraint_model
Class CARDINALITY

Expresses constraints on the cardinality of container objects which are the values of multiple-valued attributes,
including uniqueness and ordering, providing the means to state that a container acts like a logical list, set or
bag. The cardinality cannot contradict the cardinality of the corresponding attribute within the relevant
reference model.

Attributes

Signature Optionality Multiplicity Documentation

interval : Interval<Integer> 1 -- The interval (range) of this cardinality.

is_ordered : Boolean 1 -- True if the members of the container attribute to which
this cardinality refers are ordered.

is_unique : Boolean 1 -- True if the members of the container attribute to which
this cardinality refers are unique.

Constraints

Name Expression

Validity inv: not interval.lower_unbounded

Package: constraint_model
Class CONSTRAINT_REF

C_OBJECT
 |
 +--CONSTRAINT_REF

Reference to a constraint described in the same archetype, but outside the main constraint structure. This is
used to refer to constraints expressed in terms of external resources, such as constraints on terminology
value sets.

Attributes

Signature Optionality Multiplicity Documentation

reference : String 1 -- Reference to a constraint in the archetype local ontology.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

28 © ISO 2008 – All rights reserved

Constraints

Name Expression

Consistency inv: not any_allowed

reference_valid inv: reference <> Void and not reference.is_empty and
archetype.ontology.has_constraint(reference)

Package: constraint_model
Class ARCHETYPE_INTERNAL_REF

C_OBJECT
 |
 +--ARCHETYPE_INTERNAL_REF

A constraint defined by proxy, using a reference to an object constraint defined elsewhere in the same
archetype.

Attributes

Signature Optionality Multiplicity Documentation

target_path : String 1 -- Reference to an object node using archetype path notation.

Constraints

Name Expression

Consistency inv: not any_allowed

target_path_valid inv: target_path <> Void and not target_path.is_empty and
ultimate_root.has_path(target_path)

Package: constraint_model
Class ARCHETYPE_SLOT

C_OBJECT
 |
 +--ARCHETYPE_SLOT

Constraint describing a “slot” where another archetype may occur.

Attributes from associations

Signature Optionality Multiplicity Documentation

excludes : Set<ASSERTION> 0..1 0..* List of constraints defining other archetypes that
cannot be included at this point.

includes : Set<ASSERTION> 0..1 0..* List of constraints defining other archetypes that could
be included at this point.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 29

Constraints

Name Expression

includes_valid inv: includes <> Void implies not includes.is_empty

excludes_valid inv: excludes <> Void implies not excludes.is_empty

Validity inv: any_allowed xor includes <> Void or excludes <> Void

Package: constraint_model
Class C_SINGLE_ATTRIBUTE

C_ATTRIBUTE
 |
 +--C_SINGLE_ATTRIBUTE

Concrete model of constraint on a single-valued attribute node. The meaning of the inherited children attribute
is that they are alternatives.

Package: constraint_model
Class C_MULTIPLE_ATTRIBUTE

C_ATTRIBUTE
 |
 +--C_MULTIPLE_ATTRIBUTE

Abstract model of constraint on any kind of attribute node.

Attributes from associations

Signature Optionality Multiplicity Documentation

cardinality : CARDINALITY 0..1 -- Cardinality of this attribute constraint, if it constrains a
container attribute.

Constraints

Name Expression

members_valid inv: members <> Void and members->for_all(co: C_OBJECT | co.occurrences.upper <= 1)

cardinality_validity inv: cardinality <> Void

Package: constraint_model
Class C_DOMAIN_TYPE{Abstract}

C_OBJECT
 |
 +--C_DOMAIN_TYPE

Direct subclassifiers:
 C_ORDINAL, C_QUANTITY, C_CODED_TEXT

Abstract parent type of domain-specific constrainer types, to be defined in external packages.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

30 © ISO 2008 – All rights reserved

Package: constraint_model
Class C_COMPLEX_OBJECT

C_OBJECT
 |
 +--C_COMPLEX_OBJECT

Constraint on complex objects, i.e. any object that consists of other object constraints.

Attributes from associations

Signature Optionality Multiplicity Documentation

invariants : Set<ASSERTION> 0..1 0..*
Invariant statements about this object. Statements
are expressed in first-order predicate logic, and
usually refer to at least two attributes.

features : Set<C_ATTRIBUTE> 0..1 0..* List of constraints on attributes of the reference
model type represented by this object.

Constraints

Name Expression

attributes_valid inv: any_allowed xor (attributes <> Void and not attributes.is_empty)

invariants_valid inv: invariants <> Void implies not invariants.is_empty

invariant_consistency inv: any_allowed implies invariants = Void

Package: constraint_model
Class C_PRIMITIVE_OBJECT

C_OBJECT
 |
 +--C_PRIMITIVE_OBJECT

Attributes from associations

Signature Optionality Multiplicity Documentation

item : C_PRIMITIVE 1 -- Object actually defining the constraint.

Constraints

Name Expression

item_exists inv: any_allowed xor item <> Void

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 31

7.6 The assertion package

7.6.1 General

Figure 8 — Assertion Package

7.6.2 Package :: assertion

Inner elements
Name Type
ASSERTION Class
ASSERTION_VARIABLE Class
EXPR_BINARY_OPERATOR Class
EXPR_ITEM Class
EXPR_LEAF Class
EXPR_OPERATOR Class
EXPR_UNARY_OPERATOR Class

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

32 © ISO 2008 – All rights reserved

Package: assertion
Class EXPR_ITEM{Abstract}

Direct subclassifiers:
 EXPR_OPERATOR, EXPR_LEAF

Attributes

Signature Optionality Multiplicity Documentation

type : String 1 -- (none)

Constraints

Name Expression

type_valid inv: type <> Void and not type.is_empty

Package: assertion
Class EXPR_LEAF

EXPR_ITEM
 |
 +--EXPR_LEAF

Attributes

Signature Optionality Multiplicity Documentation

item : Any 1 -- (none)

reference_type : String 1 -- (none)

Constraints

Name Expression

item_valid inv: item <> Void

Package: assertion
Class EXPR_OPERATOR{Abstract}

EXPR_ITEM
 |
 +--EXPR_OPERATOR

Direct subclassifiers:
 EXPR_BINARY_OPERATOR, EXPR_UNARY_OPERATOR

Attributes

Signature Optionality Multiplicity Documentation

operator : OPERATOR_KIND 1 -- (none)

precedence_overridden : Boolean 0..1 -- (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 33

Package: assertion
Class EXPR_UNARY_OPERATOR

EXPR_OPERATOR
 |
 +--EXPR_UNARY_OPERATOR

Attributes from associations

Signature Optionality Multiplicity Documentation

operand : EXPR_ITEM 1 -- (none)

Constraints

Name Expression

operand_valid inv: operand <> Void

Package: assertion
Class EXPR_BINARY_OPERATOR

EXPR_OPERATOR
 |
 +--EXPR_BINARY_OPERATOR

Attributes from associations

Signature Optionality Multiplicity Documentation

left_operand : EXPR_ITEM 1 -- (none)

Right_operand : EXPR_ITEM 1 -- (none)

Constraints

Name Expression

left_operand_valid inv: left_operand <> Void

right_operand_valid inv: right_operand <> Void

Package: assertion
Class ASSERTION_VARIABLE

Attributes

Signature Optionality Multiplicity Documentation

definition : String 1 -- (none)

Name : String 1 -- (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

34 © ISO 2008 – All rights reserved

Package: assertion
Class ASSERTION

Structural model of a typed first-order predicate logic assertion, in the form of an expression tree, including
optional variable definitions.

Attributes

Signature Optionality Multiplicity Documentation

string_expression : String 1 -- (none)

tag : String 0..1 -- (none)

Attributes from associations

Signature Optionality Multiplicity Documentation

variables : List<ASSERTION_VARIABLE> 0..1 0..* ordered (none)

expression : EXPR_ITEM 1 -- (none)

Constraints

Name Expression

expression_valid inv: expression <> Void and expression.type.is_equal("Boolean")

tag_valid inv: tag <> Void implies not tag.is_empty

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 35

7.7 The primitive package

7.7.1 General

Figure 9 — Primitive package

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

36 © ISO 2008 – All rights reserved

7.7.2 Package :: primitive

Inner elements
Name Type
C_BOOLEAN Class
C_DATE Class
C_DATE_TIME Class
C_DURATION Class
C_INTEGER Class
C_PRIMITIVE Class
C_REAL Class
C_STRING Class
C_TIME Class

Package: primitive
Class C_STRING

C_PRIMITIVE
 |
 +--C_STRING

Constraint on instances of String.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : String 0..1 -- The value to assume if this item is not included in data, if it
is part of an optional structure.

list : Set<List<String>> 0..1 0..* List of Strings specifying constraint.

list_open : Boolean 0..1 -- True if the list is being used to specify the constraint but is
not considered exhaustive.

pattern : String 0..1 -- Regular expression pattern for proposed instances of String
to match.

Constraints

Name Expression

pattern_exists inv: pattern <> Void implies not pattern.is_empty

Consistency inv: pattern <> Void xor list <> Void

Package: primitive
Class C_BOOLEAN

C_PRIMITIVE
 |
 +--C_BOOLEAN

Constraint on instances of Boolean. Both attributes cannot be set to False, since this would mean that the
Boolean value being constrained cannot be True or False.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 37

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Boolean 0..1 -- The value to assume if this item is not included in data, if
it is part of an optional structure.

false_valid : Boolean 1 -- True if the value False is allowed.

true_valid : Boolean 1 -- True if the value True is allowed.

Constraints

Name Expression
Default_value_consistency inv: (default_value.value and true_valid) or (not default_value.value and

false_valid)
Binary_consistency inv: true_valid or false_valid

Package: primitive
Class C_DURATION

C_PRIMITIVE
 |
 +--C_DURATION

Constraint on instances of Duration.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Duration 0..1 --
The value to assume if this item is not
included in data, if it is part of an optional
structure.

days_allowed : Boolean 0..1 -- True if days are allowed in the constrained
Duration.

fractional_seconds_allowed : Boolean 0..1 -- True if fractional seconds are allowed in the
constrained Duration.

hours_allowed : Boolean 0..1 -- True if hours are allowed in the constrained
Duration.

minutes_allowed : Boolean 0..1 -- True if minutes are allowed in the constrained
Duration.

months_allowed : Boolean 0..1 -- True if months are allowed in the constrained
Duration.

range : Interval<Duration> 0..1 -- Constraint on instances of Duration.

seconds_allowed : Boolean 0..1 -- True if seconds are allowed in the
constrained Duration.

Weeks_allowed : Boolean 0..1 -- True if weeks are allowed in the constrained
Duration.

years_allowed : Boolean 0..1 -- True if years are allowed in the constrained
Duration.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

38 © ISO 2008 – All rights reserved

Constraints

Name Expression

Range_valid inv: range <> Void

Package: primitive
Class C_DATE_TIME

C_PRIMITIVE
 |
 +--C_DATE_TIME

Constraint on instances of Date_Time. There is no validity flag for “year”, since it shall always be by definition
mandatory in order to have a sensible date/time.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Date_Time 0..1 --
The value to assume if this item is not
included in data, if it is part of an optional
structure.

day_validity : VALIDITY_KIND 0..1 -- Validity of day in constrained date.

hour_validity : VALIDITY_KIND 0..1 -- Validity of hour in constrained time.

millisecond_validity : VALIDITY_KIND 0..1 -- Validity of millisecond in constrained time.

minute_validity : VALIDITY_KIND 0..1 -- Validity of minute in constrained time.

month_validity : VALIDITY_KIND 0..1 -- Validity of month in constrained date.

range : Interval<Date_Time> 0..1 -- Range of Date_times specifying constraint.

second_validity : VALIDITY_KIND 0..1 -- Validity of second in constrained time.

timezone_validity : VALIDITY_KIND 0..1 -- Validity of timezone in constrained date.

year_validity : VALIDITY_KIND 0..1 -- (none)

Constraints

Name Expression

second_validity_disallowed inv: second_validity = 'disallowed' implies millisecond_validity = 'disallowed'

second_validity_optional inv: second_validity = 'optional' implies (millisecond_validity = 'optional' or
millisecond_validity = 'disallowed')

minute_validity_optional inv: minute_validity = 'optional' implies (second_validity = 'optional' or
second_validity = 'disallowed')

minute_validity_disallowed inv: minute_validity = 'disallowed' implies second_validity = 'disallowed'

hour_validity_disallowed inv: hour_validity = 'disallowed' implies minute_validity = 'disallowed'

day_validity_disallowed inv: day_validity = 'disallowed' implies hour_validity = 'disallowed'

month_validity_disallowed inv: month_validity = 'disallowed' implies day_validity = 'disallowed'

day_validity_optional inv: day_validity = 'optional' implies (hour_validity = 'optional' or hour_validity =
'disallowed')

hour_validity_optional inv: hour_validity = 'optional' implies (minute_validity = 'optional' or minute_validity
= 'disallowed')

validity_is_range inv: validity_is_range = (range <> Void)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 39

Package: primitive
Class C_INTEGER

C_PRIMITIVE
 |
 +--C_INTEGER

Constraint on instances of Integer.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Integer 0..1 -- The value to assume if this item is not included in data, if it
is part of an optional structure.

list : Set<List<Integer>> 0..1 0..* Set of Integers specifying constraint.

range : Interval<Integer> 0..1 -- Range of Integers specifying constraint.

Constraints

Name Expression

consistency inv: list <> Void xor range <> Void

Package: primitive
Class C_TIME

C_PRIMITIVE
 |
 +--C_TIME

Constraint on instances of Time. There is no validity flag for “hour”, since it shall always be by definition
mandatory in order to have a sensible time at all.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Time 0..1 --
The value to assume if this item is not
included in data, if it is part of an optional
structure.

hour_validity : VALIDITY_KIND 0..1 -- (none)

millisecond_validity : VALIDITY_KIND 0..1 -- Validity of millisecond in constrained time.

Minute_validity : VALIDITY_KIND 0..1 -- Validity of minute in constrained time.

range : Interval<Time> 0..1 -- Interval of Times specifying constraint.

second_validity : VALIDITY_KIND 0..1 -- Validity of second in constrained time.

timezone_validity : VALIDITY_KIND 0..1 -- Validity of timezone in constrained date.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

40 © ISO 2008 – All rights reserved

Constraints

Name Expression

Minute_validity_optional inv: minute_validity = 'optional' implies (second_validity = 'optional' or
second_validity = 'disallowed')

second_validity_disallowed inv: second_validity = 'disallowed' implies millisecond_validity = 'disallowed'

second_validity_optional inv: second_validity = 'optional' implies (millisecond_validity = 'optional' or
millisecond_validity = 'disallowed')

minute_validity_disallowed inv: minute_validity = 'disallowed' implies second_validity = 'disallowed'

validity_is_range inv: validity_is_range = (range <> Void)

Package: primitive
Class C_REAL

C_PRIMITIVE
 |
 +--C_REAL

Constraint on instances of Real.

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Real 0..1 -- The value to assume if this item is not included in data, if it
is part of an optional structure.

list : Set<List<Integer>> 0..1 0..* Set of Reals specifying constraint.

range : Interval<Real> 0..1 -- Range of Real specifying constraint.

Constraints

Name Expression

consistency inv: list <> Void xor range <> Void

Package: primitive
Class C_DATE

C_PRIMITIVE
 |
 +--C_DATE

Constraint on instances of Date in the form either of a set of validity values, or an actual date range. There is
no validity flag for “year”, since it shall always be by definition mandatory in order to have a sensible date at all.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 41

Attributes

Signature Optionality Multiplicity Documentation

assumed_value : Date 0..1 -- The value to assume if this item is not included
in data, if it is part of an optional structure.

day_validity : VALIDITY_KIND 0..1 -- Validity of day in constrained date.

Month_validity : VALIDITY_KIND 0..1 -- Validity of month in constrained date.

range : Interval<Date> 0..1 -- Interval of Dates specifying constraint.

timezone_validity : VALIDITY_KIND 0..1 -- Validity of timezone in constrained date.

year_validity : VALIDITY_KIND 0..1 -- (none)

Constraints

Name Expression

Validity_is_range inv: validity_is_range = (range <> Void)

Month_validity_optional inv: month_validity = 'optional' implies (day_validity = 'optional' or day_validity =
'disallowed')

Month_validity_disallowed inv: month_validity = 'disallowed' implies day_validity = 'disallowed'

Package: primitive
Class C_PRIMITIVE{Abstract}

Direct subclassifiers:
 C_REAL, C_BOOLEAN, C_STRING, C_DATE, C_DURATION, C_INTEGER, C_TIME, C_DATE_TIME

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

42 © ISO 2008 – All rights reserved

7.8 The ontology package

7.8.1 General

Figure 10 — Ontology package

7.8.2 Package :: ontology

Inner elements
Name Type
ARCHETYPE_ONTOLOGY Class
ARCHETYPE_TERM Class

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 43

Package: ontology
Class ARCHETYPE_ONTOLOGY

Local ontology of an archetype.

