

Reference number
ISO 13584-32:2010(E)

© ISO 2010

INTERNATIONAL
STANDARD

ISO
13584-32

First edition
2010-12-15

Industrial automation systems and
integration — Parts library —
Part 32:
Implementation resources: OntoML:
Product ontology markup language

Systèmes d'automatisation industrielle et intégration — Bibliothèque
de composants —

Partie 32: Resources d'implémentation: OntoML: Langage de marquage
ontologique

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2010
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2010 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved iii

Contents Page

Foreword..vii

Introduction .. ix

1 Scope ...1

2 Normative references ...2

3 Terms and definitions ...2

4 Abbreviated terms ..7

5 OntoML implementation levels ...7

6 Overview of OntoML ontology representation ..8

7 Overview of OntoML libraries representation ...57

8 Other structured information elements...66

9 OntoML exchange structure ...135

10 Dictionary Change Management Rules..152

Annex A (normative) Information object registration ...163

Annex B (normative) Computer interpretable listings ..164

Annex C (normative) Standard data requirements for OntoML...166

Annex D (normative) Value representation of ISO 13584 / IEC 61360 entities and data types
on ISO/TS 29002-10 shared XML schemas ..167

Annex E (normative) Ontology specification of extended values used in OntoML ..192

Annex F (normative) Structural transformation of the CIIM model from OntoML XML Schema to
EXPRESS...199

Annex G (normative) OntoML exchange levels...233

Annex H (normative) Value format specification ...235

Annex I (informative) XML file example...249

Annex J (informative) Information to support implementations ...256

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

iv © ISO 2010 – All rights reserved

Figures

Figure 1 — CIIM ontology concepts description ...9
Figure 2 — UML-like representation of an XML complex type ...10
Figure 3 — UML-like representation of a reference to an XML complex type ..10
Figure 4 — UML-like representation of an external reference to an XML complex type10
Figure 5 — UML-like representation of XML attributes and simple type XML elements11
Figure 6 — XML representation of XML attributes and simple type XML elements ...11
Figure 7 — UML-like representation of an XML complex type XML element ...11
Figure 8 — XML representation of an XML complex type element ..12
Figure 9 — UML-like representation of XML elements cardinality..12
Figure 10 — XML representation of XML elements cardinality...12
Figure 11 — UML-like representation of XML complex type extensions ..13
Figure 12 — XML representation of XML complex type extensions...13
Figure 13 — Identification of a CIIM ontology concept ...14
Figure 14 — CIIM ontology concept reference ...14
Figure 15 — Reference between CIIM ontology concepts..15
Figure 16 — UML-like representation of a simple reference between CIIM ontology concepts16
Figure 17 — XML representation of a simple reference between CIIM ontology concepts16
Figure 18 — UML-like representation of a multi-valued reference between CIIM ontology concepts17
Figure 19 — XML representation of a multi-valued reference between CIIM ontology concepts17
Figure 20 — Ontology structure UML diagram ...19
Figure 21 — Ontology header structure..20
Figure 22 — Root element of an ontology ..22
Figure 23 — Supplier ontology concept UML diagram ...25
Figure 24 — Simple class ontology concept UML diagram ..27
Figure 25 — Example of a supplier ontology using categorization classes ..32
Figure 26 — Categorization class ...33
Figure 27 — Item class case-of UML diagram ...34
Figure 28 — Class value assignment structure ..37
Figure 29 — Advanced-level ontology class concept UML diagram: functional view class................................40
Figure 30 — Advanced class ontology concept UML diagram: functional model class......................................41
Figure 31 — Advanced class ontology concept UML diagram: functional model class view-of44
Figure 32 — View control variable structure ...46
Figure 33 — Simple property ontology concept UML diagram ...48
Figure 34 — Advanced property ontology concept UML diagram ..51
Figure 35 — Data type UML diagram ...52
Figure 36 — Simple-level document UML diagram ..54
Figure 37 — Root element of library ...57
Figure 38 — General class extension structure..58
Figure 39 — Properties classification ...60
Figure 40 — Properties presentation ..61
Figure 41 — Products representation structure ..62
Figure 42 — Functional models structure UML diagram ..64
Figure 43 — Language specification ..66
Figure 44 —Translation resources..67
Figure 45 — Translation data structure ..69
Figure 46 — Simple-level ontology external resources...70
Figure 47 — Simple-level ontology external resources: HTTP file structure ..71
Figure 48 — Simple-level ontology external resources: illustration ..72
Figure 49 — Simple-level ontology external resources: message..73
Figure 50 — Simple-level ontology external resources: external files ..73
Figure 51 — External resources: source document ...74
Figure 52 — External resources: identified document ..74
Figure 53 — External resources: referenced document ...75
Figure 54 — External resources: graphics..76
Figure 55 — External resources: external graphics..76
Figure 56 — External resources: referenced graphics ...77

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved v

Figure 57 — OntoML datatype system ...78
Figure 58 — Boolean type structure ...80
Figure 59 — String types structure ...81
Figure 60 — Date and time types structure..82
Figure 61 — Enumeration of string codes type structure ...84
Figure 62 — Numeric types structure...86
Figure 63 — Numeric currency types structure ..88
Figure 64 — Numeric measure types structure..90
Figure 65 — Enumeration of integer codes type structure ...92
Figure 66 — Bag type structure..94
Figure 67 — Set type structure...95
Figure 68 — List type structure...96
Figure 69 — Array type structure..97
Figure 70 — Set with a subset constraint type structure ..98
Figure 71 — Instance value domain structure..99
Figure 72 — Levels value domain structure ...100
Figure 73 — Named type structure...101
Figure 74 — Advanced-level data types structure..102
Figure 75 — General measure property unit structure ...105
Figure 76 — Basic unit structures ..105
Figure 77 — Named unit general structure ..106
Figure 78 — Dimensional exponent structure ..107
Figure 79 — International standardized unit structure..107
Figure 80 — Non international standardized unit structure ..108
Figure 81 — Conversion based unit structure ..109
Figure 82 — Context dependent unit structure...110
Figure 83 — Derived unit structure...110
Figure 84 — General constraints structure...111
Figure 85 — Constraint reference structure ...112
Figure 86 — Class constraint structure ..113
Figure 87 — Configuration control constraint structure ..113
Figure 88 — Property constraint structure..115
Figure 89 — Context restriction constraint structure ..115
Figure 90 — Integrity constraint structure...116
Figure 91 — Domain constraints ..117
Figure 92 — Subclass constraint representation..118
Figure 93 — String pattern constraint representation...119
Figure 94 — Cardinality constraint representation ...120
Figure 95 — String size constraint representation..121
Figure 96 — Range constraint representation..122
Figure 97 — Enumeration constraint representation..123
Figure 98 — A posteriori relationship general structure representation ...126
Figure 99 — A posteriori case-of relationship representation ..128
Figure 100 — A posteriori semantic relationships structure ...130
Figure 101 — Library integrated information model identification structure ...131
Figure 102 — View exchange protocol identification structure...132
Figure 103 — Organization structure..133
Figure 104 — Mathematical string structure...133
Figure 105 — Geometric context structure...134
Figure 106 — Geometric unit context structure..134
Figure 107 — Classifying a dictionary change..158

Figure E.1 — Planning model of the ontology of extended values ...193

Figure F.1 — A UML information model example ..200
Figure F.2 — An UML-like representation of the information model ..201
Figure F.3 — An XML Schema example ..201
Figure F.4 — Mapping representation in OntoML ..203
Figure F.5 — XML source Path ..203

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

vi © ISO 2010 – All rights reserved

Figure F.6 — Global Vs local XML elements ..204
Figure F.7 — Local EXPRESS target path structure ..207
Figure F.8 — Complete EXPRESS target path structure ...209

Figure I.1 — General model example: ontology definition ..249
Figure I.2 — General model example: product specification ..250

Tables

Table 1 — OntoML modules cross-references ...143
Table 2 — Conformance options of OntoML ..144
Table 3 — Revision and version ...155

Table B.1 — XML schema defined in this part of ISO 13584 ...164
Table B.2 — XML schemas defined outside of this part of ISO 13584...165

Table C.1 — ISO 13584 LIIM 32 conformance class specification...166

Table E.1 — OntoML extendedvalues: class identifiers ...198
Table E.2 — OntoML extendedvalues: property identifiers...198

Table F.1 — XML and corresponding ISO 10303-21 instances ...202
Table F.2 — SELF meaning in its use context..205
Table F.3 — OntoML identifiers mapping ...213
Table F.4 — OntoML list of class identifiers mapping ..215
Table F.5 — OntoML ontology identifier mapping...216
Table F.6 — OntoML label and translated label mapping...216
Table F.7 — OntoML text and translated text mapping ..218
Table F.8 — OntoML synonymous and translated synonymous mapping..219
Table F.9 — OntoML keywords and translated keywords mapping ...220
Table F.10 — OntoML HTTP protocol mapping ...222
Table F.11 — OntoML translated and not translated files mapping..222
Table F.12 — OntoML external resource mapping...223
Table F.13 — OntoML a posteriori case-of relationship mapping ..226
Table F.14 — OntoML a posteriori view-of relationship mapping ...226
Table F.15 — OntoML global language mapping ...228
Table F.16 — OntoML complex types / CIIM entity datatypes correspondence...228

Table H.1 — ISO/IEC 14977 EBNF syntactic metalanguage ...236
Table H.2 — Transposing European style digits into Arabic digits ...243
Table H.3 — Number value examples..244
Table H.4 — Characters from other rows of the Basic Multilingual Plane of ISO/IEC 10646-1........................245

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13584-32 was prepared by Technical Committee ISO/TC 184, Automation systems and integration,
Subcommittee SC 4, Industrial data.

ISO 13584 consists of the following parts under the general title Industrial automation systems and
integration — Parts library:

⎯ Part 1: Overview and fundamental principles

⎯ Part 20: Logical resource: Logical model of expressions

⎯ Part 24: Logical resource: Logical model of supplier library

⎯ Part 25: Logical resource: Logical model of supplier library with aggregate values and explicit content

⎯ Part 26: Logical resource: Information supplier identification

⎯ Part 31: Implementation resources: Geometric programming interface

⎯ Part 32: Implementation resources: OntoML: Product ontology markup language

⎯ Part 35: Implementation resources: Spreadsheet interface for parts library [Technical Specification]

⎯ Part 42: Description methodology: Methodology for structuring parts families

⎯ Part 101: Geometrical view exchange protocol by parametric program

⎯ Part 102: View exchange protocol by ISO 10303 conforming specification

⎯ Part 501: Reference dictionary for measuring instruments — Registration procedure

— Part 511: Mechanical systems and components for general use — Reference dictionary for fasteners

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

viii © ISO 2010 – All rights reserved

The structure of ISO 13584 is described in ISO 13584-1. The numbering of the parts of ISO 13584 reflects its
structure:

⎯ Parts 10 to 19 specify the conceptual descriptions;

⎯ Parts 20 to 29 specify the logical resources;

⎯ Parts 30 to 39 specify the implementation resources;

⎯ Parts 40 to 49 specify the description methodology;

⎯ Parts 100 to 199 specify the view exchange protocols;

⎯ Parts 500 to 599 specify the reference dictionaries.

A complete list of parts of ISO 13584 is available from the following URL:

<http://www.tc184-sc4.org/titles/PLIB_Titles.htm>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.tc184-sc4.org/titles/PLIB_Titles.htm

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved ix

Introduction

ISO 13584 is an International Standard for the computer-interpretable representation and exchange of parts
library data. The objective is to provide a neutral mechanism capable of transferring parts library data,
independent of any application that is using a parts library data system. The nature of this description makes it
suitable not only for the exchange of files containing parts, but also as a basis for implementing and sharing
databases of parts library data.

ISO 13584 is organized as a series of parts, each published separately. The parts of ISO 13854 fall into one of
the following series: conceptual descriptions, logical resources, implementation resources, description
methodology, view exchange protocol, and reference dictionaries. The series are described in ISO 13584-1.
This part of ISO 13584 is a member of the implementation resources series.

This part of ISO 13584 specifies an XML-based exchange structure for ISO 13584/IEC 61360-compliant data.
It provides a set of constructs allowing to represent both an ontology, possibly together with its external
resources, and a description of a set of products that reference ontologies and that constitute a library or
catalogue. This exchange structure is called OntoML. It is advisable to be familiar with ISO/IEC Guide 77-2
when making use of this part of ISO 13584.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 1

Industrial automation systems and integration — Parts library —

Part 32:
Implementation resources: OntoML: Product ontology markup
language

1 Scope

This part of ISO 13584 specifies the use of the Extensible Markup Language (XML) and the XML Schema
specification for representing data according to the ISO 13584 data model.

The following are within the scope of this part of ISO 13584:

— representation of the common ISO 13584/IEC 61360 model using UML notations;

— definition of two levels of implementation of the common ISO 13584/IEC 61360 model, respectively
called the simple level and the advanced level;

— specification of XML markup declarations that enable both simple ontologies and advanced ontologies
compliant with the common ISO 13584/IEC 61360 model to be exchanged using XML;

— specification of XML markup declarations that enable the exchange of both ontologies compliant with
the common ISO 13584/IEC 61360 model and families of products whose characterizations are defined
by means of these ontologies;

NOTE 1 In this part of ISO 13584, such an exchange context is called an OntoML library.

NOTE 2 The information model for exchanging families of products whose characterizations are defined by means
of the common ISO 13584/IEC 61360 model compliant ontologies is defined in ISO 13584-25.

— specification of XML global elements allowing to use OntoML as an exchange format for representing
responses to queries performed using the ISO/TS 29002-20 concept dictionary resolution mechanism;

— specification of a formal mapping allowing to associate each OntoML elements and attributes of the
corresponding entities and attributes of the common ISO 13584/IEC 61360 model EXPRESS data
model.

The following are outside the scope of this part of ISO 13584:

— rules used to build OntoML from the common ISO 13584/IEC 61360 model;

— the specification of the program intended to interpret all the mapping operators defined in OntoML for
building the corresponding ISO 10303-21 instances of the EXPRESS representation of the common
ISO 13584/IEC 61360 model;

— the exchange of individual products whose characterizations are defined by means of ontologies
compliant with the common ISO 13584/IEC 61360 model.

NOTE 3 Individual products can be exchanged using the ISO/TS 29002-10 product exchange format.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

2 © ISO 2010 – All rights reserved

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 10303-11:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference manual

ISO/IEC 14977, Information technology — Syntactic metalanguage — Extended BNF

ISO/TS 29002-5, Industrial automation systems and integration — Exchange of characteristic data — Part 5:
Identification scheme

ISO/TS 29002-10:2009, Industrial automation systems and integration — Exchange of characteristic data —
Part 10: Characteristic data exchange format

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. Internet
Engineering Task Force RFC 2045 November 1996 [cited 2000-08-15]. Available from World Wide Web:
<http://www.ietf.org/rfc/rfc2045.txt>

Uniform Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force RFC 2396 August 1998
[cited 2000-08-07]. Available from World Wide Web: http://www.ietf.org/rfc/rfc2396.txt

Extensible Markup Language (XML) 1.0. Fourth Edition. World Wide Web Consortium Edited Recommendation
14 June 2006. Available from World Wide Web: <http://www.w3.org/TR/2006/PER-xml-20060614>

XML Schema Part 1: Structures. Second Edition. World Wide Web Consortium Recommendation 28 October
2004. Available from World Wide Web: <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>

XML Schema Part 2: Datatypes. Second Edition. World Wide Web Consortium Recommendation 28 October
2004. Available from World Wide Web: <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>

XML Path Language (XPath) 1.0. World Wide Web Consortium Recommendation 16 November 1999.
Available from World Wide Web: <http://www.w3.org/TR/1999/REC-xpath-19991116>

Namespaces in XML 1.0. Second Edition. World Wide Web Consortium Recommendation 14 June 2006.
Available from World Wide Web: <http://www.w3.org/TR/2006/PER-xml-names-20060614>

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
class
abstraction of a set of similar products

NOTE Adapted from ISO 13584-42:2010, definition 3.6.

3.2
class member
product that complies with the abstraction defined by a class

[ISO 13584-42:2010, definition 3.8]

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2006/PER-xml-20060614
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2006/PER-xml-names-20060614

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 3

3.3
common ISO 13584/IEC 61360 model
data model for product ontology, using the information modelling language EXPRESS, resulting from a joint
effort between ISO/TC 184/SC4/WG2 and IEC SC3D

NOTE 1 Adapted from ISO 13584-42:2010, definition 3.10.

NOTE 2 The previous version of the common ISO 13584/IEC 61360 ontology model is published in both
IEC 61360-5 and ISO 13584-25:2004. A new version, in line with this version of OntoML and with ISO 13584-42:2010 is
under work.

3.4
CIIM ontology concept
basic unit of knowledge represented in an ontology based on the common ISO 13584/IEC 61360 ontology
model, CIIM ontology concepts are information source (supplier), class, property, data type and document

NOTE 1 Each CIIM ontology concept is associated with a global identifier allowing to reference it externally to an
exchange file.

NOTE 2 The same CIIM ontology concept can be referenced several times in the same exchange file. Therefore, a
referencing mechanism is defined in OntoML.

3.5
EXPRESS attribute
data element for the computer-sensible description of a property, a relation or a class

NOTE An attribute describes only a single detail of a property, of a class or of a relation.

EXAMPLE The name of a property, the code of a class, the measure unit in which values of a property are provided
are examples of attributes.

3.6
EXPRESS entity
class of information defined by common properties

[ISO 10303-11:1994, definition 3.2.5]

3.7
global identifier
code providing an unambiguous and universally unique identification of some concepts or objects

NOTE All CIIM ontology concepts are associated with a global identifier.

3.8
is-a relationship
class inclusion relationship associated with inheritance: if A1 is-a A, then each product belonging to A1
belongs to A, and all that is described in the context of A is automatically duplicated in the context of A1

NOTE 1 This mechanism is usually called “inheritance”.

NOTE 2 In the common ISO 13584/IEC 61360 dictionary model, the is-a relationship can only be defined between
characterization classes. It is advisable that it define a single hierarchy and it ensures that both visible and applicable
properties are inherited.

[ISO 13584-42:2010, definition 3.23]

3.9
is-case-of relationship
property importation mechanism: if A1 is case-of A, then the definition of A products also covers A1 products,
thus A1 can import any property from A

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

4 © ISO 2010 – All rights reserved

NOTE 1 The goal of the case-of relationship is to allow connecting together several class inclusion hierarchies while
insuring that referenced hierarchies can be updated independently.

NOTE 2 There is no constraint stating that the case-of relationship is intended to define single hierarchies.

NOTE 3 In the common ISO 13584/IEC 61360 dictionary model, the case-of relationship can be used in particular in
four cases: (1) to link a characterization class to a categorization class, (2) to import, in the context of some standardized
reference dictionaries, some properties already defined in other standardized reference dictionaries, (3) to connect a user
reference dictionary to one or several standardized reference dictionaries, (4) to describe a product using the properties
of different classes: when products of class A1 fulfil two different functions, and are thus logically described by properties
associated with two different classes, A and B, A1 can be connected by is-a to, for example, A, and by case-of to B.

NOTE 4 Adapted from ISO 13584-42:2010, definition 3.24.

3.10
is-view-of
relationship providing a formal expression of the fact that an object is a representation of another object
according to a particular perspective

EXAMPLE A set of geometric entities might provide a drafting representation of a particular screw. If both the set of
geometric entities and the particular screw are represented as objects, the is-view-of relationship holds between the
former object and the latter object (in a drafting perspective).

[ISO 13584-24:2003, definition 3.64]

3.11
library
representation of a set of products by their product characterizations, possibly associated with the ontology
where product characterization classes and properties are defined

NOTE 1 A library is also called a catalogue.

NOTE 2 In the OntoML schemas, to highlight the difference between the ontology part and the content part, the
ontology part is embedded in the “dictionary” XML element, and the content part is embedded in the “library” XML
element.

3.12
OntoML document instance
XML document that complies with the OntoML XML Schema

3.13
product categorization
part categorization
categorization
recursive partition of a set of products into subsets for a specific purpose

NOTE 1 Subsets which appear in a product categorization are called product categorization classes, or product
categories.

NOTE 2 A product categorization is not a product ontology. It cannot be used for characterizing products.

NOTE 3 No property is associated with categorizations.

NOTE 4 Several categorizations of the same set of products are possible according to their target usage.

EXAMPLE The UNSPSC classification, defined by the United Nations, is an example of product categorization that
was developed for spend analysis.

NOTE 5 Using the is-case-of relationship, several product characterization class hierarchies can be connected to a
categorization hierarchy to generate a single structure.

[ISO 13584-42:2010, definition 3.32]

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 5

3.14
product categorization class
part categorization class
categorization class
class of products that constitutes an element of a categorization

EXAMPLE Manufacturing Components and Supplies and Industrial Optics, are examples of a product categorization
class defined in the UNSPSC.

NOTE 1 No rule is given in this part of ISO 13584 about how to select categorization classes. This concept is
introduced (1) to clarify its difference with characterization class, and (2) to explain that the same characterization class
can be connected to any number of categorization classes.

NOTE 2 There is no property associated with a categorization class.

[ISO 13584-42:2010, definition 3.33]

3.15
product characterization
part characterization
description of a product by means of a product characterization class to which it belongs and a set of property
value pairs

EXAMPLE Hexagon_head_bolts_ISO_4014 (Product grades = A, thread type = M, length = 50, Diameter = 8) is an
example of product characterization.

NOTE In the example, Hexagon_head_bolts_ISO_4014 stands for the identifier of the “Hexagon head bolts”
product characterization class defined by ISO 4014. All the names in italics between parentheses stand for the identifier
of the bolt properties defined in ISO 4014.

[ISO 13584-42:2010, definition 3.34]

3.16
product characterization class
part characterization class
characterization class
class of products that fulfil the same function and that share common properties

NOTE Product characterization classes can be defined at various levels of details, thus defining a class inclusion
hierarchy.

EXAMPLE Metric threaded bolt/screw and hexagon head bolt are examples of product characterization classes
defined in ISO 13584-511. The first characterization class is included in the second one. Transistor and bipolar power
transistor are examples of product characterization classes defined in IEC 61360-4-DB. The second one is included in the
first one.

[ISO 13584-42:2010, definition 3.35]

3.17
product ontology
part ontology
ontology
model of product knowledge, done by a formal and consensual representation of the concepts of a product
domain in terms of identified characterization classes, class relations and identified properties

NOTE 1 Product ontologies are based on a class-instance model that allows one to recognize and to designate the
sets of products, called characterization classes, that have a similar function (e.g. ball bearing, capacitor), but also to
discriminate within a class the various subsets of products, called instances, that are considered identical. It is advisable
that the rules defined in ISO 1087-1 be used for formulating designations and definitions of characterization classes.
Instances have no definitions. They are designated by the class to which they belong and a set of property-value pairs.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

6 © ISO 2010 – All rights reserved

NOTE 2 Ontologies are not concerned with words but with concepts, independent of any particular language.

NOTE 3 “Consensual” means that the conceptualization is agreed upon in some community.

NOTE 4 “Formal” means that the ontology is intended to be machine interpretable. Some level of machine
reasoning is logically possible over ontology, e.g. consistency checking or inferencing.

EXAMPLE 1 Consistency checking is a kind of machine reasoning.

NOTE 5 “Identified” means that each ontology characterization class and properties is associated with a globally
unique identifier allowing one to reference this concept from any context.

NOTE 6 In OntoML, advanced ontologies are those ontologies that use all the modelling mechanisms defined in the
common ISO 13584/IEC 61360 ontology model. OntoML also defines a simple functional subset of this model allowing to
define simple ontologies.

NOTE 7 In this part of ISO 13584, each product ontology addressing a particular product domain compliant with the
common ISO 13584/IEC 61360 dictionary model is called a reference dictionary for that domain.

EXAMPLE 2 The product ontology defined in IEC 61360 is agreed upon by all member bodies of IEC SC3D. A
corporate ontology is agreed upon by experts designated by management on behalf of the company.

NOTE 8 Adapted from ISO 13584-42:2010, definition 3.36.

3.18
property
defined parameter suitable for the description and differentiation of products

NOTE 1 A property describes one aspect of a given object.

NOTE 2 A property is defined by the totality of its associated attributes. The types and number of attributes that
describe a property with high accuracy are documented in this part of ISO 13584.

NOTE 3 The term “property” used in this part of ISO 13584 and the term “data element type” used in IEC 61360 are
synonyms.

NOTE 4 Adapted from ISO 13584-42:2010, definition 3.37.

3.19
reference dictionary
product ontology compliant with the common ISO 13584/IEC 61360 dictionary model

NOTE In the ISO 13584 standard series, a product ontology that addresses a particular product domain, based on
the common ISO 13584/IEC 61360 dictionary model, is called a reference dictionary for that domain.

[ISO 13584-42:2010, definition 3.41]

3.20
XML attribute
XML construct included in an element and defined by a name and a simple value pair

NOTE 1 Adapted from XML 1.0 Recommendation.

NOTE 2 In this part of ISO 13584, the name of an XML attribute will be prefixed by “@” to stipulate that the
corresponding piece of information is represented as an attribute and not as an XML embedded element.

3.21
XML complex type
set of XML element and/or attribute declarations describing an XML element content model

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 7

3.22
XML element
XML structure including a start tag, an end tag, information between these tags, and, possibly, a set of XML
attributes

NOTE 1 Adapted from XML 1.0 Recommendation.

NOTE 2 The information structure between start tag and end tag is defined by either by an XML simple type or an
XML complex type.

NOTE 3 An XML element can contain other XML elements defined by either an XML simple type or an XML complex
type.

3.23
XML simple type
set of constraints applicable to the value of an XML attribute or to the value of an XML element without any
XML child element

NOTE An XML simple type applies to the values of attributes and the text-only content of elements.

4 Abbreviated terms

CIIM Common ISO 13584/IEC 61360 Model

IRDI International Registration Data Identifier

SI Système International d'Unités (International System of Units)

STEP Standard for The Exchange of Product model data

UNSPSC classification of products and services defined by the United Nations

URI Uniform Resource Identifier

URN Uniform Resource Name

XML Extensible Markup Language

5 OntoML implementation levels

The CIIM includes a number of concepts and of modelling mechanisms allowing to characterize not only
items, such that products, but also (1) multi point of view discipline specific representations of items, and
(2) characterization of the various possible point of views. Such advanced concepts may not be necessary in a
number of applications.

Therefore, this part of ISO 13584 identifies a subset of all the modelling mechanisms defined in the CIIM that
should prove useful in most application contexts. This subset defines allowed levels of implementation of
OntoML. These levels are denoted as “simple” in this part of ISO 13584.

All the modelling mechanisms that do not belong to the simple level are referenced as “advanced” when they
are presented. Clause 9.5 summarizes those OntoML constructs that belong to simple levels and those that
belong to advanced level.

NOTE 1 Simple levels being defined as a consistent functional subset, reading and understanding advanced
mechanisms is not needed to understand and to use the simple levels.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

8 © ISO 2010 – All rights reserved

Moreover, OntoML makes it possible to model two kinds of information:

— ontologies,

— libraries, which are set of instances data possibly associated with their ontology definitions.

Depending on the application context, not all those kinds of information may prove useful. Therefore, four
subsets of OntoML are defined as allowed levels of implementation:

— simple ontology,

— advanced ontology,

— simple library,

— advanced library.

A simple instance data level does not exist, because this kind of information exchange will be addressed by
ISO/TS 29002-10.

NOTE 2 ISO/TS 29002 is developed as a joint effort of several standardization committees to promote
interoperability between the various standards that require product characterization.

NOTE 3 Only simple ontology and advanced ontology subsets comply with the CIIM. Representation of libraries
complies with extensions of the CIIM defined in ISO 13584-24:2003 and ISO 13584-25:2004.

6 Overview of OntoML ontology representation

In this clause, CIIM ontology concepts are defined and their underlying structure is presented. Additionally,
graphical notations used to illustrate every CIIM ontology concept structure are introduced.

6.1 CIIM ontology concepts

According to the CIIM, an ontology consists of five kinds of main concepts:

⎯ supplier,

⎯ class,

⎯ property,

⎯ identified data types,

⎯ document.

Each of these CIIM ontology concepts carries two kinds of information:

⎯ its identification that is a global identifier. This identifier allows to reference this concept from within or
outside the OntoML document that defines the concept. The structure of CIIM ontology concept global
identifiers is defined in Clause 9.1.

NOTE The OntoML global identifier of a CIIM ontology concept contains the same information as the ones defined
in the other parts of ISO 13584, and known as basic semantic unit.

⎯ its definition that consists of a set of pieces of information specified in the CIIM.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 9

6.2 OntoML structure of a CIIM ontology concept

Each CIIM ontology concept definition includes a number of pieces of information and of relations with other
CIIM ontology concepts. In the XML representation, each CIIM ontology concept is represented by one XML
element. Then, the pieces of information that contribute to the definition of the CIIM ontology concept are
represented either externally or internally to its associated XML element, depending on the relationships
involved:

⎯ external representation are used to reference any piece of information that represents another CIIM
ontology concept, through its own identifier;

⎯ internal representations are used to reference any other piece of information.

Figure 1 illustrates these two kinds of representation.

PLIB ontology
concept
id1

PLIB ontology
concept
id2

poi A

poi B
poi C

poi D

poi E

poi: piece of information

external ref

Figure 1 — CIIM ontology concepts description

Assumes that two CIIM ontology concepts are defined. They are both unambiguously identified (id1 and id2
identifiers). Additionally, both are defined by several pieces of information (poi) that are embedded within the
XML representation of the CIIM ontology concepts. In turn, these pieces of information can themselves embed
some others pieces of information. Finally, the CIIM ontology concept identified by id1 references the CIIM
ontology concept identified by id2.

NOTE Internal representation that consists in embedding the referenced piece of information within the XML
element that represents a CIIM ontology concept may result in a duplication of some pieces of information. Anyway, it
does not change the semantics of the underlying CIIM EXPRESS data model.

6.3 UML-like graphical representation of OntoML constructs

In this part of ISO 13584, OntoML is described using UML notations. The basic UML notations are enriched in
order to:

⎯ highlight the difference between an XML element and an XML attribute;

⎯ explicitly represent references between XML complex type represented in different diagrams;

⎯ represent references(s) between CIIM ontology concepts using the specified identification mechanism;

⎯ simplify the diagram when representing references between CIIM ontology concepts.

These graphical notations are called UML-like notations.

This clause presents the UML-like graphical representation of OntoML constructs. It also describes the
mechanism used for representing in OntoML references between CIIM ontology concepts together with its
graphical representation.

After presenting the referencing mechanism used to provide for external reference between CIIM ontology
concepts, this clause presents the structure of the various CIIM ontology concepts defined in OntoML using
UML diagrams.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

10 © ISO 2010 – All rights reserved

6.3.1 Graphical notations

In the remaining part of the document, the following conventions will be used to represent the OntoML
structure using UML-like diagrams.

6.3.1.1 Representation of an XML complex type

An XML complex type is represented as a box split in two parts: the XML complex type name at the top, the
XML attribute(s) and/or the embedded XML element(s) below. It is illustrated in Figure 2.

EXAMPLE 1 In Figure 2, an XML complex type called PROPERTY_Type is represented.

PROPERTY_Type

Figure 2 — UML-like representation of an XML complex type

If the XML complex type is abstract, its name is represented using italic font style.

A complex type can also be represented as a rounded thin line box: it means that the XML attribute(s) and/or
the embedded XML element(s) specifying its content model are defined elsewhere.

EXAMPLE 2 Figure 3 specifies a reference to a PROPERTY_Type XML complex type.

PROPERTY_Type

Figure 3 — UML-like representation of a reference to an XML complex type

6.3.1.2 Representation of references to external information elements

OntoML is using external XML Schema resources for defining its own content. For that purpose, a graphical
notation has been introduced. Because it is a reference to an XML complex type, it is firstly represented as a
rounded thin line box. Secondly, because it is an external reference, this box is filled with a light gray colour.
It is illustrated in Figure 4 below.

EXAMPLE In Figure 4, a complex type called Content is referenced from another XML schema identified by the cat
prefix.

cat:Content

Figure 4 — UML-like representation of an external reference to an XML complex type

NOTE The prefix is defined according to the XML namespaces mechanism and allows to recognize XML
definitions specified in some other external XML Schema vocabularies.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 11

6.3.1.3 Representation of XML attributes and XML elements whose content models are XML simple
types

Both XML attributes and XML elements whose contents are an XML simple type embedded within an XML
complex type are represented by their name and their type. To distinguish XML attributes and XML (nested)
elements, the name of the former is prefixed by the “@” character.

NOTE The '@' character is not part of the attribute name. Therefore, it is not represented in the OntoML XML
Schema.

In Figure 5 below, a PROPERTY_Type is an abstract XML complex type that embeds a revision element
whose type is the REVISION_TYPE_Type XML simple type, and an id XML attribute whose type is the
PropertyId XML simple type.

PROPERTY_Type

@id: PropertyId
revision: REVISION_TYPE_Type

Figure 5 — UML-like representation of XML attributes and simple type XML elements

EXAMPLE Figure 6 below shows the XML document instance corresponding to Figure 5.

<xs:complexType name="PROPERTY_Type" abstract="true">
 <xs:sequence>
 <xs:element name="revision" type="REVISION_TYPE_Type"/>
 </xs:sequence>
 <xs:attribute name="id" type="PropertyId" use="required"/>
</xs:complexType>

Figure 6 — XML representation of XML attributes and simple type XML elements

6.3.1.4 Representation of an XML element whose content model is an XML complex type

An XML element whose content model is an XML complex type is represented as a relationship between the
complex type XML element, and the complex type that embeds the content model of this XML element. This
relationship is represented by a filled diamond followed by a plain line whose end is an arrow. The label
associated to the relationship represents the XML element name.

NOTE 1 The filled diamond is used to denote a composition relationship.

NOTE 2 The default direct relationship cardinality is exactly one.

EXAMPLE In Figure 7, an XML element called domain is defined: it represents an embedded element of the
PROPERTY_Type XML complex type, and its own content model is the abstract ANY_TYPE_Type XML complex type.

ANY_TYPE_Type

PROPERTY_Type

@id: PropertyId
revision: REVISION_TYPE_Type

domain

Figure 7 — UML-like representation of an XML complex type XML element

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

12 © ISO 2010 – All rights reserved

Figure 8 below shows the XML document instance corresponding to Figure 7.

<xs:complexType name="PROPERTY_Type" abstract="true">
 <xs:sequence>
 <xs:element name="revision" type="REVISION_TYPE_Type"/>
 <xs:element name="domain" type="ANY_TYPE_Type"/>
 </xs:sequence>
 <xs:attribute name="id" type="PropertyId" use="required"/>
</xs:complexType>

Figure 8 — XML representation of an XML complex type element

6.3.1.5 Representation of the cardinality of embedded XML elements

XML elements cardinality is specified using the UML-like notation: minimum cardinality .. maximum cardinality.

EXAMPLE 1 In Figure 9, a minimum cardinality equal to 0 and a maximum cardinality equal to 1 are assigned both to
the is_deprecated and icon XML elements.

GRAPHICS_Type

PROPERTY_Type

is_deprecated: 0..1 xs:boolean

icon 0..1

Figure 9 — UML-like representation of XML elements cardinality

NOTE 1 The cardinality relationships expressed in Figure 9 stand for optionality.

NOTE 2 Colour conventions are defined in Clause 6.3.3.

EXAMPLE 2 Figure 10 below shows the XML document instance corresponding to Figure 9.

<xs:complexType name="PROPERTY_Type" abstract="true">
 <xs:sequence>
 <xs:element name="is_deprecated" type="xs:boolean" minOccurs="0"/>
 <xs:element name="icon" type="GRAPHICS_Type" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

Figure 10 — XML representation of XML elements cardinality

6.3.1.6 Representation of XML complex type extensions

XML complex type extensions are represented using the usual triangle UML inheritance symbol.

EXAMPLE 1 In Figure 11 below, the NON_DEPENDENT_P_DET_Type XML complex type is defined as an extension
of the PROPERTY_Type abstract XML complex type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 13

NON_DEPENDENT_
P_DET_Type

PROPERTY_Type

Figure 11 — UML-like representation of XML complex type extensions

EXAMPLE 2 Figure 12 below shows the XML document instance corresponding to Figure 11.

<xs:complexType name="NON_DEPENDENT_P_DET_Type">
 <xs:complexContent>
 <xs:extension base="PROPERTY_Type"/>
 </xs:complexContent>
</xs:complexType>

Figure 12 — XML representation of XML complex type extensions

6.3.2 Reference mechanism between CIIM ontology concepts

This clause presents the graphical notations that are used to represent the identification of a CIIM ontology
concept and its reference from another CIIM ontology concept. Moreover, it introduces graphical notations for
representing multi-references from one CIIM ontology concept to a set of other CIIM ontology concepts.

6.3.2.1 Identification of a CIIM ontology concept

The CIIM specifies how to associate a global identifier with any CIIM ontology concept.

In OntoML, for identifying each particular type of CIIM ontology concept, a particular XML complex type is
defined:

⎯ the names of these XML complex types reflect the names of their target concept types,

⎯ each of these XML complex types contains an attribute whose value is the global identifier of the particular
CIIM ontology concept it identifies,

⎯ the name of this attribute also reflects the name of the target type.

Such elements are intended to be embedded within CIIM ontology concepts.

The name of these XML complex types is given according to the following rule:

⎯ supplier: it is of SUPPLIER_Type XML complex type; the type of the identifier is SupplierId;

⎯ class: it is of CLASS_Type XML complex type; the type of the identifier is ClassId;

⎯ property: it is of PROPERTY_Type XML complex type; the type of the identifier is PropertyId;

⎯ data type: it is of DATATYPE_Type XML complex type; the type of the identifier is DatatypeId;

⎯ document: it is of DOCUMENT_Type XML complex type; the type of the identifier is DocumentId.

NOTE The structure of these identifier types are given in Clause 9.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

14 © ISO 2010 – All rights reserved

The name of this identification attribute is “id”. This name will be represented as @id throughout this document
to specify that it is an XML attribute and not an XML embedded element.

EXAMPLE In Figure 13, the global identifier of a class ontology concept, represented by the CLASS_Type XML
complex type, contains a @id attribute whose data type is ClassId.

CLASS_Type

@id: ClassId

Figure 13 — Identification of a CIIM ontology concept

6.3.2.2 OntoML representation of a reference to a CIIM ontology concept

For referencing each particular type of CIIM ontology concept, a particular XML complex type is defined:

⎯ the name of these XML complex types reflect the name of their target data type,

⎯ each reference element contains an attribute whose value is the global identifier of the CIIM ontology
concept it references,

⎯ the name of this attribute also reflects the name of the target type.

The XML reference complex type and the XML reference attribute name, prefixed by “@” to stipulate that it is
an XML attribute, are defined according to the CIIM ontology concepts referenced:

⎯ SUPPLIER_REFERENCE_Type XML complex type and supplier_ref XML attribute (whose data type is
SupplierId): reference to a supplier;

⎯ CLASS_REFERENCE_Type XML complex type and class_ref XML attribute (whose data type is
ClassId): reference to a class;

⎯ PROPERTY_REFERENCE_Type XML complex type and property_ref XML attribute (whose data type is
PropertyId): reference to a property;

⎯ DATATYPE_REFERENCE_Type XML complex type and datatype_ref XML attribute (whose data type is
DatatypeId): reference to a data type;

⎯ DOCUMENT_REFERENCE_Type XML complex type and document_ref XML attribute (whose data type
is DocumentId): reference to a document;

NOTE The reference attribute type is defined to match the type of the referenced CIIM ontology concept.

EXAMPLE The reference to a class ontology concept is performed using a CLASS_REFERENCE_Type XML
complex type and an XML reference attribute called @class_ref (whose data type is ClassId), as illustrated in Figure 14.

CLASS_
REFERENCE_Type

@class_ref: ClassId

Figure 14 — CIIM ontology concept reference

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 15

6.3.2.3 OntoML representation of simple and multi-valued references between CIIM ontology
concepts

When the reference from a CIIM ontology concept to another CIIM ontology concept is multi-valued, an additional XML
complex type is created as shown in Figure 15.

datatype_referenceCLASS_Type

@id: ClassId

DATATYPE_
REFERENCE_Type

@datatype_ref: DatatypeId

referencesCLASS_Type

@id: ClassId

PROPERTIES_
REFERENCE_Type

PROPERTY_
REFERENCE_Type

@property_ref: PropertyId

property 1..*

Simple
references

Multi-valued
reference

PROPERTY_Type

@id: PropertyId

DATATYPE_Type

@id: DataTypeId

DOCUMENT_Type

@id: DocumentId

PROPERTY_
REFERENCE_Type

@property_ref: PropertyId

DOCUMENT_
REFERENCE_Type

@document_ref: DocumentId

property_reference

document_reference

Figure 15 — Reference between CIIM ontology concepts

In this figure:

⎯ a filled diamond is used to represent the composition relationship that denotes the underlying XML nested
structure,

⎯ the arrow specifies the corresponding relationship orientation.

Moreover, in this figure, a property, a data type, a document and a class ontology concepts, respectively
represented by a PROPERTY_Type, DATATYPE_Type, DOCUMENT_Type and a CLASS_Type XML
complex types are defined. All are identified by an id XML attribute whose type depends on the identified CIIM
ontology concept. Two cases of relationships are presented:

⎯ simple reference: it is a one to one relationship from a class to a property, a data type or a document. The
relationship is represented by an XML element (respectively property_reference, datatype_reference and
document_reference) whose content definition is respectively a PROPERTY_REFERENCE_Type,
DATATYPE_REFERENCE_Type and a DOCUMENT_REFERENCE_Type XML complex type;

⎯ multi-valued reference: it is a one to many relationship from a class to a set of properties. In this case, the
relationship is represented by an XML element (references) that acts as a container, and its content
definition is a PROPERTIES_REFERENCE_Type XML complex type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

16 © ISO 2010 – All rights reserved

6.3.2.4 Simplified graphical representation of references between CIIM ontology concepts

As explained in Clause 6.3.2.3, references between CIIM ontology concepts involve a complex chain of one or
two composition relationships followed by an identifier / reference matching. To simplify its graphical
representation, a particular graphical notation is introduced. This representation is as follows. A reference
between CIIM ontology concepts will be represented by a filled diamond followed by a dashed line that joins
the referencing XML complex type to the referenced CIIM ontology concept.

The target CIIM ontology concept is represented in a dashed box by its corresponding name, in capital letters,
as follows:

⎯ supplier: SUPPLIER;

⎯ class: CLASS;

⎯ property: PROPERTY;

⎯ data type: DATATYPE;

⎯ document: DOCUMENT.

When different from a one to one relationship, the relationship cardinality is represented like in UML.

EXAMPLE 1 Figure 16 represents a simple reference between two CIIM ontology concepts together with its meaning
using the previous notation.

Simplified notation

CLASS_Type

@id: ClassId

PROPERTY_
REFERENCE_Type

@property_ref: PropertyId

CLASS_Type

@id: ClassId
PROPERTY

references

Common notation
references

Figure 16 — UML-like representation of a simple reference between CIIM ontology concepts

EXAMPLE 2 Figure 17 below shows the XML document instance corresponding to Figure 16.

<xs:complexType name="CLASS_Type">
 <xs:sequence>
 <xs:element name="references" type="PROPERTY_REFERENCE_Type"/>
 </xs:sequence >
</xs:complexType>

<xs:complexType name="PROPERTY_REFERENCE_Type">
 <xs:attribute name="property_ref" type="PropertyId" use="required"/>
</xs:complexType>

Figure 17 — XML representation of a simple reference between CIIM ontology concepts

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 17

EXAMPLE 3 Figure 18 represents a multi-valued reference between CIIM ontology concepts.

referencesCLASS_Type

@id: ClassId

PROPERTIES_
REFERENCE_Type

PROPERTY_
REFERENCE_Type

@property_ref: PropertyId

property 1..*

CLASS_Type

@id: ClassId
PROPERTY

references 1..*
Simplified
notation

Common
notation

Figure 18 — UML-like representation of a multi-valued reference between CIIM ontology concepts

EXAMPLE 4 Figure 19 below shows the XML document instance corresponding to Figure 18.

<xs:complexType name="CLASS_Type">
 <xs:sequence>
 <xs:element name="references" type=" PROPERTIES_REFERENCE_Type"/>
 </xs:sequence >
</xs:complexType>
<xs:complexType name="PROPERTIES_REFERENCE_Type">
 <xs:sequence>
 <xs:element name="property"
 type="PROPERTY_REFERENCE_Type" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PROPERTY_REFERENCE_Type">
 <xs:attribute name="property_ref" type="PropertyId" use="required"/>
</xs:complexType>

Figure 19 — XML representation of a multi-valued reference between CIIM ontology concepts

6.3.3 UML diagrams colour conventions

In UML diagrams, a colour convention is used to highlight those XML attributes and XML elements that are
mandatory for the description of any information elements (CIIM ontology concepts or pieces of information).
The convention is:

⎯ black line / text when the information element is mandatory,

⎯ gray line / text when the information element is optional.

6.3.4 Description of the structure of all OntoML complex types

In the following, the structure and content of all the OntoML complex type is defined through a set of clauses.
Each clause focuses on one particular XML complex type or possibly a small number of related XML complex
types not embedded within a single XML type. This XML type or these XML types are called the clause main
type or types. The clause main type or types are clearly identified by the name and the header of the clause.

EXAMPLE Clause 6.6 is titled “Root element of an ontology" and the header says “In OntoML, every ontology
pieces of information are gathered into a general structure that is a DICTIONARY_TYPE XML complex type”.
DICTIONARY_TYPE is then clause main type.

To make the description more synthetic, the same clause also defines the content and structure of a number
of other OntoML complex types that are connected with the clause main type or types, either by inheritance or
by composition.

The description of these set of complex type is as follows.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

18 © ISO 2010 – All rights reserved

6.3.4.1 Graphical presentation

In each clause, the complete structure of the clause main type or types is defined graphically using the UML-
like notations presented above. The clause main type or types can include embedded XML elements whose
content models are defined by complex types.

Some of these XML complex types are represented as squared-boxes. This means that the complete structure
and content of these complex types are also defined in the current clause. Their structures are defined in the
same figure as the one that defines their embedding complex-type.

EXAMPLE 1 In Figure 21, the HEADER_Type embeds an ontoml_information XML element, whose content model
is defined by an INFORMATION_Type XML complex type. This type is represented as a squared-box. Thus, its complete
structure is defined in Figure 21: it embeds different XML elements: synonnymous_names, preferred_name,
short_name, icon, remark and note XML elements.

The content of such an XML complex type is defined under the "Internal type definition" header of the same
clause.

EXAMPLE 2 In Clause 6.5 the content of the INFORMATION_Type is defined under the "Internal type definition"
header as follows: "the list of class descriptions contained in the dictionary".

Some other of these XML complex types are represented as rounded boxes. Their structure and content are
defined in another clause of the document, whose number is defined under the "External type definition"
header of the current clause.

EXAMPLE 3 In Clause 6.5, the content model of the icon embedded XML element is a GRAPHICS_Type XML
complex type. The corresponding box is rounded. This means that this complex type is defined in another clause. Under
the "External type definition" header of Clause 6.5, it is specified that GRAPHICS_TYPE is defined in Clause 8.2.2.2.

6.3.4.2 Internal item definition

Under the "Internal item definition” header of each clause, all the XML attributes, and all the XML elements that
are embedded within all the XML complex type defined in this clause are defined. Those items, XML attributes
or embedded XML elements, that belong to the clause main type are listed by their names. Those items that
belong to an embedded XML element whose complex type is represented by a squared box are identified
using a path notation starting from the main element. The path separator is slash (‘/’)

EXAMPLE 1 Under the "Internal item definition" header of Clause 6.6, the definition of the class XML element that is
embedded within the contained_classes element of DICTIONARY_Type is associated with the following identifier:
contained_classes/class.

When the clause addresses several clause main types connected by inheritance relationship, those items that
belong to the root of the inheritance hierarchy are not qualified, those items that belong to children classes are
qualified by the name of the class between parentheses.

EXAMPLE 2 Clause 5.7.3 defines the simple ontology-level properties that include PROPERTY_TYPE,
NON_DEPENDENT_P_DET_Type, CONDITION_DET_type and DEPENDENT_P_DET_Type. Under the "Internal item
definition” header of this clause, the definition of the depends_on XML element that is embedded within the
DEPENDENT_P_DET_Type subtype of PROPERTY_Type is associated with the following identifier: depends_on
(DEPENDENT_P_DET_Type).

6.3.4.3 Internal type definition

Under the "Internal type definition" header of the clause, the content of the following type are defined:

⎯ types of the attributes of all the XML complex types defined in the clause;

⎯ types of all the XML elements that are embedded within one of the XML complex types defined in the
clause and whose XML type are simple types;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 19

⎯ types of those XML elements that are embedded within one of the XML complex types defined in the
clause and whose XML type are XML complex types represented as squared boxes in the figure.

6.3.4.4 External type definition

Under the "External type definition" header of the clause, each XML complex type represented in the figure as
a rounded box is associated with the clause number of the clause where they are defined.

6.3.4.5 Constraint specification

Under the “Constraint specification” header of the clause, additional constraints that can not be represented
using the UML conventions are listed.

6.4 OntoML general structure

An OntoML compliant XML document instance allows to represent data describing an ontology, instances, or
both. The upper level of a OntoML document instance is defined through the ONTOML_Type XML complex
type, as is illustrated in Figure 20.

DICTIONARY_Type

HEADER_Type

LIBRARY_Type

ONTOML_Type

header

dictionary 0..1

library 0..1

Figure 20 — Ontology structure UML diagram

Internal item definitions:

dictionary: the CIIM ontology concepts that constitute the exchanged ontology.

header: general information about the file that is exchanged.

library: the set of product descriptions that constitute the content of the exchanged library.

External type definitions:

DICTIONARY_Type: the specification of the OntoML ontology, see 6.6.

HEADER_Type: the specification of the OntoML XML document header, see 6.5.

LIBRARY_Type: the specification of the OntoML library, see 7.

Constraint specification:

Either a dictionary XML element exists, or a library XML element exists or both exist.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

20 © ISO 2010 – All rights reserved

6.5 OntoML header

The OntoML header provides the version of this part of ISO 13584 used to create the OntoML document
instance and the human readable information about this document instance. Additionally, it gives information
about the general structure of the OntoML document instance. It is represented by the HEADER_Type XML
complex type as illustrated in Figure 21.

HEADER_Type

@id: 0..1 OntologyId
description: 0..1 xs:string
version: 0..1 xs:string
name: xs:string
date_time_stamp: xs:dateTime
author: 1..* xs:string
organisation: xs:string
pre_processor_version: 0..1 xs:string
originating_system: 0..1 xs:string
authorisation: 0..1 xs:string

VIEW_EXCHANGE_PROTOCOL
_IDENTIFICATION_Type

0..1

LIBRARY_IIM_
IDENTIFICATION_Type

ontoml_structure 0..1

supported_vep

SUPPORTED_VEP_Type

view_exchange_
protocol_identification

1..*

short_name 0..1

note 0..1

remark 0..1

SHORT_NAME_Type

TEXT_Type

synonymous_names

0..1
SYNONYMOUS_NAME_Type

preferred_name

icon 0..1

PREFERRED_NAME_Type

GRAPHICS_Type

revision: REVISION_TYPE_Type

ontoml_information

0..1

INFORMATION_Type

LANGUAGE_Type
global_language 0..1

Figure 21 — Ontology header structure

Internal item definitions:

@id: the possible identifier of the dictionary to which the classes defined belong to.

author: the name and mailing address of the persons responsible for creating the exchange structure.

authorisation: the name and mailing address of the person who authorized the sending of the exchange
structure.

date_time_stamp: the date and time specifying when the exchange structure was created.

description: an informal description of the content of the OntoML document instance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 21

global_language: the possible global language used to describe non translated information associated to any
CIIM ontology concept.

name: the string used to name this particular OntoML document instance.

ontoml_information/icon: an optional graphics which represents the description associated with the different
names provided for describing the OntoML dictionary and / or library.

ontoml_information/note: further information on any part of the dictionary and / or library, which is essential
to the understanding.

ontoml_information/preferred_name: the name of the dictionary and / or library that is preferred for use.

ontoml_information/remark: explanatory text further clarifying the meaning of this dictionary and / or library.

ontoml_information/revision: the dictionary and / or library revision number.

ontoml_information/short_name: the abbreviation of the preferred name.

ontoml_information/synonymous_names: the set of synonymous names.

ontoml_structure: the library integrated information model that the OntoML dictionary and / or library realizes.

organisation: the group or organisation which is responsible for the ontology exchange structure / ontology
document instance.

originating_system: the system from which the data in this exchange structure originated.

pre_processor_version: the system used to create the exchange structure, including the system product
name and version.

revision: the revision of the OntoML schema to which the exchange structure conforms.

supported_vep: the list of view exchange protocols supported by the dictionary and / or library.

supported_vep/view_exchange_protocol_identification: a view exchange protocol supported by the
dictionary and / or library.

version: the version of the OntoML schema to which the exchange structure conforms.

Internal type definitions:

INFORMATION_Type: clear text information, possibly translated, of the delivered dictionary and / or library.

REVISION_TYPE_Type: a string (xs:string XML Schema data type) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

SUPPORTED_VEP_Type: the specification of the view exchange protocols supported by the dictionary and /
or library.

External type definitions:

OntologyId: see 9.1.

GRAPHICS_Type: see 8.2.2.2.

LANGUAGE_Type: see 8.1.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

22 © ISO 2010 – All rights reserved

LIBRARY_IIM_IDENTIFICATION_Type: see 8.7.1.

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SYNONYMOUS_NAME_Type: see 8.1.2.

TEXT_Type: see 8.1.2.

VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION_Type: see 8.7.2.

6.6 Root element of an ontology

In OntoML, every ontology pieces of information are gathered into a general structure that is a
DICTIONARY_TYPE XML complex type. It is illustrated in Figure 22.

responsible_supplier
SUPPLIER

DICTIONARY_Type
CLASS_Type

referenced_dictionaries

updates

contained_classes 0..1

contained_documents

contained_properties 0..1

contained_data_types

0..1

0..1

A_POSTERIORI
SEMANTIC_RELATIONSHIP_Type

a_posteriori_
semantic_relationships 0..1

0..1

is_complete: 0..1 xs:boolean
update_agreement: 0..1 xs:string

PROPERTY_Type

DOCUMENT_Type

CONTAINED_
CLASSES_Type

class 1..*

CONTAINED
DOCUMENTS_Type

document 1..*

CONTAINED
PROPERTIES_Type

CONTAINED_
DATATYPES_Type

datatype 1..*

property 1..*

CONTAINED_
SUPPLIERS_Type SUPPLIER_Type

supplier 1..*contained_suppliers

DICTIONARY

0..*

DATATYPE_Type

DICTIONARY_IN_
STANDARD_FORMAT_Type

²

A_POSTERIORI
SEMANTIC_

RELATIONSHIPS_Type

a_posteriori_
semantic_

relationship 1..*

Figure 22 — Root element of an ontology

Internal item definitions:

a_posteriori_semantic_relationships: the list of a posteriori relationships contained in the dictionary.

a_posteriori_semantic_relationships/a_posteriori_semantic_relationship: an a posteriori relationship
contained in the dictionary.

contained_classes: the list of class descriptions contained in the dictionary.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 23

contained_classes/class: a class description contained in the dictionary.

contained_datatypes: the list of data type descriptions contained in the dictionary.

contained_datatypes/datatype: a data type description contained in the dictionary.

contained_documents: the list of document descriptions contained in the dictionary.

contained_documents/document: a document description contained in the dictionary.

contained_properties: the list of property descriptions contained in the dictionary.

contained_properties/property: a property description contained in the dictionary.

contained_suppliers: the list of supplier descriptions contained in the dictionary.

contained_suppliers/supplier: a supplier description contained in the dictionary.

is_complete: specifies whether the dictionary describes completely the exchanged ontology or only its
changes.

NOTE 1 The is_complete XML element is only used when the dictionary is identified through its @id XML attribute.

referenced_dictionaries: the dictionary identifiers, if any, referencing the other dictionaries for which some
classes are referenced in this dictionary.

responsible_supplier: the possible data supplier responsible for the ontology concepts.

NOTE 2 The supplier of all or part of the dictionary content is referenced as the responsible_supplier only when
he/she is the responsible of the OntoML document instance. Else, he/she is referenced in the contained_supplier XML
element.

update_agreement: the identifier, if any, that identifies the process to be used for creating the dictionary on
the receiving system from the list of dictionary defined in the updates XML element. The update_agreement
may only be used when the updates XML element is itself used.

updates: dictionary identification, if any, of the dictionary that is supposed to be already available on the
receiving system to be able to create the complete content of this dictionary.

NOTE 3 The updates XML element can only exist when the identified_by XML element exists, and when the
is_compelete XML element is valued to false.

Internal type definitions:

CONTAINED_CLASSES_Type: sequence of class descriptions.

CONTAINED_DATATYPES_Type: sequence of data type descriptions.

CONTAINED_DOCUMENTS_Type: sequence of document descriptions.

CONTAINED_PROPERTIES_Type: sequence of property descriptions.

CONTAINED_SUPPLIERS_Type: sequence of supplier descriptions.

DICTIONARY_IN_STANDARD_FORMAT_Type: a dictionary that only uses external file protocols that are
allowed either by the library integrated information model indicated by the library_structure XML element or
the view exchange protocols referenced in the supported_vep XML element, both defined in the
HEADER_Type XML complex type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

24 © ISO 2010 – All rights reserved

External type definitions:

A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type: see 8.6.

CLASS_Type: dictionary class description, see 6.7.2.

DATATYPE_Type: dictionary datatype description, see 6.7.6.

DOCUMENT_Type: dictionary document description, see 6.7.7.

PROPERTY_Type: dictionary property description, see 6.7.4.

SUPPLIER_Type: supplier description, see 6.7.1.

Constraint specifications:

When the header part of the OntoML exchange file provides a product ontology identifier (id XML attribute of
the HEADER_Type XML complex type), the is_complete XML element information must be provided.

When the header part of the OntoML exchange file provides a product ontology identifier (id XML attribute of
the HEADER_Type XML complex type), the referenced responsible_supplier shall be the same than the
supplier identified in the ontology identifier.

Updates shall not exist when the product ontology is not identified (id XML attribute of the HEADER_Type
XML complex type), or when the is_complete XML element is set to true.

If both the product ontology is identified (id XML attribute of the HEADER_Type XML complex type) and
updates has been defined, the identified product ontology shall have the same code and the same supplier as
the one referenced by the updates XML element, and it shall have a version greater than the one that appears
in the updates referenced dictionary.

6.7 OntoML representation of CIIM ontology concepts

In this clause, the OntoML representation of the various CIIM ontology concepts is defined.

6.7.1 Supplier

The supplier ontology concept stands for the description of an organization responsible for some information
identified in an OntoML document instance. It is represented as illustrated in the UML diagram of Figure 23.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 25

SUPPLIER_Type

@id: SupplierId
date_of_original_definition: 0..1 DATE_TYPE_Type
date_of_current_version: 0..1 DATE_TYPE_Type
date_of_current_revision: 0..1 DATE_TYPE_Type
revision: REVISION_TYPE
status: 0..1 STATUS_Type
is_deprecated: 0..1 xs:boolean
internal_location: 0..1 xs:string
street_number: 0..1 xs:string
street: 0..1 xs:string
postal_box: 0..1 xs:string
town: 0..1 xs:string
region: 0..1 xs:string
postal_code: 0..1 xs:string
country: 0..1 xs:string
facsimile_number: 0..1 xs:string
telephone_number: 0..1 xs:string
electronic_mail_address: 0..1 xs:string
telex_number: 0..1 xs:string

0..1org
ORGANIZATION_Type

0..1is_deprecated_
interpretation

TEXT_Type

Figure 23 — Supplier ontology concept UML diagram

Internal item definitions:

@id: the supplier identifier.

country: the name of a country.

date_of_original_definition: the date associated to the first stable version of the supplier definition.

date_of_current_version: the date associated to the present version of the supplier definition.

date_of_current_revision: the date associated to the present revision of the supplier definition.

electronic_mail_address: the electronic address at which electronic mail can be received.

facsimile_number: the number at which facsimiles can be received.

internal_location: organization-defined address for internal mail delivery.

is_deprecated: a Boolean that specifies, when true, that the supplier definition shall no longer be used.

is_deprecated_interpretation: specifies the deprecation rationale and how instance values of the deprecated
supplier, and of its corresponding identifier, should be interpreted.

org: organizational data of this supplier.

postal_box: the number of a postal box.

postal_code: the code that is used by the country's postal service.

region: the name of a region.

revision: the revision number of the present supplier definition.

status: defines the life cycle state of the supplier definition.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

26 © ISO 2010 – All rights reserved

NOTE 1 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 2 If the status XML element is not provided, and if this supplier definition is not deprecated as denoted by a
possible is_deprecated XML element, then the supplier definition has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this supplier definition is part of the current
edition of the standard.

street: the name of a street.

street_number: the number of a building in a street.

telephone_number: the number at which telephone calls can be received.

telex_number: the number at which telex messages can be received.

town: the name of a town.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.
This string shall not contain any hyphen « - » or space characters.

External type definitions:

SupplierId: see 9.1.

ORGANIZATION_Type: see 8.8.1.

Constraint specification:

At least internal_location, street_number, street, postal_box, town, region, postal_code, country,
facsimile_number, telephone_number, electronic_mail_address or telex_number shall have a value.

When is_deprecated exists, is_deprecated_interpretation shall exist.

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

6.7.2 Simple-level ontology class

OntoML defines three subtypes of the generic and abstract concept of class as simple classes:

⎯ item class: allows to characterize any kind of items, and in particular products, by a class belonging and a
set of property value pairs. Item classes belong to a single is-a hierarchy associated with inheritance.

⎯ categorization class: allows to classify an item characterized as an item class in various classification
systems. Such a classification does not imply any additional properties.

⎯ item class case-of: a special kind of item class that, besides inheriting properties from its possible is-a
parent, borrows some properties from some other existing classes that encompass the item class case-of
within their own scope.

NOTE Product characterization class and categorization class are defined in Clause 5 of
ISO/IEC Guide 77-2:2008.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 27

6.7.2.1 Item class

Figure 24 describes both the structure of a class and of an item class.

CLASS_Type

SHORT_NAME_Type

@id: ClassId
date_of_original_definition: 0..1 DATE_TYPE_Type
date_of_current_version: 0..1 DATE_TYPE_Type
date_of_current_revision: 0..1 DATE_TYPE_Type
revision: REVISION_TYPE_Type
status: 0..1 STATUS_Type
is_deprecated: 0..1 xs:boolean
hierarchical_position: 0..1 xs:string

TRANSLATION_Type

TEXT_Type

0..* translation

SYNONYMOUS_NAME_Type

preferred_name

short_name

definition

note

remark

synonymous_
names

0..1

0..1

0..1

0..1

PROPERTY

DATATYPE

described_by 0..*

defined_types 0..*

SOURCE_
DOCUMENT_Type

source_doc_
of_definition

ITEM_CLASS_Type

GRAPHICS_Type

icon

0..1

constraints0..1
PREFERRED_NAME_Type

instance_sharable: 0..1 xs:boolean
coded_name: 0..1 VALUE_CODE_TYPE_Type

0..1

PROPERTY
sub_class_properties

CLASS_CONSTANT
VALUES_Type

class_constant_values 0..1

CLASS
its_superclass 0..1

LANGUAGE_Type

source_language

0..1

KEYWORD_Type
0..1 keywords

simplified_drawing

0..1

0..*

DOCUMENTdefined_documents 0..*

0..1
is_deprecated_
interpretation

TEXT_Type

CONSTRAINTS_Type

GEOMETRIC_
CONTEXT_Type

GEOMETRIC_
UNIT_CONTEXT_Type

0..1

geometric_
representation_
context

0..1

global_unit_context

Figure 24 — Simple class ontology concept UML diagram

An item class (represented by the ITEM_CLASS_Type XML complex type) inherits the XML content
description defined in the abstract CLASS_Type XML complex type.

NOTE 1 The most basic representation of classes only requires to define an identifier (@id), a revision number, a
preferred_name and a definition.

Internal item definitions:

@id: the class identifier.

class_constant_values: assignments in the current class for class-valued properties declared in
superclasses.