Attributes

Signature Optionality Multiplicity Documentation

constraint_codes : List<String> 1 -- List of all constraint codes in the ontology.

specialisation_depth : Integer 1 --

Specialization depth of this archetype.
Unspecialized archetypes have depth 0, with
each additional level of specialization adding
1 to the specialisation_depth.

term_attribute_names : List<String> 1 --
List of “attribute” names in ontology terms,
typically includes “text”, “description”,
“provenance”, etc.

term_codes : List<String> 1 --

List of all term codes in the ontology. Most of
these correspond to “at” codes in an ADL
archetype, which are the node_ids on
C_OBJECT descendants. There may be an
extra one, if a different term is used as the
overall archetype concept_code from that
used as the node_id of the outermost
C_OBJECT in the definition part.

terminologies_available : Set<String> 1 -- List of terminologies to which term or
constraint bindings exist in this terminology.

Attributes from associations

Signature Optionality Multiplicity Documentation

parent_archetype : ARCHETYPE 1 -- Archetype that owns this ontology.

Constraints

Name Expression

terminologies_available_exists inv: terminologies_available <> Void

term_attribute_names_valid inv: term_attribute_names <> Void and term_attribute_names.has('text') and
term_attribute_names.has('description')

Parent_archetype_valid inv: parent_archetype <> Void and parent_archetype.description = Current

constraint_codes_exists inv: constraint_codes <> Void

concept_code_valid inv: term_codes.has (concept_code)

term_codes_exists inv: term_codes <> Void

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

44 © ISO 2008 – All rights reserved

Package: ontology
Class ARCHETYPE_TERM

Representation of any coded entity (term or constraint) in the archetype ontology.

Attributes

Signature Optionality Multiplicity Documentation

code : String 1 -- Code of this term.

items : Hash<String,String> 1 -- Hash of keys (“text”, “description”, etc) and
corresponding values.

Constraints

Name Expression

code_valid inv: code <> Void and not code.is_empty

7.9 The domain extensions package

7.9.1 General

Figure 11 — Domain extensions package

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 45

7.9.2 Package :: domain_extensions

Inner elements
Name Type
C_CODED_TEXT Class
C_ORDINAL Class
C_QUANTITY Class
C_QUANTITY_ITEM Class
ORDINAL Class

Package: domain_extensions
Class C_ORDINAL

C_DOMAIN_TYPE
 |
 +--C_ORDINAL

Attributes from associations

Signature Optionality Multiplicity Documentation

list : List<ORDINAL> 0..1 0..* ordered (none)

Package: domain_extensions
Class C_CODED_TEXT

C_DOMAIN_TYPE
 |
 +--C_CODED_TEXT

Attributes

Signature Optionality Multiplicity Documentation

code_list : List<String> 1 -- (none)

reference : String 1 -- (none)

terminology : String 1 -- (none)

Package: domain_extensions
Class C_QUANTITY

C_DOMAIN_TYPE
 |
 +--C_QUANTITY

Attributes

Signature Optionality Multiplicity Documentation

property : String 1 -- (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

46 © ISO 2008 – All rights reserved

Attributes from associations

Signature Optionality Multiplicity Documentation

list : List<C_QUANTITY_ITEM> 0..1 0..* ordered (none)

Package: domain_extensions
Class C_QUANTITY_ITEM

Attributes

Signature Optionality Multiplicity Documentation

magnitude : Interval<Real> 1 -- (none)

units : String 0..1 -- (none)

Package: domain_extensions
Class ORDINAL

Attributes

Signature Optionality Multiplicity Documentation

symbol : CODE_PHRASE 0..1 -- (none)

value : Integer 0..1 -- (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 47

7.10 The support package

7.10.1 General

Figure 12 — Support package

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

48 © ISO 2008 – All rights reserved

7.10.2 Package :: support

Inner elements
Name Type
OPERATOR_KIND Enumeration
VALIDITY_KIND Enumeration
Identification Package
text Package

support
Enumeration OPERATOR_KIND

Enumeration literals

And

Divide

Eq

Exists

Exp

for_all

Ge

Gt

Implies

Le

Lt

Matches

Minus

Ne

Not

Or

Plus

Xor

support
Enumeration VALIDITY_KIND

Enumeration literals

Disallowed

Mandatory

Optional

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 49

7.10.3 Package :: Identification

Inner elements
Name Type
ARCHETYPE_ID Class
HIER_OBJECT_ID Class
OBJECT_ID Class
TERMINOLOGY_ID Class

Package: Identification
Class TERMINOLOGY_ID

OBJECT_ID
 |
 +--TERMINOLOGY_ID

Package: Identification
Class OBJECT_ID{Abstract}

Direct subclassifiers:
 HIER_OBJECT_ID, TERMINOLOGY_ID, ARCHETYPE_ID

Attributes

Signature Optionality Multiplicity Documentation

value : String 1 -- (none)

Package: Identification
Class HIER_OBJECT_ID

OBJECT_ID
 |
 +--HIER_OBJECT_ID

Package: Identification
Class ARCHETYPE_ID

OBJECT_ID
 |
 +--ARCHETYPE_ID

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

50 © ISO 2008 – All rights reserved

7.10.4 Package :: text

Inner elements
Name Type
CODE_PHRASE Class
CODED_TEXT Class
TERM_MAPPING Class
TEXT Class

Package: text
Class CODED_TEXT

TEXT
 |
 +--CODED_TEXT

A text item whose value shall be the rubric from a controlled terminology, the key (i.e. the “code”) of which is
the defining_code attribute. In other words: a CODED_TEXT is a combination of a CODE_PHRASE
(effectively a code) and the rubric of that term, from a terminology service, in the language in which the data
were authored.

Attributes from associations

Signature Optionality Multiplicity Documentation

defining_code : CODE_PHRASE 1 -- (none)

Package: text
Class TEXT

Direct subclassifiers:
 CODED_TEXT

A plain text item, which may contain any amount of legal characters arranged as words, sentences, etc. (i.e.
one TEXT may be more than one word). Any TEXT may be “coded” by adding mappings to it.

Attributes

Signature Optionality Multiplicity Documentation

value : String 1 --

Displayable rendition of the item, regardless of its underlying structure.
For CODED_TEXT, this is the rubric of the complete term as provided
by the terminology service. No carriage returns, line feeds, or other
permitted non-printing characters.

Attributes from associations

Signature Optionality Multiplicity Documentation

charset : CODE_PHRASE 0..1 -- Name of character set in which this value is
encoded.

language : CODE_PHRASE 0..1 -- Optional indicator of the localized language in
which the value is written.

mappings : Set<TERM_MAPPING> 0..1 0..* Terms from other terminologies most closely
matching this term.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 51

Package: text
Class TERM_MAPPING

Attributes

Signature Optionality Multiplicity Documentation

match : Character 1 --

The relative match of the target term with respect to the
mapped text item. Result meanings:
“>”: the mapping is to a broader term
“=”: the mapping is to a (supposedly) equivalent to the
original item
“<”: the mapping is to a narrower term
“?”: the kind of mapping is unknown

purpose : CODED_TEXT 1 -- Purpose of the mapping, e.g. “automated data mining”,
“billing”, “interoperability”.

Attributes from associations

Signature Optionality Multiplicity Documentation

target : CODE_PHRASE 1 -- The target term of the mapping.

Package: text
Class CODE_PHRASE

A fully coordinated (i.e. all “coordination” has been performed) term from a terminology service (as distinct
from a particular terminology).

Attributes

Signature Optionality Multiplicity Documentation

code_string : String 1 -- The key used by the terminology service to
identify a concept or coordination of concepts.

terminology_id : TERMINOLOGY_ID 1 --
Identifier of the distinct terminology from which
the code_string (or its elements) was
extracted.

7.10.5 Package :: generic_types

Inner elements
Name Type
Aggregate Class
Hash Class
Interval Class
List Class
Set Class

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

52 © ISO 2008 – All rights reserved

Package: generic_types
Class list

Aggregate
 |
 +--List

Attributes

Signature Optionality Multiplicity Documentation

content : List<T> 0..1 0..* ordered (none)

Template parameters

Name Type Default value

T (none)

Package: generic_types
Class set

Aggregate
 |
 +--Set

Attributes

Signature Optionality Multiplicity Documentation

content : Set<T> 0..1 0..* (none)

Template parameters

Name Type Default value

T (none) (none)

Package: generic_types
Class interval

Attributes

Signature Optionality Multiplicity Documentation

lower : T 1 -- (none)

lower_unbounded : Boolean 1 -- (none)

upper : T 1 -- (none)

upper_unbounded : Boolean 1 -- (none)

Template parameters

Name Type Default value

T (none) (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 53

Package: generic_types
Class hash

Aggregate
 |
 +--Hash

Attributes

Signature Optionality Multiplicity Documentation

key : S 1 -- (none)

value : T 1 -- (none)

Template parameters

Name Type Default value

S (none) (none)

T (none) (none)

Package: generic_types
Class aggregate{Abstract}

Direct subclassifiers:
 List, Hash, Set

Template parameters

Name Type Default value

T (none) (none)

Operations

Signature Constraints Documentation

count() : Integer (none) (none)

has() : Boolean (none) (none)

is_empty() : Boolean (none) (none)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

54 © ISO 2008 – All rights reserved

7.10.6 Package :: primitive_data_types

Inner elements
Name Type
Any Data Type
Boolean Data Type
Character Data Type
Date Data Type
Date_Time Data Type
Double Data Type
Duration Data Type
Integer Data Type
Real Data Type
String Data Type
Time Data Type

Primitive_Data_Types
Data Type Double

Any
 |
 +--Double

Primitive_Data_Types
Data Type Character

Any
 |
 +--Character

Primitive_Data_Types
Data Type Date

Any
 |
 +--Date

Primitive_Data_Types
Data Type Duration

Any
 |
 +--Duration

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 55

Primitive_Data_Types
Data Type Date_Time

Any
 |
 +--Date_Time

Primitive_Data_Types
Data Type Time

Any
 |
 +--Time

Primitive_Data_Types
Data Type String

Any
 |
 +--String

Operations

Signature Constraints Documentation

is_empty() : Boolean (none) (none)

is_equal(other : String) : Boolean (none) (none)

Primitive_Data_Types
Data Type Integer

Any
 |
 +--Integer

Primitive_Data_Types
Data Type Boolean

Any
 |
 +--Boolean

Primitive_Data_Types
Data Type Real

Any
 |
 +--Real

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

56 © ISO 2008 – All rights reserved

Primitive_Data_Types
Data Type Any

Direct subclassifiers:
 Date_Time, Real, Time, Integer, Duration, Character, String, Double, Boolean, Date

7.11 Generic types package

This package is included to confirm the semantics of the generic types used in this part of ISO 13606.
Although List<T>, Set<T>, Bag(not used), Hash<T,K>, and Interval<T> are generic types supported by many
programming environments, they are not directly supported in UML. In this package, new types such as
List<String> are defined using binding dependencies between a new basic type such as List<String> and a
Class (LIST in this example) that defines the minimum required semantics for all Lists.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 57

Figure 13 — Generic types package

7.12 Domain-specific extensions (informative)

7.12.1 General

Domain-specific classes may be added to the archetype constraint model by inheriting from the class
C_DOMAIN_TYPE.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

58 © ISO 2008 – All rights reserved

7.12.2 Scientific/clinical computing types

Figure 14 shows the general approach used to add constraint classes for commonly used concepts in
scientific and clinical computing, such as “ordinal”, “coded term” and “quantity”. The constraint types shown
are C_ORDINAL, C_CODED_TEXT and C_QUANTITY which may optionally be used in archetypes to
replace the default constraint semantics represented by the use of instances of C_OBJECT / C_ATTRIBUTE.

Figure 14 — Example domain-specific package

8 Archetype Definition Language (ADL)

8.1 dADL — Data ADL

8.1.1 Overview

8.1.1.1 Preamble

The dADL syntax provides a formal means of expressing instance data based on an underlying information
model, which is readable both by humans and machines.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 59

EXAMPLE

person = List<PERSON> <

 [01234] = <

 name = < -- persons name

 forenames = <"Sherlock">

 family_name = <"Holmes">

 salutation = <"Mr">

 >

 address = < -- persons address

 habitation_number = <"221B">

 street_name = <Baker St>

 city = <London>

 country = <England>

 >

 >

 [01235] = < -- etc

 >

>

NOTE In the above, the identifiers PERSON, name, address, etc. are all assumed to come from an information
model. The basic design principle of dADL is to be able to represent data in a way that is both machine-processible and
human-readable, while making the fewest assumptions possible about the information model to which the data conform.
To this end, type names are optional; often, only attribute names and values are explicitly shown. More than one
information model can be compatible with the same dADL-expressed data. The UML semantics of
composition/aggregation and association are expressible, as are shared objects. Literal leaf values are only of widely
recognised types, i.e. Integer, Real, Boolean, String, Character and a range of Date/Time types; all complex types are
expressed structurally.

8.1.1.2 Scope of a dADL document

A dADL document may contain one or more objects from the same object model.

8.1.1.3 Keywords

dADL has no keywords of its own — all identifiers are assumed to come from an information model.

8.1.1.4 Reserved characters

In dADL, some characters are reserved and have the following meanings:

‘<’: open an object block;

‘>’: close an object block;

‘=’: indicate attribute value = object block;

‘(’, ‘)’: type name or plug-in syntax-type delimiters;

‘<#’: open an object block expressed in a plug-in syntax;

‘#>’: close an object block expressed in a plug-in syntax.

Within <> delimiters, the following characters are used to indicate primitive values:

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

60 © ISO 2008 – All rights reserved

‘”’: double quote characters are used to delimit string values;

‘’’: single quote characters are used to delimit single character values;

‘|’: bar characters are used to delimit intervals;

[]: brackets are used to delimit coded terms.

8.1.1.5 Comments

Comments are indicated by the -- characters. Multiline comments are achieved using the -- leader on each
line where the comment continues.

8.1.1.6 Information model identifiers

A type name is any identifier with an initial upper case letter, followed by any combination of letters, digits and
underscores. A generic type name (including nested forms) may additionally include commas and angle
brackets, but no spaces, and shall be syntactically correct as per the UML. An attribute name is any identifier
with an initial lower case letter, followed by any combination of letters, digits and underscores.

8.1.1.7 Semicolons

Semicolons are optionally used to support readability.

NOTE The following examples are equivalent:

term = <text = <"plan">; description = <"The clinician's advice">>

term = <text = <"plan"> description = <"The clinician's advice">>

term = <

 text = <"plan">

 description = <"The clinician's advice">

>

8.1.2 Paths

Because dADL data are hierarchical, and all nodes are uniquely identified, a unique path can be determined
for every node in a dADL text. The syntax of paths in dADL is the standard ADL path syntax. Paths are
directly convertible to XPath expressions for use in XML-encoded data.

NOTE A typical ADL path used to refer to a node in a dADL text is as follows:

/term_definitions[en]/items[at0001]/text/

8.1.3 Structure

8.1.3.1 General form

8.1.3.1.1 General

A dADL document expresses serialized instances of one or more complex objects. Each such instance is a
hierarchy of attribute names and object values.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 61

NOTE 1 In its simplest form, a dADL text consists of repetitions of the following pattern:

attribute_name = <value>

In the most basic form of dADL, each attribute name is the name of an attribute in an implied or actual object
or relational model. Each value is either a literal value of a primitive type (see 7.10.6) or a further nesting of
attribute names and values, terminating in leaf nodes of primitive type values. Where sibling attribute nodes
occur, the attribute names shall be unique.

NOTE 2 The following shows a typical structure:

attr_1 = <

 attr_2 = <

 attr_3 = <leaf_value>

 attr_4 = <leaf_value>

 >

 attr_5 = <

 attr_3 = <

 attr_6 = <leaf_value>

 >

 attr_7 = <leaf_value>

 >

>

attr_8 = <>

NOTE 3 In the above structure, each <> encloses an instance of some type. The hierarchical structure corresponds to
the part-of relationship between objects: composition and aggregation relationships in UML. Associations between
instances in dADL are also representable by references, and are described in 8.1.3.5.

8.1.3.1.2 Outer delimiters

Outer <> delimiters in a dADL text are optional.

8.1.3.2 Empty sections

Empty sections are permitted at both internal and leaf node levels, enabling the author to express the fact that
there are, in some particular instance, no data for an attribute, while still showing that the attribute itself is
expected to exist in the underlying information model. Nested empty sections may be used.

EXAMPLE

address = <> -- persons address

8.1.3.3 Container objects

8.1.3.3.1 General

Container instances are expressed using repetitions of a block introduced by an arbitrary container attribute
name, contained in square brackets, and qualified in each case by a unique manifest value. The qualifiers are
arbitrary unique keys, which need not be drawn from the set of contained values. These keys need not be
sequential and do not in themselves imply an ordering. Container structures may appear anywhere in an
overall instance structure.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

62 © ISO 2008 – All rights reserved

EXAMPLE

school_schedule = <

 lesson_times = <08:30:00, 09:30:00, 10:30:00, ...>

 locations = <

 [1] = <under the big plane tree>

 [2] = <under the north arch>

 [3] = <in a garden>

 >

 subjects = <

 [philosophy:plato] = < -- note construction of qualifier

 name = <philosophy>

 teacher = <plato>

 topics = <meta-physics, natural science>

 weighting = <76%>

 >

 [philosophy:kant] = <

 name = <philosophy>

 teacher = <kant>

 topics = <meaning and reason, meta-physics, ethics>

 weighting = <80%>

 >

 [art] = <

 name = <art>

 teacher = <goya>

 topics = <technique, portraiture, satire>

 weighting = <78%>

 >

 >

8.1.3.3.2 Paths

Paths through container objects are formed in the same way as paths in other structured data, with the
addition of the key to ensure uniqueness. The key is included syntactically enclosed in brackets.

EXAMPLE

/school_schedule/locations[1]/
 -- path to under the big...

/school_schedule/subjects[philosophy:kant]/
 -- path to kant

8.1.3.4 Adding type information

Type information may be included optionally on any node immediately before the opening < of any block, in
the form of a UML-style type identifier which optionally includes dot-separated namespace identifiers and

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 63

template parameters. Type information may be added to instance data by including the type name in
parentheses after the = sign.

EXAMPLE 1

destinations = <

 [seville] = (TOURIST_DESTINATION) <

 profile = (DESTINATION_PROFILE) <>

 hotels = <

 [gran sevilla] = (HISTORIC_HOTEL) <>

 [sofitel] = (LUXURY_HOTEL) <>

 [hotel real] = (PENSION) <>

 >

 attractions = <

 [la corrida] = (ATTRACTION) <>

 [Alc·zar] = (HISTORIC_SITE) <>

 >

 >

>

NOTE In the above, no type identifiers are included after the hotels and attractions attributes. However, the complete
typing information may be included as follows.

 hotels = (List<HOTEL>) <

 [gran sevilla] = (HISTORIC_HOTEL) <>
 >

Type identifiers may also include namespace information, which is necessary when same-named types
appear in different packages of a model. Namespaces are included by pre-pending package names,
separated by the character.

EXAMPLE 2

RM.EHR.CONTENT.ENTRY

and

Core.Abstractions.Relationships.Relationship.

8.1.3.5 Associations and shared objects

Shared objects are referenced using paths. Objects in other dADL documents can be referred to using normal
URIs whose path section conforms to dADL path syntax.

EXAMPLE Hotel objects may be shared objects, referred to by association.

destinations = <

 [“seville”] = <
 hotels = <

 [“gran sevilla”] = </hotels[“gran sevilla”]>

 [“sofitel”] = </hotels[“sofitel”]>
 [“hotel real”] = </hotels[“hotel real”]>

 >
 >

>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

64 © ISO 2008 – All rights reserved

bookings = <

 [“seville:0134”] = <

 customer_id = <“0134”>

 period = <...>

 hotel = </hotels[“sofitel”]>

 >

>

hotels = <

 [“gran sevilla”] = (HISTORIC_HOTEL) <>

 [“sofitel”] = (LUXURY_HOTEL) <>

 [“hotel real”] = (PENSION) <>

>

8.1.4 Leaf data

8.1.4.1 General

All dADL data devolve to instances of the primitive types String, Integer, Real, Double, String,
Character, various date/time types, lists or intervals of these types, and a few special types. dADL does not
use type or attribute names for instances of primitive types, only manifest values.

8.1.4.2 Primitive types

8.1.4.2.1 Character data

Characters are shown in a number of ways. In the literal form, a character is shown in single quotes.
Characters outside the low ASCII (0-127) range shall be UTF-8 encoded.

EXAMPLE

‘&ohgr;’ -- greek omega

8.1.4.2.2 String data

All strings are enclosed in double quotes. Quotes are encoded using ISO/IEC 10646 codes.

EXAMPLE 1

“this is a much longer string, what one might call a "phrase".”

Line extension of strings is done simply by including returns in the string. The exact contents of the string are
computed as being the characters between the double quote characters, with the removal of white space
leaders up to the left-most character of the first line of the string.

EXAMPLE 2

a ∈ A -- prints as: a ∈ Α

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 65

8.1.4.2.3 Integer data

Integers are represented simply as numbers. Commas or periods for breaking long numbers are not permitted
(see 8.1.4.4).

EXAMPLE

25

300000

29e6

8.1.4.2.4 Real data

Real numbers are assumed whenever a decimal is included within a number. Commas or periods for breaking
long numbers are not permitted. Only periods may be used to separate the decimal part of a number (see
8.1.4.4).

EXAMPLE

25.0

3.1415926

6.023e23

8.1.4.2.5 Boolean data

Boolean values may be indicated by the following values (case-insensitive):

True

False

8.1.4.2.6 Dates and times

Complete date/time
In dADL, full and partial dates, times and durations can be expressed. All full dates, times and durations are
expressed using a subset of ISO 8601. In dADL, the use of ISO 8601 allows extended form only
(i.e. “:” and “-” shall be used). The ISO 8601 method of representing partial dates consisting of a single year
number, and partial times consisting of hours only are not supported. See below for partial forms. Patterns for
complete dates and times in dADL include the following:

yyyy-MM-dd -- a date

hh:mm[:ss[.sss][Z]] -- a time

yyyy-MM-dd hh:mm:ss[.sss][Z] -- a date/time

where:

yyyy = four-digit year

MM = month in year

dd = day in month

hh = hour in 24 hour clock

mm = minutes

ss.sss = seconds, including fractional part

Z = the timezone in the form of a + or - followed by four digits

 indicating the hour offset, e.g. +0930, or else the literal Z

 indicating +0000 (the Greenwich meridian).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

66 © ISO 2008 – All rights reserved

Durations are expressed using a string which starts with “P”, and is followed by a list of periods, each
appended by a single letter designator: “Y” for years, “M” for months, “W” for weeks, “D” for days, “H” for hours,
“M” for minutes, and “S” for seconds. The literal “T” separates the YMWD part from the HMS part, ensuring
that months and minutes can be distinguished.

EXAMPLE

1919-01-23 -- birthdate of Django Reinhardt

16:35 .04 -- rise of Venus in Sydney on 24 Jul 2003

2001-05-12 07:35:20+1000 -- timestamp on an email received from Australia

P22D4H15M0S -- period of 22 days, 4 hours, 15 minutes

Partial date/time
Two ways of expressing partial (i.e. incomplete) date/times are supported in dADL. The ISO 8601 incomplete
formats are supported in extended form only (i.e. with “-” and “:” separators) for all patterns that are
unambiguous on their own. Dates consisting of only the year, and times consisting of only the hour are not
supported. The supported ISO 8601 patterns are as follows:

yyyy-MM -- a date with no days

hh:mm -- a time with no seconds

yyyy-MM-ddThh:mm -- a date/time with no seconds

yyyy-MM-ddThh -- a date/time with no minutes or seconds

To deal with the limitations of ISO 8601 partial patterns in a context-free parsing environment, a second form
of pattern is supported in dADL, based on ISO 8601. In this form, “?” characters are substituted for missing
digits.

Valid partial dates follow the patterns:

yyyy-MM-?? -- date with unknown day in month

yyyy-??-?? -- date with unknown month and day

Valid partial times follow the patterns:

hh:mm:?? -- time with unknown seconds

hh:??:?? -- time with unknown minutes and seconds

Valid date/times follow the patterns:

yyyy-MM-ddThh:mm:?? -- date/time with unknown seconds

yyyy-MM-ddThh:??:?? -- date/time with unknown minutes and seconds

yyyy-MM-ddT??:??:?? -- date/time with unknown time

yyyy-MM-??T??:??:?? -- date/time with unknown day and time

yyyy-??-??T??:??:?? -- date/time with unknown month, day and time

8.1.4.3 Intervals of ordered primitive types

Intervals of any ordered primitive type, i.e. Integer, Real, Date, Time, Date_Time and Duration, can be stated
using the following uniform syntax, where N and M are instances of any of the ordered types:

|N..M| the two-sided range N <= x <= M;

|N<..M| the two-sided range N < x <= M;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 67

|N..<M| the two-sided range N <= x <M;
|N<..<M| the two-sided range N < x <M;
|<N| the one-sided range x < N;
|>N| the one-sided range x > N;
|>=N| the one-sided range x >= N;
|<=N| the one-sided range x <= N;
|N +/-M| interval of N ± M.

The allowable values for N and M include any value in the range of the relevant type as well as:
infinity
-infinity
* equivalent to infinity

8.1.4.4 Other built-in types

8.1.4.4.1 URIs

URIs follow the standard syntax from http://www.ietf.org/rfc/rfc3986.txt. No quotes or inverted commas are
needed; neither spaces nor angle brackets are allowed; both have to be quoted.

EXAMPLE

http://archetypes.are.us/home.html

ftp://get.this.file.com#section_5

http://www.mozilla.org/products/firefox/upgrade/?application=thunderbird

8.1.4.4.2 Coded terms

The logical structure of a coded term consists of an identifier of a terminology, and an identifier of a code
within that terminology. (The rubric associated with the code forms part of the ontology package, documented
later in this Section.) The dADL string representation is as follows:

[terminology_id::code]

EXAMPLE

[icd10AM::F60.1] -- from ICD10AM

[snomed-ct::2004950] -- from snomed-ct

[snomed-ct(3.1)::2004950] -- from snomed-ct v 3.1

8.1.4.5 Lists of built-in types

Data of any primitive type may occur singly or in lists, which are shown as comma-separated lists of items, all
of the same type.

EXAMPLE 1

cyan, magenta, yellow, black -- printers colours

1, 1, 2, 3, 5 -- first 5 fibonacci numbers

08:02, 08:35, 09:10 -- set of train times

No assumption is made in the syntax about whether a list represents a set, a list or some other kind of
sequence; such semantics shall be taken from an underlying information model.

Lists which have only one datum are indicated by using a comma followed by a list continuation marker of
three dots, i.e. ...

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.ietf.org/rfc/rfc3986.txt
http://archetypes.are.us/home.html
ftp://get.this.file.com#section_5
http://www.mozilla.org/products/firefox/upgrade/?application=thunderbird

ISO 13606-2:2008(E)

68 © ISO 2008 – All rights reserved

EXAMPLE 2

en, ... -- languages

icd10, ... -- terminologies

[at0200], ...

White space may be optionally used within lists.

EXAMPLE 3 The following two lists are identical:

1,1,2,3

1, 1, 2,3

8.1.5 dADL syntax

8.1.5.1 Grammar

This section specifies the dADL grammar.

input:

 attr_vals

| complex_object_block

 | error

 ;

---------------------- body ---------------------

attr_vals: attr_val

 | attr_vals attr_val

 | attr_vals ';' attr_val

 ;

attr_val: attr_id SYM_EQ object_block -- could be a single or multiple attr

 ;

attr_id:

 V_ATTRIBUTE_IDENTIFIER

| V_ATTRIBUTE_IDENTIFIER error

object_block:

complex_object_block

| primitive_object_block

| plugin_object_block

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 69

plugin_object_block:

 V_PLUGIN_SYNTAX_TYPE V_PLUGIN_BLOCK

complex_object_block:

 single_attr_object_block

 | multiple_attr_object_block

 ;

multiple_attr_object_block: untyped_multiple_attr_object_block

 | TYPE_IDENTIFIER untyped_multiple_attr_object_block

 ;

untyped_multiple_attr_object_block: multiple_attr_object_block_head

 keyed_objects SYM_END_DBLOCK

 ;

multiple_attr_object_block_head: SYM_START_DBLOCK

 ;

keyed_objects: keyed_object

 | keyed_objects keyed_object

 ;

keyed_object: object_key SYM_EQ object_block

 ;

attr_id: V_ATTRIBUTE_IDENTIFIER

 | V_ATTRIBUTE_IDENTIFIER error

 ;

object_key: '[' simple_value ']'

 ;

single_attr_object_block: untyped_single_attr_object_block

 | TYPE_IDENTIFIER untyped_single_attr_object_block

 ;

untyped_single_attr_object_block:

 single_attr_object_complex_head SYM_END_DBLOCK

 single_attr_object_complex_head attr_vals SYM_END_DBLOCK

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

70 © ISO 2008 – All rights reserved

single_attr_object_complex_head: SYM_START_DBLOCK

 ;

primitive_object_block:

 untyped_primitive_object_block

| type_identifier untyped_primitive_object_block

untyped_primitive_object_block:

single_attr_object_primitive:

 SYM_START_DBLOCK primitive_object_value SYM_END_DBLOCK

 ;

primitive_object_value: simple_value

 | simple_list_value

 | simple_interval_value

 | term_code

 | term_code_list_value

 | query

 ;

simple_value: string_value

 | integer_value

 | real_value

 | boolean_value

 | character_value

 | date_value

 | time_value

 | date_time_value

 | duration_value

 | uri_value

 ;

simple_list_value: string_list_value

 | integer_list_value

 | real_list_value

 | boolean_list_value

 | character_list_value

 | date_list_value

 | time_list_value

 | date_time_list_value

 | duration_list_value

 ;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 71

simple_interval_value: integer_interval_value

 | real_interval_value

 | date_interval_value

 | time_interval_value

 | date_time_interval_value

 | duration_interval_value

 ;

type_identifier:

 V_TYPE_IDENTIFIER

| V_GENERIC_TYPE_IDENTIFIER

---------------------- BASIC DATA VALUES -----------------------

string_value: V_STRING

 ;

string_list_value: V_STRING ',' V_STRING

 | string_list_value ',' V_STRING

 | V_STRING ',' SYM_LIST_CONTINUE

 ;

integer_value: V_INTEGER

 | '+' V_INTEGER

 | '-' V_INTEGER

 ;

integer_list_value: integer_value ',' integer_value

 | integer_list_value ',' integer_value

 | integer_value ',' SYM_LIST_CONTINUE

 ;

integer_interval_value:

 SYM_INTERVAL_DELIM integer_value SYM_ELLIPSIS integer_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT integer_value SYM_ELLIPSIS integer_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM integer_value SYM_ELLIPSIS SYM_LT integer_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT integer_value SYM_ELLIPSIS SYM_LT integer_value

SYM_INTERVAL_DELIM

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

72 © ISO 2008 – All rights reserved

| SYM_INTERVAL_DELIM SYM_LT integer_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE integer_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT integer_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE integer_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM integer_value SYM_INTERVAL_DELIM
 ;

real_value: V_REAL

 | '+' V_REAL

 | '-' V_REAL

 ;

real_list_value: real_value ',' real_value

 | real_list_value ',' real_value

 | real_value ',' SYM_LIST_CONTINUE

 ;

real_interval_value:

SYM_INTERVAL_DELIM real_value SYM_ELLIPSIS real_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT real_value SYM_ELLIPSIS real_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM real_value SYM_ELLIPSIS SYM_LT real_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT real_value SYM_ELLIPSIS SYM_LT real_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LT real_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE real_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT real_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE real_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM real_value SYM_INTERVAL_DELIM

 ;

boolean_value: SYM_TRUE

 | SYM_FALSE

 ;

boolean_list_value: boolean_value ',' boolean_value

 | boolean_list_value ',' boolean_value

 | boolean_value ',' SYM_LIST_CONTINUE

 ;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 73

character_value: V_CHARACTER

 ;

character_list_value: character_value ',' character_value

 | character_list_value ',' character_value

 | character_value ',' SYM_LIST_CONTINUE

 ;

date_value: V_ISO8601_EXTENDED_DATE

date_list_value: date_value ',' date_value

 | date_list_value ',' date_value

 | date_value ',' SYM_LIST_CONTINUE

 ;

date_interval_value:

SYM_INTERVAL_DELIM date_value SYM_ELLIPSIS date_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_value SYM_ELLIPSIS date_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM date_value SYM_ELLIPSIS SYM_LT date_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_value SYM_ELLIPSIS SYM_LT date_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LT date_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE date_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE date_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM date_value SYM_INTERVAL_DELIM

 ;

time_value: V_ISO8601_EXTENDED_TIME

time_list_value: time_value ',' time_value

 | time_list_value ',' time_value

 | time_value ',' SYM_LIST_CONTINUE

 ;

time_interval_value:

SYM_INTERVAL_DELIM time_value SYM_ELLIPSIS time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT time_value SYM_ELLIPSIS time_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM time_value SYM_ELLIPSIS SYM_LT time_value

SYM_INTERVAL_DELIM

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

74 © ISO 2008 – All rights reserved

| SYM_INTERVAL_DELIM SYM_GT time_value SYM_ELLIPSIS SYM_LT time_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LT time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM time_value SYM_INTERVAL_DELIM

 ;

date_time_value: V_ISO8601_EXTENDED_DATE_TIME

 ;

date_time_list_value: date_time_value ',' date_time_value

 | date_time_list_value ',' date_time_value

 | date_time_value ',' SYM_LIST_CONTINUE

 ;

date_time_interval_value:

SYM_INTERVAL_DELIM date_time_value SYM_ELLIPSIS date_time_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_time_value SYM_ELLIPSIS date_time_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM date_time_value SYM_ELLIPSIS SYM_LT date_time_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_time_value SYM_ELLIPSIS SYM_LT

date_time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LT date_time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE date_time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT date_time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE date_time_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM date_time_value SYM_INTERVAL_DELIM

 ;

duration_value: V_ISO8601_DURATION

 | - V_ISO8601_DURATION

duration_list_value: duration_value ',' duration_value

 | duration_list_value ',' duration_value

 | duration_value ',' SYM_LIST_CONTINUE

 ;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 75

duration_interval_value:

SYM_INTERVAL_DELIM duration_value SYM_ELLIPSIS duration_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT duration_value SYM_ELLIPSIS duration_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM duration_value SYM_ELLIPSIS SYM_LT duration_value

SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT duration_value SYM_ELLIPSIS SYM_LT

 ;

duration_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LT duration_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_LE duration_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GT duration_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM SYM_GE duration_value SYM_INTERVAL_DELIM

| SYM_INTERVAL_DELIM duration_value SYM_INTERVAL_DELIM

term_code: V_QUALIFIED_TERM_CODE_REF

 ;

term_code_list_value: term_code ',' term_code

 | term_code_list_value ',' term_code

 | term_code ',' SYM_LIST_CONTINUE

 ;

uri_value: V_URI

8.1.5.2 Symbols

The following specifies the symbols and lexical patterns used in the above grammar.