NOTE 2 class_constant_values defines class selectors, as specified in Clause 5.5 of ISO/IEC Guide 77-2:2008.

coded_name (ITEM_CLASS_Type): a possible coded name of the class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

28 © ISO 2010 – All rights reserved

constraints: the set of constraints that restrict the target domains of values of some visible properties of the
class to some subsets of their inherited domains of values.

NOTE 3 Each constraint in the constraints collection must be fulfilled by class instances. Thus the constraints
collection is a conjunction of constraints.

date_of_current_revision: the date associated to the present revision of the class definition.

date_of_current_version: the date associated to the present version of the class definition.

date_of_original_definition: the date associated to the first stable version of the class definition.

definition: the text describing this class, possibly translated.

defined_documents: the set of references to the additional documents that can be used throughout the
inheritance tree descending from this class.

NOTE 4 Every document referenced in the defined_documents collection is said applicable to the class.

defined_types: the set of references to the additional types that can be used for various properties throughout
the inheritance tree descending from this class.

NOTE 5 Every data type referenced in the defined_types collection is said applicable to the class.

described_by: the list of references to the additional properties available for use in the description of the
instances within this class, and any of its subclasses.

NOTE 6 Every property referenced in the described_by collection is said applicable to the class.

NOTE 7 A property may also be applicable to a class when this property is imported from another class through an
ITEM_CLASS_CASE_OF_Type class (see 6.7.2.3), a FUNCTIONAL_MODEL_CLASS_Type (see 6.7.3.2) or a
FM_CLASS_VIEW_OF_Type (see 6.7.3.3). Therefore the properties referenced by the described_by attribute do not
define all the applicable properties for a class.

NOTE 8 The list order is the presentation order of the properties suggested by the supplier.

geometric_representation_context: the specification of the reference coordinate system for every property
of the class whose datatype is a STEP positioning entity, i.e., either a PLACEMENT_TYPE_Type, an
AXIS1_PLACEMENT_TYPE_Type, an AXIS2_PLACEMENT_2D_TYPE_Type or an
AXIS2_PLACEMENT_3D_TYPE_Type.

NOTE 9 STEP positioning entities are defined in Annex E, Clause E1.

NOTE 10 The positioning of the reference coordinate system with respect to the object defined by the class is
described informally in the description element of the geometric_representation_context.

EXAMPLE 1 Consider an item class that describes cupboards whose top faces are rectangular. The supplier wants to
define by placements the eight vertex of the shipping box for each cupboard. The geometric representation context,
allowing then to define the eight vertex, might be defined by the following description: "the origin of the reference
coordinate system is the intersection of the two diagonal lines of the cupboard top face, z axis moves upward, x axis is
horizontal in the front direction of the cupboard".

NOTE 11 The geometric_representation_context is the OntoML representation of the
geometric_representation_context defined in ISO 10303-42 for geometric representations. In ISO 10303-42, this
context applies to all geometric representation items referenced by the representation. In OntoML, this context applies to
all STEP positioning entities that are values of properties of the class where the geometric_representation_context is
defined.

global_unit_context: the specification of the length unit, and possibly angle unit, that are assigned to the
geometric representation context of all the STEP positioning entities of the class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 29

NOTE 12 The global_unit_context is the OntoML representation of the global_unit_assigned_context defined in
ISO 10303-42 for geometric representations. In ISO 10303-42, this context applies to all geometric representation items
referenced by the representation. In OntoML, this context applies to all STEP positioning entities that are values of
properties of the class where the global_unit_context is defined.

NOTE 13 If global_unit_context is not provided, the default value for length measure is millimetre and for planar
angle measure it is degree.

hierarchical_position: the coded representation of the class position in a class inclusion hierarchy to which it
belongs

NOTE 14 This kind of coded name is used in particular in product categorization hierarchies for representing the
class inclusion structure through some coding convention.

EXAMPLE 2 In UNSPSC, Manufacturing Components and Supplies has the hierarchical position 31000000,
Hardware has the hierarchical position 31160000 and Bolt the hierarchical position 31161600. By convention, this
representation of the hierarchical position allows to represent that Manufacturing Components and Supplies is at the first
level of the hierarchy, that Hardware is at the second level of the hierarchy and is included in Manufacturing Components
and Supplies, and that Bolt is at the third level of the hierarchy and is included in Hardware.

NOTE 15 A hierarchical_position of a class changes when the class structure of an ontology is changed. Thus it
cannot be used as a stable identifier for classes.

icon: a graphics representing the description associated with the names.

instance_sharable (ITEM_CLASS_Type): when false, it specifies that instances of the item class are
features; when not provided or true it specifies that instances of the item class are stand-alone items.

NOTE 16 In the common ISO13584/IEC61360 dictionary model, it is implementation dependent to decide whether
several real world items modelled by the same set of property-values pairs should be represented in the data exchange
file by several XML item description constructs or by the same XML item description construct. Thus, a single XML item
description construct whose instance_sharable equals false and that is referenced by several XML item description
constructs at the data model level is interpreted as representing several real world items.

is_deprecated: a Boolean that specifies, when true, that the class definition shall no longer be used.

is_deprecated_interpretation: specifies the deprecation rationale and how instance values of the deprecated
class, and of its corresponding identifier, should be interpreted.

its_superclass: reference to the class the current one is a subclass of.

keywords: a set of keywords, possibly in several languages, allowing to retrieve the class.

note: further information on any part of the class, which is essential to its understanding, possibly translated.

preferred_name: the name of the class that is preferred for use, possibly translated.

remark: explanatory text further clarifying the meaning of this class, possibly translated.

revision: the revision number of the present class definition.

short_name: the abbreviation of the preferred name, possibly translated.

simplified_drawing: drawing that can be associated to the described class.

source_doc_of_definition: the possible source document from which the definition comes.

source_language: the language in which the class definition was initially defined and that provides the
reference meaning in case of translation discrepancy.

status: defines the life cycle state of the class definition.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

30 © ISO 2010 – All rights reserved

NOTE 17 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 18 If the status XML element is not provided, and if this class definition is not deprecated as denoted by a
possible is_deprecated XML element, then the class definition has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this class definition is part of the current edition
of the standard.

sub_class_properties: declares properties as class-valued, i.e. in subclasses one single value will be
assigned per class.

NOTE 19 sub_class_properties defines class selectors, as specified in Clause 5.5 of ISO/IEC Guide 77-2:2008.

synonymous_names: the set of synonymous names of the preferred name, possibly translated.

translation: the possible set of translations information provided for the translatable items.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.

VALUE_CODE_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed
for a value code. Its value length shall not exceed 35 characters.

External type definitions:

ClassId: see 9.1.

ConstraintId: see 9.1.

CLASS_CONSTANT_VALUES_Type: see 6.7.2.4.

CONSTRAINT_Type: see 8.5.

GEOMETRIC_CONTEXT: see 8.8.3.

GEOMETRIC_UNIT_CONTEXT: see 8.8.4.

GRAPHICS_Type: see 8.2.2.2.

KEYWORD_Type: see 8.1.2.

LANGUAGE_Type: see 8.1.1.

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

SYNONYMOUS_NAME_Type: see 8.1.2.

TEXT_Type: see 8.1.2.

TRANSLATION_Type: see 8.1.3.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 31

Constraint specifications:

The inheritance structure defined by the class hierarchy (defined through the its_superclass XML element
inherited from the CLASS_Type XML complex type) shall not contain cycles.

Only those properties that are visible for a class may become applicable to this class by virtue of being
referenced in the list specified by the described_by collection.

Only those data types that are visible for a class may become applicable to this class by virtue of being
referenced in the list specified by the defined_types collection.

Only those properties that are not applicable for a class by inheritance may become applicable to this class by
virtue of being referenced in the list specified by the described_by collection.

Only those data types that are not applicable for a class by inheritance may become applicable to this class by
virtue of being referenced in the list by specified the defined_types collection.

Only context dependent properties (DEPENDENT_P_DET_Type, see 6.7.4) whose all context parameters
(CONDITION_DET_Type, see 6.7.4) are applicable in the class may become applicable for this class by virtue
of being referenced by its described_by XML element.

The constraints collection shall define restrictions that are compatible with the domain of values of the
properties to which they apply.

All the properties referenced in the precondition collection of a constraint for which base type is a
CONFIGURATION_CONTROL_CONSTRAINT_Type shall be applicable to the class.

All the properties referenced in the constraints collection shall be either visible or applicable to the class.

The properties referenced in the sub_class_properties collection shall also be referenced in the
described_by collection.

The properties referenced in the class_constant_values collection were declared as class-valued in some
superclass of the current class, or in the current class itself.

If a property referenced in the class_constant_values collection was already assigned a value in a
superclass, the value assigned in the current class should be the same.

When is_deprecated exists, is_deprecated_interpretation shall exist.

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

If PLACEMENT_TYPE_Type or AXIS1_PLACEMENT_TYPE_Type or
AXIS2_PLACEMENT_2D_TYPE_Type or AXIS2_PLACEMENT_3D_TYPE_Type is the datatype assigned to
a property referenced in the described_by collection, the corresponding geometric_representation_context
XML element shall be provided.

6.7.2.2 Categorization class

A categorization class enables the modelling of a grouping of a set of objects that constitutes an element of a
categorization.

EXAMPLE 1 Manufacturing Components and Supplies, Industrial optics, are example of product categorization class
defined in UNSPSC.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

32 © ISO 2010 – All rights reserved

Neither properties nor data types, nor constraints are associated with such a class. Moreover, categorization
classes may not be related to each other by the is-a inheritance relationship, but they may only be related to
each other through the is-case-of class relationship. A specific XML element, called
categorization_class_superclasses allows to record the categorization classes that are superclasses of a
categorization class in a case-of hierarchy.

NOTE Using the case-of resource constructs, item classes may also be connected to categorization classes.

EXAMPLE 2 The following example shows how characterization classes and categorization classes may be
connected to achieve some particular goals. A ball bearing supplier wants to design its own ontology and to make it easy
to retrieve and easy to use. To achieve these goals, he/she wants to use standard properties and to be connected to
standard classifications. The supplier provides only ball bearings, but some bearings are sealed, some others are not.
Particular properties may be associated with sealed bearings and with not sealed bearings, but these categories do not
exist as classes in standard bearing ontologies. Thus, the bearing supplier processes as follows. (1) He/she designs
a proprietary ontology consisting of three characterization classes: my_bearing, my_sealed_bearings,
my_non_sealed_bearing. The two latter are connected to the former by the is-a inheritance relationship, and all the
properties assigned to the former are inherited by the latter. (2) To use some of the properties defined in the future
ISO/TS 23768-1, the bearing supplier specifies that his/her class my_bearings is case-of the standard bearing class ball
bearing defined in ISO/TS 23768. Through this case-of relationship, he/she may import in his/her class my_bearings the
standard-defined properties: bore diameter, outside diameter, ISO tolerance class. Moreover, he/she creates those
needed properties that are not defined in the standard. (3) To facilitate the retrieval of the server that display the
supplier's catalogue, he/she represents a small fragment of the UNSPSC classification, and a case-of relationship
between the UNSPSC class ball_bearings and its own class my_bearing. The result is presented in Figure 25 below.

31000000
Manufacturing
Components
and Supplies

My_bearings

My_sealed
_bearings

My_non_sealed
_bearings

ISO 23768
bearing

ISO 23768
rolling bearing

ISO 23768
ball bearing

UNSPSC
31171504

Ball bearings

UNSPSC
31171500
Bearings

UNSPSC
31170000

Bearings and
bushings and
wheels and

gears

»

»

»

»

»

Legend:
characterisation class
categorization class
is-a relationship
case-of relationship …

Figure 25 — Example of a supplier ontology using categorization classes

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 33

Figure 26 describes the structure of a categorization class.

CATEGORIZATION_
CLASS_Type CLASS

categorization_class_
superclasses

CLASS_Type

0..*

Figure 26 — Categorization class

A categorization class (represented by the CATEGORIZATION_CLASS_Type XML complex type) inherits the
XML content description defined in the abstract CLASS_Type XML complex type.

Internal item definitions:

categorization_class_superclasses: the categorization classes that are one step above the categorization
class in a case-of class hierarchy.

Constraint specifications:

Only identifiers corresponding to classes for which the base type is CATEGORIZATION_CLASS_Type may
be referenced in the categorization_class_superclasses collection.

The inherited its_superclass XML element shall not be specified when defining a categorization class.

The inherited described_by XML element shall not be specified when defining a categorization class.

The inherited defined_types XML element shall not be specified when defining a categorization class.

The inherited sub_class_properties XML element shall not be specified when defining a categorization class.

The inherited class_constant_values XML element shall not be specified when defining a categorization
class.

The inherited constraints XML element shall not be specified when defining a categorization class.

A categorization class shall not be the property definition class of any property.

6.7.2.3 Item class case-of

Standard product ontologies are designed to represent precisely and formally the product classes and the
product properties on the definition for which experts of some product domain have agreed.

In each particular organization:

⎯ only a few of all the standard product characterization classes may be useful;

⎯ these standard product characterization classes may be defined in different standard product ontologies;

⎯ some organization-specific classes may exist;

⎯ only a few of the standard properties may be considered as needed, and

⎯ some organization specific properties may be in use.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

34 © ISO 2010 – All rights reserved

Thus, for representing such a domain using directly the standard product ontology within each organization
would be not efficient.

The case-of relationship allows each organization to define its own class hierarchy while allowing to import all
needed standard properties, thus providing for data integration and for data exchange with other organizations.

The case-of relationship may also be used within standard dictionaries.

In OntoML, the ITEM_CLASS_CASE_OF_Type XML complex type is used for such a purpose. It is illustrated
in Figure 27.

GRAPHICS_Type

0..1

simplified_drawing
PROPERTY

DATATYPE

DOCUMENT

imported_properties 0..*

imported_types 0..*

imported_documents 0..*

CLASS
1..* case_of

CLASS_Type

ITEM_CLASS_CASE_OF_Type

CONSTRAINTS_Type

imported_constraints

0..*

instance_sharable: 0..1 xs:boolean
coded_name: 0..1 VALUE_CODE_TYPE_Type

Figure 27 — Item class case-of UML diagram

Internal item definitions:

case_of: the class(es) for which the described class is case-of; it is represented by a reference to the
corresponding class(es) ontology concept identifier(s).

NOTE 1 The case-of relationship and its use are described in Clause 3.5.2 of ISO/IEC Guide 77-2:2008.

imported_constraints: the set of constraints that are imported from the item class(es) the defined item class
is case-of.

NOTE 2 Unlike other imported entities, the imported_constraints constraints cannot be selected when an item
class case of is designed. These constraints are all the constraints that restrict the domains of any of the properties
defined in the imported_properties collection in the classes of the case_of XML elment from which they are imported.

imported_documents: the imported document(s) from the case_of class(es) that are required to describe the
current class; it is represented by a reference to the corresponding document(s) ontology concept identifier(s).

imported_properties: the imported property(ies) from the case_of class(es) that are required to describe the
current class; it is represented by a reference to the corresponding property(ies) ontology concept identifier(s).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 35

imported_types: the imported type(s) from the case_of class(es) that are required to describe the current
class; it is represented by a reference to the corresponding type(s) ontology concept identifier(s).

instance_sharable (ITEM_CLASS_Type): when false, it specifies that instances of the item class case-of are
features; when not provided or true it specifies that instances of the item class case-of are stand-alone items.

NOTE 3 In the common ISO13584/IEC61360 dictionary model, it is implementation dependent to decide whether
several real world instances of features modeled by the same set of property-values pairs are represented by several
EXPRESS pieces of data or by the same piece of data in the data exchange file. Thus, an instance of an item class case-
of whose instance_sharable equals false and that is referenced by several instances of item classes case-of at the data
model level is interpreted as several real world instances of the same feature.

simplified_drawing: drawing that can be associated to the described class.

Internal type definitions:

VALUE_CODE_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed
for a value code. Its value length shall not exceed 35 characters.

External type definitions:

CLASS_Type: see 6.7.2.1.

CLASS_VALUE_ASSIGNMENT_Type: see 6.7.2.4.

CONSTRAINTS_Type:: see 8.5.1.

GRAPHICS_Type: see 8.2.2.2.

Constraint specifications:

The inheritance structure defined by the class hierarchy (defined through the its_superclass XML element
inherited from the CLASS_Type XML complex type) shall not contain cycles.

Only those properties that are visible for a class may become applicable to this class by virtue of being
referenced in the list specified by the described_by collection.

Only those data types that are visible for a class may become applicable to this class by virtue of being
referenced in the list specified by the defined_types collection.

Only those properties that are not applicable for a class by inheritance may become applicable to this class by
virtue of being referenced in the list specified by the described_by collection.

Only those data types that are not applicable for a class by inheritance may become applicable to this class by
virtue of being referenced in the list by specified the defined_types collection.

The constraints collection shall define restrictions that are compatible with the domain of values of the
properties to which they apply.

All the properties referenced in the precondition collection of a constraint for which base type is a
CONFIGURATION_CONTROL_CONSTRAINT_Type shall be applicable to the class.

All the properties referenced in the constraints collection shall be either visible or applicable to the class.

The properties referenced in the class_constant_values collection were declared as class-valued in some
superclass of the current class, or in the current class itself.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

36 © ISO 2010 – All rights reserved

If a property referenced in the class_constant_values collection was already assigned a value in a
superclass, the value assigned in the current class should be the same.

Only an identifier corresponding to a class for which the base type is ITEM_CLASS_Type or an
ITEM_CLASS_CASE_OF_Type may be referenced in the its_superclass XML element.

Only an identifier corresponding to a class for which the base type is ITEM_CLASS_Type, an
ITEM_CLASS_CASE_OF_Type or a CATEGORIZATION_CLASS_Type may be referenced in the case_of
collection.

The properties referenced in the sub_class_properties collection shall be referenced either in the
described_by collection, or in the imported_properties collection.

All the class valued properties declared by being referenced in the sub_class_properties collection that are
also referenced in the imported_properties collection shall be class valued properties in all the case_of
classes where they are applicable.

The values assigned to an imported property in the class_constant_value collection shall not be different
than the possible value assigned to the same property in the referenced classes.

All the properties referenced in the imported_properties collection that are class valued properties in a class
referenced from the case_of collection, must be class valued properties in the current class.

All the properties referenced in the imported_properties that are assigned a class constant value in a class
from the case_of collection, must be assigned the same class constant value class value in the current class.

Each constraint specified in the imported_constraints collection through the constraint XML element shall
be defined either as a referenced constraint using the constraint_ref XML attribute or as a defined constraint
using the constraint_definition XML element, not both.

6.7.2.4 Class valued property

A property may be specified as taking a single value for a given class. Such a property is called a class valued
property. The definition, of such a property is twofold:

⎯ it is declared in a given class; the property is described as any other property, but with one restriction: the
property is referenced in the sub_class_properties XML element of the associated class.

⎯ a typed value may be assigned in every subclasses of this given class: the value assignment is inherited
by all the subclasses of the class where it is defined.

The assignment of a class valued property value to a class is represented by the
CLASS_CONSTANT_VALUES_Type XML complex type as illustrated in Figure 28.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 37

CLASS_CONSTANT
_VALUES_Type

CLASS_VALUE_ASSIGNMENT_Type

assigned_value

PROPERTY

class_value_
assignment 1..*

super_class_defined_property

val:value

ASSIGNED_VALUE_Type

Figure 28 — Class value assignment structure

Internal item definitions:

class_value_assignment: the specification of all the class value assignments.

class_value_assignment/assigned_value: the value assigned to the property, valid for the whole class
referring this class value assignment in its class_constant_values collection.

NOTE 1 The assigned_value belongs to referenced subclass property value domain.

class_value_assignment/super_class_defined_property: reference to the property (defined in a superclass
as being a subclass property) to which value (assigned_value XML element) is assigned.

NOTE 2 A property is defined as being a subclass property when it appears in the sub_class_properties XML
element defined in an ITEM_CLASS_Type or ITEM_CLASS_CASE_OF_Type XML complex type.

Internal type definitions:

ASSIGNED_VALUE_Type: the value to be assigned.

CLASS_VALUE_ASSIGNMENT_Type: the specification of a class value assignment.

VALUE_CODE_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed
for a value code. Its value length does not exceed 35 characters.

External type definitions:

val:value: specification of a typed value.

NOTE 3 val:value is defined in the ISO/TS 29002-10 product exchange format.

Constraint specification:

The value assigned by means of the assigned_value XML element shall be type compatible with the value
domain of the associated property (referenced by the super_class_defined_property XML element).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

38 © ISO 2010 – All rights reserved

6.7.3 Advanced-level ontology class

This clause defines modelling constructs that may only be used within the advanced subset of OntoML.

Characterization classes allow to capture the various kinds of items of an application domain, and to identify
those characteristic properties that provide for discriminating items of the class by their values. Identical values
for all characteristics properties means that items are identical. Different values for some properties means
that items are different. Therefore, characteristic properties are supposed to be rigid (invariant for a given
item).

EXAMPLE 1 When looking at the mechanical fasteners domain, we may identify the metric threaded screw as a
characterization class of fasteners, and properties like threaded length, total length, threaded diameter, material, part
number as characteristic properties allowing to characterize different subsets of identical items.

But properties of an item are not only characteristic properties. According to the discipline-oriented point of
view we have on an item, a number of other properties prove useful. If an ontology user is in charge of
procurement of screws, the properties price and delivery delay are necessary. If an ontology user is
responsible for inventory management, the inventory size (the number of particular screws that are currently
available in the inventory) and the quantity of order of this screw are relevant properties. If an ontology user
designs products using a given CAD system, and wants to insert one screw in the current product, the
geometric shape of the screw is necessary to make the design process efficient.

Compared with characteristic properties, the properties considered above have two differences that suggest
criteria for identifying them:

⎯ each of these properties makes sense only for some particular points of view, usages or disciplines of the
item user;

⎯ most of these properties are not characteristics of an item: they may change without changing the target
item.

To allow an ontology designer to separate this kind of properties from the characteristic properties and to
structure all the discipline-oriented properties that may be associated with an item, OntoML provides two
additional categories of classes:

⎯ functional view classes that provide for representing discipline-oriented points of view on items;

EXAMPLE 2 Procurement, inventory, marketing; geometry (3D, simplified) or geometry (2D, front view, precise), are
examples of points of view.

NOTE 1 As shown in the geometry example, specifying a point of view may require not only a name ("geometry"),
but also values of some variables such that geometry_level (2D, 3D), side (top, front, …) or level_of_detail. Such
variables are called view control variables.

⎯ functional model classes that provide for representing items of some characterization class(es) according
to the discipline-oriented point of view defined by a functional view class.

NOTE 2 Each functional model class references one functional view class for defining its discipline-oriented point of
view.

NOTE 3 If a functional model class does not reference a characterization class in an exchanged ontology, it is
intended to be associated with a characterization class on the target user system.

EXAMPLE 3 A procurement functional model class might contain values for the following properties: part number
(mported from a metric threaded screw characterization class), price, delivery delay, for each screw in the metric
threaded screw class.

EXAMPLE 4 The set of 2D precise front geometrical representations of all the screws in a metric threaded screw
class could constitute a functional model class that provides a geometrical representation of items of this class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 39

NOTE 4 In the context of OntoML, geometrical representation might be exchanged as http files whose URIs are
defined by a property whose type is URI_TYPE_Type.

The ISO 13584 standard series does not define which properties should be represented in characterization
classes or in functional model classes, nor the different functional view classes that may exist. It is the
responsibility of ontology designers to decide whether they split properties of the same item into different
classes and which functional view classes should be defined for characterizing the various discipline-oriented
points of view.

Some recommendations may be considered when structuring an ontology:

⎯ properties represented in a characterization class should allow to discriminate items that are not
considered as identical by the community that will use the ontology;

EXAMPLE 5 A characterization class of screws such that two screws having equal values of all their properties are
not compatible to replace each other in a mechanical product is probably not adapted for mechanical user needs. For
being adapted to mechanical user needs, a new property would be necessary in order to discriminate both screws.

⎯ properties that are not characteristic of items of a characterisation class, i.e., whose values may change
without changing the item, might be considered to be put in a functional model class.

EXAMPLE 6 The price of an item may change over the time without changing the item. This property, and possibly
some other business-oriented properties, might be considered for building a functional model class.

⎯ a functional model class should be created when some properties are interesting only for a specific
category of users.

EXAMPLE 7 The properties that describe the disposal of an item of a mechanical item class could be considered for
building a functional model class.

6.7.3.1 Functional view class

A functional view class allows to characterize a particular a discipline-oriented point of view (also called a
representation category) that may prove useful for various classes of products.

NOTE 1 A discipline-oriented point of view may be the specification of a particular engineering discipline. In this
case, the functional view class is a simple class without any property. The name and definition of the class describe the
point of view. The definition should also either define the kind of properties that should be represented in functional model
classes that reference this functional view class, or list explicitly the properties that should be represented.

If needed, a functional view class may contain properties, called view control variables, to further specify a
particular representation sub-category.

EXAMPLE 1 A geometry functional view class specifies a geometrical point of view. But, such a point of view remains
ambiguous. To remove this ambiguity, a geometry_level view control variable whose values would be 2D or 3D could be
defined. A functional model that references this functional view class would import this view control variable to specify
which kind of particular geometrical representations it provides.

EXAMPLE 2 A functional view class named acceptable_environmental_condition might be used to characterize in
which environments products of some characterization classes may be safely used. The definition of this functional view
class could for instance specify in its definition that functional model classes referencing this functional view class could
only contain (1) properties imported from an item class and (2) level type-valued environmental properties having at least
a min and max values, for specifying in which context products of the referenced characterization classes are guaranteed
for usage. Such a functional view class may be defined without using view control variables.

EXAMPLE 3 A functional view class may also be used for describing the inventory status point of view. This functional
view class may be defined without any view control variable if the ontology designers only want to define a unique
inventory status point of view that will describe, for each product, the inventory size, i.e., the number of each part that are
currently available in the inventory, and the quantity of order of this part.

A view control variable does not characterise an item but a representation of an item. Thus, it shall be defined
by a REPRESENTATION_P_DET property defined in Clause 6.7.5.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

40 © ISO 2010 – All rights reserved

In this part of ISO 13584, a functional view class is represented by a
NON_INSTANCIABLE_FUNCTIONAL_VIEW_CLASS_Type XML complex type. It is illustrated in Figure 29.

NOTE 2 The name "non instanciable functional view class type" comes from ISO 13584-24:2003 that defines also a
mechanism for creating item representation by program. Thus, in this case, views are said to be "instantiated". This
mechanism being seldom used in the past, it is not introduced in OntoML, but the name "non instanciable functional view
class type" is preserved to keep the same name for the same resource both in ISO 13584-24:2003 and in OntoML.

CLASS_Type

NON_INSTANCIABLE_FUNCTIONAL_
VIEW_CLASS_Type

PROPERTY
view_control_variables 0…*

Figure 29 — Advanced-level ontology class concept UML diagram: functional view class

Internal item definitions:

view_control_variables: the list of properties that further defines the discipline-oriented point of view specified
by the functional view class.

External type definitions:

CLASS_Type: see 6.7.2.1.

Constraint specifications:

Either the class has no referenced superclass (its_superclass inherited XML element), or if it has one, the
referenced superclass shall be a NON_INSTANCIABLE_FUNCTIONAL_VIEW_CLASS_Type.

The type of each view control variable (domain XML element of the PROPERTY_Type XML complex type)
shall be a NON_QUANTITATIVE_INT_TYPE_Type (see 8.3.8) whose values are successive integers.

Properties intended to be used as view control variables shall be defined as
REPRESENTATION_P_DET_Type (see 6.7.5) and shall be referenced in the described_by collection of the
non instanciable functional view class.

6.7.3.2 Functional model class

A functional model class is intended to provide the discipline-oriented point of view descriptions, specified by a
functional view class, of items belonging to some item characterization class.

EXAMPLE 1 Assume that the screw class is the root item class of a hierarchy of screw classes and that this class
declares the part number property allowing to identify a screw of any subclass of screw class; assume that item price
view is a functional view class whose definition is "functional model classes that reference this view shall provide prices of
items in Euros"; then a functional model class screw price model could be defined. It would reference both screw class
(by view_of XML element, see Figure 31) to specify that it provides functional models of screws, and item price view (by
created_view, see Figure 30 and Figure 31) to specify that it provides the item price view view. This functional model
class could also import the part number property from screw class (through the imported_properties_from_item XML
element, see Figure 31) and declare (using the described_by XML element) the euro price property as a
real_currency_type property. With these assumptions, each instance of screw price model may contain a couple (part
number, euro price) that specify the price of one of the screws of the screw class (or any of its subclass) in Euros.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 41

NOTE 1 In Example 1, the prices may be automatically computed for each screw of the screw class by specifying
that part number shall be represented both in the screw class and in the functional model class, and may be used to
compute a left outer join between the contents of both classes (see required_item_values XML element in Clause 7.4)

EXAMPLE 2 With the same definition as in Example 1 for screw class and for item price view, a particular functional
model class might be defined for each subclass of screw class that contain instances.

NOTE 2 In general, functional model classes are linked a priori with a product characterization class and, in this
case, they are represented by the FM_CLASS_VIEW_OF_Type subtype. But a functional model class is not required to
reference any product characterization class. This permits to link it a posteriori with existing characterization classes.

NOTE 3 This a posteriori link is specified using the A_POSTERIORI_VIEW_OF_Type XML complex type construct
specified in clause 8.6.2.

A functional model class may import:

⎯ properties and/or types and/or documents from the functional view class that specifies the point of view
oriented descriptions it provides;

⎯ properties and/or types and/or documents from the functional model class(es) for which the current
functional model class could be case-of.

NOTE 4 A functional model class may also inherit properties and/or types and/or documents from its possible
superclass. This allows to share the same properties and/or types and/or documents between a hierarchy of functional
model classes.

Such a functional model class, represented by a FUNCTIONAL_MODEL_CLASS_Type XML complex type is
depicted in Figure 30.

FUNCTIONAL_MODEL
CLASS_Type

PROPERTYDATATYPE

DOCUMENT

CLASS

imported_properties_from_models 0..*

v_c_v_range 0..*

0..* case_of

imported_properties_from_view 0..*

imported_types
0..* _from_models

imported_documents_from_models 0..*

imported_documents_from_view 0..*

created_view

0..* imported_types
_from_view

CLASS_Type

V_C_V_RANGE_Type

CONSTRAINTS_Type

imported_constraints
_from_model

0..*

imported_constraints
_from_view

0..*

Figure 30 — Advanced class ontology concept UML diagram: functional model class

Internal item definitions:

case_of: the possible functional model classes the current functional model class is case-of.

NOTE 5 The case-of relationship and its use are described in Clause 3.5.2 of ISO/IEC Guide 77-2:2008.

created_view: the functional view class that characterizes the point of view addressed by the functional model
class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

42 © ISO 2010 – All rights reserved

imported_constraints_from_model: the possible constraints that are imported from the case-of functional
model classes.

NOTE 6 All the constraints that apply on the model properties that are imported by the functional model class are
imported in this class.

imported_constraints_from_view: the possible constraints that are imported from the created view.

NOTE 7 All the constraints that apply on the view properties that are imported by the functional model class are
imported in this class.

imported_documents_from_model: the possible documents that are imported from the case-of functional
model classes.

imported_documents_from_view: the possible documents that are imported from the created view.

imported_properties_from_model: the possible properties that are imported from the case-of functional
model classes.

imported_properties_from_view: the possible properties that are imported from the created view.

imported_types_from_model: the possible types that are imported from the case-of functional model
classes.

imported_types_from_view: the possible types that are imported from the created view.

v_c_v_range: the list of the view control variable ranges that specify the various discipline-oriented sub-
categories the functional model class is able to create. Each of them shall correspond to a view control
variable of the functional view that is referenced by the created_view XML element. When a view control
variable of the functional view defined by the created_view XML element is not represented in the
v_c_v_range element, its range is its complete value domain.

NOTE 8 In most of the cases, a functional view classes has no view control variable. Thus, the v_c_v_range of
each functional model class that references this functional view class is empty.

External type definitions:

CLASS_Type: see 6.7.2.1.

CONSTRAINTS_Type: see 8.5.1.

V_C_V_RANGE_Type: see 6.7.3.4.

Constraint specifications:

The class referenced by the created_view XML element shall have
NON_INSTANCIABLE_FUNCTIONAL_VIEW_CLASS_Type as its base type.

Each view control variable used in the v_c_v_range XML element shall correspond to a view control variable
of the functional view that is referenced by the created_view XML element.

Each view control variable defined in the referenced view (created_view XML element) and used in the
v_c_v_range XML element shall be referenced in the imported_properties_from_view collection.

NOTE 9 Each view control variable whose v_c_v_range XML element does not restrict to a singleton is part of the
key of the functional model class. This is specified in the constraints of
EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION_Type (see 7.4).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 43

Either the class has no superclass, or the referenced superclass (its_superclass inherited XML element) shall
have FUNCTIONAL_MODEL_CLASS_Type or a FM_CLASS_VIEW_OF_Type as its base type.

The v_c_v_range collection shall consist of a unique view_control_variable_range for each referenced
property (parameter_type XML element)

Each property that is defined (described_by XML element) or inherited for the functional model class may be
either a NON_DEPENDENT_P_DET_Type, a DEPENDENT_P_DET_Type, a CONDITION_DET_Type or a
REPRESENTATION_P_DET_Type property.

NOTE 10 This constraint is less restrictive than the one defined in ISO 13584-24:2003 which restricted all properties
of a functional model class to be REPRESENTATION_P_DET_Type properties.

Each class referenced through the case_of XML element shall be a FUNCTIONAL_MODEL_CLASS_Type or
a FM_CLASS_VIEW_OF_Type class.

All the class valued properties declared by being referenced in the sub_class_properties collection that are
also referenced in the imported_properties_from_model collection shall be class valued properties in all the
case_of classes where they are applicable.

The values assigned to an imported property in the class_constant_values collection shall not be different
than the possible value assigned to the same property in the referenced classes.

Each constraint specified in the imported_constraints_from_model and in the
imported_constraints_from_view collections through the constraint XML element shall be defined either as
a referenced constraint using the constraint_ref XML attribute or as a defined constraint using the
constraint_definition XML element, not both.

6.7.3.3 Functional model class view-of

A functional model class view-of is a functional model class whose point-of-view-oriented descriptions are
directly associated with the products of a particular product characterization class. In such a case, and in
addition to the properties and/or types and/or documents possibly imported from the referenced functional view
and, possibly, from the case-of functional model(s), properties and/or types and/or documents may also be
imported from the product characterization class for which the current functional model class is specified.

NOTE 1 In particular, it is advisable that some properties applicable to the item characterization class be imported to
connect each representation defined by the functional model class view-of with each item of the item class.

Such a functional model class is represented by the FM_CLASS_VIEW_OF_Type XML complex type as
depicted in Figure 31.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

44 © ISO 2010 – All rights reserved

FM_CLASS_VIEW_OF_Type

PROPERTYDATATYPE

DOCUMENT

CLASS

imported_properties_from_models 0..*

V_C_V_RANGE_Type
v_c_v_range 0..*

0..* case_of

imported_properties_from_view 0..*

imported_types
0..* _from_models

imported_documents_
from_models

imported_documents_from_view 0..*

created_view

0..* imported_types
_from_view

CLASS_Type

imported_properties_from_item 0..*0..* imported_types_from_item

view_of

imported_documents_from_item 0..*

PROPERTY

0..*

CONSTRAINTS_Type

imported_constraints
_from_model0..*

imported_constraints
_from_view0..*

0..*

imported_constraints_from_item

Figure 31 — Advanced class ontology concept UML diagram: functional model class view-of

Internal item definitions:

case_of: the possible other functional model classes the current functional model class is a case-of.

NOTE 2 The case-of relationship and its use are described in Clause 3.5.2 of ISO/IEC Guide 77-2:2008.

created_view: the functional view class that characterizes the user point of view addressed by the functional
model class.

view_of: the product characterization class for which the described functional model class is able to define
representations.

imported_constraints_from_item: the possible constraints that are imported from the item class for which
the present class is able to generate the view.

NOTE 3 All the constraints that apply to item properties that are all imported by the functional model class are
imported in this class.

imported_constraints_from_model: the possible constraints that are imported from the case-of functional
model classes.

NOTE 4 All the constraints that apply to model properties that are imported by the functional model class are
imported in this class.

imported_constraints_from_view: the possible constraints that are imported from the created view.

NOTE 5 All the constraints that apply to view properties that are imported by the functional model class are imported
in this class

imported_properties_from_item: the possible properties that are imported from the item class for which the
present class is able to generate the view.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 45

imported_properties_from_model: the possible properties that are imported from the case-of functional
model classes.

imported_properties_from_view: the possible properties that are imported from the created view.

imported_types_from_item: the possible types that are imported from the item class for which the present
class is able to generate the view.

imported_types_from_model: the possible types that are imported from the case-of functional model
classes.

imported_types_from_view: the possible types that are imported from the created view.

imported_documents_from_item: the possible documents that are imported from the item class for which
the present class is able to generate the view.

imported_documents_from_model: the possible documents that are imported from the case-of functional
model classes.

imported_documents_from_view: the possible documents that are imported from the created view.

v_c_v_range: the list of view control variable ranges that specify the various discipline-oriented sub-categories
the functional model class is able to create. Each of them shall correspond to a view control variable of the
functional view that is referenced by the created_view XML element When a view control variable of the
functional view defined by the created_view XML element is not represented in the v_c_v_range element, its
range is its complete value domain.

NOTE 6 In most of the cases, a functional view class has no view control variable. Thus, the v_c_v_range of the
functional model classes view of that reference this functional view class are empty.

External type definitions:

CLASS_Type: see 6.7.2.1.

CONSTRAINTS_Type: see 8.5.1.

V_C_V_RANGE_Type: see 6.7.3.4.

Constraint specifications:

The class referenced by the created_view XML element shall have
NON_INSTANCIABLE_FUNCTIONAL_VIEW_CLASS_Type as its base type.

Each view control variable used in the v_c_v_range XML element shall correspond to a view control variable
of the functional view that is referenced by the created_view XML element.

Each view control variable defined in the referenced view (created_view XML element) and used in the
v_c_v_range XML element shall be referenced in the imported_properties_from_view collection.

NOTE 7 Each view control variable whose v_c_v_range XML element does not restrict to a singleton is part
of the key of the functional model class. This is specified in the constraints of
EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION_Type (see 7.4).

Either the class has no superclass, or the referenced superclass (its_superclass inherited XML element) shall
have FUNCTIONAL_MODEL_CLASS_Type or a FM_CLASS_VIEW_OF_Type as its base type.

The v_c_v_range collection shall consist of a unique view_control_variable_range for each referenced
property (parameter_type XML element).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

46 © ISO 2010 – All rights reserved

Each property that is defined (described_by XML element) or inherited for the functional model class may be
either NON_DEPENDENT_P_DET_Type, a DEPENDENT_P_DET_Type, a CONDITION_DET_Type or a
REPRESENTATION_P_DET_Type property.

NOTE 8 This constraint is less restrictive than the one defined in ISO 13584-24:2003 which restricted all properties
of a functional model class to be REPRESENTATION_P_DET_Type properties.

Each class referenced through the case_of XML element shall be a FUNCTIONAL_MODEL_CLASS_Type or
a FM_CLASS_VIEW_OF_Type.

All the class valued properties declared by being referenced in the sub_class_properties collection that are
also referenced in the imported_properties_from_model collection shall be class valued properties in all the
case_of classes where they are applicable.

The values assigned to an imported property in the class_constant_values collection shall not be different
than the possible value assigned to the same property in the referenced classes.

Each constraint specified in the imported_constraints_from_model and in the
imported_constraints_from_view collections through the constraint XML element shall be defined either as
a referenced constraint using the constraint_ref XML attribute or as a defined constraint using the
constraint_definition XML element, not both

6.7.3.4 View control variable range

Functional views may be further specified using view control variables. Associated to a functional model that
references a functional view, each view control variable range specifies which particular views are really
described by that model.

EXAMPLE Assume that a geometry functional view defines a view control variable detail_level whose ordered
domain of values is {simplified, standard, extended}. A particular functional model may describe only simplified and
standard views. In this case, the range would be [simplified : standard].

NOTE When a view control variable of a functional view referenced by the functional model is not represented
using a view control variable range, its range is its complete value domain.

A view control variable range is represented by the VIEW_CONTROL_VARIABLE_RANGE_Type XML
complex type. All the view control variable ranges are gathered in a container specified by the
V_C_V_RANGE_Type. It is illustrated in Figure 32.

V_C_V_RANGE_Type

VIEW_CONTROL_VARIABLE_RANGE_Type

range_lobound: xs:integer
range_hibound: xs:integer

PROPERTY

view_control
_variable_range 1..*

parameter_type

Figure 32 — View control variable structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 47

Internal item definitions:

view_control_variable_range: the specification of the functional model view control variable ranges.

view_control_variable_range/parameter_type: the reference to the property that is the view control variable
for which the range applies.

view_control_variable_range/range_hibound: the integer that describes the high bound of the specified
range.

view_control_variable_range/range_lobound: the integer that describes the low bound of the specified
range.

Internal item definitions:

VIEW_CONTROL_VARIABLE_RANGE_Type: the specification of a view control variable range.

Constraint specifications:

The property referenced through the parameter_type XML element shall have a
NON_QUANTITATIVE_INT_TYPE_Type type.

The range_lobound XML element value shall be less or equal to the range_hibound XML element value.

range_lobound and range_hibound shall belong to the domain of the referenced property (parameter_type
XML element).

6.7.4 Simple-level ontology property

In the CIIM, values of a property are either simple values like integer or strings, or other class items. Moreover,
the CIIM distinguishes:

⎯ properties that may be used for characterizing an item, and

⎯ properties that may only be used in functional model or functional view classes.

This clause defines the simple-level ontology property that are the properties used to characterize items.

The most commonly used properties in any ontology are the characterization properties that associates
an item either with values or with other items. Such a property is represented by a
NON_DEPENDENT_P_DET_Type XML complex type as illustrated in Figure 33.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

48 © ISO 2010 – All rights reserved

preferred_name

short_name

synonymous_names

0..1

0..1

PROPERTY_Type

@id: PropertyId
date_of_original_definition: 0..1 DATE_TYPE_Type
date_of_current_version: 0..1 DATE_TYPE_Type
date_of_current_revision: 0..1 DATE_TYPE_Type
revision: REVISION_TYPE_Type
status: 0..1 STATUS_Type
is_deprecated: 0..1 xs:boolean
det_classification: 0..1 DET_CLASSIFICATION_Type

0..*translation

definition

note

remark

0..1

0..1

SOURCE_
DOCUMENT_Type

source_doc_of_definition 0..1

NON_DEPENDENT_
P_DET_Type

ANY_TYPE_Type
domain

GRAPHICS_Type

icon
0..1

MATHEMATICAL_
STRING_Type

0..1 preferred_symbol

0..* synonymous_symbols

figure

0..1

0..1 formula

DEPENDENT_
P_DET_Type

CONDITION_DET_Type

depends_on 1..*

PROPERTY

TRANSLATION_Type

SHORT_NAME_Type

TEXT_Type

PREFERRED_NAME_Type

SYNONYMOUS_NAME_Type

LANGUAGE_Type 0..1 source_language

CLASS

name_scope

0..1 is_deprecated_
interpretation

TEXT_Type

Figure 33 — Simple property ontology concept UML diagram

NOTE 1 Characterization property is defined in Clause 4 of ISO/IEC Guide 77-2:2008.

But, in the real world, no object can be considered as isolated from its environment. Quantitative properties
that are measured, therefore, have to be related to conditions under which their values were obtained.

NOTE 2 Strictly speaking, any instance of a dimension could be accompanied by quoting the temperature at which
the measurement was made. However, in practice, either this measuring context may be specified in the definition of a
property, or it may be considered as not significant. But, for example, the resistance of an electric thermistor may strongly
depend upon ambient temperature. Hence it is advisable that this information be always supplied.

Thus, in addition to the usual characterization properties, that may be considered as context independent
properties, it is possible to define context parameters, through the CONDITION_DET_Type XML complex
type, and context dependent properties, through the DEPENDENT_P_DET_Type XML complex type. For this
latter kind of property, its context is defined (depends_on XML element) by reference to the context
parameter(s) global identifier(s).

NOTE 3 Properties and context of evaluation is documented in Clause 4.4 of ISO/IEC Guide 77-2:2008 for
specification of product properties and classes.

NOTE 4 The most basic representation of such a property requires only to define an identifier a revision number, a
preferred_name, a definition and its domain of values (domain XML element).

Internal item definitions:

@id: the property identifier.

date_of_current_revision: the date associated to the present revision of the property definition.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 49

date_of_current_version: the date associated to the present version of the property definition.

date_of_original_definition: the date associated to the first stable version of the property definition.

definition: the text describing this property, possibly translated.

depends_on (DEPENDENT_P_DET_type): set of references identifying the properties on which this property
depends on.

det_classification: a code representing the ISO 80000 (formerly ISO 31) class for this property.

NOTE 5 ISO 13584-42:2010 specifies codes for ISO 80000 (formerly ISO 31) classes to which quantitative or non
quantitative property may refer.

domain: the data type (the value domain) associated to the property.

figure: a possible graphics that describes the property.

formula: a mathematical expression for explaining the property.

icon: a graphics representing the description associated with the names.

is_deprecated: a Boolean that specifies, when true, that the property definition shall no longer be used.

is_deprecated_interpretation: specifies the deprecation rationale and how instance values of the property,
and of its corresponding identifier, should be interpreted.

name_scope: the class domain of the property.

note: further information on any part of the property, which is essential to its understanding, possibly
translated.

preferred_name: the name of the property that is preferred for use, possibly translated.

preferred_symbol: a shorter description of this property.

remark: explanatory text further clarifying the meaning of this property, possibly translated.

revision: the revision number of the present property definition.

short_name: the abbreviation of the preferred name, possibly translated.

source_doc_of_definition: the possible source document from which the definition comes.

source_language: the language in which the property definition was initially defined and that provides the
reference meaning in case of translation discrepancy.

status: defines the life cycle state of the property definition.

NOTE 6 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 7 If the status XML element is not provided, and if this property definition is not deprecated as denoted by a
possible is_deprecated XML element, then the property definition has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this property definition is part of the current
edition of the standard.

synonymous_names: the set of synonymous names of the preferred name, possibly translated.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

50 © ISO 2010 – All rights reserved

synonymous_symbols: the set of synonymous names of the preferred symbol of the property.

translation: the possible set of translations information provided for the translatable items.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.

External type definitions:

PropertyId: see 9.1.

ANY_TYPE_Type: see 8.3.

GRAPHICS_Type: see 8.2.2.2.

LANGUAGE_Type: see 8.1.1.

MATHEMATICAL_STRING: see 8.8.2

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

SYNONYMOUS_NAME_Type: see 8.1.2.

TEXT_Type: see 8.1.2.

TRANSLATION_Type: see 8.1.3.

Constraint specifications:

The depends_on collection shall only reference properties for which the base type is
CONDITION_DET_Type.

The depends_on collection shall not contain duplicated property references.

When is_deprecated exists, is_deprecated_interpretation shall exist.

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

6.7.5 Advanced-level ontology property

In advanced-level ontology classes, i.e., functional view classes (see 6.7.3.1) and functional model classes
(see 6.7.3.2 and 6.7.3.3), some properties are used that do not describe items, but that characterize
representations of item. This is in particular the case for view control variables. These variables should be
represented as REPRESENTATION_P_DET_Type. More precisely view control variables shall be
represented as REPRESENTATION_P_DET_Type. Other properties defined in advanced-level ontology
classes may be represented either as simple-level ontology property if they are considered as describing some
aspect of an item or as REPRESENTATION_P_DET_Type if they characterize some representation of an
item. REPRESENTATION_P_DET_Type is shown in Figure 34.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 51

EXAMPLE Let’s assume a property P1, defined in a functional model class, provides various 2D draftings of items
of an item class, and property P2, defined in the same functional model class, describes the side of each drawing (top,
bottom, front, rear,...) represented by P1. The value of P1 defines some aspect of an item. The value of P2 does not
define any aspect of any item. Property P2 should be represented as REPRESENTATION_P_DET_Type. Property P1
could be represented as non_dependent_P_DET.

REPRESENTATION_
P_DET_Type

PROPERTY_Type

Figure 34 — Advanced property ontology concept UML diagram

NOTE The representation property concept is specified in ISO 13584-24:2003, Clause 11.15.1.

External type definitions:

PROPERTY_Type: see 6.7.4.

6.7.6 Identified data type

In some context, it proves useful to define domain of values that are associated with a global identifier and that
could be re-used for several properties possibly in several ontologies.

EXAMPLE An ontology defining domain-specific units could be based on the use of ontology data types.

For that purpose, OntoML proposes a DATATYPE_Type XML complex type as illustrated in Figure 35.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

52 © ISO 2010 – All rights reserved

0..*translation

source_doc_of_definition 0..1

type_definition
ANY_TYPE_Type

TRANSLATION_Type

SOURCE_
DOCUMENT_Type

DATATYPE_Type

@id: DatatypeId
date_of_original_definition: 0..1 DATE_TYPE_Type
date_of_current_version: 0..1 DATE_TYPE_Type
date_of_current_revision: 0..1 DATE_TYPE_Type
revision: REVISION_TYPE_Type
status: 0..1 STATUS_Type
is_deprecated: 0..1 xs:boolean

preferred_name

short_name

definition

note

remark

synonymous_names 0..1

0..1

0..1

0..1

icon 0..* GRAPHICS_Type

SHORT_NAME_Type

TEXT_Type

PREFERRED_NAME_Type

SYNONYMOUS_NAME_Type

source_language 0..* LANGUAGE_Type

CLASS

name_scope

is_deprecated_interpretation 0..1

Figure 35 — Data type UML diagram

Internal item definitions:

@id: the datatype identifier.

date_of_current_revision: the date associated to the present revision of the datatype definition.

date_of_current_version: the date associated to the present version of the datatype definition.

date_of_original_definition: the date associated to the first stable version of the datatype definition.

definition: the text describing this datatype, possibly translated.

icon: a graphics representing the description associated with the names.

is_deprecated: a Boolean that specifies, when true, that the datatype definition shall no longer be used.

is_deprecated_interpretation: specifies the deprecation rationale and how instance values of the deprecated
identified data type, and of its corresponding identifier, should be interpreted.

name_scope: the class domain of the datatype.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 53

note: further information on any part of the datatype, which is essential to its understanding, possibly
translated.

preferred_name: the name of the datatype that is preferred for use, possibly translated.

remark: explanatory text further clarifying the meaning of this datatype, possibly translated.

revision: the revision number of the present datatype definition.

short_name: the abbreviation of the preferred name, possibly translated.

source_doc_of_definition: the possible source document from which the definition comes.

source_language: the language in which the datatype definition was initially defined and that provides the
reference meaning in case of translation discrepancy.

status: defines the life cycle state of the datatype definition.

NOTE 1 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 2 If the status XML element is not provided, and if this datatype definition is not deprecated as denoted by a
possible is_deprecated XML element, then the datatype definition has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this datatype definition is part of the current
edition of the standard.

synonymous_names: the set of synonymous names of the preferred name, possibly translated.

translation: the possible set of translations information provided for the translatable items.

type_definition: the description of the type carried by the data types.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.

External type definitions:

DatatypeId: see 9.1.

ANY_TYPE_Type: see 8.3.

GRAPHICS_Type: see 8.2.2.2.

LANGUAGE_Type: see 8.1.1.

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

SYNONYMOUS_NAME_Type: see 8.1.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

54 © ISO 2010 – All rights reserved

TEXT_Type: see 8.1.2.

TRANSLATION_Type: see 8.1.3.

Constraint specifications:

When is_deprecated exists, is_deprecated_interpretation shall exist.

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

6.7.7 Document

In OntoML, a document may be associated with a global identifier and considered as a CIIM ontology concept.
For that purpose, OntoML proposes a DOCUMENT_Type XML complex type as illustrated in Figure 36.

DOCUMENT_Type

@id: DocumentId
date_of_original_definition: 0..1 DATE_TYPE_Type
date_of_current_version: 0..1 DATE_TYPE_Type
date_of_current_revision: 0..1 DATE_TYPE_Type
revision: REVISION_TYPE_Type
status: 0..1 STATUS_Type
is_deprecated: 0..1 xs:boolean

0..*translation

preferred_name

short_name

definition

note

remark

synonymous_names

0..1

0..1

0..1

0..1

source_doc_of_definition 0..1

PERSON_Type

ORGANIZATION_Type

0..* authors

0..1 publishing_
organization

DOCUMENT_CONTENT_Type
content 0..1

icon

TRANSLATION_Type

SOURCE_
DOCUMENT_TypeGRAPHICS_Type

id: xs:string
last_name: 0..1 xs:string
first_name: 0..1 xs:string

0..*

STRINGS_Type

value: 1..* xs:string

middle_names 0..1

prefix_titles 0..1

suffix_titles 0..1

revision: REVISION_TYPE_Type

EXTERNAL_
RESOURCE_Type

SHORT_NAME_Type

TEXT_Type

PREFERRED_NAME_Type

SYNONYMOUS_NAME_Type

LANGUAGE_Type
0..1 source_language

CLASS name_scope

is_deprecated_interpretation 0..1

Figure 36 — Simple-level document UML diagram

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 55

Internal item definitions:

@id: the document identifier.

authors: the author(s) of the document.

authors/first_name: the first element of the person's list of forenames.

authors/id: a means by which the person may be identified.

authors/last_name: the person's surname.

authors/middle_names: the person's other forenames, if there are any.

authors/prefix_titles: the word, or group of words, which specify the person's social and/or professional
standing and appear before his or her names.

authors/suffix_titles: the word, or group of words, which specify the person's social and/or professional
standing and appear after his or her names.

authors/middle_names/value: a a middle name string in a midle name string collection.

authors/prefix_titles/value: a a prefix title string in a prefix title string collection.

authors/suffix_titles/value: a a suffix title string in a suffix title string collection.

content: the physical document for which the DOCUMENT_Type XML complex type gives a description.

NOTE 1 The content of the document is represented by the DOCUMENT_CONTENT_Type XML complex type. It is
defined as a subtype of the EXTERNAL_RESOURCE_Type XML complex type defined in Clause 8.2. Thus, the inherited
file XML element allows to reference, using a URI, the target document.

NOTE 2 The physical document is optional, and may, or not, be delivered in the same OntoML document instance.

content/revision: characterization of the updating of the physical document.

date_of_current_revision: the date associated to the present revision of the document definition.

date_of_current_version: the date associated to the present version of the document definition.

date_of_original_definition: the date associated to the first stable version of the document definition.

definition: the text describing this document, possibly translated.

icon: a graphics representing the description associated with the names.

is_deprecated: a Boolean that specifies, when true, that the document definition shall no longer be used.

is_deprecated_interpretation: specifies the deprecation rationale and how instance values of the deprecated
document, and of its corresponding identifier, should be interpreted.

name_scope: the class domain of the document.

note: further information on any part of the document, which is essential to its understanding, possibly
translated.

preferred_name: the name of the document that is preferred for use, possibly translated.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

56 © ISO 2010 – All rights reserved

publishing_organization: the organisation that publishes the document.

remark: explanatory text further clarifying the meaning of this document, possibly translated.

revision: the revision number of the present document definition.

short_name: the abbreviation of the preferred name, possibly translated.

source_doc_of_definition: the possible source document from which the definition comes.

source_language: the language in which the document definition was initially defined and that provides the
reference meaning in case of translation discrepancy.

status: defines the life cycle state of the document definition.

NOTE 3 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 4 If the status XML element is not provided, and if this document definition is not deprecated as denoted by a
possible is_deprecated XML element, then the document definition has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this document definition is part of the current
edition of the standard.

synonymous_names: the set of synonymous names of the preferred name, possibly translated.

translation: the possible set of translations information provided for the translatable items.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

DOCUMENT_CONTENT_Type: the physical resource to which the document definition is related.

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.

STRINGS_Type: a string (xs:string XML Schema datatype) collection container.

External type definitions:

DatatypeId: see 9.1.

EXTERNAL_RESOURCE_Type: see 8.2.1.

GRAPHICS_Type: see 8.2.2.2.

LANGUAGE_Type: see 8.1.1.

ORGANIZATION_Type: see 8.8.1.

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 57

SYNONYMOUS_NAME_Type: see 8.1.2.

TEXT_Type: see 8.1.2.

TRANSLATION_Type: see 8.1.3.

Constraint specifications:

When is_deprecated exists, is_deprecated_interpretation shall exist.

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

7 Overview of OntoML libraries representation

The library content part of OntoML provides resources for representing instances belonging to the classes
defined in a given domain ontology. Such instances may be product characterizations if they belong to a
product characterization class, or product representations if they belong to functional model class.

NOTE 1 Product is understood in a very generic sense that covers all items that may be characterized by OntoML
item classes.

NOTE 2 A library content may, or not, be associated with an ontology describes in an OntoML document instance.

NOTE 3 A library content provides in particular for exchanging electronic catalogues.

7.1 Root element of a library

In OntoML, every library pieces of information are gathered into a general structure that is a LIBRARY_TYPE
XML complex type. It is illustrated in Figure 37.

CLASS_EXTENSION_Type

contained_class
_extensions

CONTAINED_CLASS_
EXTENSIONS_Type

class_extension 1..*

LIBRARY_IN_
STANDARD_FORMAT_Type

LIBRARY_Type

responsible_supplier
SUPPLIER

Figure 37 — Root element of library

Internal item definitions:

contained_class_extensions: the set of class extensions of the set of ontology classes.

contained_class_extensions/class_extension: a class extension contained in the dictionary.

responsible_supplier: the data supplier responsible for the library content.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

58 © ISO 2010 – All rights reserved

Internal type definitions:

CONTAINED_CLASS_EXTENSIONS_Type: sequence of class extensions descriptions.

LIBRARY_IN_STANDARD_FORMAT_Type: a library that only uses external file protocols that are allowed
either by the library integrated information model indicated by the library_structure XML element or the view
exchange protocols referenced in the supported_vep XML element, both defined in the HEADER_Type XML
complex type.

LIBRARY_Type: a container for representing library pieces of information.

External type definitions:

CLASS_EXTENSION_Type: see 7.2.

7.2 Class extension general structure

A class extension is represented by the CLASS_EXTENSION_Type abstract XML complex type, as illustrated
in Figure 38. This type allows to specify in particular, for all kinds of class extensions, whether each instance is
described by the same properties in the same order, thus as a row of a table (table_like XML element). It also
allows to specify the set of class applicable properties that are necessary and sufficient to identify each
instance belonging to the class extension. Thus, in the case of a table-like content structure, it corresponds to
the key of this table. This is done by the instance_identification XML element as illustrated in Figure 38.

NOTE Properties that correspond to the table key shall be associated with values for all instances of the class.
This is specified in the constraint specification sub-clause.

instance_identification 1..*

CLASSIFICATION_Type
classification 0..1

cat:catalogue_Type
population

RECOMMENDED_
PRESENTATION_Type

PROPERTY

recommended_presentation 0..1

CLASS_EXTENSION_Type

content_version: 0..1 VERSION_TYPE_Type
content_revision: 0..1 REVISION_TYPE_Type
table_like: xs:boolean

dictionary_definition

CLASS

EXPLICIT_ITEM_CLASS
_EXTENSION_Type

EXPLICIT_FUNCTIONAL_MODEL_
CLASS_EXTENSION_Type

Figure 38 — General class extension structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 59

Internal item definitions:

classification: the possible reference to a classification of the properties used for describing class instances.

content_revision: the revision number that corresponds to the current description of the content_version
version of a class extension.

content_version: the version number that characterizes the extension of a class, i.e., the set of all allowed
instances.

dictionary_definition: the reference to the class extension dictionary definition.

instance_identification: the references to the properties that allow to identify unambiguously each instance
belonging to a class.

population: the list of instances that describe the class population.

recommended_presentation: the recommended scaling factor, presentation units and value formats to be
used when displaying the values of some referenced properties in the context of the referencing class.

table_like: a Boolean value that specifies whether all the class instances are characterized by the same
properties in the same order, or not.

Internal type definitions:

CLASS_EXTENSION_Type: the abstract XML complex type, supertype of the various class extensions.

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

VERSION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
version. It shall contain only digits, and its value length shall not exceed 9 characters.

External type definitions:

cat:catalogue_Type: specification of instances as a set of property reference and value couples.

NOTE cat:catalogue_Type is defined in the ISO/TS 29002-10 product exchange format.

CLASSIFICATION_Type: see 7.2.1.

EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION_Type: see 7.4.

EXPLICIT_ITEM_CLASS_EXTENSION_Type: see 7.3.

RECOMMENDED_PRESENTATION_Type: see 7.2.2.

Constraint specification:

For each instance that defines the class population, the properties that are referenced in the
instance_identification collection shall never be associated with a null value.

From version to version of the same class, properties referenced in the instance_identification collection
shall not change.

In the same class, whatever be the version, same values for instance_identification properties shall
correspond to the same part.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

60 © ISO 2010 – All rights reserved

content_version and content_revision shall exist together.

The content_version shall be incremented when, and only when, the extension of the class is changed (new
instances become allowed), or previous instances are no longer allowed.

When the content_version is incremented, the version of its associated class definition (referenced by the
dictionary_definition XML element) need not to be incremented.

The content_revision shall be incremented for any changes in the class extension description, but the
changes that modify the allowed instances of this class.

When the content_version is incremented, the content_revision shall be reset to '0'.

If table_like XML element value is TRUE, the properties that describe each instance shall be the same
properties given in the same order.

All the properties referenced in the instance_identification collection shall be applicable to the class.

The instance_identification collection shall not contain duplicated property references.

All the properties used to define any instance (through the population XML element) shall be applicable to the
class

All the instances that define the class population shall be such as all the referenced property_values whose
values are translated_string_values be translated in the same language(s).

All the instances that define the class population shall reference the same class than the one referenced by
the explicit_model_class_extension through its inherited dictionary_definition XML element.

7.2.1 Property classification

Some properties participating to instance descriptions may be grouped using some classification resources.
Each group is identified by an integer. The intent is to allow to process differently (on the receiving system)
properties belonging to a given group.

NOTE 1 A property may belong to different groups.

NOTE 2 A property which is not associated with a classification value is not associated with any particular
processing.

NOTE 3 This part of ISO 13584 does not make any assumption on how each classification value is interpreted on a
receiving system. It may result from private agreement between the sender and the receiver or from latter
standardization.

Properties classification is represented using the CLASSIFICATION_Type XML complex type as illustrated in
Figure 39.

PROPERTY_
CLASSIFICATION_TypeCLASSIFICATION_Type

property_
classification

its_value: xs:integer

1..*

PROPERTY
prop_def

Figure 39 — Properties classification

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 61

Internal item definitions:

property_classification: the specification of the properties classifications.

property_classification/its_value: the classification value associated with the referenced prop_def property.

property_classification/prop_def: the reference to the property that is classified by means of the its_value
value.

Internal type definitions:

CLASSIFICATION_Type: a property classification container.

PROPERTY_CLASSIFICATION_Type: an association that assigns a classification group to a property.

7.2.2 Properties presentation

When a particular property is used for describing instances of a particular class, it might prove useful to use a
particular scaling factor, display unit and / or value format. Such a kind of recommendation is represented
using RECOMMENDED_PRESENTATION_Type XML complex type as illustrated in Figure 40.

recommended_
presentation_unit

1..*
RECOMMENDED_

PRESENTATION_Type

PROPERTY_VALUE_
RECOMMENDED_

PRESENTATION_Type

recommended_presentation_format:
VALUE_FORMAT_TYPE_Type

property_value_
recommended_
presentation

PROPERTY
prop_def

UNIT_Type

Figure 40 — Properties presentation

Internal item definitions:

property_value_recommended_representation: the specification of the properties recommended
representations.

property_value_recommended_representation/prop_def: the reference to the property whose the library
data supplier recommends to convert value for presentation purpose.

property_value_recommended_representation/recommended_presentation_format: the presentation
format recommended by the library data supplier for presenting the values of the referenced prop_def
property, if and only if these values are converted into the recommended_presentation_unit unit.

property_value_recommended_representation/recommended_presentation_unit: the particular unit in
which the library data supplier recommends to convert data for presentation purpose.

Internal type definitions:

RECOMMENDED_PRESENTATION_Type: a recommended property presentation container.