----------/* definitions */ ---

ALPHANUM [a-zA-Z0-9]

IDCHAR [a-zA-Z0-9_]

NAMECHAR [a-zA-Z0-9._\-]

NAMECHAR_SPACE [a-zA-Z0-9._\-]

NAMECHAR_PAREN [a-zA-Z0-9._\-()]

UTF8CHAR (([\xC2-\xDF][\x80-\xBF])|(\xE0[\xA0-\xBF][\x80-\xBF])|([\xE1-

\xEF][\x80-\xBF][\x80-\xBF])|(\xF0[\x90-\xBF][\x80-\xBF][\x80-\xBF])|([\xF1-

\xF7][\x80-\xBF][\x80-\xBF][\x80-\xBF]))

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

76 © ISO 2008 – All rights reserved

----------/** Separators **/---

[\t\r]+ -- Ignore separators

\n+ -- (increment line count)

----------/* comments */ ---

"--".* -- Ignore comments

"--".*\n[\t\r]*

----------/* symbols */ ---

- Minus_code

+ Plus_code

* Star_code

/ Slash_code

^ Caret_code

. Dot_code

; Semicolon_code

, Comma_code

: Colon_code

! Exclamation_code

(Left_parenthesis_code

) Right_parenthesis_code

$ Dollar_code

“??” SYM_DT_UNKNOWN

? Question_mark_code

| SYM_INTERVAL_DELIM

[Left_bracket_code

] Right_bracket_code

= SYM_EQ

>= SYM_GE

<= SYM_LE

< SYM_LT / SYM_START_DBLOCK

> SYM_GT / SYM_END_DBLOCK

.. SYM_ELLIPSIS

... SYM_LIST_CONTINUE

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 77

----------/* keywords */ ---

[Tt][Rr][Uu][Ee] SYM_TRUE

[Ff][Aa][Ll][Ss][Ee] SYM_FALSE

[Ii][Nn][Ff][Ii][Nn][Ii][Tt][Yy] SYM_INFINITY

[Qq][Uu][Ee][Rr][Yy] SYM_QUERY_FUNC

----------/* URI */ --

[a-z]+:\/\/[^<>|\\{}^~"\[\]]* V_URI

----------/* term code reference of form [ICD10AM(1998)::F23 */ ----------

\[{NAMECHAR_PAREN}+::{NAMECHAR_SPACE}+\] V_QUALIFIED_TERM_CODE_REF

\[{ALPHANUM}{NAMECHAR}*\] V_LOCAL_TERM_CODE_REF

----------/* local code definition */ -------------------------------------

a[ct][0-9.]+ V_LOCAL_CODE

----------/* V_ISO8601_EXTENDED_DATE_TIME YYYY-MM-DDThh:mm:ss[,sss][Z|+/-

nnnn] */ ---

[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-6][0-9]:[0-6][0-9](,[0-
9]+)?(Z|[+-][0-9]{4})? |

[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-6][0-9](Z|[+-][0-9]{4})? |

[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9](Z|[+-][0-9]{4})?

----------/* V_ISO8601_EXTENDED_TIME hh:mm:ss[,sss][Z|+/-nnnn] */ --------

[0-2][0-9]:[0-6][0-9]:[0-6][0-9](,[0-9]+)?(Z|[+-][0-9]{4})? |

[0-2][0-9]:[0-6][0-9](Z|[+-][0-9]{4})?

----------/* V_ISO8601_EXTENDED_DATE YYYY-MM-DD */ ------------------------

[0-9]{4}-[0-1][0-9]-[0-3][0-9] |

[0-9]{4}-[0-1][0-9]

----------/* V_ISO8601_DURATION PnYnMnWnDTnnHnnMnnS */ -------------

P([0-9]+[yY])?([0-9]+[mM])?([0-9]+[wW])?([0-9]+[dD])?T([0-9]+[hH])?([0-
9]+[mM])?([0-9]+[sS])? |

P([0-9]+[yY])?([0-9]+[mM])?([0-9]+[wW])?([0-9]+[dD])?

----------/* V_TYPE_IDENTIFIER */ ---------------------------------------

[A-Z]{IDCHAR}*

----------/* V_GENERIC_TYPE_IDENTIFIER */ -------------------------------

[A-Z]{IDCHAR}*<[a-zA-Z0-9,_<>]+>

----------/* V_ATTRIBUTE_IDENTIFIER */ ----------------------------------

[a-z]{IDCHAR}*

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

78 © ISO 2008 – All rights reserved

----------/* CADL Blocks */ ---

\{[^{}]*

<IN_CADL_BLOCK>\{[^{}]* -- got an open brace

<IN_CADL_BLOCK>[^{}]*\} -- got a close brace

----------/* numbers */ ---

[0-9]+\.[0-9]+ V_INTEGER

[0-9]+\.[0-9]+[eE][+-]?[0-9]+ V_REAL

----------/* Strings */ ---

\"[^\\\n"]*\" V_STRING

---- strings containing quotes, special characters etc

\"[^\\\n"]* -- beginning of a string

<IN_STR>\\\\ -- match escaped backslash

<IN_STR>\\\" -- match escaped double quote

{UTF8CHAR}+ -- match UTF8 chars

<IN_STR>[^\\\n"]+ -- match any other characters

<IN_STR>\\\n[\t\r]* -- match LF in line

<IN_STR>[^\n"]*\ " -- match final end of string

<IN_STR>.|\n | -- Error

<IN_STR><<EOF>> -- unclosed String

----------/* V_CHARACTER */ --

\'[^\\\n']\' -- normal character in 0-127

\'\\n\ -- \n

\'\\r\ -- \r

\'\\t\ -- \t

\'\\'\ -- \’

\'\\\\ -- \\

\'{UTF8CHAR}\' -- UTF8 char

\'.{1,2} |

\'\\[0-9]+(\/)? -- invalid character -> ERR_CHARACTER

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 79

8.2 cADL — Constraint ADL

8.2.1 Overview (informative)

cADL is a syntax which enables constraints on data defined by object-oriented information models to be
expressed in archetypes or other knowledge definition formalisms. It is most useful for defining the specific
allowable constructions of data whose instances conform to very general object models. cADL is used both at
design time, by authors and/or tools, and at runtime, by computational systems which validate data by
comparing it to the appropriate sections of cADL in an archetype. The general appearance of cADL is
illustrated by the following example:

PERSON[at0000] matches { -- constraint on PERSON instance

 name matches { -- constraint on PERSON.name

 TEXT matches {/.+/} -- any non-empty string

 }

 addresses cardinality matches {0..*} matches { -- constraint on

 ADDRESS matches { -- PERSON.addresses

 -- etc --

 }

 }

}

Some of the textual keywords in this example can be more efficiently rendered using common mathematical
logic symbols. In the following example, the matches, exists and implies keywords have been replaced
by appropriate symbols:

PERSON[at0000] ∈ { -- constraint on PERSON instance

 name ∈ { -- constraint on PERSON.name

 TEXT ∈ {/..*/} -- any non-empty string

 }

 addresses cardinality ∈ {0..*} ∈ { -- constraint on

 ADDRESS ∈ { -- PERSON.addresses

 -- etc --

 }

 }

}

The full set of equivalences appears below. Raw cADL is stored in the text-based form, to remove any
difficulties with representation of symbols, to avoid difficulties of authoring cADL text in text editors which do
not supply symbols, and to aid reading in English. However, the symbolic form might be more widely used due
to the use of tools, and formatting in HTML and other documentary formats, and may be more comfortable for
non-English speakers and those with formal mathematical backgrounds. cADL supports both conventions: the
use of symbols or text is completely a matter of personal preference.

Literal leaf values (such as the regular expression /..*/ in the above example) are always constraints on a
set of standard primitive types. Other more sophisticated constraint syntax types are described under cADL —
Constraint ADL on page 79.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

80 © ISO 2008 – All rights reserved

8.2.2 Basics

8.2.2.1 Keywords

The following keywords are recognised in cADL:
• matches, ~matches, is_in, ~is_in
• occurrences, existence, cardinality
• ordered, unordered, unique
• infinity

• use_node, allow_archetype1)

• include, exclude

Symbol equivalents for some of the above are given in the following table.

Textual
rendering

Symbolic
rendering

Meaning

matches,
is_in

∈ Set membership, p is in P

not, ~ ∼ Negation, not p

The matches or is_in operator is a key operator in cADL; it corresponds mathematically to set membership.
When it occurs between a name and a block delimited by braces, the meaning is: the set of values allowed for
the entity referred to by the name (either an object, or parts of an object — attributes) is specified between the
braces. What appears between any matching pair of braces can be thought of as a specification for a set of
values. Since blocks can be nested, this approach to specifying values can be understood in terms of nested
sets, or in terms of a value space for objects of a set of defined types.

NOTE 1 In the following example, the matches operator links the name of an entity to a linear value space (i.e. a list),
consisting of all words ending in ion.

aaa matches {/.*ion[^\s\n\t]/} -- the set of english words ending in ion

NOTE 2 The following example links the name of a type XXX with a complex multidimensional value space.

XXX matches {

 aaa matches { --

 YYY matches {0..3} --

 } -- the value space of the

 bbb matches { -- and instance of XXX

 ZZZ matches {>1992-12-01} --

 } --

}

1) The keyword was once use_archetype, which is now deprecated.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 81

NOTE 3 Occasionally, the matches operator needs to be used in the negative, usually at a leaf block. Any of the
following can be used to constrain the value space of XXX to any number except 5.

XXX ~matches {5}

XXX ~is_in {5}

XXX ∉{5}

8.2.2.2 Comments

In cADL, comments are indicated by the -- characters. Multiline comments are achieved using the -- leader on
each line where the comment continues.

8.2.2.3 Information model identifiers

A type name is any identifier with an initial upper case letter, followed by any combination of letters, digits and
underscores. A generic type name (including nested forms) may additionally include commas and angle
brackets, but no spaces, and shall be syntactically correct as per the UML. An attribute name is any identifier
with an initial lower case letter, followed by any combination of letters, digits and underscores.

8.2.2.4 Node identifiers

In cADL, an entity in brackets such as [xxxx] is used to identify object nodes, i.e. nodes expressing
constraints on instances of some type. Object nodes always commence with a type name. Any string may
appear within the brackets, depending on how it is used.

8.2.2.5 Natural language

cADL is independent of natural language. The only potential exception is where constraints include literal
values from some language, which may be avoided by the use of separate language and terminology
definitions. However, for the purposes of readability, comments in English have been included in this part of
ISO 13606 in order to aid the reader.

8.2.3 Structure

8.2.3.1 General

cADL constraints are written in a block-structured style. The general structure is a nesting of constraints on
types, followed by constraints on properties (of that type), followed by types (being the types of the attribute
under which it appears), and so on. The term object block or object node refers to any block introduced by a
type name (all in upper case), while an attribute block or attribute node is any block introduced by an attribute
identifier (all in lower case).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

82 © ISO 2008 – All rights reserved

NOTE 1 A typical block resembles the following (the recurring pattern /.+/ is a regular expression meaning non-
empty string):

PERSON[at0001] ∈ {

 name ∈ {

 PERSON_NAME[at0002] ∈ {

 forenames cardinality ∈ {1..*} ∈ {/.+/}

 family_name ∈ {/.+/}

 title ∈ {Dr, Miss, Mrs, Mr, ...}
 }

 }

 addresses cardinality ∈ {1..*} ∈ {

 LOCATION_ADDRESS[at0003] ∈ {

 street_number existence ∈ {0..1} ∈ {/.+/}

 street_name ∈ {/.+/}

 locality ∈ {/.+/}

 post_code ∈ {/.+/}

 state ∈ {/.+/}

 country ∈ {/.+/}
 }

 }

}

NOTE 2 In the above, any identifier (shown in green) followed by the ∈ operator (equivalent text keyword: matches
or is_in), followed by an open brace, is the start of a block, which continues until the closing matching brace (normally
visually indented to come under the start of the line at the beginning of the block). The example expresses a constraint on
an instance of the type PERSON; the constraint is expressed by everything inside the PERSON block. The two blocks at
the next level define constraints on properties of PERSON, in this case names and addresses.

8.2.3.2 Complex objects

Constraints expressed in cADL cannot be stronger than those from the underlying information model being
constrained by the archetype. Furthermore, a cADL text includes constraints only for those parts of a model
that are useful or meaningful to constrain.

NOTE An example showing how to express a constraint on the value property of an ELEMENT class to be a
QUANTITY with a suitable range for expressing blood pressure is as follows:

ELEMENT[at0010] matches { -- diastolic blood pressure
 value matches {
 QUANTITY matches {
 magnitude matches {0..1000}
 property matches {"pressure"}
 units matches {"mm[Hg]"}
 }
 }
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 83

8.2.3.3 Attribute constraints

8.2.3.3.1 General

In any underlying information model, attributes are either single-valued or multiple-valued, i.e. of a generic
container type such as List<Contact>.

8.2.3.3.2 Existence

An existence constraint may be used directly after any attribute identifier, and indicates whether the object to
which the attribute value refers is mandatory or optional in the data. The meaning of an existence constraint is
to indicate whether the corresponding object or attribute is mandatory or optional in the instance data. The
same logic applies whether the attribute is of single or multiple cardinality, i.e. whether it is a container or not.
For container attributes, the existence constraint indicates whether the whole container (usually a list or set) is
mandatory or not; a further cardinality constraint (described below) indicates how many members in the
container are allowed. Existence is shown using the same constraint language as the rest of the archetype
definition. Existence constraints may take the values {0}, {0..0}, {0..1}, {1}, or {1..1}. The default
existence constraint, if none is shown, is {1..1}.

NOTE Existence constraints are expressed in cADL as in the following example:

QUANTITY matches {

 units existence matches {0..1} matches {mm[Hg]}

}

8.2.3.4 Single-valued attributes

Repeated blocks of object constraints of the same class (or its subtypes) may have two possible meanings in
cADL, depending on whether the cardinality is present or not in the containing attribute block. Two or more
object blocks introduced by type names appearing after an attribute that is not a container (i.e. for which there
is no cardinality constraint) are taken to be alternative constraints, only one of which needs to be matched by
the data.

EXAMPLE

ELEMENT[at0004] matches { -- speed limit

 value matches {

 QUANTITY matches {

 magnitude matches {|0..55|}

 property matches {"velocity"}

 units matches {"mph"} -- miles per hour

 }

 QUANTITY matches {

 magnitude matches {|0..100|}

 property matches {"velocity"}

 units matches {"km/h"} -- km per hour

 }

 }

}

NOTE Here, the cardinality of the value attribute is 1..1 (the default), while the occurrences of both QUANTITY
constraints is optional, leading to the result that only one QUANTITY instance may appear in runtime data, and it may
match either of the sets of constraints.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

84 © ISO 2008 – All rights reserved

8.2.3.5 Container attributes

8.2.3.5.1 Cardinality

Container attributes are indicated in cADL with the cardinality constraint. Cardinalities indicate limits for the
number of members of container types such as lists and sets.

EXAMPLE 1

HISTORY[at0001] occurrences ∈ {1} ∈ {

 periodic ∈ {False}

 events cardinality ∈ {*} ∈ {

 EVENT[at0002] occurrences ∈ {0..1} ∈ { }
 -- 1 min sample

 EVENT[at0003] occurrences ∈ {0..1} ∈ { }
 -- 2 min sample

 EVENT[at0004] occurrences ∈ {0..1} ∈ { }
 -- 3 min sample

 }

}

A cardinality constraint may be used after any attribute name (or after its existence constraint, if there is one)
in order to indicate that the attribute refers to a container type, what number of member items it shall have in
the data, and optionally, whether it has “list”, “set”, or “bag” semantics, via the use of the keywords ordered,
unordered, unique and non-unique. An integer range is used to specify the valid membership of the container;
a single * means the range 0..*, i.e. 0 to many.

EXAMPLE 2

 events cardinality ∈ {*; ordered} ∈ { -- logical list

 events cardinality ∈ {*; unordered; unique} ∈ { -- logical set

 events cardinality ∈ {*; unordered} ∈ { -- logical bag

Cardinality and existence constraints can co-occur in order to indicate various combinations on a container
type property.

EXAMPLE 3 To specify that it is optional but, if present, is a container that may be empty:

events existence ∈ {0..1} cardinality ∈ {0..*} ∈ {-- etc --}

8.2.3.5.2 Occurrences

A constraint on occurrences may be used only with cADL object nodes (not attribute nodes), to indicate how
many times in runtime data an instance of a given class conforming to a particular constraint can occur. It only
has significance for objects which are children of a container attribute, since by definition, the occurrences of
an object which is the value of a single-valued attribute may only be 0..1 or 1..1, and this is already defined by
the attribute existence. However, it is not illegal. The default occurrences, if none is mentioned, is {1..1}.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 85

EXAMPLE 1 Below, three EVENT constraints are shown; the first one (1 min sample) is shown as mandatory, while
the other two are optional.

 events cardinality ∈ {*} ∈ {

 EVENT[at0002] occurrences ∈ {1..1} ∈ { } -- 1 min sample

 EVENT[at0003] occurrences ∈ {0..1} ∈ { } -- 2 min sample

 EVENT[at0004] occurrences ∈ {0..1} ∈ { } -- 3 min sample

 }

EXAMPLE 2 Expressed below is a constraint on instances of GROUP such that for GROUPs representing tribes, clubs
and families, there shall only be one head, but there may be many members.

GROUP[at0103] ∈ {

 kind ∈ {/tribe|family|club/}

 members cardinality ∈ {*} ∈ {

 PERSON[at0104] occurrences ∈ {1} matches {

 title ∈ {head}
 -- etc --

 }

 PERSON[at0105] occurrences ∈ {0..*} matches {

 title ∈ {member}
 -- etc --

 }

 }

}

8.2.3.6 “Any” constraints

The “any” constraint is shown by a single asterisk (*) in accolades. It may be used to specify explicitly that
some property may have any value.

EXAMPLE 1 Below, the “any” constraint on name means that any value permitted by the underlying information model
is also permitted by the archetype; however, it also provides an opportunity to specify an existence constraint which might
be narrower than that in the information model.

PERSON[at0001] matches {

 name existence matches {0..1} matches {*}

 -- etc --

}

The “any” constraint may also be used to specify that the value property of ELEMENT shall be of a particular
data value type, but may have any compatible value.

EXAMPLE 2

ELEMENT[at0004] matches { -- speed limit

 value matches {

 QUANTITY matches {*}

 }

}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

86 © ISO 2008 – All rights reserved

8.2.3.7 Object node identification and paths

Node identifiers are required for any object node that is intended to be addressable elsewhere in the cADL
text, or in the runtime system and which would otherwise be ambiguous (i.e. has sibling nodes).

EXAMPLE 1

members cardinality ∈ {*} ∈ {
 PERSON[at0104] ∈ {
 title ∈ {“head”}
 }
 PERSON[at0105] matches {
 title ∈ {“member”}
 }
}

All nodes in a cADL text, which correspond to nodes in data that might be referred to from elsewhere in the
archetype, or might be used for querying at runtime, require a node identifier. The node identifier might also
be used to apply a design-time meaning to the node by equating the node identifier to some description.

Paths are used in cADL to refer to cADL nodes, and are expressed in the standard ADL path syntax,
described in detail in 8.4. ADL paths have the same alternating object/attribute structure implied in the general
hierarchical structure of cADL, which follows the pattern TYPE/attribute/TYPE/attribute/... Paths in
cADL always refer to object nodes, and may only be constructed to nodes having node ids, or nodes which
are the only child object of a single-cardinality attribute. The slash (/) separator shall always terminate a path.

Unusually for a path syntax, a trailing object identifier may be required, even if the property corresponds to a
single relationship (as might be expected with the “name” property of an object), because in cADL it is legal to
define multiple alternative object constraints – each identified by a unique node id – for a relationship node
which has single cardinality.

EXAMPLE 2

HISTORY occurrences ∈ {1} ∈ {

periodic ∈ {FALSE}

events cardinality ∈ {*} ∈ {

 EVENT[at0002] occurrences ∈ {1..1} ∈ { } -- 1 min sample

 EVENT[at0003] occurrences ∈ {0..1} ∈ { } -- 2 min sample

 EVENT[at0004] occurrences ∈ {0..1} ∈ { } -- 3 min sample

 }

}

the following paths can be constructed:

/ -- the HISTORY object

/periodic -- the HISTORY.periodic attribute

/events[at0002] -- the 1 minute event object

/events[at0003] -- the 2 minute event object

/events[at0004] -- the 3 minute event object

It is valid to add attribute references to the end of a path, if the underlying information model permits.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 87

EXAMPLE 3

/events/count -- count attribute of the items property

Physical paths may be converted to logical paths using descriptive meanings for node identifiers, if defined.

EXAMPLE 4 The following two paths are equivalent:

/events[at0004] -- the 3 minute event object

/events[3 minute event] -- the 3 minute event object

To reference a cADL node in an archetype from elsewhere (e.g. another archetype of a template) requires
that the identifier of the source archetype be prefixed to the path.

EXAMPLE 5

 [openehr-ehr-entry.apgar-result.v1]/events[at0002]

8.2.3.8 Archetype internal references

It occurs reasonably often that one needs to include a constraint that is essentially a repeat of an earlier
complex constraint, but within a different block. This is achieved using an archetype internal reference
according to the following rule.

An archetype internal reference, to repeat the use of a previously defined complex constraint within the same
archetype, is specified through the use_node keyword, in a line of the following form:

 use_node TYPE object_path

EXAMPLE

PERSON [at0001] ∈ {

 identities ∈ {

 -- etc --

 }

 contacts cardinality ∈ {0..*} ∈ {

 CONTACT [at0002] ∈ { -- home address

 purpose ∈ {-- etc --}

 addresses ∈ {-- etc --}

 }

 CONTACT [at0003] ∈ { -- postal address

 purpose ∈ {-- etc --}

 addresses ∈ {-- etc --}

 }

 CONTACT [at0004] ∈ { -- home contact

 purpose ∈ {-- etc --}

 addresses cardinality ∈ {0..*} ∈ {

 ADDRESS [at0005] ∈ { -- phone

 type ∈ {-- etc --}

 details ∈ {-- etc --}

 ADDRESS [at0006] ∈ { -- fax

 type ∈ {-- etc --}

 details ∈ {-- etc --}
 }

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

88 © ISO 2008 – All rights reserved

 ADDRESS [at0007] ∈ { -- email

 type ∈ {-- etc --}

 details ∈ {-- etc --}

 }

 }

 }

 CONTACT [at0008] ∈ { -- work contact

 purpose ∈ {-- etc --}

 addresses cardinality ∈ {0..*} ∈ {

 use_node ADDRESS /[at0001]/contacts[at0004]/addresses[at0005]/ -- phone

 use_node ADDRESS /[at0001]/contacts[at0004]/addresses[at0006]/ -- fax

 use_node ADDRESS /[at0001]/contacts[at0004]/addresses[at0007]/ -- email

 }

 }

 }

8.2.3.9 Archetype slots

An archetype slot is introduced with the keyword allow_archetype, and is expressed using two lists of
assertions, introduced with the keywords include and exclude, respectively. This allows other pre-existing
archetypes to be used, rather than defining the desired constraints inline, and defines two lists of assertion
statements defining which archetypes are allowed and/or which are excluded from filling that slot.

The slot might be wide, meaning it allows numerous other archetypes, or narrow, where it allows only a few or
just one archetype. The point at where the slot occurs in the archetype is a chaining point.

EXAMPLE The following shows how the objective SECTION in a problem headings archetype defines two slots,
indicating which ENTRY and SECTION archetypes are allowed and excluded under the items property.

SECTION [at2000] occurrences ∈ {0..1} ∈ {
 -- objective

 items ∈ {

 allow_archetype ENTRY occurrences ∈ {0..1} ∈ {
 include

 concept_short_name ∈ {/.+/}
 }

 allow_archetype SECTION occurrences ∈ {0..*} ∈ {
 include

 id ∈ {/.*\.iso-ehr\.section\..*\..*/}
 exclude

 id ∈ {/.*\.iso-ehr\.section\.patient_details\..*/}
 }

 }

}

An archetype slot constraint may specify that the allowed archetype(s) shall contain a certain keyword or a
certain path.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 89

8.2.3.10 Mixed structures

Three types of structure which represent constraints on complex objects have been presented so far:

⎯ complex object structures: any node introduced by a type name and followed by { } containing constraints
on attributes, invariants, etc;

⎯ internal references: any node introduced by the keyword use_node, followed by a type name; such nodes
stand for a complex object constraint that has already been expressed elsewhere in the archetype;

⎯ archetype slots: any node introduced by the keyword allow_archetype, followed by a type name; such
nodes stand for a complex object constraint that is expressed in some other archetype.

At any given node, all three types may co-exist.

EXAMPLE

SECTION[at2000] ∈ {

 items cardinality ∈ {0..*; ordered} ∈ {

 ENTRY[at2001] ∈ {-- etc --}

 allow_archetype ENTRY ∈ {-- etc --}
 use_node ENTRY [at0001]/some_path[at0004]/

 ENTRY[at2002] ∈ {-- etc --}
 use_node ENTRY /[at1002]/some_path[at1012]/

 use_node ENTRY /[at1005]/some_path[at1052]/

 ENTRY[at2003] ∈ {-- etc --}
 }

}

8.2.4 Constraints on primitive types

8.2.4.1 General

Constraints on attributes of primitive types in cADL may optionally be expressed without type names and
omitting one level of braces.

EXAMPLE

some_attr matches {some_pattern}

rather than:

some_attr matches {

 PRIMITIVE_TYPE matches {

 some_pattern

 }

}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

90 © ISO 2008 – All rights reserved

8.2.4.2 Constraints on string

8.2.4.2.1 General

Strings can be constrained in two ways: using a fixed string, and using a regular expression. All constraints on
strings are case-sensitive.

8.2.4.2.2 List of strings

A string-valued attribute can be constrained by a list of strings (using the dADL syntax for string lists),
including the simple case of a single string.

EXAMPLE

species matches {“platypus”}

species matches {“platypus”, “kangaroo”}

species matches {“platypus”, “kangaroo”, “wombat”}

NOTE The first example constrains the runtime value of the species attribute of some object to take the value
“platypus”; the second constrains it be either “platypus” or “kangaroo”, and so on. In almost all cases, this kind of string
constraint should be avoided, since it renders the body of the archetype language-dependent, except for proper names,
which are usually standardized internationally.

8.2.4.2.3 Regular expression

The second way of constraining strings is with regular expressions. The regular expression syntax used in
cADL is a proper subset of that used in the Perl language. Three uses of it are accepted in cADL:

string_attr matches {/regular expression/}

string_attr matches {=~ /regular expression/}

string_attr matches {!~ /regular expression/}

The first two are identical, indicating that the attribute value shall match the supplied regular expression. The
last indicates that the value shall not match the expression.

If the delimiter character is required in the pattern, it shall be quoted with the backslash (\) character, or else
alternative delimiters may be used, enabling more comprehensible patterns.

NOTE A typical example is regular expressions including units; the following two patterns are equivalent:

units matches {/km\/h|mi\/h/}

units matches {^km/h|mi/h^}

The regular expression patterns supported in cADL are as follows.

Atomic items
 match any single character.

 E.g. / ... / matches any three characters that occur with a space before and after;
[xyz] match any of the characters in the set xyz (case-sensitive).
 E.g. /[0-9]/ matches any string containing a single-decimal digit;
[a-m] match any of the characters in the set of characters formed by the continuous range from a to

m (case-sensitive).
E.g. /[0-9]/ matches any single character string containing a single-decimal digit, /[S-Z]/
matches any single character in the range S - Z;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 91

[^a-m] match any character except those in the set of characters formed by the continuous range
from a to m.
E.g. /[^0-9]/ matches any single character string as long as it does not contain a
single-decimal digit.

Grouping
(pattern) parentheses are used to group items; any pattern appearing within parentheses is treated

as an atomic item for the purposes of the occurrences operators.

E.g. /([0-9][0-9])/ matches any two-digit number.

Occurrences
* match 0 or more of the preceding atomic item.

 E.g. /.*/ matches any string; /[a-z]*/ matches any non-empty lower-case alphabetic
string;

+ match 1 or more occurrences of the preceding atomic item.
 E.g. /a.+/ matches any string starting with “a”, followed by at least one further character;
? match 0 or 1 occurrences of the preceding atomic item.
 E.g. /ab?/ matches the strings a and ab;
{m,n} match m to n occurrences of the preceding atomic item.
 E.g. /ab{1,3}/ matches the strings ab and abb and abbb; /[a-z]{1,3}/ matches all

lower-case alphabetic strings of one to three characters in length;
{m,} match at least m occurrences of the preceding atomic item;
{,n} match at most n occurrences of the preceding atomic item;
{m} match exactly m occurrences of the preceding atomic item.

Special character classes
\d, \D match a decimal digit character; match a non-digit character;
\s, \S match a whitespace character; match a non-whitespace character.

Alternatives
pattern1|pattern2 match either pattern1 or pattern2.

 E.g. /lying|sitting|standing/ matches any of the words lying,
sitting and standing.

8.2.4.3 Constraints on integer

Integers may be constrained with a single integer value, an integer interval, or a list of integers.

EXAMPLE

length matches {1000} -- point interval of 1000 (=fixed value)

length matches {|950..1050|} -- allow 950 - 1050

length matches {|0..1000|} -- allow 0 - 1000

length matches {|0..<1000|} -- allow 0 <= x < 1000

length matches {|0<..<1000|} -- allow 0 < x < 1000

length matches {|<=10|} -- allow up to 10

length matches {|>=10|} -- allow 10 or more

length matches {|100+/-5|} -- allow 100 +/- 5, i.e. 95 – 105

rate matches {|0..infinity|} -- allow 0 - infinity, i.e. same as >= 0

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

92 © ISO 2008 – All rights reserved

8.2.4.4 Constraints on real

Constraints on real follow exactly the same syntax as for integers, except that all real numbers are indicated
by the use of the decimal point and at least one succeeding digit, which may be 0.

EXAMPLE

magnitude matches {5.5} -- fixed value

magnitude matches {|5.5|} -- point interval (=fixed value)

magnitude matches {|5.5..6.0|} -- interval

magnitude matches {5.5, 6.0, 6.5} -- list

magnitude matches {|0.0..<1000.0|} -- allow 0>= x <1000.0

magnitude matches {|>10.0|} -- allow greater than 10.0

magnitude matches {|<=10.0|} -- allow up to 10.0

magnitude matches {|>=10.0|} -- allow 10.0 or more

magnitude matches {|80.0+/-12.0|} -- allow 80 +/- 12

8.2.4.5 Constraints on Boolean

Boolean runtime values may be constrained to be true, false, or either, as follows:

some_flag matches {True}

some_flag matches {False}

some_flag matches {True, False}

8.2.4.6 Constraints on character

8.2.4.6.1 General

Characters may be constrained in two ways: using a list of characters, and using a regular expression.

8.2.4.6.2 Lists of characters

A character value may be constrained using a list of fixed character values. Each character is enclosed in
single quotes.

EXAMPLE

color_name matches {‘r’}

color_name matches {‘r’, ‘g’, ‘b’}

8.2.4.6.3 Regular expressions

Character values may also be constrained using single-character regular expression elements, also enclosed
in single quotes.

EXAMPLE

color_name matches {‘[rgbcmyk]’}

color_name matches {‘[^\s\t\n]’}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 93

The only allowed elements of the regular expression syntax in character expressions are the following:

⎯ any item from the Atomic items list in 8.2.4.2.3;

⎯ any item from the Special character classes list in 8.2.4.2.3;

⎯ the character, standing for any character;

⎯ an alternative expression whose parts are any item types, e.g. a|b|[m-z]

8.2.4.7 Constraints on dates, times and durations

8.2.4.7.1 General

Dates, times, date/times and durations may all be constrained in three ways: using a list of values; using
intervals; using patterns.

8.2.4.7.2 Date, time and date/time

Patterns
Dates, times, and date/times (i.e. timestamps) may be constrained using patterns based on the ISO 8601
date/time syntax, which indicate which parts of the date or time shall be supplied. A constraint pattern is
formed from the abstract pattern yyyy-mm-ddThh:mm:ss (itself formed by translating each field of an
ISO 8601 date/time into a letter representing its type), with either “?” (meaning optional) or “X” (not allowed)
characters substituted in appropriate places. A simplified grammar of the pattern is as follows (EBNF; all
tokens shown are literals):

date_constraint: yyyy - mm|??|XX - dd|??|XX
time_constraint: hh : mm|??|XX : ss|??|XX
time_in_date_constraint: T hh|??|XX : mm|??|XX : ss|??|XX
date_time_constraint: date_constraint time_in_date_constraint

All expressions generated by this grammar shall also satisfy the validity rules:

⎯ where “??” appears in a field, only “??” or “XX” may appear in fields to the right;

⎯ where “XX” appears in a field, only “XX” may appear in fields to the right.

A fuller grammar can be defined to implement both the simplified grammar and validity rules.

The following table shows the valid patterns that may be used, and the types implied by each pattern.

Implied type Pattern Explanation
Date yyyy-mm-dd full date shall be specified

Date, partial date yyyy-mm-?? optional day;
e.g. day in month forgotten

Date, partial Date yyyy-??-?? optional month, day;
i.e. any date allowed; e.g. mental
health questionnaires which include
well-known historical dates

Partial date yyyy-??-XX optional month, no day;
(any examples?)

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

94 © ISO 2008 – All rights reserved

Time Thh:mm:ss full time shall be specified

Partial time Thh:mm:XX no seconds;
e.g. appointment time

Partial time Thh:??:XX optional minutes, no seconds;
e.g. normal clock times

Time, partial time Thh:??:?? optional minutes, seconds;
i.e. any time allowed

Date/time yyyy-mm-ddThh:mm:ss full date/time shall be specified

Date/time,
Partial date/time

yyyy-mm-ddThh:mm:?? optional seconds;
e.g. appointment date/time

Partial date/time yyyy-mm-ddThh:mm:XX no seconds;
e.g. appointment date/time

Partial date/time yyyy-mm-ddThh:??:XX no seconds, minutes optional;
e.g. in patient-recollected
date/times

Date/time,
Partial date/time

Partial date/partial time

yyyy-??-??T??:??:?? minimum valid date/time constraint

Intervals

Dates, times and date/times may also be constrained using intervals. Each date, time, etc., in an interval may
be a literal date, time, etc., value, or a value based on a pattern. In the latter case, the limit values are
specified using the patterns from the above table, but with numbers in the positions where “X” and “?” do not
appear.