PROPERTY_VALUE_RECOMMENDED_PRESENTATION_Type: the recommended property presentation
format together with its presentation unit.

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

62 © ISO 2010 – All rights reserved

External type definitions:

UNIT_Type: specification of a unit, see 8.4.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

The unit specified by the recommended_presentation_unit XML element shall be compatible with the
underlying data type associated to the property referenced by the prop_def XML element.

7.3 Simple-level library: content of classes of products

The description of products belonging to a given product characterization class is performed using the
EXPLICIT_ITEM_CLASS_EXTENSION_Type XML complex type as illustrated in Figure 41. It provides also
optional information that may be used on a receiving system to display the content of a product
characterization class.

EXPLICIT_ITEM_CLASS_EXTENSION_Type MESSAGE_Type

ILLUSTRATION_Type

CLASS_PRESENTATION_
ON_PAPER_Type

CLASS_PRESENTATION_
ON_SCREEN_Type

access_icon 0..1

content_msg 0..1

create_icon 0..1

create_msg 0..1

class_presentation_on_paper 0..1

class_presentation_on_screen 0..1

illustration 1..*

illustration 1..*

CLASS_EXTENSION_Type

CREATE_ICON_Type

illustration 1..*

Figure 41 — Products representation structure

Internal item definitions:

access_icon: the optional icon that enables class presentation in a menu.

NOTE 1 The Icon is defined as A9 standardized size icon.

class_presentation_on_paper: the ordered set of illustrations that are recommended by the library data
supplier to be presented to the user when the content of the class is presented on paper, for instance for
printing the class content in a booklet.

class_presentation_on_paper/illustration: the class illustrations to be presented on paper, for instance for
printing the class content in a booklet.

class_presentation_on_screen: the ordered set of illustrations that are recommended by the library data
supplier to be presented to the user when the content of the class is presented on screen.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 63

class_presentation_on_screen/illustration: the class illustrations to be displayed on screen.

content_msg: the message that describes the content of the class.

create_icon: the optional icon(s) that enable(s) visual presentation of the properties of class items and
reference coordinate system.

NOTE 2 Icons are defined as A6 standardized size icons.

create_icon/illustration: the icon illustration to be displayed on screen.

create_msg: the optional message that describes the properties of a class items and their reference
coordinate system.

Internal type definitions:

CLASS_PRESENTATION_ON_PAPER_Type: specifies the structure of a paper illustration.

CLASS_PRESENTATION_ON_SCREEN_Type: specifies the structure of a screen illustration.

CREATE_ICON_Type: specifies the visual presentation of the properties.

External type definitions:

CLASS_EXTENSION_Type: see 7.2.

ILLUSTRATION_Type: see 8.2.1.2.

MESSAGE_Type: see 8.2.1.3.

Constraint specification:

The class referenced by the inherited dictionary_definition XML element shall have as its base type
ITEM_CLASS_Type or ITEM_CLASS_CASE_OF_Type.

Each illustration specified in the class_presentation_on_paper illustration collection shall set its width and
height XML elements but not the not_static_picture value for the kind_of_content XML element.

Each illustration specified in the class_presentation_on_screen illustrations shall set width and height
XML elements.

7.4 Advanced-level library: content of classes of product representations

Each instance of a functional model class, called a functional model, is a product representation that consists
of a list of property-value pairs. The subset of these properties that is included in the instance_identification
inherited XML element constitutes the key of these instances. Instance_identification contains the necessary
information for identifying one instance, and discriminating it from other instances of the same class. This set
of instances of the class is recorded in the population inherited XML element.

NOTE 1 Each functional model is a model of one (or several) product(s) of the class it is view of. The connection is
done by the product property (or properties) referenced in the required_item_values XML element. These properies
shall be properties imported from item, and they should be duplicated in both the functional model class and in the item
class it is view of. These properties allow to make a joint between the item class and the functional model class.

When there is no view control variables defined in the functional view class referenced by the functional model
class, the key of the functional model class, defined by the instance_identification inherited attribute, equals
the collection of properties referenced in the required_item_values XML element. Thus the join operator
associates with each item instance at most one functional model.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

64 © ISO 2010 – All rights reserved

When some view control variables are defined in the functional view class referenced by the functional model
class, the key of the functional model class, defined by the instance_identification inherited attribute, equals
the union of the collection of properties referenced in the required_item_values XML element, and of the
collection of properties referenced in the view_control_variables XML element of the functional view class.
Thus the join operator associates with each item instance at most one functional model for each tuple of
values of the set of view control variables.

EXAMPLE 1 Assume that a unique functional model class view-of is defined for the root of an item class of a library.
Assume that this functional model class defines the inventory status of each product of each item class. The functional
model class could be described by three properties: the part number (imported from the root item class), the stock
availability, and the quantity of order. If the required_item_values XML element of the functional model class view-of
only references the part_number property, then, when a product is selected, its inventory status may be automatically
computed. Moreover, the set of inventory status of all the products may also be computed by the system just by a left
outer joint between of this item class extension with the functional model class extension.

EXAMPLE 2 When a functional model class provides representations corresponding to several view control variables
values, for each product, a particular value needs to be selected by the user for each view control variable to select the
required product representation.

Functional model class extensions are represented using the
FUNCTIONAL_MODEL_CLASS_EXTENSION_Type XML complex type as illustrated in Figure 42.

EXPLICIT_FUNCTIONAL_MODEL_CLASS
_EXTENSION_Type MESSAGE_Type

ILLUSTRATION_Type

CONTEXT_PARAM_
ICON_Type

context_param_msg 0..1

available_views_icon 0..1

context_param_icon 0..1 illustration 1..*

CLASS_EXTENSION_Type

PROPERTY

available_views_msg 0..1

required_item_values 0..*

Figure 42 — Functional models structure UML diagram

Internal item definitions:

available_views_icon: possible illustrations that enable visual presentation of the various views that may be
created by the functional model class.

NOTE 2 The icon is defined as an A6 standardized size icon.

available_views_msg: possible messages that describe the various views that may be created by the
functional model class.

context_param_icon: possible icons that enable visual presentation of the properties that shall be assigned a
value for selecting a particular view.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 65

context_param_icon/illustration: the illustration that represents the context_param_icon.

NOTE 3 The illustration is defined as an A6 standardized size illustration.

context_param_msg: possible messages that explain the model properties that shall be assigned a value for
selecting a particular view.

required_item_values: the item characteristics used for matching functional model instances with item class
instances.

NOTE 4 The properties referenced in the required_item_values collection shall be represented both in the item
class and in the functional model class. The matching is then done by a left outer join of the item class and the functional
model class.

NOTE 5 Only the item characteristics required to instantiate the functional model class should appear.

NOTE 6 When the functional model class is not view-of a particular item class, the required_item_values collection
is empty. When the functional model class is connected to an item class on the user system, an
A_POSTERIORI_VIEW_OF_Type XML complex type (see 8.6.2) must be used to associate the functional model class
with this item class, and to specify which properties of the functional model class must be mapped with the item class
properties when making a join between item class and functional model class.

Internal type definitions:

CONTEXT_PARAM_ICON_Type: specifies the structure of context parameter icon.

External type definitions:

CLASS_EXTENSION_Type: see 7.2.

Constraint specification:

The class referenced by the inherited dictionary_definition XML element shall be either
FUNCTIONAL_MODEL_CLASS_Type class or FM_CLASS_VIEW_OF_Type class.

If the required_item_values collection is not empty, the inherited dictionary_definition XML element shall
have as its base type FM_CLASS_VIEW_OF_Type, and each property referenced in the
required_item_values collection shall be NON_DEPENDENT_P_DET_Type properties.

If the required_item_values collection is not empty, the inherited dictionary_definition XML element shall
have as its base type FM_CLASS_VIEW_OF_Type, and each property referenced in the
required_item_values collection shall also belong to the imported_properties_from_item collection of this
referenced FM_CLASS_VIEW_OF_Type class.

Each property referenced in the required_item_values collection shall also belong to the set of properties
referenced in the instance_identification collection.

Each instance belonging to the population collection shall be described by all the view control variables that
are defined in the functional view class referenced (created_view XML element) by the associated functional
model class (inherited dictionary_definition XML element).

The inherited instance_identification collection shall reference both all the properties used to represent view
control variables that are defined in the functional view class referenced (created_view XML element) by the
associated functional model class (inherited dictionary_definition XML element), and the properties
referenced in the required_item_values collection.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

66 © ISO 2010 – All rights reserved

8 Other structured information elements

This clause specifies the other structured information element constructs that were referenced in Clause 7.

8.1 Translations

OntoML provides resources for translating clear text information and for managing translations.

8.1.1 Language specification

The specification of a language is twofold: the language specification, and possibly the associated country that
further specify the language. It is illustrated in Figure 43.

LANGUAGE_Type

@language_code: LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

Figure 43 — Language specification

Internal item definitions:

@country_code: the possible country code that further specifies the language code.

@language_code: the code of the language.

Internal type definitions:

COUNTRY_CODE_Type: the type of a language code. It is a string which contains 2 characters, and that
defines a country according to ISO 3166-1.

LANGUAGE_CODE_Type: the type of a language code. It is a string which contains either 2 or 3 characters,
and that defines a language according respectively to ISO 639-1 or ISO 639-2.

8.1.2 Translation of string valued elements

Every CIIM ontology concept is described using clear text information that may or not be translated. The
corresponding information elements are:

⎯ preferred_names;

⎯ short_names;

⎯ synonymous_names;

⎯ keywords;

⎯ definitions, notes and remarks;

⎯ source_doc_of_definition (when it is specified as a document identifier, see 8.2.2.1.1).

OntoML provides constructs for representing these information elements as illustrated in Figure 44.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 67

PREFERRED_NAME_LABEL_Type
label 1..*

@language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

PREFERRED_NAME_Type

SHORT_NAME_LABEL_Type
label 1..*

SHORT_NAME_Type

SYNONYMOUS_NAME_LABEL_Type
label 1..*

SYNONYMOUS_NAME_Type

GENERAL_TEXT_Type
text 1..*

TEXT_Type

DOCUMENT_IDENTIFIER
_NAME_LABEL_Typelabel 1..*

DOCUMENT_IDENTIFIER_Type

@language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

@language: 0..1 LANGUAGE_CODE_Type
@country: 0..1 COUNTRY_CODE_Type

@language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

@language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

KEYWORD_LABEL_Type
label 1..*

KEYWORD_Type @language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

Figure 44 —Translation resources

NOTE 1 The minimum language information requirement consists in providing a value for the language_code XML
attribute.

NOTE 2 When the ontology language is specified using the global_language XML element defined in the
HEADER_Type XML complex type, neither language_code nor country_code XML attributes shall be provided.

NOTE 3 HEADER_Type is defined in Clause 6.5.

Internal item definitions:

label (DOCUMENT_IDENTIFIER_Type): defines the document labels that are possibly translated, together
with their corresponding translation.

label (KEYWORD_Type): defines the keywords labels that are possibly translated, together with their
corresponding translation.

label (PREFERRED_NAME_Type): defines the preferred name labels that are possibly translated, together
with their corresponding translation.

label (SHORT_NAME_Type): defines the short name labels that are possibly translated, together with their
corresponding translation.

label (SYNONYMOUS_NAME_Type): defines the synonymous name labels that are possibly translated,
together with their corresponding translation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

68 © ISO 2010 – All rights reserved

text (TEXT_Type): defines the definitions, note and remark texts that are possibly translated, together with
their corresponding translation.

Internal type definitions:

COUNTRY_CODE_Type: the type of a language code. It is a string which contains 2 characters, and that
defines a country according to ISO 3166-1.

DOCUMENT_IDENTIFIER_Type: a possibly translated document identifier.

DOCUMENT_IDENTIFIER_NAME_LABEL_Type: a string (xs:string XML Schema datatype) that represents
the values allowed for a document label with its language (@language_code and possible @country_code
XML attributes). Its value length shall not exceed 255 characters.

GENERAL_TEXT_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
definition, a note or a remark together with its language @language_code and possible @country_code XML
attributes). Its value length is not constrained.

KEYWORD_LABEL_Type: a string (xs:string XML Schema datatype) that represents the values allowed for
a keyword with its language @language_code and possible @country_code XML attributes). Its value length
shall not exceed 255 characters.

KEYWORD_Type: a possibly translated concept keyword.

LANGUAGE_CODE_Type: the type of a language code. It is a string which contains either 2 or 3 characters,
and that defines a language according respectively to ISO 639-1 or ISO 639-2.

PREFERRED_NAME_LABEL_Type: a string (xs:string XML Schema datatype) that represents the values
allowed for a preferred name with its language @language_code and possible @country_code XML
attributes). Its value length shall not exceed 255 characters.

PREFERRED_NAME_Type: a possibly translated concept preferred name.

SHORT_NAME_LABEL_Type: a string (xs:string XML Schema datatype) that represents the values allowed
for a short name with its language @language_code and possible @country_code XML attributes). Its value
length shall not exceed 30 characters.

SHORT_NAME_Type: a possibly translated concept short name.

SYNONYMOUS_NAME_LABEL_Type: a string (xs:string XML Schema datatype) that represents the values
allowed for a synonymous name with its language @language_code and possible @country_code XML
attributes). Its value length shall not exceed 255 characters.

SYNONYMOUS_NAME_Type: a possibly translated concept synonymous name.

TEXT_Type: a possibly translated concept text.

8.1.3 Translation management

Management information about the translation performed at the level of a CIIM ontology concept may be
represented. For that purpose, OntoML provides the TRANSLATION_Type XML complex type. It is illustrated
in Figure 45.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 69

TRANSLATION_Type

TRANSLATION_DATA_Typetranslation_data 1..*

translation_revision: REVISION_TYPE_Type
date_of_current_translation_revision: 0..1 DATE_TYPE_Type

SUPPLIER

responsible_translator

LANGUAGE_Type

language

Figure 45 — Translation data structure

Internal item definitions:

translation_data: the set of translation information associated to a CIIM ontology concept.

translation_data/date_of_current_translation_revision: the date corresponding to the current revision of
the translation in the @language language.

translation_data/language: the language for which the translation information is given.

translation_data/responsible_translator: a reference to the identifier of the organization who performed the
translation in the @language language.

translation_data/translation_revision: the revision status of the translation in the @language language.

NOTE Change of version or change of revision of a dictionary element does not always require any change in
their translations. If there is no change in a translation due to a change of version or change of revision of a dictionary
element, the corresponding translation_revision shall not be changed. However any change of a translation will imply
change of the corresponding translation_revision.

Internal type definitions:

DATE_TYPE_Type: identifies the values allowed for a date (the specific xs:date XML Schema datatype).

REVISION_TYPE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a
revision. Its value length shall not exceed 3 characters.

TRANSLATION_DATA_Type: translation information.

TRANSLATION_Type: translation information container.

External type definition:

LANGUAGE_Type: see 8.1.1.

8.2 External content

External contents allow to reference externally defined information from CIIM ontology concepts or from
information elements. This reference may be performed in different ways:

⎯ by specifying a URI (local or global) that references an external resource;

⎯ by specifying a code identifying a document;

⎯ by specifying a reference to a document or a documented graphics that is described and identified by a
document ontology concept.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

70 © ISO 2010 – All rights reserved

8.2.1 Simple-level ontology external resources

A piece of information may be provided as an external resource. This resource may be

⎯ either a file (or a set of files) associated with the OntoML document instance and identified by a local URI,

⎯ or an Internet resource, identified by a global URI.

Figure 46 illustrates the external resource root type, represented by the EXTERNAL_RESOURCE_Type
abstract XML complex type.

EXTERNAL_
RESOURCE_Type

DOCUMENT_
CONTENT_Type

MESSAGE_Type
EXTERNAL_
FILES_Type

ILLUSTRATION_Type

HTTP_FILE_Type
file 0..*

Figure 46 — Simple-level ontology external resources

Internal item definition:

file: a set of XML elements that describe and identify external resources represented by HTTP files.

Internl type definitions:

EXTERNAL_RESOURCE_Type: an abstract external resource.

External type definitions:

DOCUMENT_CONTENT_Type: see 6.7.7.

EXTERNAL_FILES_Type: see 8.2.1.4.

HTTP_FILE_Type: see 8.2.1.1.

ILLUSTRATION_Type: see 8.2.1.2.

MESSAGE_Type: see 8.2.1.3.

8.2.1.1 HTTP file

An HTTP file is the basic OntoML construct for referencing external information from an OntoML document
instance.

An HTTP file is defined according to the HTTP_FILE_Type XML complex Type as presented in Figure 47.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 71

HTTP_FILE_Type

http_file: xs:anyURI;
file_name: 0..1 HTTP_FILE_NAME_TYPE_Type
dir_name: 0..1 HTTP_DIRECTORY_NAME_TYPE_Type
@language_code: 0..1 LANGUAGE_CODE_Type
@country_code: 0..1 COUNTRY_CODE_Type

Figure 47 — Simple-level ontology external resources: HTTP file structure

Internal item definitions:

@country_code: the possible country code that further specifies the language.

@language_code: the possible language in which the information contained in the HTTP file is expressed.

dir_name: the possible target directory in which the HTTP file shall be stored on a receiving system if the http
files include reference to each others.

NOTE 1 When dir_name exists, all directories of a same OntoML document instance are defined under a common
root.

http_file: the URI locating the HTTP file.

NOTE 2 The MIME protocol interpretation completely defines the protocol to be used for processing any referenced
external information.

http_file_name: the possible name of the HTTP file on a receiving system.

Internal type definitions:

COUNTRY_CODE_Type: the type of a language code. It is a string which contains 2 characters, and that
defines a country according to ISO 3166-1.

HTTP_FILE_NAME_Type: the type of an http_file_name. Its representation fulfills constraints defined for
representing URIs.

NOTE 3 URI is defined by [RFC 2396], and is amended by [RFC 2732].

HTTP_DIRECTORY_NAME_Type: the type of the name of an http file directory (dir_name). The length of the
directory name shall not be greater than 128.

LANGUAGE_CODE_Type: the type of a language code. It is a string which contains either 2 or 3 characters,
and that defines a language according respectively to ISO 639-1 or ISO 639-2.

8.2.1.2 Illustration

An illustration is an informative item that may be a schematic drawing, a realistic picture, or any other
informative element that is not a static picture, whose content is defined by an http file possibly translated. An
illustration may also be specified as being an A6 or an A9 standard format illustration. If such a standard size
is not provided, the window size recommended to display the illustration may be specified. An illustration is
represented by an ILLUSTRATION_Type XML complex type (see Figure 48).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

72 © ISO 2010 – All rights reserved

EXTERNAL_
RESOURCE_Type

ILLUSTRATION_Type

code: EXTERNAL_ITEM_CODE_TYPE_Type
kind_of_content: ILLUSTRATION_TYPE_Type
@standard_size: 0..1 STANDARD_SIZE_Type
height: 0..1 xs:integer
width: 0..1 xs:integer

Figure 48 — Simple-level ontology external resources: illustration

Internal item definitions:

@standard_size: if provided, specifies that the illustration is either an A6 or an A9 standard format illustration.

code: a code that identifies the illustration.

height: in case of a non standardized format illustration, specifies the height of the window recommended by
the library data supplier for viewing the illustration.

kind_of_content: the categorization of the illustration content, the value shall be schematic drawing, realistic
picture or not static picture.

width: in case of a non standardized format illustration, specifies the width of the window recommended by the
library data supplier for viewing the illustration.

NOTE The default height and width unit is millimeter.

Internal type definitions:

EXTERNAL_ITEM_CODE_TYPE_Type: an XML simple type specifying a string restriction: the string shall be
less or equal to 18 and shall not contain any space.

ILLUSTRATION_TYPE_Type: an XML simple type specifying a string restriction: the string shall be equal
either to “SCHEMATIC_DRAWING” or “REALISTIC_PICTURE” or “NOT_STATIC_PICTURE”.

STANDARD_SIZE_Type: an XML simple type specifying a string restriction: the string shall be equal either to
“a6_illustration” or “a9_illustration”.

External type definitions:

EXTERNAL_RESOURCE_Type: see 8.2.1.

Constraint specification:

The illustration code value is unique in the class where it is used to define the illustration.

Either both height and width are defined or none is defined.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 73

8.2.1.3 Message

A message is a short text, typically up to 255 characters, and that is supposed to be automatically displayed on
the screen of a user library user within a clearly defined work context. A message is not associated with any
particular window dimension. It may be provided in different languages, and it is stored in an http file (one file
for each language). A message is represented by a MESSAGE_Type XML complex type (see Figure 49).

EXTERNAL_
RESOURCE_Type

MESSAGE_Type

code: EXTERNAL_ITEM_CODE_TYPE_Type

Figure 49 — Simple-level ontology external resources: message

Internal item definitions:

code: a code that identifies the message.

Internal type definitions:

EXTERNAL_ITEM_CODE_TYPE_Type: an XML simple type specifying a string restriction: the string shall be
less or equal to 18 and shall not contain any space.

External type definitions:

EXTERNAL_RESOURCE_Type: see 8.2.1.

Constraint specification:

The message code value is unique in the class where it is used to define the illustration.

8.2.1.4 External files

An external file provides for exchanging graphical data by means of reference to external resources. It is
represented by an EXTERNAL_FILES_Type XML complex type (see Figure 50)

EXTERNAL_
RESOURCE_Type

EXTERNAL_FILES_Type

Figure 50 — Simple-level ontology external resources: external files

External type definitions:

EXTERNAL_RESOURCE_Type: see 8.2.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

74 © ISO 2010 – All rights reserved

8.2.2 Source document and graphics

Documentation that may be associated to a CIIM ontology concept is twofold:

⎯ source documents: general construct for referencing document-like documentation;

⎯ graphics: general construct for referencing graphics-like documentation.

8.2.2.1 Source document

External resources that represent a source document are represented by a SOURCE_DOCUMENT_Type
XML abstract complex type. It is illustrated in Figure 51.

SOURCE_DOCUMENT_Type

IDENTIFIED_
DOCUMENT_Type

REFERENCED_
DOCUMENT_Type

Figure 51 — External resources: source document

External type definitions:

IDENTIFIED_DOCUMENT_Type: see 8.2.2.1.1.

REFERENCED_DOCUMENT_Type: see 8.2.2.1.2.

8.2.2.1.1 Identified document

An identified document describes a document identified by its label. It is represented by an
IDENTIFIED_DOCUMENT_Type XML complex type (see Figure 52).

IDENTIFIED_DOCUMENT_Type

DOCUMENT_IDENTIFIER_Type

document_identifier

SOURCE_DOCUMENT_Type

Figure 52 — External resources: identified document

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 75

Internal item definitions:

document_identifier: the label (possibly translated) of the described document.

External type definitions:

DOCUMENT_IDENTIFIER_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

8.2.2.1.2 Referenced document

A referenced document enables to reference a document that is described and identified by a document ontology
concept. It is represented by a REFERENCED_DOCUMENT_Type XML complex type (see Figure 53).

REFERENCED_
DOCUMENT_Type

DOCUMENT

document_reference

SOURCE_DOCUMENT_Type

Figure 53 — External resources: referenced document

Internal item definitions:

document_reference: a reference to a document ontology concept identifier.

External type definitions:

SOURCE_DOCUMENT_Type: see 8.2.2.1.

8.2.2.2 Graphics

External resources that represent a graphics are represented by a GRAPHICS_Type XML abstract complex
type. It is illustrated in Figure 54.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

76 © ISO 2010 – All rights reserved

GRAPHICS_Type

REFERENCED_
GRAPHICS_Type

EXTERNAL_
GRAPHICS_Type

Figure 54 — External resources: graphics

External type definitions:

EXTERNAL_GRAPHICS_Type: see 8.2.2.2.1.

REFERENCED_GRAPHICS _Type: see 8.2.2.2.2.

8.2.2.2.1 External graphics

An external graphics enables to describe a graphics. It is represented by a EXTERNAL_GRAPHICS_Type
XML complex type (see Figure 55).

representation

EXTERNAL_
GRAPHICS_Type

EXTERNAL_
FILES_Type

GRAPHICS_Type

Figure 55 — External resources: external graphics

Internal item definitions:

representation: the external file(s) specifying the external graphics.

External type definitions:

EXTERNAL_FILES_Type: see 8.2.1.4.

GRAPHICS_Type: see 8.2.2.2.

Constraint specifications:

An EXTERNAL_GRAPHICS_Type shall provide a value to the inherited file XML element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 77

8.2.2.2.2 Referenced graphics

A referenced graphics enables to reference a graphics that is described and identified by a document ontology
concept. It is represented by a REFERENCED_GRAPHICS_Type XML complex type (see Figure 56).

REFERENCED_
GRAPHICS_Type

DOCUMENT

graphics_reference

GRAPHICS_Type

Figure 56 — External resources: referenced graphics

Internal item definitions:

graphics_reference: a reference to a document ontology concept identifier.

External type definitions:

GRAPHICS_Type: see 8.2.2.2.

Constraint specifications:

A REFERENCED_GRAPHICS_Type shall not provide a value to the inherited file XML element.

8.3 Data type system

OntoML provides resources for describing data types that allow to constrain domain of values assigned to
properties. Simple (Boolean, real, string, …) to complex data types (named type, collections, classes, …) are
available. Every datatype is defined as a subtype of the ANY_TYPE_Type XML complex type. Figure 57 gives
an overview of the main data types available in OntoML.

NOTE 1 The lexical representation of the value of each datatype belonging to the OntoML data type system is
defined in Annex D. In the next subclauses, each data type specification references its corresponding lexical
representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

78 © ISO 2010 – All rights reserved

BOOLEAN_TYPE_TypeBOOLEAN_TYPE_Type

ANY_TYPE_Type

STRING_TYPE_TypeSTRING_TYPE_Type

NON_QUANTITATIVE
_CODE_TYPE_Type

NON_QUANTITATIVE
_CODE_TYPE_Type

URI_TYPE_TypeURI_TYPE_Type

TRANSLATABLE
_STRING_TYPE_Type

TRANSLATABLE
_STRING_TYPE_Type

NON_TRANSLATABLE
_STRING_TYPE_Type
NON_TRANSLATABLE
_STRING_TYPE_Type

NUMBER_TYPE_TypeNUMBER_TYPE_Type

REAL_TYPE_TypeREAL_TYPE_Type

INT_TYPE_TypeINT_TYPE_Type

REAL_CURRENCY
_TYPE_Type

REAL_CURRENCY
_TYPE_Type

INT_CURRENCY
_TYPE_Type

INT_CURRENCY
_TYPE_Type

REAL_MEASURE
_TYPE_Type

REAL_MEASURE
_TYPE_Type

INT_MEASURE
_TYPE_Type

INT_MEASURE
_TYPE_Type

NON_QUANTITATIVE
_INT_TYPE_Type

NON_QUANTITATIVE
_INT_TYPE_Type

BAG_TYPE_Type

SET_TYPE_Type

LIST_TYPE_Type

ARRAY_TYPE_Type

SET_WITH_SUBSET_
CONSTRAINT_

TYPE_Type

BAG_TYPE_TypeBAG_TYPE_Type

SET_TYPE_TypeSET_TYPE_Type

LIST_TYPE_TypeLIST_TYPE_Type

ARRAY_TYPE_TypeARRAY_TYPE_Type

SET_WITH_SUBSET_
CONSTRAINT_

TYPE_Type

SET_WITH_SUBSET_
CONSTRAINT_

TYPE_Type

CLASS_REFERENCE
_TYPE_Type

LEVEL_TYPE_Type

NAMED_TYPE_Type

CLASS_REFERENCE
_TYPE_Type

CLASS_REFERENCE
_TYPE_Type

LEVEL_TYPE_TypeLEVEL_TYPE_Type

NAMED_TYPE_TypeNAMED_TYPE_Type

DATE_TIME
_DATA_TYPE_Type

DATE_TIME
_DATA_TYPE_Type

DATE
_DATA_TYPE_Type

DATE
_DATA_TYPE_Type

TIME_
_DATA_TYPE_Type

TIME_
_DATA_TYPE_Type

DOMAIN_
CONSTRAINTS_Type

DOMAIN_
CONSTRAINT_Type

constraints 0..1 constraint 1..*

RATIONAL_TYPE_TypeRATIONAL_TYPE_Type

RATIONAL_MEASURE
_TYPE_Type

RATIONAL_MEASURE
_TYPE_Type

Figure 57 — OntoML datatype system

Internal element definitions:

constraints: the set of domain constraints that restrict the domain of values of the data type.

NOTE 2 Each domain constraint in the constraints collection must be fulfilled. Thus the constraints collection
specifies a conjunction of constraints

Internal type definitions:

DOMAIN_CONSTRAINTS_Type: domain constraint collection.

External type definitions:

ARRAY_TYPE_Type: array collection, see 8.3.9.4.

BAG_TYPE_Type: bag collection, see 8.3.9.1.

BOOLEAN_TYPE_Type: Boolean type, see 8.3.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 79

CLASS_REFERENCE_TYPE_Type: reference to an identified class type, see 8.3.10.

DATE_TIME_DATA_TYPE_Type: date and time type, see 8.3.3.

DATE_DATA_TYPE_Type: date type, see 8.3.3.

DOMAIN_CONSTRAINT_Type: data type constraint, see 8.5.3.3.

INT_CURRENCY_TYPE_Type: integer currency type, see 8.3.6.

INT_MEASURE_TYPE_Type: integer without unit type, see 8.3.7.

INT_TYPE_Type: integer without unit type, see 8.3.5.

LEVEL_TYPE_Type: level type, see 8.3.11.

LIST_TYPE_Type: list collection, see 8.3.9.3.

NAMED_TYPE_Type: reference to an identified data type, see 8.3.12.

NON_QUANTITATIVE_CODE_TYPE_Type: enumeration of string codes type, see 8.3.4.

NON_QUANTITATIVE_INT_TYPE_Type: enumeration of integer codes type, see 8.3.8.

NON_TRANSLATABLE_STRING_TYPE_Type: non translatable string, see 8.3.2.

NUMBER_TYPE_Type: number type, see 8.3.5.

RATIONAL_TYPE_Type: rational type, see 8.3.5.

RATIONAL_MEASURE_TYPE_Type: rational measure type, see 8.3.7.

REAL_TYPE_Type: real without unit type, see 8.3.5.

REAL_CURRENCY_TYPE_Type: real currency type, see 8.3.6.

REAL_MEASURE_TYPE_Type: real with unit type, see 8.3.7.

URI_TYPE_Type: string representing a URI, see 8.3.2.

SET_TYPE_Type: set collection, see 8.3.9.2.

SET_WITH_SUBSET_CONSTRAINT_TYPE_Type: explicitly defined set collection, see 8.3.9.

STRING_TYPE_Type: string type, see 8.3.2.

TIME_DATA_TYPE_Type: time type, see 8.3.3.

TRANSLATABLE_STRING_TYPE_Type: translatable string type, see 8.3.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

80 © ISO 2010 – All rights reserved

8.3.1 Boolean type

A Boolean type is defined using the BOOLEAN_TYPE_Type XML complex type. It is represented in Figure 58.

BOOLEAN_TYPE_Type

ANY_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

Figure 58 — Boolean type structure

Internal item definition:

value_format: the specification of the type and length of the recommended presentation for displaying the
value of a property. If present, this attribute provides guidance to the system about how the value should be
displayed.

Internal type definition:

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 1 No standard value is defined for this element.

Internal subtype definitions:

BOOLEAN_TYPE_Type: provides for values of properties or user types that are of type Boolean.

NOTE 2 The lexical representation of a value whose data type is BOOLEAN_TYPE_type is defined in Annex D,
Clause D.1.1.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.2 String types

The value domain defined by strings is a sequence of any kind of characters. A basic OntoML string type is
defined by the STRING_TYPE_Type XML complex type. It may be further qualified as a localized string
(TRANSLATABLE_STRING_TYPE_Type XML complex type), a string that is not translatable
(NON_TRANSLATABLE_STRING_TYPE_Type XML complex type) or a string that represents an HTTP
address (URI_TYPE_Type XML complex type). Figure 59 illustrates these resources.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 81

ANY_TYPE_Type

STRING_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

NON_TRANSLATABLE_STRING_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

TRANSLATABLE_STRING_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

URI_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

Figure 59 — String types structure

Internal item definition:

value_format (STRING_TYPE_Type, TRANSLATABLE_STRING_TYPE_Type,
NON_TRANSLATABLE_STRING_TYPE_Type, URI_TYPE_Type): the specification of the type and length of
the recommended presentation for displaying the value of a property. If present, this attribute provides
guidance to the system about how the value should be displayed.

NOTE 1 value_format must not be used to restrict string type definitions.

NOTE 2 If value_format is not compatible with the associated string type definition, value_format will be ignored.

NOTE 3 If any string pattern constraint (see 8.5.3.3.2) applies to the value of a string type, then it takes precedence
on the value_format.

Internal type definition:

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 4 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Internal subtype definitions:

NON_TRANSLATABLE_STRING_TYPE_Type: provides for values of properties or user types that are of
type string, but that are represented in the same way in any languages.

NOTE 5 The lexical representation of a value whose data type is NON_TRANSLATABLE_STRING_TYPE_Type is
defined in Annex D, Clause D.1.6.

STRING_TYPE_Type: provides for values of properties or user types that are of type string.

NOTE 6 The lexical representation of a value whose data type is STRING_TYPE_Type is defined in Annex D,
Clause D.1.2.

TRANSLATABLE_STRING_TYPE_Type: provides for values of properties or user types that are of type
string, but that are supposed to be represented as different strings in different languages.

NOTE 7 The lexical representation of a value whose data type is TRANSLATABLE_STRING_TYPE_Type is
defined in Annex D, Clause D.1.4.

NOTE 8 The source_language XML element (defined in the PROPERTY_DET XML complex type, see 6.7.4) of a
property whose data type (domain XML element) is defined as a TRANSLATABLE_STRING_TYPE_Type plays the role
of the root language in which string property values are converted to identify same values when represented in different
language.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

82 © ISO 2010 – All rights reserved

URI_TYPE_Type: provides for values of properties or user types that are of type string, but represents a URI.

NOTE 9 The lexical representation of a value whose data type is URL_TYPE_Type is defined in Annex D,
Clause D.1.5.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.3 Date and time type

The value domain defined by date and time types is a sequence of characters that fulfills the representation
rules defined in ISO 8601. A date and time type may represent either both a date and a time
(DATE_TIME_DATA_TYPE_Type XML complex type), or a single date (DATE_DATA_TYPE_Type XML
complex type) or a single time (TIME_DATA_TYPE_Type XML complex type). Figure 60 illustrates these
resources.

ANY_TYPE_Type

DATE_TIME_DATA_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

DATE_DATA_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

TIME_DATA_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

Figure 60 — Date and time types structure

Internal item definition:

value_format (DATE_TIME_DATA_TYPE_Type, TIME_DATA_TYPE_Type and
DATE_DATA_TYPE_Type): the specification of the type and length of the recommended presentation for
displaying the value of a property. If present, this attribute provides guidance to the system about how the
value should be displayed.

NOTE 1 value_format must not be used to restrict date and time type definitions.

NOTE 2 If value_format is not compatible with the associated date and time type definition, value_format will be
ignored.

NOTE 3 If any string pattern constraint (see 8.5.3.3.2) applies to the value of a date and time type, then it takes
precedence on the value_format.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 83

Internal type definition:

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 4 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Internal subtype definitions:

DATE_DATA_TYPE_Type: provides for values of properties or user types that are of type date.

NOTE 5 The lexical representation of a value whose data type is DATE_DATA_TYPE_Type is defined in Annex D,
Clause D.1.8.

DATE_TIME_DATA_TYPE_Type: provides for values of properties or user types that are of type date-time.

NOTE 6 The lexical representation of a value whose data type is DATE_TIME_DATA_TYPE_Type is defined in
Annex D, Clause D.1.7.

TIME_DATA_TYPE_Type: provides for values of properties or user types that are of type time

NOTE 7 The lexical representation of a value whose data type is TIME_DATA_TYPE_Type is defined in Annex D,
Clause D.1.9.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.4 Enumeration of string codes type

A string that shall take its value among a set of enumerated codes is represented by the
NON_QUANTITATIVE_CODE_TYPE_Type XML complex type. Each of those codes is associated to a
meaning. It is illustrated in Figure 61.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

84 © ISO 2010 – All rights reserved

ANY_TYPE_Type

NON_QUANTITATIVE_CODE_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

ITS_VALUES_Type

definition 0..1

icon0..1

DIC_VALUE_Type

dic_value

its_values

source_doc_of_
value_domain

0..1

1..*

@value_meaning_id: 0..1 DicValueId
is_deprecated: 0..1 xs:boolean
status: 0..1 STATUS_Type

short_name 0..1

preferred_name

synonymous_names 0..1

icon 0..1

0..1 source_doc_of_definition

0..1 definition

SOURCE_
DOCUMENT_Type

GRAPHICS_Type

SHORT_NAME_Type

PREFERRED_NAME_Type

TEXT_Type

SYNONYMOUS_NAME_Type

SOURCE_
DOCUMENT_Type

GRAPHICS_Type
TEXT_Type

STRING_DIC_VALUE_Type

value_code: VALUE_CODE_TYPE_Type

0..1 is_deprecated_interpretation

Figure 61 — Enumeration of string codes type structure

The enumeration items are defined in an XML element container called its_values whose content model is
defined by is a ITS_VALUES_Type XML complex type. Each enumeration item is represented through a
dic_value XML element. Its own content model is defined as a DIC_VALUE_Type, an more precisely, in case
of the specification of an enumeration of string codes, by its specific STRING_DIC_VALUE_Type XML
complex type subtype.

Internal item definition:

definition: the text describing this enumeration, possibly translated.

icon: a graphics representing the description associated with the enumeration.

its_values: enumeration items container.

its_values/dic_value: enumeration item.

NOTE 1 Each dic_value XML element content model is represented as a STRING_DIC_VALUE_Type XML
complex type.

its_values/dic_value/definition: the text describing this enumeration item, possibly translated.

its_values/dic_value/icon: a graphics representing the description associated with the enumeration item
names.

its_values/dic_value/is_deprecated: a Boolean that specifies, when true, that the enumeration item shall no
longer be used.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 85

NOTE 2 When is_deprecated is not defined, the dic_value is not deprecated.

NOTE 3 Deprecated dic_values are left in the its_values collection for upward compatibility reasons.

its_values/dic_value/is_deprecated_interpretation: specify the deprecation rationale and how instance
values of the deprecated element should be interpreted.

NOTE 4 Instance values of the deprecated element shall be defined at the time where deprecation decision was
taken.

its_values/dic_value/preferred_name: the name of the enumeration item that is preferred for use, possibly
translated.

its_values/dic_value/short_name: the abbreviation of the preferred name, possibly translated.

its_values/dic_value/source_doc_of_definition: the possible source document from which the enumeration
item definition comes.

its_values/dic_value/status: defines the life cycle state of the enumeration item.

NOTE 5 Allowed status values are defined by private agreement between the dictionary supplier and dictionary
users.

NOTE 6 If the status XML element is not provided, and if the enumeration item is not deprecated as denoted by a
possible is_deprecated XML element, then the enumeration item has the same standardization status as the whole
ontology into which it is used. In particular, if the ontology is standardized, this enumeration item is part of the current
edition of the standard.

its_values/dic_value/synonymous_names: the set of synonymous names of the preferred name, possibly
translated.

its_values/dic_value/value_code: the enumeration item value.

its_values/dic_value/@value_meaning_id: an identifier that is a global identifier of the value, independently
of the value domain in which it is included.

NOTE 7 This identifier allows to reuse the same dic_value definition in various domains.

source_doc_of_value_domain: the possible source document from which the enumeration definition comes.

value_format: the specification of the type and length of the recommended presentation for displaying the
value of a property. If present, this attribute provides guidance to the system about how the value should be
displayed.

NOTE 8 value_format must not be used to restrict an enumeration of string code type definition.

NOTE 9 If value_format is not compatible with the associated enumeration of string code type definition,
value_format will be ignored.

NOTE 10 If any string pattern constraint (see 8.5.3.3.2) applies to the value of an enumeration of string codes type,
then it takes precedence on the value_format.

Internal type definition:

STATUS_Type: a string (xs:string XML Schema datatype) that represents the values allowed for a status.

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 11 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

86 © ISO 2010 – All rights reserved

Internal subtype definition:

NON_QUANTITATIVE_CODE_TYPE_Type: provides for values of properties or user types that are of type
enumeration of string codes.

NOTE 12 The lexical representation of a value whose data type is NON_QUANTITATIVE_CODE_TYPE_Type is
defined in Annex D, Clause D.1.3.

External type definition:

ANY_TYPE_Type: see 8.3.

GRAPHICS_Type: see 8.2.2.2.

PREFERRED_NAME_Type: see 8.1.2.

SHORT_NAME_Type: see 8.1.2.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

SYNONYMOUS_NAME_Type: see 8.1.2.

TEXT_Type: see 8.1.2.

Constraint specification:

Instance values of is_deprecated_interpretation element shall be defined at the time where deprecation
decision was taken.

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.5 Numeric types

A numeric value may be represented as a general value (NUMBER_TYPE_Type), or as a real
(REAL_TYPE_Type) or as an integer (INT_TYPE_Type) value or as a rational value
(RATIONAL_TYPE_Type).

Representation of numerics is given in Figure 62.

ANY_TYPE_Type

REAL_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

NUMBER_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

INT_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

RATIONAL_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

Figure 62 — Numeric types structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 87

Internal item definition:

value_format (NUMBER_TYPE_Type, REAL_TYPE_Type, INT_TYPE_Type, RATIONAL_TYPE_Type): the
specification of the type and length of the recommended presentation for displaying the value of a property. If
present, this attribute provides guidance to the system about how the value should be displayed.

NOTE 1 value_format must not be used to restrict a numeric type definition.

NOTE 2 If value_format is not compatible with the associated numeric type definition, value_format will be
ignored.

NOTE 3 If any string pattern constraint (see 8.5.3.3.2) applies to the value of a numeric type, then it takes
precedence on the value_format.

Internal type definition:

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 4 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Internal subtype definitions:

INT_TYPE_Type: provides for values of properties or user types that are of type integer.

NOTE 5 The lexical representation of a value whose data type is INT_TYPE_Type is defined in Annex D,
Clause D.1.12.

NUMBER_TYPE_Type: provides for values of properties or user types that are of type number.

NOTE 6 The lexical representation of a value whose data type is NUMBER_TYPE_Type is defined in Annex D,
Clause D.1.10.

RATIONAL_TYPE_Type: provides for values of properties or user types that are of type rational.

NOTE 7 The lexical representation of a value whose data type is RATIONAL_TYPE_Type is defined in Annex D,
Clause D.1.13.

REAL_TYPE_Type: provides for values of properties or user types that are of type real.

NOTE 8 The lexical representation of a value whose data type is REAL_TYPE_Type is defined in Annex D,
Clause D.1.11.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.6 Numeric currency types

Both integer and real value domains may represent a currency. The former is represented by the OntoML
INT_CURRENCY_TYPE_Type XML complex type, the latter by the OntoML REAL_CURRENCY_TYPE_Type
XML complex type. Figure 63 Illustrates the numeric currency types representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

88 © ISO 2010 – All rights reserved

ANY_TYPE_Type

REAL_CURRENCY_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type
currency: 0..1 CURRENCY_CODE_Type
currency_id: 0..1 CurrencyId

INT_CURRENCY_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type
currency: 0..1 CURRENCY_CODE_Type
currency_id: 0..1 CurrencyId

Figure 63 — Numeric currency types structure

Internal item definition:

currency (REAL_CURRENCY_TYPE_Type, INT_CURRENCY_TYPE_Type): the possible associated code
of the described currency.

NOTE 1 currency is expressed according ISO 4217.

NOTE 2 When not defined, the currency is intended to be explicitly represented at the library level.

currency_id (REAL_CURRENCY_TYPE_Type, INT_CURRENCY_TYPE_Type): the possible identifier of the
currency associated to the described currency.

NOTE 3 When both currency and currency_id are provided, currency takes precedence.

NOTE 4 If the value of a property whose domain is a currency is exchanged as a single number, this means that this
value is expressed in the currency or currency_id currency.

value_format (REAL_CURRENCY_Type, INT_CURRENCY_Type): the specification of the type and length
of the recommended presentation for displaying the value of a property. If present, this attribute provides for
guidance to the system about how the value should be displayed.

NOTE 5 value_format must not be used to restrict a currency type definition.

NOTE 6 If value_format is not compatible with the associated currency type definition, value_format will be
ignored.

NOTE 7 If any string pattern constraint (see 8.5.3.3.2) applies to the value of a currency type, then it takes
precedence on the value_format.

Internal type definition:

CURRENCY_CODE_Type: a string (xs:string XML Schema datatype) that represents the values allowed for
a currency. This string length shall be equal to 3 characters.

EXAMPLE Currency values could be "CHF" for Swiss Francs, "CNY" for Yuan Renminbi (Chinese), "JPY" for Yen
(Japanese), "SUR" for SU Rouble, "USD" for US Dollars, "EUR" for Euros etc ...

CurrencyId: see 9.1.4.

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 8 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 89

Internal subtype definitions:

INT_CURRENCY_TYPE_Type: provides for values of properties or user types that are of type integer
currency.

NOTE 9 The lexical representation of a value whose data type is INT_CURRENCY_TYPE_Type is defined in
Annex D, Clause D.1.15.

REAL_CURRENCY_TYPE_Type: provides for values of properties or user types that are of type real
currency.

NOTE 10 The lexical representation of a value whose data type is REAL_CURRENCY_TYPE_Ttype is defined in
Annex D, Clause D.1.16.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

Either a currency is provided, or a currency_id or both.

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.7 Numeric measure types

Integer, real and rational value domains may represent a measure. The first is represented by the OntoML
INT_MEASURE_TYPE_Type XML complex type, the second by the OntoML REAL_MEASURE_TYPE_Type
XML complex type, and the third by the RATIONAL_MEASURE_TYPE_Type XML complex type. Figure 64
illustrates the numeric measure types representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

90 © ISO 2010 – All rights reserved

REAL_MEASURE_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

INT_MEASURE_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

unit

DIC_UNIT_Type

unit

alternative_units

ALTERNATIVE_
UNITS_Type

1..*
dic_unit

0..1

ANY_TYPE_Type

alternative_units

0..1

DIC_UNITS
_REFERENCE_Type

alternative_unit_ids

alternative_unit_ids0..1

0..1

dic_unit

1..*

DIC_UNIT_REFERENCE_Type

@dic_unit_ref: DicUnitId

0..10..1

unit_id 0..1
0..1 unit_id

RATIONAL_MEASURE_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

unit

0..1

0..1

alternative_units

0..1 alternative_unit_ids

0..1 unit_id

Figure 64 — Numeric measure types structure

Internal item definition:

@dic_unit_ref (DIC_UNIT_REFERENCE_Type): the reference to the dictionary unit.

alternative_units (REAL_MEASURE_TYPE_Type, INT_MEASURE_TYPE_Type,
RATIONAL_MEASURE_TYPE_Type): the list of other units that may be used to express the value of the
property whose value domain is a measure.

alternative_unit_ids (REAL_MEASURE_TYPE_Type, INT_MEASURE_TYPE_Type,
RATIONAL_MEASURE_TYPE_Type): the list of identifiers of other units that may be used to express the
value of the property whose value domain is a measure.

NOTE 1 When the value of a property whose domain is a measure is evaluated in a unit either defined by means of
alternative_units or identified by means of alternative_unit_ids, its value cannot be represented as a single real. It
needs to be represented as a pair (value, unit).

NOTE 2 The list order is used to ensure that alternative_units and alternative_unit_ids, if both exist define the
same unit in the same order.

dic_unit (ALTERNATIVE_UNITS_Type): the specification of an alternative unit.

dic_unit (DIC_UNITS_REFERENCE_Type): the specification of an reference to an alternative unit.

unit (REAL_MEASURE_TYPE_Type, INT_MEASURE_TYPE_Type, RATIONAL_MEASURE_TYPE_Type):
the default unit of reference associated to the described measure.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 91

NOTE 3 If the value of a property, whose value domain is a measure, is exchanged as a single number, this means
that this value is expressed in this defined unit.

unit_id (REAL_MEASURE_TYPE_Type, INT_MEASURE_TYPE_Type,
RATIONAL_MEASURE_TYPE_Type): the identifier of the default unit of reference associated to the
described measure.

NOTE 4 When both unit and unit_id are provided, unit takes precedence.

NOTE 5 If the value of a property whose domain is a measure is exchanged as a single number, this means that
this value is expressed in the unit or unit_id unit of measure.

value_format (REAL_MEASURE_TYPE_Type, INT_MEASURE_TYPE_Type,
RATIONAL_MEASURE_TYPE_Type): the specification of the type and length of the recommended
presentation for displaying the value of a property. If present, this attribute provides guidance to the system
about how the value should be displayed.

NOTE 6 value_format must not be used to restrict a numeric measure type definition.

NOTE 7 If value_format is not compatible with the associated numeric measure type definition, value_format will
be ignored.

NOTE 8 If any string pattern constraint (see 8.5.3.3.2) applies to the value of a measure type, then it takes
precedence on the value_format.

Internal type definition:

ALTERNATIVE_UNITS_Type: the set of possible alternative units.

DIC_UNIT_Type: the specification of a dictionary unit, see 8.4.

DIC_UNITS_REFERENCE_Type: the specification of a set of references to some unit identifiers.

DIC_UNIT_REFERENCE_Type: the specification of a reference to a unit identifier.

NOTE 9 The unit identifier is built according to the rules defined in ISO/TS 29002-5.

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 10 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Internal subtype definitions:

INT_MEASURE_TYPE_Type: provides for values of properties or user types that are of type integer measure.

NOTE 11 The lexical representation of a value whose data type is INT_MEASURE_TYPE_Type is defined in
Annex D, Clause D.1.17.

RATIONAL_MEASURE_TYPE_Type: provides for values of properties or user types that are of type rational
measure.

EXAMPLE Screw diameter: 4 1/8 inches.

NOTE 12 The lexical representation of a value whose data type is RATIONAL_MEASURE_TYPE_Type is defined in
Annex D, Clause D.1.18.

REAL_MEASURE_TYPE_Type: provides for values of properties or user types that are of type real measure.

NOTE 13 The lexical representation of a value whose data type is REAL_MEASURE_TYPE_Type is defined in
Annex D, Clause D.1.16.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

92 © ISO 2010 – All rights reserved

External type definition:

ANY_TYPE_Type: see 8.3.

DIC_UNIT_Type: see 8.4.

Constraint specifications:

Either a unit is provided, or a unit_id or both.

If both alternative_units and alternative_unit_ids collections are provided, they shall have the same length.

Each dic_unit described in the alternative_units collection shall have a string_representation.

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

8.3.8 Enumeration of integer codes type

An integer that shall take its value among a set of enumerated codes is represented by the
NON_QUANTITATIVE_INT_TYPE_Type XML complex type. Each of those codes is associated to a meaning.
It is illustrated in Figure 65.

ANY_TYPE_Type

NON_QUANTITATIVE_INT_TYPE_Type

value_format: 0..1 VALUE_FORMAT_TYPE_Type

definition 0..1

icon0..1

DIC_VALUE_Type

dic_value

its_values

source_doc_of_
value_domain

0..1

1..*

SOURCE_
DOCUMENT_Type

GRAPHICS_Type

TEXT_Type

INT_DIC_VALUE_Type

value_code: VALUE_INT_TYPE_Type

ITS_VALUES_Type

Figure 65 — Enumeration of integer codes type structure

The enumeration items are defined in an XML element container called its_values whose content model is
defined by is a ITS_VALUES_Type XML complex type. Each enumeration item is represented through the
dic_value XML element. Its own content model is defined as a DIC_VALUE_Type, an more precisely, in case
of the specification of an enumeration of integer codes, by its specific INT_DIC_VALUE_Type XML complex
type subtype.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 93

Internal item definition:

definition: the text describing this enumeration, possibly translated.

icon: a graphics representing the description associated with the enumeration.

its_values: enumeration items container.

its_values/dic_value/value_code: the enumeration item integer value.

NOTE 1 Each dic_value XML element content model (defined in the ITS_VALUES_Type XML complex type) is
represented as a INT_DIC_VALUE_Type XML complex type.

source_doc_of_value_domain: the possible source document from which the enumeration definition comes.

value_format: the specification of the type and length of the recommended presentation for displaying the
value of a property. If present, this attribute provides guidance to the system about how the value should be
displayed.

NOTE 2 value_format must not be used to restrict a numeric measure type definition.

NOTE 3 If value_format is not compatible with the associated numeric measure type definition, value_format will
be ignored.

NOTE 4 If any string pattern constraint (see 8.5.3.3.2) applies to the value of an enumeration of integer codes type,
then it takes precedence on the value_format.

Internal type definition:

GRAPHICS_Type: an XML abstract complex type representing an external resource that is a graphics.

VALUE_FORMAT_TYPE_Type: identifies the values allowed for a value format.

NOTE 5 VALUE_FORMAT_TYPE_Type values are defined according to Annex H.

Internal subtype definition:

NON_QUANTITATIVE_INT_TYPE_Type: provides for values of properties or user types that are of type
enumeration of integer codes.

NOTE 6 The lexical representation of a value whose data type is NON_QUANTITATIVE_INT_TYPE_Type is
defined in Annex D, Clause D.1.19.

External type definition:

ANY_TYPE_Type: see 8.3.

DIC_VALUE_Type: see 8.3.3.

ITS_VALUES_Type: see 8.3.3.

SOURCE_DOCUMENT_Type: see 8.2.2.1.

TEXT_Type: see 8.1.2.

Constraint specification:

The length of a VALUE_FORMAT_TYPE_Type value shall not exceed 80 characters.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

94 © ISO 2010 – All rights reserved

8.3.9 Collection types

Collections provide for the definition of data types that may be expressed as lists, sets, bags, arrays or
constrained subsets of any kind of values. Five kind of collections are distinguished: bag, set, list, array and set
with a subset constraint.

8.3.9.1 Bag type

A bag is an unordered collection of values that may contain duplicates A bag type is represented as a
BAG_TYPE_Type XML complex type as illustrated in Figure 66.

ANY_TYPE_Type

BAG_TYPE_Type

bound_1: 0..1 xs:integer
bound_2: 0..1 xs:integer

value_type

Figure 66 — Bag type structure

Internal item definition:

value_type: type of value (simple or complex) which is used for each element of the bag.

bound_1: the possible minimal cardinality of the bag.

bound_2: the possible maximal cardinality of the bag.

Internal subtype definition:

BAG_TYPE_Type: provides for values of properties or user types that are of type unordered collection of
typed values with possible duplicates.

NOTE The lexical representation of a value whose data type is BAG_TYPE_Type is defined in Annex D,
Clause D.1.20.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

If bound_1 is defined, it is greater or equal to 0. Otherwise, its default value is equal to 0.

If bound_2 is defined, it is greater than 0. Otherwise, its default value is equal to unknown (unbounded).

If bound_2 is defined, bound_1 is also defined, and bound_2 is greater than bound_1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 95

8.3.9.2 Set type

A set is an unordered collection of values that does not contain duplicates. A set type is represented as a
SET_TYPE_Type XML complex type as illustrated in Figure 67.

ANY_TYPE_Type

SET_TYPE_Type

bound_1: 0..1 xs:integer
bound_2: 0..1 xs:integer

Figure 67 — Set type structure

Internal item definition:

value_type: type of value (simple or complex) which is used for each element of the set.

bound_1: the possible minimal cardinality of the set.

bound_2: the possible maximal cardinality of the set.

Internal subtype definition:

SET_TYPE_Type: provides for values of properties or user types that are of type unordered collection of typed
values without duplicates.

NOTE The lexical representation of a value whose data type is SET_TYPE_Type is defined in Annex D,
Clause D.1.21.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

If bound_1 is defined, it is greater or equal to 0. Otherwise, its default value is equal to 0.

If bound_2 is defined, it is greater than 0. Otherwise, its default value is equal to unknown (unbounded).

If bound_2 is defined, bound_1 is also defined, and bound_2 is greater than bound_1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

96 © ISO 2010 – All rights reserved

8.3.9.3 List type

A list is an ordered collection of values, possibly unique. A list type is represented as a LIST_TYPE_Type XML
complex type as illustrated in Figure 68.

ANY_TYPE_Type

LIST_TYPE_Type

bound_1: 0..1 xs:integer
bound_2: 0..1 xs:integer
uniqueness: xs:boolean

value_type

Figure 68 — List type structure

Internal item definition:

value_type: type of value (simple or complex) which is used for each element of the list.

bound_1: the possible minimal cardinality of the set.

bound_2: the possible maximal cardinality of the set.

uniqueness: a Boolean flag to indicate whether all elements of the list shall be unique (true) or whether
duplicates are allowed (false).

Internal subtype definition:

LIST_TYPE_Type: provides for values of properties or user types that are of type ordered collection of typed
values, possibly unique.

NOTE The lexical representation of a value whose data type is LIST_TYPE_Type is defined in Annex D,
Clause D.1.22.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

If bound_1 is defined, it is greater or equal to 0. Otherwise, its default value is equal to 0.

If bound_2 is defined, it is greater than 0. Otherwise, its default value is equal to unknown (unbounded).

If bound_2 is defined, bound_1 is also defined, and bound_2 is greater or equal than bound_1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 97

8.3.9.4 Array type

An array is an ordered collection of possibly unique and optional values, of fixed length, whose members are
indexed by a range of consecutive integers. An array type is represented as an ARRAY_TYPE_Type XML
complex type as illustrated in Figure 69.

ANY_TYPE_Type

ARRAY_TYPE_Type

bound_1: xs:integer
bound_2: xs:integer
uniqueness: xs:boolean
are_optional: xs:boolean

value_type

Figure 69 — Array type structure

Internal item definition:

value_type: type of value (simple or complex) which is used for each element of the array.

bound_1: the integer that defines the low index of the defined array type.

bound_2: the integer that defines the upper index of the defined array type.

uniqueness: a Boolean flag that indicates whether all elements of the array shall be present (false) or whether
some elements of the array may be missing (true).

are_optional: a Boolean flag that indicates whether all elements of the array shall be present (false) or
whether some elements of the array may be missing (true).

Internal subtype definition:

ARRAY_TYPE_Type: provides for values of properties or user types that are of type ordered and indexed
collection of typed values, possibly unique and optional.

NOTE The lexical representation of a value whose data type is ARRAY_TYPE_Type is defined in Annex D,
Clause D.1.23.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

bound_1 shall be less than or equal to bound_2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

98 © ISO 2010 – All rights reserved

8.3.9.5 Set with subset constraint type

A set with a subset constraint is an unordered collection of values that does not contain duplicates and for
which a subset of a minimal size to a maximal size may be extracted. A set with a subset constraint type is
represented as a SET_WITH_SUBSET_CONSTRAINT_TYPE_Type XML complex type as illustrated in
Figure 70.

ANY_TYPE_Type

SET_WITH_SUBSET_
CONSTRAINT_TYPE_Type

bound_1: 0..1 xs:integer
bound_2: 0..1 xs:integer
cardinal_min: 0..1 xs:integer
cardinal_max: 0..1 xs:integer

value_type

Figure 70 — Set with a subset constraint type structure

Internal item definition:

value_type: type of value (simple or complex) which is used for each element of the array.

bound_1: the integer that defines the low index of the defined set with a subset constraint type.

bound_2: the integer that defines the upper index of the defined set with a subset constraint type.

cardinal_min: the minimal size of the subsets that may be extracted.

cardinal_max: the maximal size of the subsets that may be extracted.

Internal subtype definition:

SET_WITH_SUBSET_CONSTRAINT_TYPE_Type: provides for values of properties or user types that are of
type unordered collection of values that does not contain duplicates and for which a subset of a minimal size to
a maximal size may be extracted.

NOTE The lexical representation of a value whose data type is SET_WITH_SUBSET_CONSTRAINT_Type is
defined in Annex D, Clause D.1.24.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

If bound_1 is defined, it is greater or equal to 0. Otherwise, its default value is equal to 0.

If bound_2 is defined, it is greater than 0. Otherwise, its default value is equal to unknown (unbounded).

If bound_2 is defined, bound_1 is also defined, and bound_2 is greater than bound_1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 99

cardinal_min is less or equal than cardinal_max.

If bound_1 and cardinal_min are defined, cardinal_min is not greater than bound_1.

If bound_2 and cardinal_max are defined, cardinal_max is not greater than bound_2.

8.3.10 Class reference type

A class reference type allows to define a property value domain that is a class instance.

NOTE 1 A property whose type is a class reference type establishes a relationship between both classes. This
relationship may be, for instance, a composition relationship.

EXAMPLE A bolted assembly may be constituted of a screw and a nut. Assuming that bolted assembly, screw and
nut are parts families, the bolted assembly constituents may be represented firstly by defining two properties in the bolted
assembly class (respectively its_screw and its_nut), and secondly by assigning to these properties a value domain that
would be a CLASS_REFERENCE_TYPE_Type, referencing respectively the screw class and the nut class.

A class reference type is represented as a CLASS_REFERENCE_TYPE_Type XML complex type as it is
illustrated in Figure 71.

CLASS_REFERENCE
_TYPE_Type

domain
CLASS

ANY_TYPE_Type

Figure 71 — Instance value domain structure

Internal item definition:

domain: a reference to the class ontology concept that defines the value domain of the data type.

Internal subtype definition:

CLASS_REFERENCE_TYPE_Type: provides for values of properties or user types that are of type instance
of a class.

NOTE 2 The lexical representation of a value whose data type is CLASS_REFERENCE_TYPE_Type is defined in
Annex D, Clause D.1.25.

External type definition:

ANY_TYPE_Type: see 8.3.

8.3.11 Level type

A is a complex type indicating that the value of a property consists of one up to four real measure or integer
measure values which define a characteristic of an item in the fixed sequence: min, nom, typ, max.

⎯ min: lowest value specified of a quantity, established for a specified set of operating conditions at which a
component, device or equipment is operable and performs according to specified requirements;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

100 © ISO 2010 – All rights reserved

⎯ nom: value of a quantity used to designate and identify a component, device, equipment, or system;

⎯ type: commonly encountered value of a quantity used for specification purposes, established for a
specified set of operating conditions of a component, device, equipment, or system;

⎯ max: highest value specified of a quantity, established for a specified set of operating conditions at which
a component device or equipment is operable and performs according to specified requirements.

NOTE 1 The nominal value is generally a rounded value.

EXAMPLE A 12 V (nominal) car battery has 6 cells with a typical voltage of about 2.2 V each, giving a typical
battery voltage of about 13.5 V. On charge, the voltage may reach a maximum of about 14.5 V but it is considered fully
discharged when the voltage falls below a minimum of 12.5 V.

NOTE 2 It is advised that the use of the level type is restricted to those properties that are applicable in domains
where the reporting of multiple values on a single characteristic is recognized as common practice and requested, as is
true for the electronic component industry.

It is represented as a LEVEL_TYPE_Type XML complex type as it is illustrated in Figure 72.

ANY_TYPE_Type

LEVEL_TYPE_Type

LEVEL_Type

min: 0..1
nom: 0..1
typ: 0..1
max: 0..1

levels

value_type

Figure 72 — Levels value domain structure

Internal item definition:

levels: the list of qualifiers that are associated with the property.

max: the maximal qualifier assigned to the property value domain.

min: the minimal qualifier assigned to the property value domain.

nom: the nominal qualifier assigned to the property value domain.

typ: the typical qualifier assigned to the property value domain.

value_type: type of value which is associated to the level specification.

NOTE 3 There isn’t any content model associated to the defined qualifiers. Therefore, no datatype is assigned to the
XML elements corresponding to each qualifier.

Internal item definition:

LEVEL_Type: the specification of the possible levels.

NOTE 4 Each level is represented as an optional and empty XML element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 101

Internal subtype definition:

LEVEL_TYPE_Type: provides for values of properties or user types that are of type qualified numeric values.

NOTE 5 The lexical representation of a value whose data type is LEVEL_TYPE_Type is defined in Annex D,
Clause D.1.26.

External type definition:

ANY_TYPE_Type: see 8.3.

Constraint specifications:

The underlying data type defined by the value_type XML element is a numeric measure type as defined in
Clause 8.3.7.

At least one qualifier is defined.

8.3.12 Named type

A named type enables to represent a domain of values as a reference to an identified data type ontology
concept (see 6.7.6). It is represented by a NAMED_TYPE_Type XML complex type as illustrated in Figure 73.