EXAMPLE

|1995-??-XX| -- any partial date in 1995

|09:30:00| -- exactly 9:30 am

|< 09:30:00| -- any time before 9:30 am

|<= 09:30:00| -- any time at or before 9:30 am

|> 09:30:00| -- any time after 9:30 am

|>= 09:30:00| -- any time at or after 9:30 am

|2004-05-20..2004-06-02 -- a date range

|2004-05-20T00:00:00..2005-05-19T23:59:59| -- a date/time range

8.2.4.7.3 Duration constraints

Patterns

Patterns based on ISO 8601 may be used to constrain durations in the same way as for date/time types. The
general form of a pattern is (EBNF; all tokens are literals):

P[Y|y][M|m][W|w][D|d][T[H|h][M|m][S|s]]

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 95

Note that allowing the “W” designator to be used with the other designators corresponds to a deviation from
the published ISO 8601. The “W” (week) designator may be used with the other designators, since it is very
common to state durations of conditions or treatments as some combination of weeks and days. The use of
this pattern indicates which “slots” in an ISO duration string may be filled. Where multiple letters are supplied
in a given pattern, the meaning is “or”, i.e. any one or more of the slots may be supplied in the data.

EXAMPLE

:

Pd -- a duration containing days only, e.g. P5d

Pm -- a duration containing months only, e.g. P5m

PTm -- a duration containing minutes only, e.g. PT5m

Pwd -- a duration containing weeks and/or days only, e.g. P4w

PThm -- a duration containing hours and/or minutes only, e.g. PT2h30m

Lists and intervals

Durations may also be constrained using absolute ISO 8601 values, or ranges of the same.

EXAMPLE

PT1m -- 1 minute

P1dT8h -- 1 day, 8 hrs

|PT0m..PT1m30s| -- Reasonable time offset of first Apgar sample

8.2.4.8 Constraints on lists of primitive types

In many cases, the type in the information model of an attribute to be constrained is a list or set of primitive
types. This shall be indicated in cADL using the cardinality keyword (as for complex types), as follows:

some_attr cardinality matches {0..*} matches {some_pattern}

The pattern to match in the final accolades will have the meaning of a list or set of value constraints, rather
than a single value constraint. Any constraint described above for single-valued attributes, which is
commensurate with the type of the attribute in question, may be used. However, as with complex objects, the
meaning is that every item in the list is constrained to be any one of the values implied by the constraint
expression.

NOTE The following example constrains each value in the list corresponding to the value of the attribute speed_limits
(of type List<Integer>) to be any one of the values 50, 60, 70, etc.

speed_limits cardinality matches {0..*; ordered} matches {50, 60, 70, 80,
100, 130}

8.2.4.9 Assumed values

Archetypes allow assumed values to be explicitly stated so that all users/systems know what value to assume
when optional items are not included in the data. Assumed values are optionally definable on primitive types
only, and are commenced with a semicolon followed by a value of the same type as that implied by the
preceding part of the constraint.

EXAMPLE

length matches {|0..1000|; 200} -- allow 0 - 1000, assume 200

some_flag matches {True, False; True } -- allow T or F, assume T

some_date matches {yyyy-mm-dd hh:mm:XX; 1800-01-01 00:00:00}

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

96 © ISO 2008 – All rights reserved

If no assumed value is specified, no reliable assumption can be made by the receiver of archetyped data
about what the values of removed optional parts might be, from inspecting the archetype.

8.2.5 cADL syntax

8.2.5.1 Grammar

This subclause defines the cADL grammar.

input:

 c_complex_object

| error

c_complex_object:

 c_complex_object_head SYM_MATCHES SYM_START_CBLOCK c_complex_object_body
c_invariants SYM_END_CBLOCK

c_complex_object_head:

 c_complex_object_id c_occurrences

c_complex_object_id:

 TYPE_IDENTIFIER

| TYPE_IDENTIFIER V_LOCAL_TERM_CODE_REF

c_complex_object_body:

 c_any

| c_attributes

c_object:

 c_complex_object

| archetype_internal_ref

| archetype_slot

| constraint_ref

| c_coded_term

| c_ordinal

| c_primitive_object

| V_C_DOMAIN_TYPE

| ERR_C_DOMAIN_TYPE

| error

archetype_internal_ref:

 SYM_USE_NODE TYPE_IDENTIFIER_C_OCCURRENCES object_path

| SYM_USE_NODE TYPE_IDENTIFIER error

archetype_slot:

 c_archetype_slot_head SYM_MATCHES SYM_START_CBLOCK c_includes c_excludes
SYM_END_CBLOCK

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 97

c_archetype_slot_head:

 c_archetype_slot_id c_occurrences

c_archetype_slot_id:

 SYM_ALLOW_ARCHETYPE TYPE_IDENTIFIER

| SYM_ALLOW_ARCHETYPE TYPE_IDENTIFIER V_LOCAL_TERM_CODE_REF

| SYM_ALLOW_ARCHETYPE error

c_primitive_object:

 c_primitive

c_primitive:

 c_integer

| c_real

| c_date

| c_time

| c_date_time

| c_duration

| c_string

| c_boolean

| error

c_any:

 *

c_attributes:

 c_attribute

| c_attributes c_attribute

c_attribute:

 c_attr_head SYM_MATCHES SYM_START_CBLOCK c_attr_values SYM_END_CBLOCK

c_attr_head:

 V_ATTRIBUTE_IDENTIFIER c_existence

| V_ATTRIBUTE_IDENTIFIER c_existence c_cardinality

c_attr_values:

 c_object

| c_attr_values c_object

| c_any

| error

c_includes:

 -/-

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

98 © ISO 2008 – All rights reserved

| SYM_INCLUDE invariants

c_excludes:

 -/-

| SYM_EXCLUDE invariants

c_existence:

 -/-

| SYM_EXISTENCE SYM_MATCHES SYM_START_CBLOCK existence_spec SYM_END_CBLOCK

existence_spec:

 V_INTEGER

| V_INTEGER SYM_ELLIPSIS V_INTEGER

c_cardinality:

 SYM_CARDINALITY SYM_MATCHES SYM_START_CBLOCK cardinality_spec
SYM_END_CBLOCK

cardinality_spec:

 occurrence_spec

| occurrence_spec ; SYM_ORDERED

| occurrence_spec ; SYM_UNORDERED

| occurrence_spec ; SYM_UNIQUE

| occurrence_spec ; SYM_ORDERED ; SYM_UNIQUE

| occurrence_spec ; SYM_UNORDERED ; SYM_UNIQUE

| occurrence_spec ; SYM_UNIQUE ; SYM_ORDERED

| occurrence_spec ; SYM_UNIQUE ; SYM_UNORDERED

cardinality_limit_value:

 integer_value

| *

c_occurrences:

 -/-

| SYM_OCCURRENCES SYM_MATCHES SYM_START_CBLOCK occurrence_spec
SYM_END_CBLOCK

| SYM_OCCURRENCES error

occurrence_spec:

 cardinality_limit_value

| V_INTEGER SYM_ELLIPSIS cardinality_limit_value

c_integer_spec:

 integer_value

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 99

| integer_list_value

| integer_interval_value

| occurrence_spec

c_integer:

 c_integer_spec

| c_integer_spec ; integer_value

| c_integer_spec ; error

c_real_spec:

 real_value

| real_list_value

| real_interval_value

c_real:

 c_real_spec

| c_real_spec ; real_value

| c_real_spec ; error

c_date_constraint:

 V_ISO8601_DATE_CONSTRAINT_PATTERN

| date_value

| date_interval_value

c_date:

 c_date_constraint

| c_date_constraint ; date_value

| c_date_constraint ; error

c_time_constraint:

 V_ISO8601_TIME_CONSTRAINT_PATTERN

| time_value

| time_interval_value

c_time:

 c_time_constraint

| c_time_constraint ; time_value

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

100 © ISO 2008 – All rights reserved

| c_time_constraint ; error

c_date_time_constraint:

 V_ISO8601_DATE_TIME_CONSTRAINT_PATTERN

| date_time_value

| date_time_interval_value

c_date_time:

 c_date_time_constraint

| c_date_time_constraint ; date_time_value

| c_date_time_constraint ; error

c_duration_constraint:

V_ISO8601_DURATION_CONSTRAINT_PATTERN

| duration_value

| duration_interval_value

c_duration:

 c_duration_constraint

| c_duration_constraint ; duration_value

| c_duration_constraint ; error

c_string_spec:

 V_STRING

| string_list_value

| string_list_value , SYM_LIST_CONTINUE

| V_REGEXP

c_string:

 c_string_spec

| c_string_spec ; string_value

| c_string_spec ; error

c_boolean_spec:

 SYM_TRUE

| SYM_FALSE

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 101

| SYM_TRUE , SYM_FALSE

| SYM_FALSE , SYM_TRUE

c_boolean:

 c_boolean_spec

| c_boolean_spec ; boolean_value

| c_boolean_spec ; error

constraint_ref:

 V_LOCAL_TERM_CODE_REF

any_identifier:

 TYPE_IDENTIFIER

| V_ATTRIBUTE_IDENTIFIER

8.2.5.2 Symbols

This subclause defines the lexical specification for the cADL grammar.

----------/* definitions */ ---

ALPHANUM [a-zA-Z0-9]

IDCHAR [a-zA-Z0-9_]

NAMECHAR [a-zA-Z0-9._\-]

NAMECHAR_SPACE [a-zA-Z0-9._\-]

NAMECHAR_PAREN [a-zA-Z0-9._\-()]

UTF8CHAR (([\xC2-\xDF][\x80-\xBF])|(\xE0[\xA0-\xBF][\x80-\xBF])|([\xE1-

\xEF][\x80-\xBF][\x80-\xBF])|(\xF0[\x90-\xBF][\x80-\xBF][\x80-\xBF])|([\xF1-
\xF7][\x80-\xBF][\x80-\xBF][\x80-\xBF]))

----------/* comments */ ---

"--".* -- Ignore comments

"--".*\n[\t\r]*

----------/* symbols */ ---

"-" Minus_code

"+" Plus_code

"*" Star_code

"/" Slash_code

"^" Caret_code

"=" Equal_code

"." Dot_code

";" Semicolon_code

"," Comma_code

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

102 © ISO 2008 – All rights reserved

":" Colon_code

"!" Exclamation_code

"(" Left_parenthesis_code

")" Right_parenthesis_code

"$" Dollar_code

"??" SYM_DT_UNKNOWN

"?" Question_mark_code

"|" SYM_INTERVAL_DELIM

"[" Left_bracket_code

"]" Right_bracket_code

"{" SYM_START_CBLOCK

"}" SYM_END_CBLOCK

".." SYM_ELLIPSIS

"..." SYM_LIST_CONTINUE

----------/* common keywords */ --

[Mm][Aa][Tt][Cc][Hh][Ee][Ss] SYM_MATCHES

[Ii][Ss]_[Ii][Nn] SYM_MATCHES

----------/* assertion keywords */ ---

[Tt][Hh][Ee][Nn] SYM_THEN

[Ee][Ll][Ss][Ee] SYM_ELSE

[Aa][Nn][Dd] SYM_AND

[Oo][Rr] SYM_OR

[Xx][Oo][Rr] SYM_XOR

[Nn][Oo][Tt] SYM_NOT

[Ii][Mm][Pp][Ll][Ii][Ee][Ss] SYM_IMPLIES

[Tt][Rr][Uu][Ee] SYM_TRUE

[Ff][Aa][Ll][Ss][Ee] SYM_FALSE

[Ff][Oo][Rr][_][Aa][Ll][Ll] SYM_FORALL

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 103

[Ee][Xx][Ii][Ss][Tt][Ss] SYM_EXISTS

[Ee][Xx][Ii][Ss][Tt][Ee][Nn][Cc][Ee] SYM_EXISTENCE

[Oo][Cc][Cc][Uu][Rr][Rr][Ee][Nn][Cc][Ee][Ss] SYM_OCCURRENCES

[Cc][Aa][Rr][Dd][Ii][Nn][Aa][Ll][Ii][Tt][Yy] SYM_CARDINALITY

[Oo][Rr][Dd][Ee][Rr][Ee][Dd] SYM_ORDERED

[Uu][Nn][Oo][Rr][Dd][Ee][Rr][Ee][Dd] SYM_UNORDERED

[Uu][Nn][Ii][Qq][Uu][Ee] SYM_UNIQUE

[Ii][Nn][Ff][Ii][Nn][Ii][Tt][Yy] SYM_INFINITY

[Uu][Ss][Ee][_][Nn][Oo][Dd][Ee] SYM_USE_NODE

[Uu][Ss][Ee][_][Aa][Rr][Cc][Hh][Ee][Tt][Yy][Pp][Ee] SYM_ALLOW_ARCHETYPE

[Aa][Ll][Ll][Oo][Ww][_][Aa][Rr][Cc][Hh][Ee][Tt][Yy][Pp][Ee] SYM_ALLOW_ARCHETYPE

[Ii][Nn][Cc][Ll][Uu][Dd][Ee] SYM_INCLUDE

[Ee][Xx][Cc][Ll][Uu][Dd][Ee] SYM_EXCLUDE

---------/* V_URI */ --

[a-z]+:\/\/[^<>|\\{}^~"\[\]]*{

---------/* V_QUALIFIED_TERM_CODE_REF */ ----------------------------

-any qualified code, e.g. [local::at0001], [local::ac0001], [loinc::700-0]-

\[{NAMECHAR_PAREN}+::{NAMECHAR}+\]

\[{NAMECHAR_PAREN}+::{NAMECHAR_SPACE}+\] -- error

---------/* V_TERM_CODE_CONSTRAINT of form */ -----------------------

-- [terminology_id::code, -- comment

-- code, -- comment

-- code] -- comment

--

-- Form with assumed value

-- [terminology_id::code, -- comment

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

104 © ISO 2008 – All rights reserved

-- code; -- comment

-- code] -- an optional assumed value

--

\[[a-zA-Z0-9()._\-]+::[\t\n]* -- start IN_TERM_CONSTRAINT

<IN_TERM_CONSTRAINT> {

[\t]*[a-zA-Z0-9._\-]+[\t]*;[\t\n]*

-- match second last line with ';' termination (assumed value)

[\t]*[a-zA-Z0-9._\-]+[\t]*,[\t\n]*

-- match any line, with ',' termination

\-\-[^\n]*\n -- ignore comments

[\t]*[a-zA-Z0-9._\-]*[\t\n]*\] -- match final line, terminating in ']'

---------/* V_LOCAL_TERM_CODE_REF */ ---------------------------------

-- any unqualified code, e.g. [at0001], [ac0001], [700-0] --
\[{ALPHANUM}{NAMECHAR}*\]

----------/* V_LOCAL_CODE */ --

a[ct][0-9.]+

---------/* V_QUALIFIED_TERM_CODE_REF */ ---------------------

-any qualified code, e.g. [local::at0001], [local::ac0001], [loinc::700-0]-

\[{NAMECHAR_PAREN}+::{NAMECHAR}+\]

\[{NAMECHAR_PAREN}+::{NAMECHAR_SPACE}+\] -- error

\[[a-zA-Z------/* V_ISO8601_EXTENDED_DATE_TIME */ ---

-- YYYY-MM-DDThh:mm:ss[,sss][Z|+/-nnnn]

--

[0-9][a-zA-Z]{4}-[0-1][0-9._\-]*\]

----------/* V_LOCAL_CODE */ --

a[ct]-[0-3][0-9.]+

---------/* V_QUALIFIED_TERM_CODE_REF */ ---------------------

-any qualified code, e.g. [local::at0001], [local::ac0001], [loinc::700-0]-

\[[a-zA-Z]T[0-2][0-9()._\-]+::[a-zA-Z]:[0-6][0-9._\-]+\]]:[0-6][0-9](,[0-

9]+)?(Z|[+-][0-9]{4})? |

[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-6][0-9](Z|[+-][0-9]{4})? |

[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9](Z|[+-][0-9]{4})?

----------/* V_ISO8601_EXTENDED_TIME */ --------

-- hh:mm:ss[,sss][Z|+/-nnnn]

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 105

--

[0-2][0-9]:[0-6][0-9]:[0-6][0-9](,[0-9]+)?(Z|[+-][0-9]{4})? |

[0-2][0-9]:[0-6][0-9](Z|[+-][0-9]{4})?

----------/* V_ISO8601_DATE YYYY-MM-DD */ --------------------

[0-9]{4}-[0-1][0-9]-[0-3][0-9] |

[0-9]{4}-[0-1][0-9]

----------/* V_ISO8601_DURATION */ -------------------------
P([0-9]+[yY])?([0-9]+[mM])?([0-9]+[wW])?([0-9]+[dD])?T([0-9]+[hH])?([0-9]+[mM])?([0-
9]+[sS])? |

P([0-9]+[yY])?([0-9]+[mM])?([0-9]+[wW])?([0-9]+[dD])?