NAMED_TYPE_Type
referred_type

DATATYPE

ANY_TYPE_Type

Figure 73 — Named type structure

Internal item definition:

referred_type: a reference to the data type ontology concept that defines the value domain.

Internal subtype definition:

NAMED_TYPE_Type: provides for values of properties or user types that are of any kind of OntoML dataypes,
as specified by the referenced datatype.

NOTE The lexical representation of a value whose data type is NAMED_TYPE_Type is the lexial representation of
its underlying datatype.

External type definition:

ANY_TYPE_Type: see 8.3.

8.3.13 Advanced-level data types

The OntoML type system specifies datatypes that may be used to characterize complex property value
domains when describing a product ontology.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

102 © ISO 2010 – All rights reserved

These datatypes are defined in an ontology that is part of this standard.

NOTE 1 The ontology of advanced-level types is specified in Annex E.

Thus, each advanced-level data type is defined by a reference to an ontology class that specifies its value
structure. Property values may then be represented and exchanged according to ISO/TS 29002-10 constructs.

NOTE 2 ISO/TS 29002 is developed as a joint effort of several standardization committees to promote
interoperability between the various standards that require product characterization.

The extended data types that are supported by OntoML are described in Figure 74.

ANY_TYPE_Type

REPRESENTATION_
REFERENCE_TYPE_Type

PROGRAM_
REFERENCE_TYPE_Type

PLACEMENT_TYPE_Type

PROPERTIES

in_parameters

out_parameters

inout_parameters

0..*

0..*

0..*

@class_ref: 0..1 ClassId

@class_ref: 0..1 ClassId

@class_ref: 0..1 ClassId

AXIS1_PLACEMENT
_TYPE_Type

@class_ref: 0..1 ClassId

AXIS2_PLACEMENT
_2D_TYPE_Type

@class_ref: 0..1 ClassId

AXIS2_PLACEMENT
_3D_TYPE_Type

@class_ref: 0..1 ClassId

Figure 74 — Advanced-level data types structure

Internal item definition:

@class_ref (AXIS1_PLACEMENT_TYPE_Type): the possible reference to the ontology class that defines the
structure of the AXIS1_PLACEMENT_TYPE_Type.

NOTE 3 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
AXIS1_PLACEMENT#1” IRDI.

@class_ref (AXIS2_PLACEMENT_2D_TYPE_Type): the possible reference to the ontology class that
defines the structure of the AXIS2_PLACEMENT_2D_TYPE_Type.

NOTE 4 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_2D#1” IRDI.

@class_ref (AXIS2_PLACEMENT_3D_TYPE_Type): the possible reference to the ontology class that
defines the structure of the AXIS2_PLACEMENT_3D_TYPE_Type.

NOTE 5 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_3D#1” IRDI.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 103

@class_ref (PLACEMENT_TYPE_Type): the possible reference to the ontology class that defines the
structure of the PLACEMENT_TYPE_Type.

NOTE 6 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
PLACEMENT#1” IRDI.

@class_ref (PROGRAM_REFERENCE_TYPE_Type): the possible reference to the ontology class that
defines the structure of the PROGRAM_REFERENCE_TYPE_type.

NOTE 7 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
PROGRAM_REFERENCE#1” IRDI.

@class_ref (REPRESENTATION_REFERENCE_TYPE_Type): the possible reference to the ontology class
that defines the structure of the REPRESENTATION_REFERENCE_TYPE_Type.

NOTE 8 When provided, the @class_ref XML attribute shall be set to the “0112-1---13584_32_1#01-
REPRESENTATION_REFERENCE#1” IRDI.

in_parameters: the list of property references that specifies the type of the input parameters of the referenced
program.

inout_parameters: the list of property references that specifies the type of the inout parameters of the
referenced program.

out_parameters: the list of property references that specifies the type of the output parameters of the
referenced program.

Internal subtype definitions:

AXIS1_PLACEMENT_TYPE_Type: it allows to define a property value domain whose value is an instance of
the axis 1 placement ontology class that specifies a direction and a location in three-dimensional space of a
single axis.

NOTE 9 The lexical representation of a value whose data type is AXIS1_PLACEMENT_TYPE_Type is defined in
Annex D, Clause D.3.1.2.

NOTE 10 The axis 1 placement ontology class, identified by the “0112-1---13584_32_1#01-AXIS1_PLACEMENT#1”
IRDI, is specified in the advanced-level data type value structures ontology defined in Annex E.

NOTE 11 The axis 1 placement ontology class structure corresponds to the axis1_placement EXPRESS entity data
type structure specified in ISO 10303-42.

AXIS2_PLACEMENT_2D_TYPE_Type: it allows to define a property value domain whose value is an instance
of the axis 2 placement 2D ontology class that specifies a location and an orientation in two-dimensional space
of two mutually perpendicular axes.

NOTE 12 The lexical representation of a value whose data type is AXIS2_PLACEMENT_2D_TYPE_Type is defined
in Annex D, Clause D.3.1.3.

NOTE 13 The axis 2_placement 2D ontology class, identified by the “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_2D#1” IRDI, is specified in the advanced-level data type value structures ontology defined in
Annex E.

NOTE 14 The axis 2 placement 2D ontology class structure corresponds to the axis2_placement_2d EXPRESS entity
data type structure specified in ISO 10303-42.

AXIS2_PLACEMENT_3D_TYPE_Type: it allows to define a property value domain whose value is an instance
of the axis 2 placement 3D ontology class that specifies a location and an orientation in three-dimensional
space of two mutually perpendicular axes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

104 © ISO 2010 – All rights reserved

NOTE 15 The lexical representation of a value whose data type is AXIS2_PLACEMENT_3D_TYPE_Type is defined
in Annex D, Clause D.3.1.4.

NOTE 16 The axis 2 placement 3D ontology class, identified by the “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_3D#1” IRDI, is specified in the advanced-level data type value structures ontology defined in
Annex E.

NOTE 17 The axis 2 placement 3D ontology class structure corresponds to the axis2_placement_3d EXPRESS entity
data type structure specified in ISO 10303-42.

PLACEMENT_TYPE_Type: it allows to define a property value domain whose value is an instance of the
placement ontology class that specifies a position with respect to the coordinate system of its geometric
context.

NOTE 18 The lexical representation of a value whose data type is PLACEMENT_TYPE_Type is defined in Annex D,
Clause D.3.1.1.

NOTE 19 The placement ontology class, identified by the “0112-1---13584_32_1#01-PLACEMENT#1” IRDI, is
specified in the advanced-level data type value structures ontology defined in Annex E.

NOTE 20 The placement ontology class structure corresponds to the placement EXPRESS entity data type structure
specified in ISO 10303-42.

PROGRAM_REFERENCE_TYPE_Type: it allows to define a property value domain whose value is an
instance of the program reference ontology class containing an algorithm that shall be triggered and provided
with parameter values to generate each item representation.

NOTE 21 The lexical representation of a value whose data type is PROGRAM_REFERENCE_TYPE_Type is defined
in Annex D, Clause D.3.2.2.

NOTE 22 The program reference ontology class, identified by the “0112-1---13584_32_1#01-
PROGRAM_REFERENCE#1” IRDI, is specified in the advanced-level data type value structures ontology defined in
Annex E.

NOTE 23 The program reference ontology class structure corresponds to the program_reference EXPRESS entity
data type structure specified in ISO 13584-25.

REPRESENTATION_REFERENCE_TYPE_Type: it allows to define a property value domain whose value is
an instance of the representation reference ontology class.

NOTE 24 The lexical representation of a value whose data type is REPRESENTATION_REFERENCE_TYPE_Type
is defined in Annex D, Clause D.3.2.1.

NOTE 25 The representation reference ontology class, identified by the “0112-1---13584_32_1#01-
REPRESENTATION_REFERENCE#1” IRDI, is specified in the advanced-level data type value structures ontology
defined in Annex E.

NOTE 26 The representation reference ontology class structure corresponds to the representation reference
EXPRESS entity data type structure specified in ISO 13584-25.

External type definition:

ANY_TYPE_Type: see 8.3.

8.4 Units

Properties for which the data type represents a measure are associated with units.

NOTE 1 OntoML units are defined according to the ISO 10303-41 information model for representing units.

In OntoML, the unit of a measure property is represented by a DIC_UNIT_Type XML complex type as
illustrated in Figure 75.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 105

DIC_UNIT_Type

UNIT_Type
structured_representation 0..1

MATHEMATICAL_
STRING_Type

string_representation 0..1

@unit_ref: 0..1 DicUnitId

Figure 75 — General measure property unit structure

Internal item definition:

@unit_ref: the possible reference to a unit identifier.

string_representation: string representation of the measure property unit.

structured_representation: the explicit description of the measure property unit.

NOTE 2 If both a reference to a unit and the structured representation of the unit are provided, in case of
inconsistencies, the explicit representation takes precedence.

External type definitions:

MATHEMATICAL_STRING_Type: the representation of a mathematical string, see 8.8.2.

UNIT_Type: the unit specification, see 8.4.1.

Constraint specification:

Either a reference to a unit (unit_ref) or the explicit representation of the unit (structured_representation) or
both are provided.

8.4.1 Unit structure

A unit is defined using the UNIT_Type abstract XML complex type. It is represented in Figure 76.

DERIVED_UNIT_Type NAMED_UNIT_Type

UNIT_Type

Figure 76 — Basic unit structures

External type definitions:

DERIVED_UNIT_Type: derived unit, see 8.4.3.

EXAMPLE 1 Newton per square millimeter is a derived unit.

NAMED_UNIT_Type: named unit, see 8.4.2.

EXAMPLE 2 Millimeter or Pascal are kinds of named unit.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

106 © ISO 2010 – All rights reserved

8.4.2 Named unit

A named unit is a unit associated with the word, or group of words, by which the unit is identified. It is
represented by the NAMED_UNIT_Type XML complex type as illustrated in Figure 77.

NAMED_UNIT_Type
dimensions 0..1

SI_UNIT_Type

NON_SI_UNIT_Type

CONVERSION_BASED_
UNIT_Type

CONTEXT_DEPENDENT_
UNIT_Type

DIMENSIONAL_
EXPONENTS_Type

Figure 77 — Named unit general structure

Internal item definition:

dimensions: possible exponents of the base properties by which the named unit is defined.

Internal type definition:

DIMENSIONAL_EXPONENTS_Type: dimensional equation, see 8.4.2.1.

External type definitions:

CONTEXT_DEPENDENT_UNIT_Type: context dependent unit, see 8.4.2.5.

CONVERSION_BASED_UNIT_Type: a conversion based unit, see 8.4.2.4.

NON_SI_UNIT_Type: a non internationally standardized unit, see 8.4.2.3.

SI_UNIT_Type: an internationally standardized unit, see 8.4.2.2.

8.4.2.1 Dimensional exponent

A named unit may be associated to its dimensional equation. It is represented by the
DIMENSIONAL_EXPONENTS_Type XML complex type as illustrated in Figure 78.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 107

DIMENSIONAL_EXPONENTS_Type

length_exponent: xs:decimal
mass_exponent: xs:decimal
time_exponent: xs:decimal
electric_current_exponent: xs:decimal
thermodynamic_temperature: xs:decimal
amount_of_substance_exponent: xs:decimal
luminous_intensity_exponent: xs:decimal

Figure 78 — Dimensional exponent structure

Internal item definitions:

amount_of_substance_exponent: the power of the amount of substance base quantity.

electric_current_exponent: the power of the electric current base quantity.

length_exponent: the power of the length base quantity.

luminous_intensity_exponent: the power of the luminous intensity base quantity.

mass_exponent: the power of the mass base quantity.

thermodynamic_temperature: the power of the thermodynamic temperature base quantity.

time_exponent: the power of the time base quantity.

8.4.2.2 Internationally standardized unit

An internationally standardized unit is the fixed quantity used as a standard in terms whose items are
measured as defined by ISO 80000-1.

EXAMPLE 1 Millimeter is an internationally standardized unit.

An internationally standardized unit is specified through an optional prefix and the associated SI unit. It is
represented by the SI_UNIT_Type XML complex type as illustrated in Figure 79.

SI_UNIT_Type

prefix: 0..1 SI_PREFIX_Type
name: SI_UNIT_NAME_Type

NAMED_UNIT_Type

Figure 79 — International standardized unit structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

108 © ISO 2010 – All rights reserved

Internal item definitions:

name: the word or group of words by which the internationally standardized unit is referred to.

EXAMPLE 2 Millimeter is a SI unit: According to the SI_UNIT_Type XML complex type specification, the “MILLI” value
would be assigned to the optional prefix XML element, and the “METRE” value would be assigned to the mandatory
name XML element.

prefix: the international standardized unit prefix.

Internal type definitions:

SI_PREFIX_Type: the name of a prefix that may be associated with an internationally standardized unit. It is
represented by an enumeration of the allowed internationally standardized unit prefix.

NOTE 1 The allowed international standardized unit prefixes are specified in ISO 80000-1.

SI_UNIT_NAME_Type: the name of an internationally standardized unit. It is represented by an enumeration
of the allowed internationally standardized unit.

NOTE 2 The allowed internationally standardized unit names are specified in ISO 80000-1.

External type definition:

NAMED_UNIT_Type: see 8.4.2.

Constraint specification:

For internationally standardized unit, the inherited dimensions attribute is not set.

8.4.2.3 Non internationally standardized unit

A non internationally standardized unit allows for the representation of units that are not SI units, nor
conversion based units, nor length units. It is represented by the NON_SI_UNIT_Type XML complex type as
illustrated in Figure 80.

NAMED_UNIT_Type

NON_SI_UNIT_Type

name: xs:string

Figure 80 — Non international standardized unit structure

Internal item definitions:

name: the label used to name the described unit.

External type definition:

NAMED_UNIT_Type: see 8.4.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 109

8.4.2.4 Conversion based unit

A conversion based unit is a unit defined on the base of another unit.

EXAMPLE 1 An inch is a conversion based unit.

It is represented by the CONVERSION_BASED_UNIT_Type XML complex type as illustrated in Figure 81.

NAMED_UNIT_Type

CONVERSION_BASED_
UNIT_Type

name: xs:string
value_component: xs:decimal

UNIT_Type
unit_component

Figure 81 — Conversion based unit structure

Internal item definitions:

name: the word or group of words by which the conversion based unit is referred to.

unit_component: the unit in which the physical quantity is expressed.

value_component: value of the physical quantity that corresponds to one unit of the conversion based unit
when expressed in the unit_component unit.

EXAMPLE 2 An inch is a conversion based unit. It is from the Imperial system, its name XML element value is equal
to “inch", and it can be related to the SI unit, millimeter, through a measure value (value_component XML element)
equal to 25.4 millimeter (unit_component XML element).

External type definition:

NAMED_UNIT_Type: see 8.4.2.

UNIT_Type: a general unit, see 8.4.

8.4.2.5 Context dependent unit

A context dependent unit: it is a unit which is not related to the SI system.

It is represented by the CONTEXT_DEPENDENT_UNIT_Type XML complex type as illustrated in Figure 82.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

110 © ISO 2010 – All rights reserved

NAMED_UNIT_Type

CONTEXT_DEPENDENT_
UNIT_Type

name: xs:string

Figure 82 — Context dependent unit structure

Internal item definitions:

name: the word or group of words by which the context dependent unit is referred to.

EXAMPLE The number of parts in an assembly is a physical quantity measured in units that may be called “parts"
but which cannot be related to an SI unit. The value “part” would be then assigned to the context dependent unit name.

External type definition:

NAMED_UNIT_Type: see 8.4.2.

8.4.3 Derived unit

A derived unit stands for an expression of units.

EXAMPLE 1 Newton per square millimeter is a derived unit.

It is represented by the DERIVED_UNIT_Type XML complex type as illustrated in Figure 83.

DERIVED_UNIT_Type

derived_unit_element

DERIVED_UNIT_
ELEMENT_Type NAMED_UNIT_Type

unit

exponent: xs:decimal

1..*

Figure 83 — Derived unit structure

Internal item definitions:

derived_unit_element: the unit quantity which makes up a derived unit.

derived_unit_element/exponent: the power that is applied to the unit XML element.

derived_unit_element/unit: the fixed quantity which is used as the mathematical factor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 111

EXAMPLE 2 Newton per square millimeter is a derived unit. It would then be represented by two
derived_unit_elements: the former for representing the Newton SI unit, the latter for representing the millimeter SI unit to
which a -2 exponent would also be assigned.

External type definition:

NAMED_UNIT_Type: see 8.4.2.

8.5 Constraints

OntoML constraints allow to further restrict the co-domain of any property defined in an ontology. Constraints
may also be used to restrict co-domains when defined in a given class, and when the property domain is
subclass of this class.

NOTE OntoML allows to represent the whole set of constraints specified in the ISO 13584-42:2010 information
model.

Every datatype is defined as a subtype of the CONSTRAINT_Type XML complex type. The general
constraints structure is illustrated in Figure 84.

CONSTRAINT_Type

CLASS_
CONSTRAINT_Type

PROPERTY_
CONSTRAINT_Type

@constraint_id: 0..1 ConstraintId

Figure 84 — General constraints structure

Internal item definition:

@constraint_id: the possible ConstraintId that identifies the constraint.

External type definitions:

ConstraintId: see 9.1.4.

CLASS_CONSTRAINT_Type: class instances related constraint, see 8.5.1.

PROPERTY_CONSTRAINT_Type: property value related constraint, see 8.5.3.

Constraint specification:

The constraint defined by the constraint_id XML element is unique in the OntoML document instance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

112 © ISO 2010 – All rights reserved

8.5.1 Constraint reference

Depending on the use context, a constraint may be either referenced or explicitly defined. The class constraint
reference structure is illustrated in Figure 85.

CONSTRAINT_Type

CONSTRAINT_OR_
CONSTRAINT_ID_Type

@constraint_ref: 0..1 ConstraintId

constraint_definition

0..1

CONSTRAINTS_Type

constraint

0..*

Figure 85 — Constraint reference structure

Internal item definition:

constraint: a constraint that restrict the target domain of values of properties of the class to a subset of its
inherited domain of values.

constraint/@constraint_ref: a constraint identifier.

constraint/constraint_definition: the specification of a constraint.

Internal type definitions:

CONSTRAINT_OR_CONSTRAINT_ID_Type: the specification of a constraint defined either explicitly or by
reference to a constraint identifier.

CONSTRAINTS_Type: the specification of a set of constraints done either explicitly or by a reference to an
identified constraint.

External type definitions:

ConstraintId: see 9.1.

CONSTRAINT_Type: see 8.5.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 113

8.5.2 Class constraint

A class constraint is a constraint that restricts the allowed set of instances of a class by constraining several
properties or by defining global constraints. The class constraint structure is illustrated in Figure 86.

CONFIGURATION_
CONTROL_

CONSTRAINT_Type

CLASS_CONSTRAINT_Type

Figure 86 — Class constraint structure

Internal type definition:

CONFIGURATION_CONTROL_CONSTRAINT_Type: referenced instances constraint, see 8.5.2.1.

8.5.2.1 Configuration control constraint

The configuration control constraint allows to restrict the set of instances, called the referenced instances, that
a particular instance, called the referencing instance, may reference directly or indirectly by means of a chain
of properties. The referencing instance is any instance of a class that references the configuration control
constraint by means of the class constraints XML element. The configuration control constraint defines an
optional precondition that specifies the condition on the referencing instance for the restriction to apply. It
defines a postcondition that specifies the allowed sets of values for some properties of the referenced instance
class. It is represented by an CONFIGURATION_CONTROL_CONSTRAINT_Type XML complex type. It is
illustrated in Figure 87.

NOTE 1 Both precondition and postcondition may only restrict properties whose value domain is defined as an
enumeration of string codes (see 8.3.4) or an enumeration of integer codes (see 8.3.8). Such properties may be assigned
a value either at the instance level, or at the class level if they are declared as class valued properties, i.e., referenced in
the sub_class_properties XML element in an item class (see 6.7.2.1).

NOTE 2 Properties referenced in the precondition are applicable to the class that references the configuration
control constraint.

CONSTRAINT_Type

CONFIGURATION_
CONTROL_

CONSTRAINT_Type

referenced_property

PROPERTYPRECONDITION_Type

POSTCONDITION_Type ENUMERATION_
CONSTRAINT_Type

FILTER_Type

precondition

postcondition

filter

filter

0..*

1..*

domain

Figure 87 — Configuration control constraint structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

114 © ISO 2010 – All rights reserved

Internal item definition:

domain (FILTER_Type): the enumeration constraint that restricts the domain of values of the referenced
property.

filter (PRECONDITION_Type): the constraints that shall be satisfied for the configuration control constraint to
apply.

filter (POSTCONDITION_Type): the constraints that shall be satisfied for a referenced instance for being
allowed for reference.

postcondition: the specification of the filters that shall hold on a referenced instance for being allowed for
reference.

precondition: the specification of the filters that shall hold on the referencing instance for the restriction to
apply.

NOTE 3 If the set of filters is empty, the restriction applies on any referencing instance.

referenced_property (FILTER_Type): the reference to the property whose domain of values is restricted by
the associated filter.

Internal type definitions:

FILTER_TYPE: specifies a restriction on the allowed domain of a property whose data type is either an
enumeration of string codes (see 8.3.4) or an enumeration of integer codes (see 8.3.8).

PRECONDITION_Type: specifies the conditions on the referencing instance for the restriction to apply.

POSTCONDITION_Type: specifies the allowed sets of values for some properties of the referenced instance
class.

External type definitions:

CONSTRAINT_Type: see 8.5.

ENUMERATION_CONSTRAINT_Type: collection constraint, see 8.5.3.3.6.

Constraint specification:

The underlying data type of the property referenced by the referenced_property shall be either
NON_QUANTITATIVE_INT_TYPE_Type or NON_QUANTITATIVE_CODE_TYPE_Type.

The domain shall define a restriction that is compatible with the initial domain of values of the property
referenced by the referenced_property XML element.

8.5.3 Property constraint

A property constraint is a constraint that restricts the allowed set of instances of a class by a single restriction
of the domain of values of one of its properties. The property constraint structure is illustrated in Figure 88.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 115

INTEGRITY_
CONSTRAINT_Type

CONTEXT_
RESTRICTION_

CONSTRAINT_Type

PROPERTY_CONSTRAINT_Type

Figure 88 — Property constraint structure

External type definitions:

CONTEXT_RESTRICTION_CONSTRAINT_Type: constraint on property conditions, see 8.5.3.1.

INTEGRITY_CONSTRAINT_Type: collection constraint, see 8.5.3.2.

8.5.3.1 Context restriction constraint

A context restriction constraint applies to properties that play the role of a context dependent property.

NOTE 1 Context dependent properties are defined in Clause 6.7.4.

It specifies that the value domain(s) of a context parameter used for specifying the value of this context
dependent property is(are) restricted using any kind of available domain constraint.

NOTE 2 Context parameters are defined in Clause 6.7.4.

It is represented by an INTEGRITY_CONSTRAINT_Type XML complex type. It is illustrated in Figure 89.

PROPERTY_
CONSTRAINT_Type

CONTEXT_
RESTRICTION_

CONSTRAINT_Type
constrained_property

PROPERTY

INTEGRITY_
CONSTRAINT_Type

context_parameter_constraints

CONTEXT_
PARAMETER_

CONSTRAINTS_Type

integrity_constraint 1..*

Figure 89 — Context restriction constraint structure

Internal item definition:

constrained_property: the property for which the constraint applies.

NOTE 3 The referenced property is a context dependent property (see 6.7.4).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

116 © ISO 2010 – All rights reserved

context_parameter_constraints: the set of constraints that apply on the domain of values of each context
parameters of the referenced property.

integrity_constraint (CONTEXT_PARAMETER_CONSTRAINTS_Type): the integrity constraint that reduces
the allowed domain of a context parameter of the constrained context dependent property.

EXAMPLE The resistance of a thermistor depends on (DEPENDENT_P_DET_Type XML complex type) the
ambient temperature (CONDITION_DET_Type XML complex type) whose value domain is an INT_TYPE_Type. A
CONTEXT_RESTRICTION_CONSTRAINT_Type constraint allows to require that this ambient temperature be 25° by
applying a range constraint (RANGE_CONSTRAINT_Type XML complex type) on it.

Internal type definitions:

CONTEXT_PARAMETER_CONSTRAINTS_Type: the specification of the set of constraints that apply on the
domain of values of the context parameters.

External type definitions:

PROPERTY_CONSTRAINT_Type: see 8.5.3.

INTEGRITY_CONSTRAINT_Type: property domain restriction constraint, see 8.5.3.2.

Constraint specification:

The property referenced by the constrained_property XML element shall have a base type that is
DEPENDENT_P_DET_Type.

The set of properties whose domain is constrained by the context_parameter_constraints shall be context
parameters on which the property referenced by the constrained_property XML element depends.

8.5.3.2 Integrity constraint

An integrity constraint allows to make explicit that for some particular class, as a result of the class definition,
and all its subclasses, only a restriction of the domain of values specified by a data type is allowed for a
property. It is represented by an INTEGRITY_CONSTRAINT_Type XML complex type. It is illustrated in
Figure 90.

EXAMPLE In the reference dictionary defined for fasteners in ISO 13584-511, a metric threaded bolt/screw has a
head properties property that may takes, as value, a member of any subclass of the head feature class. If the metric
threaded bolt/screw is also a member of the hexagon head screw subclass, the head properties may only be a member
of the hexagon head feature class, else the metric threaded bolt/screw cannot be a member of the hexagon head screw
subclass.

INTEGRITY_
CONSTRAINT_Type

constrained_property
PROPERTY

DOMAIN_
CONSTRAINT_Type

redefined_domain

PROPERTY_
CONSTRAINT_Type

Figure 90 — Integrity constraint structure

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 117

Internal item definition:

constrained_property: the property for which the constraint applies.

redefined_domain: the integrity constraint that applies on the domain of values of the constrained property.

External type definition:

DOMAIN_CONSTRAINT_Type: the particular constraint that applies to the reference property, see 8.5.3.3.

PROPERTY_CONSTRAINT_Type: see 8.5.3.

Constraint specification:

The redefined_domain shall define a restriction that is compatible with the initial domain of values of the
property referenced by the constrained_property XML element.

8.5.3.3 Domain constraint

OntoML provides resources for describing different kinds of domain of values constraints. Every specific
constraint is defined as a subtype of the DOMAIN_CONSTRAINT_Type XML complex type. Figure 91 gives a
global overview of the available property value constraints.

DOMAIN_
CONSTRAINT_Type

ENUMERATION_
CONSTRAINT_Type

SUBCLASS_
CONSTRAINT_Type

STRING_PATTERN_
CONSTRAINT_Type

STRING_SIZE_
CONSTRAINT_Type

RANGE_
CONSTRAINT_Type

CARDINALITY_
CONSTRAINT_Type

Figure 91 — Domain constraints

External type definitions:

CARDINALITY_CONSTRAINT_Type: cardinality constraint specification, see 8.5.3.3.3.

RANGE_CONSTRAINT_Type: range constraint specification, see 8.5.3.3.5.

STRING_PATTERN_CONSTRAINT_Type: string pattern constraint specification, see 8.5.3.3.2.

STRING_SIZE_CONSTRAINT_Type: string size constraint specification, see 8.5.3.3.4.

SUBCLASS_CONSTRAINT_Type: subclass constraint specification, see 8.5.3.3.1.

ENUMERATION_CONSTRAINT_Type: enumeration constraint specification, see 8.5.3.3.6.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

118 © ISO 2010 – All rights reserved

8.5.3.3.1 Subclass constraint

A subclass constraint applies to properties whose value domain is defined by a class instance type
(see 8.3.10). It specifies that the property value domain is restricted to a subclass of this class. It is
represented by a SUBCLASS_CONSTRAINT_Type XML complex type as illustrated in Figure 92.

CLASS
SUBCLASS_

CONSTRAINT_Type

subclasses 1..*

DOMAIN_
CONSTRAINT_Type

Figure 92 — Subclass constraint representation

Internal item definitions:

subclasses: the references to the class ontology concepts which redefine the new value domain of the
constrained entity.

EXAMPLE Let’s consider a property (NON_DEPENDENT_P_DET_Type XML complex type) called screw_head
defined in the context of a screw class (ITEM_CLASS_Type XML complex type) whose value domain
(CLASS_REFERENCE_TYPE_Type XML complex type) is a head class (ITEM_CLASS_Type XML complex type)
defining the general characteristics of any kind of screw heads. Additionally, let’s consider an hexagonal_screw class
(ITEM_CLASS_Type XML complex type), subclass of the screw class, and an hexagonal_head class
(ITEM_CLASS_Type XML complex type), subclass of the head class. In the hexagonal_screw class, the screw_head
value domain could be restricted as being a subclass of the head class, i.e., the hexagonal_head class. This restriction
would be expressed by defining a specific SUBCLASS_CONSTRAINT_Type constraint whose subclass XML element
value would be a reference to the particular ITEM_CLASS_Type representing the hexagonal_head class.

External type definitions:

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

8.5.3.3.2 String pattern constraint

A string pattern constraint applies to properties whose value domain is defined by a string.

NOTE 1 A string property value domain is either a STRING_TYPE_Type (see 8.3.2), or a
NON_TRANSLATABLE_STRING_TYPE_Type (see 8.3.2) or a TRANSLATABLE_STRING_TYPE_Type (see 8.3.2) , or
a URI_TYPE_Type (see 8.3.2), or NON_QUANTITATIVE_CODE_TYPE_Type (see 8.3.4) or a
DATE_DATA_TYPE_Type (see 8.3.3) or a TIME_DATA_TYPE_Type (see 8.3.3) or a DATE_TIME_DATA_TYPE_Type
(see 8.3.3).

A string pattern constraint specifies that the property value domain is restricted according to string values that
match a particular pattern. It is represented by a STRING_PATTERN_CONSTRAINT_Type XML complex
type as illustrated in Figure 93.

For properties whose data type is defined as a STRING_TYPE_Type, a
NON_TRANSLATABLE_STRING_TYPE_Type, a URI_TYPE_Type, a DATE_DATA_TYPE_Type, a
TIME_DATA_TYPE_Type or a DATE_TIME_DATA_TYPE_Type, the constraint applies to the (unique) string
that is the value of the data type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 119

For properties whose data type is defined as a TRANSLATED_STRING_TYPE_Type, the constraint applies
to the string that is in the source language into which the property domain was defined. This source language
may be defined in the the source_language XML element of the CLASS_TYPE XML complex type
(see 6.7.2.1), or the PROPERTY_Type XML complex type (see 6.7.4) or the DATATYPE_Type XML complex
type (see 6.7.6) or the DOCUMENT_Type XML compex type (see 6.7.7). If this attribute does not exist, this
source language is supposed known by the dictionary user

For properties whose data type is defined as a NON_QUANTITATIVE_CODE_TYPE_type, the constraint
applies to the code.

STRING_PATTERN_
CONSTRAINT_Type

pattern: xs:string

DOMAIN_
CONSTRAINT_Type

Figure 93 — String pattern constraint representation

Internal item definitions:

pattern: the pattern of string values that are allowed as values for the property identified by the constrained
property.

NOTE 2 The pattern XML element value syntax is based on the regular expression and the associated matching
algorithms that are defined by the XML Schema Part 2: Datatypes recommendation.

EXAMPLE The XML Schema pattern that corresponds to the “[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]” SQL SIMILAR
expression is “[0-9]{4}\-[0-9]{2}\-[0-9]{2}”. It allows to match strings as “2010-03-24”.

External type definitions:

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

8.5.3.3.3 Cardinality constraint

A cardinality_constraint restricts the cardinality of a collection data type.

NOTE 1 The resulting cardinality range is the intersection of preexisting cardinality ranges and of the one defined by
the cardinality constraint.

NOTE 2 Cardinality constraints are not allowed on arrays (see 8.3.9.4).

It is represented by a CARDINALITY_CONSTRAINT_Type XML complex type as illustrated in Figure 94.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

120 © ISO 2010 – All rights reserved

DOMAIN_
CONSTRAINT_Type

CARDINALITY_
CONSTRAINT_Type

bound_1: 0..1 xs:integer
bound_2: 0..1 xs:integer

Figure 94 — Cardinality constraint representation

Internal item definitions:

bound_1: the lower bound of the cardinality.

bound_2: the upper bound of the cardinality.

External type definitions:

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

Constraint specification:

When bound_1 does not exist, the minimal cardinality is 0.

When bound_2 does not exist, there is no constraint on the maximal cardinality.

When bound_1 exists, its value shall be greater or equal than 0.

When both bound_1 and bound_2 are provided, bound_2 shall be greater or equal than bound_1.

8.5.3.3.4 String size constraint

A string size constraint applies to properties whose value domain is defined by a string.

NOTE 1 A string property value domain is either a string (see 8.3.2), or a non translatable string (see 8.3.2) or a
translatable string (see 8.3.2) , or a remote http address (see 8.3.2), or enumeration of string codes (8.3.3).

A string size constraint specifies that the property value domain is restricted to possibly have a minimum
and/or a maximum length. It is represented by a STRING_SIZE_CONSTRAINT_Type XML complex type as
illustrated in Figure 95.

NOTE 2 For properties whose data type is defined as a TRANSLATED_STRING_TYPE_Type, the constraint
applies to any language-specific representation of the string.

NOTE 3 For properties whose data type is defined as a NON_QUANTITATIVE_CODE_TYPE_type, the constraint
applies to the code.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 121

DOMAIN_
CONSTRAINT_Type

STRING_SIZE_
CONSTRAINT_Type

min_length: 0..1 xs:integer
max_length: 0..1 xs:integer

Figure 95 — String size constraint representation

Internal item definitions:

max_length: the maximal length for the strings that is allowed as value for the constrained property.

min_length: the minimal length for the strings that is allowed as value for the constrained property.

NOTE 4 min_length is greater than 0 and less or equal to max_value.

EXAMPLE A property whose value domain is a string (STRING_TYPE_Type XML complex type) and that is defined
in a given class, may be restricted in a subclass of this class as having no more than 10 characters by defining a
STRING_SIZE_CONSTRAINT_Type constraint and assigning 10 to the max_length XML element.

External type definitions:

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

Constraint specification:

When min_length does not exist, the minimal length is 0.

When max_length does not exist, there is no constraint on the maximal length.

When min_length exists, its value shall be greater or equal than 0.

When both min_length and max_length are provided, max_length shall be greater or equal than
min_length.

8.5.3.3.5 Range constraint

A range constraint applies to properties whose value domain is defined by a number.

EXAMPLE 1 A number property value domain is either a number (see 8.3.5), an integer (see 8.3.5), an integer
currency (see 8.3.6), an integer measure (see 8.3.7), a real (see 8.3.5), a real currency (see 8.3.6), a real measure
(see 8.3.7) or a enumeration of integer codes (see 8.3.8).

A range constraint specifies that the property value domain is restricted to a subset of its values defined by a
range. It is represented by a RANGE_CONSTRAINT_Type XML complex type as illustrated in Figure 96.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

122 © ISO 2010 – All rights reserved

DOMAIN_
CONSTRAINT_Type

RANGE_
CONSTRAINT_Type

min_value: 0..1 xs:decimal
max_value: 0..1 xs:decimal
min_inclusive: 0..1 xs:boolean
max_inclusive: 0..1 xs:boolean

Figure 96 — Range constraint representation

Internal item definitions:

max_value: the number defining the high bound of the range of values.

max_inclusive: if true, specifies that the max_value is included in the specified range.

min_value: the number defining the low bound of the range of values.

min_inclusive: if true, specifies that the min_value is included in the specified range.

EXAMPLE 2 A property whose value domain is an integer (INT_TYPE_Type XML complex type) and that is defined in
a given class, may be restricted in a subclass of this class as a [10..50] range by defining a
RANGE_CONSTRAINT_Type constraint and assigning 10 to the min_value and 50 to the max_value XML elements.

External type definitions:

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

Constraint specifications:

min_value shall be less than or equal to max_value.

min_value and max_value shall be both integers or both reals.

Either min_value or max_value shall be defined.

If min_inclusive is not specified, there isn’t any restriction about the lowest bound of the defined range.

If max_inclusive is not specified, there isn’t any restriction about the highest bound of the defined range.

If min_value is not defined, min_inclusive shall not be defined.

If max_value is not defined, max_inclusive shall not be defined.

If min_value is defined, min_inclusive shall be defined.

If max_value is defined, max_inclusive shall be defined.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 123

8.5.3.3.6 Enumeration constraint

An enumeration constraint restricts the domain of values of a data type to a list defined in extension. The order
defined by the list is the recommended order for presentation purposes. A particular description may optionally
be associated with each value of the list by mean of a NON_QUANTITATIVE_INT_TYPE_Type, of which the
i-th value describes the meaning of the i-th value of the list.

This constraint is represented by an ENUMERATION_CONSTRAINT_Type XML complex type as illustrated
in Figure 97.

NOTE 1 For a currency (see 8.3.6), or a measure (see 8.3.7) associated with alternative unit, the constraint applies
whatever be the currency or the unit.

NOTE 2 For translatable strings (see 8.3.2), the constraint applies to any language-specific representation of the
string.

NOTE 3 If another enumeration constraint is applied to a property already associated with an enumeration
constraint in some superclass, both constraints apply. Thus the allowed set of values is the intersection of both subsets.
Concerning the presentation order, and the possible meaning associated with each value, only those meanings defined in
the lower enumeration constraint apply.

DOMAIN_
CONSTRAINT_Type

subsetENUMERATION_
CONSTRAINT_Type SUBSET_Type

value 1..*

NON_QUANTITATIVE
_INT_TYPE_Type

value_meaning 0..1

val:value

Figure 97 — Enumeration constraint representation

EXAMPLE 1 Assume that a property whose identifier is 0123-ABCD#02-P1#1 and whose value domain is an integer. In
the context of a class identified by the 0123-ABCD#01-C1#1 IRDI, this property is associated with an enumeration
constraint, where the allowed values are defined by the following integer subset: {1, 3, 5, 7}. Then, in the class identified
by the 0123-ABCD#01-C1#1 IRDI, and any of its subclasses, the property identified by the 0123-ABCD#02-P1#1 IRDI
may only takes one of the four following values: 1 or 3 or 5 or 7. The OntoML representation of this enumeration
constraint would be as follows:

<ontoml:class xsi:type="ontoml:ITEM_CLASS_Type" id="0123-ABCD#01-C1#1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ontoml="urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml"
 xmlns:val="urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:value">
 …
 <constraints>
 <constraint>
 <constraint_definition xsi:type="ontoml:INTEGRITY_CONSTRAINT_Type">
 <constrained_property property_ref="0123-ABCD#02-P1#1"/>
 <redefined_domain xsi:type="ontoml:ENUMERATION_CONSTRAINT_Type">
 <subset>
 <val:integer_value>1</val:integer_value>
 <val:integer_value>3</val:integer_value>
 <val:integer_value>5</val:integer_value>
 <val:integer_value>7</val:integer_value>
 </subset>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

124 © ISO 2010 – All rights reserved

 </redefined_domain>
 </constraint_definition>
 </constraint>
 </constraints>
</ontoml:class>

EXAMPLE 2 Assume that a property whose identifier is 0123-ABCD#02-P1#1 and whose value domain is a list of at
teast one and at most 4 integers. In the context of a class identified by the 0123-ABCD#01-C1#1 IRDI, this property is
associated with an enumeration constraint where the allowed values are defined by the following list of integers subset:
{ {1} , {3, 5}, {7}, {1, 3, 7} }. It that context, it means that the is 0123-ABCD#02-P1#1 property may take the following
values: {1} or {3, 5} or {7} or {1, 3, 7}. The OntoML representation of this example would be as follows:

<ontoml:class xsi:type="ontoml:ITEM_CLASS_Type" id="0123-ABCD#01-C1#1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ontoml="urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml"
 xmlns:val="urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:value">
 …
 <constraints>
 <constraint>
 <constraint_definition xsi:type="ontoml:INTEGRITY_CONSTRAINT_Type">
 <constrained_property property_ref="0123-ABCD#02-P1#1"/>
 <redefined_domain xsi:type="ontoml:ENUMERATION_CONSTRAINT_Type">
 <subset>
 <val:sequence_value>
 <val:integer_value>1</val:integer_value>
 </val:sequence_value>
 <val:sequence_value>
 <val:integer_value>3</val:integer_value>
 <val:integer_value>5</val:integer_value>
 </val:sequence_value>
 <val:sequence_value>
 <val:integer_value>7</val:integer_value>
 </val:sequence_value>
 <val:sequence_value>
 <val:integer_value>1</val:integer_value>
 <val:integer_value>3</val:integer_value>
 <val:integer_value>7</val:integer_value>
 </val:sequence_value>
 </subset>
 </redefined_domain>
 </constraint_definition>
 </constraint>
 </constraints>
</ontoml:class>

EXAMPLE 3 Assume that a property (defined in a class identified by the 0123-ABCD#01-C1#1 IRDI) whose identifier is
0123-ABCD#02-P1#1 and whose value domain is a real measure expressed in millimetres, restricted to the following
value set {10.5, 30}. Moreovoer, each value of the restricted value set is associated to a particular meaning, defined both
in French and English. Meanings are the followings: 10.5 stands for “a little value (English) or “une petite valeur” (French);
30 stands for a “big value” (English) or “une grande valeur” (French). In OntoML, this property value domain would be
represented as an REAL_MEASURE_TYPE_Type XML complex type (see 8.3.7), restricted by defining a
ENUMERATION_CONSTRAINT_Type constraint. The constraint specifies two possible values: 10.5 and 30. Additionally,
both values are associated to a particular meaning (value_meaning XML element). This meaning is expressed using an
enumeration (NON_QUANTITATIVE_INT_Type XML complex type). Each element of the enumeration (dic_value XML
element):

⎯ is firstly associated to a value code (an integer, represented by the INT_DIC_VALUE_Type XML complex type)
identifying the position of the value for which the current meaning is associated (10.5 is the first value of the value
set, and then is associated with a value code equal to 1; 30 is the second value of the value set, and then is
associated with a value code equal to 2);

⎯ Is secondly associated, through the preferred_name XML element, to its meaning (a translated label, see 8.1).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 125

The OntoML representation of this example would be as follows:

<ontoml:property xsi:type="ontoml:NON_DEPENDENT_P_DET_Type" id="0123-ABCD#02-PROPERTY#1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ontoml="urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml"
 xmlns:val="urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:value">
 …
 <domain xsi:type="ontoml:REAL_MEASURE_TYPE_Type">
 <constraints>
 <constraint xsi:type="ontoml:ENUMERATION_CONSTRAINT_Type">
 <subset>
 <val:real_value>10.5</val:real_value>
 <val:real_value>30</val:real_value>
 </subset>
 <value_meaning>
 <its_values>
 <dic_value xsi:type="ontoml:INT_DIC_VALUE_Type">
 <preferred_name>
 <label language_code="en">a little value</label>
 <label language_code="fr">une petite valeur</label>
 </preferred_name>
 <value_code>1</value_code>
 </dic_value>
 <dic_value xsi:type="ontoml:INT_DIC_VALUE_Type">
 <preferred_name>
 <label language_code="en">a big value</label>
 <label language_code="fr">une grande valeur</label>
 </preferred_name>
 <value_code>2</value_code>
 </dic_value>
 </its_values>
 </value_meaning>
 </constraint>
 </constraints>
 <unit>
 <structured_representation xsi:type="ontoml:SI_UNIT_Type">
 <prefix>MILLI</prefix>
 <name>METRE</name>
 </structured_representation>
 </unit>
 </domain>
</ontoml:property>

Internal item definitions:

subset: the list describing the subset of values that are allowed as possible values for the constrained
property.

NOTE 4 The order defined by the list is the recommended order for presentation purposes.

subset.value: values that are allowed as possible value for the constrained property.

NOTE 5 Representations of values comply with ISO/TS 29002-10.

value_meaning: the optional description that may be associated with each value of the subset by means of
an enumeration of integer codes, whose the i-th value describes the meaning of the i-th value of the subset.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

126 © ISO 2010 – All rights reserved

Internal type definition:

SUBSET_Type: a set of values of a type specified by the DATA_TYPE_Type XML complex type.

External type definitions:

val:value: specification of a typed value.

NOTE 6 val:value is defined in the ISO/TS 29002-10 product exchange format.

DOMAIN_CONSTRAINT_Type: see 8.5.3.3.

NON_QUANTITATIVE_INT_TYPE_Type: see 8.3.8.

Constraint specification:

If value_meaning is provided, then the size of the collection representing the associated value codes shall be
equal to the size of the subset collection.

If value_meaning is provided, every value of the subset collection shall be associated to a particular
meaning.

If value_meaning is provided, the the i-th dic_value describes the meaning of the i-th value of the subset.

8.6 A posteriori semantics relationship

An a posteriori semantic relationship is an oriented relationship between two classes from which property
equivalencies are modeled. A properties equivalence, or mapping, describes how properties of one of the two
classes may be computed from properties of the other class. All the property mappings have the same
orientation which depends upon the semantic relationship.

More than one properties equivalence may be defined in the same a posteriori semantic relationship. Classes
involved in one or several a posteriori semantic relationship may have properties which are not mapped.

NOTE It is not required that all characteristics of instances of each class be represented by properties (in the
dictionary) and/or values in the library. Only properties defined in the ontology may be mapped.

The a posteriori semantic relationship is represented by an
A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type abstract XML complex type as illustrated in Figure 98.

A_POSTERIORI_
SEMANTIC_RELATIONSHIP_Type

A_POSTERIORI_
VIEW_OF_Type

A_POSTERIORI_
CASE_OF_Type

@id: APosterioriSemanticRelationId

Figure 98 — A posteriori relationship general structure representation

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 127

A concrete a posteriori relationship is defined through one of the
A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type abstract XML complex type subtypes.

Internal item definitions:

@id: the a posteriori semantic relationship identifier.

Internal type definitions:

APosterioriSemanticRelationId: see 9.1.

External type definitions:

A_POSTERIORI_CASE_OF_Type: a posteriori a case-of relationship, see 8.6.1.

A_POSTERIORI_VIEW_OF_Type: a posteriori view-of relationship, see 8.6.2.

8.6.1 A posteriori mapping in a case-of relationship

An a posteriori case-of semantic relationship allows to define an inclusion relationship between classes that
may belong to different reference dictionaries. When A is case-of B, this means that all instances of A are also
instances of B. A is designated case_of_sub and B is designated case_of_super. All the property mappings
describe how properties of the case_of_super class, defined in their range, may be computed from properties
of the case_of_sub class, defined in their domain (see Figure 99).

In OntoML, it is represented by an A_POSTERIORI_CASE_OF_Type XML complex type as illustrated in
Figure 99.

NOTE 1 The case-of relationship allows each organization to define its own reference dictionary while providing for
data integration and for data exchange with other organizations.

EXAMPLE 1 Assume that the case_of_super class belongs to a standard ontology, and that the case_of_sub class
belongs to a user ontology. An a posteriori case-of relationship would allow the export of local data according to the
standard ontology.

NOTE 2 When two classes, A and B, are equivalent, i.e., all instances of A are also instances of B and all instances
of B are also instances of A, this may be represented using two a posteriori case-of semantic relationships with property
mapping in the reverse side.

EXAMPLE 2 Assume that the case_of_sub class belongs to a standard ontology, and that the case_of_super class
belongs to a user ontology. An a posteriori case-of relationship would allow the import of data described according to the
standard ontology into the user data base.

NOTE 3 In this version of OntoML the only mapping function available is equality. But MAPPING_FUNCTION_Type
is provided for latter standardization.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

128 © ISO 2010 – All rights reserved

A_POSTERIORI_
CASE_OF_Type

CORRESPONDING_
PROPERTIES_Type

corresponding_
properties

mapping 1..* PROPERTY_
MAPPING_Type

function

PROPERTY

A_POSTERIORI_
SEMANTIC_RELATIONSHIP_Type

range
PROPERTY

MAPPING
FUNCTION_Type

0..1

case_of_sub
CLASS

case_of_super

domain 1..*

Figure 99 — A posteriori case-of relationship representation

Internal item definitions:

corresponding_properties: a set of property mappings.

corresponding_properties/mapping: a mapping that defines how the range property may be computed for
each instance from the domain property (or properties) of the relationship by means of a function.

NOTE 4 When the function XML element is not provided, the domain XML element contains a single property and
the mapping means a property equality of values between the domain property and the range property.

corresponding_properties/mapping/domain: the reference to the property or properties from which the
range property is computed.

corresponding_properties/mapping/function: an optional function that specifies how the range property is
computed from the domain property(ies). When not provided, the default function is that the range property is
value equal for each instance to the domain property that shall be unique.

corresponding_properties/mapping/range: the reference to the property that is computed by the mapping.

case_of_sub: the reference to the class that is case of the case_of_super class of the relationship.

NOTE 5 case_of_super and case_of_sub referenced classes are both item classes or both functional model classes.

case_of_super: the reference to the class of which the case_of_sub class is case of.

Internal type definitions:

CORRESPONDING_PROPERTIES_Type: a container for the set of pairs of properties.

PROPERTY_MAPPING_Type: a property mapping specification.

MAPPING_FUNCTION_Type: an abstract XML complex type intended to represent a mapping function, and
reserved for latter standardization.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 129

External type definitions:

A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type: see 8.6.

Constraint specifications:

Case_of_super class and case_of_sub class referenced by the A_POSTERIORI_CASE_OF_Type XML type
shall be both item classes or both functional model classes.

Properties referenced by the PROPERTY_MAPPING_Type XML complex type by its range element shall
belong to the case_of_super class.

Properties referenced by the PROPERTY_MAPPING_Type XML complex type by its domain element shall
belong to the case_of_sub class.

When the function referenced by the PROPERTY_MAPPING_Type XML complex type does not exist, the
domain property shall be unique.

8.6.2 A posteriori mapping in a view-of relationship

An a posteriori view-of relationship allows to associate a functional model class, called model, to a
characterization class of items, called item. The model class provides additional descriptive properties for
describing each item according to the discipline-oriented point of view defined by a functional view class. Each
instance of model consists of a list of property-value pairs. The subset of these properties that is included in
the instance_identification XML element constitutes the key properties of these instances.

Mapping some or all of these key properties with item properties allows to identify which model instance or
instances may be matched with each item instance. The matching criterion is that a model instance is
matched with an item instance if for all model properties mapped onto one (or a set of) item property, the
value of the model instance property equals the result of the mapping of this property onto property or
properties of this item instance.

NOTE 1 When all the key properties of the functional model class may be mapped onto properties of the class of
items it is view of, each item is associated with at most one functional model which may be computed for the whole class
by a left outer join.

EXAMPLE Assume that a manufacturer of screws decides to design an ontology for describing the manufactured
screws. Only one kind of screws is manufactured. They may be described by five properties: part number, length, thread
diameter, euro price, and quantity of order. Three ontology structures may be considered as described hereafter:

 1 - Screw class, an item_class is the unique class of the ontology. The properties part number, length,
thread diameter are all represented as applicable properties of this class. Technical properties and business properties
are gathered within the same class.

 2 - Screw class, an item_class, and screw business class¸ a fm_class_view_of, are the two classes of
the ontology. The properties part number, length and thread diameter are represented as applicable properties of screw
class. Screw business class is a functional model declared as view-of screw class. It imports part number from screw
class. It declares euro price and quantity of order as applicable properties. The common property, part number, allows to
make a join between the two classes while separating rigid characteristic properties and business oriented properties.
Technical properties and business properties are separated into two classes connected by the a priori view-of
relationship.

 3 - Screw class, an item_class, and screw business class¸ a functional_model_class, are two classes
that may be defined in the same or in two separate ontologies. The properties part number, length and thread diameter
are represented as applicable properties of screw class. Screw business class declares three applicable properties:
screw_id, euro price and quantity of order. Screw_id contains the part number of screw corresponding to the price and
the quantity of order. This approach separates completely the technical description of the screw and its business oriented
description. Now, if in some context it would be convenient to integrate the two kinds of data, this can be done by creating
an a posteriori view-of relationship whose screw business class would be the model, screw class would be the item,
screw_id would be the range of the unique PROPERTY_MAPPING_Type, and part number its target.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

130 © ISO 2010 – All rights reserved

NOTE 2 The key properties of a functional model class may also contain view control variable properties imported
from the functional view class referenced by the functional model class. In this case, the value of the view control
variables properties must be defined by the user to get each particular model corresponding to the same item.

In OntoML, an a posteriori view-of relationship is represented by an A_POSTERIORI_VIEW_OF_Type XML
complex type as illustrated in Figure 100.

A_POSTERIORI_
VIEW_OF_Type

item
CLASS

model

A_POSTERIORI_
SEMANTIC_RELATIONSHIP_Type

CORRESPONDING_
PROPERTIES_Type

corresponding_
properties

Figure 100 — A posteriori semantic relationships structure

Internal item definitions:

corresponding_properties: a set of property mappings.

model: the reference to the functional model class that will provide additional properties for the product of the
item class.

item: the reference to the item class to which the functional model class is view-of.

External type definitions:

A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type: see 8.6.

CORRESPONDING_PROPERTIES_Type: property mappings, see 8.6.1.

Constraint specifications:

The model class referenced by the A_POSTERIORI_VIEW_OF_Type XML complex type shall be a functional
model class. The item class referenced by the A_POSTERIORI_VIEW_OF_Type XML complex type shall be
an item class.

Properties referenced by the range element of the PROPERTY_MAPPING_Type XML complex type shall
belong to instance_identification XML element of the model class.

Properties referenced by the domain element of the PROPERTY_MAPPING_Type XML complex type shall
belong to the item class.

When the function referenced by the PROPERTY_MAPPING_Type XML complex type does not exist, the
domain property shall be unique.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 131

8.7 Data exchange specification identification

A data exchange specification allows to specify various characteristics of an OntoML document instance:

⎯ the subset of the OntoML specification used,

⎯ the possible view exchange protocols used when dealing with functional models associated to
characterization classes,

⎯ the implementation method namely in the case of OntoML, an OntoML document instance.

Two data exchange specification elements are defined. They allow to specify:

⎯ characteristics of the exchanged ontology and/or library (see 8.7.1).

⎯ characteristics of the possible view exchange protocols used (see 8.7.2).

8.7.1 Simple-level ontology data exchange specification: library integrated information model
identification

The library integrated information model identification identifies the model on which the exchange is based and
the format used.

NOTE 1 Annex C specifies standard values that are used when exchanging OntoML data. These values are also
defined below in notes.

It is represented by a LIBRARY_IIM_IDENTIFICATION_Type XML complex type as illustrated in Figure 101.

LIBRARY_IIM_IDENTIFICATION_Type

source_document_identifier: 0..1 xs:string
status: xs:string
name: xs:string
date: xs:integer
application: 0..1 xs:string
level: 0..1 xs:string

Figure 101 — Library integrated information model identification structure

Internal item definitions:

application: an identifier to characterize an allowed functional subset of the complete data specification.

NOTE 2 Values is 1 if conformance class 1 is used (simple level ontology), 2 if conformance class 2 is used
(advanced level ontology), 3 if conformance class 3 is used (simple level library), 4 if conformance class 4 is used
(advanced level library).

date: the year when the data specification reached its status.

level: an identifier that further characterizes an allowed subset of the application subset.

NOTE 3 This XML element is not used for OntoML exchanges.

name: the identifier of the data specification.

NOTE 4 For OntoML, this identifier is “ONTOML” in capital letters.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

132 © ISO 2010 – All rights reserved

source_document_identifier: the identifier of the document that contains the data specification.

NOTE 5 For those documents issued by ISO TC184/SC4/WG2 this identifier is the integer part of the N number.

status: classification of the data specification with respect to its acceptance by the approving body of this
International Standard, possibly followed by an integer version.

NOTE 6 A status may only take the following values: 'WD', 'CD', 'DIS', 'FDIS', 'IS', 'TS', 'PAS', 'ITA'.

8.7.2 Advanced-level ontology data exchange specification: view exchange protocol identification

A view exchange protocol is intended to specify which library external files are used within an OntoML
document instance, which dictionary entries shall be recognized by a receiving system that claims
conformance to this view exchange protocol, and which additional constraints are fulfilled by a library delivery
file.

NOTE 1 An example of view exchange protocol is ISO 13584-102 for exchanging representations of the items
described in a library by means of a representation conforming to one application protocol of ISO 10303.

A view exchange protocol identification identifies a particular view exchange protocol. It is represented by a
VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION_Type XML complex type as illustrated in Figure 102.

VIEW_EXCHANGE_PROTOCOL_
IDENTIFICATION_Type

source_document_identifier: 0..1 xs:string
status: xs:string
name: xs:string
date: xs:integer
application: 0..1 xs:string
level: 0..1 xs:string

Figure 102 — View exchange protocol identification structure

Internal item definitions:

application: an identifier to characterize an allowed functional subset of the complete data specification as
possibly defined in the view exchange protocol standards.

date: the year when the data specification reached its status.

level: an identifier that further characterizes an allowed subset of the application subset as possibly defined in
the view exchange protocol standards.

name: the identifier of the data specification as defined in the view exchange protocol standards.

source_document_identifier: the identifier of the document that contains the data specification.

NOTE 2 For those documents issued by ISO TC184/SC4/WG2 this identifier is the integer part of the N number.

status: classification of the data specification with respect to its acceptance by the approving body of this
International Standard, possibly followed by an integer version.

NOTE 3 A status may take the values: 'WD', 'CD', 'DIS', 'FDIS', 'IS', 'TS', 'PAS', 'ITA'.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 133

8.8 Other structured information elements

This clause describes structured information elements that are used by the other information elements or CIIM
ontology concept presented in the previous clauses.

8.8.1 Organization representation

An organization is an administrative structure. It is represented by the ORGANIZATION_Type XML complex
type as illustrated in Figure 103.

ORGANIZATION_Type

id: 0..1 xs:string
name: xs:string
description: 0..1 xs:string

Figure 103 — Organization structure

Internal item definitions:

description: the text that relates the nature of the organization.

id: the identifier that distinguishes the organization.

name: the word or group of words by which the organization is referred to.

8.8.2 Mathematical string

A mathematical string construct provides resources for defining a representation for mathematical strings. It
also allows a representation in the MathML format. The mathematical string structure is represented by the
MATHEMATICAL_STRING_Type XML complex type as illustrated in Figure 104.

text_representation: xs:string
mathml_representation: 0..1 mml:math.type

MATHEMATICAL_STRING_Type

Figure 104 — Mathematical string structure

Internal item definitions:

mathml_representation: marked up according to the Mathematical Markup Language (MathML) Version 2.0
(Second Edition) specification (document Type Definition).

NOTE 1 MathML specification is available at the following URL: www.w3.org/TR/MathML2.

text_representation: "linear" form of a mathematical string.

NOTE 2 Use ISO 843 if necessary.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.w3.org/TR/MathML2

ISO 13584-32:2010(E)

134 © ISO 2010 – All rights reserved

Internal item definitions:

mml:math.type: the Mathematical Markup Language construct that allows to specify mathematical
expressions.

NOTE 3 mml specifies the namespace prefix associated to the following MathML namespace:
http://www.w3.org/1998/Math/MathML.

8.8.3 Geometric context

A geometric context is a coordinate space. It is represented by the GEOMETRIC_CONTEXT_Type XML
complex type as illustrated in Figure 105.

GEOMETRIC_CONTEXT_Type

TEXT_Type
description

coordinate_space_dimension: xs:positiveInteger

Figure 105 — Geometric context structure

Internal item definitions:

description: a description of the reference coordinate system of the object in which the
geometric_representation_context is defined.

coordinate_space_dimension: the positive integer dimension count of the coordinate space which is the
geometric context.

8.8.4 Geometric unit context

A geometric unit context specifies the units that apply in a geometric context. It is represented by the
GEOMETRIC_UNIT_CONTEXT_Type XML complex type, as illustrated in Figure 106.

length_unit

GEOMETRIC_UNIT_CONTEXT_Type

0..1

DIC_UNIT_Type

angle_unit 0..1

DIC_UNIT_REFERENCE_Type

angle_unit_id 0..1

0..1length_unit_id

Figure 106 — Geometric unit context structure

Internal item definitions:

angle_unit: the angle unit which applies in a geometric context.

angle_unit_id: the identifier of the angle unit which applies in geometric context.

length_unit: the length unit which applies in a geometric context.

length_unit_id: the identifier of the length unit which applies in geometric context.

NOTE 1 At least the length_unit shall be defined. It can be associated to an angle_unit.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.w3.org/1998/Math/MathML

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 135

NOTE 2 When both angle_unit and angle_unit_id are provided, angle_unit takes precedence.

NOTE 3 When both length_unit and length_unit_id are provided, length_unit takes precedence.

External type definitions:

DIC_UNIT_Type: see 8.4.

DIC_UNIT_REFERENCE_Type: see 8.3.7.

Constraint specifications:

Either a length_unit is provided, or a length_unit_id or both.

9 OntoML exchange structure

OntoML defines a set of ontology-based XML Schemas for exchanging ontology and catalogue data. OntoML
is modularized. It is constituted of a set of XML schemas, each of them carrying a part of the CIIM modeling
constructs.

Beside the OntoML logical structure presented in the clauses 5, 6 and 7, this clause specifies physical level
requirements that shall be fulfilled by any XML document instance that claims to be represented according to
OntoML standard.

First, the identifier structure of the OntoML CIIM ontology concept is specified. Second, the specific
namespace that allows to unambiguously reference resources coming from the OntoML vocabulary is defined.
Third, the modular structure of OntoML is described. Finally, OntoML subsets and their corresponding
conformance classes are specified.

9.1 Identifiers of CIIM ontology concepts

In this part of ISO 13584, global identifiers are used to identify and to reference CIIM ontology concepts. Their
structure and content are specified in this clause.

OntoML identifiers are built according to the ISO/TS 29002-5 identification scheme structure.

NOTE 1 ISO/TS 29002-5 defines an identifier structure based on the ISO/IEC 11179-5 International Registration
Data Identifier (IRDI). In ISO/IEC 11179-5, a global identifier, called an IRDI, is assigned to administered items submitted
to registration.

NOTE 2 All CIIM ontology concepts and ontology as a whole are identified by an IRDI.

Such an IRDI is threefold:

⎯ a Registration Authority Identifier (RAI) intended to identify unambiguously the organization in charge of
delivering data identifiers;

⎯ a Data Identifier (DI) uniquely defined for an RAI, intended to identify an administered item;

⎯ a Version Identifier (VI) intended to be used for change management of administered items.

According to ISO/TS 29002-5, an OntoML ontology entry identifier is defined according to the following
structure:

ontoml_concept_identifier ::= RAI '#' DI '#' VI

In the next clauses, the structure of each part of these IRDI is presented.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

136 © ISO 2010 – All rights reserved

9.1.1 Registration Authority Identifier (RAI) structure

An organization wishing to assign identifiers to OntoML ontology entry shall be itself unambiguously identified.
This organization identification shall be defined according to the rules prescribed in ISO/TS 29002-5.

ISO/TS 29002-5 rules specify a structure for the identification of organizations. It consists of two mandatory
parts followed by three optional parts

The mandatory parts are as follows:

⎯ the International Code Designator (ICD);

⎯ the identification of an organization within an identification scheme: a data element containing an
organization identifier (OI);

The optional parts are as follows:

⎯ the identification of an organization part: a data element containing an organization part identifier (OPI);

⎯ the OPI source indicator (OPIS): a data element containing a code value indicating the source of the OPI;

⎯ some additional information (AI): a data element containing information assigned by the issuing
organization.

When an ontology is described in a standardized document, the ISO/TS 29002-5 rules are not sufficient for
representing accurately the registration authority identifier. Thus, the standard document number shall be
supplied as part of the general registration authority identifier in the AI part.

In such a case, the RAI of CIIM ontology concepts and ontologies defined in a standard document shall consist
of three parts:

⎯ the International Code Designator (ICD), fixed to "0112", where the standardization organization shall be
identified;

NOTE 1 the ICD "0112" is defined in ISO 6523 List B, the numeric list of all ICDs that have been issued.

⎯ the organization identifier (OI)of the standardized organization in the coding scheme "0112";

NOTE 2 In the coding scheme (ICD) "0112", the ISO OI equals to 1, the IEC OI equals to 2, the ISO/IEC OI equals
to 3.

⎯ the identification of the standard itself in the AI part:

⎯ the number of the standard (NB);

⎯ the part number (PART);

NOTE 3 If the standard part is not part of a multipart series, the part number is represented by the empty string.

⎯ the edition number (ED);

NOTE 4 The identification of CIIM ontology concepts and ontologies defined in a standard document do not require
the specification of both the OPI and the OPIS.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 137

Thus, an OntoML RAI is defined according to the following syntactical structure:

AI ::= NB '_' PART '_' ED

RAI1 ::= ICD '-' OI ('-' OPI ('-' OPIS)?)?

RAI2 ::= ICD '-' OI '---' AI

RAI ::= RAI1 | RAI2

NOTE 5 The above is compatible but more restrictive than ISO/TS 29002-5.

Where

⎯ the “?” character stands for the optional operator;

⎯ the “|” character stands for the logical disjunction operator;

⎯ parenthesis are meta-notations characters for defining groups;

⎯ characters between quotes (‘) are terminal characters that may appear in the RAI;

⎯ identifiers outside quotes shall have the following structure:

⎯ ICD: a string of exactly 4 numeric characters;

NOTE 6 Leading 0 are concatenated to the ICD in case of an ICD length smaller than 4 characters.

⎯ OI: a string up to 35 alphanumeric characters;

⎯ OPI: a string up to 35 alphanumeric characters;

⎯ OPIS: a single numeric character;

⎯ NB: a string up to 10 alphanumeric characters;

NOTE 7 For ISO and IEC standards, NB consists only of digits;

⎯ PART: a string (that may be empty) up to 10 alphanumeric characters;

NOTE 8 For ISO and IEC standards, PART consists only of digits.

⎯ ED: a string up to 5 numeric characters.

NOTE 9 For ISO and IEC standards, ED consists only of digits.

EXAMPLE 1 The French “FOO” company is identified (ORGID) by the “12345678901234” SIRENE number according
to the French codification system for identifying companies (ICD=“0002”). The corresponding organization identifier would
then be:

0002-12345678901234

EXAMPLE 2 The identifier (ORGID) allocated to a big device manufacturer is “123456789”. It is allocated as a DUNS
number for identifying companies (ICD=”0060”). The particular plant of the manufacturer located in “Town” is also
identified (OPI) by the following identifier: “12345”. Because this OPI identifier is allocated by the company itself, the OPIS
is set to 1. The corresponding organization identifier would then be:

0060-123456789-12345-1

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

138 © ISO 2010 – All rights reserved

EXAMPLE 3 IEC 61360-4 is a standard that specifies a data dictionary about electronic components. This standard is
edited by IEC. IEC is identified (ORGID=“2”) identifier according to the ISO register for standards producing organization
(ICD=”112”). This standard number (NB) is equal to “61360”, and the specific part (PART) in which the data dictionary is
defined is numbered “4”. If we assume that we want to reference the first edition of this document (ED=”1”), the
corresponding organization identifier would then be:

0112-2---61360_4_1

9.1.2 Version Identifier (VI) structure

Each CIIM ontology concept is versioned for life cycle management purposes. In order to unambiguously
identify a version of each concept, its corresponding version shall also be represented.

The OntoML VI is defined as follows:

⎯ VI: a string up to 10 numeric characters.

NOTE The above is compatible but more restrictive than ISO/TS 29002-5.

9.1.3 Data Identifier (DI) structure

Each ontology entry defined in a given ontology shall be assigned an identifier called a data identifier. It is
defined under the responsibility of an identified registration authority. Therefore, it is assumed that every data
identifier assigned to a CIIM ontology concept instance shall be unique in the context of this registration
authority.

In OntoML, the data identifier (DI) is defined as follows:

⎯ the code space identifier (CSI): identification of a domain within which each code denotes a single
meaning;

EXAMPLE In OntoML, a class and a property may have the same code. Using two different code space identifiers
to define the coding space of the class code and the property code allows to make the resulting identifiers unambiguous.

NOTE 1 IS0/TS 29002-5 specifies a list of registered code space identifiers.

⎯ the item code (IC);

The OntoML data identifier is defined according to the following syntactical structure:

DI ::= CSI '-' IC

Where:

⎯ CSI: a string of exactly 2 alphanumeric characters:

⎯ "01": code space identifier of a class;

⎯ "02": code space identifier of a property;

⎯ "04": code space identifier of a constraint;

⎯ "05": code space identifier of a unit;

⎯ "07": code space identifier of a value code;

⎯ "08": code space identifier of a currency;

⎯ "09": code space identifier of a data type;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 139

⎯ "10": code space identifier of a document;

⎯ "11": code space identifier for an ontology or a library;

NOTE 2 CSI are defined according to IS0/TS 29002-5.

⎯ IC: a string up to 71 alphanumeric characters.

9.1.3.1 DI for classes

According to ISO/TS 29002-5, a class is associated to a code space identifier (CSI) equal to '01'.

The DI for a class consists of three parts:

⎯ the code space identifier for the class;

⎯ the hyphen ("-") character;

⎯ the code of the class.

EXAMPLE ISO 13584-511 specifies an ontology dealing with fasteners. In this ontology, a product characterization
class called “hexagon head bolt” is defined. The class code space identifier (CSI) is equal to "01". Its code (IC) is equal to
“P511AAA156”, and its version (VI) is set to “1”. The corresponding product characterization class identifier would
then be:

0112-1---13584_511_1#01-P511AAA156#1

9.1.3.2 DI for properties, data types and documents

The DI of a property, data type or document is defined as follows:

⎯ the code space identifier for the property, data type or document;

⎯ the hyphen ("-") character;

⎯ the code of the property, data type or document.

EXAMPLE ISO 13584-501 specifies an ontology dealing with measuring instruments. In the “laboratory measuring
instrument” product characterization class, a property called “accuracy rating" property is defined. According to
ISO/TS 29002-5, the property code space identifier (CSI) is equal to "02". This property is identified (IC) by the
“P501_P000178” code, and is associated to a version (VI) equal to “000000001”. The corresponding property identifier
would then be:

112-1---13584_501_1#02-P501_P000178#000000001

9.1.3.3 DI for units, currencies, constraints, value codes and a posteriori semantic relationships

OntoML allows to reference units, currencies, constraints, value codes and a posteriori semantic relationships
using IRDIs. The unit, currency, constraint or value code is assigned by the RAI. This code constitutes the data
identifier (DI) of the unit, currency, constraint or value code.

The DI for a unit, a currency, a constraint, a value code or an a posteriori semantic relationship consists of
three parts:

⎯ the code space identifier for the unit, currency, constraint, value code or a posteriori semantic
relationships;

⎯ the hyphen ("-") character;

⎯ the code of the unit, currency, constraint, value code or a posteriori semantic relationships.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

140 © ISO 2010 – All rights reserved

9.1.3.4 DI for ontologies and libraries

OntoML also allows to associate an IRDI globally to an ontology or a library. The ontology or library code may
be assigned by the RAI. The only constraint is that this code is unique over all the classes, ontologies and
libraries defined by this RAI. This code constitutes the data identifier (DI) of the ontology or library.

The DI for an ontology or library consists of three parts:

⎯ the code space identifier for the ontology;

⎯ the hyphen ("-") character;

⎯ the code of the ontology or library.

EXAMPLE The first version of the ontology identified by the “99999” code is defined by a big device manufacturer.
According to ISO/TS 29002-5, the ontology code space identifier (CSI) is equal to "11". This manufacturer is identified by
“123456789”. This manufacturer code is allocated as a DUNS number for identifying companies (ICD=”0060”). The
particular plant of the manufacturer located in “Town” is also identified (OPI) by the following identifier: “12345”. Because
this OPI identifier is allocated by the company itself, the OPIS is set to 1. The corresponding ontology identifier would
then be:

0060-123456789-12345-1#11-99999#1

9.1.4 OntoML identifier representation

OntoML CIIM ontology concepts identifiers are represented using a mandatory XML attribute assigned to the
corresponding CIIM ontology concept. The name of this attribute is always id. Its specific datatype depends on
the kind of CIIM ontology concept that is intended to be identified. These types are as follows:

⎯ SupplierId type for a supplier ontology concept,

⎯ ClassId type for a class ontology concept,

⎯ PropertyId type for a property ontology concept,

⎯ DatatypeId type for a datatype ontology concept,

⎯ DocumentId type for a document ontology concept.

Moreover, the identifier type of an ontology and / or a library, of a unit, a constraint, a value code or an a
posteriori semantic relationship is defined as follows:

⎯ OntologyId for an ontology or a library,

⎯ DicUnitId for a unit,

⎯ CurrencyId for a currency,

⎯ ConstraintId for a constraint,

⎯ ValueCodeId for a value code,

⎯ APosterioriSemanticRelationId for an a posteriori semantic relationship.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 141

9.2 OntoML namespace

OntoML defines a namespace based on both a URN and a URI specifications.

OntoML processors shall use the XML namespaces mechanism to recognize elements and attributes from this
namespace. Vendors shall not extend the OntoML namespace with additional elements or attributes.

This specification does not use any prefix for referring to elements in the OntoML namespace. However,
OntoML documents are free to use any prefix, provided that there is a namespace declaration that binds the
prefix to the URI of the OntoML namespace.

9.2.1 OntoML URN

The OntoML namespace has the following URN:

urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml

NOTE The URN is defined according to the ISO URN scheme for resources defined in ISO TC184/SC4 standards.

9.2.2 OntoML URI

The OntoML namespace has the following URI:

http://www.tc184-sc4.org/2010/OntoML.

NOTE The “2010“ substring in the URI indicates the year in which the URI was allocated. It does not indicate the
version of the OntoML module being used, which is specified by attributes.

9.3 Modular structure

OntoML is a set of XML schemas, called modules, that define general resources on which a top level schema
is built. The list of modules is given hereafter:

⎯ ontoml.xsd: the main XML schema. It defines the upper level of the OntoML ontology exchange format. It
is based on the definition of a single ontoml XML element whose content is a mandatory header, followed
by an optional dictionary specification, followed by an optional content specification.

⎯ header.xsd: this module contains management resources for characterizing the content (dates, authors
…) of an OntoML XML file.

⎯ dictionary.xsd: this module defines the container of any CIIM compliant ontology.

⎯ supplier.xsd: this module contains the resources intended to represent an information source according
to the structure defined in Clause 6.7.1.

⎯ class.xsd: this module contains the resources intended to represent an ontology class according to the
structure defined in Clause 6.7.2, whatever be its nature (a general model class, a functional model class
or a functional view class).

⎯ property.xsd: this module contains the resources intended to represent a property according to the
structure defined in Clause 6.7.4, whatever be its nature (a characteristic property, a context property, a
context dependent property or a representation property).

⎯ datatype.xsd: this module contains the constructs intended to represent data types according to the
structure defined in Clause 6.7.6.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

142 © ISO 2010 – All rights reserved

⎯ document.xsd: this module contains the constructs intended to represent a document according to the
structure defined in Clause 6.7.7.

⎯ type_system.xsd: this module contains an XML representation of the complete OntoML type system
presented in Clause 8.3.

⎯ translation.xsd: this module contains resources for defining multilingual representations of clear text as
presented in Clause 8.1.

⎯ external_file.xsd: this module contains constructs for referencing external resources that may be either
exchanged together with the OntoML document instance or referenced in the Internet; they are presented
in Clause 8.2.

⎯ unit.xsd: this module contains constructs for explicitly describing any kind of units according to the
structure defined in Clause 8.4.

⎯ a_posteriori.xsd: this module contains constructs for representing a posteriori mappings between
classes and properties defined in different ontologies according to the structure defined in Clause 8.6.

⎯ constraint.xsd: this module contains constructs intended to represent constrained properties according
to the structure defined in Clause 8.5.

⎯ basic.xsd: this module contains all the OntoML simple an complex type definitions shared by OntoML
modules.

⎯ identifier.xsd: this module provides the constructs needed for identifying and referencing CIIM ontology
concepts as presented in Clause 9.1;

⎯ content.xsd: this module defines specifies the structure of families of products belonging to a library;

⎯ library.xsd: this module defines structure for representing libraries of families of products, by their product
characterizations possibly associated with the ontology where product characterizations classes and
properties are defined.

Table 1 illustrates the reference relationships between these modules where gray squares specify the
relationship from one module to another module.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 143

Table 1 — OntoML modules cross-references

header.xsd

basic.xsd

identifier.xsd

translation.xsd

unit.xsd

external_file.xsd

supplier.xsd

type_system.xsd

datatype.xsd

constraint.xsd

property.xsd

class.xsd

document.xsd

aPosteriori.xsd

dictionary.xsd

content.xsd

references

library.xsd

a_
po

st
er

io
ri.

xs
d

ba
si

c.
xs

d

cl
as

s.
xs

d

co
ns

tra
in

t.x
sd

da
ta

ty
pe

.x
sd

ty
pe

_s
ys

te
m

.x
sd

di
ct

io
na

ry
.x

sd

do
cu

m
en

t.x
sd

ex
te

rn
al

_f
ile

.x
sd

he
ad

er
.x

sd

id
en

tif
ie

r.x
sd

lib
ra

ry
.x

sd

pr
op

er
ty

.x
sd

su
pp

lie
r.x

sd

tra
ns

la
tio

n.
xs

d

un
it.

xs
d

co
nt

en
t.x

sd

ontoml.xsd
on

to
m

l.x
sd

9.4 Levels of exchange and conformance classes

OntoML integrates a set of resource constructs into a single XML schema for representing ontologies and
possibly supplier libraries for the purpose of exchange. In order to support various levels of exchange
requirements, four functional subsets of OntoML have been identified as allowed levels of OntoML exchange.
These various functional subsets are called conformance classes.

These conformance classes also specify allowed levels of OntoML implementation for those systems that
claim conformance to the OntoML international standard.

The four conformance classes of OntoML are defined as follows:

⎯ simple ontology: an ontology that define hierarchies of classes of items on the base of the common
ISO/IEC dictionary schema together with the required external resources, documents, data types and
collection data types, but without description of item representations (i.e., functional model classes) and of
representation categories of items (i.e., functional view classes), corresponds to OntoML conformance
class 1;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

144 © ISO 2010 – All rights reserved

⎯ advanced ontology: an ontology that corresponds to a simple ontology with the addition of resources for
defining hierarchies of item representations (i.e., functional model classes) and of representation
categories of items (i.e., functional view classes), corresponds to conformance class 2;

⎯ simple library: a library content defining products on the basis of simple ontologies, possibly exchanged
together with simple ontology definitions correspond to conformance class 3;

⎯ advanced library: a library content defining products and product representations on the basis of advanced
ontologies, possibly exchanged together with advanced ontology definitions corresponds to conformance
class 4;

Table 2 summarizes the supported capabilities of the different conformance classes of OntoML.

Table 2 — Conformance options of OntoML

 Ontology Library

Conformance
Class

Common ISO/IEC
dictionary definitions

Documents

Collections

External resources

Representations

Representation
categories

Library of products Library of
representations

1 X

2 X X

3 X X

4 X X X X

Annex C defines the standard data that allow to precisely identify one conformance class among all the
available conformance classes.

9.5 Conformance class requirements

9.5.1 Conformance class 1

Conformance class 1 addresses those implementations that support ontologies that define hierarchies of
classes of items on the base of the common ISO/IEC dictionary schema together with the required external
resources, document ontology concept, data type ontology concepts and collection data types. It shall support
standardized data defined in Annex C. It shall support the following XML complex types:

⎯ From ontoml.xsd:

⎯ ONTOML_Type

⎯ From identifiers.xsd:

⎯ CLASS_REFERENCE_Type

⎯ CLASSES_REFERENCE_Type

⎯ DATATYPE_REFERENCE_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 145

⎯ DATATYPES_REFERENCE_Type

⎯ DIC_UNIT_REFERENCE_Type

⎯ DIC_UNITS_REFERENCE_Type

⎯ DICTIONARY_REFERENCE_Type

⎯ DICTIONARIES_REFERENCE_Type

⎯ DOCUMENT_REFERENCE_Type

⎯ DOCUMENTS_REFERENCE_Type

⎯ PROPERTY_REFERENCE_Type

⎯ PROPERTIES_REFERENCE_Type

⎯ SUPPLIER_REFERENCE_Type

⎯ SUPPLIERS_REFERENCE_Type

NOTE 1 idt:IRDI is defined outside OntoML. The idt prefix stands for the namespace identified by the following
URN: urn:iso:std:iso:29002:-5:ed-1:tech:schema:identifier.

⎯ From header.xsd:

⎯ HEADER_Type

⎯ INFORMATION_Type

⎯ LIBRARY_IIM_IDENTIFICATION_Type

⎯ From dictionary.xsd:

⎯ A_POSTERIORI_SEMANTIC_RELATIONSHIPS_Type

⎯ CONTAINED_CLASSES_Type

⎯ CONTAINED_DOCUMENTS_Type

⎯ CONTAINED_DATATYPES_Type

⎯ CONTAINED_PROPERTIES_Type

⎯ CONTAINED_SUPPLIERS_Type

⎯ DICTIONARY_IN_STANDARD_FORMAT_Type

⎯ DICTIONARY_Type

⎯ From supplier.xsd:

⎯ SUPPLIER_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

146 © ISO 2010 – All rights reserved

⎯ From class.xsd:

⎯ ASSIGNED_VALUE_Type

⎯ CLASS_CONSTANT_VALUES_Type

⎯ CLASS_Type

⎯ CLASS_VALUE_ASSIGNMENT_Type

⎯ CATEGORIZATION_CLASS_Type

⎯ ITEM_CLASS_CASE_OF_Type

⎯ ITEM_CLASS_Type

⎯ val:value

NOTE 2 val:value is defined outside OntoML. The cat prefix stands for the namespace identified by the following
URN: urn:iso:std:iso:29002:-10:ed-1:tech:schema:catalogue.

⎯ From property.xsd:

⎯ CONDITION_DET_Type

⎯ DEPENDENT_P_DET_Type

⎯ NON_DEPENDENT_P_DET_Type

⎯ PROPERTY_Type

⎯ SYNONYMOUS_SYMBOLS_Type

⎯ From datatype.xsd:

⎯ DATATYPE_Type

⎯ From datatypeSystem.xsd:

⎯ ALTERNATIVE_UNITS_Type

⎯ ANY_TYPE_Type

⎯ ARRAY_TYPE_Type

⎯ BAG_TYPE_Type

⎯ BOOLEAN_TYPE_Type

⎯ CLASS_REFERENCE_TYPE_Type

⎯ DATE_DATA_TYPE_Type

⎯ DATE_TIME_DATA_TYPE_Type

⎯ DIC_VALUE_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 147

⎯ INT_CURRENCY_TYPE_Type

⎯ INT_MEASURE_TYPE_Type

⎯ INT_TYPE_Type

⎯ INT_DIC_VALUE_Type

⎯ ITS_VALUES_Type

⎯ LEVEL_Type

⎯ LEVEL_TYPE_Type

⎯ LIST_TYPE_Type

⎯ NAMED_TYPE_Type

⎯ NON_QUANTITATIVE_CODE_TYPE_Type

⎯ NON_QUANTITATIVE_INT_TYPE_Type

⎯ NON_TRANSLATABLE_STRING_TYPE_Type

⎯ NUMBER_TYPE_Type

⎯ REAL_CURRENCY_TYPE_Type

⎯ REAL_MEASURE_TYPE_Type

⎯ REAL_TYPE_Type

⎯ REMOTE_HTTP_ADDRESS_Type

⎯ REPRESENTATION_REFERENCE_TYPE_Type

⎯ SET_TYPE_Type

⎯ SET_WITH_SUBSET_CONSTRAINT_TYPE_Type

⎯ STRING_DIC_VALUE_Type

⎯ STRING_TYPE_Type

⎯ TIME_DATA_TYPE_Type

⎯ TRANSLATABLE_STRING_TYPE_Type

⎯ From translations.xsd:

⎯ DOCUMENT_IDENTIFIER_NAME_LABEL_Type

⎯ DOCUMENT_IDENTIFIER_Type

⎯ GENERAL_TEXT_Type

⎯ KEYWORD_LABEL_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

148 © ISO 2010 – All rights reserved

⎯ KEYWORD_Type

⎯ LANGUAGE_Type

⎯ PREFERRED_NAME_LABEL_Type

⎯ PREFERRED_NAME_Type

⎯ SHORT_NAME_LABEL_Type

⎯ SHORT_NAME_Type

⎯ SYNONYMOUS_NAME_LABEL_Type

⎯ SYNONYMOUS_NAME_TYPE_Type

⎯ TEXT_Type

⎯ TRANSLATION_DATA_Type

⎯ TRANSLATION_Type

⎯ From externalFiles.xsd:

⎯ EXTERNAL_GRAPHICS_Type

⎯ EXTERNAL_RESOURCE_Type

⎯ EXTERNAL_FILES_Type

⎯ GRAPHICS_Type

⎯ HTTP_FILE_Type

⎯ IDENTIFIED_DOCUMENT_Type

⎯ REFERENCED_DOCUMENT_Type

⎯ REFERENCED_GRAPHICS_Type

⎯ SOURCE_DOCUMENT_Type

⎯ From units.xsd:

⎯ CONTEXT_DEPENDENT_UNIT_Type

⎯ CONVERSION_BASED_UNIT_Type

⎯ DERIVED_UNIT_ELEMENT_Type

⎯ DERIVED_UNIT_Type

⎯ DIC_UNIT_Type

⎯ DIMENSIONAL_EXPONENTS_Type

⎯ NAMED_UNIT_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 149

⎯ NON_SI_UNIT_Type

⎯ SI_UNIT_Type

⎯ UNIT_Type

⎯ From constraints.xsd:

⎯ CARDINALITY_CONSTRAINT_Type

⎯ CLASS_CONSTRAINT_Type

⎯ CONFIGURATION_CONTROL_CONSTRAINT_Type

⎯ CONSTRAINT_OR_CONSTRAINT_ID_Type

⎯ CONSTRAINT_Type

⎯ CONSTRAINTS_Type

⎯ CONTEXT_PARAMETER_CONSTRAINTS_Type

⎯ CONTEXT_RESTRICTION_CONSTRAINT_Type

⎯ DOMAIN_CONSTRAINT_Type

⎯ ENUMERATION_CONSTRAINT_Type

⎯ FILTER_Type

⎯ INTEGRITY_CONSTRAINT_Type

⎯ POSTCONDITION_Type

⎯ PRECONDITION_Type

⎯ PROPERTY_CONSTRAINT_Type

⎯ RANGE_CONSTRAINT_Type

⎯ STRING_PATTERN_CONSTRAINT_Type

⎯ STRING_SIZE_CONSTRAINT_Type

⎯ SUBCLASS_CONSTRAINT_Type

⎯ SUBSET_Type

⎯ From baseTypes.xsd:

⎯ MATHEMATICAL_STRING_Type

⎯ ORGANIZATION_Type

⎯ mml:math.type

NOTE 3 mml:math.type is defined outside OntoML. The mml prefix stands for the namespace identified by the
following URI: http://www.w3.org/1998/Math/MathML.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

150 © ISO 2010 – All rights reserved

⎯ From document.xsd:

⎯ AUTHORS_Type

⎯ DOCUMENT_CONTENT_Type

⎯ DOCUMENT_Type

⎯ PERSON_Type

⎯ REMOTE_LOCATIONS_Type

⎯ STRINGS_Type

⎯ From aPosteriori.xsd:

⎯ A_POSTERIORI_CASE_OF_Type

⎯ A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type

⎯ CORRESPONDING_PROPERTIES_type

⎯ MAPPING_FUNCTION_Type

⎯ PROPERTY_MAPPING_Type

9.5.2 Conformance class 2

Conformance class 2 addresses those implementations that support ontologies that define hierarchies of
classes of items on the base of the common ISO/IEC dictionary schema together with the required external
resources, document ontology concept, data type ontology concepts collection data types, description of
hierarchy of item representations and of representation categories of items. It shall support standardized data
defined in Annex C. It shall also supports complex types and related constructs defined for conformance
class 1, more the following complex types and related constructs:

⎯ From header.xsd:

⎯ SUPPORTED_VEP_Type

⎯ VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION_Type

⎯ From class.xsd:

⎯ FM_CLASS_VIEW_OF_Type

⎯ FUNCTIONAL_MODEL_CLASS_Type

⎯ GEOMETRIC_CONTEXT_Type

⎯ GEOMETRIC_UNIT_CONTEXT_Type

⎯ NON_INSTANTIABLE_FUNCTIONAL_VIEW_CLASS_Type

⎯ V_C_V_RANGE_Type

⎯ VIEW_CONTROL_VARIABLE_RANGE_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 151

⎯ From property.xsd:

⎯ REPRESENTATION_P_DET_Type

⎯ From datatypeSystem.xsd:

⎯ AXIS1_PLACEMENT_TYPE_Type

⎯ AXIS2_PLACEMENT_3D_TYPE_Type

⎯ AXIS2_PLACEMENT_2D_TYPE_Type

⎯ PLACEMENT_TYPE_Type

⎯ PROGRAM_REFERENCE_TYPE_Type

⎯ REPRESENTATION_REFERENCE_TYPE_Type

⎯ From aPosteriori.xsd:

⎯ A_POSTERIORI_VIEW_OF_Type

9.5.3 Conformance class 3

Conformance class 3 addresses those implementations that support exchange of products with dictionary
definitions. It shall support standardized data defined in Annex C. It shall also supports complex types and
related constructs defined for conformance class 1, more the following complex types and related constructs:

⎯ From externalFiles.xsd:

⎯ ILLUSTRATION_Type

⎯ MESSAGE_Type

⎯ From library.xsd:

⎯ CONTAINED_CLASS_EXTENSIONS_Type

⎯ LIBRARY_IN_STANDARD_FORMAT_Type

⎯ LIBRARY_Type

⎯ From content.xsd:

⎯ CLASS_EXTENSION_Type

⎯ CLASS_PRESENTATION_ON_PAPER_Type

⎯ CLASS_PRESENTATION_ON_SCREEN_Type

⎯ CLASSIFICATION_Type

⎯ CREATE_ICON_Type

⎯ EXPLICIT_ITEM_CLASS_EXTENSION_Type

⎯ PROPERTY_VALUE_RECOMMENDED_PRESENTATION_Type

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

152 © ISO 2010 – All rights reserved

⎯ PROPERTY_CLASSIFICATION_Type

⎯ RECOMMENDED_PRESENTATION_Type

⎯ cat:catalogue_Type

NOTE cat:catalogue_Type is defined outside OntoML. The cat prefix stands for the namespace identified by the
following URN: urn:iso:std:iso:29002:-10:ed-1:tech:schema:catalogue.

9.5.4 Conformance class 4

Conformance class 4 addresses those implementations that support exchange of products and engineering
models with dictionary definitions. It shall support standardized data defined in Annex C. It shall also supports
complex types and related constructs defined for conformance class 3.

⎯ From content.xsd:

⎯ CONTEXT_PARAM_ICON_Type

⎯ EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION_Type

10 Dictionary Change Management Rules

This clause defines the rules for organizing, controlling and tracking changes on reference dictionaries.

Given a particular version Ot of a reference dictionary, and a set of product descriptions based on version Ot' of
this dictionary, the goal of these rules are (1) to permit to decide whether the available Ot dictionary allows to
interpret correctly the available product descriptions, based on Ot', (2) when it is not the case, to decide which
part of the Ot reference dictionary should be updated to allows to interpret correctly the available product
descriptions.

NOTE The whole discussion on the dictionary management rules presented in this clause is based on product
characterization. Categorization classes being not used in product characterization, they are not concerned in the
discussion. Thus in this clause "class" means "characterization class", and "ontology concepts" means "all ontology
concepts but categorization classes". The rule for categorization class are defined in Rule 8.

10.1 Principle of ontological continuity

The role of a domain ontology in the ISO 13584 series, called a reference dictionary for this domain, is to
allow:

⎯ exchange of unambiguous information about products between business partners, and

⎯ storage of stable product characterizations in various persistent repositories.

The method used is to encode each product by a characterization that consists of:

⎯ the characterization class to which the product belongs, and

⎯ a set of property-value pairs, where the properties are selected among the properties that are applicable
to this characterization class.

EXAMPLE When a product is represented, using the ISO 13584-511 reference dictionary for fasteners, as a cap
nut with a nominal diameter of 5 and a height of nut of 4; for short:
 cap nut (nominal diameter = 5; height of nut = 4),
this characterization represents a product that is an "hexagon nut closed at one side by a flat cap" whose "nominal thread
diameter" is 5 mm and whose "overall height of nut" is 4 mm.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 153

NOTE 1 In the computer-to-computer exchange format, both the characterization class and the properties appearing
in a characterization are represented using codes that include the version number of these ontology concepts. In the
above example, characterization is represented by class and property preferred names to make them understandable.

NOTE 2 In this ontology-based approach, each product is represented as an ontology instance.

The fundamental assumption on which this encoding is based is that:

⎯ in an exchange, both the sender and the receiver must associate the same meaning to the same
characterization, and

⎯ a characterization recorded at time = t must be interpreted with the same meaning at time = t+1, even if
the reference dictionary evolves between time t and t+1.

In general there are two solutions which allow respecting this fundamental assumption:

⎯ In the case where the reference dictionary has changed between t and t+1 and where there are no
restrictions on the allowed changes, a reference dictionary user needs to be able to access both the
reference dictionary available at time t and the reference dictionary available at t+1, and thus all the
various versions of the reference dictionary.

⎯ Another solution is retained by the dictionary change management rules defined in this part of ISO 13584,
which allows to use only one reference dictionary version, namely the more recent version of all its
ontology concepts

This solution, called the principle of ontological continuity, restricts the allowed changes to those which ensure
that any product characterization defined at time = t with the reference dictionary existing at this time must still
keep the same meaning when interpreted with the reference dictionary existing at time = t+1. Consequently the
meaning of a ontology concept introduced at some time will be retained in the future.

NOTE 3 Over its lifetime, a reference dictionary description may contain small errors, like typos. It may also need to
be refined, for instance to take into account technology improvements. Finally, it also arrives, in some cases, that
reference dictionary definitions contain conceptual errors where the meaning of classes and/or properties need to be
changed.

The dictionary change management rules documented in this clause classifies the various changes that may
be needed during the lifetime of reference dictionaries. It also specifies how each change should be
represented to ensure that the same meaning is always associated with the same existing characterization.

10.2 Revisions and Versions

The impact of a change depends upon its impact on existing and future characterizations. We first define what
means the fact that a characterization conforms to a reference dictionary.

Let:

⎯ Ot be the reference dictionary O at time t;

⎯ Ct be the classes of the reference dictionary O at time t;

⎯ Pt be the properties of reference dictionary O at time t;

⎯ applicable_propertiest be the function that associates to each class of Ct its applicable properties in Pt at
time t

NOTE 1 applicable_propertiest(Class_Pt) represents all properties declared by the described_by XML element of
the CLASS_Type XML complex type that defines Class_Pt, more, if Class_Pt is a case-of class, the properties imported
by the imported_properties of Class_Pt, more all the applicable properties of the possible superclasses of Class_Pt.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

154 © ISO 2010 – All rights reserved

⎯ domaint be the function that associates to each property Pi in Pt its domain of values at time t

NOTE 2 domaint(Pit) represents the domain of values declared by the domain XML element of the
PROPERTY_DET_Type XML compex type that defines Pi at time t.

A characterization xt conforms to the reference dictionary Ot if and only if xt may be represented as an instance
of Ot. This means that:

⎯ xt belongs to one class of Ct, say Class_Pt;

⎯ xt is characterized by values of some properties, say P1t , P2t ,..., Pnt;

⎯ P1t, P2t,..., Pnt belongs to Pt;

⎯ P1t, P2t,..., Pnt are properties that are applicable to Class_Pt;

NOTE 3 P1t , P2t ,..., Pnt may be the set of all properties applicable to Class_Pt, it may also be any subset of this
set.

⎯ for each property: P1t, P2t,..., Pnt, the value assigned to this property belongs to the domain of values of
that property at time t, as defined by the function: domaint(Pit), i = 1..n..

Formally, xt conforms to the reference dictionary Ot if a dictionary user may encode it:

xt = Class_Pt (P1t =v1, P2t =v2,..., Pnt =vn)

With:

Class_Pt ∈ Ot, P1t ∈ Ot , P2t ∈ Ot, ..., Pnt ∈ Ot

∧ P1t ∈ applicable_propertiest(Class_Pt) ∧ P2t ∈ applicable_propertiest(Class_Pt)

∧ … ∧ Pnt ∈ applicable_propertiest(Class_Pt)

∧ v1 ∈ domaint(P1t) ∧ v2 ∈ domaint(P2t) ∧... ∧ vn ∈ domaint(Pnt)

The set of all the characterizations xt that conform to Ot, called the population Popt of Ot, is defined as follows:

Popt = all xt such that xt conforms to Ot

We said that:

⎯ Popt and xt conform to Ot, and

⎯ Ot interprets Popt and xt.

These definitions allow to classify the various changes of reference dictionaries.

The first kind of changes in a reference dictionary are those changes that do not modify at all the set of
characterizations that may be defined by this reference dictionary, i.e., the population of the reference
dictionary. It is the case, for instance, when a typo is corrected, when new translations are added or when the
definition of a class is redrafted to make its content clearer without changing its meaning. In this case, Popt,
the population of Ot at time = t, is identical to Popt+1, the population of Ot+1 at time = t+1. This means that:

⎯ any characterization xt defined from Ot also conforms to Ot+1. Thus, Ot+1 is backward compatible with Ot
since it allows to interpret all its instances, moreover

⎯ any characterization xt+1 defined from Ot+1 also conforms to Ot. Thus, Ot+1 is also upward compatible with
Ot since Ot allows to interpret all Ot+1 instances.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 155

In case of a change for which backward and upward compatibility are existing, it is not necessary to record if
the characterization x was built at time = t or at time = t+1. Thus this change would not require to change the
version numbers that were already assigned to the various ontology concepts at time = t. This change is called
a revision change, and it will be traced by increasing either the revision XML element of the corresponding
ontology concept that was modified if the change affects the description in the source language in which the
ontology concept was defined, and/or one or several translation_revision XML elments corresponding to the
other languages in which the ontology concept is translated if the change affects the description in the
corresponding language.

NOTE 4 Revision numbers are not recorded in the identifiers of ontology concepts. The characterization using the
ontology concepts will allow to use Ot as well as Ot+1 for interpretation.

NOTE 5 Each ontology concept has a revision XML element. Each ontology concept that is translated has some
administrative data that specify both the source_language language in which the ontology concept was initially defined,
and, for each translation, a translation_revision information

The second kind of changes in a reference dictionary are those changes that refine the reference dictionary
and allow to define new characterizations. New classes are introduced, new properties are introduced, and
new property values are added to their domain of values. To ensure the ontological continuity principle, no
class, property or value should be removed. The reference dictionary Ot+1 defined after the change shall
remain able to interpret Popt. Ot+1 is still backward compatible with Ot and it allows to interpret all its instances.
But it is no longer upward compatible because some characterizations that conform to Ot+1 do not conform to
Ot.

In case of changes for which only backward compatibility is existing, a characterization x that was built at
time = t+1 and depends upon the modified ontology concepts should express this clearly in its representation.
This change is called a version change and it will be traced by increasing the version of the ontology concept
that was modified, and of all the other ontology concepts that were also modified as a consequence.

NOTE 6 Version numbers are recorded in the identifiers (IRDIs) of ontology concepts, the version of each element
used in a characterization will prevent to use Ot for trying to interpret a characterization based on Ot+1 specific versions.

Table 3 summarizes the differences between version and revision.

Table 3 — Revision and version

 Backward compatibility

Popt conforms to Ot+1

Upward compatibility

Popt+1 conforms to Ot

Revision Yes Yes

Version Yes No

10.3 Correction of errors

In case of errors in a reference dictionary which is already used to define product characterizations, the need is
to correct the reference dictionary errors but also to provide a mechanism that allows reference dictionary
users to understand and process the error correction. For each data set that contains product characterization,
processing errors means (1) recognizing which characterizations are in errors and (2) defining how erroneous
characterizations should be corrected to be in line with the corrected reference dictionary.

When the ontology concepts which are erroneous have not yet been used for creating product
characterizations or if in a closed user environment, the characterizations can be corrected concurrently with
the reference dictionary. It is the responsibility of the reference dictionary supplier to decide how to remove
erroneous elements from the current reference dictionary, and how to perform the reference dictionary
correction.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

156 © ISO 2010 – All rights reserved

In the dictionary change management rules defined in this part of ISO 13584, an open user environment is
assumed, where all possible characterizations are not accessible to the dictionary supplier, and correction
cannot be performed together with the reference dictionary. In such an environment, a mechanism called
"deprecation" has to be used.

Deprecation means that:

⎯ to ensure backward compatibility, the erroneous ontology concepts and/or the erroneous property values
remain in the reference dictionary to ensure backward compatibility, but

⎯ all the erroneous ontology concepts are associated with a is_deprecated XML element with a true value,
the meaning of which being: "this ontology concept or value shall no longer be used for new
characterizations", and

⎯ an XML element associated with each is_deprecated XML element, called
is_deprecated_interpretation, is used to specify how a characterization that references deprecated
ontology concepts should be changed to be in line with the up-dated reference dictionary.

NOTE 1 The specification in is_deprecated_interpretation may be either informal, to explain to a reference
dictionary user how the corresponding data should be processed, or formal to direct a computer how to correct
automatically the data.

NOTE 2 In the current specification of the dictionary change management rules, no formal language is defined for
representing the content of is_deprecated_interpretation. It is the intent of the team that developed the CIIM to consider
the development of such a language.

EXAMPLE 1 If in a class C1 an applicable property P1 whose value was supposed to be expressed in meters, is
replaced by a property P2 which has the same meaning but whose value shall be expressed in microns, (1) the P1
is_deprecated XML element is set to true, and (2) its is_deprecated_interpretation XML element could be set to: "the
value of this property shall now be expressed in microns and recorded in property P2".

EXAMPLE 2 In example 1 above, the value of the is_deprecated_interpretation XML element of P1 could be
represented, if this approach has been agreed by the community that uses the reference dictionary, as an expression
using a given syntax, and representing the values of properties by the property identifiers. In this case the content could
be set to: "P2 := P1 * 1 000".

10.4 Rules for change management

This subclause provides rules for managing changes in reference dictionaries.

10.4.1 Criteria for classifying a change

The impact of a change in an ontology concept onto the populations of characterizations that are interpretable
by Ot and/or Ot+1 provides a criteria for classifying the change impact as a revision change, a version change
or an error correction. This clause describes the how each change should, at least, be recorded according to
its impact to ensure that the receiver of an exchange file that contains item characterizations will understand
whether its current dictionary allows to interpret the exchange file or not.

These rules define the minimal requirements. But a reference dictionary supplier may always decide to update
the version of an ontology concept when the rules request only the updating of the revision, or to deprecate a
modified element when the rules request only the updating of its revision or of its version.

Rule 1: Revision change

If after changing a concept (class, datatype, properties, …) Entt of the reference dictionary Ot into Entt+1, (1)
the new reference dictionary Ot+1 may interpret all the characterizations that might be defined by Ot, and (2) it
does not allow to define any new characterization, the change is a revision change of the ontology concept
changed by the change of the Entt entity.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 157

If the description of the dictionary element changed is only defined in a single language, or if it is translated and
the change affects the description in the source language in which it was defined, the change should increase
the value of the revision attribute of the dictionary element modified by the change. If the change of Ent also
affects the translation in any other languages in which the dictionary element is translated, the corresponding
translations should be changed, and the change should increase the values of the translation_revision
attribute of the corresponding translations.

EXAMPLE 1 In a dictionary that is available only in a single language, if one changes the definition of a class without
changing the characterizations it can interpret, the revision XML element of the class must be increased.

EXAMPLE 2 In a dictionary whose source language is English and that is translated in German and French, if one
changes the French definition of a class without changing the characterizations it can interpret, the translation_revision
XML element of the French translation should be increased.

EXAMPLE 3 In a dictionary whose source language is English and that is translated in German and French, if one
changes the value of the figure XML element of a class without changing the characterizations the class can interpret,
then the revision XML element of the class should be increased. If the figure value is a graphic_files that is not
language-dependent, and thus applies to all language descriptions, the German and French translation_revision should
not be increased because the translated part was not changed.

EXAMPLE 4 If one adds a visible property to a class without making it applicable in the class or any of its subclass,
then no characterization may be described by this new property. No direct attribute of the class being modified, neither
the revision nor the version of the class needs to be updated.

Rule 2: Version change

If after changing a concept (class, datatype, properties, …) Entt of the reference dictionary Ot into Entt+1, (1)
the new reference dictionary Ot+1 may interpret all the characterizations that might be defined by Ot, but (2) it
also provides new characterizations that cannot be interpreted by Ot, the change should increase the version
of Entt.

NOTE 1 Constraints have an impact on those item characterizations that fulfill the constraints. Thus, change of
constraints should be represented by an increase of version of the class that contains these constraints. But change of
constraint does not change the set of characterization that may be interpreted by a dictionary. Thus, when constraints are
modified in a class, the set of item characterizations that fulfill the constraints may become broader or narrower without
violating the ontological continuity principle.

EXAMPLE 5 If one adds an applicable property to a class, thus (1) all characterizations defined by the previous
reference dictionary may still be interpreted (without using the new applicable property), but (2) some characterizations
may also be defined by the new reference dictionary that could not be interpreted by the previous one (those that use the
new applicable property). Thus the version of the class must be increased.

EXAMPLE 6 If one adds a new alternative unit to the real measure type of some property, thus all characterizations
defined by the previous reference dictionary may still be interpreted (without using the new alternative unit), but some
characterizations may also be defined by the new reference dictionary that could not be interpreted by the previous one
(by using the new alternative unit). Thus the version of the class must be increased.

Rule 3: Error correction

If after changing an ontology concept or an information element (class, datatype, property, name, definition …),
Entt of the reference dictionary into Entt+1, the new reference dictionary Ot+1 is not able to interpret all the
characterizations that might be defined by Ot, the change would not be backward compatible and is violating
the principle of ontological continuity.

For allowing error correction, it is needed to (1) identify those ontology concepts that should be modified and
assign the value true to their is_deprecated XML element, (2) define new entities which would correct the
errors, and (3) describe in the is_deprecated_interpretation XML element of the deprecated elements, why
the element was deprecated and how a characterization that references deprecated elements should be
changed to be in line with the up-dated reference dictionary.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

158 © ISO 2010 – All rights reserved

EXAMPLE 7 If one corrects the unit of the real measure type of some property, then all products characterized by this
property that are already recorded somewhere should be described differently. The new reference dictionary would not be
backward compatible and this change could not be done that way. Thus (1) the corresponding property should be
deprecated, (2) a new property (with a different identifier) should be created and made visible and applicable where the
previous one was so, and (3) in the is_deprecated_interpretation of the previous property it should be specified that its
value should be e.g., "divided by 1000, and then put as value to the new property".

EXAMPLE 8 If one adds some new context parameters to those from which a context dependent property depends
on, thus all characterizations that involve this property should be described differently after the change. The new
reference dictionary would no longer be able to interpret some previous characterizations. Thus (1) deprecate the old
context dependent property, (2) create and introduce a new one, and (3) explain the deprecation rational, and possibly, if
the previous context dependent property was supposed to be measured at a fixed value of the new context parameter,
how values of the deprecated context dependent property could be converted into value of the new property.

NOTE 2 In this example, it would also be possible to keep in the reference dictionary both the previous and the new
context dependent property.

Figure 107 summarizes how to classify a change:

Entt Entt+1

time = t, Ot, Popt time = t+1, Ot+1, Popt+1

Backward
Compatible ?

Change request
Entt -> Entt+1

Upward
Compatible ?

Deprecate Entt
Introduce new entities = Entt+1

Backward
Compatible ?

Yes No

Yes No Yes No

Revision Version Out of scope
Request an internal agreement of dictionary users

Figure 107 — Classifying a dictionary change

10.4.2 Dependency and the propagation of changes

In a reference dictionary, each ontology concept may exist only in a single version. Thus, when the version
number of a ontology concept of a reference dictionary is increased, all the ontology concepts that references
this ontology concept should be changed to reference its new version. Indeed, such a change should be traced
at the level of the identifiers of all the referencing ontology concepts in order to be sure that, when a ontology
concept identifier is replaced by its ontology concept description, it contains the correct internal references.
Thus every change in the version of an ontology concept referenced within another ontology concept must be
represented by a new version of the latter.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 159

The oneness of each ontology concept applies within a reference dictionary, but not between several
dictionaries. When class C1 of reference dictionary D1 references class C2 of reference dictionary D2 by the
case-of relationship, it is the responsibility of the D1 reference dictionary supplier to decide which classes are
referenced, in which version, and possibly which properties are imported. Thus, if the dictionary supplier of D2
changes the version of C2, it is the responsibility of the D1 dictionary supplier to decide if and when the new
version of C2 will be referenced in C1. The old reference may be kept. But if the version of the reference is
increased, then the version of C1 shall be increased.

This is summarized in the four rules below.

Rule 4: No propagation between reference dictionaries

When a class C1 of the reference dictionary D1 references a class C2 of the reference dictionary D2 by the
case-of relationship, and when the version of class C2 is upgraded, it is the responsibility of the D1 dictionary
supplier to decide if and when C1 will reference the new version of C2. If this is done, the version of C1 shall
be increased.

EXAMPLE 1 C1 imports, through case-of, properties P1 and P2. A new applicable property P3 is added to C2. The
supplier of D1 is not interested in P3. C1 may continue referencing the previous version of C2.

Rule 5: Version propagation

Increasing the version number of any ontology concepts that is referenced by other ontology concepts of the
same reference dictionary must be propagated to them.

NOTE 1 Same reference dictionary means identified by the same information supplier.

NOTE 2 When an ontology concept references another ontology concept, this reference is done through a IRDI that
includes the version of the target ontology concept. Thus, if the version of the target ontology concept is changed, the
content of the source ontology concept should also be changed to record the correct (new) reference. This change
induces that new characterization could be described (indirectly) by the source ontology concept and that its version
should be changed.

EXAMPLE 2 Changing the version of a DATATYPE_Type, for instance to extend its domain of values, change also
the domain of values of any property that references it as its domain. Thus the version of these properties should also be
updated. This would also change the set of characterizations that may be described by the classes were these properties
become applicable by the described_by XML element.

EXAMPLE 3 Change of the version number of a class leads to a change of the version number of its sub-classes and
of the subclasses of this class, and so on.

EXAMPLE 4 If the version of the definition class of a property is increased, the version of this property must also be
increased.

NOTE 3 This rule ensures that when the version number of the characterization class used for characterizing an
item in an exchange file is smaller than or equal to its version in the local dictionary of the receiving system, This system
is able to interpret correctly this characterization, whatever be its complexity.

Rule 6: Computation of new version values

For each particular change, all the propagated changes shall be computed together and the version number of
each entity shall be increased at most once. It is also allowed to gather a number of different changes to
compute new versions of a set of ontology concepts.

Rule 7: Circulation of new version

It is the responsibility of the dictionary supplier that provides reference dictionaries to decide how and when
updates should be distributed

EXAMPLE 5 A reference dictionary may be associated with a server compliant with ISO/TS 29002-20 that makes
available each update as soon as it has been validated

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

160 © ISO 2010 – All rights reserved

EXAMPLE 6 A reference dictionary may be distributed by releases. Every year a new release integrates all the
updates elaborated during the year. In this case, all modified ontology concepts may have only one version increased.

10.4.3 Management of categorization classes

Categorization classes having no impact on item characterization, the above rules cannot apply to them.

Rule 8: Versioning of categorization classes

Increasing versions of categorization classes are requested when one or several of their superclasses,
referenced by the categorization_class_superclasses XML element, are changed. All other changes may be
recorded by revision increasing.

Change of versions of categorization classes are not propagated to characterization classes that reference
them. Such changes are only recorded as revision changes.

10.4.4 Management of dictionary version and revision

During a file exchange of item characterizations based on a dictionary, the following rule ensures that in a file
exchange, just by checking the dictionary version, the file receiver may know whether his/her available version
of the dictionary allows to interpret the file.

Rule 9: Versions and revisions of a dictionary

When an updated dictionary is distributed according to rule 6:

⎯ if the version of any ontology concept defined in this dictionary has been incremented, and/or if a new
ontology concept has been introduced, the version of the dictionary shall be incremented,

EXAMPLE A new ontology concept is introduced in the dictionary when a new subclass of an existing class is
introduced, or when a new visible type is defined.

⎯ if the revision of any ontology concept defined in this dictionary has been incremented, but the version of
the dictionary is not changed, then the revision of the dictionary shall be incremented,

⎯ if the version of the dictionary is incremented, its revision shall be reset to '0'.

10.5 Dictionary Changes and Attributes

10.5.1 System maintained attributes

Dictionary change management rules are restricted to attributes that are available for change triggered by user
change requests. System maintained attributes are therefore out of scope for reference dictionary changes,
since they are modified automatically as consequence of another change:

⎯ Revision change: if the change affects the description in the source language in which the ontology
concept was described, revision is incremented and date_of_current_revision is updated with the
current time. If the change affects the description in one, or several, of other languages in which the
description of the ontology concept is translated, translation_revision corresponding to this language is
incremented and date_of_current_translation_revision corresponding to this language is updated with
the current time.

⎯ Version change: version is incremented and date_of_current_version is updated with the current time.
revision is set to the value defined as the minimum of revision attribute and date_of_current_revision
is updated with the modification time.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 161

⎯ Creation of a new ontology concept: a new ontology concept is created with a new code and
date_of_original_definition is set to the current time. Version is set to the value defined as the
minimum of version attribute and date_of_current_version is updated with the current time. Revision is
set to the value defined as the minimum of revision number and date_of_current_revision is updated
with the current time.

10.5.2 Attributes available for textual change

The role of the terminological attributes of ontology concepts, such that names, definition, note, icon, is to
explain which kind of products are characterized by a particular reference dictionary class, and which kind of
product characteristic is represented by each particular property.

To ensure backward compatibility for textual changes of terminological attributes, such changes should not
reduce the meaning of the class or of the property, even if it may precise its meaning. But a textual change
may enlarge the definition of the class, for instance to take into account the development of new products.

Thus, a textual change requires, at least, a new revision number. But it is the responsibility of the dictionary
supplier to decide whether this change should also change the version of the ontology concept to ensure that
dictionary users will access to the terminological attributes that were used when some characterization was
defined. It is also the responsibility of the dictionary supplier to decide whether a new ontology concept should
be associated with a new code because the new definition seems to be not backward compatible with the
previous one.

10.6 Constraints on the evolution of reference dictionaries

In this clause, we summarize the constraints for each kind of ontology concept (classes, relation between
classes, properties and characterizations) during reference dictionary evolution.

Permanence of the classes

Existence of a characterization class could not be denied across evolution. Because each characterization
class allows to define some characterizations, any class existing at time t, shall still exist at time t', with t' > t.

NOTE 1 To make the change management model more flexible, a class may become obsolete. It will then be
marked as ”deprecated”, and possibly replaced by another class. But it will continue belonging to the newer versions of
the reference dictionary.

This principle allows that the most recent reference dictionary will be able to interpret all the earlier-defined
characterizations. It is the responsibility of each reference dictionary user to decide if, and until when,
deprecated elements will be kept in each user dictionary.

The problem of permanence is different for categorization classes. Since categorization classes are not used
for defining characterizations, these classes may be suppressed or modified without creating a backward
compatibility problem.

Permanence of properties

Similarly, all properties existing at time t shall still exist at t', t' > t. A property may also become obsolete but
neither its existence, nor its value for a particular item may be modified. The value domain of a property may
evolve. Taking into account the backward compatibility requirement, a value domain can only increase, certain
values being eventually marked as deprecated.

Permanence of the class-subclass relationship

The class-subclass relationship is the relation between a class, and all its subclasses, direct or obtained by
transitivity. The class-subclass relationship supports inheritance between the superclass and the subclasses.
Requirement for permanence of a particular class-subclass relationship between two classes C1, as
superclass, and C2, as subclass, depends upon the consequences of this relation for the characterizations
defined by the subclass:

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

162 © ISO 2010 – All rights reserved

⎯ if C2 does not inherit from C1 any element (property, type, value,...) that may be used in a
characterization, then the C1-C2 relationship may be suppressed. Consequences in version and revision
number are defined by the dictionary change management rules.

⎯ if C2 inherits from C1 some elements (property, type, value,...) that may be used in a characterization of a
C2 instance, then the C1-C2 relationship shall not be suppressed.

Note that this constraint allows large evolution of the class-subclass relationship hierarchy, for example by
intercalating intermediate classes between two classes linked by a class-subclass relation.

Permanence of Characterizations

The fact that a property P is applicable to a class C at time t requests that P remains applicable to C at t', t' > t.

NOTE 2 This does not require at all that the same applicable properties are always used to describe the instances
of the same class. Properties used to characterize an item do not depend on reference dictionary evolutions. It depends
mainly of the requirements of the application that uses the reference dictionary.

NOTE 3 If a property P1 is declared as applicable in class C2 which is a subclass of C1, P1 may become applicable
in class C1 without any backward compatibility problem because applicability is inherited.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 163

Annex A
(normative)

Information object registration

In order to provide for unambiguous identification of an information object in an open system, the object
identifier

{ iso standard 13584 part (32) version (1) }

is assigned to this part of ISO 13584. The meaning of this value is defined in ISO/IEC 8824-1, and is described
in ISO 10303-1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

164 © ISO 2010 – All rights reserved

Annex B
(normative)

Computer interpretable listings

This annex contains the complete OntoML XML Schema in accordance with the various UML diagram defined
in this part of ISO 13584. These listings are available in computer-interpretable form in Table B.1

The main XML schema is the "ontoml" schema.

The following notice applies to the computer-interpretable files in this annex.

The following permission notice and disclaimer shall be included in all copies of this DTD/XML Schema ("the
Schema"), and derivations of the Schema:

© ISO 2010 — All rights reserved

Permission is hereby granted, free of charge in perpetuity, to any person obtaining a copy of the Schema, to
use, copy, modify, merge and distribute free of charge, copies of the Schema for the purposes of developing,
implementing, installing and using software based on the Schema, and to permit persons to whom the
Schema is furnished to do so, subject to the following conditions:

THE SCHEMA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ISO, OR ANY OTHER
LICENSOR THAT GRANTS THE RIGHT UNDER THE ABOVE PERMISSION TO USE THE SCHEMA, BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SCHEMA OR THE
USE OR OTHER DEALINGS IN THE SCHEMA.

In addition, any modified copy of the Schema shall include the following notice:

THIS SCHEMA HAS BEEN MODIFIED FROM THE SCHEMA DEFINED IN ISO 13584-32, AND SHOULD
NOT BE INTERPRETED AS COMPLYING WITH THAT STANDARD.

Table B.1 — XML schema defined in this part of ISO 13584

Description ASCII file URI Source
document

OntoML XML Schema ontoml.xsd urn:iso:std:iso:13584:-32:ed-
1:tech:xml-schema:ontoml

ISO 13584-32

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 165

The schemas in Table B.1 reference, directly or indirectly, the externally-defined schemas listed in Table B.2.

Table B.2 — XML schemas defined outside of this part of ISO 13584

Description ASCII file URI Source
document

Identifier XML Schema identifier.xsd urn:iso:std:iso:ts:29002:-5:ed-
1:tech:xml-schema:identifier

ISO/TS
29002-5

Catalogue XML Schema catalogue.xsd urn:iso:std:iso:ts:29002:-10:ed-
1:tech:xml-schema:catalogue

ISO/TS
29002-10

Value XML Schema value.xsd urn:iso:std:iso:ts:29002:-10:ed-
1:tech:xml-schema:value

ISO/TS
29002-10

Basic XML Schema basic.xsd urn:iso:std:iso:ts:29002:-4:ed-
1:tech:xml-schema:basic

ISO/TS
29002-4

MathML XML Schema mathml2.xsd http://www.w3.org/1998/Math/
MathML

www.w3.org/T
R/MathML2

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2

ISO 13584-32:2010(E)

166 © ISO 2010 – All rights reserved

Annex C
(normative)

Standard data requirements for OntoML

Standard data are the XML elements that shall be recognized by any implementation that claims conformance
to some conformance class of OntoML.

Standard data shall be specified for this library integrated information model for each conformance class.

C.1 Conformance class specification table

Table C.1 specifies the values of the name and application XML elements defined in the
LIBRARY_IIM_IDENTIFICATION_Type XML complex type that are allowed for use in a
LIBRARY_IIM_IDENTIFICATION_Type to reference OntoML in either of its conformance classes.

Table C.1 — ISO 13584 LIIM 32 conformance class specification

Conformance
Class

LIBRARY_IIM_IDENTIFICATION_Type
name XML element

mandatory value

LIBRARY_IIM_IDENTIFICATION_Type
application XML element

mandatory value

1 'ONTOML' '1'

2 'ONTOML' '2'

3 'ONTOML' '3'

4 'ONTOML' '4'

C.2 Standard data for conformance classes 1 to 4

The LIBRARY_IIM_IDENTIFICATION_Type XML complex type values allowed for use in a library delivery file
conform to OntoML defined in this part of ISO 13584 shall obey the constraints defined in this clause.

An informal constraint is defined on the LIBRARY_IIM_IDENTIFICATION_Type XML complex type to be
allowed for use to reference conformance class 1 to 4 of OntoML defined in this part of ISO 13584.

A LIBRARY_IIM_IDENTIFICATION_Type XML complex type is allowed for use to reference conformance
class 1 to 4 of OntoML if the following conditions hold:

— the name XML element of the LIBRARY_IIM_IDENTIFICATION_Type XML complex type that references
library integrated model LIIM 32 shall be equal to 'ONTOML', and

— the status XML element of the LIBRARY_IIM_IDENTIFICATION_Type XML complex type shall be equal
to 'WD', 'CD' or 'DIS', 'FDIS', 'IS', 'TS', 'PAS' or 'ITA' and

— the application XML element of the LIBRARY_IIM_IDENTIFICATION_Type XML complex type shall be
equal to ‘1', '2', '3', or '4'.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 167

Annex D
(normative)

Value representation of ISO 13584 / IEC 61360 entities and data types

on ISO/TS 29002-10 shared XML schemas

To ensure interoperability with other standards representing product or object characterization by means of
class belonging, and set of property-value pairs, OntoML uses the interoperability resources defined by the
ISO Technical Specification series 29002, Exchange of Characteristic Data.

More precisely OntoML uses:

⎯ the XML schema “urn:iso:std:iso:ts:29002:-5:ed-1:tech:xml-schema:identifier", defined in ISO/TS 29002-5,
for representing global identifiers;

⎯ the XML schema “urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:value", defined in ISO/TS 29002-10,
for representing property values;

⎯ the XML schema “urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:catalogue”, defined in
ISO/TS 29002-10, for representing high level elements.

In this annex we specify how each OntoML data type or entity instance is represented using an XML element
from ISO/TS 29002-10. Thus, this annex represents all the mandatory resources provided by
ISO/TS 29002-10 for their particular use in the context of OntoML.

As a rule, the same ISO/TS 29002-10 elements may be used for representing different kinds of OntoML
instances, and for each kind of instance, only some of the subelements or attributes of each ISO/TS 29002-10
elements are allowed for use. Thus, the following rules are used:

⎯ RULE 1: for each OntoML data type or entity instance we present its representation using the relevant
ISO/TS 29002-10 element(s);

EXAMPLE 1 The OntoML representation of an integer currency value is based on the following ISO/TS 29002-10
XML element:

<val:currency_value …>
 <
</val:currency_value>

⎯ RULE 2: in this representation, only the subelements and attributes that are allowed for use for this
particular representation are represented;

EXAMPLE 2 The subelements and attributes that are allowed for use for the OntoML representation of an integer
currency value are:

<val:currency_value currency_code="…">
 <val:integer_value>…</val:integer_value>
</val:currency_value>

⎯ RULE 3: the value of each subelement and attribute allowed for use is associated with a content name,
the content of this name is described in terms of OntoML information;

EXAMPLE 3 The value of each subement and attribute that are allowed for use for the OntoML representation of an
integer currency value are:

<val:currency_value currency_code="CurrencyCodeValue">
 <val:integer_value>IntegerValue</val:integer_value>
</val:currency_value>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

168 © ISO 2010 – All rights reserved

IntegerValue is a mandatory integer value defined according to Clause 3.3.17 of XML Schema Part 2: Datatypes.
CurencyCodeValue is defined according ISO 4217 (see 7.3.6)

⎯ RULE 4: the fact that this value is optional or mandatory for the particular OntoML data type or entity
instance considered is precised by a note;

EXAMPLE 4 The currency_code XML attribute assignment is mandatory for the OntoML representation of an integer
currency value.

⎯ RULE 5: when the same content name is used for several attributes or subelements, we qualify the
content name by the attribute or subelement name.

This annex specifies the various value representations, according to ISO/TS 29002, of the corresponding
OntoML data types.

In the next subclauses, according to ISO/TS 29002, the following namespace prefix are used:

⎯ id stands for “urn:iso:std:iso:ts:29002:-5:ed-1:tech:xml-schema:identifier";

⎯ val stands for “urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:value”;

⎯ cat stands for “urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:catalogue”.

D.1 Value representation of ISO 13584 / IEC 61360 data types

This clause specifies the value representations corresponding to the various ISO 13584 / IEC 61360 data
types that are defined in the CIIM. These values are represented according to the val:schema.

For each OntoML datatype, the representation of OntoML value using ISO/TS 29002-10 resource is specified.

D.1.1 Boolean type

The OntoML representation of the value of a property whose value domain is a Boolean type is represented as
follows:

<val:boolean_value>BooleanValue</val:boolean_value>

BooleanValue is a Boolean value defined according to Clause 3.2.2 of XML Schema Part 2: Datatypes.

NOTE 1 Boolean type is defined in Clause 8.3.1.

NOTE 2 val:boolean_value is defined in ISO/TS 29002-10:2009, Clause 6.3.3.

NOTE 3 The val:boolean_value XML element content assignment is mandatory.

EXAMPLE The following are valid Boolean type values:

<val:boolean_value>true</val:boolean_value>
<val:boolean_value>1</val:boolean_value>

D.1.2 String type

The OntoML representation of the value of a property whose value domain is a string type is represented as
follows:

<val:string_value>StringValue</val:string_value>

StringValue is a string value defined according to Clause 3.2.1 of XML Schema Part 2: Datatypes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 169

NOTE 1 String type is defined in Clause 8.3.2.

NOTE 2 val:string_value is defined in ISO/TS 29002-10:2009, Clause 6.3.2.

NOTE 3 The val:string_value XML element content assignment is mandatory.

EXAMPLE The following are valid string type values:

<val:string_value>it is a string value</val:string_value>
<val:string_value>d</val:string_value>

D.1.3 Enumeration of string codes type

The OntoML representation of the value of a property whose value domain is an enumeration of string codes
type is represented as follows:

<val:controlled_value value_code=”StringValue”/>

StringValue is a mandatory string value defined according to Clause 3.2.1 of XML Schema Part 2: Datatypes.

NOTE 1 Enumeration of string codes type is defined in Clause 8.3.4.

NOTE 2 val:controlled_value is defined in ISO/TS 29002-10:2009, Clause 6.8.2.

NOTE 3 The value_code XML attribute assignment is mandatory.

EXAMPLE The following is a valid enumeration of string codes type value:

<val:controlled_value value_code=”AAA012”/>

D.1.4 Translatable string type

The OntoML representation of the value of a property whose value domain is a translatable string type is
represented as follows:

<val:localized_text_value>
 <val:content>
 <val:local_string>
 <val:content>StringValue</val:content>
 <val:language_code>LanguageCode</val:language_code>
 <val:country_code>PossibleCountryCode</val:country_code>
 </val:local_string>
 OtherPossibleLocalStrings
 </val:content>
</val:localized_text_value>

StringValue is string value defined according to Clause 3.2.1 of XML Schema Part 2: Datatypes.

LanguageCode and PossibleCountryCode are strings defined according to Clause 8.1.1.

OtherPossibleLocalStrings defines the localtion where other string localizations (val:local_string) may be
represented.

NOTE 1 Translatable string type is defined in Clause 8.3.2.

NOTE 2 val:localized_text_value is defined in ISO/TS 29002-10:2009, Clause 6.4.4.

NOTE 3 val:language_code is defined according to ISO 3166-1 (see 8.1.1 of this part of ISO 13584).

NOTE 4 val:country_code is defined according to ISO 639-1 or ISO 639-2 (see 8.1.1 of this part of ISO 13584).