----------/* V_ISO8601_DATE_CONSTRAINT_PATTERN */ -----------------

[yY][yY][yY][yY]-[mM?X][mM?X]-[dD?X][dD?X]

----------/* V_ISO8601_TIME_CONSTRAINT_PATTERN */ ------------------

 [hH][hH]:[mM?X][mM?X]:[sS?X][sS?X]

----------/* V_ISO8601_DATE_TIME_CONSTRAINT_PATTERN */ -------------

[yY][yY][yY][yY]-[mM?][mM?]-
[dD?X][dD?X][T][hH?X][hH?X]:[mM?X][mM?X]:[sS?X][sS?X]

----------/* V_ISO8601_DURATION_CONSTRAINT_PATTERN */ --------------
P[yY]?[mM]?[wW]?[dD]?T[hH]?[mM]?[sS]? |

P[yY]?[mM]?[wW]?[dD]?

----------/* V_TYPE_IDENTIFIER */ ---------------------------------------
[A-Z]{IDCHAR}*

Health informatics -- Vocabulary for terminological systems [A-Z]{IDCHAR}*<[a-
zA-Z0-9,_<>]+>

----------/* V_FEATURE_CALL_IDENTIFIER */ ----------------------------

[a-z]{IDCHAR}*[]*\(\) ----------/* V_ATTRIBUTE_IDENTIFIER */ ----------------

[a-z]{IDCHAR}*

----------/* V_GENERIC_TYPE_IDENTIFIER */ -------------------------------

[A-Z]{IDCHAR}*<[a-zA-Z0-9,_<>]+>

----------/* V_ATTRIBUTE_IDENTIFIER */ ----------------------------------

[a-z]{IDCHAR}*

----------/* V_C_DOMAIN_TYPE - sections of dADL syntax */ ------------------

{mini-parser specification}

[A-Z]{IDCHAR}*[\n]*< -- match a pattern like

 -- 'Type_Identifier whitespace <'

<IN_C_DOMAIN_TYPE>[^}>]*>[\n]*[^>}A-Z] -- match up to next > not

 -- followed by a '}' or '>'

<IN_C_DOMAIN_TYPE>[^}>]*>+[\n]*[}A-Z] -- final section - '...>

 -- whitespace } or beginning of

 -- a type identifier'

<IN_C_DOMAIN_TYPE>[^}>]*[\n]*} -- match up to next '}' not

 -- preceded by a '>'

----------/* V_REGEXP */ -------------------------------------

{mini-parser specification}

"{/" -- start of regexp

<IN_REGEXP1>[^/]*\\\/ -- match any segments with quoted slashes

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

106 © ISO 2008 – All rights reserved

<IN_REGEXP1>[^/}]*\/ -- match final segment

\^[^^\n]*\^{ -- regexp formed using '^' delimiters

----------/* V_INTEGER */ ---

[0-9]+

----------/* V_REAL */ ---

[0-9]+\.[0-9]+

[0-9]+\.[0-9]+[eE][+-]?[0-9]+

----------/* V_STRING */ ---

\"[^\\\n"]*\"

\"[^\\\n"]*{ -- beginning of a multiline string

<IN_STR> {

\\\\ -- match escaped backslash, i.e. \\ -> \

\\\" -- match escaped double quote, i.e. \” -> “

{UTF8CHAR}+ -- match UTF8 chars

[^\\\n"]+ -- match any other characters

\\\n[\t\r]* -- match LF in line

[^\\\n"]*\" -- match final end of string

.|\n |

<<EOF>> -- unclosed String -> ERR_STRING

}

8.3 Assertions

8.3.1 Overview

This subclause describes the assertion sublanguage of ADL archetypes. Assertions are used in archetype
“slot” clauses in the cADL definition section, and in the invariant section.

8.3.2 Keywords

The syntax of the invariant section is a subset of first-order predicate logic, in which the following keywords
may be used:

• exists, for_all,

• and, or, xor, not, implies
• true, false

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 107

Symbol equivalents for some of the above are given in the following table.

Textual
rendering

Symbolic
rendering

Meaning

matches, is_in ∈ Set membership, p is in P

exists ∃ Existence quantifier, there exists ...

for_all ∀ Universal quantifier, for all x...

implies ⊃ Material implication, p implies q, or if p then q

and ∧ Logical conjunction, p and q

or ∨ Logical disjunction, p or q

xor ∨ Exclusive or, only one of p or q

not, ~ ∼ Negation, not p

The not operator may be applied as a prefix operator to all other operators except for_all; either textual
rendering “not” or “~” may be used.

8.3.3 Operators

8.3.3.1 General

Assertion expressions may include arithmetic, relational and boolean operators, plus the existential and
universal quantifiers.

8.3.3.2 Arithmetic operators

The supported arithmetic operators are as follows:

addition: +

subtraction: -

multiplication: *

division: /

exponent: ^

modulo division: % - remainder after integer division

8.3.3.3 Equality operators

The supported equality operators are as follows:

equality: =

inequality: <>

The semantics of these operators are of value comparison.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

108 © ISO 2008 – All rights reserved

8.3.3.4 Relational operators

The supported relational operators are as follows:

less than: <

less than or equal: <=

greater than: >

greater than or equal: >=

The semantics of these operators are of value comparison. Their domain is limited to values of comparable
types.

8.3.3.5 Boolean operators

The supported Boolean operators are as follows:

not: not

and: and

xor: xor

implies: implies

set membership: matches, is_in

The Boolean operators also have the symbolic equivalents shown earlier.

8.3.3.6 Quantifiers

The two standard logical quantifier operators are supported:

existential quantifier: exists

universal quantifier: for_all

These operators also have the usual symbolic equivalents shown earlier.

8.3.4 Operands

Operands in an assertion expression may be any of the following:

manifest constant: any constant of any primitive type, expressed according to the dADL syntax for
values

variable reference: any name starting with $, e.g. $body_weight;
property reference: a path referring to a property, i.e. any path ending in .property_name
object reference: a path referring to an object node, i.e. any path ending in a node identifier

If an assertion is used in an archetype slot definition, its operands refer to the archetype filling the slot, not the
one containing the slot.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 109

8.3.5 Variables

Predefined variables

A number of predefined variables may be referenced in ADL assertion expressions, without prior definition,
including

• $current_date: Date; returns the date whenever the archetype is evaluated

• $current_time: Time; returns time whenever the archetype is evaluated

• $current_datetime: Date_Time; returns date/time whenever the archetype is evaluated

Archetype-defined variables

Variables may also be defined inside an archetype, as part of the assertion statements in an invariant. The
syntax of variable definition is as follows:

let $var_name = reference

Here, a reference may be any of the operand types listed above. “Let statements” may come anywhere in an
invariant block, but, for readability, should generally come first.

NOTE The following example illustrates the use of variables in an invariant block:

invariant

 let $sys_bp =

 /data[at9001]/events[at9002]/data[at1000]/items[at1100]

 let $dia_bp =

 /data[at9001]/events[at9002]/data[at1000]/items[at1200]

 $sys_bp >= $dia_bp

8.3.6 Grammar

assertions:
 assertion
| assertions assertion

assertion:
 any_identifier : boolean_expression
| boolean_expression
| any_identifier : error

boolean_expression:
 boolean_leaf
| boolean_node

boolean_node:
 SYM_EXISTS absolute_path
| SYM_EXISTS error
| relative_path SYM_MATCHES SYM_START_CBLOCK c_primitive SYM_END_CBLOCK
| SYM_NOT boolean_leaf
| arithmetic_expression = arithmetic_expression
| arithmetic_expression SYM_NE arithmetic_expression
| arithmetic_expression SYM_LT arithmetic_expression
| arithmetic_expression SYM_GT arithmetic_expression
| arithmetic_expression SYM_LE arithmetic_expression
| arithmetic_expression SYM_GE arithmetic_expression
| boolean_expression SYM_AND boolean_expression
| boolean_expression SYM_OR boolean_expression

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

110 © ISO 2008 – All rights reserved

| boolean_expression SYM_XOR boolean_expression
| boolean_expression SYM_IMPLIES boolean_expression

boolean_leaf:
 (boolean_expression)
| SYM_TRUE
| SYM_FALSE

arithmetic_expression:
arithmetic_leaf
| arithmetic_node

arithmetic_node:
 arithmetic_expression + arithmetic_leaf
| arithmetic_expression - arithmetic_leaf
| arithmetic_expression * arithmetic_leaf
| arithmetic_expression / arithmetic_leaf
| arithmetic_expression ^ arithmetic_leaf

arithmetic_leaf:
 (arithmetic_expression)
| integer_value
| real_value
| absolute_path

8.4 ADL paths

8.4.1 Overview

The notion of paths is integral to ADL, and a common path syntax is used to reference nodes in both dADL
and cADL sections of an archetype. The same path syntax works for both, because both dADL and cADL
have an alternating object/attribute structure. However, the interpretation of path expressions in dADL and
cADL differs slightly; the differences are explained in the relevant subclauses of this part of ISO 13606. This
subclause describes only the common syntax and semantics.

The general form of the path syntax is as follows:

[/][object_id/]{attr_name[object_id]/}*

ADL paths are formed from an alternation of segments made up of an attribute name and optional object node
identifier predicate, separated by slash (“/”) characters. Node identifiers are delimited by brackets ([]). A path
either finishes in a slash, and identifies an object node, or finishes in an attribute name, and identifies an
attribute node.

Paths are either absolute or relative to the node in which they are mentioned. Absolute paths always
commence with an initial slash character.

8.4.2 Path syntax

8.4.2.1 Grammar

input:

 movable_path

| absolute_path

| relative_path

| error

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 111

movable_path:

 SYM_MOVABLE_LEADER relative_path

absolute_path:

 / relative_path

| absolute_path / relative_path

relative_path:

 path_segment

| relative_path / path_segment

path_segment:

 V_ATTRIBUTE_IDENTIFIER V_LOCAL_TERM_CODE_REF

| V_ATTRIBUTE_IDENTIFIER

8.4.2.2 Symbols

“.” Dot_code

“/” Slash_code

“[“ Left_bracket_code

“]” Right_bracket_code

“//” SYM_MOVABLE_LEADER
----------/* term code reference */ -------------------------------------

\[[a-zA-Z0-9][a-zA-Z0-9._\-]*\] V_LOCAL_TERM_CODE_REF

----------/* identifiers */ ---

[A-Z][a-zA-Z0-9_]* V_TYPE_IDENTIFIER

[a-z][a-zA-Z0-9_]*[]*\(\) V_FEATURE_CALL_IDENTIFIER

[a-z][a-zA-Z0-9_]* V_ATTRIBUTE_IDENTIFIER

8.5 ADL — Archetype definition language

8.5.1 General

This subclause describes ADL archetypes as a whole, adding a small amount of detail to the descriptions of
dADL and cADL already given. The important topic of the relationship of the cADL-encoded definition
section and the dADL-encoded ontology section is discussed in detail.

An ADL archetype follows the structure shown below:

archetype

 archetype_id

[specialize
 parent_archetype_id]

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

112 © ISO 2008 – All rights reserved

concept

 coded_concept_name

language

 dADL language description section

description

 dADL metadata section

definition

 cADL structural section

invariant

 assertions

ontology

 dADL definitions section

[revision_history
 dADL section]

8.5.2 Basics

8.5.2.1 Keywords

ADL has a small number of keywords that are reserved for use in archetype declarations as follows:

• archetype, specialise/specialize, concept,
• description, definition, ontology

All of these words may safely appear as identifiers in the definition and ontology sections.

8.5.2.2 Node identification

In the definition section of an ADL archetype, a particular scheme of codes is used for node identifiers as
well as for denoting constraints on textual (i.e. language-dependent) items. Codes are either local to the
archetype, or from an external lexicon. This means that the archetype description is the same in all languages,
and is available in any language into which the codes have been translated. All term codes are shown in
brackets ([]). Codes used as node identifiers and defined within the same archetype are prefixed with at, and
by convention have four digits, e.g. [at0010]. Codes of any length are acceptable in ADL archetypes.
Specializations of locally coded concepts have the same root, followed by dot extensions, e.g. [at0010.2].
From a terminology point of view, these codes have no implied semantics — the dot structuring is used as an
optimization on node identification.

8.5.2.3 Local constraint codes

A second kind of local code is used to stand for constraints on textual items in the body of the archetype.
Although these could be included in the main archetype body, because they are language- and/or
terminology-sensitive, they are defined in the ontology section, and referenced by codes prefixed by “ac”,
e.g. [ac0009]. As for “at” codes, the convention used in this part of ISO 13606 is to use four-digit “ac” codes,
even though any number of digits is acceptable. The use of these codes is described in 8.5.6.4.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 113

8.5.3 Header sections

8.5.3.1 Archetype section

This section introduces the archetype and shall include an identifier. A multi-axial identifier identifies
archetypes in a global space.

NOTE A typical archetype section is as follows:

archetype (adl_version=1.4)

 mayo.openehr-ehr-entry.haematology.v1

8.5.3.2 Controlled indicator

A flag indicating whether the archetype is change-controlled or not may be included after the version; for
example,

archetype (adl_version=1.4; controlled)
 mayo.openehr-ehr-entry.haematology.v1

This flag may have the two values “controlled” and “uncontrolled” only, and is an aid to software. Archetypes
that include the “controlled” flag should have the revision history section included, while those with the
“uncontrolled” flag, or no flag at all, may omit the revision history. This enables archetypes to be privately
edited in an early development phase without generating large revision histories of little or no value.

8.5.3.3 Specialize section

This optional section indicates that the archetype is a specialization of some other archetype, whose identity
shall be given. Only one specialization parent is allowed, i.e. an archetype cannot multiply-inherit from other
archetypes.

NOTE An example of declaring specialization is as follows, in which the identifier of the new archetype is derived
from that of the parent by adding a new section to its domain concept section:

archetype (adl_version=1.4)
 mayo.openehr-ehr-entry.haematology-cbc.v1

specialise

 mayo.openehr-ehr-entry.haematology.v1

Both the United States English and British English versions of the word specialize/specialise are valid in ADL.

8.5.3.4 Concept section

All archetypes represent a real-world concept, such as a “patient”, “blood pressure”, or an “antenatal
examination”. The concept is always coded, ensuring that it can be displayed in any language to which the
archetype has been translated.

NOTE In this example, the term definition of [at0010] is the proper description corresponding to the
haematology-cbc section of the archetype id above:

concept

 [at0010] -- haematology result

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

114 © ISO 2008 – All rights reserved

8.5.3.5 Language section and language translation

The language section includes data describing the original language in which the archetype was authored
(essential for evaluating natural language quality), and the total list of languages available in the archetype.
There may be only one original_language. The translations list shall be updated every time a
translation of the archetype is incorporated.

EXAMPLE

language

 original_language = <“en”>
 translations = <
 [“de”] = <
 provenance = <"freddy@something.somewhere.co.uk">
 quality_control = <"British Medical Translator id 00400595”>
 >
 [“ru”] = <
 provenance = <"vladimir@something.somewhere.ru">
 quality_control = <"Russion Translator id 892230A”>
 >

Archetypes shall always be translated completely, or not at all. This means that when a new translation is
made, every language-dependent section of the description and ontology sections shall be translated
into the new language, and an appropriate addition made to the translations list in the language section.

8.5.3.6 Description section

The description section of an archetype contains descriptive information (sometimes called document
metadata) such as items that can be used in repository indexes and for searching. The dADL syntax is used
for the description.

EXAMPLE

description

 original_author = <
 [“name”] = <"Dr J Joyce">
 [“organisation”] = <"NT Health Service">
 [“date”] = <2003-08-03>
 >
 lifecycle_state = <"initial">
 archetype_package_uri =
 <"www.aihw.org.au/data_sets/diabetic_archetypes.html">

 details = <
 [“en”] = <
 purpose = <"archetype for diabetic patient review">
 use = <"used for all hospital or clinic-based diabetic reviews,
 including first time. Optional sections are removed according
 to the particular review">
 misuse = <"not appropriate for pre-diagnosis use">
 original_resource_uri =
 <"www.healthdata.org.au/data_sets/
 diabetic_review_data_set_1.html">
 other_details = <...>
 >
 [“de”] = <
 purpose = <"Archetyp für die Untersuchung von Patienten
 mit Diabetes">

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 115

 use = <"wird benutzt für alle Diabetes-Untersuchungen im
 Krankenhaus, inklusive der ersten Vorstellung. Optionale
 Abschnitte werden in Abhängigkeit von der speziellen
 Vorstellung entfernt."
 >
 misuse = <"nicht geeignet für Benutzung vor Diagnosestellung">
 original_resource_uri =
 <"www.healthdata.org.au/data_sets/
 diabetic_review_data_set_1.html">
 other_details = <...>
 >
 >

8.5.4 Definition section

The definition section contains the main formal definition of the archetype, and is written in the Constraint
Definition Language (cADL).