NOTE 5 For each val:local_string, a val:content and a val:language_code shall be specified (mandatory).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

170 © ISO 2010 – All rights reserved

NOTE 6 If required, val:country_code may be specified.

NOTE 7 Only one translation must be provided for each couple (val:language_code, val:country_code).

EXAMPLE The following is a valid translatable string type value:

<val:localized_text_value>
 <val:content>
 <val:local_string>
 <val:content>screw</val:content>
 <val:language_code>en</val:language_code>
 <val:country_code>us</val:country_code>
 </val:local_string>
 <val:local_string>
 <val:content>vis</val:content>
 <val:language_code>fr</val:language_code>
 </val:local_string>
 </val:content>
</val:localized_text_value>

D.1.5 URI type

The OntoML representation of the value of a property whose value domain is a URI type is represented as
follows:

<val:file_value>
 <val:content>
 <val:element>
 <val:URI>URIValue</val:URI>
 </val:element>
 </val:content>
</val:file_value>

URIValue is a URI value defined according to Clause 3.2.17 of XML Schema Part 2: Datatypes.

NOTE 1 URI type is defined in Clause 8.3.2.

NOTE 2 val:file_value is defined in ISO/TS 29002-10:2009, Clause 6.9.3.

NOTE 3 No translation shall be provided.

NOTE 4 The val:URI XML element content assignment is mandatory.

EXAMPLE The following is a valid remote http address type value:

<val:file_value>
 <val:content>
 <val:element>
 <val:URI>http://www.tc184-sc4.org/2010/OntoML</val:URI>
 </val:element>
 </val:content>
</val:file_value>

D.1.6 Non translatable string type

The OntoML representation of the value of a property whose value domain is a non translatable string type is
represented as follows:

<val:string_value>StringValue</val:string_value>

StringValue is a string value defined according to Clause 3.2.1 of XML Schema Part 2: Datatypes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 171

NOTE 1 Non translatable string type is defined in Clause 8.3.2.

NOTE 2 The val:string_value XML element content assignment is mandatory.

EXAMPLE The following is a valid non translatable string type value:

<val:string_value>OntoML</val:string_value>

D.1.7 Date time data type

The OntoML representation of the value of a property whose value domain is a date time data type is
represented as follows:

<val:date_time_value>DateTimeValue</val:date_time_value>

DateTimeValue is a value defined according to Clause 3.2.7 of XML Schema Part 2: Datatypes.

NOTE 1 Date time data type is defined in Clause 8.3.3.

NOTE 2 val:date_time_value is defined in ISO/TS 29002-10:2009, Clause 6.3.7.

NOTE 3 The val:boolean_value XML element content assignment is mandatory.

NOTE 4 The val:date_time_value XML element content assignment is mandatory.

EXAMPLE The following is a valid date time data type value:

<val:date_time_value> 2010-03-24T20:45:00+01:00</val:date_time_value>

D.1.8 Date type

The OntoML representation of the value of a property whose value domain is a date data type is represented
as follows:

<val:date_value>DateValue</val:date_value>

DateValue is a date value defined according to Clause 3.2.9 of XML Schema Part 2: Datatypes.

NOTE 1 Date data type is defined in Clause 8.3.3.

NOTE 2 val:date_value is defined in ISO/TS 29002-10:2009, Clause 6.3.6.

NOTE 3 The val:date_value XML element content assignment is mandatory.

EXAMPLE The following is a valid date data type value:

<val:date_value>2008-09-30</val:date_value>

D.1.9 Time data type

The OntoML representation of the value of a property whose value domain is a time data type is represented
as follows:

<val:time_value>TimeValue</val:time_value>

TimeValue is a time value is defined according to Clause 3.2.9 of XML Schema Part 2: Datatypes.

NOTE 1 Time data type is defined in Clause 8.3.3.

NOTE 2 val:time_value is defined in ISO/TS 29002-10:2009, Clause 6.3.8.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

172 © ISO 2010 – All rights reserved

NOTE 3 The val:time_value XML element content assignment is mandatory.

EXAMPLE The following is a valid time data type value:

<val:time_value>20:45:00+01:00</val:time_value>

D.1.10 Number type

The OntoML representation of the value of a property whose value domain is a number type is represented as
follows:

<val:real_value>RealValue</val:real_value>

RealValue is a real value defined according to Clause 3.2.5 of XML Schema Part 2: Datatypes.

NOTE 1 Number data type is defined in Clause 8.3.5.

NOTE 2 The val:real_value XML element content assignment is mandatory.

EXAMPLE The following are valid number type values:

<val:real_value>3.21</val:real_value>
<val:real_value>12</val:real_value>
<val:real_value> 12.78e-2</val:real_value>

D.1.11 Real type

The OntoML representation of the value of a property whose value domain is a real type is represented as
follows:

<val:real_value>RealValue</val:real_value>

RealValue is a real value defined according to Clause 3.2.5 of XML Schema Part 2: Datatypes.

NOTE 1 Real data type is defined in Clause 8.3.5.

NOTE 2 val:real_value is defined in ISO/TS 29002-10:2009, Clause 6.3.10.

NOTE 3 The val:real_value XML element content assignment is mandatory.

EXAMPLE The following are valid real type values:

<val:real_value>3.21</val:real_value>
<val:real_value>12</val:real_value>
<val:real_value> 12.78e-2</val:real_value>

D.1.12 Integer type

The OntoML representation of the value of a property whose value domain is an integer type is represented as
follows:

<val:integer_value>IntegerValue</val:integer_value>

IntegerValue is an integer value defined according to Clause 3.3.17 of XML Schema Part 2: Datatypes.

NOTE 1 Integer data type is defined in Clause 8.3.5.

NOTE 2 val:integer_value is defined in ISO/TS 29002-10:2009, Clause 6.3.13.

NOTE 3 The val:integer_value XML element content assignment is mandatory.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 173

EXAMPLE The following is a valid integer type value:

<val:integer_value>10</val:integer_value>

D.1.13 Rational type

The OntoML representation of the value of a property whose value domain is an integer type is represented as
follows:

<val:rational_value>
 <val:whole_part>WholePartIntegerValue</val:whole_part>
 <val:numerator>NumeratorIntegerValue</val:numerator>
 <val:denominator>DenominatorIntegerValue</val:denominator>
</val:rational_value>

WholePartIntegerValue, NumeratorIntegerValue and DenominatorIntegerValue is an integer value defined
according to Clause 3.3.17 of XML Schema Part 2: Datatypes.

NOTE 1 DenominatorIntegerValue must be a non null integer value.

NOTE 2 Rational data type is defined in Clause 8.3.5.

NOTE 3 val:rational_value is defined in ISO/TS 29002-10:2009, Clause 6.3.13.

NOTE 4 The val:whole_part XML element content assignment is optional.

NOTE 5 The val:numerator and val:denominator XML element content assignments are mandatory.

EXAMPLE The following is a valid rational type value:

<val:rational_value>
 <val:whole_part>5</val:whole_part>
 <val:numerator>2</val:numerator>
 <val:denominator>3</val:denominator>
</val:rational_value>

D.1.14 Real currency type

The OntoML representation of the value of a property whose value domain is a real currency type is
represented as follows:

<val:currency_value currency_code="CurrencyCodeValue" currency_ref="CurrencyIRDI>
 <val:real_value>RealValue</val:real_value>
</val:currency_value>

RealValue is a real value defined according to Clause 3.2.5 of XML Schema Part 2: Datatypes.

CurencyCodeValue is defined according ISO 4217 (see 8.3.6 of this part of ISO 13584).

CurrencyIRDI a possible reference to a currency defined in a currency dictionary.

NOTE 1 Real currency type is defined in Clause 8.3.6.

NOTE 2 val:currency_value is defined in ISO/TS 29002-10:2009, Clause 6.6.3.

NOTE 3 The currency_code XML attribute assignment is optional. It must be provided only if it is not defined in the
associated real currrency type.

NOTE 4 currency_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 5 The currency_ref XML attribute assignment is optional.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

174 © ISO 2010 – All rights reserved

NOTE 6 If both currency_code and currency_ref XML attributes are provided, they shall denote the same currency
concept.

NOTE 7 The val:real_value XML element content assignment is mandatory.

EXAMPLE The following is a valid real currency type value:

<val:currency_value currency_code="EUR">
 <val:real_value>10.53</val:real_value>
</val:currency_value>

D.1.15 Integer currency type

The OntoML representation of the value of a property whose value domain is an integer currency type is
represented as follows:

<val:currency_value currency_code="CurrencyCodeValue" currency_ref="CurrencyIRDI">
 <val:integer_value>IntegerValue</val:integer_value>
</val:currency_value>

IntegerValue is a mandatory integer value defined according to Clause 3.3.17 of XML Schema Part 2:
Datatypes.

CurencyCodeValue is defined according ISO 4217 (see 8.3.6).

CurrencyIRDI a possible reference to a currency defined in a currency dictionary.

NOTE 1 Integer currency type is defined in Clause 8.3.6.

NOTE 2 val:currency_value is defined in ISO/TS 29002-10:2009, Clause 6.6.3.

NOTE 3 The currency_code XML attribute assignment is optional. It must be provided only if it is not defined in the
associated integer currrency type.

NOTE 4 currency_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 5 The currency_ref XML attribute assignment is optional.

NOTE 6 If both currency_code and currency_ref XML attributes are provided, they shall denote the same currency
concept.

NOTE 7 The val:integer_value XML element content assignment is mandatory.

EXAMPLE The following is a valid integer currency type value:

<val:currency_value currency_code="EUR">
 <val:integer_value>10</val:integer_value>
</val:currency_value>

D.1.16 Real measure type

The OntoML representation of the value of a property whose value domain is a real measure type is
represented as follows:

<val:measure_single_number_value UOM_code="UnitValue" UOM_ref="UnitIRDI">
 <val:real_value>RealValue</val:real_value>
</val:measure_single_number_value>

RealValue is a mandatory real value defined according to Clause 3.2.5 of XML Schema Part 2: Datatypes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 175

UnitValue is a possible unit belonging to the list of units specified in the corresponding real measure type
specification (mathematical string representation of the main unit or of one of its alternative units, see 8.3.7).

NOTE 1 Use ISO 843 if necessary.

UnitIRDI a possible reference to a unit defined in a unit dictionary.

NOTE 2 UOM_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 3 Real measure type is defined in Clause 8.3.7.

NOTE 4 val:measure_single_number_value is defined in ISO/TS 29002-10:2009, Clause 6.5.5.

NOTE 5 UOM_code or UOM_ref XML attribute assignment shall be provided. If both UOM_ref and UOM_code
XML attributes are provided, they shall denote the same unit concept.

NOTE 6 The val:real_value XML element content assignment is mandatory.

EXAMPLE The following is a valid real measure type value:

<val:measure_single_number_value UOM_code="mm">
 <val:real_value>10.53</val:real_value>
</val:measure_single_number_value>

D.1.17 Integer measure type

The OntoML representation of the value of a property whose value domain is an integer measure type is
represented as follows:

<val:measure_single_number_value UOM_code="UnitValue" UOM_ref="UnitIRDI">
 <val:integer_value>IntegerValue</val:integer_value>
</val:measure_single_number_value>

IntegerValue is a mandatory integer value defined according to Clause 3.3.17 of XML Schema Part 2:
Datatypes.

UnitValue is a possible unit belonging to the list of units specified in the corresponding integer measure type
specification (mathematical string representation of the main unit or of one of its alternative units, see 8.3.7).

UnitIRDI a possible reference to a unit defined in a unit dictionary.

NOTE 1 Use ISO 843 if necessary.

NOTE 2 UOM_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 3 Integer measure type is defined in Clause 8.3.7.

NOTE 4 val:measure_single_number_value is defined in ISO/TS 29002-10:2009, Clause 6.5.5.

NOTE 5 UOM_code or UOM_ref XML attribute assignment shall be provided. If both UOM_ref and UOM_code
XML attributes are provided, they shall denote the same unit concept.

NOTE 6 The val:integer_value XML element content assignment is mandatory.

EXAMPLE The following is a valid integer measure type value:

<val:measure_single_number_value UOM_code="mm">
 <val:integer_value>5</val:integer_value>
</val:measure_single_number_value>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

176 © ISO 2010 – All rights reserved

D.1.18 Rational measure type

The OntoML representation of the value of a property whose value domain is an rational measure type is
represented as follows:

<val:measure_single_number_value UOM_code="UnitValue" UOM_ref="UnitIRDI">
 <val:rational_value>
 <val:whole_part>WholePartIntegerValue</val:whole_part>
 <val:numerator>NumeratorIntegerValue</val:numerator>
 <val:denominator>DenominatorIntegerValue</val:denominator>
 </val:rational_value>
</val:measure_single_number_value>

WholePartIntegerValue, NumeratorIntegerValue and DenominatorIntegerValue is an integer value defined
according to Clause 3.3.17 of XML Schema Part 2: Datatypes.

UnitValue is a possible unit belonging to the list of units specified in the corresponding integer measure type
specification (mathematical string representation of the main unit or of one of its alternative units, see 8.3.7).

UnitIRDI a possible reference to a unit defined in a unit dictionary.

NOTE 1 Use ISO 843 if necessary.

NOTE 2 DenominatorIntegerValue must be a non null integer value.

NOTE 3 UOM_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 4 Rational measure type is defined in Clause 8.3.7.

NOTE 5 val:measure_single_number_value is defined in ISO/TS 29002-10:2009, Clause 6.5.5.

NOTE 6 UOM_code or UOM_ref XML attribute assignment shall be provided. If both UOM_ref and UOM_code
XML attributes are provided, they shall denote the same unit concept.

NOTE 7 The val:whole_part XML element content assignment is optional.

NOTE 8 The val:numerator and val:denominator XML element content assignments are mandatory.

EXAMPLE The following is a valid rational measure type value:

<val:measure_single_number_value UOM_code="mm">
 <val:rational_value>
 <val:whole_part>5</val:whole_part>
 <val:numerator>2</val:numerator>
 <val:denominator>3</val:denominator>
 </val:rational_value>
</val:measure_single_number_value>

D.1.19 Enumeration of integer codes

The OntoML representation of the value of a property whose value domain is an enumeration of integer codes
type is represented as follows:

<val:controlled_value value_code=”StringValue”/>

String value shall denote an integer value.

NOTE 1 Enumeration of integer codes type is defined in Clause 8.3.8.

NOTE 2 val:controlled_value is defined in ISO/TS 29002-10:2009, Clause 6.8.2.

NOTE 3 The value_code XML attribute assignment is mandatory.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 177

EXAMPLE The following is a valid enumeration of integer codes type value:

<val:controlled_value value_code=”38”/>

D.1.20 Bag type

The OntoML representation of the value of a property whose value domain is a bag type is represented as
follows:

<val:bag_value>
 ABagOfBaseTypeValue
</val:bag_value>

ABagOfBaseTypeValue is any kind of value defined in this normative annex.

NOTE 1 Any value defined in a bag shall have the same base type.

NOTE 2 Duplicated values are allowed.

NOTE 3 Bag type is defined in Clause 8.3.9.1.

NOTE 4 val:bag_value is defined in ISO/TS 29002-10:2009, Clause 6.7.5.

NOTE 5 val:bag_value content (ABagOfBaseTypeValue) is mandatory.

EXAMPLE The following is a valid bag type value, for which the constituent elements are integers:

<val:bag_value>
 <val:integer_value>10</val:integer_value>
 <val:integer_value>10</val:integer_value>
 <val:integer_value>30</val:integer_value>
</val:bag_value>

D.1.21 Set type

The OntoML representation of the value of a property whose value domain is a set type is represented as
follows:

<val:set_value>
 ASetOfBaseTypeValue
</val:set_value>

ASetOfBaseTypeValue is any kind of value defined in this normative annex.

NOTE 1 Any value defined in a set shall have the same base type.

NOTE 2 Duplicated values are not allowed.

NOTE 3 Set type is defined in Clause 8.3.9.2.

NOTE 4 val:set_value is defined in ISO/TS 29002-10:2009, Clause 6.7.4.

NOTE 5 val:set_value content (ASetOfBaseTypeValue) is mandatory.

EXAMPLE The following is a valid set type value, for which the constituent elements are integers:

<val:set_value>
 <val:integer_value>10</val:integer_value>
 <val:integer_value>20</val:integer_value>
 <val:integer_value>30</val:integer_value>
</val:set_value>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

178 © ISO 2010 – All rights reserved

D.1.22 List type

The OntoML representation of the value of a property whose value domain is a list type is represented as
follows:

<val:sequence_value>
 AListOfBaseTypeValue
</val: sequence _value>

AListOfBaseTypeValue is any kind of value defined in this normative annex.

NOTE 1 Any value defined in a list shall have the same base type.

NOTE 2 Depending on the list type specification, duplicated values may or may not be allowed.

NOTE 3 List type is defined in Clause 8.3.9.3.

NOTE 4 val:sequence_value is defined in ISO/TS 29002-10:2009, Clause 6.7.6.

NOTE 5 val:sequence _value content (AListOfBaseTypeValue) is mandatory.

EXAMPLE The following is a valid list type value, for which the constituent elements are integers:

<val:sequence_value>
 <val:integer_value>10</val:integer_value>
 <val:integer_value>20</val:integer_value>
 <val:integer_value>30</val:integer_value>
</val: sequence _value>

D.1.23 Array type

The OntoML representation of the value of a property whose value domain is an array type is represented as
follows:

<val:sequence_value>
 AnArrayOfBaseTypeValue
</val: sequence_value>

AnArrayOfBaseTypeValue is any kind of value defined in this normative annex.

NOTE 1 Any value defined in an array shall have the same base type, or may be a null value.

NOTE 2 Depending on the array type specification, duplicated values may or may not be allowed.

NOTE 3 Array type is defined in Clause 8.3.9.4.

NOTE 4 val:sequence_value is defined in ISO/TS 29002-10:2009, Clause 6.7.6.

NOTE 5 val:sequence _value content (AnArrayOfBaseTypeValue) is mandatory.

EXAMPLE The following is a valid array type value, for which the constituent elements are integers, and for which
the second element is not defined (null value):

<val:sequence_value>
 <val:integer_value>10</val:integer_value>
 <val:null_value/>
 <val:integer_value>30</val:integer_value>
</val: sequence_value>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 179

D.1.24 Set with subset constraint type

The OntoML representation of the value of a property whose value domain is a set with subset constraint type
is represented as follows:

<val:set_value>
 ASetOfBaseTypeValue
</val:set_value>

ASetOfBaseTypeValue value is any kind of value defined in this normative annex.

NOTE 1 Any value defined in an array shall have the same base type.

NOTE 2 Set with subset constraint type is defined in Clause 8.3.9.5.

NOTE 3 val:set_value is defined in ISO/TS 29002-10:2009, Clause 6.7.4.

NOTE 4 Dynamic bounds of a set with subset constraint value used to overload the static bounds defined at the
type level cannot be mapped.

NOTE 5 val:set _value content (ASetOfBaseTypeValue) is mandatory.

EXAMPLE The following is a valid set with subset constraint type value, for which the constituent elements are
integers:

<val:set_value>
 <val:integer_value>10</val:integer_value>
 <val:integer_value>20</val:integer_value>
 <val:integer_value>30</val:integer_value>
</val:set_value>

D.1.25 Class reference type

The OntoML representation of the value of a property whose value domain is a class reference type, based on
an explicit reference mechanism, is represented as follows:

<val:item_reference_value item_local_ref="LocalIdRef"/>

<cat:item class_ref="ClassIRDI" local_id="LocalId">
 <cat:property_value property_ref="PropertyIRDI">
 …
 </cat:property_value>
…
</cat:item>

LocalId stands for a local XML identifier. It is intended to be used as a reference target for a property value
whose value domain is a class reference type. The reference is performed by setting the LocalIdRef value of
the item_local_ref XML attribut. LocalId is defined according to Clause 3.3.8 of XML Schema Part 2:
Datatypes.

NOTE 1 LocalId/LocalIdRef is similar to the the ID/IDREF XML reference mechanism.

LocalIdRef is defined according to Clause 3.3.6 of XML Schema Part 2: Datatypes.

ClassIRDI is a valid class concept identifier (IRDI) defined according to Clause 9.1.3.1.

PropertyIRDI is a valid property concept identifier (IRDI) defined according to Clause 9.1.3.2.

NOTE 2 cat:property_value represents a property-value pair constructor, see D.2.1.4.

NOTE 3 Class reference type is defined in Clause 8.3.10.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

180 © ISO 2010 – All rights reserved

NOTE 4 The item_local_ref and local_id XML attribute assignments are mandatory.

NOTE 5 The class_ref XML element assignment is mandatory.

NOTE 6 val:item_reference_value is defined in ISO/TS 29002-10:2009, Clause 6.9.2.

NOTE 7 cat:item is defined in Clause D.2.2.1 of this normative annex.

EXAMPLE The following is a valid class reference type value: the referenced item is specified according to the
class identified by the “0123-ABC#01-SCREW#1” IRDI, and is locally identified (local_id XML attribute) by the
“ITEM_ID_1” local identifier. The reference (item_local_ref XML attribute) is performed through this local identifier.

<val:item_reference_value item_local_ref=”ITEM_ID_1"/>
…
<cat:item class_ref="0123-ABC#01-SCREW#1" local_id="ITEM_ID_1">
 <cat:property_value property_ref="0123-ABC#02-DIAMETER#1">
 …
 </cat:property_value>
…
</cat:item>

D.1.26 Level type

The OntoML representation of the value of a property whose value domain is a level type is represented as
follows:

<val:measure_qualified_number_value UOM_code="UnitValue" UOM_ref="UnitIRDI">
 <val:qualified_value qualifier_code="Qualifier">
 NumericValueOrNullValue
 </val:qualified_value>
 OtherPossibleQualifiedValues
</val:measure_qualified_number_value>

UnitValue is a possible unit belonging to the list of units specified in the corresponding real measure type
specification (mathematical string representation of the main unit or of one of its alternative units, see 8.3.7).

UnitIRDI a possible reference to an IRDI of a unit defined in a unit dictionary.

Qualifier stands for an OntoML valid qualifier. It may take the following values: min, nom, max or typ.

NumericValueOrNullValue is either a real value (see D.1.11), an integer value (see D.1.12) or a null value
(see 7.3.11).

OtherPossibleQualifiedValues stands for other possible qualified values (val:qualified_value XML
construct)defined in the associated level type specification.

NOTE 1 The qualifier_code XML attribute assignment is mandatory.

NOTE 2 UOM_code or UOM_ref XML attribute assignment shall be provided. If both UOM_ref and UOM_code
XML attributes are provided, they shall denote the same unit concept.

NOTE 3 UOM_ref is a valid unit identifier (IRDI) as defined in Clause 9.1.3.3.

NOTE 4 Any qualified value shall be typed using the same base type, or, when the value is not available, the
qualified value shall be represented as a null value.

NOTE 5 Level type is defined in Clause 8.3.11.

NOTE 6 val:measure_qualified_number_value is defined in ISO/TS 29002-10:2009, Clause 6.5.3.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 181

EXAMPLE The following is a valid qualified value: it is a physical measure, whose unit (UOM_code XML attribute)
is millimeter (mm). this physical measure is associated with two qualifiers (qualifier_code XML attribute): a minimum
integer value (min), and a typical value (typ) that is not available and then, that is represented by an ISO/TS 29002 null
value (null_value XML element).

<val:measure_qualified_number_value UOM_code="mm">
 <val:qualified_value qualifier_code="min">
 <val:integer_value>10</val:integer_value>
 </val:qualified_value>
 <val:qualified_value qualifier_code="typ">
 <val:null_value/>
 </val:qualified_value>
</val:measure_qualified_number_value>

D.1.27 Named type

The OntoML representation of the value of a property whose value domain is a named type is defined
according to the underlying base type of the named type.

D.2 Representation of items

This Clause specifies the value representation of items (i.e., instances) in OntoML. According to
ISO/TS 29002, instances are represented using a reference to the class where their specification is defined,
and by a set of property values, each of them being defined by a reference to a property and a typed value.

References to classes and properties are represented by a global identifier as respectively defined in
Clauses 9.1.3.1 and 9.1.3.2. Typed values are specified in Clause D.1 of this normative annex.

This clause introduces firstly the ISO/TS 29002-10 representation of OntoML property values, depending on
the kind of the property (non dependent property, condition property, dependent property and representation
property). Then, the representation of OntoML instances (item class or functional model class instances)
according to ISO/TS 29002-10 is defined.

D.2.1 Representation of property-value pairs

This subclause specifies the OntoML representation of:

⎯ non dependent property-value pairs;

⎯ condition property-value pairs;

⎯ dependent property-value pairs;

⎯ representation property-value pairs.

D.2.1.1 Non dependent property

The OntoML representation of the value of a property that is defined as a non dependent property is defined as
follows:

<cat:property_value property_ref="PropertyIRDI" subitem_path_property_ref="PropertyIRDIs">
 ValueRepresentation
</cat:property_alue>

PropertyIRDI is a valid property concept identifier (IRDI) defined according to Clause 9.1.3.2.

NOTE 1 The property_ref XML attribute assignment is mandatory.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

182 © ISO 2010 – All rights reserved

PropertyIRDIs is a list of property concept identifiers (IRDIs) defined according to Clause 9.1.3.2, that allows
to describe the path from a source property (specified by the property_ref XML attribute) of which data type is
a class reference type, to a target property that participates to the description of an (sub-)embedded instance
of the instance for which the source property is defined.

NOTE 2 The subitem_path_property_ref XML attribute assignment is optional. It may only be used for an
identified property (property_ref) for which the underlying data type is a class reference type (see 8.3.10).

NOTE 3 The subitem_path_property_ref XML attribute may be used as a simple way for representing embedded
instance property-value pairs.

ValueRepresentation (mandatory) stands for any kind of typed value defined in this normative annex.

NOTE 4 Non dependent property is defined in Clause 6.7.4.

NOTE 5 cat:property_value is defined in ISO/TS 29002-10:2009, Clause 5.2.4.

NOTE 6 The cat:property_value XML element content assignment is mandatory.

EXAMPLE 1 The following is a valid representation of a non dependent property value: the property is identified by
the “0123-ABC#02-DIAMETER#1” IRDI, and the associated value is an integer measure value (see D.1.17).

<cat:property_value property_ref="0123-ABC#02-DIAMETER#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:integer_value>5</val:integer_value>
 </val:measure_single_number_value>
</cat:property_value>

EXAMPLE 2 Assume that a notebook is described by a non dependent property called its mother board whose
identifier is the “0123-ABC#02-ITS_MOTHERBOARD#1” IRDI, and whose data type is the mother board class, itself
identified by the “0123-ABC#01-MOTHERBOARD#1” IRDI. Assume that the mother board class is described by a non
dependent property called its processor unit whose identifier is the “0123-ABC#02-ITS_PROCESSOR_UNIT#1” IRDI, and
whose data type is the processor unit class, itself identified by the “0123-ABC#01-PROCESSORUNIT#1” IRDI. Assume
that the processor unit class is described by a non dependent property called its processor whose identifier is the “0123-
ABC#02-ITS_PROCESSOR#1” IRDI, and whose data type is the processor class, itself identified by the “0123-ABC#01-
PROCESSOR#1” IRDI. Finally, assume that the processor class is described by a non dependent property called
frequency whose identifier is the “0123-ABC#02-FREQUENCY#1” IRDI, and whose data type is a real measure type. The
following is a valid representation of such a composition of non dependent properties:

<cat:property_value property_ref="0123-ABC#02-ITS_MOTHERBOARD#1" subitem_path_property_ref="0123-ABC#02-
ITS_PROCESSOR_UNIT#1 0123-ABC#02-ITS_PROCESSOR#1 0123-ABC#02-FREQUENCY#1">
 <val:measure_single_number_value UOM_code="GHz">
 <val:real_value>4.2</val:real_value>
 </val:measure_single_number_value>
</cat:property_value>

Alternatively, and according to the OntoML representation of property whose value domain is a class reference type
(see D.1.25), this same example could have been represented as follows:

<cat:property_value property_ref="0123-ABC#02-ITS_MOTHERBOARD#1">
 <item_reference_value item_local_ref="MOTHERBOARD_ID"/>
</cat:property_value>

<cat:item class_ref="0123-ABC#01-MOTHERBOARD#1" local_id="MOTHERBOARD_ID">
 <cat:property_value property_ref="0123-ABC#02-ITS_PROCESSOR_UNIT#1">
 <item_reference_value item_local_ref="PROCESSOR_UNIT_ID"/>
 </cat:property_value>
</cat:item>

<cat:item class_ref="0123-ABC#01-PROCESSOR_UNIT#1" local_id="PROCESSOR_UNIT_ID">
 <cat:property_value property_ref="0123-ABC#02-ITS_PROCESSOR #">
 <item_reference_value item_local_ref="PROCESSOR_ID"/>
 </cat:property_value>
</cat:item>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 183

<cat:item class_ref="10123-ABC#01-PROCESSOR#1" local_id="PROCESSOR_ID">
 <cat:property_value property_ref="0123-ABC#02-FREQUENCY#1">
 <val:measure_single_number_value UOM_code="GHz">
 <val:real_value>4.2</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
</cat:item>

D.2.1.2 Condition property

The OntoML representation of the value of a property that is defined as a condition property is defined as follows:

<cat:property_value property_ref="PropertyIRDI" subitem_path_property_ref="PropertyIRDIs">
 ValueRepresentation
</cat:property_alue>

PropertyIRDI is a valid property concept identifier (IRDI) defined according to Clause 9.1.3.2.

NOTE 1 The property_ref XML attribute assignment is mandatory.

PropertyIRDIs is a list of property concept identifiers (IRDIs) defined according to Clause 9.1.3.2, that allows
to describe the path from a source property (specified by the property_ref XML attribute) of which data type is
a class reference type, to a target property that participates to the description of an (sub-)embedded instance
of the instance for which the source property is defined.

NOTE 2 The subitem_path_property_ref XML attribute assignment is optional. It may only be used for an
identified property (property_ref) for which the underlying data type is a class reference type (see 8.3.10).

NOTE 3 The subitem_path_property_ref XML attribute may be used as a simple way for representing embedded
instance property-value pairs (see example in Clause D.2.1.1).

ValueRepresentation (mandatory)stands for any kind of typed value defined in this normative annex.

NOTE 4 Condition property is defined in Clause 6.7.4.

NOTE 5 cat:property_value is defined in ISO/TS 29002-10:2009, Clause 5.2.4.

NOTE 6 The cat:property_value XML element content assignment is mandatory.

EXAMPLE The following is a valid representation of a condition property value: the property is identified by the
“0123-ABC#02-LOAD#1” IRDI, and the associated value is a real measure value (see D.1.16).

<cat:property_value property_ref="0123-ABC#02-LOAD#1">
 <val:measure_single_number_value UOM_code="N">
 <val:real_value>1512.37</val:real_value>
 </val:measure_single_number_value>
</cat:property_value>

D.2.1.3 Dependent property

The OntoML representation of the value of a property that is defined as a dependent property is defined as
follows:

<cat:property_value property_ref="PropertyIRDI" subitem_path_property_ref="PropertyIRDIs">
 DependentValueRepresentation
 <val:environment>
 <val:property_value property_ref= PropertyIRDI">
 ConditionValueRepresentation
 </val:property_value>
 OtherPossibleConditions
 </val:environment>
</cat:property_value>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

184 © ISO 2010 – All rights reserved

PropertyIRDI is a valid property concept identifier (IRDI) defined according to Clause 9.1.3.2.

NOTE 1 The property_ref XML attributes assignment is mandatory.

PropertyIRDIs is a list of property concept identifiers (IRDIs) defined according to Clause 9.1.3.2, that allows
to describe the path from a source property (specified by the property_ref XML attribute) of which data type is
a class reference type, to a target property that participates to the description of an (sub-)embedded instance
of the instance for which the source property is defined.

NOTE 2 The subitem_path_property_ref XML attribute assignment is optional. It may only be used for an
identified property (property_ref) for which the underlying data type is a class reference type (see 8.3.10).

NOTE 3 The subitem_path_property_ref XML attribute may be used as a simple way for representing embedded
instance property-value pairs (see example in Clause D.2.1.1 of this normative annex)

DependentValueRepresentation and ConditionValueRepresentation stand for any kind of typed value
defined in this normative annex.

NOTE 4 DependentValueRepresentation and ConditionValueRepresentation are mandatory.

The dependence of the property to some other properties is characterized by the val:environment XML
element that contains at least one val:property_value. Other conditions may be defined in the
OtherPossibleConditions area, using the same val:property_value structure.

NOTE 5 A condition is represented as a common property value couple: a reference to a property identifier (IRDI),
and a typed value.

NOTE 6 Condition property is defined in Clause 6.7.4.

NOTE 7 The cat:property_value, val:property_value and val:environment XML element content assignments are
mandatory.

NOTE 8 val:property_value and val:environment are defined in ISO/TS 29002-10:2009, Clause 5.2.4.

EXAMPLE The following is a valid representation of a dependent property value: the dependent property is
identified by the “0123-ABC#02-LIFETIME#1” IRDI, and the associated value is an integer measure value (see D.1.17)
expressed in second (UOM_code). This value depends on a single condition. The condition property is identified by the
“0123-ABC#02-LOAD#3” IRDI, and its associated value is a real measure value (see D.1.16).

<cat:property_value property_ref="0123-ABC#02-LIFETIME#1">
 <val:measure_single_number_value UOM_code="s">
 <val:integer_value>1000000</val:integer_value>
 </val:measure_single_number_value>
 <val:environment>
 <val:property_value property_ref="0123-ABC#02-LOAD#3">
 <val:measure_single_number_value UOM_code="N">
 <val:real_value>1512.37</val:real_value>
 </val:measure_single_number_value>
 </val:property_value>
 </val:data_environment>
</cat:property_value>

D.2.1.4 Representation property

The OntoML representation of the value of a property that is defined as a representation property is defined as
follows:

<cat:property_value property_ref="PropertyIRDI" subitem_path_property_ref="PropertyIRDIs">
 ValueRepresentation
</cat:property_value>

PropertyIRDI is a valid property concept identifier (IRDI) defined according to Clause 9.1.3.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 185

NOTE 1 The property_ref XML attributes assignment is mandatory.

PropertyIRDIs is a list of property concept identifiers (IRDIs) defined according to Clause 9.1.3.2, that allows
to describe the path from a source property (specified by the property_ref XML attribute) of which data type is
a class reference type, to a target property that participates to the description of an (sub-)embedded instance
of the instance for which the source property is defined.

NOTE 2 The subitem_path_property_ref XML attribute assignment is optional. It may only be used for an
identified property (property_ref) for which the underlying data type is a class reference type (see 8.3.10).

NOTE 3 The subitem_path_property_ref XML attribute may be used as a simple way for representing embedded
instance property-value pairs (see example in Clause D.2.1.1 of this normative annex)

ValueRepresentation (mandatory) stands for any kind of typed value defined in this normative annex.

NOTE 4 Representation property is defined in Clause 6.7.5.

NOTE 5 cat:property_value is defined in ISO/TS 29002-10:2009, Clause 5.2.4.

EXAMPLE The following is a valid representation of a representation property value: the property is identified by the
“0123-ABC#02-PRICE#1” IRDI, and the associated value is a real currency value (see D.1.13).

<cat:property_value property_ref="0123-ABC#02-PRICE#1">
 <val:currency_value currency_code="EUR">
 <val:real_value>10.53</val:real_value>
 </val:currency_value>
</cat:property_value>

D.2.2 Representation of class instances

This subclause specifies the OntoML representation of:

⎯ item class and item case-of class instances;

⎯ functional model class and functional model class view-of instances.

D.2.2.1 Representation of item class and item class case-of instances

The OntoML representation of an instance of an item class or an item class case-of is defined as follows:

<cat:item class_ref="ClassIRDI"
 local_id="LocalId"
 data_specification_ref="DataSpecificationIRDI"
 is_global_id="GloballyIdentifiedBoolean">
 <cat:classification_ref>ClassIRDI</cat:classification_ref>
 …
 OtherPossibleClassificationReferences
 …
 <cat:reference reference_number="StringReferenceNumber"
 organization_code="StringOrganizationCode"
 organization_ref="SupplierIRDI">
 <cat:designation>
 <val:local_string>
 <val:content>DesignationString</val:content>
 </val:local_string>
 </cat:designation>
 </cat:reference>
 …
 PropertyValue(s)Representation
 …
</cat:item>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

186 © ISO 2010 – All rights reserved

NOTE 1 Item class and item class case-of are defined in Clause 6.7.2.1.

NOTE 2 cat:item is defined in ISO/TS 29002-10:2009, Clause 5.2.3.

Class_ref:ClassIRDI and classification_ref:ClassIRDI stand for an item class or an item class case-of valid
class concept identifier (IRDI) defined according to Clause 9.1.3.1.

NOTE 3 The class_ref XML attribute assignment is mandatory.

LocalId stands for a local identifier: it is defined for a given item (local_id XML attribute), and referenced from
a property (item_local_ref XML attribute) whose value domain is a class reference type.

NOTE 4 The local_id XML attribute is used if the class is intended to be referenced as a property value
(see D.1.25). Therefore, its assignment is optional.

DataSpecificationIRDI stands for a valid class data specification identifier (IRDI) defined according to
ISO/TS 29002-5.

NOTE 5 The data_specification_ref XML attribute assignment is optional.

GloballyIdentifiedBoolean is a possible Boolean value that specifies whether an item is identified globally, or
if it is identified through its constituent components. When this value is equal to false, the item is an assembly.
Its human-readable identification shall consists of its associated reference numbers (see reference_number
XML attribute), if any, followed by the set of reference numbers of its constituent components computed
recursively until those components for which the is_global_id XML attribute is set to true. When this value is
set to true, the item is identified on its own. If present, the associated reference number contains enough
information for identifying unambiguously the item, whether it is a component or a system.

NOTE 6 The global_id XML attribute assignment is optional.

cat:classification_ref (optional) specifies a possible reference (performed using a valid categorization class
concept identifier (IRDI) defined according to 9.1.3.1 of this part of ISO 13584) to a categorization class
defined in a given classification. If several references are required, they must be added using the same
structure in the OtherPossibleClassificationReferences area.

NOTE 7 Categorization class is defined in Clause 6.7.2.1.

The cat:reference (optional) XML element provides for the specification of a reference number assigned by
the information supplier.

NOTE 8 The specification of an item reference using the cat:reference XML element is optional.

StringReferenceNumber is a string assigned by the information supplier to unambiguously identify an item.

NOTE 9 When the cat_reference XML element is provided, the reference_number XML attribute is mandatory.

StringOrganizationCode is a code assigned to the organization that assigned the reference number. The
format for such codes, and the system for assigning such codes, is not specified within this document.

NOTE 10 The organization_code XML attribute assignment is optional.

SupplierIRDI stands for a valid supplier data specification identifier (IRDI) defined according to Clause 9.1.1. It
corresponds to the IRDI of the organization that assigned the reference number.

NOTE 11 The organization_ref XML attribute assignment is optional.

DesignationString gives a human readable designation of the item. This designation may be translated in
various languages (see D.1.4 for localizable string representation).

NOTE 12 The cat:designation XML element use is optional.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 187

PropertyValue(s)Representation is the location where property value representations (see D.2.1.1 to
D.2.1.3) are defined.

EXAMPLE The following example is a valid representation of a simple instance. It is an instance of a class identified
by the “0123-ABC#01-HEXASCREW#1” IRDI. A local identifier (“ITEM_1”) is also assigned to this instance. This instance
relates to two classes (identified by the “4444-XYZ#01-SCREW#1” and “5555-UVW#01-BOLT#1” IRDIs) belonging to two
different classification scheme. Finally, this instance is described using two property values.

<cat:item class_ref="0123-ABC#01-HEXASCREW#1" local_id="ITEM_1">
 <cat:classification_ref>4444-XYZ#01-SCREW#1</cat:classification_ref>
 <cat:classification_ref>5555-UVW#01-BOLT#1</cat:classification_ref>
 <cat:property_value property_ref="0123-ABC#02-DIAMETER#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:integer_value>5</val:integer_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0123-ABC#02-LENGTH#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:integer_value>20</val:integer_value>
 </val:measure_single_number_value>
 </cat:property_value>
</cat:item>

D.2.2.2 Representation of functional model and functional model view-of instances

The OntoML representation of an instance of a functional model and functional model view-of class is defined
as follows:

<cat:item class_ref="ClassIRDI"
 local_id="LocalId"
 data_specification_ref="DataSpecificationIRDI"
 is_model="IsModelBoolean"
 created_view="FunctionalViewIRDI"
 view_of="LocalItemRef">
 <cat:classification_ref>ClassIRDI</cat:classification_ref>
 OtherPossibleClassificationReferences
 …
 PropertyValue(s)Representation
 …
</cat:item>

NOTE 1 Functional model class is defined in Clause 6.7.3.2.

NOTE 2 cat:item is defined in ISO/TS 29002-10:2009, Clause 5.2.3.

Class_ref:ClassIRDI and classification_ref:ClassIRDI stand for an item class or an item class case-of valid
class concept identifier (IRDI) defined according to Clause 9.1.3.1.

NOTE 3 The class_ref XML attribute assignment is mandatory.

LocalId stands for a local identifier: it is defined for a given item (local_id XML attribute), and referenced from
a property (item_local_ref XML attribute) whose value domain is a class reference type.

NOTE 4 The local_id XML attribute is used if the class is intended to be referenced as a property value
(see D.1.25). Therefore, its assignment is optional.

DataSpecificationIRDI stands for a valid class data specification identifier (IRDI) defined according to
ISO/TS 29002-5.

NOTE 5 The data_specification_ref XML attribute assignment is optional.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

188 © ISO 2010 – All rights reserved

IsModelBoolean allows to specify that the item is an instance of a functional model (i.e., a representation of
another item). It shall be set to true.

NOTE 6 The is_model XML attribute assignment is mandatory.

FunctionalViewIRDI stands for a valid functional view class identifier (IRDI) defined according to
Clause 9.1.3.1 of this part of ISO 13584, such a functional view specifying the point of view described by the
functional model instance

NOTE 7 The created_view XML attribute assignment is mandatory.

LocalItemRef stands for a local identifier: it specifies, in case of the representation of a functional model class
view-of instance, a local reference to an item for which the current functional model view-of instance is a view.

NOTE 8 The view_of XML attribute assignment is mandatory for functional model view-of class instances. It is not
used for functional model class instances.

cat:classification_ref (optional) specifies a possible reference (performed using a valid categorization class
concept identifier (IRDI) defined according to Clause 9.1.3.1 of this part of ISO 13584) to a categorization class
defined in a given classification. If several references are required, they must be added using the same
structure in the OthePossibleClassificationReferences area.

NOTE 9 Categorization class is defined in Clause 6.7.2.1.

PropertyValue(s)Representation is the location where representation property values (see D.2.1.4) are
defined.

EXAMPLE The following example is a valid representation of a simple functional model instance. It is an instance of
a functional model class identified by the “0123-ABC#01-HEXASCREWPRICE#1” IRDI. This instance describes the
referenced item (identified by the “ITEM_1” local reference) in a point of view specified by the referenced functional view
class (“0123-ABC#01-PRICEVIEW#1” IRDI). Finally, this instance is described using a single representation property
value (“0123-ABC#02-PRICE#1” IRDI).

<cat:item class_ref="0123-ABC#01-HEXASCREWPRICE#1" is_model="true"
 created_view="0123-ABC#01-PRICEVIEW#1" view_of="ITEM_1">
 <cat:property_value property_ref="0123-ABC#02-PRICE#1">
 <val:currency_value currency_code="EUR">
 <val:real_value>10.53</val:real_value>
 </val:currency_value>
 </cat:property_value>
</cat:item>

D.3 Value representation of extended types defined in OntoML

This clause specifies the OntoML representation of the value of a property whose value domain is an
ISO 13584 / IEC 61360 extended data types.

OntoML specifies an ontology of extended types.

NOTE 1 The ontology of extended values is defined in Annex E.

In this ontology, the value structure of each OntoML extended data type is defined by an item class ontology
concept (an item class) to which describing properties are associated. Consequently, the value representation
of an extended data type is defined by an instance that refers to the item class (defined in the ontology) that
specifies the associated value structure.

NOTE 2 Representation of item class instances (cat:item XML element) is defined in Clause D.2.2.1 of this
normative annex.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 189

The general structure of a reference to a value representation of an extended data type is defined as follows:

<val:item_reference_value item_local_ref="LocalIdRef"/>

<cat:item class_ref="ExtendedDataTypeValueStructureClassIRDI" local_id="LocalId">
…
</cat:item>

LocalId stands for a local XML identifier. It is intended to be used as a reference target for a property value
whose value domain is a class reference type. The reference is performed by setting the LocalIdRef value of
the item_local_ref XML attribut.

NOTE 3 LocalId/LocalIdRef is similar to the the ID/IDREF XML reference mechanism.

LocalId is defined according to Clause 3.3.8 of XML Schema Part 2: Datatypes.

LocalIdRef is defined according to Clause 3.3.6 of XML Schema Part 2: Datatypes.

NOTE 4 Class reference type value (val:item_reference_value XML element) is defined in Clause D.1.25 of this
normative annex.

ExtendedDataTypeValueStructureClassIRDI is the extended data value structure class identifier (a valid
class concept identifier (IRDI) defined according to Annex E of this part of ISO 13584).

The following subclauses specify, for each available data type, the corresponding value representation
(instance) structure.

D.3.1 Value representation of ISO 13584 / IEC 61360 extended data types

This clause specifies the value representation of extended data types (see 8.3.13) according to the value
structures defined in the ontology of OntoML extended values.

D.3.1.1 Placement type

The OntoML representation of the value of a property whose value domain is a placement type is represented
as follows:

<cat:item class_ref="0112-1---13584_32_1#01-PLACEMENT#1"
 local_id="LocalId">
 <cat:property_value property_ref="0112-1---13584_32_1#02-PLACEMENT:LOCATION#1">
 <item_reference_value item_local_ref="CART_P"/>
 </cat:property_value>
</cat:item>

<cat:item class_ref="0112-1---13584_32_1#01-CARTESIAN_POINT#1" local_id="CART_P">
 <cat:property_value property_ref="0112-1---13584_32_1#02-CARTESIAN_POINT:COORDINATES#1">
 <val:sequence_value>
 <val:real_value>0</val:real_value>
 <val:real_value>0</val:real_value>
 </val:sequence_value>
 </cat:property_value>
</cat:item>

NOTE The representation given above is complete according to the ontology of extended data type value
structures. In the next clauses, only the general structure of each extended data type value is represented.

The IRDI of the class specifying the placement type value structure shall be set to “0112-1---13584_32_1#01-
PLACEMENT#1”, as defined in the ontology of external values specified in Annex E.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

190 © ISO 2010 – All rights reserved

D.3.1.2 Axis 1 placement type

The OntoML representation of the value of a property whose value domain is an axis 1 placement type is
represented as follows:

<cat:item class_ref="0112-1---13584_32_1#01-AXIS1_PLACEMENT#1"
 local_id="LocalId">
 …
 PropertyValue(s)Representation
 …
</cat:item>

The IRDI of the class specifying the axis 1 placement type value structure shall be set to “0112-1---
13584_32_1#01-AXIS1_PLACEMENT#1”, as defined in the ontology of extended values specified in Annex E.

PropertyValue(s)Representation is the representation of the property(ies) of the item class that represents
the extended type axis1 placement type according to Annex E. These properties are represented as specified
in Clause D.1.

D.3.1.3 Axis 2 placement 2D type

The OntoML representation of the value of a property whose value domain is an axis 2 placement 2D type is
represented as follows:

<cat:item class_ref="0112-1---13584_32_1#01-AXIS2_PLACEMENT_2D#1"
 local_id="LocalId">
 …
 PropertyValue(s)Representation
 …
</cat:item>

The IRDI of the class specifying the axis 2 placement 2D type value structure shall be set to “0112-1---
13584_32_1#01-AXIS2_PLACEMENT_2D#1”, as defined in the ontology of extended values specified in
Annex E.

PropertyValue(s)Representation is the representation of the property(ies) of the item class that represents
the extended type axis2 placement 2D type according to Annex E. These properties are represented as
specified in Clause D.1.

D.3.1.4 Axis 2 placement 3D type

The OntoML representation of the value of a property whose value domain is an axis 2 placement 3D type is
represented as follows:

<cat:item class_ref="0112-1---13584_32_1#01-AXIS2_PLACEMENT_3D#1"
 local_id="LocalId">
 …
 PropertyValue(s)Representation
 …
</cat:item>

The IRDI of the class specifying the axis 2 placement 3D type value structure shall be set to “0112-1---
13584_32_1#01-AXIS2_PLACEMENT_3D#1”, as defined in the ontology of extended values specified in
Annex E.

PropertyValue(s)Representation is the representation of the property(ies) of the item class that represents
the extended type axis2 placement 3D type according to Annex E. These properties are represented as
specified in Clause D.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 191

D.3.2 Reference to external representation of ISO 13584 / IEC 61360 items

This clause specifies the value representation of reference to external representation types defined in the
ontology of extended data types.

D.3.2.1 Representation reference type

The OntoML representation of the value of a property whose value domain is a representation reference type
is represented as follows:

<cat:item class_ref="0112-1---13584_32_1#01-REPRESENTATION_REFERENCE#1"
 local_id="LocalId">
 …
 PropertyValue(s)Representation
 …
</cat:item>

The IRDI of the class specifying the representation reference type value structure shall be set to “0112-1---
13584_32_1#01-REPRESENTATION_REFERENCE#1”, as defined in the ontology of extended values
specified in Annex E.

PropertyValue(s)Representation is the representation of the property(ies) of the item class that represents
the extended type representation type according to Annex E. These properties are represented as specified in
Clause D.1.

D.3.2.2 Program reference type

The OntoML representation of the value of a property whose value domain is a program reference type is
represented as follows:

<cat:item class_ref="0112-1---13584_32_1#01-PROGRAM_REFERENCE#1"
 local_id="LocalId">
 …
 PropertyValue(s)Representation
 …
</cat:item>

The IRDI of the class specifying the program reference type value structure shall be set to “0112-1---
13584_32_1#01-PROGRAM_REFERENCE#1”, as defined in the ontology of extended values specified in
Annex E.

PropertyValue(s)Representation is the representation of the property(ies) of the item class that represents
the extended type program reference type according to Annex E. These properties are represented as
specified in Clause D.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

192 © ISO 2010 – All rights reserved

Annex E
(normative)

Ontology specification of extended values used in OntoML

The OntoML model contains some application oriented data types whose values cannot be directly
represented using ISO/TS 29002-10 elements. These data types are called extended data types (see 8.3.13).

To provide for their representation, this normative annex specifies an ontology that models these data types. In
this ontology each extended data type value structure is represented as an item class, described by properties.
Thus, values of extended data types are represented as instances of these item classes.

This annex defines the structure of this ontology, together with IRDIs allowing to reference these item classes
and their properties. Annex D.3 specifies how instances of these item classes are represented using
ISO/TS 29002-10 schemas.

The ontology of OntoML extended data type values distinguishes two kinds of classes:

⎯ first level classes that corresponds to the actual OntoML extended data type values;

⎯ second level classes that allows to describe first level classes in an accurate and consistent way.

EXAMPLE The axis 1 placement class is defined as a first level class, and consequently, it may be used to
characterize the value domain of a property defined in a product ontology and whose data type would be an axis 1
placement type. axis 1 placement is itself described using various properties, as for instance, its associated reference
axis. The reference axis property underlying data type is a complex structure (a class) representing the axis direction.
This latter class is considered as a second level class, because only used in the context of the axis 1 placement first level
class specification.

This ontology of OntoML extended data type value structures distinguishes the following categories of first
level classes:

⎯ STEP spatial positioning;

⎯ PLIB external representation.

The next clauses describe the general structure of the ontology of OntoML extended data type value
structures.

E.1 Structure of the ontology of extended values

A planning model of the ontology of OntoML extended values is represented in the UML diagram defined in
Figure E.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 193

placement

axis1 placement
axis2

placement 2D
axis2

placement 3D

location

axis

ref_direction

axis

ref_direction

PLIB external representation

representation reference

STEP spatial
positioning

ISO13584 IEC61360
extended type

code: ontoml:STRING_Type
filename: ontoml:REMOTE_HTTP_ADDRESS_Type

representation_id: ontoml:STRING_Type

coordinates: ontoml: LIST_Type[1:3]
OF ontoml:REAL_TYPE_Type

cartesian point

program reference

syntactical_name: ontoml:STRING_Type

coordinates: ontoml: LIST_Type[1:3]
OF ontoml:REAL_TYPE_Type

direction

Figure E.1 — Planning model of the ontology of extended values

In this planning model, the following graphical notations are used:

⎯ plain boxes represent ontology classes;

⎯ plain boxes with a white colored background represent first level ontology classes, i.e., actual extended
data types intended to be referenced from properties in product ontology definitions;

⎯ classes in italic face represent non instanciable classes;

⎯ plain boxes with a gray colored background represent second level ontology classes, i.e., classes that are
intended to be referenced by first level ontology classes or by some other second level ontology classes;

⎯ triangles specify the is-a semantic relationship between ontology classes;

⎯ arrows specify the association between ontology classes, the associated label being the name of the
property that represents a given association.

⎯ simple type properties are typed using the OntoML basic type system where the ontoml prefix stands for
the OntoML Schema URI.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

194 © ISO 2010 – All rights reserved

First level classes may be seen as split in the following two categories:

⎯ STEP spatial positioning category:

⎯ axis 1 placement;

⎯ axis2 placement 2D;

⎯ axis2 placement 3D;

⎯ placement;

⎯ PLIB external representation category;

⎯ program reference;

⎯ representation reference;

E.2 Definition of the OntoML extended values

This clause defines the structure of the various OntoML extended values specified in the ontology of OntoML
extended values.

E.2.1 First level classes: extended value structures

This clause gives the structure of the first level classes specified in the ontology of OntoML extended values.

E.2.1.1 OntoML extended value

The OntoML extended value class is the root class of the ontology of extended values.

NOTE This class is not instanciable.

The OntoML extended value class is identified by the following IRDI: “0112-1---13584_32_1#01-
ONTOML_EXTENDED_VALUE#1”.

E.2.1.2 STEP spatial positioning

The STEP spatial positioning class is intended to factorize the various STEP postioning constructs (see next
clauses).

NOTE This class is not instanciable.

The STEP spatial positioning class is identified by the following IRDI: “0112-1---13584_32_1#01-
STEP_SPATIAL_POSITIONING#1”.

E.2.1.3 Placement

The placement class specifies a position with respect to the coordinate system of its geometric context.

NOTE Placement represents the placement entity from ISO 10303-42 in OntoML.

The placement class is identified by the following IRDI: “0112-1---13584_32_1#01-PLACEMENT#1”.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 195

Defined properties:

placement location (IRDI: “0112-1---13584_32_1#02-PLACEMENT:LOCATION#1”): the geometric position
of a reference point, such as the centre of a circle, of the item.

E.2.1.4 Axis 1 placement

The axis 1 placement class specifies a direction and a location in three-dimensional space of a single axis.

NOTE Axis 1 placement represents the axis1_placement entity from ISO 10303-42 in OntoML.

The axis 1 placement class is identified by the following IRDI: “0112-1---13584_32_1#01-
AXIS1_PLACEMENT#1”.

Defined properties:

axis (IRDI: “0112-1---13584_32_1#02-AXIS1_PLACEMENT:AXIS#1”): the direction (see E.2.2.2) of the local Z
axis.

E.2.1.5 Axis 2 placement 2D

The axis 2 placement 2D class specifies a location and an orientation in two-dimensional space of two
mutually perpendicular axes.

NOTE Axis 2 placement 2D represents the axis2_placement_2D entity from ISO 10303-42 in OntoML.

The axis 2 placement 2D class is identified by the following IRDI: “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_2D#1”.

Defined properties:

ref direction (IRDI: “0112-1---13584_32_1#02-AXIS2_PLACEMENT_2D:REF_DIRECTION#1”): the direction
(see E.2.2.2) used to determine the direction of the local X axis.

E.2.1.6 Axis 2 placement 3D

The axis 2 placement 3D class specifies a location and an orientation in three-dimensional space of two
mutually perpendicular axes.

NOTE Axis 2 placement 3D represents the axis2_placement_3D entity from ISO 10303-42 in OntoML.

The axis 2 placement 3D class is identified by the following IRDI: “0112-1---13584_32_1#01-
AXIS2_PLACEMENT_3D#1”.

Defined properties:

axis (IRDI: “0112-1---13584_32_1#02-AXIS2_PLACEMENT_3D:AXIS#1”): the direction (see E.2.2.2) of the
local Z axis.

ref direction (IRDI: “0112-1---13584_32_1#02-AXIS2_PLACEMENT_3D:REF_DIRECTION#1”): the direction
(see E.2.2.2) used to determine the direction of the local X axis.

E.2.1.7 PLIB external representation

The PLIB external representation class is intended to factorize the various PLIB representation constructs
(see next clauses).

NOTE 1 This class is not instanciable.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

196 © ISO 2010 – All rights reserved

The PLIB external representation class is identified by the following IRDI: “0112-1---13584_32_1#01-
PLIB_EXTERNAL_REPRESENTATION#1”.

Defined properties:

code (IRDI: “0112-1---13584_32_1#02-PLIB_EXTERNAL_REP:CODE#1”): identifies the external
representation in a class.

file name (IRDI: “0112-1---13584_32_1#02-PLIB_EXTERNAL_REP:FILE_NAME#1”): the URI of the file that
contains the external representation.

NOTE 2 See ISO 13584-24 for details.

E.2.1.8 Representation reference

The representation reference class specifies the kind of representation for an item that is provided as an
external file, and the name of the external file that contains this representation.

NOTE 1 In DICTIONARY_IN_STANDARD_FORMAT_Type and in LIBRARY_IN_STANDARD_FORMAT_Type,
only external file protocols that are allowed either by the library integrated information model indicated by the
ontoml_structure XML element or the view exchange protocols referenced in the supported_vep XML element, both
defined in the HEADER_Type XML complex type..

EXAMPLE ISO 13584-102 specifies a representation category that captures the generic concepts used to describe
the representation of a product in ISO 10303 application protocols. Such a representation is intended to be referenced
using a representation reference instance.

The representation reference class is identified by the following IRDI: “0112-1---13584_32_1#01-
REPRESENTATION_REFERENCE#1”.

Defined properties:

representation id (IRDI: “0112-1---13584_32_1# 02-REP_REF:REPRESENTATION_ID#1”):a label that
corresponds to the referenced representation.

NOTE 2 See ISO 13584-24 for details.

E.2.1.9 Program reference

The program reference class specifies a reference to an algorithm intended to generate a representation of
an item.

NOTE 1 See ISO 13584-24 for details.

The program reference class is identified by the following IRDI: “0112-1---13584_32_1#01-
PROGRAM_REFERENCE#1”.

Defined properties:

syntactical name (IRDI: “0112-1---13584_32_1# 02-PROG_REF:SYNTACTICAL_NAME#1”): the name by
which the program shall be triggered.

NOTE 2 See ISO 13584-24 for details.

E.2.2 Second level of OntoML extended values

This clause gives the structure of the second level classes that are used for defining the various extended data
types.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 197

E.2.2.1 Cartesian point

The cartesian point class is specified by a point defined by its coordinates in a rectangular Cartesian
coordinate system, or in a parameter space. The cartesian point is defined in a one, two or three-dimensional
space as determined by the number of coordinates in the list.

NOTE 1 See ISO 10303-42 for details.

The cartesian point class is identified by the following IRDI: “0112-1---13584_32_1#01-
CARTESIAN_POINT#1”.

Defined properties:

coordinates (IRDI: “0112-1---13584_32_1#02-CARTESIAN_POINT:COORDINATES#1”): list of at least one
and at most three real values that specifies coordinates in a rectangular Cartesian coordinate system, or in a
parameter space.

NOTE 2 See ISO 10303-42 for details.

E.2.2.2 Direction

The direction class defines a general direction vector in two or three dimensional space.

NOTE 1 See ISO 10303-42 for details.

The direction class is identified by the following IRDI: “0112-1---13584_32_1#01-DIRECTION#1”.

Defined properties:

direction ratios (IRDI: “0112-1---13584_32_1#02-DIRECTION:DIRECTION_RATIOS#1”): list of at least two
and at most three real values that a general direction vector in two or three dimensional space. The actual
magnitudes of the components have no effect upon the direction being defined, only the ratios x:y:z or x:y are
significant.

NOTE 2 See ISO 10303-42 for details.

E.3 Synthesis of OntoML extended values identifiers (IRDIs)

Table E.1 gives the list of the IRDI defined for the classes belonging to the ontology of OntoML extended
values.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

198 © ISO 2010 – All rights reserved

Table E.1 — OntoML extendedvalues: class identifiers

OntoML class name OntoML class identifier (IRDI)

axis 1 placement 0112-1---13584_32_1#01-AXIS1_PLACEMENT#1

axis 2 placement 2D 0112-1---13584_32_1#01-AXIS2_PLACEMENT_2D#1

axis 2 placement 3D 0112-1---13584_32_1#01-AXIS2_PLACEMENT_3D#1

OntoML extended value (abstract) 0112-1---13584_32_1#01-ONTOML_EXTENDED_VALUE#1

placement 0112-1---13584_32_1#01-PLACEMENT#1

PLIB external representation
(abstract)

0112-1---13584_32_1#01-
PLIB_EXTERNAL_REPRESENTATION#1

program reference 0112-1---13584_32_1#01-PROGRAM_REFERENCE#1

representation reference 0112-1---13584_32_1#01-REPRESENTATION_REFERENCE#1

STEP spatial positioning
(abstract)

0112-1---13584_32_1#01-STEP_SPATIAL_POSITIONING#1

Table E.2 gives the list of the IRDI defined for the properties belonging to the ontology of OntoML extended
values.

Table E.2 — OntoML extendedvalues: property identifiers

OntoML class name OntoML class identifier (IRDI)

axis 1 placement: axis 0112-1---13584_32_1#02-AXIS1_PLACEMENT:AXIS#1

axis 2 placement 2D: ref direction 0112-1---13584_32_1#02-
AXIS2_PLACEMENT_2D:REF_DIRECTION#1

axis 2 placement 3D: axis 0112-1---13584_32_1#02-AXIS2_PLACEMENT_3D:AXIS#1

axis 2 placement 3D: ref direction 0112-1---13584_32_1#02-
AXIS2_PLACEMENT_3D:REF_DIRECTION#1

cartesian point: coordinates 0112-1---13584_32_1#02-
CARTESIAN_POINT_COORDINATES#1

direction: direction ratio 0112-1---13584_32_1#02-DIRECTION:DIRECTION_RATIO#1

placement: location 0112-1---13584_32_1#02-PLACEMENT:LOCATION#1

PLIB external representation:
code

0112-1---13584_32_1#02-PLIB_EXTERNAL_REP:CODE#1

PLIB external representation: file
name

0112-1---13584_32_1#02-
PLIB_EXTERNAL_REP:FILE_NAME#1

program reference: syntactical
name

0112-1---13584_32_1#02-
PROG_REF:SYNTACTICAL_NAME#1

representation reference:
representation id

0112-1---13584_32_1#02-REP_REF:REPRESENTATION_ID#1

E.4 Formal model of the ontology of OntoML extended values

This formal model of the ontology of OntoML extended values may be downloaded at the following URL:

http://www.tc184-sc4.org/implementation_information/13584/00032/

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.tc184-sc4.org/implementation_information/13584/00032/

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 199

Annex F
(normative)

Structural transformation of the CIIM model from OntoML XML Schema

to EXPRESS

This normative annex specifies how the OntoML constructs shall be converted into EXPRESS data. Such a
conversion allows to build XML tools that generate EXPRESS representations of OntoML document instances
in order to check the semantic consistency of its content with respect to the integrity constraints defined in the
CIIM.

F.1 Difference between OntoML and CIIM information elements

OntoML is an XML Schema allowing to represent, within an XML document instance, all the information
elements represented in a CIIM EXPRESS physical file.

As a rule, all the information elements of a CIIM EXPRESS physical file are explicitly represented in an
OntoML document instance, and all the constraints that these information elements are supposed to fulfill shall
also hold for OntoML document instances content.

Nevertheless, four differences were decided during the OntoML design:

1. sharing Vs duplication of some information elements

Both in OntoML and in CIIM EXPRESS physical files, CIIM ontology concepts are defined only once and
referenced several times. Concerning the other pieces of information of the CIIM:

⎯ in EXPRESS several CIIM ontology concepts may share some EXPRESS entity.

EXAMPLE 1 The item_names entity data type is shared some ontology concepts.

NOTE 1 item_names is defined in ISO 13584-42:2010, Clause F.3.9.2.7.

⎯ in XML, it was decided that each CIIM ontology concept will only reference other CIIM ontology concepts.
All the others pieces of information that are referenced by a CIIM ontology concept in a CIIM EXPRESS
physical file are embedded in XML. Thus, their content is possibly duplicated if the same piece of
information is referenced by several CIIM ontology concept.

NOTE 2 The duplication of pieces of information does not change the semantics of the underlying CIIM EXPRESS
data model.

2. Use of pre-existing XML capabilities to characterize internet resources

In the CIIM, some powerful but complex EXPRESS mechanisms were defined in order to be able to represent
both the external files information and the way to process them. In OntoML, this representation has been
replaced by the use of the MIME protocol mechanism that is sufficient to interpret external files content.

3. Removing some constraints that cannot be checked in XML

In the CIIM model, the prefix_ordered_class_list constraint stipulates that classes contained in an OntoML
document instance are sorted in such a way that no forward reference from one class to some other classes
appear. Due to the fact that such a constraint cannot be checked in XML, it is removed from the OntoML
specification and OntoML document instances are not supposed to fulfill this constraint. If needed, this order
may be compiled and ensured, when the OntoML content is translated into EXPRESS for constraint checking.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

200 © ISO 2010 – All rights reserved

4. Simplification of the CIIM model

The following simplifications were assumed.

⎯ we assume that when a document is visible, it is also applicable;

⎯ translations representations have been simplified;

⎯ resources for the representation of documentation that can be associated to any CIIM ontology concept
has been simplified;

⎯ removing of CIIM constructs that are not pertinent in the OntoML context;

EXAMPLE 2 The entity instance type CIIM data type has been omitted in the OntoML type system.

⎯ simplification of the representation of CIIM global identifiers (known as basic semantic units) of CIIM
ontology concepts.

F.2 Introductory example

This annex of OntoML specifies a formal mapping from the XML pieces of information, included in an OntoML
document instance, to those EXPRESS pieces of information that would be included in a CIIM EXPRESS
physical file used to exchange the same information.

This clause identifies, on a very simple example, the various components of such a mapping.

Let’s consider the following UML model used to illustrate a simple information model (Figure F.1):

NOTE 1 Such an information model could be represented in EXPRESS.

A

its_d

B

b_data: xs:string

C

c_data1: xs:integer
c_data2: 0..1 xs:integer

D

d_data: xs:string
1..*

its_c

its_b

a_data: xs:string

1

1

1

1

1

its_d

1

1

Figure F.1 — A UML information model example

A composite class A is defined through a a_data string attribute, and an its_b, an its_c and an its_d attributes
whose the data types are respectively classes B, C and D. Class B is described through a b_data string
attribute. Class C is described through a c_data1 and an optional c_data2 integer attributes, and an its_d
attributes whose the data type is class D. Class D is described through a d_data string attribute.

The OntoML-like representation of this information model, using the same transformation principles than those
used to design OntoML from the CIIM EXPRESS model, could be as illustrated in the following UML-like
model (Figure F.2).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 201

A_type

its_d

C_type

c_data1: xs:integer
c_data2: 0..1 xs:integer

D_type

d_data: xs:string
1..*

its_c
a_data: xs:string
b_data: xs:string

its_d

Figure F.2 — An UML-like representation of the information model

NOTE 2 Notations used in this UML-like model are those defined in Clause 6.3.1.

A corresponding XML Schema representation, could be the following (Figure F.3):

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="a" type="A_type"/>
 <xs:complexType name="A_type">
 <xs:sequence>
 <xs:element name="a_data" type="xs:string"/>
 <xs:element name="b_data" type="xs:string"/>
 <xs:element name="its_c" type="C_type"/>
 <xs:element name="its_d" type="its_D_type">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="C_type">
 <xs:sequence>
 <xs:element name="c_data1" type="xs:int"/>
 <xs:element name="c_data2" type="xs:int" minOccurs="0"/>
 <xs:element name="its_d" type="D_type">
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="its_D_type">
 <xs:sequence>
 <xs:element name="d" type="D_type" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="D_type">
 <xs:sequence>
 <xs:element name="d_data" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Figure F.3 — An XML Schema example

The XML element named a has been defined for playing both the role of a data container and the role of the
root of the XML document: its type is the A_type XML complex type.

Thus it is possible to represent the same information using two representation formats: the ISO 10303 21
EXPRESS instance syntax on the base of the UML model defined in Figure F.1, and the XML document
syntax on the base of the XML Schema defined in Figure F.4. Table F.1 represents an example of these two
representation formats.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

202 © ISO 2010 – All rights reserved

Table F.1 — XML and corresponding ISO 10303-21 instances

XML document ISO 10303-21 instances

<a>
 <a_data>string 1</a_data>
 <b_data>string 2</b_data>
 <its_c>
 <c_data1>10</c_data1>
 <c_data2>20</c_data2>
 <its_d>
 <d_data>string 3</d_data>
 </its_d>
 </its_c>
 <its_d>
 <d>
 <d_data>string 4</d_data>
 </d>
 <d>
 <d_data>string 5</d_data>
 </d>
 </its_d>

#1=A(‘string 1’, #2, #6, (#4, #5));

#2=D(‘string 2’);

#3=D(‘string 3’);

#4=D(‘string 4’);

#5=D(‘string 5’);

#6=C(10, 20, #3);

We note that defining mapping rules from each XML piece of information into EXPRESS pieces of information
needs the following:

⎯ capability to instantiate the EXPRESS representation of the container XML element, i.e., the XML element
named a, and to reference it;

⎯ capability, in the XML document, to identify any piece of information embedded, directly or indirectly, within
the container named a and, in the EXPRESS file, to instantiate and to identify any piece of information
referenced directly or indirectly from the entity instance named a;

⎯ capability to express how each particular value represented in XML shall be converted to be represented
in EXPRESS.

In the mapping defined in this annex:

⎯ all the mappings start from an embedding XML element that is either a CIIM ontology concept or the
dictionary root element. The EXPRESS image of this embedding element is denoted SELF.

⎯ the identification of XML embedded element uses the location where the mapping rules are represented in
OntoML (Clause F.3) and, when need XPath / XSLT notations.

⎯ the identification of EXPRESS items referenced by the EXPRESS image of the embedding XML element
use the EXPRESS path syntax, starting from SELF (see F.4).

⎯ instance creation and value representation use a set of specific functions defined in Clause F.4.3.4.2.

Moreover, Clause F.3 defines the overall structure of OntoML embedding elements.

F.3 Mapping rules location in OntoML

Every OntoML element definition is associated to a (some) mapping rule(s). This mapping rule is expressed
using the annotation element proposed by the XML Schema specification. Figure F.4 illustrates the mapping
location that would be defined in the A_Type XML complex type of the XML Schema example proposed in
Figure F.3.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 203

<xs:complexType name="A_type">
 <xs:sequence>
 <xs:element name="a_data" type="xs:string">
 <xs:annotation>
 <xs:appinfo> mapping rule(s)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="b_data" type="xs:string">
 <xs:annotation>
 <xs:appinfo> mapping rule(s)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="its_c" type="C_type">
 <xs:annotation>
 <xs:appinfo> mapping rule(s)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="its_d" type="its_D_type">
 <xs:annotation>
 <xs:appinfo> mapping rule(s)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Figure F.4 — Mapping representation in OntoML

The appinfo sub-element of the annotation element is intended to contain all the mapping rules.

Mapping rules involve two aspects:

⎯ the link between an XML element and the corresponding EXPRESS attribute in the ISO 13584 data
model: it is specified by EXPRESS target paths (using the group reference and attribute reference
mechanism defined in ISO 10303-11:1994); it is the localization part of the mapping;

⎯ the assignment of the XML element value(s) to the corresponding EXPRESS item(s) in the CIIM; it is the
value-conversion part of the mapping.

F.4 Link between an OntoML element and a CIIM attribute

The OntoML to CIIM mapping is based on the definition of EXPRESS-based CIIM target paths and XPath-
based OntoML source paths. These paths are used for expressing the correspondence between an XML
element and an EXPRESS item.

F.4.1 OntoML source path

The XML source path is defined by the location of the annotation. Figure F.5 outlines the XML source path
concept:

<xs:element name="b_data" type="xs:string">
 <xs:annotation>
 <xs:appinfo>mapping rule(s)</xs:appinfo>
 </xs:annotation>
</xs:element>

Figure F.5 — XML source Path

This annotation being assigned to the b_data element, the source path is the B_data element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

204 © ISO 2010 – All rights reserved

F.4.2 EXRESS target path

The role of the target path is to localize the target EXPRESS construct that corresponds to the source XML
construct defined by the location of the annotation. The target EXPRESS construct is defined by a path that is
built using EXPRESS attribute reference mechanism that use the classical dot notation (“.”) used to defined
the entity datatype of the entity instance to be created.

NOTE Attribute reference is defined in ISO 10303-11:1994, Clause 12.7.3.

OntoML defines some XML elements as global elements and the other as local elements.

Only global elements are referenced by means of identifiers. All the other elements are embedded within
global elements.

Thus, in the EXPRESS representation of an OntoML document instance:

⎯ each OntoML global element will be represented by instantiating a corresponding EXPRESS entity; this
instance will be denoted by and will define the context in which the embedded XML element of the
OntoML global element is mapped.

⎯ each piece of information that is not a global element is embedded within an XML global element and will
be mapped onto an EXPRESS image of its embedding XML global element.

This global structure is shown in Figure F.6.

OntoML
XML global
elements

OntoML
XML local
elements

Reference to an
OntoML global

element
SELF

EXPRESS entity
instance
reference

OntoML
XML document instance

CIIM
EXPRESS physical file

Ontology
XML root element

Figure F.6 — Global Vs local XML elements

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 205

OntoML specifies seven global elements:

⎯ supplier, representing the supplier ontology concept;

⎯ class, representing the class ontology concept;

⎯ property, representing the property ontology concept;

⎯ data_type, representing the datatype ontology concept;

⎯ document, representing the document ontology concept;

⎯ ontoml, representing the root element of an ontology and / or library.

The EXPRESS path is defined in a modular way: each embedded element of a local element contains a local
path that starts by “.” and that contains the EXPRESS path from the EXPRESS image of the XML local
element to the EXPRESS attribute corresponding to the embedded element.

The complete path from the EXPRESS image of an XML global element instance to the EXPRESS image of
an XML element which is indirectly embedded in the XML global element is built by concatenation of the global
path, and of all the local paths encountered when moving in the XML tree structure from the initial XML global
element to the final embedded XML element.

The complete path structure is built from a CIIM ontology concept instance as defined in Clause F.4.2.1, and
from local paths as defined in Clause F.4.2.2. The particular part structure for embedded element belonging to
a collection of element is defined in Clause F.4.2.3. The compete path structure built by aggregation of these
sub paths is defined in Clause F.4.2.4.

F.4.2.1 CIIM ontology concept instance

In OntoML, XML global elements represent CIIM ontology concepts. The mapping of an XML global element to
its corresponding EXPRESS image is done through the SELF keyword. It represents the instance of an
EXPRESS entity, image of the XML global element.

The table below gives the meaning of the CIIM SELF instance depending on the OntoML context where it is
defined. The context is defined by a pair: an XML complex type and an XML local element. It is defined in
Table F.2.

Table F.2 — SELF meaning in its use context

OntoML context “SELF” CIIM EXPRESS entity type

XML complex type:
 CONTAINED_SUPPLIERS_Type

XML element: supplier

supplier_element

XML complex type:
 CONTAINED_CLASSES_Type

XML element: class

class or one of its subtype

XML complex type:
 CONTAINED_PROPERTIES_Type

XML element: property

property_det or one of its subtype

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

206 © ISO 2010 – All rights reserved

OntoML context “SELF” CIIM EXPRESS entity type

XML complex type:
 CONTAINED_DATATYPES_Type

XML element: datatype

data_type_element

XML complex type:
 CONTAINED_DOUMENTS_Type

XML element: document

document_element

XML root element: ontoml
dictionary or one of its subtype

NOTE 1 If the OntoML document instance contains only a dictionary specification, the SELF instance is an instance
of the dictionary or of the dictionary_in_standard_format CIIM EXPRESS entity data type.

NOTE 2 If the OntoML document instance contains only a library specification, the SELF instance is an instance of
the library or of the library_in_standard_format CIIM EXPRESS entity data type.

NOTE 3 If the OntoML document instance contains both a dictionary and a library specification, the SELF instance
is an instance of the library or of the library_in_standard_format CIIM EXPRESS entity data type.

EXAMPLE 1 In OntoML, class ontology concept is represented by the class XML global element. In the CIIM
EXPRESS information model, this class ontology concept is represented by one instance of the class entity data type, or
one of its subtypes. This EXPRESS instance is said the SELF instance. It represents the class XML element in an
EXPRESS based universe.

XML global elements support polymorphism through the possibly associated xsi:type XML attribute/

NOTE 4 xsi stands for the prefix associated to the XML Schema:Structure specification that defines several
attributes for direct use in XML document. Its namespace is: <http://www.w3.org/2001/XMLSchema-instance>.

It means that the EXPRESS mapping of an XML global element shall take into account this datatype
information. Consequently, the following applies:

⎯ when no xsi:type XML attribute is used to specify an XML global element, the SELF instance
corresponds to an instance of the EXPRESS entity image of the XML global element complex type
specification;

⎯ when an xsi:type XML attribute is used to specify an XML global element, the SELF instance
corresponds to an instance of the EXPRESS entity image of the referenced XML complex type;

EXAMPLE 2 The property ontology concept is partially defined as follows:

<xs:element name="property" type="PROPERTY_Type" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>A reference to a property</xs:documentation>
 <xs:appinfo>SELF</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="PROPERTY_Type" abstract="true">
…
</xs:complexType>

<xs:complexType name="CONDITION_DET_Type">
 <xs:complexContent>
 <xs:extension base="PROPERTY_Type"/>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

http://www.w3.org/2001/XMLSchema-instance

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 207

 </xs:complexContent>
</xs:complexType>

<xs:complexType name="NON_DEPENDENT_P_DET_Type">
 <xs:complexContent>
 <xs:extension base="PROPERTY_Type"/>
 </xs:complexContent>
</xs:complexType>

Let’s now consider the following OntoML fragment:

<property xsi:type="NON_DEPENDENT_P_DET_Type" …>

In such a case, the SELF instance is an instance of the EXPRESS image associated to the OntoML
NON_DEPENDENT_P_DET_Type XML complex type, i.e., an instance of the CIIM non_dependent_p_det EXPRESS
entity data type.

F.4.2.2 Information elements of an ontology: local EXPRESS target path

A local CIIM target path is assigned to every local XML element defined in the XML complex type assigned
either to a global XML element or to another local XML element.

It specifies a mapping link between the EXPRESS image of a local XML element and an EXPRESS attribute.

NOTE 1 This EXPRESS target path is said local, because it defines only locally the partial mapping.

The local CIIM target path has the structure defined in Figure F.7:

.local_path.attribute

Figure F.7 — Local EXPRESS target path structure

Where:

⎯ ”.”: the instance of the EXPRESS entity image of the XML complex type used to represent the local XML
element;

NOTE 2 If the complex type represents the specification of a global XML element, “.” Represents the SELF instance.

⎯ sub_path: the path defined from the EXPRESS entity instance to the EXPRESS entity instance where the
target attribute is defined;

⎯ attribute: the name of the EXPRESS attribute to which the global CIIM path defines a mapping.

EXAMPLE Real measures may be used to represent either a property value domain. In OntoML, real measures are
represented on the base of the REAL_MEASURE_TYPE_Type XML complex type. This complex type defines a unit
local XML element representing the specific unit of the real measure. The mapping of the unit XML element to the
corresponding EXPRESS attribute is specified as follows:

.UNIT

The “.” instance is an instance of the EXPRESS image associated to the OntoML REAL_MEASURE_TYPE_Type XML
complex type, i.e., an instance of the CIIM real_measure_type EXPRESS entity data type.

F.4.2.3 Local EXPRESS target path for indexing a collection of XML elements

Some XML elements are defined as collections of other embedded XML elements. They correspond to
EXPRESS attributes whose types are collections. Each of their embedded element corresponds to one
element of the corresponding EXPRESS collection. Therefore, it is needed to specify a mapping between each
embedded XML element and the corresponding EXPRESS collection element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

208 © ISO 2010 – All rights reserved

For that purpose, EXPRESS paths are completed using the EXPRESS aggregate indexing operator.

NOTE 1 Aggregate indexing operator is defined in ISO 10303-11:1994, Clause 12.6.1.

It consists of the collection value being indexed (the target EXPRESS attribute) and the index specification.
The index specification is either set to a “i” integer variable or to an integer constant.

In case of an integer variable, its range is implicitly defined as follows:

⎯ its minimum value is equal to the minimum bound of the target collection structure if it is an array, else is it
is equal to 1;

⎯ its maximum value is equal to the minimum value, minus one, plus the number of embedded XML
elements that appear in the XML element for which the mapping is defined.

EXAMPLE This example illustrates an EXPRESS path for indexing collection of XML elements.

<xs:element name="translation" type="TRANSLATION_Type" minOccurs="0">
 <xs:annotation>
 <xs:appinfo>.ADMINISTRATION.TRANSLATION[i]</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="TRANSLATION_Type">
 <xs:sequence>
 <xs:element name="translation_data" type="TRANSLATION_DATA_Type"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="TRANSLATION_DATA_Type" abstract="false">
 <xs:sequence>
 …
 <xs:element name="translation_revision" type="REVISION_TYPE_Type">
 <xs:annotation>
 <xs:appinfo>.TRANSLATION_REVISION</xs:appinfo>
 </xs:annotation>
 </xs:element>
 …
 </xs:sequence>
</xs:complexType>

The OntoML translation element corresponds (.ADMINISTRATION.TRANSLATION[i]) to the EXPRESS translation
attribute defined in the administrative_data EXPRESS entity data type and referenced by the administration EXPRESS
attribute. The EXPRESS translation attribute datatype is a collection of translation_data EXPRESS entity instances.
Each EXPRESS entity instance is described by a set of attributes. Among them, there is the translation_revision
EXPRESS attribute. In OntoML, each item of the translation XML element collection is represented by an embedded
translation_data XML element. The translation_data XML element is defined according to the
TRANSLATION_DATA_Type XML complex type specification that describes a translation_revision XML element
whose EXPRESS image is the previously described translation_revision EXPRESS attribute
(.TRANSLATION_REVISION).

NOTE 2 Indexing a 2D aggregate structure would be expressed as follows: attribute_name[i][j].

F.4.2.4 Complete EXPRESS target path structure

A complete EXPRESS target path specifies the EXPRESS path from the SELF instance to the EXPRESS
attribute that is the image of a final XML local element.

The complete path from the EXPRESS image of an XML global element instance to the EXPRESS image of
an XML element (which is indirectly embedded in the XML global element) is built by concatenation of the
SELF instance, and of all the local paths encountered when moving in the XML tree structure from the initial
XML global element to the final embedded XML element.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 209

The complete CIIM target path has the structure defined in Figure F.8:

SELF.sub_path.attribute

Figure F.8 — Complete EXPRESS target path structure

Where:

⎯ SELF: the EXPRESS instance corresponding to the global OntoML element;

⎯ sub_path: the concatenation of all the local paths encountered when moving in the XML tree structure
from the initial XML global element to the final embedded XML element;

⎯ attribute: the name of the target EXPRESS attribute corresponding to the final embedded XML element.

EXAMPLE 1 A class is a CIIM ontology concept that is associated with a name. In the CIIM EXPRESS information
model, this name is represented in the ITEM_NAMES entity datatype by a preferred_name attribute. In OntoML, this
CIIM ontology concept is represented by a class global XML element whose content model is defined by a CLASS_Type
complex type. This complex type specifies an XML element called preferred_name that represents this class name. The
complete EXPRESS target path would be implicitly defined as follows:

SELF.NAMES.PREFERRED_NAME

This complete CIIM target path specifies the link between the preferred_name element of an OntoML class ontology
concept and the preferred_name attribute of the EXPRESS item_names entity. SELF represents a class entity instance
(or an instance of one of its subtypes).

EXAMPLE 2 Assuming that the translation XML local element presented in the example defined in Clause F.4.2.3, is
directly embedded in an XML global element representing for instance a property ontology concept, the complete path
that leads to the translation_revision XML local element would be:

SELF.ADMINISTRATION.TRANSLATION[i].TRANSLATION_REVISION

F.4.3 Assignment of an OntoML element value to an EXPRESS attribute

Assigning an OntoML element value to an EXPRESS attribute requires to specify:

OntoML source and an EXPRESS target attribute paths defining the information elements to be mapped;

⎯ an assignment operator;

⎯ a syntax for accessing information units in the OntoML compliant XML instance document;

⎯ specific EXPRESS constructors for those information elements that are not represented in a
straightforward manner in OntoML according to the CIIM.

This clause specified all these assignment aspects.

F.4.3.1 Assignment operator

The assuagement of a value represented in an OntoML document to an EXPRESS target path is performed
using the “:=” assignment operator.

F.4.3.2 Assignment operation

The assignment of an EXPRESS value to an EXPRESS target path is only defined for those XML element that
define the final target of the corresponding complete EXPRESS target path. The assignment is performed
using the following syntax:

EXPRESS target path := EXPRESS value

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

210 © ISO 2010 – All rights reserved

Where:

⎯ EXPRESS target path: a local target path assigned to an XML element;

NOTE No other mapping is defined for the embedded XML element of this XML element

⎯ EXPRESS value: a value being either referenced (simple value) or computed (complex value) by a
specific mapping function.

EXAMPLE 1 The revision number of a class ontology concept is represented by an EXPRESS attribute called
revision whose data type is a simple string. It is represented in OntoML by an XML element (revision) whose content
model is also a simple string. The mapping between the OntoML representation of a revision consists of assigning the
OntoML revision string value to the EXPRESS revision attribute.

EXAMPLE 2 The preferred name of a class ontology concept is represented by an EXPRESS attribute called
preferred_name whose data type is the translatable_label entity. It is represented in OntoML by an XML element
(preferred_name) whose content model is not represented using the same constructs for simplification purposes.
Consequently, the mapping can not be represented simply using an EXPRESS target path. A specific mapping function
shall be used.

F.4.3.3 Retrieving OntoML information

Defining a mapping between an OntoML document instance and EXPRESS instances requires to retrieve the
XML document data, and then to assign them to EXPRESS entity attributes.

For that purpose, OntoML mapping rules use the XPath syntax. Every XPath is defined locally to the XML
element for which the mapping rule is defined. The XPath syntax is restricted to the following constructs:

⎯ .: returns the current node;

⎯ @attribute_name: returns the <attribute_name> attribute value of the current node;

⎯ *: returns all the children elements of the current element, whatever be their names.

⎯ /: separator used to specify the XPath localization steps;

⎯ element_name: returns all the <element_name> children nodes of the contextual node.

F.4.3.4 Assigning OntoML information to EXPRESS target paths

This clause defines the different means used to assigned values referenced from an XML document to
EXPRESS target paths.

F.4.3.4.1 Assigning a simple OntoML value to a simple EXPRESS attribute

An XML simple value to an EXPRESS attribute assignment is implicitly done for those XML element whose
content model is defined as simple. For simplification purposes, such a simple assignment does not require to
use the assignment operator.

EXAMPLE The date of original definition of a CIIM ontology concept is mapped as follows:

<xs:element name="class" type="CLASS_Type" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>SELF</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="CLASS_Type" abstract="true">
 <xs:sequence>
 …

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 211

<xs:element name="date_of_original_definition" type="DATE_TYPE_Type" minOccurs="0">
 <xs:annotation>
<xs:appinfo>.TIME_STAMPS.DATE_OF_ORIGINAL_DEFINITION</xs:appinfo>
 </xs:annotation>
</xs:element>
 …
</xs:complexType>

Let’s now consider this OntoML fragment:

<class xsi:type="…" id="…">
…
 <revision>1</revision>
…
</class>

The mapping of the OntoML revision value to the corresponding complete EXPRESS target path is implicitly defined as
follows:

SELF.TIME_STAMPS.DATE_OF_ORIGINAL_DEFINITION := 1

F.4.3.4.2 Assigning an OntoML value to a complex EXPRESS attribute

Some information elements are not represented in a straightforward manner in OntoML according to the CIIM.
The mapping can not be expressed defining only simple EXPRESS target paths and assigning simple XML
element values. It requires to specify mapping functions. Their role is to retrieve information from the OntoML
document, to process it, and to assign an instance value to the attribute referenced by the complete EXPRESS
target path. Their corresponding algorithm may be more or less complex.

NOTE The mapping does not define the algorithm of each of these mapping functions, but only their signature and
their behavior.

A complex EXPRESS attribute is an attribute whose data type is an entity datatype. The assignment of an
OntoML value to such an attribute requires to build a type-compatible instance. The general structure of such
an assignment is defined as follows:

EXPRESS target path := <function_name>({parameters})

Where

⎯ EXPRESS target path: a local target path assigned to an XML element, the targeted attribute datatype
being an EXPRESS entity;

⎯ <function_name>: a mapping function whose role is to create a set of EXPRESS instances and to assign
one of them to the attribute referenced in the EXPRESS target path;

⎯ {parameters}: the set of effective parameters corresponding to XML items (element or attribute) value
retrieved (using XPath operator) from the OntoML document instance.

EXAMPLE The preferred name of a class ontology concept is represented by an EXPRESS attribute called
preferred_name whose data type is the translatable_label entity. It is represented in OntoML by an XML element
(preferred_name) whose content model is not represented using the same constructs for simplification purposes.
Consequently, the mapping can not be represented simply using an EXPRESS target path. A specific mapping function is
used:

<xs:element name="class" type="CLASS_Type" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>SELF</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="CLASS_Type" abstract="true">
 <xs:sequence>
 …

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

212 © ISO 2010 – All rights reserved

 <xs:element name="preferred_name" type="PREFERRED_NAME_Type">
 <xs:annotation>
 <xs:appinfo>.NAMES.PREFERRED_NAME :=
 createLabel(*)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 …
</xs:complexType>

Let’s now consider this OntoML fragment:

<class xsi:type="…" id="…">
…
 <preferred_name>
 <label language="en">bearing</label>
 </preferred_name>
…
</class>

The mapping of the OntoML preferred name complex value to the corresponding complete EXPRESS target path is
implicitly defined as follows:

SELF.NAMES.PREFERRED_NAME := createLabel(*)

The EXPRESS preferred_name attribute value is intended to be built using the createLabel mapping function. This
function takes as an effective parameter a set of nodes referenced by the “*” XPath (the set of children nodes of the
contextual XML element, i.e., the nodes children of the preferred_name XML element), and process (create required
EXPRESS instances) it according to the CIIM. It returns a type compatible EXPRESS preferred_name attribute value (a
translated_label entity instance) that is assigned to the specified complete EXPRESS target path.

The following subclauses specify these mapping functions.

F.4.3.4.2.1 BSU from a CIIM ontology concept identifier mapping

Every CIIM ontology concept is associated to an unambiguous identifier whose structure is defined in this part
of ISO 13584.

In OntoML, these identifiers are represented by a string, whereas they are structurally and descriptively
specified in the CIIM. Thus, we define a function that is intended to build the EXPRESS entity data type
instance resources for representing a CIIM ontology concept identifier from an identifier represented by a
string. Its signature is the following:

<ontologyConcept>BSUFromId(ontoMLId: string): basic_semantic_unit

where:

⎯ <ontologyConcept>: the specific CIIM ontology concept for which the CIIM identifier is built. It may take
the following values:

⎯ supplier ontology concept: “supplier”;

⎯ class ontology concept: “class”;

⎯ property ontology concept: “property”;

⎯ datatype ontology concept: “datatype”;

⎯ document ontology concept: “document”;

⎯ ontoMLId: a string representing an OntoML concept identifier;

NOTE 1 The ontoMLId effective value is intended to be retrieved from an OntoML document instance using XPath
localization path.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 213

⎯ basic_semantic_unit: the instance type returned by this function call.

NOTE 2 basic_semantic_unit is defined in ISO 13584-42:2010, Clause F.3.4.2.1.

Depending on the <ontologyconcept>, the <ontologyConcept>BSUFromId function returns an instance of:

⎯ the supplier_BSU entity data type for the supplier ontology concept;

⎯ the class_BSU entity data type for the class ontology concept;

⎯ the property_BSU entity data type for the property ontology concept;

⎯ the datatype_BSU entity data type for the datatype ontology concept;

⎯ the document_BSU entity data type for the document ontology concept.

If the OntoML identifier has already been mapped in an instance of one of these CIIM entity datatype, it shall
not be created twice, but its corresponding CIIM entity instance shall be retrieved and returned by the function.

Additionally, depending on the CIIM ontology concept identified, the following apply:

⎯ class ontology concept: if the identified supplier in the OntoML class identifier has not already been
mapped into an EXPRESS entity instance, it shall be created and then referenced, otherwise, the existing
EXPRESS entity instance shall be only referenced;

⎯ property, datatype or document ontology concept: if the identified supplier and the identified class in the
OntoML property, datatype or document identifier have not already been mapped into EXPRESS entity
instances, they shall be created and then referenced, otherwise, the existing EXPRESS entity instances
shall be only referenced.

Table F.3 lists OntoML CIIM ontology concept identifiers (see 9.1) and their corresponding CIIM EXPRESS
instances.

Table F.3 — OntoML identifiers mapping

OntoML identifiers EXPRESS instances

SupplierId ::= icd oi [opi [opis]]
[std]

#supp=SUPPLIER_BSU(CIIMrai, *);

CIIMrai is built from supplierId according to
ISO 13584-26 rules.

classId ::= rai # di #vi

#cl=CLASS_BSU(di, vi, #supp);

#supp is a reference to an instance of a
supplier_BSU identified in the rai part of the
dictionaryId identifier

propertyId ::= rai # di # vi

#prop=PROPERTY_BSU(diProp, vi,
#cl);

diProp is the CIIM property code identified in
the di part of the OntoML propertyId.

#cl is a reference to an instance of a
class_BSU identified in the rai and di part of
the OntoML propertyId.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

214 © ISO 2010 – All rights reserved

OntoML identifiers EXPRESS instances

documentId ::= rai # di # vi

#doc=DOCUMENT_BSU(diDoc, vi, #cl);

diDoc is the CIIM document code identified in
the di part of the OntoML documentId.

#cl is a reference to an instance of a
class_BSU identified in the rai and di part of
the OntoML documentId.

datatypeId ::= rai # di # vi

#type=DATA_TYPE_BSU(diType, vi,
#cl);

diType is the CIIM data type code identified in
the di part of the OntoML datatypeId.

#cl is a reference to an instance of a
class_BSU identified in the rai and di part of
the OntoML datatypeId.

EXAMPLE The class ontology concept identifier is represented as follows:

<xs:element name="class" type="CLASS_Type" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>SELF</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="CLASS_Type" abstract="true">
 …
 <xs:attribute name="id" type="ClassId" use="required">
 <xs:annotation>
 <xs:appinfo>.IDENTIFIED_BY := classBSUFromId(string(@id))</xs:appinfo>
 </xs:annotation>
 </xs:attribute>

 </xs:complexType>

The complete EXPRESS target path defined for the id (the class ontology concept identifier) XML attribute and its
corresponding assignment is therefore:

SELF.IDENTIFIED_BY := classBSUFromId(string(@id))

It means that the identified_by EXPRESS attribute of the SELF instance (an instance representing the class ontology
concept) is set to the value returned by the classBSUFromId function. This function takes as an argument the result of
the defined XPath (“string(@id)”), i.e., the OntoML id attribute value.

Let’s now consider this OntoML fragment:

<class … id="0002-38491502100024#BEARING#001">
…
</class>

If we assume that a supplier_BSU entity instance has already been created (#supp), the mapping would look like:

#cl = CLASS_BSU('BEARING', '001', #supp);
SELF.IDENTIFIED_BY := #cl

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 215

Where

⎯ #cl: an EXPRESS class_BSU instance identifier;

⎯ #supp: an EXPRESS supplier_BSU instance identifier (assumed to exist).

F.4.3.4.2.2 Class BSUs from class identifiers mapping

The CIIM EXPRESS model requires to reference every defined or referenced classes from the dictionary
EXPRESS entity, through its contained_classes attribute. The classBSUsFromIds is used for that purpose.
It retrieves all the OntoML class identifiers and returns their corresponding CIIM representation (class_BSU
instances). Its signature is the following:

classBSUsFromIds(ontoMLIds: XPath): LIST OF UNIQUE class_BSU

where:

⎯ ontoMLIds: an XPath allowing to retrieve all the OntoML class identifiers;

NOTE 1 In OntoML, such an identifier is represented by an XML attribute.

⎯ class_BSU: the instance type returned by this function call.

NOTE 2 Class_BSU is defined in ISO 13584-42:2010, Clause F.3.6.1.1.

NOTE 3 The classBSUsFromIds is used only once, in the mapping specification of the contained_classes XML
element defined in the DICTIONARY_Type XML complex type.

Table F.4 presents an application example of the classBSUsFromIds function, assuming that this mapping
function is defined in the context of an OntoML contained_classes XML element, as follows:
.CONTAINED_CLASSES := classBSUsFromIds(*/@id).

Table F.4 — OntoML list of class identifiers mapping

OntoML EXPRESS instances

<contained_classes>
 <class id=”rai#di1#vi” …>
 … </class>
 <class id=” rai#di2#vi” …>
 … </class>
 …
 <class id=” rai#din#vi” …>
 … </class>

</contained_classes>

#cl1=CLASS_BSU(di1, vi, #supp);
#cl2=CLASS_BSU(di2, vi, #supp);
…
#cln=CLASS_BSU(din, vi, #supp);
#supp is a reference to an instance of a
supplier_BSU identified in the rai part of the
dictionaryId identifier

classBSUsFromIds function result:

[#cl1, #cl2, …, #cln]

F.4.3.4.2.3 Dictionary and library identification mapping

The dictionaryCodeFromId function allows to build an EXPRESS dictionary_identification entity instance
form an OntoML dictionary identifier. Its signature is the following:

DictionaryCodeFromId(ontoMLDicLibId: string): dictionary_identification

Where:

⎯ ontoMLDicLibId: an XPath allowing to access the OntoML dictionary and / or library identifier;

NOTE 1 In OntoML, such an identifier is represented by an XML attribute.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

216 © ISO 2010 – All rights reserved

⎯ dictionary_identifier: the instance type returned by this function call.

NOTE 2 dictionary_identification is defined in ISO 13584-24:2003, Clause 11.5.

Table F.5 presents the dictionary and library identifier (see 9.1) and its corresponding CIIM EXPRESS
representation.

Table F.5 — OntoML ontology identifier mapping

OntoML EXPRESS instances

ontologyId ::= rai # di #vi

#dic=DICTIONARY_IDENTIFICATION(di, vi,
revision, #supp);

#supp is a reference to an instance of a
supplier_BSU identified in the rai part of the
ontologyId identifier.

The revision attribute is not mapped by this
function.

F.4.3.4.2.4 Label and translated label mapping

The createLabel function allows to build the CIIM EXPRESS resources corresponding to some clear label
information, possibly translated. Its signature is the following:

createLabel(ontoMLLabel: XPath): translatable_label

Where:

⎯ ontoMLLabel: an XPath that references a set of OntoML label XML element (possibly associated to a
language XML attribute) intended to be processed.

⎯ translatable_label: the general data type returned by this function call. In case of not translated text, it
returns a CIIM label_type value. In case of a translated text, it returns a CIIM translated_label entity
instance value.

NOTE translatable_label is defined in ISO 13584-42:2010, Clause F.4.1.4.

Table F.6 presents labels and translated labels and their corresponding CIIM EXPRESS representation.

Table F.6 — OntoML label and translated label mapping

OntoML EXPRESS instances

<…>
 <label> a label </label>
</…>

LABEL('a label')

The CIIM representation of a non translated label
is a string whose specific data type is LABEL.

<…>
 <label language=”en”> a label
 </label>
 <label language=”fr”> un label
 </label>
</…>

#tlabel=TRANSLATED_LABEL(('a label',
'un label'), #pt);
#pt=PRESENT_TRANSLATIONS((#lc1,
#lc2));
#lc1=LANGUAGE_CODE('en', $);
#lc2=LANGUAGE_CODE('fr', $);

The CIIM representation of a translated label
consists of instances of the following three CIIM
EXPRESS entity data type: translated_label,
present_translations and language_code.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 217

EXAMPLE The class ontology concept preferred name is represented as follows:

<xs:element name="class" type="CLASS_Type" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>SELF</xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="CLASS_Type" abstract="true">
 …
 <xs:element name="preferred_name" type="PREFERRED_NAME_Type">
 <xs:annotation>
 <xs:appinfo>.NAMES.PREFERRED_NAME := createLabel(*)</xs:appinfo>
 </xs:annotation>
 </xs:element>
 …

 </xs:complexType>
<xs:complexType name="PREFERRED_NAME_Type">
 <xs:sequence>
 <xs:element name="label" type="PREFERRED_NAME_LABEL_Type"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PREFERRED_NAME_LABEL_Type">
 <xs:simpleContent>
 <xs:extension base="PREFERRED_NAME_TYPE_Type">
 <xs:attribute name="language" type="LANGUAGE_CODE_Type"
 use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

The complete EXPRESS target path defined for the preferred_name (the class preferred name) XML element and its
corresponding assignment is therefore:

SELF.NAMES.PREFERRED_NAME := createLabel(*)

Let’s now consider this OntoML fragment:

<class …>
…
 <preferred_name>
 <label language="en">roller bearing</label>
 </preferred_name>
…
</class>

The result of the expressed mapping could be as follows:

#tlabel = TRANSLATED_LABEL(('roller bearing'), #pt);
#pt = PRESENT_TRANSLATIONS((#lc));
#lc = LANGUAGE_CODE('en', $);
SELF.NAMES.PREFERRED_NAME := #tlabel

F.4.3.4.2.5 Text and translated text mapping

The createText function allows to build the CIIM EXPRESS resources corresponding to some clear text
information, possibly translated. Its signature is the following:

createText(ontoMLText: XPath): translatable_text

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

218 © ISO 2010 – All rights reserved

Where:

⎯ ontoMLText: an XPath that references a set of OntoML text XML element (possibly associated to a
language XML attribute) intended to be processed.

⎯ translatable_Text: the general data type returned by this function call. In case of not translated text, it
returns a CIIM text_type value. In case of a translated text, it returns a CIIM translated_text entity
instance value.

NOTE translatable_text is defined in ISO 13584-42:2010, Clause F.4.1.6.

Table F.7 presents texts and translated texts and their corresponding CIIM EXPRESS representation.

Table F.7 — OntoML text and translated text mapping

OntoML EXPRESS instances

<…>
 <text> a text </text>
</…>

TEXT('a label')

The CIIM representation of a non translated label
is a string whose specific data type is LABEL.

<…>
 <text language=”en”> a text
 </label>
 <text language=”fr”> un texte
 </text>
</…>

#tlabel=TRANSLATED_TEXT(('a text, 'un
texte'), #pt);
#pt=PRESENT_TRANSLATIONS((#lc1,
#lc2));
#lc1=LANGUAGE_CODE('en', $);
#lc2=LANGUAGE_CODE('fr', $);

The CIIM representation of a translated text
consists of instances of the following three CIIM
EXPRESS entity data type: translated_text,
present_translations and language_code.

F.4.3.4.2.6 Synonymous names mapping

The createSynonymous function allows to build the CIIM EXPRESS resources corresponding to some
synonymous labels information, possibly translated. Its signature is the following:

createSynonymous(ontoMLLabel: XPath): SET OF syn_name_type

Where:

⎯ ontoMLLabel: an XPath that references a set of OntoML label XML element (possibly associated to a
language XML attribute) intended to be processed.

⎯ syn_name_type: the general data type returned by this function call. In case of not translated label, the
function returns a set of CIIM label type value. In case of a translated label, it returns a set of CIIM
label_with_language entity instance value.

NOTE syn_name_type is defined in ISO 13584-42:2010, Clause F.3.9.1.16.

Table F.8 presents synonymous names and translated synonymous names and their corresponding CIIM
EXPRESS representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 219

Table F.8 — OntoML synonymous and translated synonymous mapping

OntoML EXPRESS instances

<…>
 <label> a synonymous </label>
 <label> another synonymous
</label>
</…>

[LABEL('a synonymous'),
 LABEL('another synonymous')]

The CIIM representation of a non translated
synonymous names is a set of strings whose
specific data type is LABEL.

<…>
 <label language=”en”>
 a synonymous </label>
 <label language=”fr”>
 un synonyme </label>
 <label language=”fr”>
 un autre synonyme </label>
</…>

#syn1=LABEL_WITH_LANGUAGE('a
synonymous', #lc1);
#syn2=LABEL_WITH_LANGUAGE('un
synonyme', #lc2);
#syn3=LABEL_WITH_LANGUAGE('un autre
synonyme', #lc2);
#lc1=LANGUAGE_CODE('en', $);
#lc2=LANGUAGE_CODE('fr', $);

The CIIM representation of a translated
synonymous label consists of instances of the
following two CIIM EXPRESS entity data:
label_with_language and language_code.

F.4.3.4.2.7 Keywords mapping

The createKeywords function allows to build the CIIM EXPRESS resources corresponding to some keyword
labels information, possibly translated. Its signature is the following:

createKeywords(ontoMLLabel: XPath): SET OF keyword_type

Where:

⎯ ontoMLLabel: an XPath that references a set of OntoML label XML element (possibly associated to a
language XML attribute) intended to be processed.

⎯ keyword_type: the general data type returned by this function call. In case of not translated label, the
function returns a set of CIIM label type value. In case of a translated label, it returns a set of CIIM
label_with_language entity instance value.

NOTE keyword_type is defined in ISO 13584-42:2010, Clause F.3.9.1.17.

Table F.9 presents keywords and translated keywords and their corresponding CIIM EXPRESS
representation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

220 © ISO 2010 – All rights reserved

Table F.9 — OntoML keywords and translated keywords mapping

OntoML EXPRESS instances

<…>
 <label> a keyword </label>
 <label> another keyword </label>
</…>

[LABEL('a keyword'),
 LABEL('another keyword')]

The CIIM representation of a non translated
keywords is a set of strings whose specific data
type is LABEL.

<…>
 <label language=”en”>
 a keyword </label>
 <label language=”fr”>
 un mot clé </label>
 <label language=”fr”>
 un autre mot clé </label>
</…>

#syn1=LABEL_WITH_LANGUAGE('a keyword',
'en');
#syn2=LABEL_WITH_LANGUAGE('un mot
clé', 'fr');
#syn3=LABEL_WITH_LANGUAGE('un autre
autre mot clé', 'fr');
#lc1=LANGUAGE_CODE('en', $);
#lc2=LANGUAGE_CODE('fr', $);

The CIIM representation of a translated keyword
consists consists of instances of the following two
CIIM EXPRESS entity data: label_with_language
and language_code.

F.4.3.4.2.8 Documentation mapping

The association of documentation to CIIM ontology concepts may be done in three different ways.

⎯ either by referencing a document represented as an instance of a CIIM ontology concept: for that purpose,
the referenced_graphics and referenced_document CIIM EXPRESS entities are used;

⎯ or by referencing an well-identified document: for that purpose, the identified_document CIIM EXPRESS
entity is used;

⎯ or by referencing an http resource: for that purpose, the external_graphics, document_content,
message, illustration, a6_illustration and the a9_illustration CIIM EXPRESS entities are used;

For this latter functions group, protocol and translation information shall be provided according to the CIIM.

These CIIM EXPRESS resources may be classified, according to the CIIM, as follows:

⎯ graphics: the EXPRESS resources that represent a CIMM graphics: referenced_graphics and
external_graphics;

⎯ documents: the EXPRESS resources that represent a CIMM document: referenced_document and
identified_document;

⎯ document ontology concept content specification: the EXPRESS resource that represents a CIIM
document_content;

⎯ class extension external resources: the EXPRESS resources that represent a CIMM
class_extension_external_item: message, illustration, a6_uillustration and a9_illustration.

Mapping functions are defined according to this classification:

⎯ a mapping function intended to create a graphics:

createGraphics(ontoMLGraphicsType: XPath): graphics

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 221

where:

⎯ ontoMLGraphicsType: an XPath that references the xsi:type attribute of the element to which this
function is applied; it allows to specify what kind of graphics is intended to be built;

⎯ graphics: the entity data type of the instance returned by this function call; if the function applies to an
XML element whose content model is defined as a referenced graphics (xsi:type =
ontoml:REFERENCED_GRAPHICS_Type), it returns a CIIM referenced_graphics entity instance
value; if it applies to an XML element whose content model is defined as a an external graphics
(xsi:type = ontoml:EXTERNAL_GRAPHICS_Type), it returns a CIIM external_graphics entity
instance value;

⎯ a mapping function intended to create a document:

createDocument(ontoMLDocumentType: XPath): document

where:

⎯ ontoMLDocumentType: an XPath that references the xsi:type attribute of the element to which this
function is applied; it allows to specify what kind of document is intended to be built;

⎯ document: the entity data type of the instance returned by this function call; if the function applies to
an XML element whose content model is defined as a referenced document (xsi:type =
ontoml:REFERENCED_DOCUMENT_Type), it returns a CIIM referenced_document entity
instance value; if it applies to an XML element whose content model is defined as a identified
document (xsi:type = ontoml:IDENTIFIED_DOCUMENT_Type), it returns a CIIM
identified_document entity instance value;

⎯ a mapping function intended to create a document ontology concept content specification:

createDocumentContent(doc: string): document_content

where:

⎯ doc: an XPath retrieving the OntoML document identifier for which the document content is specified;

⎯ document_content: the entity data type of the instance returned by this function call;

⎯ a mapping function intended to create class extension external resources:

createExtResource(ontoMLExtResourceType: XPath): class_extension_external_item

where:

⎯ ontoMLExtResourceType: an XPath that references the xsi:type attribute of the element to which this
function is applied; it allows to specify what kind of document is intended to be built;

⎯ class_extension_external_item: the entity data type of the instance returned by this function call; if the
function applies to an XML element whose content model is defined as a message (xsi:type =
MESSAGE_Type), it returns a CIIM message entity instance value; if it applies to an XML element
whose content model is defined as an illustration (xsi:type = ILLUSTRATION_Type) where no
standard_size XML attribute is defined, it returns a CIIM illustration entity instance value; if it
applies to an XML element whose content model is defined as an illustration (xsi:type =
ILLUSTRATION_Type) where the standard_size XML attribute is defined, it returns a CIIM
a6_illustration entity instance value if this attribute value is equal to “a6_illustration”, or a CIIM
a9_illustration entity instance value if this attribute value is equal to “a9_illustration”.

These four functions are intended to process the OntoML sub document part that consists of the sub XML
elements tree whose root is the OntoML element where one of those mapping functions is called.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

222 © ISO 2010 – All rights reserved

Mapping functions building external_graphics, document_content, message, illustration, a6_illustration
and the a9_illustration CIIM entity data type instances deal with reference to http resources. According to the
CIIM, it is required for each of these functions to build the following entity instances corresponding to the
representation of the HTTP protocol. It is presented in Table F.10.

Table F.10 — OntoML HTTP protocol mapping

OntoML EXPRESS instances

No explicit information in OntoML. #http_prot_name=ITEM_NAMES(LABEL('Hype
rtext Transfer Protocol'), (),
LABEL('HTTP/1.1'), $, $);
#org=ORGANIZATION('', 'World Wide Web
Consortium', 'W3C');
#http_protocol=HTTP_PROTOCOL(#org,
'USA', 'NONE', '001', $,
#http_prot_name, $, 2621);

The http_protocol instance is intended to be
referenced.

Mapping functions building external_graphics, document_content, message, illustration, a6_illustration
and the a9_illustration CIIM entity data type instances deal also with translations. According to the CIIM, it is
required for each of these functions to build the following entity instances corresponding to the representation
of external resource translations. It is represented in Table F.11.

Table F.11 — OntoML translated and not translated files mapping

OntoML EXPRESS instances

<file>
 <file_name>filename.ext
 </file_name>
 <dir_name>directory
 name</dir_name>
</file>

dir_name is an optional OntoML element.

#ext_cont=NOT_TRANSLATED_EXTERNAL_CONT
ENT((#lang_spec_cont));
#lang_spec_cont=LANGUAGE_SPECIFIC_CONT
ENT((#http_file), #http_file, 'utf-
8');
#http_file=HTTP_FILE('filename.ext',
$, mime_type, mime_subtype, $,
'filename.ext', # http_class_dir, $);

mime_type and mime_subtype are intended to
be computed from the file name.

#http_class_dir=HTTP_CLASS_DIRECTORY('
directory_name', #class);

If the directory name is not provided, it shall be
created and managed by the mapping
program.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 223

OntoML EXPRESS instances

<file language=”en”>
 <file_name>filename_en.ext
 </file_name>
 <dir_name>directory_name_1
 </dir_name>
</file>
<file language=”fr”>
 <file_name>filename_fr.ext
 </file_name>
 <dir_name>directory_name_2
 </dir_name>
</file>

dir_name is an optional OntoML element.

#pt=PRESENT_TRANSLATIONS((#lc1,
#lc2));
#lc1=LANGUAGE_CODE('en', $);
#lc2=LANGUAGE_CODE('fr', $);
#lang_spec_cont_1=LANGUAGE_SPECIFIC_CO
NTENT((#http_file_1), #http_file_1,
“utf-8”);
#lang_spec_cont_2=LANGUAGE_SPECIFIC_CO
NTENT((#http_file_2), #http_file_2,
'utf-8');
#http_file_1=HTTP_FILE('filename_en.ex
t', $, mime_type, mime_subtype, $,
'filename_en.ext', # http_class_dir_1,
$);
#http_file_2=HTTP_FILE('filename_fr.ex
t', $, mime_type, mime_subtype, $,
'filename_fr.ext', # http_class_dir_2,
$);

mime_type and mime_subtype are intended to
be computed from the file name.

#http_class_dir_1=HTTP_CLASS_DIRECTORY
(“directory_name_1”, #class);
#http_class_dir_2=HTTP_CLASS_DIRECTORY
(“directory_name_2”, #class);

If the directory name is not provided, it shall be
created and managed by the mapping
program.

Table F.12 presents for each OntoML documentation constructs the corresponding CIIM EXPRESS
representation. When required, they reference CIIM EXPRESS entity instances previously introduced.

Table F.12 — OntoML external resource mapping

OntoML EXPRESS instances

< … xsi:type=
 ”REFERENCED_GRAPHICS_Type”>
 <graphics_reference
 document_ref=”documentId”/>
<…/>

#ref_graph=REFERENCED_GRAPHICS(#doc);

#doc is built from the OntoML documentId,
according to F.4.3.4.2.1.

The createGraphics function would return the
#ref_graph entity instance.

< … xsi:type=
 ”REFERENCED_DOCUMENT_Type”>
 <document_reference
 document_ref=”documentId”/>
<…/>

#ref_doc=REFERENCED_DOCUMENT(#doc);

#doc is built from the OntoML documentId,
according to F.4.3.4.2.1.

The createDocument function would return the
#ref_doc entity instance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

224 © ISO 2010 – All rights reserved

OntoML EXPRESS instances

< … xsi:type=
 ”IDENTIFIED_DOCUMENT_Type”>
 <document_identifier>
 anIdentifier
 </document_identifier>
<…/>

#doc_id=IDENTIFIED_DOCUMENT(<anIdentif
ier>)

The createDocument function would return the
#doc_id entity instance.

< … xsi:type=
 ”EXTERNAL_GRAPHICS_Type”>
 <file> ... </file>
 ...
 <file> ... </file>
<…/>

#ext_graph=EXTERNAL_GRAPHICS(#graph_fi
les);
#graph_files=GRAPHIC_FILES(#http_proto
col, #ext_cont);

#http_protocol specifies the HTTP protocol

#ext_cont specifies the possible translations.

The createGraphics function would return the
#ext_graph entity instance.

< … xsi:type=
 ”DOCUMENT_CONTENT_Type”>
 <file> ... </file>
 ...
 <file> ... </file>
 <revision>rev</revision>
<…/>

#doc_cont=DOCUMENT_CONTENT(#doc,
#http_protocol, #ext_cont, rev);

#doc represents an instance of the document
ontology concept identifier (see F.4.3.4.2.1)

#http_protocol specifies the HTTP protocol

#ext_cont specifies the possible translations.

The createDocumentContent function would
return the #doc_cont entity instance.

< … xsi:type=
 ”MESSAGE_Type”>
 <file> ... </file>
 ...
 <file> ... </file>
 <code>a code</code>
<…/>

#mess=MESSAGE(#http_protocol,
#ext_cont, <aCode>);

#http_protocol specifies the HTTP protocol

#ext_content specifies the possible
translations.

The createExtResource function would return
the #mess entity instance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 225

OntoML EXPRESS instances
< … xsi:type=
 ”ILLUSTRATION_Type”>
 <file> ... </file>
 ...
 <code>aCode</code>
 <kind_of_content>
 aKind</kind_of_content>
 <width>aWidth</width>
 <height>aHeight</height>
<…/>

#ill=ILLUSTRATION(#http_protocol,
#ext_cont, <aCode>, <aKind>, #width,
#height);
#width=LENGTH_MEASURE_WITH_UNIT(LENGTH
_MEASURE(<aWidth>), #lu_width);
#lu_width=(LENGTH_UNIT()SI_UNIT(.MILLI
., .METRE.));
#height=LENGTH_MEASURE_WITH_UNIT(LENGT
H_MEASURE(<aHeighth>), #lu_height);
#lu_height=(LENGTH_UNIT()SI_UNIT(.MILL
I., .METRE.));

#http_protocol specifies the HTTP protocol

#ext_content specifies the possible
translations.

The createExtResource function would return the
#ill entity instance.

< … xsi:type=
 ”ILLUSTRATION_Type”
 standard_size=”a6_illustration”>
 <file> ... </file>
 ...
 <code>aCode</code>
 <kind_of_content>
 aKind</kind_of_content>
 <width>aWidth</width>
 <height>aHeight</height>
<…/>

#a6ill=A6_ILLUSTRATION(#http_protocol,
#ext_cont, <aCode>, <aKind>, #width,
#height);

#http_protocol specifies the HTTP protocol

#ext_content specifies the possible
translations.

#width and #height are defined above.

The createExtResource function would return the
#a6ill entity instance.

< … xsi:type=
 ”ILLUSTRATION_Type”
 standard_size=”a9_illustration”>
 <file> ... </file>
 ...
 <code>aCode</code>
 <kind_of_content>
 aKind</kind_of_content>
 <width>aWidth</width>
 <height>aHeight</height>
<…/>

#a9ill=A9_ILLUSTRATION(#http_protocol,
#ext_cont, <aCode>, <aKind>, #width,
#height);

#http_protocol specifies the HTTP protocol

#ext_content specifies the possible
translations.

#width and #height are defined above.

The createExtResource function would return the
#a9ill entity instance.

F.4.3.4.2.9 A posteriori case of relationship mapping

The OntoML representation of a posteriori semantic relationship is not the same than in the CIIM EXPRESS
model. Consequently, the mapping may only be expressed using a mapping function. The signature of this
mapping function is given below:

createAPosteriori(ontoMLAposteriori: XPath): a_posteriori_semantic_relationship

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

226 © ISO 2010 – All rights reserved

where:

⎯ ontoMLAposteriori: an XPath that references the xsi:type attribute of the element to which this function is
applied; it allows to specify what kind of a posteriori semantic relationships is intended to be built;

⎯ a_posteriori_semantic_relationship: the entity data type of the instance returned by this function call; if the
function applies to an XML element whose content model is defined as an a posteriori case of semantic
relationship (xsi:type = ontoml:A_POSTERIORI_CASE_OF_Type), it returns a CIIM
a_posteriori_case_of entity instance value; if it applies to an XML element whose content model is
defined as an a posteriori case of semantic relationship (xsi:type =
ontoml:A_POSTERIORI_VIEW_OF_Type) it returns a CIIM a_posteriori_view_of entity instance value.

Table F.13 presents a posteriori case of OntoML representations and its corresponding CIIM EXPRESS
representation.

Table F.13 — OntoML a posteriori case-of relationship mapping

OntoML EXPRESS instances

< … xsi:type=
 ”A_POSTERIORI_CASE_OF_Type”>
 <source class_ref=”classId1”/>
 <is_case_of
 class_ref=”classId2”/>
 <corresponding_properties>
 <mapping>
 <domain>
 <property
 property_ref=”propId1”>
 </domain>
 <range
 property_ref=”propId2”/>
 </mapping>
 </corresponding_properties>
<…/>

#apcof=A_POSTERIORI_CASE_OF(#cl1,
#cl2, ((#prop1, #prop2)));

#cl1 and #cl2 are respectively built from the
OntoML classId1 and classId2 identifiers,
according to F.4.3.4.2.1.

#prop1 and #prop2 are respectively built from the
OntoML propId1 and propId2 identifiers, according
to F.4.3.4.2.1.

The createAPosteriori function would return the
#apcof entity instance.

Table F.14 presents a posteriori view of OntoML representations and its corresponding CIIM EXPRESS
representation.

Table F.14 — OntoML a posteriori view-of relationship mapping

OntoML EXPRESS instances

< … xsi:type=
 ”A_POSTERIORI_VIEW_OF_Type”>
 <functional_model
 class_ref=”classId1”/>
 <is_view_of
 class_ref=”classId2”/>
 <corresponding_properties>
 <mapping>
 <domain>
 <property
 property_ref=”propId1”>
 </domain>
 <range
 property_ref=”propId2”/>
 </mapping>
 </corresponding_properties>
<…/>

#apcof=A_POSTERIORI_VIEW_OF(#cl1,
#cl2, ((#prop1, #prop2)));

#cl1 and #cl2 are respectively built from the
OntoML classId1 and classId2 identifiers,
according to F.4.3.4.2.1.

#prop1 and #prop2 are respectively built from the
OntoML propId1 and propId2 identifiers, according
to F.4.3.4.2.1.

The createAPosteriori function would return the
#apcof entity instance.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 227

F.4.3.4.2.10 Instances mapping

OntoML does not define any structure for representing values and instances, but it uses the resources defined
in the ISO/TS 29002-10 product exchange format.

The property values and class instances mapping is outside the scope of OntoML Nevertheless, two abstract
mapping functions are provided for consistency purposes.

The createValue function allows to map values defined in the common product exchange format to the
corresponding CIIM entity instance(s). Its signature is the following:

createValue(OntoMLValues: XPath): LIST OF primitive_value

Where:

⎯ ontoMLValues: an XPath that references a set of value XML elements intended to be processed.

NOTE 1 The value XML element is defined in the ISO/TS 29002-10 product exchange format.

⎯ property_value: the general data type returned by this function call that represents a CIIM compliant
representation of the value.

NOTE 2 primitive_value is defined in ISO 13584-24:2003, Clause 6.3.2.

The createPopulation function allows to map instances defined in this common format to the corresponding
CIIM entity instance(s). Its signature is the following:

createPopulation(OntoMLInstances: XPath): LIST OF UNIQUE dic_class_intance

⎯ ontoMLInstances: an XPath that references a set of item XML elements intended to be processed.

NOTE 3 The item XML element is defined in the ISO/TS 29002-10 product exchange format.

⎯ dic_class_instance: the general data type returned by this function call that represents a CIIM compliant
representation of the instance.

NOTE 4 dic_class_instance is defined in ISO 13584-24:2003, Clause 6.4.7.1.

F.4.4 OntoML resource mapping for un-referenced CIIM EXPRESS items

In OntoML, some un-referenced CIIM EXPRESS resources are represented. The mapping can therefore not
be expressed in a common way, on the base of some CIIM ontology concepts or on the base of the general
dictionary structure.

For that purpose, in place of defining functions whose result is intended to be assigned to an EXPRESS target
path, procedures are specified.

F.4.4.1 Global Ontology language

The create_global_language_assignment procedure is used to create a CIIM
GLOBAL_LANGUAGE_ASSIGNMENT EXPRESS entity data type instance from a specified language. Its
signature is the following:

create_global_language_assignment(language_id : XPath, country_id : XPath)

where:

⎯ language_id: an XPath retrieving the OntoML general language attribute value.

⎯ country_id: an XPath retrieving the OntoML general country attribute value.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

228 © ISO 2010 – All rights reserved

Table F.15 gives an example of applying this procedure (it is assumed that this mapping procedure is
assigned to the XML language attribute of the ontoml XML element:
create_global_language_assignment(@language_code, @country_code)).

Table F.15 — OntoML global language mapping

OntoML EXPRESS instances

<ontoml>
 <global_language
 language_code="en"/>
…
</ontoml>

#gla=GLOBAL_LANGUAGE_ASSIGNMENT(
'en', $);

F.5 OntoML complex types and CIIM entity datatype correspondence table

Table F.16 lists the correspondence between the whole set of concrete OntoML complex types and the CIIM
EXPRESS constructs (entities or data types).