EXAMPLE

definition

 ENTRY[at0000] ∈ { -- blood pressure measurement
 name ∈ { -- any synonym of BP
 CODED_TEXT ∈ {
 code ∈ {
 CODE_PHRASE ∈ {[ac0001]}
 }
 }
 }
 data ∈ {
 HISTORY[at9001] ∈ { -- history
 events cardinality ∈ {1..*} ∈ {
 EVENT[at9002] occurrences ∈ {0..1} ∈ { -- baseline
 name ∈ {
 CODED_TEXT ∈ {
 code ∈ {
 CODE_PHRASE ∈ {[ac0002]}
 }
 }
 }
 data ∈ {
 LIST_S[at1000] ∈ { -- systemic arterial BP
 items cardinality ∈ {2..*} ∈ {
 ELEMENT[at1100] ∈ { -- systolic BP
 name ∈ { -- any synonym of 'systolic'
 CODED_TEXT ∈ {
 code ∈ {
 CODE_PHRASE ∈ {[ac0002]}
 }
 }
 }
 value ∈ {
 QUANTITY ∈ {
 magnitude ∈ {0..1000}
 property ∈ {[properties::0944]} -- “pressure”
 units ∈ {[units::387]} -- “mm[Hg]”
 }
 }
 }
 ELEMENT[at1200] ∈ { -- diastolic BP
 name ∈ { -- any synonym of 'diastolic'
 CODED_TEXT ∈ {
 code ∈ {
 CODE_PHRASE ∈ {[ac0003]}
 }
 }
 }

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

116 © ISO 2008 – All rights reserved

 value ∈ {
 QUANTITY ∈ {
 magnitude ∈ {0..1000}
 property ∈ {[properties::0944]} -- “pressure”
 units ∈ {[units::387]} -- “mm[Hg]”
 }
 }
 }
 ELEMENT[at9000] occurrences ∈ {0..*} {*}

 -- unknown new item

 }
 ...

8.5.5 Invariant section

The invariant section in an ADL archetype introduces assertions which relate to the entire archetype, and
may be used to make statements that are not possible within the block structure of the definition section.
Any constraint which relates more than one property to another is in this category, as are most constraints
containing mathematical or logical formulae. An invariant statement is a first-order predicate logic statement
which can be evaluated to a Boolean result at runtime. Objects and properties are referred to using paths.

EXAMPLE

invariant

 validity: /[at0001]/speed[at0002]/kilometres/magnitude =
 /[at0003]/speed[at0004]/miles/magnitude * 1.6

8.5.6 Ontology section

8.5.6.1 Overview

The ontology section of an archetype is expressed in dADL, and is where codes representing node IDs,
constraints on text or terms, and bindings to terminologies are defined. Linguistic language translations are
added in the form of extra blocks keyed by the relevant language.

EXAMPLE

ontology

 terminologies_available = <“snomed_ct”, ...>

 term_definitions = <
 [“en”] = <
 items = <...>
 >
 [“de”] = <
 items = <...>
 >
 >

 term_binding = <
 [“snomed_ct”] = <
 items = <...>
 >
 ...
 >

 constraint_definitions = <
 [“en”] = <...>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 117

 [“de”] = <
 items = <...>
 >
 ...
 >

 constraint_binding = <
 [“snomed_ct”] = <...>
 ...
 >

The term_definitions section is mandatory, and shall be defined for each translation carried out.

Each of these sections may have its own metadata, which appears within description subsections, such as the
one shown above providing translation details.

8.5.6.2 Ontology header statements

The “terminologies_available” statement includes the identifiers of all terminologies for which term_binding
sections have been written.

8.5.6.3 Term_definition section

This section is where all archetype local terms (that is, terms of the form [atNNNN]) are defined. Each term is
defined using a structure of name-value pairs, and shall at least include the names “text” and “description”.
Each term object is then included in the appropriate language list of term_definitions.

NOTE 1 The following example shows an extract from the English and German term_definitions for the archetype local
terms in a problem/SOAP headings archetype.

term_definitions = <
 [“en”] = <
 items = <
 [“at0000”] = <
 text = <"problem">
 description = <"The problem experienced by the subject of care
 to which the contained information relates">
 >
 [“at0001”] = <
 text = <"problem/SOAP headings">
 description = <"SOAP heading structure for multiple problems">
 >
 ...
 [“at4000”] = <
 text = <"plan">
 description = <"The clinician's professional advice">
 >
 >
 >
 [“de”] = <
 items = <
 [“at0000”] = <
 text = <"klinisches Problem">
 description = <"Das Problem des Patienten worauf sich diese \
 Informationen beziehen">
 >
 [“at0001”] = <
 text = <"Problem/SOAP Schema">
 description = <"SOAP-Schlagwort-Gruppierungsschema fuer
 mehrfache Probleme">
 >

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

118 © ISO 2008 – All rights reserved

 [“at4000”] = <
 text = <"Plan">
 description = <"Klinisch-professionelle Beratung des
 Pflegenden">
 >
 >
 >
>

A provenance tag may be used to indicate the source of term definitions.

EXAMPLE

 [at4000] = <

 text = <"plan">;

 description = <"The clinician's professional advice">;

 provenance = <"ACME_terminology(v3.9a)">

 >

NOTE 2 This example does not indicate a binding to any term, only its origin. Bindings are described in 8.5.6.5 and
8.5.6.6.

8.5.6.4 Constraint_definition section

The constraint_definition section is of exactly the same form as the term_definition section, and
provides the definitions; i.e. the meanings of the local constraint codes, which are of the form [acNNNN]. The
constraint definitions do not incorporate the constraints themselves, but define the meanings of such
constraints. The actual constraints are defined in the constraint_binding section.

EXAMPLE

items = <

 [ac1015] = <

 text = <"type of hepatitis">

 description = <"any term which means a kind of viral hepatitis">

 >

>

8.5.6.5 Term_binding section

This section is used to describe the equivalences between archetype local terms and terms found in external
terminologies. Each mapping expression indicates which term in an external terminology is equivalent to the
archetype internal codes.

EXAMPLE

term_binding(umls) = <

 [umls] = <

 items =<

 [at0000] = <[umls::C124305]> -- apgar result

 [at0002] = <[umls::0000000]> -- 1-minute event

 [at0004] = <[umls::C234305]> -- cardiac score

 [at0005] = <[umls::C232405]> -- respiratory score

 [at0006] = <[umls::C254305]> -- muscle tone score

 [at0007] = <[umls::C987305]> -- reflex response score

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 119

 [at0008] = <[umls::C189305]> -- color score

 [at0009] = <[umls::C187305]> -- apgar score

 [at0010] = <[umls::C325305]> -- 2-minute apgar

 [at0011] = <[umls::C725354]> -- 5-minute apgar

 [at0012] = <[umls::C224305]> -- 10-minute apgar

 >

 >

>

8.5.6.6 Constraint_binding section

This section formally describes the text constraints within the main archetype body. They are described
separately because they are terminology-dependent, and because there may be more than one for a given
logical constraint.

EXAMPLE

constraint_binding = <
 [“snomed_ct”]
 items = <
 [“ac0001”] = <http://terminology.org?terminology_id=snomed_ct&&
 has_relation=[102002];with_target=[128004]>
 [“ac0002”] = <http://terminology.org?terminology_id=snomed_ct&&
 synonym_of=[128025]>
 >
 >
>

8.5.7 Revision_history section

The revision_history section of an archetype shows the audit history of changes to the archetype, and is
expressed in dADL syntax. It is optional, and is included at the end of the archetype.

EXAMPLE

revision_history

 revision_history = <
 ["1.57"] = <
 committer = <"Miriam Hanoosh">
 committer_organisation = <"AIHW.org.au">
 time_committed = <2004-11-02 09:31:04+1000>
 revision = <"1.2">
 reason = <"Added social history section">
 change_type = <"Modification">
 >
 -- etc
 ["1.1"] = <
 committer = <"Enrico Barrios">
 committer_organisation = <"AIHW.org.au">
 time_committed = <2004-09-24 11:57:00+1000>
 revision = <"1.1">
 reason = <"Updated HbA1C test result reference">
 change_type = <"Modification">
 >
 ["1.0"] = <
 committer = <"Enrico Barrios">
 committer_organisation = <"AIHW.org.au">

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://terminology.org?terminology_id=snomed_ct&&
http://terminology.org?terminology_id=snomed_ct&&

ISO 13606-2:2008(E)

120 © ISO 2008 – All rights reserved

 time_committed = <2004-09-14 16:05:00+1000>
 revision = <"1.0">
 reason = <"Initial Writing">
 change_type = <"Creation">
 >
 >

8.5.8 Validity rules

8.5.8.1 General

This subclause describes the formal (i.e. checkable) semantics of ADL archetypes.

8.5.8.2 Global archetype validity

The following validity constraints apply to an archetype as a whole.

NOTE The term “section” means the same as “attribute” in the following, i.e. a section called “definition” in a dADL
text is a serialization of the value for the attribute of the same name.

VARID: archetype identifier validity. The archetype shall have an identifier value for the archetype_id
section.

VARCN: archetype concept validity. The archetype shall have an archetype term value in the concept
section. The term shall exist in the archetype ontology.

VARDF: archetype definition validity. The archetype shall have a definition section, expressed as a cADL
syntax string, or in an equivalent plug-in syntax.

VARON: archetype ontology validity. The archetype shall have an ontology section, expressed as a cADL
syntax string, or an equivalent plug-in syntax.

VARDT: archetype definition typename validity. The topmost typename mentioned in the archetype
definition section shall match the type mentioned in the type- name-slot of the first segment of the archetype id.

8.5.8.3 Coded term validity

All node identifiers (“at” codes) used in the definition section of the archetype shall be defined in the
term_definitions section of the ontology.

VATDF: archetype term validity. Each archetype term used as a node identifier the archetype definition shall
be defined in the term_definitions section of the ontology.

All constraint identifiers (“ac” codes) used in the definition section of the archetype shall be defined in the
constraint_definitions section of the ontology.

VACDF: node identifier validity. Each constraint code used in the archetype definition shall be defined in the
constraint_definitions section of the ontology.

8.5.8.4 Definition section

The following constraints apply to the definition section of the archetype.

VDFPT: path validity in definition. Any path mentioned in the definition section shall be valid syntactically,
and have a valid path with respect to the hierarchical structure of the definition section.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 121

8.5.9 Archetype syntax

8.5.9.1 Grammar

input:
 archetype
| error

archetype:
 arch_identification arch_specialisation arch_concept arch_description
arch_definition arch_invariant arch_ontology

arch_identification:
 arch_head V_ARCHETYPE_ID
| SYM_ARCHETYPE error

arch_head:
 SYM_ARCHETYPE
| SYM_ARCHETYPE arch_meta_data

arch_meta_data:
 (arch_meta_data_items)

arch_meta_data_items:
 arch_meta_data_item
| arch_meta_data_items ; arch_meta_data_item

arch_meta_data_item:
 SYM_ADL_VERSION = V_VERSION_STRING
| SYM_IS_CONTROLLED

arch_specialisation:
 -/-
| SYM_SPECIALIZE V_ARCHETYPE_ID
| SYM_SPECIALIZE error

arch_concept:
 SYM_CONCEPT V_LOCAL_TERM_CODE_REF
| SYM_CONCEPT error

arch_description:
 -/-
| SYM_DESCRIPTION V_DADL_TEXT
| SYM_DESCRIPTION error

arch_definition:
 SYM_DEFINITION V_CADL_TEXT
| SYM_DEFINITION error

arch_invariant:
 -/-
| SYM_INVARIANT V_ASSERTION_TEXT
| SYM_INVARIANT error

arch_ontology:
 SYM_ONTOLOGY V_DADL_TEXT
| SYM_ONTOLOGY error

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

122 © ISO 2008 – All rights reserved

8.5.9.2 Symbols

----------/* symbols */ ---
“-” Minus_code
“+” Plus_code
“*” Star_code
“/” Slash_code
“^” Caret_code
“=” Equal_code
“.” Dot_code
“;” Semicolon_code
“,” Comma_code
“:” Colon_code
“!” Exclamation_code
“(“ Left_parenthesis_code
“)” Right_parenthesis_code
“$” Dollar_code
“?” Question_mark_code
“[“ Left_bracket_code
“]” Right_bracket_code

----------/* keywords */ --
^[Aa][Rr][Cc][Hh][Ee][Tt][Yy][Pp][Ee][\t\r]*\n SYM_ARCHETYPE
^[Ss][Pp][Ee][Cc][Ii][Aa][Ll][Ii][SsZz][Ee][\t\r]*\n SYM_SPECIALIZE
^[Cc][Oo][Nn][Cc][Ee][Pp][Tt][\t\r]*\n SYM_CONCEPT
^[Dd][Ee][Ff][Ii][Nn][Ii][Tt][Ii][Oo][Nn][\t\r]*\n SYM_DEFINITION
 -- mini-parser to generate V_DADL_TEXT

^[Dd][Ee][Ss][Cc][Rr][Ii][Pp][Tt][Ii][Oo][Nn][\t\r]*\n SYM_DESCRIPTION
 -- mini-parser to generate V_CADL_TEXT

^[Ii][Nn][Vv][Aa][Rr][Ii][Aa][Nn][Tt][\t\r]*\n SYM_INVARIANT
 -- mini-parser to generate V_ASSERTION_TEXT

^[Oo][Nn][Tt][Oo][Ll][Oo][Gg][Yy][\t\r]*\n SYM_ONTOLOGY
 -- mini-parser to generate V_DADL_TEXT

---------/* term code reference */ --------------------------------------
\[[a-zA-Z0-9][a-zA-Z0-9.-]*\] V_LOCAL_TERM_CODE_REF

----------/* archetype id */ ---
[a-zA-Z][a-zA-Z0-9_-]+\.[a-zA-Z][a-zA-Z0-9_-]+\.[a-zA-Z0-9]+
 V_ARCHETYPE_ID

----------/* identifiers */ --
[a-zA-Z][a-zA-Z0-9_]* V_IDENTIFIER

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13606-2:2008(E)

© ISO 2008 – All rights reserved 123

Bibliography

[1] EN 13940-1, Health informatics — System of concepts to support continuity of care — Part 1: Basic
concepts

[2] CEN/TS 14796, Health informatics — Data types

[3] ISO 3166 (all parts), Codes for the representation of names of countries and their subdivisions

[4] ISO/IEC 10746-1:1998, Information technology — Open distributed processing — Reference model:
Overview — Part 1

[5] EN 14822-2:2005, Health informatics — General purpose information components — Part 2: Non-
clinical

[6] ISO 1087-1:2000, Terminology work — Vocabulary — Part 1: Theory and application

[7] ISO/IEC 11179-3:2003, Information technology — Metadata registries (MDR) — Part 3: Registry
metamodel and basic attributes

[8] ISO/IEC 11404, Information technology — General-Purpose Datatypes (GPD)

[9] ISO/TS 18308:2004, Health informatics — Requirements for an electronic health record architecture

[10] ISO/TR 20514:2005, Health informatics — Electronic health record — Definition, scope and context

[11] RFC 1738:2004, Uniform Resource Locators (URL)

[12] RFC 2045:1996, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies

[13] RFC 2046:1996, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

[14] RFC 2806:2000, URLs for Telephone Calls

[15] RFC 2936:2000, HTTP MIME Type Handler Detection

[16] RFC 2978:2000, IANA Charset Registration Procedures

Example background R&D projects that informed the archetype approach:

[17] MOORMAN, P.W., VAN GINNEKEN, A.M., VAN DER LEI, J. and VAN BEMMEL, J.H., A model for structured
data entry based on explicit descriptional knowledge, Methods of Information in Medicine, 33(5),
pp 454-63, December 1994

[18] DORE, L., LAVRIL, M., JEAN, F.C. and DEGOULET P.A., Development environment to create medical
applications, GREENES, R.A. et al., eds., Medinfo, 8, pp 185-189, 1995

[19] KALRA D., ed., Synapses ODP Information Viewpoint, EU Telematics Application Programme, Brussels,
1998; The Synapses Project: Final Deliverable, 10 chapters, 64 pages

[20] BEALE T. The GEHR Archetype System, The Good Electronic Health Record Project, Australia, August
2000
http://www.openehr.org/downloads/usage/gehr_australia/gehr_archetypes.pdf

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

http://www.openehr.org/downloads/usage/gehr_australia/gehr_archetypes.pdf

ISO 13606-2:2008(E)

124 © ISO 2008 – All rights reserved

Publications about the archetype approach:

[21] KALRA, D., Clinical Foundations and Information Architecture for the Implementation of a Federated
Health Record Service, PhD Thesis, University of London, 2002. Available from:
http://www.chime.ucl.ac.uk/~rmhidxk/Thesis/Kalra_Dipak_PhD_2002.pdf

[22] BEALE, T., Archetypes — An Interoperable Knowledge Methodology for Future-proof Information
Systems. 2001, 69 pages. Available from: BEALE, T. Archetypes: Constraint-Based Domain Models for
Future-proof Information Systems, in OOPSLA-2002, Workshop on behavioural semantics, 2002

[23] The openEHR Foundation: Archetypes FAQ. Available from:
http://www.openehr.org/shared-resources/faqs/archetypes.html

Other contemporary work in this area is being undertaken by the HL7 Templates SIG and the HL7 Care
Provision Technical Committee.

Research on the conversion of ADL-expressed archetype constraints to OWL is taking place, an OWL
representation of archetypes might in the future play a complementary role to an ADL representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

http://www.chime.ucl.ac.uk/~rmhidxk/Thesis/Kalra_Dipak_PhD_2002.pdf
http://www.openehr.org/shared-resources/faqs/archetypes.html

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13606-2:2008(E)

ICS 35.240.80
Price based on 124 pages

© ISO 2008 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