Table F.16 — OntoML complex types / CIIM entity datatypes correspondence

OntoML complex type CIIM EXPRESS entity datatype

A_POSTERIORI_CASE_OF_Type a_posteriori_case_of

A_POSTERIORI_SEMANTIC_RELATIONSHIP_Type a_posteriori_semantic_relationship

A_POSTERIORI_SEMANTIC_RELATIONSHIPS_Type LIST OF a_posteriori_semantic_relationship

A_POSTERIORI_VIEW_OF_Type a_posteriori_view_of

ALTERNATIVE_UNIT_IDS_Type LIST[1:?] OF dic_unit_identifier

ALTERNATIVE_UNITS_Type LIST[1:?] OF dic_unit

ANY_TYPE_Type data_type

ARRAY_TYPE_Type array_type

AUTHORS_Type LIST[1:?] OF person

AXIS1_PLACEMENT_TYPE_Type axis1_placement_type

AXIS2_PLACEMENT_2D_TYPE_Type axis2_placement_2d_type

AXIS2_PLACEMENT_3D_TYPE_Type axis2_placement_3d_type

BAG_TYPE_Type bag_type

BOOLEAN_TYPE_Type boolean_type

CARDINALITY_CONSTRAINT_Type cardinality_constraint

CATEGORIZATION_CLASS_Type categorization_class

CLASS_CONSTANT_VALUES_Type SET OF class_value_assigment

CLASS_CONSTRAINT_Type class_constraint

CLASS_EXTENSION_Type class_extension

CLASS_REFERENCE_TYPE_Type class_reference_type

CLASS_PRESENTATION_ON_PAPER_Type LIST OF illustration

CLASS_PRESENTATION_ON_SCREEN_Type LIST OF illustration

CLASS_Type class

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 229

OntoML complex type CIIM EXPRESS entity datatype

CLASS_VALUE_ASSIGNMENT_Type class_value_assignment

CLASSIFICATION_Type SET OF property_classification

CONDITION_DET_Type condition_DET

CONFIGURATION_CONTROL_CONSTRAINT_Type configuration_control_constraint

CONSTRAINT_OR_CONSTRAINT_ID_Type constraint_or_constraint_id

CONSTRAINT_Type constraint

CONSTRAINTS_Type SET OF constraint_or_constraint_id

CONTAINED_CLASS_EXTENSIONS_Type SET OF class_extension

CONTAINED_CLASSES_Type SET OF class

CONTAINED_DATATYPES_Type SET OF data_type_element

CONTAINED_DOCUMENTS_Type SET OF document_element

CONTAINED_PROPERTIES_Type SET OF property

CONTAINED_SUPPLIERS_Type SET OF supllier_element

CONTEXT_DEPENDENT_UNIT_Type context_dependent_unit

CONTEXT_PARAM_ICON_Type LIST OF a6_illustration

CONTEXT_PARAMETER_CONSTRAINTS_Type SET OF property_constraint

CONTEXT_RESTRICTION_CONSTRAINT_Type context_restriction_constraint

CONVERSION_BASED_UNIT_Type conversion_based_unit

CORRESPONDING_PROPERTIES_type SET OF LIST[2:2] OF property_BSU

CREATE_ICON_Type LIST OF a6_illustration

DATATYPE_Type data_type_element

DATE_DATA_TYPE_Type date_data_type

DATE_TIME_DATA_TYPE_Type date_time_data_type

DEPENDENT_P_DET_Type dependent_P_DET

DERIVED_UNIT_ELEMENT_Type derived_unit_element

DERIVED_UNIT_Type derived_unit

DIC_UNIT_REFERENCE_Type dic_unit_identifier

DIC_UNITS_REFERENCE_Type SET[1:?] OF dic_unit_identifier

DIC_UNIT_Type dic_unit

DIC_VALUE_Type dic_value

DICTIONARY_IN_STANDARD_FORMAT_Type dictionary_in_standard_format

DICTIONARY_Type dictionary

DIMENSIONAL_EXPONENTS_Type dimensional_exponents

DOCUMENT_CONTENT_Type document_content

DOCUMENT_IDENTIFIER_NAME_LABEL_Type source_doc_type

DOCUMENT_IDENTIFIER_Type document_identifier

DOCUMENT_Type document

DOMAIN_CONSTRAINT_Type domain_constraint

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

230 © ISO 2010 – All rights reserved

OntoML complex type CIIM EXPRESS entity datatype

ENUMERATION_CONSTRAINT_Type enumeration_constraint

EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSI
ON_Type

explicit_functional_model_class_extension

EXPLICIT_ITEM_CLASS_EXTENSION_Type explicit_item_class_extension

EXTERNAL_GRAPHICS_Type external_graphics

EXTERNAL_RESOURCE_Type external_content

FILTER_Type filter

FM_CLASS_VIEW_OF_Type fm_class_view_of

FUNCTIONAL_MODEL_CLASS_Type functional_model_class

GENERAL_TEXT_Type text or translated_text

EXTERNAL_FILES_Type external_item

GRAPHICS_Type graphics

HEADER_Type

HTTP_FILE_Type http_file

IDENTIFIED_DOCUMENT_Type identified_document

ILLUSTRATION_Type illustration

INFORMATION_Type

INT_CURRENCY_TYPE_Type int_currency_type

INT_DIC_VALUE_Type dic_value

INT_MEASURE_TYPE_Type int_measure_type

INT_TYPE_Type int_type

INTEGRITY_CONSTRAINT_Type integrity_constraint

ITEM_CLASS_CASE_OF_Type item_class_case_of

ITEM_CLASS_Type item_class

ITS_VALUES_Type LIST OF dic_value

LANGUAGE_Type language_code

LEVEL_Type level

LEVEL_TYPE_Type level_type

LIBRARY_IIM_IDENTIFICATION_Type library_iim_identification

LIBRARY_IN_STANDARD_FORMAT_Type library_in_standard_format

LIBRARY_Type library

LIST_TYPE_Type list_type

MAPPING_FUNCTION_Type

MATHEMATICAL_STRING_Type mathematical_string

MESSAGE_Type message

NAMED_TYPE_Type named_type

NAMED_UNIT_Type named_unit

NON_DEPENDENT_P_DET_Type non_dependent_P_DET

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 231

OntoML complex type CIIM EXPRESS entity datatype

NON_INSTANTIABLE_FUNCTIONAL_VIEW_CLASS_
Type

non_instanciable_functional_view_class

NON_QUANTITATIVE_CODE_TYPE_Type non_quantitative_code_type

NON_QUANTITATIVE_INT_TYPE_Type non_quantitative_int_type

NON_SI_UNIT_Type non_si_unit

NON_TRANSLATABLE_STRING_TYPE_Type non_translatable_string_type

NUMBER_TYPE_Type number_type

ONTOML_Type

ORGANIZATION_Type organization

PERSON_Type person

PLACEMENT_TYPE_Type placement_type

POSTCONDITION_Type SET[1:?] OF filter

PRECONDITION_Type SET OF filter

PREFERRED_NAME_LABEL_Type label or translated_label

PREFERRED_NAME_Type translatable_label

PROGRAM_REFERENCE_TYPE_Type program_reference_type

PROPERTY_CLASSIFICATION_Type property_classification

PROPERTY_CONSTRAINT_Type property_constraint

PROPERTY_MAPPING_Type

PROPERTY_Type property_DET

PROPERTY_VALUE_RECOMMENDED_PRESENTA
TION_Type

property_value_recommended_representation

RANGE_CONSTRAINT_Type range_constraint

REAL_CURRENCY_TYPE_Type real_currency_type

REAL_MEASURE_TYPE_Type real_measure_type

REAL_TYPE_Type real_type

RECOMMENDED_PRESENTATION_Type SET OF
property_value_recommended_representation

REFERENCED_DOCUMENT_Type referenced_document

REFERENCED_GRAPHICS_Type referenced_graphics

REMOTE_HTTP_ADDRESS_Type remote_http_address

REMOTE_LOCATIONS_Type LIST of absolute_URL_type

REPRESENTATION_CONTEXT_Type representation_context

REPRESENTATION_P_DET_Type representation_P_DET

REPRESENTATION_REFERENCE_TYPE_Type representation_reference_type

SET_TYPE_Type set_type

SET_WITH_SUBSET_CONSTRAINT_TYPE_Type set_with_subset_constraint

SHORT_NAME_LABEL_Type label or translated_label

SHORT_NAME_Type translatable_label

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

232 © ISO 2010 – All rights reserved

OntoML complex type CIIM EXPRESS entity datatype

SI_UNIT_Type SI_unit

SOURCE_DOCUMENT_Type document

STRING_DIC_VALUE_Type dic_value

STRING_PATTERN_CONSTRAINT_Type string_pattern_constraint

STRING_SIZE_CONSTRAINT_Type string_size_constraint

STRING_TYPE_Type string_type

STRINGS_Type SET OF STRING

SUBCLASS_CONSTRAINT_Type subclass_constraint

SUBSET_Type LIST[1:?] OF UNIQUE primitive_value

SUPPLIER_Type supplier_element

SUPPORTED_VEP_Type SET OF view_exchange_protocol_identification

SYNONYMOUS_NAME_LABEL_Type syn_name_type

SYNONYMOUS_NAME_TYPE_Type SET OF syn_name_type

SYNONYMOUS_SYMBOLS_Type SET[1:?] OF mathematical_string

TEXT_Type translatable_text

TIME_DATA_TYPE_Type time_data_type

TRANSLATABLE_STRING_TYPE_Type translatable_string_type

TRANSLATION_DATA_Type translation_data

TRANSLATION_Type LIST OF translation_data

UNIT_ID_Type dic_unit_identifier

UNIT_Type unit

V_C_V_RANGE_Type SET OF view_control_variable_range

VIEW_CONTROL_VARIABLE_RANGE_Type view_control_variable_range

VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION_
Type

view_exchange_protocol_identification

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 233

Annex G
(normative)

OntoML exchange levels

OntoML provides XML markup declarations that enable both simple ontologies and advanced ontologies
compliant with the common ISO 13584/IEC 61360 model to be exchanged using XML.

Additionally, OntoML may be used as an exchange format for responses to queries performed using the
ISO/TS 29002-20 concept dictionary resolution mechanism. For that purpose, OntoML defines a set of XML
global element that allow to exchange OntoML based document instances whose root element is one ot these
defined XML global elements.

These XML global elements are the following:

⎯ ontoml: the most general XML global element that allows to represent OntoML-based document
instances for exchanging either a single ontology, or a single library, or an ontology with its associated
library.

NOTE 1 The OntoML general structure is defined in Clause 6.4.

⎯ supplier: it allows to represent OntoML-based document instances for exchanging information elements
describing a supplier identified by an IRDI.

NOTE 2 The supplier ontology concept is defined in Clause 6.7.1.

NOTE 3 The identification of a supplier ontology concept is defined in Clause 9.1.1.

⎯ class: it allows to represent OntoML-based document instances for exchanging information elements
describing a class identified by an IRDI.

NOTE 4 The class ontology concept is defined in clauses 6.7.2 and 6.7.3.

NOTE 5 The identification of a class ontology concept is defined in Clause 9.1.3.1.

⎯ property: it allows to represent OntoML-based document instances for exchanging information elements
describing a property identified by an IRDI.

NOTE 6 The property ontology concept is defined in clauses 6.7.4 and 6.7.5.

NOTE 7 The identification of a property ontology concept is defined in Clause 9.1.3.2.

⎯ datatype: it allows to represent OntoML-based document instances for exchanging information elements
describing a datatype identified by an IRDI.

NOTE 8 The datatype ontology concept is defined in Clause 6.7.6.

NOTE 9 The identification of a datatype ontology concept is defined in Clause 9.1.3.2.

⎯ document: it allows to represent OntoML-based document instances for exchanging information
elements describing a document identified by an IRDI.

NOTE 10 The document ontology concept is defined in Clause 6.7.7.

NOTE 11 The identification of a document ontology concept is defined in Clause 9.1.3.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

234 © ISO 2010 – All rights reserved

⎯ dic_unit: it allows to represent OntoML-based document instances for exchanging information elements
describing a dictionary unit identified by an IRDI.

NOTE 12 Dictionary unit is defined in Clause 8.4.

NOTE 13 The identification of a dictionary unit is defined in Clause 9.1.3.3.

⎯ constraint: it allows to represent OntoML-based document instances for exchanging information
elements describing a constraint identified by an IRDI.

NOTE 14 Constraint is defined in Clause 8.5.

NOTE 15 The identification of a constraint is defined in Clause 9.1.3.3.

⎯ dic_value: it allows to represent OntoML-based document instances for exchanging information elements
describing a dictionary value identified by an IRDI.

NOTE 16 Dictionary value is defined in Clause 8.3.4.

NOTE 17 The identification of a dictionary value is defined in Clause 9.1.3.3.

⎯ a_posteriori_semantic_relationship: it allows to represent OntoML-based document instances for
exchanging information elements describing an a posteriori semantic relationship identified by an IRDI.

NOTE 18 A posteriori semantic relationship is defined in Clause 8.6..

NOTE 19 The identification of an a posteriori semantic relationship is defined in Clause 9.1.3.3.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 235

Annex H
(normative)

Value format specification

ISO 13584-32 provides a particular syntax to specify the allowed formats for the string and numeric values that
may be associated with a property.

EXAMPLE 1 The format NR1 3 allows to specify that only integer values consisting of exactly three digits are allowed.

NOTE 1 No value format is defined for any other ANY_TYPE_Type, including BOOLEAN_TYPE_Type.

NOTE 2 In ISO 13584-32, to define the format of property values is not mandatory.

The syntax of the allowed formats is defined in this Annex using a subset of the Extended Backus-Naur Form
(EBNF) defined in ISO/IEC 14977.

EXAMPLE 2 The syntax of the format NR1 3 are the letters 'NR1' ' ' '3'.

The meaning of each syntax, that is the characters that may be used to represent a value, cannot be defined
using the EBNF. Thus the meaning of each part of the format concerning the characters allowed to represent
the value is specified separately for each part of the format.

EXAMPLE 3 The syntax of the format NR1 3 has the following meaning: NR1 means that only an integer value may
be represented. Space means that a fixed number of characters is specified by the format. 3 means that exactly three
digits are required.

H.1 Notation

Table H.1 summarizes the subset of the ISO/IEC 14977 EBNF syntactic metalanguage used by ISO 13584-32
to specify value format of properties.

Using these notations, the syntax of the subset of the EBNF metalanguage used by ISO 13584-32 to specify
value format of properties is summarized by the following grammar (the meta-identifier character, letter and
digit are not detailed):

syntax = syntaxrule ,{ syntaxrule } ;
syntaxrule = metaidentifier , '=' , definitionslist , ';' ;
definitionslist = singledefinition , { '|' , singledefinition } ;
singledefinition = term , { ',', term } ;
term = primary, ['-', primary } ;
primary = optionalsequence | repeatedsequence | groupedsequence |
 metaidentifier | terminal | empty ;
optionalsequence = '[' definitionslist ']' ;
repeatedsequence = '{' definitionslist '}' ;
groupedsequence = '(' definitionslist ')' ;
metaidentifier = letter , { letter] ;
terminal = "'", (character – "'"),{ character – "'" }, "'"
 | '"', (character – '"'),{ character – '"' }, '"' ;
empty = ;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

236 © ISO 2010 – All rights reserved

The equal sign '=' indicates a syntax rule. The meta-identifier on the left may be re-written by the combination
of the elements on the right. Any spaces appearing between the elements are meaningless unless they appear
within a terminal. A syntax rule is terminated by a semicolon ';'.

Table H.1 — ISO/IEC 14977 EBNF syntactic metalanguage

Representation ISO/IEC 10646-1
Character names

Metalanguage symbol

and role

‘ ‘ apostrophe First quote symbol: represents language
terminals.

Terminal shall not contain apostrophe.

Example: 'Hello'

" " quotation mark Second quote symbol: represents language
terminals.

Terminal shall not contain quotation mark.

Example: "John's car"

() left parenthesis, right
parenthesis

Start/ end group symbols.

The content is considered as a single symbol.

[] left square bracket, right
square bracket

Start/ end option symbols.

The content may or not be present.

{ } left curly bracket, right curly
bracket

Start/ end repeat symbols.

The content may be present 0 to n times.

- hyphen-minus Except symbol.

, comma concatenate symbol.

= equals sign Defining symbol.

Syntax rule: defines the symbol of the left by the
formula on the right.

| vertical line Alternative separator symbol.

; semicolon Terminator symbol.

End of a syntax rule.

The use of a meta-identifier within a definition-list denotes a non-terminal symbol which appears on the left
side of another syntax rule. A meta-identifier is composed of letters or digits, the first character being a letter. If
a term contains both a primary preceding a minus sign, and a primary that follows the minus sign, only the
sequence of symbols that are represented by the first primary and that are not represented by the second
primary are represented by the term.

EXAMPLE 1 Notation:

 "'", character – "'", "'"

means any character but the apostrophe character, inserted between two apostrophe characters.

The terminal denotes a symbol which cannot be expanded further by a syntax rule, and which will appear in
the final result. Two ways are allowed to represent a terminal: either a set of characters without apostrophe,
inserted between two apostrophes, or a set of characters without quotation marks, inserted between two
quotation marks.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 237

EXAMPLE 2 Assume that we want to describe, by such a grammar, the price of a product in €. Such a price is a
positive number with no more than 2 digits in the cents part. We introduce three meta-identifiers associated with three
syntax rules:

 digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

 cents = ['.' , digit [, digit]];

 euros = digit { , digit } cents;

With these syntax rules: 012, 4323.3, 3.56 are examples of licit representations of Euros. 12., .10 are examples of non
licit representation of Euros.

H.2 Data value format types

The grammar defined in this annex defines eight different types of value formats: four quantitative and five
non-quantitative value formats.

In the next clause, we define the meta-identifiers that are used to specify these formats. In Clause H.4 we
define the syntax rule for the four meta-identifiers that represent the four quantitative value formats, together
with their meaning at the value level. In Clause H.5 we define the meta-identifiers for the five non-quantitative
value formats, together with their meaning at the value level.

H.3 Meta-identifier used to define the formats

The meta-identifiers used in the grammar that define the various value formats are the following:

dot = '.';
decimalMark = '.';
exponentIndicator = 'E';
numeratorIndicator = 'N';
denominatorIndicator = 'D';
leadingDigit = '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';
lengthOfExponent = leadingDigit, {trailingDigit};
lengthOfIntegerPart = (leadingDigit, {trailingDigit});
lengthOfNumerator = leadingDigit, {trailingDigit};
lengthOfDenominator = leadingDigit, {trailingDigit};
lengthOfFractionalPart = (leadingDigit, {trailingDigit}) | '0' ;
lengthOfIntegralPart = (leadingDigit, {trailingDigit})| '0' ;
lengthOfNumber = leadingDigit, {trailingDigit};
trailingDigit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';
signedExponent = 'S';
signedNumber = space,'S';
space = ' ';
variableLengthIndicator = '..';
decimalMark: separator between integral and fractional part of numbers of format NR2 or NR3.
leadingDigit: first cipher of a number comprising one or more ciphers.
trailingDigit: one of the ciphers that combine to form numbers, except the first one.

NOTE If a number comprises only one digit, no trailingDigit is present.

H.4 Quantitative value formats

The four quantitative value format syntax rules and their meanings for value representation are defined in the
following four subclauses. They are allowed for use for properties having the following data types:

⎯ NUMBER_TYPE_Type, INT_TYPE_Type, INT_MEASURE_TYPE_Type,
INT_CURRENCY_TYPE_Type, NON_QUANTITATIVE_INT_TYPE_Type, REAL_TYPE_Type,

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

238 © ISO 2010 – All rights reserved

REAL_MEASURE_TYPE_Type, REAL_CURRENCY_TYPE_Type, RATIONAL_TYPE_Type or
RATIONAL_MEASURE_TYPE_Type;

⎯ LEVEL_TYPE_Type whose value_type is NUMBER_TYPE_Type, INT_TYPE_Type,
INT_MEASURE_TYPE_Type, INT_CURRENCY_TYPE_Type, NON_QUANTITATIVE_INT_TYPE_Type,
REAL_TYPE_Type, REAL_MEASURE_TYPE_Type, REAL_CURRENCY_TYPE_Type,
RATIONAL_TYPE_Type or RATIONAL_MEASURE_TYPE_Type;

⎯ LIST_TYPE_Type, SET_TYPE_Type, BAG_TYPE_Type, ARRAY_TYPE_Type or
SET_WITH_SUBSET_CONSTRAINT_TYPE_Type whose value_type is NUMBER_TYPE_Type,
INT_TYPE_Type, INT_MEASURE_TYPE_Type, INT_CURRENCY_TYPE_Type,
NON_QUANTITATIVE_INT_TYPE_Type, REAL_TYPE_Type, REAL_MEASURE_TYPE_Type,
REAL_CURRENCY_TYPE_Type, RATIONAL_TYPE_Type or RATIONAL_MEASURE_TYPE_Type.

NOTE 1 For NON_QUANTITATIVE_INT_TYPE_Type, the value format applies to the code.

NOTE 2 The value of this attribute should be compatible with the data type of the property: it should not change this
data type, else it should be ignored.

EXAMPLE The value format NR2 is not compatible with INT_TYPE_Type, since integer values shall not have a
fractional part.

H.4.1 NR1-value format

The NR1-value syntax specifies the format of an integer property value.

Syntax rule:

NR1Value = 'NR1', ((signedNumber, variableLengthIndicator) | (signedNumber,
space) | variableLengthIndicator | space), lengthOfNumber;

The meaning of NR1-value format components for value representation is as follows:

⎯ 'NR1': the value shall be an integer.

NOTE 1 NR1 number values shall not contain any spaces.

⎯ lengthOfNumber: number of digits of the value.

NOTE 2 If preceded by a variableLengthIndicator the actual number of digits may be less.

⎯ signedNumber: if signedNumber is present, the related number shall have either a positive, negative,
or zero value. In case of positive values a '+' sign may be present. Negative values shall be preceded by a
'-' sign. The value zero shall not be preceded by a '-' sign.

⎯ variableLengthIndicator: if variableLengthIndicator is present, the related number shall
contain a number of digits that is less or equal to its length specification, i.e., to lengthOfNumber.

H.4.2 NR2-value format

The NR2-value syntax specifies the format of real property value that does not need an exponent.

Syntax rule:

NR2Value = 'NR2', ((signedNumber,variableLengthIndicator) | (signedNumber, space)
| variableLengthIndicator | space), lengthOfIntegralPart, decimalMark,
lengthOfFractionalPart;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 239

The meaning of NR2-value format components for value representation is as follows:

⎯ 'NR2': the value shall be a real.

NOTE 1 NR2 number values shall not contain any spaces.

⎯ lengthOfFractionalPart: number of digits of the fractional part of the number.

NOTE 2 If preceded by a variableLengthIndicator the actual number of digits of the fractional part may be
less.

NOTE 3 lengthOfFractionalPart implicitly specifies the recommended accuracy of the value. The actual
accuracy of the number from which this value was derived may have been greater than the value expressed here.

⎯ lengthOfIntegralPart: number of digits of the integral part of the number.

NOTE 4 If preceded by a variableLengthIndicator the actual number of digits of the integral part may be less.

⎯ signedNumber: if signedNumber is present, the related number shall have either a positive, negative,
or zero value. In case of positive values a '+' sign may be present. Negative values shall be preceded by a
'-' sign. The value zero shall not be preceded by a '-' sign.

⎯ variableLengthIndicator: if variableLengthIndicator is present, either integral part or
fractional part of the number or both parts shall contain a number of digits that is less or equal to its
related length specification, i.e., to lengthOfIntegralPart or lengthOfFractionalPart. At least
one cipher shall be present in the number.

H.4.3 NR3-value format

The NR3-value syntax specifies the format of a real property value that is represented with an exponent.

Syntax rule:

NR3Value = 'NR3', ((signedNumber, variableLengthIndicator) | (signedNumber,
space) | variableLengthIndicator | space), lengthOfIntegralPart, decimalMark,
lengthOfFractionalPart, exponentIndicator, [signedExponent], lengthOfExponent;

The meaning of NR3-value format components for value representation is as follows:

⎯ 'NR3': the value shall be a real with an exponent of base 10.

NOTE 1 There shall be at least one digit and the decimal mark in the mantissa. The exponent shall contain at least
one digit, too.

NOTE 2 NR3 number values shall not contain any spaces.

⎯ exponentIndicator: separator between mantissa and exponent in numbers of format NR3.

⎯ lengthOfExponent: number of digits of the exponent.

NOTE 3 If preceded by a variableLengthIndicator the actual number of digits of the exponent may be less.

NOTE 4 Eventually existing signs or a decimal mark are not counted by lengthOfNumber,
lengthOfIntegralPart, lengthOfFractionalPart or lengthOfExponent.

⎯ lengthOfFractionalPart: number of digits of the fractional part of the mantissa.

NOTE 5 If preceded by a variableLengthIndicator the actual number of digits of the fractional part may be
less.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

240 © ISO 2010 – All rights reserved

NOTE 6 lengthOfFractionalPart implicitly specifies the recommended accuracy of the value. The actual
accuracy of the number from which this value was derived may have been greater than the value expressed here.

⎯ lengthOfIntegralPart: number of digits of the integral part of the mantissa.

NOTE 7 If preceded by a variableLengthIndicator the actual number of digits of the integral part may be less.

⎯ signedExponent: if signedExponent is present, the related exponent shall have either a positive,
negative, or zero value. In case of positive values a '+' sign may be present. Negative values shall be
preceded by a '-' sign. The value zero shall not be preceded by a '-' sign.

⎯ variableLengthIndicator: if variableLengthIndicator is present, the related number or
exponent shall contain a number of digits that is less or equal to its related length specification, i.e., to
lengthOfIntegralPart, lengthOfFractionalPart, or lengthOfExponent. At least one cipher
shall be present in the mantissa and in the exponent.

H.4.4 NR4-value format

The NR4-value syntax specifies the format of a rational property value that is represented with an integer part,
and possibly a fraction part with a denominator and a numerator.

Syntax rule:

NR4Value = 'NR4', ((signedNumber,variableLengthIndicator) | (signedNumber, space)
| variableLengthIndicator | space), lengthOfIntegerPart, numeratorIndicator,
lengthOfNumerator, denominatorIndicator, lengthOfDenominator;

The meaning of NR4-value format components for value representation is as follows:

⎯ 'NR4': the value shall be a rational number represented either as an integer, or as a fraction consisting of
a numerator and a denominator, or as an integer and a fraction.

EXAMPLE 12 ½ and 12 ¾ are values that may be represented in the NR4 format.

NOTE 1 There shall be at least one digit either in the integer part, or both in the numerator and in the denominator
part. If one part of the fraction contains a digit, the other part shall also contain some digits. All three parts may also
contain digits.

NOTE 2 NR4 number values shall not contain any spaces.

⎯ numeratorIndicator: separator between the integer part description and the fraction part description
in formats NR4.

⎯ lengthOfNumerator: number of digits of the numerator.

NOTE 3 If preceded by a variableLengthIndicator the actual number of digits of the numerator may be less.

NOTE 4 If the value of the rational number is completely represented by its integer part, neither the numerator of the
fraction nor its denominator shall be represented.

⎯ denominatorIndicator: separator between the numerator part description and the denominator part
description in formats NR4.

⎯ lengthOfDenominator: number of digits of the denominator.

NOTE 5 If preceded by a variableLengthIndicator the actual number of digits of the denominator may be
less.

NOTE 6 If the value of the rational number is completely represented by its integer part, neither the numerator of the
fraction nor its denominator shall be represented.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 241

⎯ lengthOfIntegerPart: number of digits of the integer part of the rational number.

NOTE 7 If preceded by a variableLengthIndicator the actual number of digits of the integer part may be less.

⎯ variableLengthIndicator: if variableLengthIndicator is present, the three parts of the
rational number shall contain a number of digits that is less or equal to its related length specification, i.e.,
to lengthOfIntegralPart, lengthOfNumerator, or lengthOfDenominator. At least one cipher
shall be present either in the integral part, or in the two parts of the fraction.

H.5 Non-quantitative value formats

The five non-quantitative value format syntax rules and their meanings are defined in the following five sub-
clauses. They are allowed for use for properties having the following data types:

⎯ STRING_TYPE_Type, TRANSLATABLE_STRING_TYPE_Type,
NON_TRANSLATABLE_STRING_TYPE_Type, URI_TYPE_Type,
NON_QUANTITATIVE_CODE_TYPE_Type, DATE_DATA_TYPE_Type, DATE_TIME_TYPE_Type or
TIME_DATA_TYPE_Type;

⎯ LEVEL_TYPE_Type whose value_type is STRING_TYPE_Type,
TRANSLATABLE_STRING_TYPE_Type, NON_TRANSLATABLE_STRING_TYPE_Type,
URI_TYPE_Type, NON_QUANTITATIVE_CODE_TYPE_Type, DATE_DATA_TYPE_Type,
DATE_TIME_TYPE_Type or TIME_DATA_TYPE_Type;;

⎯ LIST_TYPE_Type, SET_TYPE_Type, BAG_TYPE_Type, ARRAY_TYPE_Type or
SET_WITH_SUBSET_CONSTRAINT_TYPE_Type whose value_type is STRING_TYPE_Type,
TRANSLATABLE_STRING_TYPE_Type, NON_TRANSLATABLE_STRING_TYPE_Type,
URI_TYPE_Type, NON_QUANTITATIVE_CODE_TYPE_Type, DATE_DATA_TYPE_Type,
DATE_TIME_TYPE_Type or TIME_DATA_TYPE_Type;.

NOTE 1 The value of this attribute should be compatible with the data type of the property: it should no change this
data type, else it should be ignored.

NOTE 2 For NON_QUANTITATIVE_CODE_TYPE_Type the value format applies to the code.

Non-quantitative values are represented by strings which comprise characters. The length of a string may be
either specified by directly specifying the upper limit of the number of contained characters or by specifying that
the total number of characters may be any integral multiple of the length specified.

Syntax rule:

factor = leadingDigit, {trailingDigit};

numberOfCharacters = (leadingDigit, {trailingDigit})|('(nx', factor,')');

The meaning of the factor components is as follows

⎯ factor: when factor is present, then numberOfCharacters shall be any integral multiple of the value
given in factor. factor shall not contain the value zero.

⎯ numberOfCharacters: determines the maximum amount of characters contained in the string.

H.5.1 Alphabetic Value Format

An “Alphabetic Value Format (A)” defines the value format of a string that contains alphabetic letters. Thus, the
content shall be taken from the characters of row 00, cell 20, cell 40 to 7E, or cell C0 to FF, of the Basic
Multilingual Plane (BMP) (Plane 00 of Group 00) of ISO/IEC 10646-1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

242 © ISO 2010 – All rights reserved

NOTE 1 Due to potential interpretation problems of value content within components of one system or of multiple
systems, it is recommended that, where possible, the characters used should be restricted to the G0 set of
ISO/IEC 10646-1 and/or row 00 columns 002 to 007 of ISO/IEC 10646-1.

NOTE 2 For alternative languages, as supported by translated data, the relevant characters or ideographs of the
related language specific character set are available as defined by the Unicode Standard. In most cases, there will be no
1:1 relation between the characters of the source language to the characters of the target language.

NOTE 3 In most cases, there will be no 1:1 relation between the characters of the source language to the characters
of the target language.

EXAMPLE CJK (Chinese-Japanese-Korean) ideographs.

Syntax rule:

AValue = 'A', (space | variableLengthIndicator), numberOfCharacters;

The meaning of A-value format components for value representation is as follows:

⎯ 'A': the value shall be a string, or several substrings, of alphabetic letters.

⎯ variableLengthIndicator: If variableLengthIndicator is present, the string may contain fewer
characters than indicated by numberOfCharacters. The string shall contain at least one character.

H.5.2 Mixed Characters Value Format

A “Mixed Value Format (M)” format defines the value format of a string that may contain any character
specified in Clause H.7.

NOTE For alternative languages as supported by translated data, the relevant characters or ideographs of the
related language specific character set are available as defined by the Unicode Standard.

EXAMPLE CJK (Chinese-Japanese-Korean) characters.

Syntax rule:

MValue = 'M', (space | variableLengthIndicator), numberOfCharacters;

The meaning of M-value format components for value representation is as follows:

⎯ 'M': the value shall be a string, or several substrings.

⎯ variableLengthIndicator: if variableLengthIndicator is present, the string may contain fewer
characters than indicated by numberOfCharacters. The string shall contain at least one character.

H.5.3 Number Value Format

A “Number Value Format (N)”defines the value format of a string that contains numeric digits only. Thus, the
content shall be taken from the characters of row 00, cell 2B, cell 2D, cell 30 to 39, or cell 45 of the Basic
Multilingual Plane (BMP) (Plane 00 of Group 00) of ISO/IEC 10646-1.

NOTE For alternative languages as supported by translated data, the relevant characters or ideographs of the
related language specific character set are available as defined by the Unicode Standard.

EXAMPLE Table H.2 shows the transposition of the European digits “0” to “9” into Arabic digits.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 243

Table H.2 — Transposing European style digits into Arabic digits

European digits 9 8 7 6 5 4 3 2 1 0

Arabic digits ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩

Syntax rule:

NValue = 'N', (space | variableLengthIndicator), numberOfCharacters;

The meaning of N-value format components for value representation is as follows:

⎯ 'N': the value shall be a string, or several substrings, of numeric digits;

⎯ variableLengthIndicator: if variableLengthIndicator is present, the string may contain fewer
characters than indicated by numberOfCharacters. The string shall contain at least one character.

H.5.4 Mixed Alphabetic or Numeric Characters Value Format

A “Mixed Alphabetic or Numeric Characters Value Format (X)” defines the value format of a string that
contains alphanumeric characters, i.e., any combination of characters from A-value format or N-value format.

NOTE For alternative languages as supported by translated data, the relevant characters or ideographs of the
related language specific character set are available as defined by the Unicode Standard.

Syntax rule:

XValue = 'X', (space | variableLengthIndicator), numberOfCharacters;

The meaning of X-value format components for value representation is as follows:

⎯ 'X': the value shall be a string, or several substrings, of alphanumeric, i.e., any combination of alphabetic
and numeric characters;

⎯ variableLengthIndicator: if variableLengthIndicator is present, the string may contain fewer
characters than indicated by numberOfCharacters. The string shall contain at least one character.

H.5.5 Binary Value Format

A “Binary Value Format (B)”defines the value format of a string that contains binary characters, i.e., “0” or “1”.
Thus the content shall be taken from the characters of row 00, cell 30 or 31, of the Basic Multilingual Plane
(BMP) (Plane 00 of Group 00) of ISO/IEC 10646-1.

NOTE For alternative languages as supported by translated data, the relevant characters or ideographs of the
related language specific character set are available as defined by the Unicode Standard.

Syntax rule:

BValue = 'B', (space | variableLengthIndicator), numberOfCharacters;

The meaning of B-value format components for value representation is as follows:

⎯ 'B': the value shall be a string, or several substrings, consisting of binary values, i.e., the characters “0”
or ”1” or sequences thereof.

⎯ variableLengthIndicator: if variableLengthIndicator is present, the string may contain fewer
characters than indicated by numberOfCharacters. The string shall contain at least one character.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

244 © ISO 2010 – All rights reserved

H.6 Value examples

Table H.3 below contains some examples for values that may be contained in numbers and strings
characterized by the above value format scheme.

Table H.3 — Number value examples

Value format Examples of possible values

NR1 3 123; 001; 000;

NR1..3 123; 87; 5

NR1S 3 +123; +000;

NR1S..3 -123; +1; 0; -12;

NR2 3.3 123.300; 000.400 ; 000.420;

NR2..3.3 321.233; 1.234; 23.56; 9.783; .72; 324.

NR2S 3.3 -123.123; +123.300;

NR2S..3.3 -123.123; +12.3; 0.1; +.4; -3. ; 0. ; .0;

NR3 3.3E4 123.123E0004; 003.000E1000;

NR3 3.3ES4 123.123E+0004; 123.123E0004; 123.000E-0001

NR3..3.3E4 123.123E0004; .123E0001; 5.E1234

NR3S 3.3ES4 +123.123E+0004; 123.000E-0001;

NR3S..3.3ES4 -123.123E+0004; +1.00E-01; .0E0; +3.E-1; -.2E-1000;

NR4 3N2D2 001 02/03; 012 00/01; 123 03/04; 000 01/04

NR4..3N2D2 1 ½ ; 12; 123 ¾; ¼ ;

NR4S 3N2D2 +001 02/03; -012 00/01; 123 03/04; -000 01/04

NR4S..3N2D2 -1 ½ ; 12; +123 ¾; ¼ ;

A 19 My name is Reinhard, abcdefghijklmnopqrs

A..3 Abc; de; G

X..5 A23RN1; B1; ca

M..10 A23RN1; B1; ca. 256 µm;

N (nx5) 12345; 1234512345; 222223333344444;

N..(nx5) 1234; 12345; 34512345; 1234512345; 23333344444;
222223333344444; -3; 5E2;

B 1 0; 1;

B 3 011; 101;

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 245

H.7 Characters from ISO/IEC 10646-1

The following characters shall be used for the purpose of Mixed Value Format (M) (see H.5.2):

⎯ all characters from row 00 of the Basic Multilingual Plane (BMP) (Plane 00 of Group 00) of ISO/IEC
10646-1;

⎯ characters from other rows of the Basic Multilingual Plane of ISO/IEC 10646-1 as listed in Table H.4;

⎯ for alternative languages as supported by translated data, the full character set is available as defined by
the Unicode Standard.

NOTE 1 Due to potential interpretation problems of value content within components of one system or of multiple
systems it is recommended that, where possible, the characters used should be restricted to the G0 set of
ISO/IEC 10646-1 and/or row 00 columns 002 to 007 of ISO/IEC 10646-1.

NOTE 2 The Unicode Standard is published by The Unicode Consortium, P.O. Box 391476, Mountain View, CA
94039-1476, U.S.A., www.unicode.org.

Table H.4 — Characters from other rows of the Basic Multilingual Plane
of ISO/IEC 10646-1

Character Name Row Cell

ˇ CARON 02 C7

≡ IDENTICAL TO 22 61

∧ LOGICAL AND 22 27

∨ LOGICAL OR 22 28

∩ INTERSECTION 22 29

∪ UNION 22 2A

⊂ SUBSET OF (IS CONTAINED) 22 82

⊃ SUBSET OF (CONTAINS) 22 83

⇐ LEFTWARDS DOUBLE ARROW (IS IMPLIED BY) 21 D0

⇒ RIGHTWARDS DOUBLE ARROW (IMPLIES) 21 D2

∴ THEREFORE 22 34

∵ BECAUSE 22 35

∈ ELEMENT OF 22 08

∋ CONTAINS AS MEMBER (HAS AS AN ELEMENT) 22 0B

⊆ SUBSET OR EQUAL TO (CONTAINED AS SUB-
CLASS)

22 86

⊇ SUPERSET OR EQUAL TO (CONTAINS AS SUB-
CLASS)

22 87

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.unicode.org/

ISO 13584-32:2010(E)

246 © ISO 2010 – All rights reserved

Character Name Row Cell

∫ INTEGRAL 22 2B

∮ CONTOUR INTEGRAL 22 2E

∞ INFINITY 22 1E

∇ NABLA 22 07

∂ PARTIAL DIFFERENTIAL 22 02

∼ TILDE OPERATOR (DIFFERENCE BETWEEN) 22 3C

≈ ALMOST EQUAL TO 22 48

≃ ASYMPTOTICALLY EQUAL TO 22 43

≅ APPROXIMATELY EQUAL TO (SIMILAR TO) 22 45

≤ LESS THAN OR EQUAL TO 22 64

≠ NOT EQUAL TO 22 60

≥ GREATER THAN OR EQUAL TO 22 65

⇔ LEFT RIGHT DOUBLE ARROW (IF AND ONLY IF) 21 D4

¬ NOT SIGN 00 AC

∀ FOR ALL 22 00

∃ THERE EXISTS 22 03

 HEBREW LETTER ALEF 05 D0 א

□ WHITE SQUARE (D’ALEMBERTIAN OPERATOR) 25 A1

∥ PARALLEL TO 22 25

Γ GREEK CAPITAL LETTER GAMMA 03 93

Δ GREEK CAPITAL LETTER DELTA 03 94

⊥ UPTACK (ORTHOGONAL TO) 22 A5

∠ ANGLE 22 20

⊾ RIGHT ANGLE WITH ARC 22 BE

Θ GREEK CAPITAL LETTER THETA 03 98

〈 LEFT POINTING ANGLE BRACKET (BRA) 23 29

〉 RIGHT POINTING ANGLE BRACKET (KET) 23 2A

Λ GREEK CAPITAL LETTER LAMBDA 03 9B

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 247

Character Name Row Cell

′ PRIME 20 32

″ DOUBLE PRIME 20 33

Ξ GREEK CAPITAL LETTER XI 03 9E

∓ MINUS –OR– PLUS SIGN 22 13

Π GREEK CAPITAL LETTER PI 03 A0

² SUPERSCRIPT TWO 00 B2

Σ GREEK CAPITAL LETTER SIGMA 03 A3

× MULTIPLICATION SIGN 00 D7

³ SUPERSCRIPT THREE 00 B3

Υ GREEK CAPITAL LETTER UPSILON 03 A5

Φ GREEK CAPITAL LETTER PHI 03 A6

· MIDDLE DOT 00 B7

Ψ GREEK CAPITAL LETTER PSI 03 A8

Ω GREEK CAPITAL LETTER OMEGA 03 A9

∅ EMPTY SET 22 05

⇀ RIGHTWARDS HARPOON WITH BARB UPWARDS
(VECTOR OVERBAR)

21 C0

√ SQUARE ROOT (RADICAL) 22 1A

ƒ LATIN SMALL LETTER F WITH HOOK
(FUNCTION OF)

01 92

∝ PROPORTIONAL TO 22 1D

± PLUS – MINUS SIGN 00 B1

° DEGREE SIGN 00 B0

α GREEK SMALL LETTER ALPHA 03 B1

β GREEK SMALL LETTER BETA 03 B2

γ GREEK SMALL LETTER GAMMA 03 B3

δ GREEK SMALL LETTER DELTA 03 B4

ε GREEK SMALL LETTER EPSILON 03 B5

ζ GREEK SMALL LETTER ZETA 03 B6

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

248 © ISO 2010 – All rights reserved

Character Name Row Cell

η GREEK SMALL LETTER ETA 03 B7

θ GREEK SMALL LETTER THETA 03 B8

ι GREEK SMALL LETTER IOTA 03 B9

κ GREEK SMALL LETTER KAPPA 03 BA

λ GREEK SMALL LETTER LAMBDA 03 BB

μ GREEK SMALL LETTER MU 03 BC

ν GREEK SMALL LETTER NU 03 BD

ξ GREEK SMALL LETTER XI 03 BE

‰ PER MILLE SIGN 20 30

π GREEK SMALL LETTER PI 03 C0

ρ GREEK SMALL LETTER RHO 03 C1

σ GREEK SMALL LETTER SIGMA 03 C3

÷ DIVISION SIGN 03 F7

τ GREEK SMALL LETTER TAU 03 C4

υ GREEK SMALL LETTER UPSILON 03 C5

φ GREEK SMALL LETTER PHI 03 C6

χ GREEK SMALL LETTER CHI 03 C7

ψ GREEK SMALL LETTER PSI 03 C8

ω GREEK SMALL LETTER OMEGA 03 C9

† DAGGER 20 20

← LEFTWARDS ARROW 21 90

↑ UPWARDS ARROW 21 91

→ RIGHTWARDS ARROW 21 92

↓ DOWNWARDS ARROW 21 93

‾ OVERLINE 20 3E

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 249

Annex I
(informative)

XML file example

This annex presents, on an example, an overview of the different resources and steps involved in the
description of a parts library according to the ISO 13584 series.

The content of this clause is as follows:

— example introduction;

— OntoML representation of this example.

I.1 Example introduction

Figure I.1 intended to be described. It is a characterization class of washers, denoted paw, that is sold by a
bearing supplier and that is used as a bearing in some mechanical contexts. Every underlying product ontology
concept is represented in a single language: English.

e d_out

d_in

Figure I.1 — General model example: ontology definition

This product characterization class is described by three characteristic properties:

⎯ the inner diameter (d_in symbol), a real measure whose unit is expressed in millimeter;

⎯ the outer diameter (d_out symbol), a real measure whose unit is expressed in millimeter;

⎯ the thickness (e symbol), a real measure whose unit is expressed in millimeter.

This product characterization class is also associated to a drawing (the one presented in Figure I.1), called
paw.jpg.

For the purpose of this example, we propose to define a very simple product ontology as follow:

⎯ a product characterization class that plays the role of the product ontology root, and whose name is
bearing; it defines and it is described by two properties:

⎯ inner diameter (d_in);

⎯ outer diameter (d_out).

⎯ a product characterization class corresponding to the paw characterization class, subclass of the bearing
class; it defines and it is described by a single property:

⎯ thickness (e).

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

250 © ISO 2010 – All rights reserved

The CIIM ontology concepts that need to be used in this example are: dictionary, supplier, class and property.
For each of them, we define (according to the identifiers structure defined in Clause 9.1) the following
identifiers:

⎯ parts supplier: “0002-38491502100024”;

⎯ dictionary: “0002-38491502100024#11-DICTIONARY#1”;

⎯ bearing characterization class: “0002-38491502100024#01-BEARING#1”;

⎯ paw characterization class: “0002-38491502100024#01-PAW#1”;

⎯ inner diameter property: “0002-38491502100024#02-INNER_DIAMETER#1”;

⎯ outer diameter property: “0002-38491502100024#02-OUTER_DIAMTER#1”;

⎯ thickness property: “0002-38491502100024#02-THICKNESS#1”.

According to this ontology structure, we propose to describe the following five paw products (Figure I.2):

d_in e d_out

10 1 15

11 1 16.5

13 2 19.5

17 3 25.5

19 4 28.5

Figure I.2 — General model example: product specification

NOTE OntoML does only provide resources for the representation of information about the container structure of
products (product characterization class extension). A product description as property reference and typed value pairs is
defined outside the scope.

I.2 OntoML representation

In this clause, the complete OntoML representation of the product ontology example introduced in Clause I.1 is
given. This XML file is conformant with conformance class 3 defined in this part of ISO 13584.

<?xml version="1.0" encoding="UTF-8"?>
<ontoml:ontoml xmlns:ontoml="urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml"
xmlns:cat="urn:iso:std:iso:ts:29002:-10:ed-1:tech:xml-schema:catalogue" xmlns:val="urn:iso:std:iso:ts:29002:-10:ed-
1:tech:xml-schema:value" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:iso:std:iso:13584:-32:ed-1:tech:xml-schema:ontoml
D:\plib\plibDoc\P32\IS\xml_schema\ontoml.xsd">
 <header id="0002-38491502100024#11-DICTIONARY#1">
 <global_language language_code="en"/>
 <description>This file illustrates the use of OntoML</description>
 <version>1</version>
 <name>generalModel.xml</name>
 <date_time_stamp>2010-04-07T08:11:49+02:00</date_time_stamp>
 <author>Eric SARDET</author>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 251

 <organisation>My Company</organisation>
 <pre_processor_version/>
 <originating_system>XMLSpy</originating_system>
 <authorisation>Eric Sardet - sardet@ensma.fr</authorisation>
 <!-- The XML file is compliant with ISO13584-32, conformance class 3. The library_structure XML element
specifies this particular conformance class. -->
 <ontoml_information>
 <!--We assume that the dictionary/library revision is equal to 1-->
 <revision>1</revision>
 <preferred_name>
 <label>OntoML dictionary + library basic example</label>
 </preferred_name>
 </ontoml_information>
 <ontoml_structure>
 <status>IS</status>
 <name>ONTOML</name>
 <date>2010</date>
 <application>3</application>
 </ontoml_structure>
 </header>
 <!-- The ontology is defined using the dictionary XML element. Because it represents both the ontology itself and
instances compliant to this ontology, the specific content model used is based on the
LIBRARY_IN_STANDARD_FORMAT_Type complex type definition. An identifier is assigned to the dictionary using the id
XML attribute. -->
 <dictionary xsi:type="ontoml:DICTIONARY_IN_STANDARD_FORMAT_Type">
 <!--We assume that the information described is a complete library-->
 <is_complete>true</is_complete>
 <!-- The supplier responsible for the description of the ontology data is identified using the supplier_ref XML
attribute -->
 <responsible_supplier supplier_ref="0002-38491502100024"/>
 <!-- All the characterization classes described in an ontology are gathered in the "contained_classes" XML
element.-->
 <contained_classes>
 <!-- This class XML element defines the "bearing" class. It is defined as an item class ("ITEM_CLASS_Type"
complex type). It is identified using the "id" XML attribute.-->
 <ontoml:class xsi:type="ontoml:ITEM_CLASS_Type" id="0002-38491502100024#01-BEARING#1">
 <!-- We assume that the provided characterizationclass revision is equal to 1 -->
 <revision>1</revision>
 <!-- This characterization class preferred name is not translated and set to "bearing" -->
 <preferred_name>
 <label>bearing</label>
 </preferred_name>
 <!-- The "bearing" characterization class definition is not translated. -->
 <definition>
 <text>general bearing parts family</text>
 </definition>
 <!-- The "bearing" characterization class is described by two properties, each of them being identified
unambiguously ("property_ref" XMLattribute). In this example, the properties definitions are provided, but it is not
mandatory. The listed properties are: inner diameter and outer diameter.-->
 <described_by>
 <property property_ref="0002-38491502100024#02-INNER_DIAMETER#1"/>
 <property property_ref="0002-38491502100024#02-OUTER_DIAMETER#1"/>
 </described_by>
 </ontoml:class>
 <!-- This class XML element defines the "paw" class. It is defined as an item class ("ITEM_CLASS_Type"
complex type). It is identified using the id XML attribute.-->
 <ontoml:class xsi:type="ontoml:ITEM_CLASS_Type" id="0002-38491502100024#01-PAW#1">
 <!-- We assume that the provided characterization class revision is equal to "1" -->
 <revision>1</revision>
 <!-- This characterization class preferred name is not translated and set to "paw" -->
 <preferred_name>
 <label>paw</label>
 </preferred_name>
 <!-- The "paw" characterization class definition is not translated. -->
 <definition>
 <text>paw parts family</text>
 </definition>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

252 © ISO 2010 – All rights reserved

 <!-- The "paw" characterization class is a subclass of the "bearing" characterization class: it is specified
using the "its_superclass" element whose "class_ref" attibute references the "bearing" characterization class-->
 <its_superclass class_ref="0002-38491502100024#01-BEARING#1"/>
 <!-- The "paw" characterization class is described by a single property being identified unambiguously
("property_ref" XMLattribute). In this example, the properties definitions are provided, but it is not mandatory. The listed
properties are: inner diameter and outer diameter.-->
 <described_by>
 <property property_ref="0002-38491502100024#02-THICKNESS#001"/>
 </described_by>
 <!-- A drawing, stored in a file called "paw.jpeg" located in the same directory that the current XML file, is
assigned to the "paw" characterization class.-->
 <simplified_drawing xsi:type="ontoml:EXTERNAL_GRAPHICS_Type">
 <!-- The drawing consists of a single external resource called "paw.jpg"-->
 <representation>
 <file>
 <http_file>paw.jpeg</http_file>
 </file>
 </representation>
 </simplified_drawing>
 </ontoml:class>
 </contained_classes>
 <!-- A name, that is only defined in english, is provided to the dictionary -->
 <!--Every supplier referenced in this ontology shall be described in the "contained_suppliers" XML element. -->
 <contained_suppliers>
 <ontoml:supplier id="0002-38491502100024">
 <revision>1</revision>
 <!-- The supplier is only described through its name. -->
 <org>
 <name>My Company</name>
 </org>
 </ontoml:supplier>
 </contained_suppliers>
 <!-- All the properties described in an ontology are gathered in the "contained_properties" XML element.-->
 <contained_properties>
 <ontoml:property xsi:type="ontoml:NON_DEPENDENT_P_DET_Type" id="0002-38491502100024#02-
INNER_DIAMETER#001">
 <!-- Domain definition of the "inner diameter" property -->
 <name_scope class_ref="0002-38491502100024#01-BEARING#1"/>
 <!-- We assume that the provided property revision is equal to "1" -->
 <revision>1</revision>
 <!-- This property preferred name is not translated and set to "inner diameter" -->
 <preferred_name>
 <label>inner diameter</label>
 </preferred_name>
 <!-- The "inner diameter" property definition is not translated. -->
 <definition>
 <text>the bearing inner diameter</text>
 </definition>
 <!-- The "d_in" preferred symbol is assigned to this property -->
 <preferred_symbol>
 <text_representation>d_in</text_representation>
 </preferred_symbol>
 <!-- A real measure value domain (REAL_MEASURE_TYPE_Type XML complex type), expressed in
millimetre, is assigned to this property. -->
 <domain xsi:type="ontoml:REAL_MEASURE_TYPE_Type">
 <unit>
 <structured_representation xsi:type="ontoml:SI_UNIT_Type">
 <!-- The particular named unit used is an SI Unit, as defined by the SI_UNIT_Type XML complex
type-->
 <prefix>MILLI</prefix>
 <name>METRE</name>
 </structured_representation>
 </unit>
 </domain>
 </ontoml:property>
 <ontoml:property xsi:type="ontoml:NON_DEPENDENT_P_DET_Type" id="0002-38491502100024#02-
OUTER_DIAMETER#001">

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 253

 <!-- Domain definition of the "outer diameter" property -->
 <name_scope class_ref="0002-38491502100024#01-BEARING#1"/>
 <!-- We assume that the provided property revision is equal to "1" -->
 <revision>1</revision>
 <!-- This property preferred name is not translated and set to "outer diameter" -->
 <preferred_name>
 <label>outer diameter</label>
 </preferred_name>
 <!-- The "outer diameter" property definition is not translated. -->
 <definition>
 <text>the bearing outer diameter</text>
 </definition>
 <!-- The "d_in" preferred symbol is assigned to this property -->
 <preferred_symbol>
 <text_representation>d_out</text_representation>
 </preferred_symbol>
 <!-- A real measure value domain (REAL_MEASURE_TYPE_Type XML complex type), expressed in
millimetre, is assigned to this property. -->
 <domain xsi:type="ontoml:REAL_MEASURE_TYPE_Type">
 <unit>
 <structured_representation xsi:type="ontoml:SI_UNIT_Type">
 <!-- The particular named unit used is an SI Unit, as defined by the SI_UNIT_Type XML complex
type-->
 <prefix>MILLI</prefix>
 <name>METRE</name>
 </structured_representation>
 </unit>
 </domain>
 </ontoml:property>
 <ontoml:property xsi:type="ontoml:NON_DEPENDENT_P_DET_Type" id="0002-38491502100024#02-
THICKNESS#001">
 <!-- Domain definition of the "thickness" property -->
 <name_scope class_ref="0002-38491502100024#01-BEARING#1"/>
 <!-- We assume that the provided property revision is equal to "1" -->
 <revision>1</revision>
 <!-- This property preferred name is not translated and set to "thickness" -->
 <preferred_name>
 <label>thickness</label>
 </preferred_name>
 <!-- The "thickness" property definition is not translated. -->
 <definition>
 <text>the paw thickness</text>
 </definition>
 <!-- The "e" preferred symbol is assigned to this property -->
 <preferred_symbol>
 <text_representation>e</text_representation>
 </preferred_symbol>
 <!-- A real measure value domain, expressed in millimetre (REAL_MEASURE_TYPE_Type XML complex
type), is assigned to this property. -->
 <domain xsi:type="ontoml:REAL_MEASURE_TYPE_Type">
 <unit>
 <structured_representation xsi:type="ontoml:SI_UNIT_Type">
 <!-- The particular named unit used is an SI Unit, as defined by the SI_UNIT_Type XML complex
type-->
 <prefix>MILLI</prefix>
 <name>METRE</name>
 </structured_representation>
 </unit>
 </domain>
 </ontoml:property>
 </contained_properties>
 <!-- The ontology is provided in a single language: english.-->
 </dictionary>
 <!-- The "content" XML element allows to represent products according to some product charaterization classes
described in a given ontology-->
 <library xsi:type="ontoml:LIBRARY_IN_STANDARD_FORMAT_Type">
 <contained_class_extensions>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

254 © ISO 2010 – All rights reserved

 <!-- We describe the products that relate to a product characterization class. Every product is described as a
set of (property reference, type value) pairs. -->
 <class_extension xsi:type="ontoml:EXPLICIT_ITEM_CLASS_EXTENSION_Type">
 <!-- The particular product characterization class for which the products are specified is referenced using
the "class_ref" XML attribute.-->
 <dictionary_definition class_ref="0002-38491502100024#01-PAW#1"/>
 <!-- We assume that the provided content revision is equal to "1" -->
 <content_revision>1</content_revision>
 <!-- the "instance_identification" defines which properties of the describes products play the role of a
primary key. In our example, the "inner diameter" property plays such a role. This property is therefore referenced
unambiguously using the "property_ref" XML attribute.-->
 <instance_identification>
 <property property_ref="0002-38491502100024#02-INNER_DIAMETER#1"/>
 </instance_identification>
 <!-- A product charaterization class consists of a set of product. they are all gathered in the "population"
XML element. -->
 <population>
 <!-- Every product is defines using external resources for describing a product as a set of (property
reference, type value) pairs.Moreover, every product references the class to which it belongs using the "class_ref"
attribute.-->
 <cat:item class_ref="0002-38491502100024#01-PAW#1">
 <!-- The first value is about the "inner diameter" property that is referenced using the "property_ref'
attribute -->
 <cat:property_value property_ref="0002-38491502100024#02-INNER_DIAMETER#1">
 <!-- The valiue is a real measure, whose unit is "mm". This value is equal to "10". -->
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>10</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <!-- The second value is about the "thickness" property that is referenced using the "property_ref'
attribute -->
 <cat:property_value property_ref="0002-38491502100024#02-THICKNESS#1">
 <!-- The valiue is a real measure, whose unit is "mm". This value is equal to "10". -->
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>1</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <!-- The third value is about the "outer diameter" property that is referenced using the "property_ref'
attribute -->
 <cat:property_value property_ref="0002-38491502100024#02-OUTER_DIAMETER#1">
 <!-- The valiue is a real measure, whose unit is "mm". This value is equal to "10". -->
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>15</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 </cat:item>
 <!-- Second product description -->
 <cat:item class_ref="0002-38491502100024#01-PAW#1">
 <cat:property_value property_ref="0002-38491502100024#02-INNER_DIAMETER#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>11</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-THICKNESS#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>1</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-OUTER_DIAMETER#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>16.5</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 </cat:item>
 <!-- Third product description -->
 <cat:item class_ref="0002-38491502100024#01-PAW#1">
 <cat:property_value property_ref="0002-38491502100024#02-INNER_DIAMETER#1">

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 255

 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>13</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-THICKNESS#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>2</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-OUTER_DIAMETER#1">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>19.5</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 </cat:item>
 <!-- Fourth product description -->
 <cat:item class_ref="0002-38491502100024#01-PAW#001">
 <cat:property_value property_ref="0002-38491502100024#02-INNER_DIAMETER#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>17</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-THICKNESS#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>3</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-OUTER_DIAMETER#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>25.5</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 </cat:item>
 <!-- Fifth product description -->
 <cat:item class_ref="0002-38491502100024#01-PAW#001">
 <cat:property_value property_ref="0002-38491502100024#02-INNER_DIAMETER#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>19</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-THICKNESS#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>4</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 <cat:property_value property_ref="0002-38491502100024#02-OUTER_DIAMETER#001">
 <val:measure_single_number_value UOM_code="mm">
 <val:real_value>28.5</val:real_value>
 </val:measure_single_number_value>
 </cat:property_value>
 </cat:item>
 </population>
 <table_like>true</table_like>
 </class_extension>
 </contained_class_extensions>
 <responsible_supplier supplier_ref="0002-38491502100024"/>
 </library>
</ontoml:ontoml>

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

256 © ISO 2010 – All rights reserved

Annex J
(informative)

Information to support implementations

Additional information may be provided to support implementations. If the information is provided it can be
found at the following URL:

http://www.tc184-sc4.org/implementation_information/13584/00032

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.tc184-sc4.org/implementation_information/13584/00032

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 257

Bibliography

[1] ISO 639-1, Codes for the representation of names of languages — Part 1: Alpha-2 code

[2] ISO 639-2, Codes for the representation of names of languages — Part 2: Alpha-3 code

[3] ISO 843, Information and documentation — Conversion of Greek characters into Latin characters

[4] ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes

[5] ISO 10303-1, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles

[6] ISO 10303-21, Industrial automation systems and integration — Product data representation and
exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure

[7] ISO 10303-41, Industrial automation systems and integration — Product data representation and
exchange — Part 41: Integrated generic resource: Fundamentals of product description and support

[8] ISO 10303-42, Industrial automation systems and integration — Product data representation and
exchange — Part 42: Integrated generic resource: Geometric and topological representation

[9] ISO 13584-1, Industrial automation systems and integration — Parts library — Part 1: Overview and
fundamental principles

[10] ISO 13584-24:2003, Industrial automation systems and integration — Parts library — Part 24: Logical
resource: Logical model of supplier library

[11] ISO 13584-25:2004, Industrial automation systems and integration — Parts library — Part 25: Logical
resource: Logical model of supplier library with aggregate values and explicit content

[12] ISO 13584-26, Industrial automation systems and integration — Parts library — Part 26: Logical
resource: Information supplier identification

[13] ISO 13584-42:2010, Industrial automation systems and integration — Parts library — Part 42:
Description methodology: Methodology for structuring parts families

[14] ISO 13584-102, Industrial automation systems and integration — Parts library — Part 102: View
exchange protocol by ISO 10303 conforming specification

[15] ISO 13584-501, Industrial automation systems and integration — Parts library — Part 501: Reference
dictionary for measuring instruments — Registration procedure

[16] ISO 13584-511, Industrial automation systems and integration — Parts library — Part 511: Mechanical
systems and components for general use — Reference dictionary for fasteners

[17] ISO/TS 23768-11, Rolling bearings — Parts library — Part 1: Reference dictionary

[18] ISO/TS 29002-20, Industrial automation systems and integration — Exchange of characteristic data —
Part 20: Concept dictionary resolution services

1 Under preparation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

258 © ISO 2010 – All rights reserved

[19] ISO 80000-1, Quantities and units — Part 1: General

[20] IEC 61360 (all parts), Standard data element types with associated classification scheme for electronic
components

[21] ISO/IEC Guide 77-2:2008, Guide for specification of product properties and classes — Part 2:
Technical principles and guidance

[22] ISO/IEC 8824-1, Information technology — Abstract Syntax Notation One (ASN.1) — Part 1:
Specification of basic notation

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 13584-32:2010(E)

© ISO 2010 – All rights reserved 259

Index

categorization .. 4, 5
characterization class.. 5
CIIM ontology concept... 3
class .. 2
class member .. 2
common ISO/IEC dictionary model ... 3
EXPRESS attribute.. 3
EXPRESS entity .. 3
global identifier .. 3
is-a relationship ... 3
is-case-of relationship ... 4
is-view-of relationship.. 4
library... 4
ontology... 6
OntoML document instance .. 4
part categorization... 4
part characterization.. 5
part characterization class... 5
part ontology.. 6
product categorization ... 4, 5
product characterization .. 5
product characterization class... 5
product ontology.. 6
property ... 6
reference dictionary... 6
XML attribute ... 7
XML complex type ... 7
XML element ... 7
XML simple type .. 7

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 13584-32:2010(E)

ICS 25.040.40
Price based on 259 pages

© ISO 2010 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

	Scope
	Normative references
	Terms and definitions
	Abbreviated terms
	OntoML implementation levels
	Overview of OntoML ontology representation
	CIIM ontology concepts
	OntoML structure of a CIIM ontology concept
	UML-like graphical representation of OntoML constructs
	Graphical notations
	Representation of an XML complex type
	Representation of references to external information element
	Representation of XML attributes and XML elements whose cont
	Representation of an XML element whose content model is an X
	Representation of the cardinality of embedded XML elements
	Representation of XML complex type extensions

	Reference mechanism between CIIM ontology concepts
	Identification of a CIIM ontology concept
	OntoML representation of a reference to a CIIM ontology conc
	OntoML representation of simple and multi-valued references
	Simplified graphical representation of references between CI

	UML diagrams colour conventions
	Description of the structure of all OntoML complex types
	Graphical presentation
	Internal item definition
	Internal type definition
	External type definition
	Constraint specification

	OntoML general structure
	OntoML header
	Root element of an ontology
	OntoML representation of CIIM ontology concepts
	Supplier
	Simple-level ontology class
	Item class
	Categorization class
	Item class case-of
	Class valued property

	Advanced-level ontology class
	Functional view class
	Functional model class
	Functional model class view-of
	View control variable range

	Simple-level ontology property
	Advanced-level ontology property
	Identified data type
	Document

	Overview of OntoML libraries representation
	Root element of a library
	Class extension general structure
	Property classification
	Properties presentation

	Simple-level library: content of classes of products
	Advanced-level library: content of classes of product repres

	Other structured information elements
	Translations
	Language specification
	Translation of string valued elements
	Translation management

	External content
	Simple-level ontology external resources
	HTTP file
	Illustration
	Message
	External files

	Source document and graphics
	Source document
	Identified document
	Referenced document

	Graphics
	External graphics
	Referenced graphics

	Data type system
	Boolean type
	String types
	Date and time type
	Enumeration of string codes type
	Numeric types
	Numeric currency types
	Numeric measure types
	Enumeration of integer codes type
	Collection types
	Bag type
	Set type
	List type
	Array type
	Set with subset constraint type

	Class reference type
	Level type
	Named type
	Advanced-level data types

	Units
	Unit structure
	Named unit
	Dimensional exponent
	Internationally standardized unit
	Non internationally standardized unit
	Conversion based unit
	Context dependent unit

	Derived unit

	Constraints
	Constraint reference
	Class constraint
	Configuration control constraint

	Property constraint
	Context restriction constraint
	Integrity constraint
	Domain constraint
	Subclass constraint
	String pattern constraint
	Cardinality constraint
	String size constraint
	Range constraint
	Enumeration constraint

	A posteriori semantics relationship
	A posteriori mapping in a case-of relationship
	A posteriori mapping in a view-of relationship

	Data exchange specification identification
	Simple-level ontology data exchange specification: library i
	Advanced-level ontology data exchange specification: view ex

	Other structured information elements
	Organization representation
	Mathematical string
	Geometric context
	Geometric unit context

	OntoML exchange structure
	Identifiers of CIIM ontology concepts
	Registration Authority Identifier (RAI) structure
	Version Identifier (VI) structure
	Data Identifier (DI) structure
	DI for classes
	DI for properties, data types and documents
	DI for units, currencies, constraints, value codes and a pos
	DI for ontologies and libraries

	OntoML identifier representation

	OntoML namespace
	OntoML URN
	OntoML URI

	Modular structure
	Levels of exchange and conformance classes
	Conformance class requirements
	Conformance class€1
	Conformance class€2
	Conformance class€3
	Conformance class€4

	Dictionary Change Management Rules
	Principle of ontological continuity
	Revisions and Versions
	Correction of errors
	Rules for change management
	Criteria for classifying a change
	Dependency and the propagation of changes
	Management of categorization classes
	Management of dictionary version and revision

	Dictionary Changes and Attributes
	System maintained attributes
	Attributes available for textual change

	Constraints on the evolution of reference dictionaries

